thread.cpp revision 7551:c75901698a47
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/codeCache.hpp"
31#include "code/scopeDesc.hpp"
32#include "compiler/compileBroker.hpp"
33#include "interpreter/interpreter.hpp"
34#include "interpreter/linkResolver.hpp"
35#include "interpreter/oopMapCache.hpp"
36#include "jvmtifiles/jvmtiEnv.hpp"
37#include "memory/gcLocker.inline.hpp"
38#include "memory/metaspaceShared.hpp"
39#include "memory/oopFactory.hpp"
40#include "memory/universe.inline.hpp"
41#include "oops/instanceKlass.hpp"
42#include "oops/objArrayOop.hpp"
43#include "oops/oop.inline.hpp"
44#include "oops/symbol.hpp"
45#include "prims/jvm_misc.hpp"
46#include "prims/jvmtiExport.hpp"
47#include "prims/jvmtiThreadState.hpp"
48#include "prims/privilegedStack.hpp"
49#include "runtime/arguments.hpp"
50#include "runtime/atomic.inline.hpp"
51#include "runtime/biasedLocking.hpp"
52#include "runtime/deoptimization.hpp"
53#include "runtime/fprofiler.hpp"
54#include "runtime/frame.inline.hpp"
55#include "runtime/init.hpp"
56#include "runtime/interfaceSupport.hpp"
57#include "runtime/java.hpp"
58#include "runtime/javaCalls.hpp"
59#include "runtime/jniPeriodicChecker.hpp"
60#include "runtime/memprofiler.hpp"
61#include "runtime/mutexLocker.hpp"
62#include "runtime/objectMonitor.hpp"
63#include "runtime/orderAccess.inline.hpp"
64#include "runtime/osThread.hpp"
65#include "runtime/safepoint.hpp"
66#include "runtime/sharedRuntime.hpp"
67#include "runtime/statSampler.hpp"
68#include "runtime/stubRoutines.hpp"
69#include "runtime/sweeper.hpp"
70#include "runtime/task.hpp"
71#include "runtime/thread.inline.hpp"
72#include "runtime/threadCritical.hpp"
73#include "runtime/threadLocalStorage.hpp"
74#include "runtime/vframe.hpp"
75#include "runtime/vframeArray.hpp"
76#include "runtime/vframe_hp.hpp"
77#include "runtime/vmThread.hpp"
78#include "runtime/vm_operations.hpp"
79#include "runtime/vm_version.hpp"
80#include "services/attachListener.hpp"
81#include "services/management.hpp"
82#include "services/memTracker.hpp"
83#include "services/threadService.hpp"
84#include "trace/tracing.hpp"
85#include "trace/traceMacros.hpp"
86#include "utilities/defaultStream.hpp"
87#include "utilities/dtrace.hpp"
88#include "utilities/events.hpp"
89#include "utilities/preserveException.hpp"
90#include "utilities/macros.hpp"
91#if INCLUDE_ALL_GCS
92#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
93#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
94#include "gc_implementation/parallelScavenge/pcTasks.hpp"
95#endif // INCLUDE_ALL_GCS
96#ifdef COMPILER1
97#include "c1/c1_Compiler.hpp"
98#endif
99#ifdef COMPILER2
100#include "opto/c2compiler.hpp"
101#include "opto/idealGraphPrinter.hpp"
102#endif
103#if INCLUDE_RTM_OPT
104#include "runtime/rtmLocking.hpp"
105#endif
106
107PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
108
109#ifdef DTRACE_ENABLED
110
111// Only bother with this argument setup if dtrace is available
112
113  #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
114  #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
115
116  #define DTRACE_THREAD_PROBE(probe, javathread)                           \
117    {                                                                      \
118      ResourceMark rm(this);                                               \
119      int len = 0;                                                         \
120      const char* name = (javathread)->get_thread_name();                  \
121      len = strlen(name);                                                  \
122      HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
123        (char *) name, len,                                                \
124        java_lang_Thread::thread_id((javathread)->threadObj()),            \
125        (uintptr_t) (javathread)->osthread()->thread_id(),                 \
126        java_lang_Thread::is_daemon((javathread)->threadObj()));           \
127    }
128
129#else //  ndef DTRACE_ENABLED
130
131  #define DTRACE_THREAD_PROBE(probe, javathread)
132
133#endif // ndef DTRACE_ENABLED
134
135
136// Class hierarchy
137// - Thread
138//   - VMThread
139//   - WatcherThread
140//   - ConcurrentMarkSweepThread
141//   - JavaThread
142//     - CompilerThread
143
144// ======= Thread ========
145// Support for forcing alignment of thread objects for biased locking
146void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
147  if (UseBiasedLocking) {
148    const int alignment = markOopDesc::biased_lock_alignment;
149    size_t aligned_size = size + (alignment - sizeof(intptr_t));
150    void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
151                                          : AllocateHeap(aligned_size, flags, CURRENT_PC,
152                                                         AllocFailStrategy::RETURN_NULL);
153    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
154    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
155           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
156           "JavaThread alignment code overflowed allocated storage");
157    if (TraceBiasedLocking) {
158      if (aligned_addr != real_malloc_addr) {
159        tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
160                      real_malloc_addr, aligned_addr);
161      }
162    }
163    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
164    return aligned_addr;
165  } else {
166    return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
167                       : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
168  }
169}
170
171void Thread::operator delete(void* p) {
172  if (UseBiasedLocking) {
173    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
174    FreeHeap(real_malloc_addr);
175  } else {
176    FreeHeap(p);
177  }
178}
179
180
181// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
182// JavaThread
183
184
185Thread::Thread() {
186  // stack and get_thread
187  set_stack_base(NULL);
188  set_stack_size(0);
189  set_self_raw_id(0);
190  set_lgrp_id(-1);
191
192  // allocated data structures
193  set_osthread(NULL);
194  set_resource_area(new (mtThread)ResourceArea());
195  DEBUG_ONLY(_current_resource_mark = NULL;)
196  set_handle_area(new (mtThread) HandleArea(NULL));
197  set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
198  set_active_handles(NULL);
199  set_free_handle_block(NULL);
200  set_last_handle_mark(NULL);
201
202  // This initial value ==> never claimed.
203  _oops_do_parity = 0;
204
205  _metadata_on_stack_buffer = NULL;
206
207  // the handle mark links itself to last_handle_mark
208  new HandleMark(this);
209
210  // plain initialization
211  debug_only(_owned_locks = NULL;)
212  debug_only(_allow_allocation_count = 0;)
213  NOT_PRODUCT(_allow_safepoint_count = 0;)
214  NOT_PRODUCT(_skip_gcalot = false;)
215  _jvmti_env_iteration_count = 0;
216  set_allocated_bytes(0);
217  _vm_operation_started_count = 0;
218  _vm_operation_completed_count = 0;
219  _current_pending_monitor = NULL;
220  _current_pending_monitor_is_from_java = true;
221  _current_waiting_monitor = NULL;
222  _num_nested_signal = 0;
223  omFreeList = NULL;
224  omFreeCount = 0;
225  omFreeProvision = 32;
226  omInUseList = NULL;
227  omInUseCount = 0;
228
229#ifdef ASSERT
230  _visited_for_critical_count = false;
231#endif
232
233  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
234                         Monitor::_safepoint_check_sometimes);
235  _suspend_flags = 0;
236
237  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
238  _hashStateX = os::random();
239  _hashStateY = 842502087;
240  _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
241  _hashStateW = 273326509;
242
243  _OnTrap   = 0;
244  _schedctl = NULL;
245  _Stalled  = 0;
246  _TypeTag  = 0x2BAD;
247
248  // Many of the following fields are effectively final - immutable
249  // Note that nascent threads can't use the Native Monitor-Mutex
250  // construct until the _MutexEvent is initialized ...
251  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
252  // we might instead use a stack of ParkEvents that we could provision on-demand.
253  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
254  // and ::Release()
255  _ParkEvent   = ParkEvent::Allocate(this);
256  _SleepEvent  = ParkEvent::Allocate(this);
257  _MutexEvent  = ParkEvent::Allocate(this);
258  _MuxEvent    = ParkEvent::Allocate(this);
259
260#ifdef CHECK_UNHANDLED_OOPS
261  if (CheckUnhandledOops) {
262    _unhandled_oops = new UnhandledOops(this);
263  }
264#endif // CHECK_UNHANDLED_OOPS
265#ifdef ASSERT
266  if (UseBiasedLocking) {
267    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
268    assert(this == _real_malloc_address ||
269           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
270           "bug in forced alignment of thread objects");
271  }
272#endif // ASSERT
273}
274
275void Thread::initialize_thread_local_storage() {
276  // Note: Make sure this method only calls
277  // non-blocking operations. Otherwise, it might not work
278  // with the thread-startup/safepoint interaction.
279
280  // During Java thread startup, safepoint code should allow this
281  // method to complete because it may need to allocate memory to
282  // store information for the new thread.
283
284  // initialize structure dependent on thread local storage
285  ThreadLocalStorage::set_thread(this);
286}
287
288void Thread::record_stack_base_and_size() {
289  set_stack_base(os::current_stack_base());
290  set_stack_size(os::current_stack_size());
291  if (is_Java_thread()) {
292    ((JavaThread*) this)->set_stack_overflow_limit();
293  }
294  // CR 7190089: on Solaris, primordial thread's stack is adjusted
295  // in initialize_thread(). Without the adjustment, stack size is
296  // incorrect if stack is set to unlimited (ulimit -s unlimited).
297  // So far, only Solaris has real implementation of initialize_thread().
298  //
299  // set up any platform-specific state.
300  os::initialize_thread(this);
301
302#if INCLUDE_NMT
303  // record thread's native stack, stack grows downward
304  address stack_low_addr = stack_base() - stack_size();
305  MemTracker::record_thread_stack(stack_low_addr, stack_size());
306#endif // INCLUDE_NMT
307}
308
309
310Thread::~Thread() {
311  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
312  ObjectSynchronizer::omFlush(this);
313
314  EVENT_THREAD_DESTRUCT(this);
315
316  // stack_base can be NULL if the thread is never started or exited before
317  // record_stack_base_and_size called. Although, we would like to ensure
318  // that all started threads do call record_stack_base_and_size(), there is
319  // not proper way to enforce that.
320#if INCLUDE_NMT
321  if (_stack_base != NULL) {
322    address low_stack_addr = stack_base() - stack_size();
323    MemTracker::release_thread_stack(low_stack_addr, stack_size());
324#ifdef ASSERT
325    set_stack_base(NULL);
326#endif
327  }
328#endif // INCLUDE_NMT
329
330  // deallocate data structures
331  delete resource_area();
332  // since the handle marks are using the handle area, we have to deallocated the root
333  // handle mark before deallocating the thread's handle area,
334  assert(last_handle_mark() != NULL, "check we have an element");
335  delete last_handle_mark();
336  assert(last_handle_mark() == NULL, "check we have reached the end");
337
338  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
339  // We NULL out the fields for good hygiene.
340  ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
341  ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
342  ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
343  ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
344
345  delete handle_area();
346  delete metadata_handles();
347
348  // osthread() can be NULL, if creation of thread failed.
349  if (osthread() != NULL) os::free_thread(osthread());
350
351  delete _SR_lock;
352
353  // clear thread local storage if the Thread is deleting itself
354  if (this == Thread::current()) {
355    ThreadLocalStorage::set_thread(NULL);
356  } else {
357    // In the case where we're not the current thread, invalidate all the
358    // caches in case some code tries to get the current thread or the
359    // thread that was destroyed, and gets stale information.
360    ThreadLocalStorage::invalidate_all();
361  }
362  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
363}
364
365// NOTE: dummy function for assertion purpose.
366void Thread::run() {
367  ShouldNotReachHere();
368}
369
370#ifdef ASSERT
371// Private method to check for dangling thread pointer
372void check_for_dangling_thread_pointer(Thread *thread) {
373  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
374         "possibility of dangling Thread pointer");
375}
376#endif
377
378ThreadPriority Thread::get_priority(const Thread* const thread) {
379  ThreadPriority priority;
380  // Can return an error!
381  (void)os::get_priority(thread, priority);
382  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
383  return priority;
384}
385
386void Thread::set_priority(Thread* thread, ThreadPriority priority) {
387  debug_only(check_for_dangling_thread_pointer(thread);)
388  // Can return an error!
389  (void)os::set_priority(thread, priority);
390}
391
392
393void Thread::start(Thread* thread) {
394  // Start is different from resume in that its safety is guaranteed by context or
395  // being called from a Java method synchronized on the Thread object.
396  if (!DisableStartThread) {
397    if (thread->is_Java_thread()) {
398      // Initialize the thread state to RUNNABLE before starting this thread.
399      // Can not set it after the thread started because we do not know the
400      // exact thread state at that time. It could be in MONITOR_WAIT or
401      // in SLEEPING or some other state.
402      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
403                                          java_lang_Thread::RUNNABLE);
404    }
405    os::start_thread(thread);
406  }
407}
408
409// Enqueue a VM_Operation to do the job for us - sometime later
410void Thread::send_async_exception(oop java_thread, oop java_throwable) {
411  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
412  VMThread::execute(vm_stop);
413}
414
415
416// Check if an external suspend request has completed (or has been
417// cancelled). Returns true if the thread is externally suspended and
418// false otherwise.
419//
420// The bits parameter returns information about the code path through
421// the routine. Useful for debugging:
422//
423// set in is_ext_suspend_completed():
424// 0x00000001 - routine was entered
425// 0x00000010 - routine return false at end
426// 0x00000100 - thread exited (return false)
427// 0x00000200 - suspend request cancelled (return false)
428// 0x00000400 - thread suspended (return true)
429// 0x00001000 - thread is in a suspend equivalent state (return true)
430// 0x00002000 - thread is native and walkable (return true)
431// 0x00004000 - thread is native_trans and walkable (needed retry)
432//
433// set in wait_for_ext_suspend_completion():
434// 0x00010000 - routine was entered
435// 0x00020000 - suspend request cancelled before loop (return false)
436// 0x00040000 - thread suspended before loop (return true)
437// 0x00080000 - suspend request cancelled in loop (return false)
438// 0x00100000 - thread suspended in loop (return true)
439// 0x00200000 - suspend not completed during retry loop (return false)
440
441// Helper class for tracing suspend wait debug bits.
442//
443// 0x00000100 indicates that the target thread exited before it could
444// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
445// 0x00080000 each indicate a cancelled suspend request so they don't
446// count as wait failures either.
447#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
448
449class TraceSuspendDebugBits : public StackObj {
450 private:
451  JavaThread * jt;
452  bool         is_wait;
453  bool         called_by_wait;  // meaningful when !is_wait
454  uint32_t *   bits;
455
456 public:
457  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
458                        uint32_t *_bits) {
459    jt             = _jt;
460    is_wait        = _is_wait;
461    called_by_wait = _called_by_wait;
462    bits           = _bits;
463  }
464
465  ~TraceSuspendDebugBits() {
466    if (!is_wait) {
467#if 1
468      // By default, don't trace bits for is_ext_suspend_completed() calls.
469      // That trace is very chatty.
470      return;
471#else
472      if (!called_by_wait) {
473        // If tracing for is_ext_suspend_completed() is enabled, then only
474        // trace calls to it from wait_for_ext_suspend_completion()
475        return;
476      }
477#endif
478    }
479
480    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
481      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
482        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
483        ResourceMark rm;
484
485        tty->print_cr(
486                      "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
487                      jt->get_thread_name(), *bits);
488
489        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
490      }
491    }
492  }
493};
494#undef DEBUG_FALSE_BITS
495
496
497bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
498                                          uint32_t *bits) {
499  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
500
501  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
502  bool do_trans_retry;           // flag to force the retry
503
504  *bits |= 0x00000001;
505
506  do {
507    do_trans_retry = false;
508
509    if (is_exiting()) {
510      // Thread is in the process of exiting. This is always checked
511      // first to reduce the risk of dereferencing a freed JavaThread.
512      *bits |= 0x00000100;
513      return false;
514    }
515
516    if (!is_external_suspend()) {
517      // Suspend request is cancelled. This is always checked before
518      // is_ext_suspended() to reduce the risk of a rogue resume
519      // confusing the thread that made the suspend request.
520      *bits |= 0x00000200;
521      return false;
522    }
523
524    if (is_ext_suspended()) {
525      // thread is suspended
526      *bits |= 0x00000400;
527      return true;
528    }
529
530    // Now that we no longer do hard suspends of threads running
531    // native code, the target thread can be changing thread state
532    // while we are in this routine:
533    //
534    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
535    //
536    // We save a copy of the thread state as observed at this moment
537    // and make our decision about suspend completeness based on the
538    // copy. This closes the race where the thread state is seen as
539    // _thread_in_native_trans in the if-thread_blocked check, but is
540    // seen as _thread_blocked in if-thread_in_native_trans check.
541    JavaThreadState save_state = thread_state();
542
543    if (save_state == _thread_blocked && is_suspend_equivalent()) {
544      // If the thread's state is _thread_blocked and this blocking
545      // condition is known to be equivalent to a suspend, then we can
546      // consider the thread to be externally suspended. This means that
547      // the code that sets _thread_blocked has been modified to do
548      // self-suspension if the blocking condition releases. We also
549      // used to check for CONDVAR_WAIT here, but that is now covered by
550      // the _thread_blocked with self-suspension check.
551      //
552      // Return true since we wouldn't be here unless there was still an
553      // external suspend request.
554      *bits |= 0x00001000;
555      return true;
556    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
557      // Threads running native code will self-suspend on native==>VM/Java
558      // transitions. If its stack is walkable (should always be the case
559      // unless this function is called before the actual java_suspend()
560      // call), then the wait is done.
561      *bits |= 0x00002000;
562      return true;
563    } else if (!called_by_wait && !did_trans_retry &&
564               save_state == _thread_in_native_trans &&
565               frame_anchor()->walkable()) {
566      // The thread is transitioning from thread_in_native to another
567      // thread state. check_safepoint_and_suspend_for_native_trans()
568      // will force the thread to self-suspend. If it hasn't gotten
569      // there yet we may have caught the thread in-between the native
570      // code check above and the self-suspend. Lucky us. If we were
571      // called by wait_for_ext_suspend_completion(), then it
572      // will be doing the retries so we don't have to.
573      //
574      // Since we use the saved thread state in the if-statement above,
575      // there is a chance that the thread has already transitioned to
576      // _thread_blocked by the time we get here. In that case, we will
577      // make a single unnecessary pass through the logic below. This
578      // doesn't hurt anything since we still do the trans retry.
