thread.cpp revision 7333:351115afe32b
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/codeCache.hpp"
31#include "code/scopeDesc.hpp"
32#include "compiler/compileBroker.hpp"
33#include "interpreter/interpreter.hpp"
34#include "interpreter/linkResolver.hpp"
35#include "interpreter/oopMapCache.hpp"
36#include "jvmtifiles/jvmtiEnv.hpp"
37#include "memory/gcLocker.inline.hpp"
38#include "memory/metaspaceShared.hpp"
39#include "memory/oopFactory.hpp"
40#include "memory/universe.inline.hpp"
41#include "oops/instanceKlass.hpp"
42#include "oops/objArrayOop.hpp"
43#include "oops/oop.inline.hpp"
44#include "oops/symbol.hpp"
45#include "prims/jvm_misc.hpp"
46#include "prims/jvmtiExport.hpp"
47#include "prims/jvmtiThreadState.hpp"
48#include "prims/privilegedStack.hpp"
49#include "runtime/arguments.hpp"
50#include "runtime/atomic.inline.hpp"
51#include "runtime/biasedLocking.hpp"
52#include "runtime/deoptimization.hpp"
53#include "runtime/fprofiler.hpp"
54#include "runtime/frame.inline.hpp"
55#include "runtime/init.hpp"
56#include "runtime/interfaceSupport.hpp"
57#include "runtime/java.hpp"
58#include "runtime/javaCalls.hpp"
59#include "runtime/jniPeriodicChecker.hpp"
60#include "runtime/memprofiler.hpp"
61#include "runtime/mutexLocker.hpp"
62#include "runtime/objectMonitor.hpp"
63#include "runtime/orderAccess.inline.hpp"
64#include "runtime/osThread.hpp"
65#include "runtime/safepoint.hpp"
66#include "runtime/sharedRuntime.hpp"
67#include "runtime/statSampler.hpp"
68#include "runtime/stubRoutines.hpp"
69#include "runtime/sweeper.hpp"
70#include "runtime/task.hpp"
71#include "runtime/thread.inline.hpp"
72#include "runtime/threadCritical.hpp"
73#include "runtime/threadLocalStorage.hpp"
74#include "runtime/vframe.hpp"
75#include "runtime/vframeArray.hpp"
76#include "runtime/vframe_hp.hpp"
77#include "runtime/vmThread.hpp"
78#include "runtime/vm_operations.hpp"
79#include "runtime/vm_version.hpp"
80#include "services/attachListener.hpp"
81#include "services/management.hpp"
82#include "services/memTracker.hpp"
83#include "services/threadService.hpp"
84#include "trace/tracing.hpp"
85#include "trace/traceMacros.hpp"
86#include "utilities/defaultStream.hpp"
87#include "utilities/dtrace.hpp"
88#include "utilities/events.hpp"
89#include "utilities/preserveException.hpp"
90#include "utilities/macros.hpp"
91#if INCLUDE_ALL_GCS
92#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
93#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
94#include "gc_implementation/parallelScavenge/pcTasks.hpp"
95#endif // INCLUDE_ALL_GCS
96#ifdef COMPILER1
97#include "c1/c1_Compiler.hpp"
98#endif
99#ifdef COMPILER2
100#include "opto/c2compiler.hpp"
101#include "opto/idealGraphPrinter.hpp"
102#endif
103#if INCLUDE_RTM_OPT
104#include "runtime/rtmLocking.hpp"
105#endif
106
107PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
108
109#ifdef DTRACE_ENABLED
110
111// Only bother with this argument setup if dtrace is available
112
113  #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
114  #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
115
116  #define DTRACE_THREAD_PROBE(probe, javathread)                           \
117    {                                                                      \
118      ResourceMark rm(this);                                               \
119      int len = 0;                                                         \
120      const char* name = (javathread)->get_thread_name();                  \
121      len = strlen(name);                                                  \
122      HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
123        (char *) name, len,                                                \
124        java_lang_Thread::thread_id((javathread)->threadObj()),            \
125        (uintptr_t) (javathread)->osthread()->thread_id(),                 \
126        java_lang_Thread::is_daemon((javathread)->threadObj()));           \
127    }
128
129#else //  ndef DTRACE_ENABLED
130
131  #define DTRACE_THREAD_PROBE(probe, javathread)
132
133#endif // ndef DTRACE_ENABLED
134
135
136// Class hierarchy
137// - Thread
138//   - VMThread
139//   - WatcherThread
140//   - ConcurrentMarkSweepThread
141//   - JavaThread
142//     - CompilerThread
143
144// ======= Thread ========
145// Support for forcing alignment of thread objects for biased locking
146void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
147  if (UseBiasedLocking) {
148    const int alignment = markOopDesc::biased_lock_alignment;
149    size_t aligned_size = size + (alignment - sizeof(intptr_t));
150    void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
151                                          : AllocateHeap(aligned_size, flags, CURRENT_PC,
152                                                         AllocFailStrategy::RETURN_NULL);
153    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
154    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
155           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
156           "JavaThread alignment code overflowed allocated storage");
157    if (TraceBiasedLocking) {
158      if (aligned_addr != real_malloc_addr) {
159        tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
160                      real_malloc_addr, aligned_addr);
161      }
162    }
163    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
164    return aligned_addr;
165  } else {
166    return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
167                       : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
168  }
169}
170
171void Thread::operator delete(void* p) {
172  if (UseBiasedLocking) {
173    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
174    FreeHeap(real_malloc_addr, mtThread);
175  } else {
176    FreeHeap(p, mtThread);
177  }
178}
179
180
181// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
182// JavaThread
183
184
185Thread::Thread() {
186  // stack and get_thread
187  set_stack_base(NULL);
188  set_stack_size(0);
189  set_self_raw_id(0);
190  set_lgrp_id(-1);
191
192  // allocated data structures
193  set_osthread(NULL);
194  set_resource_area(new (mtThread)ResourceArea());
195  DEBUG_ONLY(_current_resource_mark = NULL;)
196  set_handle_area(new (mtThread) HandleArea(NULL));
197  set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
198  set_active_handles(NULL);
199  set_free_handle_block(NULL);
200  set_last_handle_mark(NULL);
201
202  // This initial value ==> never claimed.
203  _oops_do_parity = 0;
204
205  _metadata_on_stack_buffer = NULL;
206
207  // the handle mark links itself to last_handle_mark
208  new HandleMark(this);
209
210  // plain initialization
211  debug_only(_owned_locks = NULL;)
212  debug_only(_allow_allocation_count = 0;)
213  NOT_PRODUCT(_allow_safepoint_count = 0;)
214  NOT_PRODUCT(_skip_gcalot = false;)
215  _jvmti_env_iteration_count = 0;
216  set_allocated_bytes(0);
217  _vm_operation_started_count = 0;
218  _vm_operation_completed_count = 0;
219  _current_pending_monitor = NULL;
220  _current_pending_monitor_is_from_java = true;
221  _current_waiting_monitor = NULL;
222  _num_nested_signal = 0;
223  omFreeList = NULL;
224  omFreeCount = 0;
225  omFreeProvision = 32;
226  omInUseList = NULL;
227  omInUseCount = 0;
228
229#ifdef ASSERT
230  _visited_for_critical_count = false;
231#endif
232
233  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
234  _suspend_flags = 0;
235
236  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
237  _hashStateX = os::random();
238  _hashStateY = 842502087;
239  _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
240  _hashStateW = 273326509;
241
242  _OnTrap   = 0;
243  _schedctl = NULL;
244  _Stalled  = 0;
245  _TypeTag  = 0x2BAD;
246
247  // Many of the following fields are effectively final - immutable
248  // Note that nascent threads can't use the Native Monitor-Mutex
249  // construct until the _MutexEvent is initialized ...
250  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
251  // we might instead use a stack of ParkEvents that we could provision on-demand.
252  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
253  // and ::Release()
254  _ParkEvent   = ParkEvent::Allocate(this);
255  _SleepEvent  = ParkEvent::Allocate(this);
256  _MutexEvent  = ParkEvent::Allocate(this);
257  _MuxEvent    = ParkEvent::Allocate(this);
258
259#ifdef CHECK_UNHANDLED_OOPS
260  if (CheckUnhandledOops) {
261    _unhandled_oops = new UnhandledOops(this);
262  }
263#endif // CHECK_UNHANDLED_OOPS
264#ifdef ASSERT
265  if (UseBiasedLocking) {
266    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
267    assert(this == _real_malloc_address ||
268           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
269           "bug in forced alignment of thread objects");
270  }
271#endif // ASSERT
272}
273
274void Thread::initialize_thread_local_storage() {
275  // Note: Make sure this method only calls
276  // non-blocking operations. Otherwise, it might not work
277  // with the thread-startup/safepoint interaction.
278
279  // During Java thread startup, safepoint code should allow this
280  // method to complete because it may need to allocate memory to
281  // store information for the new thread.
282
283  // initialize structure dependent on thread local storage
284  ThreadLocalStorage::set_thread(this);
285}
286
287void Thread::record_stack_base_and_size() {
288  set_stack_base(os::current_stack_base());
289  set_stack_size(os::current_stack_size());
290  if (is_Java_thread()) {
291    ((JavaThread*) this)->set_stack_overflow_limit();
292  }
293  // CR 7190089: on Solaris, primordial thread's stack is adjusted
294  // in initialize_thread(). Without the adjustment, stack size is
295  // incorrect if stack is set to unlimited (ulimit -s unlimited).
296  // So far, only Solaris has real implementation of initialize_thread().
297  //
298  // set up any platform-specific state.
299  os::initialize_thread(this);
300
301#if INCLUDE_NMT
302  // record thread's native stack, stack grows downward
303  address stack_low_addr = stack_base() - stack_size();
304  MemTracker::record_thread_stack(stack_low_addr, stack_size());
305#endif // INCLUDE_NMT
306}
307
308
309Thread::~Thread() {
310  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
311  ObjectSynchronizer::omFlush(this);
312
313  EVENT_THREAD_DESTRUCT(this);
314
315  // stack_base can be NULL if the thread is never started or exited before
316  // record_stack_base_and_size called. Although, we would like to ensure
317  // that all started threads do call record_stack_base_and_size(), there is
318  // not proper way to enforce that.
319#if INCLUDE_NMT
320  if (_stack_base != NULL) {
321    address low_stack_addr = stack_base() - stack_size();
322    MemTracker::release_thread_stack(low_stack_addr, stack_size());
323#ifdef ASSERT
324    set_stack_base(NULL);
325#endif
326  }
327#endif // INCLUDE_NMT
328
329  // deallocate data structures
330  delete resource_area();
331  // since the handle marks are using the handle area, we have to deallocated the root
332  // handle mark before deallocating the thread's handle area,
333  assert(last_handle_mark() != NULL, "check we have an element");
334  delete last_handle_mark();
335  assert(last_handle_mark() == NULL, "check we have reached the end");
336
337  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
338  // We NULL out the fields for good hygiene.
339  ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
340  ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
341  ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
342  ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
343
344  delete handle_area();
345  delete metadata_handles();
346
347  // osthread() can be NULL, if creation of thread failed.
348  if (osthread() != NULL) os::free_thread(osthread());
349
350  delete _SR_lock;
351
352  // clear thread local storage if the Thread is deleting itself
353  if (this == Thread::current()) {
354    ThreadLocalStorage::set_thread(NULL);
355  } else {
356    // In the case where we're not the current thread, invalidate all the
357    // caches in case some code tries to get the current thread or the
358    // thread that was destroyed, and gets stale information.
359    ThreadLocalStorage::invalidate_all();
360  }
361  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
362}
363
364// NOTE: dummy function for assertion purpose.