579
580      *bits |= 0x00004000;
581
582      // Once the thread leaves thread_in_native_trans for another
583      // thread state, we break out of this retry loop. We shouldn't
584      // need this flag to prevent us from getting back here, but
585      // sometimes paranoia is good.
586      did_trans_retry = true;
587
588      // We wait for the thread to transition to a more usable state.
589      for (int i = 1; i <= SuspendRetryCount; i++) {
590        // We used to do an "os::yield_all(i)" call here with the intention
591        // that yielding would increase on each retry. However, the parameter
592        // is ignored on Linux which means the yield didn't scale up. Waiting
593        // on the SR_lock below provides a much more predictable scale up for
594        // the delay. It also provides a simple/direct point to check for any
595        // safepoint requests from the VMThread
596
597        // temporarily drops SR_lock while doing wait with safepoint check
598        // (if we're a JavaThread - the WatcherThread can also call this)
599        // and increase delay with each retry
600        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
601
602        // check the actual thread state instead of what we saved above
603        if (thread_state() != _thread_in_native_trans) {
604          // the thread has transitioned to another thread state so
605          // try all the checks (except this one) one more time.
606          do_trans_retry = true;
607          break;
608        }
609      } // end retry loop
610
611
612    }
613  } while (do_trans_retry);
614
615  *bits |= 0x00000010;
616  return false;
617}
618
619// Wait for an external suspend request to complete (or be cancelled).
620// Returns true if the thread is externally suspended and false otherwise.
621//
622bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
623                                                 uint32_t *bits) {
624  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
625                             false /* !called_by_wait */, bits);
626
627  // local flag copies to minimize SR_lock hold time
628  bool is_suspended;
629  bool pending;
630  uint32_t reset_bits;
631
632  // set a marker so is_ext_suspend_completed() knows we are the caller
633  *bits |= 0x00010000;
634
635  // We use reset_bits to reinitialize the bits value at the top of
636  // each retry loop. This allows the caller to make use of any
637  // unused bits for their own marking purposes.
638  reset_bits = *bits;
639
640  {
641    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
642    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
643                                            delay, bits);
644    pending = is_external_suspend();
645  }
646  // must release SR_lock to allow suspension to complete
647
648  if (!pending) {
649    // A cancelled suspend request is the only false return from
650    // is_ext_suspend_completed() that keeps us from entering the
651    // retry loop.
652    *bits |= 0x00020000;
653    return false;
654  }
655
656  if (is_suspended) {
657    *bits |= 0x00040000;
658    return true;
659  }
660
661  for (int i = 1; i <= retries; i++) {
662    *bits = reset_bits;  // reinit to only track last retry
663
664    // We used to do an "os::yield_all(i)" call here with the intention
665    // that yielding would increase on each retry. However, the parameter
666    // is ignored on Linux which means the yield didn't scale up. Waiting
667    // on the SR_lock below provides a much more predictable scale up for
668    // the delay. It also provides a simple/direct point to check for any
669    // safepoint requests from the VMThread
670
671    {
672      MutexLocker ml(SR_lock());
673      // wait with safepoint check (if we're a JavaThread - the WatcherThread
674      // can also call this)  and increase delay with each retry
675      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
676
677      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
678                                              delay, bits);
679
680      // It is possible for the external suspend request to be cancelled
681      // (by a resume) before the actual suspend operation is completed.
682      // Refresh our local copy to see if we still need to wait.
683      pending = is_external_suspend();
684    }
685
686    if (!pending) {
687      // A cancelled suspend request is the only false return from
688      // is_ext_suspend_completed() that keeps us from staying in the
689      // retry loop.
690      *bits |= 0x00080000;
691      return false;
692    }
693
694    if (is_suspended) {
695      *bits |= 0x00100000;
696      return true;
697    }
698  } // end retry loop
699
700  // thread did not suspend after all our retries
701  *bits |= 0x00200000;
702  return false;
703}
704
705#ifndef PRODUCT
706void JavaThread::record_jump(address target, address instr, const char* file,
707                             int line) {
708
709  // This should not need to be atomic as the only way for simultaneous
710  // updates is via interrupts. Even then this should be rare or non-existent
711  // and we don't care that much anyway.
712
713  int index = _jmp_ring_index;
714  _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
715  _jmp_ring[index]._target = (intptr_t) target;
716  _jmp_ring[index]._instruction = (intptr_t) instr;
717  _jmp_ring[index]._file = file;
718  _jmp_ring[index]._line = line;
719}
720#endif // PRODUCT
721
722// Called by flat profiler
723// Callers have already called wait_for_ext_suspend_completion
724// The assertion for that is currently too complex to put here:
725bool JavaThread::profile_last_Java_frame(frame* _fr) {
726  bool gotframe = false;
727  // self suspension saves needed state.
728  if (has_last_Java_frame() && _anchor.walkable()) {
729    *_fr = pd_last_frame();
730    gotframe = true;
731  }
732  return gotframe;
733}
734
735void Thread::interrupt(Thread* thread) {
736  debug_only(check_for_dangling_thread_pointer(thread);)
737  os::interrupt(thread);
738}
739
740bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
741  debug_only(check_for_dangling_thread_pointer(thread);)
742  // Note:  If clear_interrupted==false, this simply fetches and
743  // returns the value of the field osthread()->interrupted().
744  return os::is_interrupted(thread, clear_interrupted);
745}
746
747
748// GC Support
749bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
750  jint thread_parity = _oops_do_parity;
751  if (thread_parity != strong_roots_parity) {
752    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
753    if (res == thread_parity) {
754      return true;
755    } else {
756      guarantee(res == strong_roots_parity, "Or else what?");
757      assert(SharedHeap::heap()->workers()->active_workers() > 0,
758             "Should only fail when parallel.");
759      return false;
760    }
761  }
762  assert(SharedHeap::heap()->workers()->active_workers() > 0,
763         "Should only fail when parallel.");
764  return false;
765}
766
767void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
768  active_handles()->oops_do(f);
769  // Do oop for ThreadShadow
770  f->do_oop((oop*)&_pending_exception);
771  handle_area()->oops_do(f);
772}
773
774void Thread::nmethods_do(CodeBlobClosure* cf) {
775  // no nmethods in a generic thread...
776}
777
778void Thread::metadata_do(void f(Metadata*)) {
779  if (metadata_handles() != NULL) {
780    for (int i = 0; i< metadata_handles()->length(); i++) {
781      f(metadata_handles()->at(i));
782    }
783  }
784}
785
786void Thread::print_on(outputStream* st) const {
787  // get_priority assumes osthread initialized
788  if (osthread() != NULL) {
789    int os_prio;
790    if (os::get_native_priority(this, &os_prio) == OS_OK) {
791      st->print("os_prio=%d ", os_prio);
792    }
793    st->print("tid=" INTPTR_FORMAT " ", this);
794    ext().print_on(st);
795    osthread()->print_on(st);
796  }
797  debug_only(if (WizardMode) print_owned_locks_on(st);)
798}
799
800// Thread::print_on_error() is called by fatal error handler. Don't use
801// any lock or allocate memory.
802void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
803  if (is_VM_thread())                 st->print("VMThread");
804  else if (is_Compiler_thread())      st->print("CompilerThread");
805  else if (is_Java_thread())          st->print("JavaThread");
806  else if (is_GC_task_thread())       st->print("GCTaskThread");
807  else if (is_Watcher_thread())       st->print("WatcherThread");
808  else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
809  else                                st->print("Thread");
810
811  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
812            _stack_base - _stack_size, _stack_base);
813
814  if (osthread()) {
815    st->print(" [id=%d]", osthread()->thread_id());
816  }
817}
818
819#ifdef ASSERT
820void Thread::print_owned_locks_on(outputStream* st) const {
821  Monitor *cur = _owned_locks;
822  if (cur == NULL) {
823    st->print(" (no locks) ");
824  } else {
825    st->print_cr(" Locks owned:");
826    while (cur) {
827      cur->print_on(st);
828      cur = cur->next();
829    }
830  }
831}
832
833static int ref_use_count  = 0;
834
835bool Thread::owns_locks_but_compiled_lock() const {
836  for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
837    if (cur != Compile_lock) return true;
838  }
839  return false;
840}
841
842
843#endif
844
845#ifndef PRODUCT
846
847// The flag: potential_vm_operation notifies if this particular safepoint state could potential
848// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
849// no threads which allow_vm_block's are held
850void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
851  // Check if current thread is allowed to block at a safepoint
852  if (!(_allow_safepoint_count == 0)) {
853    fatal("Possible safepoint reached by thread that does not allow it");
854  }
855  if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
856    fatal("LEAF method calling lock?");
857  }
858
859#ifdef ASSERT
860  if (potential_vm_operation && is_Java_thread()
861      && !Universe::is_bootstrapping()) {
862    // Make sure we do not hold any locks that the VM thread also uses.
863    // This could potentially lead to deadlocks
864    for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
865      // Threads_lock is special, since the safepoint synchronization will not start before this is
866      // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
867      // since it is used to transfer control between JavaThreads and the VMThread
868      // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
869      if ((cur->allow_vm_block() &&
870           cur != Threads_lock &&
871           cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
872           cur != VMOperationRequest_lock &&
873           cur != VMOperationQueue_lock) ||
874           cur->rank() == Mutex::special) {
875        fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
876      }
877    }
878  }
879
880  if (GCALotAtAllSafepoints) {
881    // We could enter a safepoint here and thus have a gc
882    InterfaceSupport::check_gc_alot();
883  }
884#endif
885}
886#endif
887
888bool Thread::is_in_stack(address adr) const {
889  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
890  address end = os::current_stack_pointer();
891  // Allow non Java threads to call this without stack_base
892  if (_stack_base == NULL) return true;
893  if (stack_base() >= adr && adr >= end) return true;
894
895  return false;
896}
897
898
899bool Thread::is_in_usable_stack(address adr) const {
900  size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
901  size_t usable_stack_size = _stack_size - stack_guard_size;
902
903  return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
904}
905
906
907// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
908// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
909// used for compilation in the future. If that change is made, the need for these methods
910// should be revisited, and they should be removed if possible.
911
912bool Thread::is_lock_owned(address adr) const {
913  return on_local_stack(adr);
914}
915
916bool Thread::set_as_starting_thread() {
917  // NOTE: this must be called inside the main thread.
918  return os::create_main_thread((JavaThread*)this);
919}
920
921static void initialize_class(Symbol* class_name, TRAPS) {
922  Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
923  InstanceKlass::cast(klass)->initialize(CHECK);
924}
925
926
927// Creates the initial ThreadGroup
928static Handle create_initial_thread_group(TRAPS) {
929  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
930  instanceKlassHandle klass (THREAD, k);
931
932  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
933  {
934    JavaValue result(T_VOID);
935    JavaCalls::call_special(&result,
936                            system_instance,
937                            klass,
938                            vmSymbols::object_initializer_name(),
939                            vmSymbols::void_method_signature(),
940                            CHECK_NH);
941  }
942  Universe::set_system_thread_group(system_instance());
943
944  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
945  {
946    JavaValue result(T_VOID);
947    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
948    JavaCalls::call_special(&result,
949                            main_instance,
950                            klass,
951                            vmSymbols::object_initializer_name(),
952                            vmSymbols::threadgroup_string_void_signature(),
953                            system_instance,
954                            string,
955                            CHECK_NH);
956  }
957  return main_instance;
958}
959
960// Creates the initial Thread
961static oop create_initial_thread(Handle thread_group, JavaThread* thread,
962                                 TRAPS) {
963  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
964  instanceKlassHandle klass (THREAD, k);
965  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
966
967  java_lang_Thread::set_thread(thread_oop(), thread);
968  java_lang_Thread::set_priority(thread_oop(), NormPriority);
969  thread->set_threadObj(thread_oop());
970
971  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
972
973  JavaValue result(T_VOID);
974  JavaCalls::call_special(&result, thread_oop,
975                          klass,
976                          vmSymbols::object_initializer_name(),
977                          vmSymbols::threadgroup_string_void_signature(),
978                          thread_group,
979                          string,
980                          CHECK_NULL);
981  return thread_oop();
982}
983
984static void call_initializeSystemClass(TRAPS) {
985  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
986  instanceKlassHandle klass (THREAD, k);
987
988  JavaValue result(T_VOID);
989  JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
990                         vmSymbols::void_method_signature(), CHECK);
991}
992
993char java_runtime_name[128] = "";
994char java_runtime_version[128] = "";
995
996// extract the JRE name from sun.misc.Version.java_runtime_name
997static const char* get_java_runtime_name(TRAPS) {
998  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
999                                    Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1000  fieldDescriptor fd;
1001  bool found = k != NULL &&
1002               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1003                                                        vmSymbols::string_signature(), &fd);
1004  if (found) {
1005    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1006    if (name_oop == NULL) {
1007      return NULL;
1008    }
1009    const char* name = java_lang_String::as_utf8_string(name_oop,
1010                                                        java_runtime_name,
1011                                                        sizeof(java_runtime_name));
1012    return name;
1013  } else {
1014    return NULL;
1015  }
1016}
1017
1018// extract the JRE version from sun.misc.Version.java_runtime_version
1019static const char* get_java_runtime_version(TRAPS) {
1020  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1021                                    Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1022  fieldDescriptor fd;
1023  bool found = k != NULL &&
1024               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1025                                                        vmSymbols::string_signature(), &fd);
1026  if (found) {
1027    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1028    if (name_oop == NULL) {
1029      return NULL;
1030    }
1031    const char* name = java_lang_String::as_utf8_string(name_oop,
1032                                                        java_runtime_version,
1033                                                        sizeof(java_runtime_version));
1034    return name;
1035  } else {
1036    return NULL;
1037  }
1038}
1039
1040// General purpose hook into Java code, run once when the VM is initialized.
1041// The Java library method itself may be changed independently from the VM.
1042static void call_postVMInitHook(TRAPS) {
1043  Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1044  instanceKlassHandle klass (THREAD, k);
1045  if (klass.not_null()) {
1046    JavaValue result(T_VOID);
1047    JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1048                           vmSymbols::void_method_signature(),
1049                           CHECK);
1050  }
1051}
1052
1053static void reset_vm_info_property(TRAPS) {
1054  // the vm info string
1055  ResourceMark rm(THREAD);
1056  const char *vm_info = VM_Version::vm_info_string();
1057
1058  // java.lang.System class
1059  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1060  instanceKlassHandle klass (THREAD, k);
1061
1062  // setProperty arguments
1063  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1064  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1065
1066  // return value
1067  JavaValue r(T_OBJECT);
1068
1069  // public static String setProperty(String key, String value);
1070  JavaCalls::call_static(&r,
1071                         klass,
1072                         vmSymbols::setProperty_name(),
1073                         vmSymbols::string_string_string_signature(),
1074                         key_str,
1075                         value_str,
1076                         CHECK);
1077}
1078
1079
1080void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1081                                    bool daemon, TRAPS) {
1082  assert(thread_group.not_null(), "thread group should be specified");
1083  assert(threadObj() == NULL, "should only create Java thread object once");
1084
1085  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1086  instanceKlassHandle klass (THREAD, k);
1087  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1088
1089  java_lang_Thread::set_thread(thread_oop(), this);
1090  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1091  set_threadObj(thread_oop());
1092
1093  JavaValue result(T_VOID);
1094  if (thread_name != NULL) {
1095    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1096    // Thread gets assigned specified name and null target
1097    JavaCalls::call_special(&result,
1098                            thread_oop,
1099                            klass,
1100                            vmSymbols::object_initializer_name(),
1101                            vmSymbols::threadgroup_string_void_signature(),
1102                            thread_group, // Argument 1
1103                            name,         // Argument 2
1104                            THREAD);
1105  } else {
1106    // Thread gets assigned name "Thread-nnn" and null target
1107    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1108    JavaCalls::call_special(&result,
1109                            thread_oop,
1110                            klass,
1111                            vmSymbols::object_initializer_name(),
1112                            vmSymbols::threadgroup_runnable_void_signature(),
1113                            thread_group, // Argument 1
1114                            Handle(),     // Argument 2
1115                            THREAD);
1116  }
1117
1118
1119  if (daemon) {
1120    java_lang_Thread::set_daemon(thread_oop());
1121  }
1122
1123  if (HAS_PENDING_EXCEPTION) {
1124    return;
1125  }
1126
1127  KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1128  Handle threadObj(THREAD, this->threadObj());
1129
1130  JavaCalls::call_special(&result,
1131                          thread_group,
1132                          group,
1133                          vmSymbols::add_method_name(),
1134                          vmSymbols::thread_void_signature(),
1135                          threadObj,          // Arg 1
1136                          THREAD);
1137}
1138
1139// NamedThread --  non-JavaThread subclasses with multiple
1140// uniquely named instances should derive from this.
1141NamedThread::NamedThread() : Thread() {
1142  _name = NULL;
1143  _processed_thread = NULL;
1144}
1145
1146NamedThread::~NamedThread() {
1147  if (_name != NULL) {
1148    FREE_C_HEAP_ARRAY(char, _name);
1149    _name = NULL;
1150  }
1151}
1152
1153void NamedThread::set_name(const char* format, ...) {
1154  guarantee(_name == NULL, "Only get to set name once.");
1155  _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1156  guarantee(_name != NULL, "alloc failure");
1157  va_list ap;
1158  va_start(ap, format);
1159  jio_vsnprintf(_name, max_name_len, format, ap);
1160  va_end(ap);
1161}
1162
1163void NamedThread::print_on(outputStream* st) const {
1164  st->print("\"%s\" ", name());
1165  Thread::print_on(st);
1166  st->cr();
1167}
1168
1169
1170// ======= WatcherThread ========
1171
1172// The watcher thread exists to simulate timer interrupts.  It should
1173// be replaced by an abstraction over whatever native support for
1174// timer interrupts exists on the platform.
1175
1176WatcherThread* WatcherThread::_watcher_thread   = NULL;
1177bool WatcherThread::_startable = false;
1178volatile bool  WatcherThread::_should_terminate = false;
1179
1180WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1181  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1182  if (os::create_thread(this, os::watcher_thread)) {
1183    _watcher_thread = this;
1184
1185    // Set the watcher thread to the highest OS priority which should not be
1186    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1187    // is created. The only normal thread using this priority is the reference
1188    // handler thread, which runs for very short intervals only.
1189    // If the VMThread's priority is not lower than the WatcherThread profiling
1190    // will be inaccurate.
1191    os::set_priority(this, MaxPriority);
1192    if (!DisableStartThread) {
1193      os::start_thread(this);
1194    }
1195  }
1196}
1197
1198int WatcherThread::sleep() const {
1199  MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1200
1201  // remaining will be zero if there are no tasks,
1202  // causing the WatcherThread to sleep until a task is
1203  // enrolled
1204  int remaining = PeriodicTask::time_to_wait();
1205  int time_slept = 0;
1206
1207  // we expect this to timeout - we only ever get unparked when
1208  // we should terminate or when a new task has been enrolled
1209  OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1210
1211  jlong time_before_loop = os::javaTimeNanos();
1212
1213  for (;;) {
1214    bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1215    jlong now = os::javaTimeNanos();
1216
1217    if (remaining == 0) {
1218      // if we didn't have any tasks we could have waited for a long time
1219      // consider the time_slept zero and reset time_before_loop
1220      time_slept = 0;
1221      time_before_loop = now;
1222    } else {
1223      // need to recalculate since we might have new tasks in _tasks
1224      time_slept = (int) ((now - time_before_loop) / 1000000);
1225    }
1226
1227    // Change to task list or spurious wakeup of some kind
1228    if (timedout || _should_terminate) {
1229      break;
1230    }
1231
1232    remaining = PeriodicTask::time_to_wait();
1233    if (remaining == 0) {
1234      // Last task was just disenrolled so loop around and wait until
1235      // another task gets enrolled
1236      continue;
1237    }
1238
1239    remaining -= time_slept;
1240    if (remaining <= 0) {
1241      break;
1242    }
1243  }
1244
1245  return time_slept;
1246}
1247
1248void WatcherThread::run() {
1249  assert(this == watcher_thread(), "just checking");
1250
1251  this->record_stack_base_and_size();
1252  this->initialize_thread_local_storage();
1253  this->set_native_thread_name(this->name());
1254  this->set_active_handles(JNIHandleBlock::allocate_block());
1255  while (!_should_terminate) {
1256    assert(watcher_thread() == Thread::current(), "thread consistency check");
1257    assert(watcher_thread() == this, "thread consistency check");
1258
1259    // Calculate how long it'll be until the next PeriodicTask work
1260    // should be done, and sleep that amount of time.
1261    int time_waited = sleep();
1262
1263    if (is_error_reported()) {
1264      // A fatal error has happened, the error handler(VMError::report_and_die)
1265      // should abort JVM after creating an error log file. However in some
1266      // rare cases, the error handler itself might deadlock. Here we try to
1267      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1268      //
1269      // This code is in WatcherThread because WatcherThread wakes up
1270      // periodically so the fatal error handler doesn't need to do anything;
1271      // also because the WatcherThread is less likely to crash than other
1272      // threads.
1273
1274      for (;;) {
1275        if (!ShowMessageBoxOnError
1276            && (OnError == NULL || OnError[0] == '\0')
1277            && Arguments::abort_hook() == NULL) {
1278          os::sleep(this, 2 * 60 * 1000, false);
1279          fdStream err(defaultStream::output_fd());
1280          err.print_raw_cr("# [ timer expired, abort... ]");
1281          // skip atexit/vm_exit/vm_abort hooks
1282          os::die();
1283        }
1284
1285        // Wake up 5 seconds later, the fatal handler may reset OnError or
1286        // ShowMessageBoxOnError when it is ready to abort.
1287        os::sleep(this, 5 * 1000, false);
1288      }
1289    }
1290
1291    PeriodicTask::real_time_tick(time_waited);
1292  }
1293
1294  // Signal that it is terminated
1295  {
1296    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1297    _watcher_thread = NULL;
1298    Terminator_lock->notify();
1299  }
1300
1301  // Thread destructor usually does this..
1302  ThreadLocalStorage::set_thread(NULL);
1303}
1304
1305void WatcherThread::start() {
1306  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1307
1308  if (watcher_thread() == NULL && _startable) {
1309    _should_terminate = false;
1310    // Create the single instance of WatcherThread
1311    new WatcherThread();
1312  }
1313}
1314
1315void WatcherThread::make_startable() {
1316  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1317  _startable = true;
1318}
1319
1320void WatcherThread::stop() {
1321  // Get the PeriodicTask_lock if we can. If we cannot, then the
1322  // WatcherThread is using it and we don't want to block on that lock
1323  // here because that might cause a safepoint deadlock depending on
1324  // what the current WatcherThread tasks are doing.
1325  bool have_lock = PeriodicTask_lock->try_lock();
1326
1327  _should_terminate = true;
1328  OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1329
1330  if (have_lock) {
1331    WatcherThread* watcher = watcher_thread();
1332    if (watcher != NULL) {
1333      // If we managed to get the lock, then we should unpark the
1334      // WatcherThread so that it can see we want it to stop.
1335      watcher->unpark();
1336    }
1337
1338    PeriodicTask_lock->unlock();
1339  }
1340
1341  // it is ok to take late safepoints here, if needed
1342  MutexLocker mu(Terminator_lock);
1343
1344  while (watcher_thread() != NULL) {
1345    // This wait should make safepoint checks, wait without a timeout,
1346    // and wait as a suspend-equivalent condition.
1347    //
1348    // Note: If the FlatProfiler is running, then this thread is waiting
1349    // for the WatcherThread to terminate and the WatcherThread, via the
1350    // FlatProfiler task, is waiting for the external suspend request on
1351    // this thread to complete. wait_for_ext_suspend_completion() will
1352    // eventually timeout, but that takes time. Making this wait a
1353    // suspend-equivalent condition solves that timeout problem.
1354    //
1355    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1356                          Mutex::_as_suspend_equivalent_flag);
1357  }
1358}
1359
1360void WatcherThread::unpark() {
1361  MutexLockerEx ml(PeriodicTask_lock->owned_by_self()
1362                   ? NULL
1363                   : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1364  PeriodicTask_lock->notify();
1365}
1366
1367void WatcherThread::print_on(outputStream* st) const {
1368  st->print("\"%s\" ", name());
1369  Thread::print_on(st);
1370  st->cr();
1371}
1372
1373// ======= JavaThread ========
1374
1375// A JavaThread is a normal Java thread
1376
1377void JavaThread::initialize() {
1378  // Initialize fields
1379
1380  // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1381  set_claimed_par_id(UINT_MAX);
1382
1383  set_saved_exception_pc(NULL);
1384  set_threadObj(NULL);
1385  _anchor.clear();
1386  set_entry_point(NULL);
1387  set_jni_functions(jni_functions());
1388  set_callee_target(NULL);
1389  set_vm_result(NULL);
1390  set_vm_result_2(NULL);
1391  set_vframe_array_head(NULL);
1392  set_vframe_array_last(NULL);
1393  set_deferred_locals(NULL);
1394  set_deopt_mark(NULL);
1395  set_deopt_nmethod(NULL);
1396  clear_must_deopt_id();
1397  set_monitor_chunks(NULL);
1398  set_next(NULL);
1399  set_thread_state(_thread_new);
1400  _terminated = _not_terminated;
1401  _privileged_stack_top = NULL;
1402  _array_for_gc = NULL;
1403  _suspend_equivalent = false;
1404  _in_deopt_handler = 0;
1405  _doing_unsafe_access = false;
1406  _stack_guard_state = stack_guard_unused;
1407  (void)const_cast<oop&>(_exception_oop = oop(NULL));
1408  _exception_pc  = 0;
1409  _exception_handler_pc = 0;
1410  _is_method_handle_return = 0;
1411  _jvmti_thread_state= NULL;
1412  _should_post_on_exceptions_flag = JNI_FALSE;
1413  _jvmti_get_loaded_classes_closure = NULL;
1414  _interp_only_mode    = 0;
1415  _special_runtime_exit_condition = _no_async_condition;
1416  _pending_async_exception = NULL;
1417  _thread_stat = NULL;
1418  _thread_stat = new ThreadStatistics();
1419  _blocked_on_compilation = false;
1420  _jni_active_critical = 0;
1421  _pending_jni_exception_check_fn = NULL;
1422  _do_not_unlock_if_synchronized = false;
1423  _cached_monitor_info = NULL;
1424  _parker = Parker::Allocate(this);
1425
1426#ifndef PRODUCT
1427  _jmp_ring_index = 0;
1428  for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1429    record_jump(NULL, NULL, NULL, 0);
1430  }
1431#endif // PRODUCT
1432
1433  set_thread_profiler(NULL);
1434  if (FlatProfiler::is_active()) {
1435    // This is where we would decide to either give each thread it's own profiler
1436    // or use one global one from FlatProfiler,
1437    // or up to some count of the number of profiled threads, etc.
1438    ThreadProfiler* pp = new ThreadProfiler();
1439    pp->engage();
1440    set_thread_profiler(pp);
1441  }
1442
1443  // Setup safepoint state info for this thread
1444  ThreadSafepointState::create(this);
1445
1446  debug_only(_java_call_counter = 0);
1447
1448  // JVMTI PopFrame support
1449  _popframe_condition = popframe_inactive;
1450  _popframe_preserved_args = NULL;
1451  _popframe_preserved_args_size = 0;
1452
1453  pd_initialize();
1454}
1455
1456#if INCLUDE_ALL_GCS
1457SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1458DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1459#endif // INCLUDE_ALL_GCS
1460
1461JavaThread::JavaThread(bool is_attaching_via_jni) :
1462                       Thread()
1463#if INCLUDE_ALL_GCS
1464                       , _satb_mark_queue(&_satb_mark_queue_set),
1465                       _dirty_card_queue(&_dirty_card_queue_set)
1466#endif // INCLUDE_ALL_GCS
1467{
1468  initialize();
1469  if (is_attaching_via_jni) {
1470    _jni_attach_state = _attaching_via_jni;
1471  } else {
1472    _jni_attach_state = _not_attaching_via_jni;
1473  }
1474  assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1475}
1476
1477bool JavaThread::reguard_stack(address cur_sp) {
1478  if (_stack_guard_state != stack_guard_yellow_disabled) {
1479    return true; // Stack already guarded or guard pages not needed.
1480  }
1481
1482  if (register_stack_overflow()) {
1483    // For those architectures which have separate register and
1484    // memory stacks, we must check the register stack to see if
1485    // it has overflowed.
1486    return false;
1487  }
1488
1489  // Java code never executes within the yellow zone: the latter is only
1490  // there to provoke an exception during stack banging.  If java code
1491  // is executing there, either StackShadowPages should be larger, or
1492  // some exception code in c1, c2 or the interpreter isn't unwinding
1493  // when it should.
1494  guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1495
1496  enable_stack_yellow_zone();
1497  return true;
1498}
1499
1500bool JavaThread::reguard_stack(void) {
1501  return reguard_stack(os::current_stack_pointer());
1502}
1503
1504
1505void JavaThread::block_if_vm_exited() {
1506  if (_terminated == _vm_exited) {
1507    // _vm_exited is set at safepoint, and Threads_lock is never released
1508    // we will block here forever
1509    Threads_lock->lock_without_safepoint_check();
1510    ShouldNotReachHere();
1511  }
1512}
1513
1514
1515// Remove this ifdef when C1 is ported to the compiler interface.
1516static void compiler_thread_entry(JavaThread* thread, TRAPS);
1517static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1518
1519JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1520                       Thread()
1521#if INCLUDE_ALL_GCS
1522                       , _satb_mark_queue(&_satb_mark_queue_set),
1523                       _dirty_card_queue(&_dirty_card_queue_set)
1524#endif // INCLUDE_ALL_GCS
1525{
1526  initialize();
1527  _jni_attach_state = _not_attaching_via_jni;
1528  set_entry_point(entry_point);
1529  // Create the native thread itself.
1530  // %note runtime_23
1531  os::ThreadType thr_type = os::java_thread;
1532  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1533                                                     os::java_thread;
1534  os::create_thread(this, thr_type, stack_sz);
1535  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1536  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1537  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1538  // the exception consists of creating the exception object & initializing it, initialization
1539  // will leave the VM via a JavaCall and then all locks must be unlocked).
1540  //
1541  // The thread is still suspended when we reach here. Thread must be explicit started
1542  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1543  // by calling Threads:add. The reason why this is not done here, is because the thread
1544  // object must be fully initialized (take a look at JVM_Start)
1545}
1546
1547JavaThread::~JavaThread() {
1548
1549  // JSR166 -- return the parker to the free list
1550  Parker::Release(_parker);
1551  _parker = NULL;
1552
1553  // Free any remaining  previous UnrollBlock
1554  vframeArray* old_array = vframe_array_last();
1555
1556  if (old_array != NULL) {
1557    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1558    old_array->set_unroll_block(NULL);
1559    delete old_info;
1560    delete old_array;
1561  }
1562
1563  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1564  if (deferred != NULL) {
1565    // This can only happen if thread is destroyed before deoptimization occurs.
1566    assert(deferred->length() != 0, "empty array!");
1567    do {
1568      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1569      deferred->remove_at(0);
1570      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1571      delete dlv;
1572    } while (deferred->length() != 0);
1573    delete deferred;
1574  }
1575
1576  // All Java related clean up happens in exit
1577  ThreadSafepointState::destroy(this);
1578  if (_thread_profiler != NULL) delete _thread_profiler;
1579  if (_thread_stat != NULL) delete _thread_stat;
1580}
1581
1582
1583// The first routine called by a new Java thread
1584void JavaThread::run() {
1585  // initialize thread-local alloc buffer related fields
1586  this->initialize_tlab();
1587
1588  // used to test validity of stack trace backs
1589  this->record_base_of_stack_pointer();
1590
1591  // Record real stack base and size.
1592  this->record_stack_base_and_size();
1593
1594  // Initialize thread local storage; set before calling MutexLocker
1595  this->initialize_thread_local_storage();
1596
1597  this->create_stack_guard_pages();
1598
1599  this->cache_global_variables();
1600
1601  // Thread is now sufficient initialized to be handled by the safepoint code as being
1602  // in the VM. Change thread state from _thread_new to _thread_in_vm
1603  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1604
1605  assert(JavaThread::current() == this, "sanity check");
1606  assert(!Thread::current()->owns_locks(), "sanity check");
1607
1608  DTRACE_THREAD_PROBE(start, this);
1609
1610  // This operation might block. We call that after all safepoint checks for a new thread has
1611  // been completed.
1612  this->set_active_handles(JNIHandleBlock::allocate_block());
1613
1614  if (JvmtiExport::should_post_thread_life()) {
1615    JvmtiExport::post_thread_start(this);
1616  }
1617
1618  EventThreadStart event;
1619  if (event.should_commit()) {
1620    event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1621    event.commit();
1622  }
1623
1624  // We call another function to do the rest so we are sure that the stack addresses used
1625  // from there will be lower than the stack base just computed
1626  thread_main_inner();
1627
1628  // Note, thread is no longer valid at this point!
1629}
1630
1631
1632void JavaThread::thread_main_inner() {
1633  assert(JavaThread::current() == this, "sanity check");
1634  assert(this->threadObj() != NULL, "just checking");
1635
1636  // Execute thread entry point unless this thread has a pending exception
1637  // or has been stopped before starting.
1638  // Note: Due to JVM_StopThread we can have pending exceptions already!
1639  if (!this->has_pending_exception() &&
1640      !java_lang_Thread::is_stillborn(this->threadObj())) {
1641    {
1642      ResourceMark rm(this);
1643      this->set_native_thread_name(this->get_thread_name());
1644    }
1645    HandleMark hm(this);
1646    this->entry_point()(this, this);
1647  }
1648
1649  DTRACE_THREAD_PROBE(stop, this);
1650
1651  this->exit(false);
1652  delete this;
1653}
1654
1655
1656static void ensure_join(JavaThread* thread) {
1657  // We do not need to grap the Threads_lock, since we are operating on ourself.
1658  Handle threadObj(thread, thread->threadObj());
1659  assert(threadObj.not_null(), "java thread object must exist");
1660  ObjectLocker lock(threadObj, thread);
1661  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1662  thread->clear_pending_exception();
1663  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1664  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1665  // Clear the native thread instance - this makes isAlive return false and allows the join()
1666  // to complete once we've done the notify_all below
1667  java_lang_Thread::set_thread(threadObj(), NULL);
1668  lock.notify_all(thread);
1669  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1670  thread->clear_pending_exception();
1671}
1672
1673
1674// For any new cleanup additions, please check to see if they need to be applied to
1675// cleanup_failed_attach_current_thread as well.
1676void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1677  assert(this == JavaThread::current(), "thread consistency check");
1678
1679  HandleMark hm(this);
1680  Handle uncaught_exception(this, this->pending_exception());
1681  this->clear_pending_exception();
1682  Handle threadObj(this, this->threadObj());
1683  assert(threadObj.not_null(), "Java thread object should be created");
1684
1685  if (get_thread_profiler() != NULL) {
1686    get_thread_profiler()->disengage();
1687    ResourceMark rm;
1688    get_thread_profiler()->print(get_thread_name());
1689  }
1690
1691
1692  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1693  {
1694    EXCEPTION_MARK;
1695
1696    CLEAR_PENDING_EXCEPTION;
1697  }
1698  if (!destroy_vm) {
1699    if (uncaught_exception.not_null()) {
1700      EXCEPTION_MARK;
1701      // Call method Thread.dispatchUncaughtException().
1702      KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1703      JavaValue result(T_VOID);
1704      JavaCalls::call_virtual(&result,
1705                              threadObj, thread_klass,
1706                              vmSymbols::dispatchUncaughtException_name(),
1707                              vmSymbols::throwable_void_signature(),
1708                              uncaught_exception,
1709                              THREAD);
1710      if (HAS_PENDING_EXCEPTION) {
1711        ResourceMark rm(this);
1712        jio_fprintf(defaultStream::error_stream(),
1713                    "\nException: %s thrown from the UncaughtExceptionHandler"
1714                    " in thread \"%s\"\n",
1715                    pending_exception()->klass()->external_name(),
1716                    get_thread_name());
1717        CLEAR_PENDING_EXCEPTION;
1718      }
1719    }
1720
1721    // Called before the java thread exit since we want to read info
1722    // from java_lang_Thread object
1723    EventThreadEnd event;
1724    if (event.should_commit()) {
1725      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1726      event.commit();
1727    }
1728
1729    // Call after last event on thread
1730    EVENT_THREAD_EXIT(this);
1731
1732    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1733    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1734    // is deprecated anyhow.