365void Thread::run() {
366  ShouldNotReachHere();
367}
368
369#ifdef ASSERT
370// Private method to check for dangling thread pointer
371void check_for_dangling_thread_pointer(Thread *thread) {
372  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
373         "possibility of dangling Thread pointer");
374}
375#endif
376
377
378#ifndef PRODUCT
379// Tracing method for basic thread operations
380void Thread::trace(const char* msg, const Thread* const thread) {
381  if (!TraceThreadEvents) return;
382  ResourceMark rm;
383  ThreadCritical tc;
384  const char *name = "non-Java thread";
385  int prio = -1;
386  if (thread->is_Java_thread()
387      && !thread->is_Compiler_thread()) {
388    // The Threads_lock must be held to get information about
389    // this thread but may not be in some situations when
390    // tracing  thread events.
391    bool release_Threads_lock = false;
392    if (!Threads_lock->owned_by_self()) {
393      Threads_lock->lock();
394      release_Threads_lock = true;
395    }
396    JavaThread* jt = (JavaThread *)thread;
397    name = (char *)jt->get_thread_name();
398    oop thread_oop = jt->threadObj();
399    if (thread_oop != NULL) {
400      prio = java_lang_Thread::priority(thread_oop);
401    }
402    if (release_Threads_lock) {
403      Threads_lock->unlock();
404    }
405  }
406  tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
407}
408#endif
409
410
411ThreadPriority Thread::get_priority(const Thread* const thread) {
412  trace("get priority", thread);
413  ThreadPriority priority;
414  // Can return an error!
415  (void)os::get_priority(thread, priority);
416  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
417  return priority;
418}
419
420void Thread::set_priority(Thread* thread, ThreadPriority priority) {
421  trace("set priority", thread);
422  debug_only(check_for_dangling_thread_pointer(thread);)
423  // Can return an error!
424  (void)os::set_priority(thread, priority);
425}
426
427
428void Thread::start(Thread* thread) {
429  trace("start", thread);
430  // Start is different from resume in that its safety is guaranteed by context or
431  // being called from a Java method synchronized on the Thread object.
432  if (!DisableStartThread) {
433    if (thread->is_Java_thread()) {
434      // Initialize the thread state to RUNNABLE before starting this thread.
435      // Can not set it after the thread started because we do not know the
436      // exact thread state at that time. It could be in MONITOR_WAIT or
437      // in SLEEPING or some other state.
438      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
439                                          java_lang_Thread::RUNNABLE);
440    }
441    os::start_thread(thread);
442  }
443}
444
445// Enqueue a VM_Operation to do the job for us - sometime later
446void Thread::send_async_exception(oop java_thread, oop java_throwable) {
447  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
448  VMThread::execute(vm_stop);
449}
450
451
452// Check if an external suspend request has completed (or has been
453// cancelled). Returns true if the thread is externally suspended and
454// false otherwise.
455//
456// The bits parameter returns information about the code path through
457// the routine. Useful for debugging:
458//
459// set in is_ext_suspend_completed():
460// 0x00000001 - routine was entered
461// 0x00000010 - routine return false at end
462// 0x00000100 - thread exited (return false)
463// 0x00000200 - suspend request cancelled (return false)
464// 0x00000400 - thread suspended (return true)
465// 0x00001000 - thread is in a suspend equivalent state (return true)
466// 0x00002000 - thread is native and walkable (return true)
467// 0x00004000 - thread is native_trans and walkable (needed retry)
468//
469// set in wait_for_ext_suspend_completion():
470// 0x00010000 - routine was entered
471// 0x00020000 - suspend request cancelled before loop (return false)
472// 0x00040000 - thread suspended before loop (return true)
473// 0x00080000 - suspend request cancelled in loop (return false)
474// 0x00100000 - thread suspended in loop (return true)
475// 0x00200000 - suspend not completed during retry loop (return false)
476
477// Helper class for tracing suspend wait debug bits.
478//
479// 0x00000100 indicates that the target thread exited before it could
480// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
481// 0x00080000 each indicate a cancelled suspend request so they don't
482// count as wait failures either.
483#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
484
485class TraceSuspendDebugBits : public StackObj {
486 private:
487  JavaThread * jt;
488  bool         is_wait;
489  bool         called_by_wait;  // meaningful when !is_wait
490  uint32_t *   bits;
491
492 public:
493  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
494                        uint32_t *_bits) {
495    jt             = _jt;
496    is_wait        = _is_wait;
497    called_by_wait = _called_by_wait;
498    bits           = _bits;
499  }
500
501  ~TraceSuspendDebugBits() {
502    if (!is_wait) {
503#if 1
504      // By default, don't trace bits for is_ext_suspend_completed() calls.
505      // That trace is very chatty.
506      return;
507#else
508      if (!called_by_wait) {
509        // If tracing for is_ext_suspend_completed() is enabled, then only
510        // trace calls to it from wait_for_ext_suspend_completion()
511        return;
512      }
513#endif
514    }
515
516    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
517      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
518        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
519        ResourceMark rm;
520
521        tty->print_cr(
522                      "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
523                      jt->get_thread_name(), *bits);
524
525        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
526      }
527    }
528  }
529};
530#undef DEBUG_FALSE_BITS
531
532
533bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
534                                          uint32_t *bits) {
535  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
536
537  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
538  bool do_trans_retry;           // flag to force the retry
539
540  *bits |= 0x00000001;
541
542  do {
543    do_trans_retry = false;
544
545    if (is_exiting()) {
546      // Thread is in the process of exiting. This is always checked
547      // first to reduce the risk of dereferencing a freed JavaThread.
548      *bits |= 0x00000100;
549      return false;
550    }
551
552    if (!is_external_suspend()) {
553      // Suspend request is cancelled. This is always checked before
554      // is_ext_suspended() to reduce the risk of a rogue resume
555      // confusing the thread that made the suspend request.
556      *bits |= 0x00000200;
557      return false;
558    }
559
560    if (is_ext_suspended()) {
561      // thread is suspended
562      *bits |= 0x00000400;
563      return true;
564    }
565
566    // Now that we no longer do hard suspends of threads running
567    // native code, the target thread can be changing thread state
568    // while we are in this routine:
569    //
570    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
571    //
572    // We save a copy of the thread state as observed at this moment
573    // and make our decision about suspend completeness based on the
574    // copy. This closes the race where the thread state is seen as
575    // _thread_in_native_trans in the if-thread_blocked check, but is
576    // seen as _thread_blocked in if-thread_in_native_trans check.