1735    if (!is_Compiler_thread()) {
1736      int count = 3;
1737      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1738        EXCEPTION_MARK;
1739        JavaValue result(T_VOID);
1740        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1741        JavaCalls::call_virtual(&result,
1742                                threadObj, thread_klass,
1743                                vmSymbols::exit_method_name(),
1744                                vmSymbols::void_method_signature(),
1745                                THREAD);
1746        CLEAR_PENDING_EXCEPTION;
1747      }
1748    }
1749    // notify JVMTI
1750    if (JvmtiExport::should_post_thread_life()) {
1751      JvmtiExport::post_thread_end(this);
1752    }
1753
1754    // We have notified the agents that we are exiting, before we go on,
1755    // we must check for a pending external suspend request and honor it
1756    // in order to not surprise the thread that made the suspend request.
1757    while (true) {
1758      {
1759        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1760        if (!is_external_suspend()) {
1761          set_terminated(_thread_exiting);
1762          ThreadService::current_thread_exiting(this);
1763          break;
1764        }
1765        // Implied else:
1766        // Things get a little tricky here. We have a pending external
1767        // suspend request, but we are holding the SR_lock so we
1768        // can't just self-suspend. So we temporarily drop the lock
1769        // and then self-suspend.
1770      }
1771
1772      ThreadBlockInVM tbivm(this);
1773      java_suspend_self();
1774
1775      // We're done with this suspend request, but we have to loop around
1776      // and check again. Eventually we will get SR_lock without a pending
1777      // external suspend request and will be able to mark ourselves as
1778      // exiting.
1779    }
1780    // no more external suspends are allowed at this point
1781  } else {
1782    // before_exit() has already posted JVMTI THREAD_END events
1783  }
1784
1785  // Notify waiters on thread object. This has to be done after exit() is called
1786  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1787  // group should have the destroyed bit set before waiters are notified).
1788  ensure_join(this);
1789  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1790
1791  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1792  // held by this thread must be released.  A detach operation must only
1793  // get here if there are no Java frames on the stack.  Therefore, any
1794  // owned monitors at this point MUST be JNI-acquired monitors which are
1795  // pre-inflated and in the monitor cache.
1796  //
1797  // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1798  if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1799    assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1800    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1801    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1802  }
1803
1804  // These things needs to be done while we are still a Java Thread. Make sure that thread
1805  // is in a consistent state, in case GC happens
1806  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1807
1808  if (active_handles() != NULL) {
1809    JNIHandleBlock* block = active_handles();
1810    set_active_handles(NULL);
1811    JNIHandleBlock::release_block(block);
1812  }
1813
1814  if (free_handle_block() != NULL) {
1815    JNIHandleBlock* block = free_handle_block();
1816    set_free_handle_block(NULL);
1817    JNIHandleBlock::release_block(block);
1818  }
1819
1820  // These have to be removed while this is still a valid thread.
1821  remove_stack_guard_pages();
1822
1823  if (UseTLAB) {
1824    tlab().make_parsable(true);  // retire TLAB
1825  }
1826
1827  if (JvmtiEnv::environments_might_exist()) {
1828    JvmtiExport::cleanup_thread(this);
1829  }
1830
1831  // We must flush any deferred card marks before removing a thread from
1832  // the list of active threads.
1833  Universe::heap()->flush_deferred_store_barrier(this);
1834  assert(deferred_card_mark().is_empty(), "Should have been flushed");
1835
1836#if INCLUDE_ALL_GCS
1837  // We must flush the G1-related buffers before removing a thread
1838  // from the list of active threads. We must do this after any deferred
1839  // card marks have been flushed (above) so that any entries that are
1840  // added to the thread's dirty card queue as a result are not lost.
1841  if (UseG1GC) {
1842    flush_barrier_queues();
1843  }
1844#endif // INCLUDE_ALL_GCS
1845
1846  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1847  Threads::remove(this);
1848}
1849
1850#if INCLUDE_ALL_GCS
1851// Flush G1-related queues.
1852void JavaThread::flush_barrier_queues() {
1853  satb_mark_queue().flush();
1854  dirty_card_queue().flush();
1855}
1856
1857void JavaThread::initialize_queues() {
1858  assert(!SafepointSynchronize::is_at_safepoint(),
1859         "we should not be at a safepoint");
1860
1861  ObjPtrQueue& satb_queue = satb_mark_queue();
1862  SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1863  // The SATB queue should have been constructed with its active
1864  // field set to false.
1865  assert(!satb_queue.is_active(), "SATB queue should not be active");
1866  assert(satb_queue.is_empty(), "SATB queue should be empty");
1867  // If we are creating the thread during a marking cycle, we should
1868  // set the active field of the SATB queue to true.
1869  if (satb_queue_set.is_active()) {
1870    satb_queue.set_active(true);
1871  }
1872
1873  DirtyCardQueue& dirty_queue = dirty_card_queue();
1874  // The dirty card queue should have been constructed with its
1875  // active field set to true.
1876  assert(dirty_queue.is_active(), "dirty card queue should be active");
1877}
1878#endif // INCLUDE_ALL_GCS
1879
1880void JavaThread::cleanup_failed_attach_current_thread() {
1881  if (get_thread_profiler() != NULL) {
1882    get_thread_profiler()->disengage();
1883    ResourceMark rm;
1884    get_thread_profiler()->print(get_thread_name());
1885  }
1886
1887  if (active_handles() != NULL) {
1888    JNIHandleBlock* block = active_handles();
1889    set_active_handles(NULL);
1890    JNIHandleBlock::release_block(block);
1891  }
1892
1893  if (free_handle_block() != NULL) {
1894    JNIHandleBlock* block = free_handle_block();
1895    set_free_handle_block(NULL);
1896    JNIHandleBlock::release_block(block);
1897  }
1898
1899  // These have to be removed while this is still a valid thread.
1900  remove_stack_guard_pages();
1901
1902  if (UseTLAB) {
1903    tlab().make_parsable(true);  // retire TLAB, if any
1904  }
1905
1906#if INCLUDE_ALL_GCS
1907  if (UseG1GC) {
1908    flush_barrier_queues();
1909  }
1910#endif // INCLUDE_ALL_GCS
1911
1912  Threads::remove(this);
1913  delete this;
1914}
1915
1916
1917
1918
1919JavaThread* JavaThread::active() {
1920  Thread* thread = ThreadLocalStorage::thread();
1921  assert(thread != NULL, "just checking");
1922  if (thread->is_Java_thread()) {
1923    return (JavaThread*) thread;
1924  } else {
1925    assert(thread->is_VM_thread(), "this must be a vm thread");
1926    VM_Operation* op = ((VMThread*) thread)->vm_operation();
1927    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1928    assert(ret->is_Java_thread(), "must be a Java thread");
1929    return ret;
1930  }
1931}
1932
1933bool JavaThread::is_lock_owned(address adr) const {
1934  if (Thread::is_lock_owned(adr)) return true;
1935
1936  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1937    if (chunk->contains(adr)) return true;
1938  }
1939
1940  return false;
1941}
1942
1943
1944void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1945  chunk->set_next(monitor_chunks());
1946  set_monitor_chunks(chunk);
1947}
1948
1949void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1950  guarantee(monitor_chunks() != NULL, "must be non empty");
1951  if (monitor_chunks() == chunk) {
1952    set_monitor_chunks(chunk->next());
1953  } else {
1954    MonitorChunk* prev = monitor_chunks();
1955    while (prev->next() != chunk) prev = prev->next();
1956    prev->set_next(chunk->next());
1957  }
1958}
1959
1960// JVM support.
1961
1962// Note: this function shouldn't block if it's called in
1963// _thread_in_native_trans state (such as from
1964// check_special_condition_for_native_trans()).
1965void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1966
1967  if (has_last_Java_frame() && has_async_condition()) {
1968    // If we are at a polling page safepoint (not a poll return)
1969    // then we must defer async exception because live registers
1970    // will be clobbered by the exception path. Poll return is
1971    // ok because the call we a returning from already collides
1972    // with exception handling registers and so there is no issue.
1973    // (The exception handling path kills call result registers but
1974    //  this is ok since the exception kills the result anyway).
1975
1976    if (is_at_poll_safepoint()) {
1977      // if the code we are returning to has deoptimized we must defer
1978      // the exception otherwise live registers get clobbered on the
1979      // exception path before deoptimization is able to retrieve them.
1980      //
1981      RegisterMap map(this, false);
1982      frame caller_fr = last_frame().sender(&map);
1983      assert(caller_fr.is_compiled_frame(), "what?");
1984      if (caller_fr.is_deoptimized_frame()) {
1985        if (TraceExceptions) {
1986          ResourceMark rm;
1987          tty->print_cr("deferred async exception at compiled safepoint");
1988        }
1989        return;
1990      }
1991    }
1992  }
1993
1994  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
1995  if (condition == _no_async_condition) {
1996    // Conditions have changed since has_special_runtime_exit_condition()
1997    // was called:
1998    // - if we were here only because of an external suspend request,
1999    //   then that was taken care of above (or cancelled) so we are done
2000    // - if we were here because of another async request, then it has
2001    //   been cleared between the has_special_runtime_exit_condition()
2002    //   and now so again we are done
2003    return;
2004  }
2005
2006  // Check for pending async. exception
2007  if (_pending_async_exception != NULL) {
2008    // Only overwrite an already pending exception, if it is not a threadDeath.
2009    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2010
2011      // We cannot call Exceptions::_throw(...) here because we cannot block
2012      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2013
2014      if (TraceExceptions) {
2015        ResourceMark rm;
2016        tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2017        if (has_last_Java_frame()) {
2018          frame f = last_frame();
2019          tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2020        }
2021        tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2022      }
2023      _pending_async_exception = NULL;
2024      clear_has_async_exception();
2025    }
2026  }
2027
2028  if (check_unsafe_error &&
2029      condition == _async_unsafe_access_error && !has_pending_exception()) {
2030    condition = _no_async_condition;  // done
2031    switch (thread_state()) {
2032    case _thread_in_vm: {
2033      JavaThread* THREAD = this;
2034      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2035    }
2036    case _thread_in_native: {
2037      ThreadInVMfromNative tiv(this);
2038      JavaThread* THREAD = this;
2039      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2040    }
2041    case _thread_in_Java: {
2042      ThreadInVMfromJava tiv(this);
2043      JavaThread* THREAD = this;
2044      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2045    }
2046    default:
2047      ShouldNotReachHere();
2048    }
2049  }
2050
2051  assert(condition == _no_async_condition || has_pending_exception() ||
2052         (!check_unsafe_error && condition == _async_unsafe_access_error),
2053         "must have handled the async condition, if no exception");
2054}
2055
2056void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2057  //
2058  // Check for pending external suspend. Internal suspend requests do
2059  // not use handle_special_runtime_exit_condition().
2060  // If JNIEnv proxies are allowed, don't self-suspend if the target
2061  // thread is not the current thread. In older versions of jdbx, jdbx
2062  // threads could call into the VM with another thread's JNIEnv so we
2063  // can be here operating on behalf of a suspended thread (4432884).
2064  bool do_self_suspend = is_external_suspend_with_lock();
2065  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2066    //
2067    // Because thread is external suspended the safepoint code will count
2068    // thread as at a safepoint. This can be odd because we can be here
2069    // as _thread_in_Java which would normally transition to _thread_blocked
2070    // at a safepoint. We would like to mark the thread as _thread_blocked
2071    // before calling java_suspend_self like all other callers of it but
2072    // we must then observe proper safepoint protocol. (We can't leave
2073    // _thread_blocked with a safepoint in progress). However we can be
2074    // here as _thread_in_native_trans so we can't use a normal transition
2075    // constructor/destructor pair because they assert on that type of
2076    // transition. We could do something like:
2077    //
2078    // JavaThreadState state = thread_state();
2079    // set_thread_state(_thread_in_vm);
2080    // {
2081    //   ThreadBlockInVM tbivm(this);
2082    //   java_suspend_self()
2083    // }
2084    // set_thread_state(_thread_in_vm_trans);
2085    // if (safepoint) block;
2086    // set_thread_state(state);
2087    //
2088    // but that is pretty messy. Instead we just go with the way the
2089    // code has worked before and note that this is the only path to
2090    // java_suspend_self that doesn't put the thread in _thread_blocked
2091    // mode.
2092
2093    frame_anchor()->make_walkable(this);
2094    java_suspend_self();
2095
2096    // We might be here for reasons in addition to the self-suspend request
2097    // so check for other async requests.
2098  }
2099
2100  if (check_asyncs) {
2101    check_and_handle_async_exceptions();
2102  }
2103}
2104
2105void JavaThread::send_thread_stop(oop java_throwable)  {
2106  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2107  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2108  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2109
2110  // Do not throw asynchronous exceptions against the compiler thread
2111  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2112  if (is_Compiler_thread()) return;
2113
2114  {
2115    // Actually throw the Throwable against the target Thread - however
2116    // only if there is no thread death exception installed already.
2117    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2118      // If the topmost frame is a runtime stub, then we are calling into
2119      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2120      // must deoptimize the caller before continuing, as the compiled  exception handler table
2121      // may not be valid
2122      if (has_last_Java_frame()) {
2123        frame f = last_frame();
2124        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2125          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2126          RegisterMap reg_map(this, UseBiasedLocking);
2127          frame compiled_frame = f.sender(&reg_map);
2128          if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2129            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2130          }
2131        }
2132      }
2133
2134      // Set async. pending exception in thread.
2135      set_pending_async_exception(java_throwable);
2136
2137      if (TraceExceptions) {
2138        ResourceMark rm;
2139        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2140      }
2141      // for AbortVMOnException flag
2142      NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2143    }
2144  }
2145
2146
2147  // Interrupt thread so it will wake up from a potential wait()
2148  Thread::interrupt(this);
2149}
2150
2151// External suspension mechanism.
2152//
2153// Tell the VM to suspend a thread when ever it knows that it does not hold on
2154// to any VM_locks and it is at a transition
2155// Self-suspension will happen on the transition out of the vm.
2156// Catch "this" coming in from JNIEnv pointers when the thread has been freed
2157//
2158// Guarantees on return:
2159//   + Target thread will not execute any new bytecode (that's why we need to
2160//     force a safepoint)
2161//   + Target thread will not enter any new monitors
2162//
2163void JavaThread::java_suspend() {
2164  { MutexLocker mu(Threads_lock);
2165    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2166      return;
2167    }
2168  }
2169
2170  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2171    if (!is_external_suspend()) {
2172      // a racing resume has cancelled us; bail out now
2173      return;
2174    }
2175
2176    // suspend is done
2177    uint32_t debug_bits = 0;
2178    // Warning: is_ext_suspend_completed() may temporarily drop the
2179    // SR_lock to allow the thread to reach a stable thread state if
2180    // it is currently in a transient thread state.
2181    if (is_ext_suspend_completed(false /* !called_by_wait */,
2182                                 SuspendRetryDelay, &debug_bits)) {
2183      return;
2184    }
2185  }
2186
2187  VM_ForceSafepoint vm_suspend;
2188  VMThread::execute(&vm_suspend);
2189}
2190
2191// Part II of external suspension.
2192// A JavaThread self suspends when it detects a pending external suspend
2193// request. This is usually on transitions. It is also done in places
2194// where continuing to the next transition would surprise the caller,
2195// e.g., monitor entry.
2196//
2197// Returns the number of times that the thread self-suspended.
2198//
2199// Note: DO NOT call java_suspend_self() when you just want to block current
2200//       thread. java_suspend_self() is the second stage of cooperative
2201//       suspension for external suspend requests and should only be used
2202//       to complete an external suspend request.
2203//
2204int JavaThread::java_suspend_self() {
2205  int ret = 0;
2206
2207  // we are in the process of exiting so don't suspend
2208  if (is_exiting()) {
2209    clear_external_suspend();
2210    return ret;
2211  }
2212
2213  assert(_anchor.walkable() ||
2214         (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2215         "must have walkable stack");
2216
2217  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2218
2219  assert(!this->is_ext_suspended(),
2220         "a thread trying to self-suspend should not already be suspended");
2221
2222  if (this->is_suspend_equivalent()) {
2223    // If we are self-suspending as a result of the lifting of a
2224    // suspend equivalent condition, then the suspend_equivalent
2225    // flag is not cleared until we set the ext_suspended flag so
2226    // that wait_for_ext_suspend_completion() returns consistent
2227    // results.
2228    this->clear_suspend_equivalent();
2229  }
2230
2231  // A racing resume may have cancelled us before we grabbed SR_lock
2232  // above. Or another external suspend request could be waiting for us
2233  // by the time we return from SR_lock()->wait(). The thread
2234  // that requested the suspension may already be trying to walk our
2235  // stack and if we return now, we can change the stack out from under
2236  // it. This would be a "bad thing (TM)" and cause the stack walker
2237  // to crash. We stay self-suspended until there are no more pending
2238  // external suspend requests.
2239  while (is_external_suspend()) {
2240    ret++;
2241    this->set_ext_suspended();
2242
2243    // _ext_suspended flag is cleared by java_resume()
2244    while (is_ext_suspended()) {
2245      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2246    }
2247  }
2248
2249  return ret;
2250}
2251
2252#ifdef ASSERT
2253// verify the JavaThread has not yet been published in the Threads::list, and
2254// hence doesn't need protection from concurrent access at this stage
2255void JavaThread::verify_not_published() {
2256  if (!Threads_lock->owned_by_self()) {
2257    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2258    assert(!Threads::includes(this),
2259           "java thread shouldn't have been published yet!");
2260  } else {
2261    assert(!Threads::includes(this),
2262           "java thread shouldn't have been published yet!");
2263  }
2264}
2265#endif
2266
2267// Slow path when the native==>VM/Java barriers detect a safepoint is in
2268// progress or when _suspend_flags is non-zero.
2269// Current thread needs to self-suspend if there is a suspend request and/or
2270// block if a safepoint is in progress.
2271// Async exception ISN'T checked.
2272// Note only the ThreadInVMfromNative transition can call this function
2273// directly and when thread state is _thread_in_native_trans
2274void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2275  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2276
2277  JavaThread *curJT = JavaThread::current();
2278  bool do_self_suspend = thread->is_external_suspend();
2279
2280  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2281
2282  // If JNIEnv proxies are allowed, don't self-suspend if the target
2283  // thread is not the current thread. In older versions of jdbx, jdbx
2284  // threads could call into the VM with another thread's JNIEnv so we
2285  // can be here operating on behalf of a suspended thread (4432884).
2286  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2287    JavaThreadState state = thread->thread_state();
2288
2289    // We mark this thread_blocked state as a suspend-equivalent so
2290    // that a caller to is_ext_suspend_completed() won't be confused.