577    JavaThreadState save_state = thread_state();
578
579    if (save_state == _thread_blocked && is_suspend_equivalent()) {
580      // If the thread's state is _thread_blocked and this blocking
581      // condition is known to be equivalent to a suspend, then we can
582      // consider the thread to be externally suspended. This means that
583      // the code that sets _thread_blocked has been modified to do
584      // self-suspension if the blocking condition releases. We also
585      // used to check for CONDVAR_WAIT here, but that is now covered by
586      // the _thread_blocked with self-suspension check.
587      //
588      // Return true since we wouldn't be here unless there was still an
589      // external suspend request.
590      *bits |= 0x00001000;
591      return true;
592    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
593      // Threads running native code will self-suspend on native==>VM/Java
594      // transitions. If its stack is walkable (should always be the case
595      // unless this function is called before the actual java_suspend()
596      // call), then the wait is done.
597      *bits |= 0x00002000;
598      return true;
599    } else if (!called_by_wait && !did_trans_retry &&
600               save_state == _thread_in_native_trans &&
601               frame_anchor()->walkable()) {
602      // The thread is transitioning from thread_in_native to another
603      // thread state. check_safepoint_and_suspend_for_native_trans()
604      // will force the thread to self-suspend. If it hasn't gotten
605      // there yet we may have caught the thread in-between the native
606      // code check above and the self-suspend. Lucky us. If we were
607      // called by wait_for_ext_suspend_completion(), then it
608      // will be doing the retries so we don't have to.
609      //
610      // Since we use the saved thread state in the if-statement above,
611      // there is a chance that the thread has already transitioned to
612      // _thread_blocked by the time we get here. In that case, we will
613      // make a single unnecessary pass through the logic below. This
614      // doesn't hurt anything since we still do the trans retry.
615
616      *bits |= 0x00004000;
617
618      // Once the thread leaves thread_in_native_trans for another
619      // thread state, we break out of this retry loop. We shouldn't
620      // need this flag to prevent us from getting back here, but
621      // sometimes paranoia is good.
622      did_trans_retry = true;
623
624      // We wait for the thread to transition to a more usable state.
625      for (int i = 1; i <= SuspendRetryCount; i++) {
626        // We used to do an "os::yield_all(i)" call here with the intention
627        // that yielding would increase on each retry. However, the parameter
628        // is ignored on Linux which means the yield didn't scale up. Waiting
629        // on the SR_lock below provides a much more predictable scale up for
630        // the delay. It also provides a simple/direct point to check for any
631        // safepoint requests from the VMThread
632
633        // temporarily drops SR_lock while doing wait with safepoint check
634        // (if we're a JavaThread - the WatcherThread can also call this)
635        // and increase delay with each retry
636        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
637
638        // check the actual thread state instead of what we saved above
639        if (thread_state() != _thread_in_native_trans) {
640          // the thread has transitioned to another thread state so
641          // try all the checks (except this one) one more time.
642          do_trans_retry = true;
643          break;
644        }
645      } // end retry loop
646
647
648    }
649  } while (do_trans_retry);
650
651  *bits |= 0x00000010;
652  return false;
653}
654
655// Wait for an external suspend request to complete (or be cancelled).
656// Returns true if the thread is externally suspended and false otherwise.
657//
658bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
659                                                 uint32_t *bits) {
660  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
661                             false /* !called_by_wait */, bits);
662
663  // local flag copies to minimize SR_lock hold time
664  bool is_suspended;
665  bool pending;
666  uint32_t reset_bits;
667
668  // set a marker so is_ext_suspend_completed() knows we are the caller
669  *bits |= 0x00010000;
670
671  // We use reset_bits to reinitialize the bits value at the top of
672  // each retry loop. This allows the caller to make use of any
673  // unused bits for their own marking purposes.
674  reset_bits = *bits;
675
676  {
677    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
678    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
679                                            delay, bits);
680    pending = is_external_suspend();
681  }
682  // must release SR_lock to allow suspension to complete
683
684  if (!pending) {
685    // A cancelled suspend request is the only false return from
686    // is_ext_suspend_completed() that keeps us from entering the
687    // retry loop.
688    *bits |= 0x00020000;
689    return false;
690  }
691
692  if (is_suspended) {
693    *bits |= 0x00040000;
694    return true;
695  }
696
697  for (int i = 1; i <= retries; i++) {
698    *bits = reset_bits;  // reinit to only track last retry
699
700    // We used to do an "os::yield_all(i)" call here with the intention
701    // that yielding would increase on each retry. However, the parameter
702    // is ignored on Linux which means the yield didn't scale up. Waiting
703    // on the SR_lock below provides a much more predictable scale up for
704    // the delay. It also provides a simple/direct point to check for any
705    // safepoint requests from the VMThread
706
707    {
708      MutexLocker ml(SR_lock());
709      // wait with safepoint check (if we're a JavaThread - the WatcherThread
710      // can also call this)  and increase delay with each retry
711      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
712
713      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
714                                              delay, bits);
715
716      // It is possible for the external suspend request to be cancelled
717      // (by a resume) before the actual suspend operation is completed.
718      // Refresh our local copy to see if we still need to wait.
719      pending = is_external_suspend();
720    }
721
722    if (!pending) {
723      // A cancelled suspend request is the only false return from
724      // is_ext_suspend_completed() that keeps us from staying in the
725      // retry loop.
726      *bits |= 0x00080000;
727      return false;
728    }
729
730    if (is_suspended) {
731      *bits |= 0x00100000;
732      return true;
733    }
734  } // end retry loop
735
736  // thread did not suspend after all our retries
737  *bits |= 0x00200000;
738  return false;
739}
740
741#ifndef PRODUCT
742void JavaThread::record_jump(address target, address instr, const char* file,
743                             int line) {
744
745  // This should not need to be atomic as the only way for simultaneous
746  // updates is via interrupts. Even then this should be rare or non-existent
747  // and we don't care that much anyway.
748
749  int index = _jmp_ring_index;
750  _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
751  _jmp_ring[index]._target = (intptr_t) target;
752  _jmp_ring[index]._instruction = (intptr_t) instr;
753  _jmp_ring[index]._file = file;
754  _jmp_ring[index]._line = line;
755}
756#endif // PRODUCT
757
758// Called by flat profiler
759// Callers have already called wait_for_ext_suspend_completion
760// The assertion for that is currently too complex to put here:
761bool JavaThread::profile_last_Java_frame(frame* _fr) {
762  bool gotframe = false;
763  // self suspension saves needed state.
764  if (has_last_Java_frame() && _anchor.walkable()) {
765    *_fr = pd_last_frame();
766    gotframe = true;
767  }
768  return gotframe;
769}
770
771void Thread::interrupt(Thread* thread) {
772  trace("interrupt", thread);
773  debug_only(check_for_dangling_thread_pointer(thread);)
774  os::interrupt(thread);
775}
776
777bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
778  trace("is_interrupted", thread);
779  debug_only(check_for_dangling_thread_pointer(thread);)
780  // Note:  If clear_interrupted==false, this simply fetches and
781  // returns the value of the field osthread()->interrupted().
782  return os::is_interrupted(thread, clear_interrupted);
783}
784
785
786// GC Support
787bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
788  jint thread_parity = _oops_do_parity;
789  if (thread_parity != strong_roots_parity) {
790    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
791    if (res == thread_parity) {
792      return true;
793    } else {
794      guarantee(res == strong_roots_parity, "Or else what?");
795      assert(SharedHeap::heap()->workers()->active_workers() > 0,
796             "Should only fail when parallel.");
797      return false;
798    }
799  }
800  assert(SharedHeap::heap()->workers()->active_workers() > 0,
801         "Should only fail when parallel.");
802  return false;
803}
804
805void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
806  active_handles()->oops_do(f);
807  // Do oop for ThreadShadow
808  f->do_oop((oop*)&_pending_exception);
809  handle_area()->oops_do(f);
810}
811
812void Thread::nmethods_do(CodeBlobClosure* cf) {
813  // no nmethods in a generic thread...
814}
815
816void Thread::metadata_do(void f(Metadata*)) {
817  if (metadata_handles() != NULL) {
818    for (int i = 0; i< metadata_handles()->length(); i++) {
819      f(metadata_handles()->at(i));
820    }
821  }
822}
823
824void Thread::print_on(outputStream* st) const {
825  // get_priority assumes osthread initialized
826  if (osthread() != NULL) {
827    int os_prio;
828    if (os::get_native_priority(this, &os_prio) == OS_OK) {
829      st->print("os_prio=%d ", os_prio);
830    }
831    st->print("tid=" INTPTR_FORMAT " ", this);
832    ext().print_on(st);
833    osthread()->print_on(st);
834  }
835  debug_only(if (WizardMode) print_owned_locks_on(st);)
836}
837
838// Thread::print_on_error() is called by fatal error handler. Don't use
839// any lock or allocate memory.
840void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
841  if (is_VM_thread())                 st->print("VMThread");
842  else if (is_Compiler_thread())      st->print("CompilerThread");
843  else if (is_Java_thread())          st->print("JavaThread");
844  else if (is_GC_task_thread())       st->print("GCTaskThread");
845  else if (is_Watcher_thread())       st->print("WatcherThread");
846  else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
847  else                                st->print("Thread");
848
849  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
850            _stack_base - _stack_size, _stack_base);
851
852  if (osthread()) {
853    st->print(" [id=%d]", osthread()->thread_id());
854  }
855}
856
857#ifdef ASSERT
858void Thread::print_owned_locks_on(outputStream* st) const {
859  Monitor *cur = _owned_locks;
860  if (cur == NULL) {
861    st->print(" (no locks) ");
862  } else {
863    st->print_cr(" Locks owned:");
864    while (cur) {
865      cur->print_on(st);
866      cur = cur->next();
867    }
868  }
869}
870
871static int ref_use_count  = 0;
872
873bool Thread::owns_locks_but_compiled_lock() const {
874  for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
875    if (cur != Compile_lock) return true;
876  }
877  return false;
878}
879
880
881#endif
882
883#ifndef PRODUCT
884
885// The flag: potential_vm_operation notifies if this particular safepoint state could potential
886// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
887// no threads which allow_vm_block's are held
888void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
889  // Check if current thread is allowed to block at a safepoint
890  if (!(_allow_safepoint_count == 0)) {
891    fatal("Possible safepoint reached by thread that does not allow it");
892  }
893  if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
894    fatal("LEAF method calling lock?");
895  }
896
897#ifdef ASSERT
898  if (potential_vm_operation && is_Java_thread()
899      && !Universe::is_bootstrapping()) {
900    // Make sure we do not hold any locks that the VM thread also uses.
901    // This could potentially lead to deadlocks
902    for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
903      // Threads_lock is special, since the safepoint synchronization will not start before this is
904      // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
905      // since it is used to transfer control between JavaThreads and the VMThread
906      // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
907      if ((cur->allow_vm_block() &&
908           cur != Threads_lock &&
909           cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
910           cur != VMOperationRequest_lock &&
911           cur != VMOperationQueue_lock) ||
912           cur->rank() == Mutex::special) {
913        fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
914      }
915    }
916  }
917
918  if (GCALotAtAllSafepoints) {
919    // We could enter a safepoint here and thus have a gc
920    InterfaceSupport::check_gc_alot();
921  }
922#endif
923}
924#endif
925
926bool Thread::is_in_stack(address adr) const {
927  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
928  address end = os::current_stack_pointer();
929  // Allow non Java threads to call this without stack_base
930  if (_stack_base == NULL) return true;
931  if (stack_base() >= adr && adr >= end) return true;
932
933  return false;
934}
935
936
937bool Thread::is_in_usable_stack(address adr) const {
938  size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
939  size_t usable_stack_size = _stack_size - stack_guard_size;
940
941  return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
942}
943
944
945// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
946// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
947// used for compilation in the future. If that change is made, the need for these methods
948// should be revisited, and they should be removed if possible.