2291    // The suspend-equivalent state is cleared by java_suspend_self().
2292    thread->set_suspend_equivalent();
2293
2294    // If the safepoint code sees the _thread_in_native_trans state, it will
2295    // wait until the thread changes to other thread state. There is no
2296    // guarantee on how soon we can obtain the SR_lock and complete the
2297    // self-suspend request. It would be a bad idea to let safepoint wait for
2298    // too long. Temporarily change the state to _thread_blocked to
2299    // let the VM thread know that this thread is ready for GC. The problem
2300    // of changing thread state is that safepoint could happen just after
2301    // java_suspend_self() returns after being resumed, and VM thread will
2302    // see the _thread_blocked state. We must check for safepoint
2303    // after restoring the state and make sure we won't leave while a safepoint
2304    // is in progress.
2305    thread->set_thread_state(_thread_blocked);
2306    thread->java_suspend_self();
2307    thread->set_thread_state(state);
2308    // Make sure new state is seen by VM thread
2309    if (os::is_MP()) {
2310      if (UseMembar) {
2311        // Force a fence between the write above and read below
2312        OrderAccess::fence();
2313      } else {
2314        // Must use this rather than serialization page in particular on Windows
2315        InterfaceSupport::serialize_memory(thread);
2316      }
2317    }
2318  }
2319
2320  if (SafepointSynchronize::do_call_back()) {
2321    // If we are safepointing, then block the caller which may not be
2322    // the same as the target thread (see above).
2323    SafepointSynchronize::block(curJT);
2324  }
2325
2326  if (thread->is_deopt_suspend()) {
2327    thread->clear_deopt_suspend();
2328    RegisterMap map(thread, false);
2329    frame f = thread->last_frame();
2330    while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2331      f = f.sender(&map);
2332    }
2333    if (f.id() == thread->must_deopt_id()) {
2334      thread->clear_must_deopt_id();
2335      f.deoptimize(thread);
2336    } else {
2337      fatal("missed deoptimization!");
2338    }
2339  }
2340}
2341
2342// Slow path when the native==>VM/Java barriers detect a safepoint is in
2343// progress or when _suspend_flags is non-zero.
2344// Current thread needs to self-suspend if there is a suspend request and/or
2345// block if a safepoint is in progress.
2346// Also check for pending async exception (not including unsafe access error).
2347// Note only the native==>VM/Java barriers can call this function and when
2348// thread state is _thread_in_native_trans.
2349void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2350  check_safepoint_and_suspend_for_native_trans(thread);
2351
2352  if (thread->has_async_exception()) {
2353    // We are in _thread_in_native_trans state, don't handle unsafe
2354    // access error since that may block.
2355    thread->check_and_handle_async_exceptions(false);
2356  }
2357}
2358
2359// This is a variant of the normal
2360// check_special_condition_for_native_trans with slightly different
2361// semantics for use by critical native wrappers.  It does all the
2362// normal checks but also performs the transition back into
2363// thread_in_Java state.  This is required so that critical natives
2364// can potentially block and perform a GC if they are the last thread
2365// exiting the GC_locker.
2366void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2367  check_special_condition_for_native_trans(thread);
2368
2369  // Finish the transition
2370  thread->set_thread_state(_thread_in_Java);
2371
2372  if (thread->do_critical_native_unlock()) {
2373    ThreadInVMfromJavaNoAsyncException tiv(thread);
2374    GC_locker::unlock_critical(thread);
2375    thread->clear_critical_native_unlock();
2376  }
2377}
2378
2379// We need to guarantee the Threads_lock here, since resumes are not
2380// allowed during safepoint synchronization
2381// Can only resume from an external suspension
2382void JavaThread::java_resume() {
2383  assert_locked_or_safepoint(Threads_lock);
2384
2385  // Sanity check: thread is gone, has started exiting or the thread
2386  // was not externally suspended.
2387  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2388    return;
2389  }
2390
2391  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2392
2393  clear_external_suspend();
2394
2395  if (is_ext_suspended()) {
2396    clear_ext_suspended();
2397    SR_lock()->notify_all();
2398  }
2399}
2400
2401void JavaThread::create_stack_guard_pages() {
2402  if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2403  address low_addr = stack_base() - stack_size();
2404  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2405
2406  int allocate = os::allocate_stack_guard_pages();
2407  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2408
2409  if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2410    warning("Attempt to allocate stack guard pages failed.");
2411    return;
2412  }
2413
2414  if (os::guard_memory((char *) low_addr, len)) {
2415    _stack_guard_state = stack_guard_enabled;
2416  } else {
2417    warning("Attempt to protect stack guard pages failed.");
2418    if (os::uncommit_memory((char *) low_addr, len)) {
2419      warning("Attempt to deallocate stack guard pages failed.");
2420    }
2421  }
2422}
2423
2424void JavaThread::remove_stack_guard_pages() {
2425  assert(Thread::current() == this, "from different thread");
2426  if (_stack_guard_state == stack_guard_unused) return;
2427  address low_addr = stack_base() - stack_size();
2428  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2429
2430  if (os::allocate_stack_guard_pages()) {
2431    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2432      _stack_guard_state = stack_guard_unused;
2433    } else {
2434      warning("Attempt to deallocate stack guard pages failed.");
2435    }
2436  } else {
2437    if (_stack_guard_state == stack_guard_unused) return;
2438    if (os::unguard_memory((char *) low_addr, len)) {
2439      _stack_guard_state = stack_guard_unused;
2440    } else {
2441      warning("Attempt to unprotect stack guard pages failed.");
2442    }
2443  }
2444}
2445
2446void JavaThread::enable_stack_yellow_zone() {
2447  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2448  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2449
2450  // The base notation is from the stacks point of view, growing downward.
2451  // We need to adjust it to work correctly with guard_memory()
2452  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2453
2454  guarantee(base < stack_base(), "Error calculating stack yellow zone");
2455  guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2456
2457  if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2458    _stack_guard_state = stack_guard_enabled;
2459  } else {
2460    warning("Attempt to guard stack yellow zone failed.");
2461  }
2462  enable_register_stack_guard();
2463}
2464
2465void JavaThread::disable_stack_yellow_zone() {
2466  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2467  assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2468
2469  // Simply return if called for a thread that does not use guard pages.
2470  if (_stack_guard_state == stack_guard_unused) return;
2471
2472  // The base notation is from the stacks point of view, growing downward.
2473  // We need to adjust it to work correctly with guard_memory()
2474  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2475
2476  if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2477    _stack_guard_state = stack_guard_yellow_disabled;
2478  } else {
2479    warning("Attempt to unguard stack yellow zone failed.");
2480  }
2481  disable_register_stack_guard();
2482}
2483
2484void JavaThread::enable_stack_red_zone() {
2485  // The base notation is from the stacks point of view, growing downward.
2486  // We need to adjust it to work correctly with guard_memory()
2487  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2488  address base = stack_red_zone_base() - stack_red_zone_size();
2489
2490  guarantee(base < stack_base(), "Error calculating stack red zone");
2491  guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2492
2493  if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2494    warning("Attempt to guard stack red zone failed.");
2495  }
2496}
2497
2498void JavaThread::disable_stack_red_zone() {
2499  // The base notation is from the stacks point of view, growing downward.
2500  // We need to adjust it to work correctly with guard_memory()
2501  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2502  address base = stack_red_zone_base() - stack_red_zone_size();
2503  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2504    warning("Attempt to unguard stack red zone failed.");
2505  }
2506}
2507
2508void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2509  // ignore is there is no stack
2510  if (!has_last_Java_frame()) return;
2511  // traverse the stack frames. Starts from top frame.
2512  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2513    frame* fr = fst.current();
2514    f(fr, fst.register_map());
2515  }
2516}
2517
2518
2519#ifndef PRODUCT
2520// Deoptimization
2521// Function for testing deoptimization
2522void JavaThread::deoptimize() {
2523  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2524  StackFrameStream fst(this, UseBiasedLocking);
2525  bool deopt = false;           // Dump stack only if a deopt actually happens.
2526  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2527  // Iterate over all frames in the thread and deoptimize
2528  for (; !fst.is_done(); fst.next()) {
2529    if (fst.current()->can_be_deoptimized()) {
2530
2531      if (only_at) {
2532        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2533        // consists of comma or carriage return separated numbers so
2534        // search for the current bci in that string.
2535        address pc = fst.current()->pc();
2536        nmethod* nm =  (nmethod*) fst.current()->cb();
2537        ScopeDesc* sd = nm->scope_desc_at(pc);
2538        char buffer[8];
2539        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2540        size_t len = strlen(buffer);
2541        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2542        while (found != NULL) {
2543          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2544              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2545            // Check that the bci found is bracketed by terminators.
2546            break;
2547          }
2548          found = strstr(found + 1, buffer);
2549        }
2550        if (!found) {
2551          continue;
2552        }
2553      }
2554
2555      if (DebugDeoptimization && !deopt) {
2556        deopt = true; // One-time only print before deopt
2557        tty->print_cr("[BEFORE Deoptimization]");
2558        trace_frames();
2559        trace_stack();
2560      }
2561      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2562    }
2563  }
2564
2565  if (DebugDeoptimization && deopt) {
2566    tty->print_cr("[AFTER Deoptimization]");
2567    trace_frames();
2568  }
2569}
2570
2571
2572// Make zombies
2573void JavaThread::make_zombies() {
2574  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2575    if (fst.current()->can_be_deoptimized()) {
2576      // it is a Java nmethod
2577      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2578      nm->make_not_entrant();
2579    }
2580  }
2581}
2582#endif // PRODUCT
2583
2584
2585void JavaThread::deoptimized_wrt_marked_nmethods() {
2586  if (!has_last_Java_frame()) return;
2587  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2588  StackFrameStream fst(this, UseBiasedLocking);
2589  for (; !fst.is_done(); fst.next()) {
2590    if (fst.current()->should_be_deoptimized()) {
2591      if (LogCompilation && xtty != NULL) {
2592        nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2593        xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2594                   this->name(), nm != NULL ? nm->compile_id() : -1);
2595      }
2596
2597      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2598    }
2599  }
2600}
2601
2602
2603// If the caller is a NamedThread, then remember, in the current scope,
2604// the given JavaThread in its _processed_thread field.
2605class RememberProcessedThread: public StackObj {
2606  NamedThread* _cur_thr;
2607 public:
2608  RememberProcessedThread(JavaThread* jthr) {
2609    Thread* thread = Thread::current();
2610    if (thread->is_Named_thread()) {
2611      _cur_thr = (NamedThread *)thread;
2612      _cur_thr->set_processed_thread(jthr);
2613    } else {
2614      _cur_thr = NULL;
2615    }
2616  }
2617
2618  ~RememberProcessedThread() {
2619    if (_cur_thr) {
2620      _cur_thr->set_processed_thread(NULL);
2621    }
2622  }
2623};
2624
2625void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2626  // Verify that the deferred card marks have been flushed.
2627  assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2628
2629  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2630  // since there may be more than one thread using each ThreadProfiler.
2631
2632  // Traverse the GCHandles
2633  Thread::oops_do(f, cld_f, cf);
2634
2635  assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2636         (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2637
2638  if (has_last_Java_frame()) {
2639    // Record JavaThread to GC thread
2640    RememberProcessedThread rpt(this);
2641
2642    // Traverse the privileged stack
2643    if (_privileged_stack_top != NULL) {
2644      _privileged_stack_top->oops_do(f);
2645    }
2646
2647    // traverse the registered growable array
2648    if (_array_for_gc != NULL) {
2649      for (int index = 0; index < _array_for_gc->length(); index++) {
2650        f->do_oop(_array_for_gc->adr_at(index));
2651      }
2652    }
2653
2654    // Traverse the monitor chunks
2655    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2656      chunk->oops_do(f);
2657    }
2658
2659    // Traverse the execution stack
2660    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2661      fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2662    }
2663  }
2664
2665  // callee_target is never live across a gc point so NULL it here should
2666  // it still contain a methdOop.
2667
2668  set_callee_target(NULL);
2669
2670  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2671  // If we have deferred set_locals there might be oops waiting to be
2672  // written
2673  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2674  if (list != NULL) {
2675    for (int i = 0; i < list->length(); i++) {
2676      list->at(i)->oops_do(f);
2677    }
2678  }
2679
2680  // Traverse instance variables at the end since the GC may be moving things
2681  // around using this function
2682  f->do_oop((oop*) &_threadObj);
2683  f->do_oop((oop*) &_vm_result);
2684  f->do_oop((oop*) &_exception_oop);
2685  f->do_oop((oop*) &_pending_async_exception);
2686
2687  if (jvmti_thread_state() != NULL) {
2688    jvmti_thread_state()->oops_do(f);
2689  }
2690}
2691
2692void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2693  Thread::nmethods_do(cf);  // (super method is a no-op)
2694
2695  assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2696         (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2697
2698  if (has_last_Java_frame()) {
2699    // Traverse the execution stack
2700    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2701      fst.current()->nmethods_do(cf);
2702    }
2703  }
2704}
2705
2706void JavaThread::metadata_do(void f(Metadata*)) {
2707  Thread::metadata_do(f);
2708  if (has_last_Java_frame()) {
2709    // Traverse the execution stack to call f() on the methods in the stack
2710    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2711      fst.current()->metadata_do(f);
2712    }
2713  } else if (is_Compiler_thread()) {
2714    // need to walk ciMetadata in current compile tasks to keep alive.
2715    CompilerThread* ct = (CompilerThread*)this;
2716    if (ct->env() != NULL) {
2717      ct->env()->metadata_do(f);
2718    }
2719  }
2720}
2721
2722// Printing
2723const char* _get_thread_state_name(JavaThreadState _thread_state) {
2724  switch (_thread_state) {
2725  case _thread_uninitialized:     return "_thread_uninitialized";
2726  case _thread_new:               return "_thread_new";
2727  case _thread_new_trans:         return "_thread_new_trans";
2728  case _thread_in_native:         return "_thread_in_native";
2729  case _thread_in_native_trans:   return "_thread_in_native_trans";
2730  case _thread_in_vm:             return "_thread_in_vm";
2731  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2732  case _thread_in_Java:           return "_thread_in_Java";
2733  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2734  case _thread_blocked:           return "_thread_blocked";
2735  case _thread_blocked_trans:     return "_thread_blocked_trans";
2736  default:                        return "unknown thread state";
2737  }
2738}
2739
2740#ifndef PRODUCT
2741void JavaThread::print_thread_state_on(outputStream *st) const {
2742  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2743};
2744void JavaThread::print_thread_state() const {
2745  print_thread_state_on(tty);
2746}
2747#endif // PRODUCT
2748
2749// Called by Threads::print() for VM_PrintThreads operation
2750void JavaThread::print_on(outputStream *st) const {
2751  st->print("\"%s\" ", get_thread_name());
2752  oop thread_oop = threadObj();
2753  if (thread_oop != NULL) {
2754    st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2755    if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2756    st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2757  }
2758  Thread::print_on(st);
2759  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2760  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2761  if (thread_oop != NULL) {
2762    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2763  }
2764#ifndef PRODUCT
2765  print_thread_state_on(st);
2766  _safepoint_state->print_on(st);
2767#endif // PRODUCT
2768}
2769
2770// Called by fatal error handler. The difference between this and
2771// JavaThread::print() is that we can't grab lock or allocate memory.
2772void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2773  st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2774  oop thread_obj = threadObj();
2775  if (thread_obj != NULL) {
2776    if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2777  }
2778  st->print(" [");
2779  st->print("%s", _get_thread_state_name(_thread_state));
2780  if (osthread()) {
2781    st->print(", id=%d", osthread()->thread_id());
2782  }
2783  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2784            _stack_base - _stack_size, _stack_base);
2785  st->print("]");
2786  return;
2787}
2788
2789// Verification
2790
2791static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2792
2793void JavaThread::verify() {
2794  // Verify oops in the thread.
2795  oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2796
2797  // Verify the stack frames.
2798  frames_do(frame_verify);
2799}
2800
2801// CR 6300358 (sub-CR 2137150)
2802// Most callers of this method assume that it can't return NULL but a
2803// thread may not have a name whilst it is in the process of attaching to
2804// the VM - see CR 6412693, and there are places where a JavaThread can be
2805// seen prior to having it's threadObj set (eg JNI attaching threads and
2806// if vm exit occurs during initialization). These cases can all be accounted
2807// for such that this method never returns NULL.
2808const char* JavaThread::get_thread_name() const {
2809#ifdef ASSERT
2810  // early safepoints can hit while current thread does not yet have TLS
2811  if (!SafepointSynchronize::is_at_safepoint()) {
2812    Thread *cur = Thread::current();
2813    if (!(cur->is_Java_thread() && cur == this)) {
2814      // Current JavaThreads are allowed to get their own name without
2815      // the Threads_lock.
2816      assert_locked_or_safepoint(Threads_lock);
2817    }
2818  }
2819#endif // ASSERT
2820  return get_thread_name_string();
2821}
2822
2823// Returns a non-NULL representation of this thread's name, or a suitable
2824// descriptive string if there is no set name
2825const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2826  const char* name_str;
2827  oop thread_obj = threadObj();
2828  if (thread_obj != NULL) {
2829    oop name = java_lang_Thread::name(thread_obj);
2830    if (name != NULL) {
2831      if (buf == NULL) {
2832        name_str = java_lang_String::as_utf8_string(name);
2833      } else {
2834        name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2835      }
2836    } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2837      name_str = "<no-name - thread is attaching>";
2838    } else {
2839      name_str = Thread::name();
2840    }
2841  } else {
2842    name_str = Thread::name();
2843  }
2844  assert(name_str != NULL, "unexpected NULL thread name");
2845  return name_str;
2846}
2847
2848
2849const char* JavaThread::get_threadgroup_name() const {
2850  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2851  oop thread_obj = threadObj();
2852  if (thread_obj != NULL) {
2853    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2854    if (thread_group != NULL) {
2855      typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2856      // ThreadGroup.name can be null
2857      if (name != NULL) {
2858        const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2859        return str;
2860      }
2861    }
2862  }
2863  return NULL;
2864}
2865
2866const char* JavaThread::get_parent_name() const {
2867  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2868  oop thread_obj = threadObj();
2869  if (thread_obj != NULL) {
2870    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2871    if (thread_group != NULL) {
2872      oop parent = java_lang_ThreadGroup::parent(thread_group);
2873      if (parent != NULL) {
2874        typeArrayOop name = java_lang_ThreadGroup::name(parent);
2875        // ThreadGroup.name can be null
2876        if (name != NULL) {
2877          const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2878          return str;
2879        }
2880      }
2881    }
2882  }
2883  return NULL;
2884}
2885
2886ThreadPriority JavaThread::java_priority() const {
2887  oop thr_oop = threadObj();
2888  if (thr_oop == NULL) return NormPriority; // Bootstrapping
2889  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2890  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2891  return priority;
2892}
2893
2894void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2895
2896  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2897  // Link Java Thread object <-> C++ Thread
2898
2899  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2900  // and put it into a new Handle.  The Handle "thread_oop" can then
2901  // be used to pass the C++ thread object to other methods.