949
950bool Thread::is_lock_owned(address adr) const {
951  return on_local_stack(adr);
952}
953
954bool Thread::set_as_starting_thread() {
955  // NOTE: this must be called inside the main thread.
956  return os::create_main_thread((JavaThread*)this);
957}
958
959static void initialize_class(Symbol* class_name, TRAPS) {
960  Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
961  InstanceKlass::cast(klass)->initialize(CHECK);
962}
963
964
965// Creates the initial ThreadGroup
966static Handle create_initial_thread_group(TRAPS) {
967  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
968  instanceKlassHandle klass (THREAD, k);
969
970  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
971  {
972    JavaValue result(T_VOID);
973    JavaCalls::call_special(&result,
974                            system_instance,
975                            klass,
976                            vmSymbols::object_initializer_name(),
977                            vmSymbols::void_method_signature(),
978                            CHECK_NH);
979  }
980  Universe::set_system_thread_group(system_instance());
981
982  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
983  {
984    JavaValue result(T_VOID);
985    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
986    JavaCalls::call_special(&result,
987                            main_instance,
988                            klass,
989                            vmSymbols::object_initializer_name(),
990                            vmSymbols::threadgroup_string_void_signature(),
991                            system_instance,
992                            string,
993                            CHECK_NH);
994  }
995  return main_instance;
996}
997
998// Creates the initial Thread
999static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1000                                 TRAPS) {
1001  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1002  instanceKlassHandle klass (THREAD, k);
1003  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1004
1005  java_lang_Thread::set_thread(thread_oop(), thread);
1006  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1007  thread->set_threadObj(thread_oop());
1008
1009  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1010
1011  JavaValue result(T_VOID);
1012  JavaCalls::call_special(&result, thread_oop,
1013                          klass,
1014                          vmSymbols::object_initializer_name(),
1015                          vmSymbols::threadgroup_string_void_signature(),
1016                          thread_group,
1017                          string,
1018                          CHECK_NULL);
1019  return thread_oop();
1020}
1021
1022static void call_initializeSystemClass(TRAPS) {
1023  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1024  instanceKlassHandle klass (THREAD, k);
1025
1026  JavaValue result(T_VOID);
1027  JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1028                         vmSymbols::void_method_signature(), CHECK);
1029}
1030
1031char java_runtime_name[128] = "";
1032char java_runtime_version[128] = "";
1033
1034// extract the JRE name from sun.misc.Version.java_runtime_name
1035static const char* get_java_runtime_name(TRAPS) {
1036  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1037                                    Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1038  fieldDescriptor fd;
1039  bool found = k != NULL &&
1040               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1041                                                        vmSymbols::string_signature(), &fd);
1042  if (found) {
1043    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1044    if (name_oop == NULL) {
1045      return NULL;
1046    }
1047    const char* name = java_lang_String::as_utf8_string(name_oop,
1048                                                        java_runtime_name,
1049                                                        sizeof(java_runtime_name));
1050    return name;
1051  } else {
1052    return NULL;
1053  }
1054}
1055
1056// extract the JRE version from sun.misc.Version.java_runtime_version
1057static const char* get_java_runtime_version(TRAPS) {
1058  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1059                                    Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1060  fieldDescriptor fd;
1061  bool found = k != NULL &&
1062               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1063                                                        vmSymbols::string_signature(), &fd);
1064  if (found) {
1065    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1066    if (name_oop == NULL) {
1067      return NULL;
1068    }
1069    const char* name = java_lang_String::as_utf8_string(name_oop,
1070                                                        java_runtime_version,
1071                                                        sizeof(java_runtime_version));
1072    return name;
1073  } else {
1074    return NULL;
1075  }
1076}
1077
1078// General purpose hook into Java code, run once when the VM is initialized.
1079// The Java library method itself may be changed independently from the VM.
1080static void call_postVMInitHook(TRAPS) {
1081  Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1082  instanceKlassHandle klass (THREAD, k);
1083  if (klass.not_null()) {
1084    JavaValue result(T_VOID);
1085    JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1086                           vmSymbols::void_method_signature(),
1087                           CHECK);
1088  }
1089}
1090
1091static void reset_vm_info_property(TRAPS) {
1092  // the vm info string
1093  ResourceMark rm(THREAD);
1094  const char *vm_info = VM_Version::vm_info_string();
1095
1096  // java.lang.System class
1097  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1098  instanceKlassHandle klass (THREAD, k);
1099
1100  // setProperty arguments
1101  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1102  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1103
1104  // return value
1105  JavaValue r(T_OBJECT);
1106
1107  // public static String setProperty(String key, String value);
1108  JavaCalls::call_static(&r,
1109                         klass,
1110                         vmSymbols::setProperty_name(),
1111                         vmSymbols::string_string_string_signature(),
1112                         key_str,
1113                         value_str,
1114                         CHECK);
1115}
1116
1117
1118void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name,
1119                                    bool daemon, TRAPS) {
1120  assert(thread_group.not_null(), "thread group should be specified");
1121  assert(threadObj() == NULL, "should only create Java thread object once");
1122
1123  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1124  instanceKlassHandle klass (THREAD, k);
1125  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1126
1127  java_lang_Thread::set_thread(thread_oop(), this);
1128  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1129  set_threadObj(thread_oop());
1130
1131  JavaValue result(T_VOID);
1132  if (thread_name != NULL) {
1133    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1134    // Thread gets assigned specified name and null target
1135    JavaCalls::call_special(&result,
1136                            thread_oop,
1137                            klass,
1138                            vmSymbols::object_initializer_name(),
1139                            vmSymbols::threadgroup_string_void_signature(),
1140                            thread_group, // Argument 1
1141                            name,         // Argument 2
1142                            THREAD);
1143  } else {
1144    // Thread gets assigned name "Thread-nnn" and null target
1145    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1146    JavaCalls::call_special(&result,
1147                            thread_oop,
1148                            klass,
1149                            vmSymbols::object_initializer_name(),
1150                            vmSymbols::threadgroup_runnable_void_signature(),
1151                            thread_group, // Argument 1
1152                            Handle(),     // Argument 2
1153                            THREAD);
1154  }
1155
1156
1157  if (daemon) {
1158    java_lang_Thread::set_daemon(thread_oop());
1159  }
1160
1161  if (HAS_PENDING_EXCEPTION) {
1162    return;
1163  }
1164
1165  KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1166  Handle threadObj(this, this->threadObj());
1167
1168  JavaCalls::call_special(&result,
1169                          thread_group,
1170                          group,
1171                          vmSymbols::add_method_name(),
1172                          vmSymbols::thread_void_signature(),
1173                          threadObj,          // Arg 1
1174                          THREAD);
1175
1176
1177}
1178
1179// NamedThread --  non-JavaThread subclasses with multiple
1180// uniquely named instances should derive from this.
1181NamedThread::NamedThread() : Thread() {
1182  _name = NULL;
1183  _processed_thread = NULL;
1184}
1185
1186NamedThread::~NamedThread() {
1187  if (_name != NULL) {
1188    FREE_C_HEAP_ARRAY(char, _name, mtThread);
1189    _name = NULL;
1190  }
1191}
1192
1193void NamedThread::set_name(const char* format, ...) {
1194  guarantee(_name == NULL, "Only get to set name once.");
1195  _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1196  guarantee(_name != NULL, "alloc failure");
1197  va_list ap;
1198  va_start(ap, format);
1199  jio_vsnprintf(_name, max_name_len, format, ap);
1200  va_end(ap);
1201}
1202
1203void NamedThread::print_on(outputStream* st) const {
1204  st->print("\"%s\" ", name());
1205  Thread::print_on(st);
1206  st->cr();
1207}
1208
1209
1210// ======= WatcherThread ========
1211
1212// The watcher thread exists to simulate timer interrupts.  It should
1213// be replaced by an abstraction over whatever native support for
1214// timer interrupts exists on the platform.
1215
1216WatcherThread* WatcherThread::_watcher_thread   = NULL;
1217bool WatcherThread::_startable = false;
1218volatile bool  WatcherThread::_should_terminate = false;
1219
1220WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1221  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1222  if (os::create_thread(this, os::watcher_thread)) {
1223    _watcher_thread = this;
1224
1225    // Set the watcher thread to the highest OS priority which should not be
1226    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1227    // is created. The only normal thread using this priority is the reference
1228    // handler thread, which runs for very short intervals only.
1229    // If the VMThread's priority is not lower than the WatcherThread profiling
1230    // will be inaccurate.
1231    os::set_priority(this, MaxPriority);
1232    if (!DisableStartThread) {
1233      os::start_thread(this);
1234    }
1235  }
1236}
1237
1238int WatcherThread::sleep() const {
1239  MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1240
1241  // remaining will be zero if there are no tasks,
1242  // causing the WatcherThread to sleep until a task is
1243  // enrolled
1244  int remaining = PeriodicTask::time_to_wait();
1245  int time_slept = 0;
1246
1247  // we expect this to timeout - we only ever get unparked when
1248  // we should terminate or when a new task has been enrolled
1249  OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1250
1251  jlong time_before_loop = os::javaTimeNanos();
1252
1253  for (;;) {
1254    bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1255    jlong now = os::javaTimeNanos();
1256
1257    if (remaining == 0) {
1258      // if we didn't have any tasks we could have waited for a long time
1259      // consider the time_slept zero and reset time_before_loop
1260      time_slept = 0;
1261      time_before_loop = now;
1262    } else {
1263      // need to recalculate since we might have new tasks in _tasks
1264      time_slept = (int) ((now - time_before_loop) / 1000000);
1265    }
1266
1267    // Change to task list or spurious wakeup of some kind
1268    if (timedout || _should_terminate) {
1269      break;
1270    }
1271
1272    remaining = PeriodicTask::time_to_wait();
1273    if (remaining == 0) {
1274      // Last task was just disenrolled so loop around and wait until
1275      // another task gets enrolled
1276      continue;
1277    }
1278
1279    remaining -= time_slept;
1280    if (remaining <= 0) {
1281      break;
1282    }
1283  }
1284
1285  return time_slept;
1286}
1287
1288void WatcherThread::run() {
1289  assert(this == watcher_thread(), "just checking");
1290
1291  this->record_stack_base_and_size();
1292  this->initialize_thread_local_storage();
1293  this->set_native_thread_name(this->name());
1294  this->set_active_handles(JNIHandleBlock::allocate_block());
1295  while (!_should_terminate) {
1296    assert(watcher_thread() == Thread::current(), "thread consistency check");
1297    assert(watcher_thread() == this, "thread consistency check");
1298
1299    // Calculate how long it'll be until the next PeriodicTask work
1300    // should be done, and sleep that amount of time.
1301    int time_waited = sleep();
1302
1303    if (is_error_reported()) {
1304      // A fatal error has happened, the error handler(VMError::report_and_die)
1305      // should abort JVM after creating an error log file. However in some
1306      // rare cases, the error handler itself might deadlock. Here we try to
1307      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1308      //
1309      // This code is in WatcherThread because WatcherThread wakes up
1310      // periodically so the fatal error handler doesn't need to do anything;
1311      // also because the WatcherThread is less likely to crash than other
1312      // threads.
1313
1314      for (;;) {
1315        if (!ShowMessageBoxOnError
1316            && (OnError == NULL || OnError[0] == '\0')
1317            && Arguments::abort_hook() == NULL) {
1318          os::sleep(this, 2 * 60 * 1000, false);
1319          fdStream err(defaultStream::output_fd());
1320          err.print_raw_cr("# [ timer expired, abort... ]");
1321          // skip atexit/vm_exit/vm_abort hooks
1322          os::die();
1323        }
1324
1325        // Wake up 5 seconds later, the fatal handler may reset OnError or
1326        // ShowMessageBoxOnError when it is ready to abort.