2902
2903  // Set the Java level thread object (jthread) field of the
2904  // new thread (a JavaThread *) to C++ thread object using the
2905  // "thread_oop" handle.
2906
2907  // Set the thread field (a JavaThread *) of the
2908  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2909
2910  Handle thread_oop(Thread::current(),
2911                    JNIHandles::resolve_non_null(jni_thread));
2912  assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2913         "must be initialized");
2914  set_threadObj(thread_oop());
2915  java_lang_Thread::set_thread(thread_oop(), this);
2916
2917  if (prio == NoPriority) {
2918    prio = java_lang_Thread::priority(thread_oop());
2919    assert(prio != NoPriority, "A valid priority should be present");
2920  }
2921
2922  // Push the Java priority down to the native thread; needs Threads_lock
2923  Thread::set_priority(this, prio);
2924
2925  prepare_ext();
2926
2927  // Add the new thread to the Threads list and set it in motion.
2928  // We must have threads lock in order to call Threads::add.
2929  // It is crucial that we do not block before the thread is
2930  // added to the Threads list for if a GC happens, then the java_thread oop
2931  // will not be visited by GC.
2932  Threads::add(this);
2933}
2934
2935oop JavaThread::current_park_blocker() {
2936  // Support for JSR-166 locks
2937  oop thread_oop = threadObj();
2938  if (thread_oop != NULL &&
2939      JDK_Version::current().supports_thread_park_blocker()) {
2940    return java_lang_Thread::park_blocker(thread_oop);
2941  }
2942  return NULL;
2943}
2944
2945
2946void JavaThread::print_stack_on(outputStream* st) {
2947  if (!has_last_Java_frame()) return;
2948  ResourceMark rm;
2949  HandleMark   hm;
2950
2951  RegisterMap reg_map(this);
2952  vframe* start_vf = last_java_vframe(&reg_map);
2953  int count = 0;
2954  for (vframe* f = start_vf; f; f = f->sender()) {
2955    if (f->is_java_frame()) {
2956      javaVFrame* jvf = javaVFrame::cast(f);
2957      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2958
2959      // Print out lock information
2960      if (JavaMonitorsInStackTrace) {
2961        jvf->print_lock_info_on(st, count);
2962      }
2963    } else {
2964      // Ignore non-Java frames
2965    }
2966
2967    // Bail-out case for too deep stacks
2968    count++;
2969    if (MaxJavaStackTraceDepth == count) return;
2970  }
2971}
2972
2973
2974// JVMTI PopFrame support
2975void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2976  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2977  if (in_bytes(size_in_bytes) != 0) {
2978    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
2979    _popframe_preserved_args_size = in_bytes(size_in_bytes);
2980    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2981  }
2982}
2983
2984void* JavaThread::popframe_preserved_args() {
2985  return _popframe_preserved_args;
2986}
2987
2988ByteSize JavaThread::popframe_preserved_args_size() {
2989  return in_ByteSize(_popframe_preserved_args_size);
2990}
2991
2992WordSize JavaThread::popframe_preserved_args_size_in_words() {
2993  int sz = in_bytes(popframe_preserved_args_size());
2994  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
2995  return in_WordSize(sz / wordSize);
2996}
2997
2998void JavaThread::popframe_free_preserved_args() {
2999  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3000  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3001  _popframe_preserved_args = NULL;
3002  _popframe_preserved_args_size = 0;
3003}
3004
3005#ifndef PRODUCT
3006
3007void JavaThread::trace_frames() {
3008  tty->print_cr("[Describe stack]");
3009  int frame_no = 1;
3010  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3011    tty->print("  %d. ", frame_no++);
3012    fst.current()->print_value_on(tty, this);
3013    tty->cr();
3014  }
3015}
3016
3017class PrintAndVerifyOopClosure: public OopClosure {
3018 protected:
3019  template <class T> inline void do_oop_work(T* p) {
3020    oop obj = oopDesc::load_decode_heap_oop(p);
3021    if (obj == NULL) return;
3022    tty->print(INTPTR_FORMAT ": ", p);
3023    if (obj->is_oop_or_null()) {
3024      if (obj->is_objArray()) {
3025        tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3026      } else {
3027        obj->print();
3028      }
3029    } else {
3030      tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3031    }
3032    tty->cr();
3033  }
3034 public:
3035  virtual void do_oop(oop* p) { do_oop_work(p); }
3036  virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3037};
3038
3039
3040static void oops_print(frame* f, const RegisterMap *map) {
3041  PrintAndVerifyOopClosure print;
3042  f->print_value();
3043  f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3044}
3045
3046// Print our all the locations that contain oops and whether they are
3047// valid or not.  This useful when trying to find the oldest frame
3048// where an oop has gone bad since the frame walk is from youngest to
3049// oldest.
3050void JavaThread::trace_oops() {
3051  tty->print_cr("[Trace oops]");
3052  frames_do(oops_print);
3053}
3054
3055
3056#ifdef ASSERT
3057// Print or validate the layout of stack frames
3058void JavaThread::print_frame_layout(int depth, bool validate_only) {
3059  ResourceMark rm;
3060  PRESERVE_EXCEPTION_MARK;
3061  FrameValues values;
3062  int frame_no = 0;
3063  for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3064    fst.current()->describe(values, ++frame_no);
3065    if (depth == frame_no) break;
3066  }
3067  if (validate_only) {
3068    values.validate();
3069  } else {
3070    tty->print_cr("[Describe stack layout]");
3071    values.print(this);
3072  }
3073}
3074#endif
3075
3076void JavaThread::trace_stack_from(vframe* start_vf) {
3077  ResourceMark rm;
3078  int vframe_no = 1;
3079  for (vframe* f = start_vf; f; f = f->sender()) {
3080    if (f->is_java_frame()) {
3081      javaVFrame::cast(f)->print_activation(vframe_no++);
3082    } else {
3083      f->print();
3084    }
3085    if (vframe_no > StackPrintLimit) {
3086      tty->print_cr("...<more frames>...");
3087      return;
3088    }
3089  }
3090}
3091
3092
3093void JavaThread::trace_stack() {
3094  if (!has_last_Java_frame()) return;
3095  ResourceMark rm;
3096  HandleMark   hm;
3097  RegisterMap reg_map(this);
3098  trace_stack_from(last_java_vframe(&reg_map));
3099}
3100
3101
3102#endif // PRODUCT
3103
3104
3105javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3106  assert(reg_map != NULL, "a map must be given");
3107  frame f = last_frame();
3108  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3109    if (vf->is_java_frame()) return javaVFrame::cast(vf);
3110  }
3111  return NULL;
3112}
3113
3114
3115Klass* JavaThread::security_get_caller_class(int depth) {
3116  vframeStream vfst(this);
3117  vfst.security_get_caller_frame(depth);
3118  if (!vfst.at_end()) {
3119    return vfst.method()->method_holder();
3120  }
3121  return NULL;
3122}
3123
3124static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3125  assert(thread->is_Compiler_thread(), "must be compiler thread");
3126  CompileBroker::compiler_thread_loop();
3127}
3128
3129static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3130  NMethodSweeper::sweeper_loop();
3131}
3132
3133// Create a CompilerThread
3134CompilerThread::CompilerThread(CompileQueue* queue,
3135                               CompilerCounters* counters)
3136                               : JavaThread(&compiler_thread_entry) {
3137  _env   = NULL;
3138  _log   = NULL;
3139  _task  = NULL;
3140  _queue = queue;
3141  _counters = counters;
3142  _buffer_blob = NULL;
3143  _compiler = NULL;
3144
3145#ifndef PRODUCT
3146  _ideal_graph_printer = NULL;
3147#endif
3148}
3149
3150// Create sweeper thread
3151CodeCacheSweeperThread::CodeCacheSweeperThread()
3152: JavaThread(&sweeper_thread_entry) {
3153  _scanned_nmethod = NULL;
3154}
3155void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3156  JavaThread::oops_do(f, cld_f, cf);
3157  if (_scanned_nmethod != NULL && cf != NULL) {
3158    // Safepoints can occur when the sweeper is scanning an nmethod so
3159    // process it here to make sure it isn't unloaded in the middle of
3160    // a scan.
3161    cf->do_code_blob(_scanned_nmethod);
3162  }
3163}
3164
3165
3166// ======= Threads ========
3167
3168// The Threads class links together all active threads, and provides
3169// operations over all threads.  It is protected by its own Mutex
3170// lock, which is also used in other contexts to protect thread
3171// operations from having the thread being operated on from exiting
3172// and going away unexpectedly (e.g., safepoint synchronization)
3173
3174JavaThread* Threads::_thread_list = NULL;
3175int         Threads::_number_of_threads = 0;
3176int         Threads::_number_of_non_daemon_threads = 0;
3177int         Threads::_return_code = 0;
3178size_t      JavaThread::_stack_size_at_create = 0;
3179#ifdef ASSERT
3180bool        Threads::_vm_complete = false;
3181#endif
3182
3183// All JavaThreads
3184#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3185
3186// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3187void Threads::threads_do(ThreadClosure* tc) {
3188  assert_locked_or_safepoint(Threads_lock);
3189  // ALL_JAVA_THREADS iterates through all JavaThreads
3190  ALL_JAVA_THREADS(p) {
3191    tc->do_thread(p);
3192  }
3193  // Someday we could have a table or list of all non-JavaThreads.
3194  // For now, just manually iterate through them.
3195  tc->do_thread(VMThread::vm_thread());
3196  Universe::heap()->gc_threads_do(tc);
3197  WatcherThread *wt = WatcherThread::watcher_thread();
3198  // Strictly speaking, the following NULL check isn't sufficient to make sure
3199  // the data for WatcherThread is still valid upon being examined. However,
3200  // considering that WatchThread terminates when the VM is on the way to
3201  // exit at safepoint, the chance of the above is extremely small. The right
3202  // way to prevent termination of WatcherThread would be to acquire
3203  // Terminator_lock, but we can't do that without violating the lock rank
3204  // checking in some cases.
3205  if (wt != NULL) {
3206    tc->do_thread(wt);
3207  }
3208
3209  // If CompilerThreads ever become non-JavaThreads, add them here
3210}
3211
3212
3213void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3214  TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3215
3216  if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3217    create_vm_init_libraries();
3218  }
3219
3220  initialize_class(vmSymbols::java_lang_String(), CHECK);
3221
3222  // Initialize java_lang.System (needed before creating the thread)
3223  initialize_class(vmSymbols::java_lang_System(), CHECK);
3224  initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3225  Handle thread_group = create_initial_thread_group(CHECK);
3226  Universe::set_main_thread_group(thread_group());
3227  initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3228  oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3229  main_thread->set_threadObj(thread_object);
3230  // Set thread status to running since main thread has
3231  // been started and running.
3232  java_lang_Thread::set_thread_status(thread_object,
3233                                      java_lang_Thread::RUNNABLE);
3234
3235  // The VM creates & returns objects of this class. Make sure it's initialized.
3236  initialize_class(vmSymbols::java_lang_Class(), CHECK);
3237
3238  // The VM preresolves methods to these classes. Make sure that they get initialized
3239  initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3240  initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3241  call_initializeSystemClass(CHECK);
3242
3243  // get the Java runtime name after java.lang.System is initialized
3244  JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3245  JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3246
3247  // an instance of OutOfMemory exception has been allocated earlier
3248  initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3249  initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3250  initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3251  initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3252  initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3253  initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3254  initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3255  initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3256}
3257
3258void Threads::initialize_jsr292_core_classes(TRAPS) {
3259  initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3260  initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3261  initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3262}
3263
3264jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3265  extern void JDK_Version_init();
3266
3267  // Check version
3268  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3269
3270  // Initialize the output stream module
3271  ostream_init();
3272
3273  // Process java launcher properties.
3274  Arguments::process_sun_java_launcher_properties(args);
3275
3276  // Initialize the os module before using TLS
3277  os::init();
3278
3279  // Initialize system properties.
3280  Arguments::init_system_properties();
3281
3282  // So that JDK version can be used as a discriminator when parsing arguments
3283  JDK_Version_init();
3284
3285  // Update/Initialize System properties after JDK version number is known
3286  Arguments::init_version_specific_system_properties();
3287
3288  // Parse arguments
3289  jint parse_result = Arguments::parse(args);
3290  if (parse_result != JNI_OK) return parse_result;
3291
3292  os::init_before_ergo();
3293
3294  jint ergo_result = Arguments::apply_ergo();
3295  if (ergo_result != JNI_OK) return ergo_result;
3296
3297  if (PauseAtStartup) {
3298    os::pause();
3299  }
3300
3301  HOTSPOT_VM_INIT_BEGIN();
3302
3303  // Record VM creation timing statistics
3304  TraceVmCreationTime create_vm_timer;
3305  create_vm_timer.start();
3306
3307  // Timing (must come after argument parsing)
3308  TraceTime timer("Create VM", TraceStartupTime);
3309
3310  // Initialize the os module after parsing the args
3311  jint os_init_2_result = os::init_2();
3312  if (os_init_2_result != JNI_OK) return os_init_2_result;
3313
3314  jint adjust_after_os_result = Arguments::adjust_after_os();
3315  if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3316
3317  // initialize TLS
3318  ThreadLocalStorage::init();
3319
3320  // Initialize output stream logging
3321  ostream_init_log();
3322
3323  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3324  // Must be before create_vm_init_agents()
3325  if (Arguments::init_libraries_at_startup()) {
3326    convert_vm_init_libraries_to_agents();
3327  }
3328
3329  // Launch -agentlib/-agentpath and converted -Xrun agents
3330  if (Arguments::init_agents_at_startup()) {
3331    create_vm_init_agents();
3332  }
3333
3334  // Initialize Threads state
3335  _thread_list = NULL;
3336  _number_of_threads = 0;
3337  _number_of_non_daemon_threads = 0;
3338
3339  // Initialize global data structures and create system classes in heap
3340  vm_init_globals();
3341
3342  // Attach the main thread to this os thread
3343  JavaThread* main_thread = new JavaThread();
3344  main_thread->set_thread_state(_thread_in_vm);
3345  // must do this before set_active_handles and initialize_thread_local_storage
3346  // Note: on solaris initialize_thread_local_storage() will (indirectly)
3347  // change the stack size recorded here to one based on the java thread
3348  // stacksize. This adjusted size is what is used to figure the placement
3349  // of the guard pages.
3350  main_thread->record_stack_base_and_size();
3351  main_thread->initialize_thread_local_storage();
3352
3353  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3354
3355  if (!main_thread->set_as_starting_thread()) {
3356    vm_shutdown_during_initialization(
3357                                      "Failed necessary internal allocation. Out of swap space");
3358    delete main_thread;
3359    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3360    return JNI_ENOMEM;
3361  }
3362
3363  // Enable guard page *after* os::create_main_thread(), otherwise it would
3364  // crash Linux VM, see notes in os_linux.cpp.
3365  main_thread->create_stack_guard_pages();
3366
3367  // Initialize Java-Level synchronization subsystem
3368  ObjectMonitor::Initialize();
3369
3370  // Initialize global modules
3371  jint status = init_globals();
3372  if (status != JNI_OK) {
3373    delete main_thread;
3374    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3375    return status;
3376  }
3377
3378  // Should be done after the heap is fully created
3379  main_thread->cache_global_variables();
3380
3381  HandleMark hm;
3382
3383  { MutexLocker mu(Threads_lock);
3384    Threads::add(main_thread);
3385  }
3386
3387  // Any JVMTI raw monitors entered in onload will transition into
3388  // real raw monitor. VM is setup enough here for raw monitor enter.
3389  JvmtiExport::transition_pending_onload_raw_monitors();
3390
3391  // Create the VMThread
3392  { TraceTime timer("Start VMThread", TraceStartupTime);
3393    VMThread::create();
3394    Thread* vmthread = VMThread::vm_thread();
3395
3396    if (!os::create_thread(vmthread, os::vm_thread)) {
3397      vm_exit_during_initialization("Cannot create VM thread. "
3398                                    "Out of system resources.");
3399    }
3400
3401    // Wait for the VM thread to become ready, and VMThread::run to initialize
3402    // Monitors can have spurious returns, must always check another state flag
3403    {
3404      MutexLocker ml(Notify_lock);
3405      os::start_thread(vmthread);
3406      while (vmthread->active_handles() == NULL) {
3407        Notify_lock->wait();
3408      }
3409    }
3410  }
3411
3412  assert(Universe::is_fully_initialized(), "not initialized");
3413  if (VerifyDuringStartup) {
3414    // Make sure we're starting with a clean slate.
3415    VM_Verify verify_op;
3416    VMThread::execute(&verify_op);
3417  }
3418
3419  Thread* THREAD = Thread::current();
3420
3421  // At this point, the Universe is initialized, but we have not executed
3422  // any byte code.  Now is a good time (the only time) to dump out the
3423  // internal state of the JVM for sharing.
3424  if (DumpSharedSpaces) {
3425    MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3426    ShouldNotReachHere();
3427  }
3428
3429  // Always call even when there are not JVMTI environments yet, since environments
3430  // may be attached late and JVMTI must track phases of VM execution
3431  JvmtiExport::enter_start_phase();
3432
3433  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3434  JvmtiExport::post_vm_start();
3435
3436  initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3437
3438  // We need this for ClassDataSharing - the initial vm.info property is set
3439  // with the default value of CDS "sharing" which may be reset through
3440  // command line options.
3441  reset_vm_info_property(CHECK_JNI_ERR);
3442
3443  quicken_jni_functions();
3444
3445  // Must be run after init_ft which initializes ft_enabled
3446  if (TRACE_INITIALIZE() != JNI_OK) {
3447    vm_exit_during_initialization("Failed to initialize tracing backend");
3448  }
3449
3450  // Set flag that basic initialization has completed. Used by exceptions and various
3451  // debug stuff, that does not work until all basic classes have been initialized.
3452  set_init_completed();
3453
3454  Metaspace::post_initialize();
3455
3456  HOTSPOT_VM_INIT_END();
3457
3458  // record VM initialization completion time
3459#if INCLUDE_MANAGEMENT
3460  Management::record_vm_init_completed();
3461#endif // INCLUDE_MANAGEMENT
3462
3463  // Compute system loader. Note that this has to occur after set_init_completed, since
3464  // valid exceptions may be thrown in the process.
3465  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3466  // set_init_completed has just been called, causing exceptions not to be shortcut
3467  // anymore. We call vm_exit_during_initialization directly instead.
3468  SystemDictionary::compute_java_system_loader(CHECK_JNI_ERR);
3469
3470#if INCLUDE_ALL_GCS
3471  // Support for ConcurrentMarkSweep. This should be cleaned up
3472  // and better encapsulated. The ugly nested if test would go away
3473  // once things are properly refactored. XXX YSR
3474  if (UseConcMarkSweepGC || UseG1GC) {
3475    if (UseConcMarkSweepGC) {
3476      ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3477    } else {
3478      ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3479    }
3480  }
3481#endif // INCLUDE_ALL_GCS
3482
3483  // Always call even when there are not JVMTI environments yet, since environments
3484  // may be attached late and JVMTI must track phases of VM execution
3485  JvmtiExport::enter_live_phase();
3486
3487  // Signal Dispatcher needs to be started before VMInit event is posted
3488  os::signal_init();
3489
3490  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3491  if (!DisableAttachMechanism) {
3492    AttachListener::vm_start();
3493    if (StartAttachListener || AttachListener::init_at_startup()) {
3494      AttachListener::init();
3495    }
3496  }
3497
3498  // Launch -Xrun agents
3499  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3500  // back-end can launch with -Xdebug -Xrunjdwp.
3501  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3502    create_vm_init_libraries();
3503  }
3504
3505  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3506  JvmtiExport::post_vm_initialized();
3507
3508  if (TRACE_START() != JNI_OK) {
3509    vm_exit_during_initialization("Failed to start tracing backend.");
3510  }
3511
3512  if (CleanChunkPoolAsync) {
3513    Chunk::start_chunk_pool_cleaner_task();
3514  }
3515
3516  // initialize compiler(s)
3517#if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3518  CompileBroker::compilation_init();
3519#endif
3520
3521  // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3522  // It is done after compilers are initialized, because otherwise compilations of
3523  // signature polymorphic MH intrinsics can be missed
3524  // (see SystemDictionary::find_method_handle_intrinsic).
3525  initialize_jsr292_core_classes(CHECK_JNI_ERR);
3526
3527#if INCLUDE_MANAGEMENT
3528  Management::initialize(THREAD);
3529
3530  if (HAS_PENDING_EXCEPTION) {
3531    // management agent fails to start possibly due to
3532    // configuration problem and is responsible for printing
3533    // stack trace if appropriate. Simply exit VM.
3534    vm_exit(1);
3535  }
3536#endif // INCLUDE_MANAGEMENT
3537
3538  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3539  if (MemProfiling)                   MemProfiler::engage();
3540  StatSampler::engage();
3541  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3542
3543  BiasedLocking::init();
3544
3545#if INCLUDE_RTM_OPT
3546  RTMLockingCounters::init();
3547#endif
3548
3549  if (JDK_Version::current().post_vm_init_hook_enabled()) {
3550    call_postVMInitHook(THREAD);
3551    // The Java side of PostVMInitHook.run must deal with all
3552    // exceptions and provide means of diagnosis.
3553    if (HAS_PENDING_EXCEPTION) {
3554      CLEAR_PENDING_EXCEPTION;
3555    }
3556  }
3557
3558  {
3559    MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3560    // Make sure the watcher thread can be started by WatcherThread::start()
3561    // or by dynamic enrollment.
3562    WatcherThread::make_startable();
3563    // Start up the WatcherThread if there are any periodic tasks
3564    // NOTE:  All PeriodicTasks should be registered by now. If they
3565    //   aren't, late joiners might appear to start slowly (we might
3566    //   take a while to process their first tick).
3567    if (PeriodicTask::num_tasks() > 0) {
3568      WatcherThread::start();
3569    }
3570  }
3571
3572  create_vm_timer.end();
3573#ifdef ASSERT
3574  _vm_complete = true;
3575#endif
3576  return JNI_OK;
3577}
3578
3579// type for the Agent_OnLoad and JVM_OnLoad entry points
3580extern "C" {
3581  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3582}
3583// Find a command line agent library and return its entry point for
3584//         -agentlib:  -agentpath:   -Xrun
3585// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3586static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3587                                    const char *on_load_symbols[],
3588                                    size_t num_symbol_entries) {
3589  OnLoadEntry_t on_load_entry = NULL;
3590  void *library = NULL;
3591
3592  if (!agent->valid()) {
3593    char buffer[JVM_MAXPATHLEN];
3594    char ebuf[1024] = "";
3595    const char *name = agent->name();
3596    const char *msg = "Could not find agent library ";
3597
3598    // First check to see if agent is statically linked into executable
3599    if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3600      library = agent->os_lib();
3601    } else if (agent->is_absolute_path()) {
3602      library = os::dll_load(name, ebuf, sizeof ebuf);
3603      if (library == NULL) {
3604        const char *sub_msg = " in absolute path, with error: ";
3605        size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3606        char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3607        jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3608        // If we can't find the agent, exit.
3609        vm_exit_during_initialization(buf, NULL);
3610        FREE_C_HEAP_ARRAY(char, buf);
3611      }
3612    } else {
3613      // Try to load the agent from the standard dll directory
3614      if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3615                             name)) {
3616        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3617      }
3618      if (library == NULL) { // Try the local directory
3619        char ns[1] = {0};
3620        if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3621          library = os::dll_load(buffer, ebuf, sizeof ebuf);
3622        }
3623        if (library == NULL) {
3624          const char *sub_msg = " on the library path, with error: ";
3625          size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3626          char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3627          jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3628          // If we can't find the agent, exit.
3629          vm_exit_during_initialization(buf, NULL);
3630          FREE_C_HEAP_ARRAY(char, buf);
3631        }
3632      }
3633    }
3634    agent->set_os_lib(library);
3635    agent->set_valid();
3636  }
3637
3638  // Find the OnLoad function.
3639  on_load_entry =
3640    CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3641                                                          false,
3642                                                          on_load_symbols,
3643                                                          num_symbol_entries));
3644  return on_load_entry;
3645}
3646
3647// Find the JVM_OnLoad entry point
3648static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3649  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3650  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3651}
3652
3653// Find the Agent_OnLoad entry point
3654static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3655  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3656  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3657}
3658
3659// For backwards compatibility with -Xrun
3660// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3661// treated like -agentpath:
3662// Must be called before agent libraries are created
3663void Threads::convert_vm_init_libraries_to_agents() {
3664  AgentLibrary* agent;
3665  AgentLibrary* next;
3666
3667  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3668    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3669    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3670
3671    // If there is an JVM_OnLoad function it will get called later,
3672    // otherwise see if there is an Agent_OnLoad
3673    if (on_load_entry == NULL) {
3674      on_load_entry = lookup_agent_on_load(agent);
3675      if (on_load_entry != NULL) {
3676        // switch it to the agent list -- so that Agent_OnLoad will be called,
3677        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3678        Arguments::convert_library_to_agent(agent);
3679      } else {
3680        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3681      }
3682    }
3683  }
3684}
3685
3686// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3687// Invokes Agent_OnLoad
3688// Called very early -- before JavaThreads exist
3689void Threads::create_vm_init_agents() {
3690  extern struct JavaVM_ main_vm;
3691  AgentLibrary* agent;
3692
3693  JvmtiExport::enter_onload_phase();
3694
3695  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3696    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3697
3698    if (on_load_entry != NULL) {
3699      // Invoke the Agent_OnLoad function
3700      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3701      if (err != JNI_OK) {
3702        vm_exit_during_initialization("agent library failed to init", agent->name());
3703      }
3704    } else {
3705      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3706    }
3707  }
3708  JvmtiExport::enter_primordial_phase();
3709}
3710
3711extern "C" {
3712  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3713}
3714
3715void Threads::shutdown_vm_agents() {
3716  // Send any Agent_OnUnload notifications
3717  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3718  size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3719  extern struct JavaVM_ main_vm;
3720  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3721
3722    // Find the Agent_OnUnload function.
3723    Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3724                                                   os::find_agent_function(agent,
3725                                                   false,
3726                                                   on_unload_symbols,
3727                                                   num_symbol_entries));
3728
3729    // Invoke the Agent_OnUnload function
3730    if (unload_entry != NULL) {
3731      JavaThread* thread = JavaThread::current();
3732      ThreadToNativeFromVM ttn(thread);
3733      HandleMark hm(thread);
3734      (*unload_entry)(&main_vm);
3735    }
3736  }
3737}
3738
3739// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3740// Invokes JVM_OnLoad
3741void Threads::create_vm_init_libraries() {
3742  extern struct JavaVM_ main_vm;
3743  AgentLibrary* agent;
3744
3745  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3746    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3747
3748    if (on_load_entry != NULL) {
3749      // Invoke the JVM_OnLoad function
3750      JavaThread* thread = JavaThread::current();
3751      ThreadToNativeFromVM ttn(thread);
3752      HandleMark hm(thread);
3753      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3754      if (err != JNI_OK) {
3755        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3756      }
3757    } else {
3758      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3759    }
3760  }
3761}
3762
3763JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3764  assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3765
3766  JavaThread* java_thread = NULL;
3767  // Sequential search for now.  Need to do better optimization later.
3768  for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3769    oop tobj = thread->threadObj();
3770    if (!thread->is_exiting() &&
3771        tobj != NULL &&
3772        java_tid == java_lang_Thread::thread_id(tobj)) {
3773      java_thread = thread;
3774      break;
3775    }
3776  }
3777  return java_thread;
3778}
3779
3780
3781// Last thread running calls java.lang.Shutdown.shutdown()
3782void JavaThread::invoke_shutdown_hooks() {
3783  HandleMark hm(this);
3784
3785  // We could get here with a pending exception, if so clear it now.
3786  if (this->has_pending_exception()) {
3787    this->clear_pending_exception();
3788  }
3789
3790  EXCEPTION_MARK;
3791  Klass* k =
3792    SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3793                                      THREAD);
3794  if (k != NULL) {
3795    // SystemDictionary::resolve_or_null will return null if there was
3796    // an exception.  If we cannot load the Shutdown class, just don't
3797    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3798    // and finalizers (if runFinalizersOnExit is set) won't be run.
3799    // Note that if a shutdown hook was registered or runFinalizersOnExit
3800    // was called, the Shutdown class would have already been loaded
3801    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3802    instanceKlassHandle shutdown_klass (THREAD, k);
3803    JavaValue result(T_VOID);
3804    JavaCalls::call_static(&result,
3805                           shutdown_klass,
3806                           vmSymbols::shutdown_method_name(),
3807                           vmSymbols::void_method_signature(),
3808                           THREAD);
3809  }
3810  CLEAR_PENDING_EXCEPTION;
3811}
3812
3813// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3814// the program falls off the end of main(). Another VM exit path is through
3815// vm_exit() when the program calls System.exit() to return a value or when
3816// there is a serious error in VM. The two shutdown paths are not exactly
3817// the same, but they share Shutdown.shutdown() at Java level and before_exit()
3818// and VM_Exit op at VM level.
3819//
3820// Shutdown sequence:
3821//   + Shutdown native memory tracking if it is on
3822//   + Wait until we are the last non-daemon thread to execute
3823//     <-- every thing is still working at this moment -->
3824//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3825//        shutdown hooks, run finalizers if finalization-on-exit
3826//   + Call before_exit(), prepare for VM exit
3827//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3828//        currently the only user of this mechanism is File.deleteOnExit())
3829//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3830//        post thread end and vm death events to JVMTI,
3831//        stop signal thread
3832//   + Call JavaThread::exit(), it will:
3833//      > release JNI handle blocks, remove stack guard pages
3834//      > remove this thread from Threads list
3835//     <-- no more Java code from this thread after this point -->
3836//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3837//     the compiler threads at safepoint
3838//     <-- do not use anything that could get blocked by Safepoint -->
3839//   + Disable tracing at JNI/JVM barriers
3840//   + Set _vm_exited flag for threads that are still running native code
3841//   + Delete this thread
3842//   + Call exit_globals()
3843//      > deletes tty
3844//      > deletes PerfMemory resources
3845//   + Return to caller
3846
3847bool Threads::destroy_vm() {
3848  JavaThread* thread = JavaThread::current();
3849
3850#ifdef ASSERT
3851  _vm_complete = false;
3852#endif
3853  // Wait until we are the last non-daemon thread to execute
3854  { MutexLocker nu(Threads_lock);
3855    while (Threads::number_of_non_daemon_threads() > 1)
3856      // This wait should make safepoint checks, wait without a timeout,
3857      // and wait as a suspend-equivalent condition.
3858      //
3859      // Note: If the FlatProfiler is running and this thread is waiting
3860      // for another non-daemon thread to finish, then the FlatProfiler
3861      // is waiting for the external suspend request on this thread to
3862      // complete. wait_for_ext_suspend_completion() will eventually
3863      // timeout, but that takes time. Making this wait a suspend-
3864      // equivalent condition solves that timeout problem.
3865      //
3866      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3867                         Mutex::_as_suspend_equivalent_flag);
3868  }
3869
3870  // Hang forever on exit if we are reporting an error.
3871  if (ShowMessageBoxOnError && is_error_reported()) {
3872    os::infinite_sleep();
3873  }
3874  os::wait_for_keypress_at_exit();
3875
3876  // run Java level shutdown hooks
3877  thread->invoke_shutdown_hooks();
3878
3879  before_exit(thread);
3880
3881  thread->exit(true);
3882
3883  // Stop VM thread.
3884  {
3885    // 4945125 The vm thread comes to a safepoint during exit.
3886    // GC vm_operations can get caught at the safepoint, and the
3887    // heap is unparseable if they are caught. Grab the Heap_lock
3888    // to prevent this. The GC vm_operations will not be able to
3889    // queue until after the vm thread is dead. After this point,
3890    // we'll never emerge out of the safepoint before the VM exits.
3891
3892    MutexLocker ml(Heap_lock);
3893
3894    VMThread::wait_for_vm_thread_exit();
3895    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3896    VMThread::destroy();
3897  }
3898
3899  // clean up ideal graph printers
3900#if defined(COMPILER2) && !defined(PRODUCT)
3901  IdealGraphPrinter::clean_up();
3902#endif
3903
3904  // Now, all Java threads are gone except daemon threads. Daemon threads
3905  // running Java code or in VM are stopped by the Safepoint. However,
3906  // daemon threads executing native code are still running.  But they
3907  // will be stopped at native=>Java/VM barriers. Note that we can't
3908  // simply kill or suspend them, as it is inherently deadlock-prone.
3909
3910#ifndef PRODUCT
3911  // disable function tracing at JNI/JVM barriers
3912  TraceJNICalls = false;
3913  TraceJVMCalls = false;
3914  TraceRuntimeCalls = false;
3915#endif
3916
3917  VM_Exit::set_vm_exited();
3918
3919  notify_vm_shutdown();
3920
3921  delete thread;
3922
3923  // exit_globals() will delete tty
3924  exit_globals();
3925
3926  return true;
3927}
3928
3929
3930jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3931  if (version == JNI_VERSION_1_1) return JNI_TRUE;
3932  return is_supported_jni_version(version);
3933}
3934
3935
3936jboolean Threads::is_supported_jni_version(jint version) {
3937  if (version == JNI_VERSION_1_2) return JNI_TRUE;
3938  if (version == JNI_VERSION_1_4) return JNI_TRUE;
3939  if (version == JNI_VERSION_1_6) return JNI_TRUE;
3940  if (version == JNI_VERSION_1_8) return JNI_TRUE;
3941  return JNI_FALSE;
3942}
3943
3944
3945void Threads::add(JavaThread* p, bool force_daemon) {
3946  // The threads lock must be owned at this point
3947  assert_locked_or_safepoint(Threads_lock);
3948
3949  // See the comment for this method in thread.hpp for its purpose and
3950  // why it is called here.
3951  p->initialize_queues();
3952  p->set_next(_thread_list);
3953  _thread_list = p;
3954  _number_of_threads++;
3955  oop threadObj = p->threadObj();
3956  bool daemon = true;
3957  // Bootstrapping problem: threadObj can be null for initial
3958  // JavaThread (or for threads attached via JNI)
3959  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3960    _number_of_non_daemon_threads++;
3961    daemon = false;
3962  }
3963
3964  ThreadService::add_thread(p, daemon);
3965
3966  // Possible GC point.
3967  Events::log(p, "Thread added: " INTPTR_FORMAT, p);
3968}
3969
3970void Threads::remove(JavaThread* p) {
3971  // Extra scope needed for Thread_lock, so we can check
3972  // that we do not remove thread without safepoint code notice
3973  { MutexLocker ml(Threads_lock);
3974
3975    assert(includes(p), "p must be present");
3976
3977    JavaThread* current = _thread_list;
3978    JavaThread* prev    = NULL;
3979
3980    while (current != p) {
3981      prev    = current;
3982      current = current->next();
3983    }
3984
3985    if (prev) {
3986      prev->set_next(current->next());
3987    } else {
3988      _thread_list = p->next();
3989    }
3990    _number_of_threads--;
3991    oop threadObj = p->threadObj();
3992    bool daemon = true;
3993    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
3994      _number_of_non_daemon_threads--;
3995      daemon = false;
3996
3997      // Only one thread left, do a notify on the Threads_lock so a thread waiting
3998      // on destroy_vm will wake up.
3999      if (number_of_non_daemon_threads() == 1) {
4000        Threads_lock->notify_all();
4001      }
4002    }
4003    ThreadService::remove_thread(p, daemon);
4004
4005    // Make sure that safepoint code disregard this thread. This is needed since
4006    // the thread might mess around with locks after this point. This can cause it
4007    // to do callbacks into the safepoint code. However, the safepoint code is not aware
4008    // of this thread since it is removed from the queue.
4009    p->set_terminated_value();
4010  } // unlock Threads_lock
4011
4012  // Since Events::log uses a lock, we grab it outside the Threads_lock
4013  Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4014}
4015
4016// Threads_lock must be held when this is called (or must be called during a safepoint)
4017bool Threads::includes(JavaThread* p) {
4018  assert(Threads_lock->is_locked(), "sanity check");
4019  ALL_JAVA_THREADS(q) {
4020    if (q == p) {
4021      return true;
4022    }
4023  }
4024  return false;
4025}
4026
4027// Operations on the Threads list for GC.  These are not explicitly locked,
4028// but the garbage collector must provide a safe context for them to run.
4029// In particular, these things should never be called when the Threads_lock
4030// is held by some other thread. (Note: the Safepoint abstraction also
4031// uses the Threads_lock to guarantee this property. It also makes sure that
4032// all threads gets blocked when exiting or starting).
4033
4034void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4035  ALL_JAVA_THREADS(p) {
4036    p->oops_do(f, cld_f, cf);
4037  }
4038  VMThread::vm_thread()->oops_do(f, cld_f, cf);
4039}
4040
4041void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4042  // Introduce a mechanism allowing parallel threads to claim threads as
4043  // root groups.  Overhead should be small enough to use all the time,
4044  // even in sequential code.
4045  SharedHeap* sh = SharedHeap::heap();
4046  // Cannot yet substitute active_workers for n_par_threads
4047  // because of G1CollectedHeap::verify() use of
4048  // SharedHeap::process_roots().  n_par_threads == 0 will
4049  // turn off parallelism in process_roots while active_workers
4050  // is being used for parallelism elsewhere.
4051  bool is_par = sh->n_par_threads() > 0;
4052  assert(!is_par ||
4053         (SharedHeap::heap()->n_par_threads() ==
4054         SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4055  int cp = SharedHeap::heap()->strong_roots_parity();
4056  ALL_JAVA_THREADS(p) {
4057    if (p->claim_oops_do(is_par, cp)) {
4058      p->oops_do(f, cld_f, cf);
4059    }
4060  }
4061  VMThread* vmt = VMThread::vm_thread();
4062  if (vmt->claim_oops_do(is_par, cp)) {
4063    vmt->oops_do(f, cld_f, cf);
4064  }
4065}
4066
4067#if INCLUDE_ALL_GCS
4068// Used by ParallelScavenge
4069void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4070  ALL_JAVA_THREADS(p) {
4071    q->enqueue(new ThreadRootsTask(p));
4072  }
4073  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4074}
4075
4076// Used by Parallel Old
4077void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4078  ALL_JAVA_THREADS(p) {
4079    q->enqueue(new ThreadRootsMarkingTask(p));
4080  }
4081  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4082}
4083#endif // INCLUDE_ALL_GCS
4084
4085void Threads::nmethods_do(CodeBlobClosure* cf) {
4086  ALL_JAVA_THREADS(p) {
4087    p->nmethods_do(cf);
4088  }
4089  VMThread::vm_thread()->nmethods_do(cf);
4090}
4091
4092void Threads::metadata_do(void f(Metadata*)) {
4093  ALL_JAVA_THREADS(p) {
4094    p->metadata_do(f);
4095  }
4096}
4097
4098void Threads::deoptimized_wrt_marked_nmethods() {
4099  ALL_JAVA_THREADS(p) {
4100    p->deoptimized_wrt_marked_nmethods();
4101  }
4102}
4103
4104
4105// Get count Java threads that are waiting to enter the specified monitor.
4106GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4107                                                         address monitor,
4108                                                         bool doLock) {
4109  assert(doLock || SafepointSynchronize::is_at_safepoint(),
4110         "must grab Threads_lock or be at safepoint");
4111  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4112
4113  int i = 0;
4114  {
4115    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4116    ALL_JAVA_THREADS(p) {
4117      if (p->is_Compiler_thread()) continue;
4118
4119      address pending = (address)p->current_pending_monitor();
4120      if (pending == monitor) {             // found a match
4121        if (i < count) result->append(p);   // save the first count matches
4122        i++;
4123      }
4124    }
4125  }
4126  return result;
4127}
4128
4129
4130JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4131                                                      bool doLock) {
4132  assert(doLock ||
4133         Threads_lock->owned_by_self() ||
4134         SafepointSynchronize::is_at_safepoint(),
4135         "must grab Threads_lock or be at safepoint");
4136
4137  // NULL owner means not locked so we can skip the search
4138  if (owner == NULL) return NULL;
4139
4140  {
4141    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4142    ALL_JAVA_THREADS(p) {
4143      // first, see if owner is the address of a Java thread
4144      if (owner == (address)p) return p;
4145    }
4146  }
4147  // Cannot assert on lack of success here since this function may be
4148  // used by code that is trying to report useful problem information
4149  // like deadlock detection.
4150  if (UseHeavyMonitors) return NULL;
4151
4152  // If we didn't find a matching Java thread and we didn't force use of
4153  // heavyweight monitors, then the owner is the stack address of the
4154  // Lock Word in the owning Java thread's stack.
4155  //
4156  JavaThread* the_owner = NULL;
4157  {
4158    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4159    ALL_JAVA_THREADS(q) {
4160      if (q->is_lock_owned(owner)) {
4161        the_owner = q;
4162        break;
4163      }
4164    }
4165  }
4166  // cannot assert on lack of success here; see above comment
4167  return the_owner;
4168}
4169
4170// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4171void Threads::print_on(outputStream* st, bool print_stacks,
4172                       bool internal_format, bool print_concurrent_locks) {
4173  char buf[32];
4174  st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
4175
4176  st->print_cr("Full thread dump %s (%s %s):",
4177               Abstract_VM_Version::vm_name(),
4178               Abstract_VM_Version::vm_release(),
4179               Abstract_VM_Version::vm_info_string());
4180  st->cr();
4181
4182#if INCLUDE_ALL_GCS
4183  // Dump concurrent locks
4184  ConcurrentLocksDump concurrent_locks;
4185  if (print_concurrent_locks) {
4186    concurrent_locks.dump_at_safepoint();
4187  }
4188#endif // INCLUDE_ALL_GCS
4189
4190  ALL_JAVA_THREADS(p) {
4191    ResourceMark rm;
4192    p->print_on(st);
4193    if (print_stacks) {
4194      if (internal_format) {
4195        p->trace_stack();
4196      } else {
4197        p->print_stack_on(st);
4198      }
4199    }
4200    st->cr();
4201#if INCLUDE_ALL_GCS
4202    if (print_concurrent_locks) {
4203      concurrent_locks.print_locks_on(p, st);
4204    }
4205#endif // INCLUDE_ALL_GCS
4206  }
4207
4208  VMThread::vm_thread()->print_on(st);
4209  st->cr();
4210  Universe::heap()->print_gc_threads_on(st);
4211  WatcherThread* wt = WatcherThread::watcher_thread();
4212  if (wt != NULL) {
4213    wt->print_on(st);
4214    st->cr();
4215  }
4216  CompileBroker::print_compiler_threads_on(st);
4217  st->flush();
4218}
4219
4220// Threads::print_on_error() is called by fatal error handler. It's possible
4221// that VM is not at safepoint and/or current thread is inside signal handler.
4222// Don't print stack trace, as the stack may not be walkable. Don't allocate
4223// memory (even in resource area), it might deadlock the error handler.
4224void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4225                             int buflen) {
4226  bool found_current = false;
4227  st->print_cr("Java Threads: ( => current thread )");
4228  ALL_JAVA_THREADS(thread) {
4229    bool is_current = (current == thread);
4230    found_current = found_current || is_current;
4231
4232    st->print("%s", is_current ? "=>" : "  ");
4233
4234    st->print(PTR_FORMAT, thread);
4235    st->print(" ");
4236    thread->print_on_error(st, buf, buflen);
4237    st->cr();
4238  }
4239  st->cr();
4240
4241  st->print_cr("Other Threads:");
4242  if (VMThread::vm_thread()) {
4243    bool is_current = (current == VMThread::vm_thread());
4244    found_current = found_current || is_current;
4245    st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4246
4247    st->print(PTR_FORMAT, VMThread::vm_thread());
4248    st->print(" ");
4249    VMThread::vm_thread()->print_on_error(st, buf, buflen);
4250    st->cr();
4251  }
4252  WatcherThread* wt = WatcherThread::watcher_thread();
4253  if (wt != NULL) {
4254    bool is_current = (current == wt);
4255    found_current = found_current || is_current;
4256    st->print("%s", is_current ? "=>" : "  ");
4257
4258    st->print(PTR_FORMAT, wt);
4259    st->print(" ");
4260    wt->print_on_error(st, buf, buflen);
4261    st->cr();
4262  }
4263  if (!found_current) {
4264    st->cr();
4265    st->print("=>" PTR_FORMAT " (exited) ", current);
4266    current->print_on_error(st, buf, buflen);
4267    st->cr();
4268  }
4269}
4270
4271// Internal SpinLock and Mutex
4272// Based on ParkEvent
4273
4274// Ad-hoc mutual exclusion primitives: SpinLock and Mux
4275//
4276// We employ SpinLocks _only for low-contention, fixed-length
4277// short-duration critical sections where we're concerned
4278// about native mutex_t or HotSpot Mutex:: latency.
4279// The mux construct provides a spin-then-block mutual exclusion
4280// mechanism.
4281//
4282// Testing has shown that contention on the ListLock guarding gFreeList
4283// is common.  If we implement ListLock as a simple SpinLock it's common
4284// for the JVM to devolve to yielding with little progress.  This is true
4285// despite the fact that the critical sections protected by ListLock are
4286// extremely short.
4287//
4288// TODO-FIXME: ListLock should be of type SpinLock.
4289// We should make this a 1st-class type, integrated into the lock
4290// hierarchy as leaf-locks.  Critically, the SpinLock structure
4291// should have sufficient padding to avoid false-sharing and excessive
4292// cache-coherency traffic.
4293
4294
4295typedef volatile int SpinLockT;
4296
4297void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4298  if (Atomic::cmpxchg (1, adr, 0) == 0) {
4299    return;   // normal fast-path return
4300  }
4301
4302  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4303  TEVENT(SpinAcquire - ctx);
4304  int ctr = 0;
4305  int Yields = 0;
4306  for (;;) {
4307    while (*adr != 0) {
4308      ++ctr;
4309      if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4310        if (Yields > 5) {
4311          os::naked_short_sleep(1);
4312        } else {
4313          os::naked_yield();
4314          ++Yields;
4315        }
4316      } else {
4317        SpinPause();
4318      }
4319    }
4320    if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4321  }
4322}
4323
4324void Thread::SpinRelease(volatile int * adr) {
4325  assert(*adr != 0, "invariant");
4326  OrderAccess::fence();      // guarantee at least release consistency.
4327  // Roach-motel semantics.
4328  // It's safe if subsequent LDs and STs float "up" into the critical section,
4329  // but prior LDs and STs within the critical section can't be allowed
4330  // to reorder or float past the ST that releases the lock.
4331  // Loads and stores in the critical section - which appear in program
4332  // order before the store that releases the lock - must also appear
4333  // before the store that releases the lock in memory visibility order.
4334  // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4335  // the ST of 0 into the lock-word which releases the lock, so fence
4336  // more than covers this on all platforms.
4337  *adr = 0;
4338}
4339
4340// muxAcquire and muxRelease:
4341//
4342// *  muxAcquire and muxRelease support a single-word lock-word construct.
4343//    The LSB of the word is set IFF the lock is held.
4344//    The remainder of the word points to the head of a singly-linked list
4345//    of threads blocked on the lock.
4346//
4347// *  The current implementation of muxAcquire-muxRelease uses its own
4348//    dedicated Thread._MuxEvent instance.  If we're interested in
4349//    minimizing the peak number of extant ParkEvent instances then
4350//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4351//    as certain invariants were satisfied.  Specifically, care would need
4352//    to be taken with regards to consuming unpark() "permits".
4353//    A safe rule of thumb is that a thread would never call muxAcquire()
4354//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4355//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4356//    consume an unpark() permit intended for monitorenter, for instance.
4357//    One way around this would be to widen the restricted-range semaphore
4358//    implemented in park().  Another alternative would be to provide
4359//    multiple instances of the PlatformEvent() for each thread.  One
4360//    instance would be dedicated to muxAcquire-muxRelease, for instance.
4361//
4362// *  Usage:
4363//    -- Only as leaf locks
4364//    -- for short-term locking only as muxAcquire does not perform
4365//       thread state transitions.
4366//
4367// Alternatives:
4368// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4369//    but with parking or spin-then-park instead of pure spinning.
4370// *  Use Taura-Oyama-Yonenzawa locks.
4371// *  It's possible to construct a 1-0 lock if we encode the lockword as
4372//    (List,LockByte).  Acquire will CAS the full lockword while Release
4373//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4374//    acquiring threads use timers (ParkTimed) to detect and recover from
4375//    the stranding window.  Thread/Node structures must be aligned on 256-byte
4376//    boundaries by using placement-new.
4377// *  Augment MCS with advisory back-link fields maintained with CAS().
4378//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4379//    The validity of the backlinks must be ratified before we trust the value.
4380//    If the backlinks are invalid the exiting thread must back-track through the
4381//    the forward links, which are always trustworthy.
4382// *  Add a successor indication.  The LockWord is currently encoded as
4383//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4384//    to provide the usual futile-wakeup optimization.
4385//    See RTStt for details.
4386// *  Consider schedctl.sc_nopreempt to cover the critical section.
4387//
4388
4389
4390typedef volatile intptr_t MutexT;      // Mux Lock-word
4391enum MuxBits { LOCKBIT = 1 };
4392
4393void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4394  intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4395  if (w == 0) return;
4396  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4397    return;
4398  }
4399
4400  TEVENT(muxAcquire - Contention);
4401  ParkEvent * const Self = Thread::current()->_MuxEvent;
4402  assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4403  for (;;) {
4404    int its = (os::is_MP() ? 100 : 0) + 1;
4405
4406    // Optional spin phase: spin-then-park strategy
4407    while (--its >= 0) {
4408      w = *Lock;
4409      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4410        return;
4411      }
4412    }
4413
4414    Self->reset();
4415    Self->OnList = intptr_t(Lock);
4416    // The following fence() isn't _strictly necessary as the subsequent
4417    // CAS() both serializes execution and ratifies the fetched *Lock value.
4418    OrderAccess::fence();
4419    for (;;) {
4420      w = *Lock;
4421      if ((w & LOCKBIT) == 0) {
4422        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4423          Self->OnList = 0;   // hygiene - allows stronger asserts
4424          return;
4425        }
4426        continue;      // Interference -- *Lock changed -- Just retry
4427      }
4428      assert(w & LOCKBIT, "invariant");
4429      Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4430      if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4431    }
4432
4433    while (Self->OnList != 0) {
4434      Self->park();
4435    }
4436  }
4437}
4438
4439void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4440  intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4441  if (w == 0) return;
4442  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4443    return;
4444  }
4445
4446  TEVENT(muxAcquire - Contention);
4447  ParkEvent * ReleaseAfter = NULL;
4448  if (ev == NULL) {
4449    ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4450  }
4451  assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4452  for (;;) {
4453    guarantee(ev->OnList == 0, "invariant");
4454    int its = (os::is_MP() ? 100 : 0) + 1;
4455
4456    // Optional spin phase: spin-then-park strategy
4457    while (--its >= 0) {
4458      w = *Lock;
4459      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4460        if (ReleaseAfter != NULL) {
4461          ParkEvent::Release(ReleaseAfter);
4462        }
4463        return;
4464      }
4465    }
4466
4467    ev->reset();
4468    ev->OnList = intptr_t(Lock);
4469    // The following fence() isn't _strictly necessary as the subsequent
4470    // CAS() both serializes execution and ratifies the fetched *Lock value.
4471    OrderAccess::fence();
4472    for (;;) {
4473      w = *Lock;
4474      if ((w & LOCKBIT) == 0) {
4475        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4476          ev->OnList = 0;
4477          // We call ::Release while holding the outer lock, thus
4478          // artificially lengthening the critical section.
4479          // Consider deferring the ::Release() until the subsequent unlock(),
4480          // after we've dropped the outer lock.
4481          if (ReleaseAfter != NULL) {
4482            ParkEvent::Release(ReleaseAfter);
4483          }
4484          return;
4485        }
4486        continue;      // Interference -- *Lock changed -- Just retry
4487      }
4488      assert(w & LOCKBIT, "invariant");
4489      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4490      if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4491    }
4492
4493    while (ev->OnList != 0) {
4494      ev->park();
4495    }
4496  }
4497}
4498
4499// Release() must extract a successor from the list and then wake that thread.
4500// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4501// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4502// Release() would :
4503// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4504// (B) Extract a successor from the private list "in-hand"
4505// (C) attempt to CAS() the residual back into *Lock over null.
4506//     If there were any newly arrived threads and the CAS() would fail.
4507//     In that case Release() would detach the RATs, re-merge the list in-hand
4508//     with the RATs and repeat as needed.  Alternately, Release() might
4509//     detach and extract a successor, but then pass the residual list to the wakee.
4510//     The wakee would be responsible for reattaching and remerging before it
4511//     competed for the lock.
4512//
4513// Both "pop" and DMR are immune from ABA corruption -- there can be
4514// multiple concurrent pushers, but only one popper or detacher.
4515// This implementation pops from the head of the list.  This is unfair,
4516// but tends to provide excellent throughput as hot threads remain hot.
4517// (We wake recently run threads first).
4518//
4519// All paths through muxRelease() will execute a CAS.
4520// Release consistency -- We depend on the CAS in muxRelease() to provide full
4521// bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4522// executed within the critical section are complete and globally visible before the
4523// store (CAS) to the lock-word that releases the lock becomes globally visible.
4524void Thread::muxRelease(volatile intptr_t * Lock)  {
4525  for (;;) {
4526    const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4527    assert(w & LOCKBIT, "invariant");
4528    if (w == LOCKBIT) return;
4529    ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4530    assert(List != NULL, "invariant");
4531    assert(List->OnList == intptr_t(Lock), "invariant");
4532    ParkEvent * const nxt = List->ListNext;
4533    guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4534
4535    // The following CAS() releases the lock and pops the head element.
4536    // The CAS() also ratifies the previously fetched lock-word value.
4537    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4538      continue;
4539    }
4540    List->OnList = 0;
4541    OrderAccess::fence();
4542    List->unpark();
4543    return;
4544  }
4545}
4546
4547
4548void Threads::verify() {
4549  ALL_JAVA_THREADS(p) {
4550    p->verify();
4551  }
4552  VMThread* thread = VMThread::vm_thread();
4553  if (thread != NULL) thread->verify();
4554}
4555