1327        os::sleep(this, 5 * 1000, false);
1328      }
1329    }
1330
1331    PeriodicTask::real_time_tick(time_waited);
1332  }
1333
1334  // Signal that it is terminated
1335  {
1336    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1337    _watcher_thread = NULL;
1338    Terminator_lock->notify();
1339  }
1340
1341  // Thread destructor usually does this..
1342  ThreadLocalStorage::set_thread(NULL);
1343}
1344
1345void WatcherThread::start() {
1346  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1347
1348  if (watcher_thread() == NULL && _startable) {
1349    _should_terminate = false;
1350    // Create the single instance of WatcherThread
1351    new WatcherThread();
1352  }
1353}
1354
1355void WatcherThread::make_startable() {
1356  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1357  _startable = true;
1358}
1359
1360void WatcherThread::stop() {
1361  // Get the PeriodicTask_lock if we can. If we cannot, then the
1362  // WatcherThread is using it and we don't want to block on that lock
1363  // here because that might cause a safepoint deadlock depending on
1364  // what the current WatcherThread tasks are doing.
1365  bool have_lock = PeriodicTask_lock->try_lock();
1366
1367  _should_terminate = true;
1368  OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1369
1370  if (have_lock) {
1371    WatcherThread* watcher = watcher_thread();
1372    if (watcher != NULL) {
1373      // If we managed to get the lock, then we should unpark the
1374      // WatcherThread so that it can see we want it to stop.
1375      watcher->unpark();
1376    }
1377
1378    PeriodicTask_lock->unlock();
1379  }
1380
1381  // it is ok to take late safepoints here, if needed
1382  MutexLocker mu(Terminator_lock);
1383
1384  while (watcher_thread() != NULL) {
1385    // This wait should make safepoint checks, wait without a timeout,
1386    // and wait as a suspend-equivalent condition.
1387    //
1388    // Note: If the FlatProfiler is running, then this thread is waiting
1389    // for the WatcherThread to terminate and the WatcherThread, via the
1390    // FlatProfiler task, is waiting for the external suspend request on
1391    // this thread to complete. wait_for_ext_suspend_completion() will
1392    // eventually timeout, but that takes time. Making this wait a
1393    // suspend-equivalent condition solves that timeout problem.
1394    //
1395    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1396                          Mutex::_as_suspend_equivalent_flag);
1397  }
1398}
1399
1400void WatcherThread::unpark() {
1401  MutexLockerEx ml(PeriodicTask_lock->owned_by_self()
1402                   ? NULL
1403                   : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1404  PeriodicTask_lock->notify();
1405}
1406
1407void WatcherThread::print_on(outputStream* st) const {
1408  st->print("\"%s\" ", name());
1409  Thread::print_on(st);
1410  st->cr();
1411}
1412
1413// ======= JavaThread ========
1414
1415// A JavaThread is a normal Java thread
1416
1417void JavaThread::initialize() {
1418  // Initialize fields
1419
1420  // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1421  set_claimed_par_id(UINT_MAX);
1422
1423  set_saved_exception_pc(NULL);
1424  set_threadObj(NULL);
1425  _anchor.clear();
1426  set_entry_point(NULL);
1427  set_jni_functions(jni_functions());
1428  set_callee_target(NULL);
1429  set_vm_result(NULL);
1430  set_vm_result_2(NULL);
1431  set_vframe_array_head(NULL);
1432  set_vframe_array_last(NULL);
1433  set_deferred_locals(NULL);
1434  set_deopt_mark(NULL);
1435  set_deopt_nmethod(NULL);
1436  clear_must_deopt_id();
1437  set_monitor_chunks(NULL);
1438  set_next(NULL);
1439  set_thread_state(_thread_new);
1440  _terminated = _not_terminated;
1441  _privileged_stack_top = NULL;
1442  _array_for_gc = NULL;
1443  _suspend_equivalent = false;
1444  _in_deopt_handler = 0;
1445  _doing_unsafe_access = false;
1446  _stack_guard_state = stack_guard_unused;
1447  (void)const_cast<oop&>(_exception_oop = oop(NULL));
1448  _exception_pc  = 0;
1449  _exception_handler_pc = 0;
1450  _is_method_handle_return = 0;
1451  _jvmti_thread_state= NULL;
1452  _should_post_on_exceptions_flag = JNI_FALSE;
1453  _jvmti_get_loaded_classes_closure = NULL;
1454  _interp_only_mode    = 0;
1455  _special_runtime_exit_condition = _no_async_condition;
1456  _pending_async_exception = NULL;
1457  _thread_stat = NULL;
1458  _thread_stat = new ThreadStatistics();
1459  _blocked_on_compilation = false;
1460  _jni_active_critical = 0;
1461  _pending_jni_exception_check_fn = NULL;
1462  _do_not_unlock_if_synchronized = false;
1463  _cached_monitor_info = NULL;
1464  _parker = Parker::Allocate(this);
1465
1466#ifndef PRODUCT
1467  _jmp_ring_index = 0;
1468  for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1469    record_jump(NULL, NULL, NULL, 0);
1470  }
1471#endif // PRODUCT
1472
1473  set_thread_profiler(NULL);
1474  if (FlatProfiler::is_active()) {
1475    // This is where we would decide to either give each thread it's own profiler
1476    // or use one global one from FlatProfiler,
1477    // or up to some count of the number of profiled threads, etc.
1478    ThreadProfiler* pp = new ThreadProfiler();
1479    pp->engage();
1480    set_thread_profiler(pp);
1481  }
1482
1483  // Setup safepoint state info for this thread
1484  ThreadSafepointState::create(this);
1485
1486  debug_only(_java_call_counter = 0);
1487
1488  // JVMTI PopFrame support
1489  _popframe_condition = popframe_inactive;
1490  _popframe_preserved_args = NULL;
1491  _popframe_preserved_args_size = 0;
1492
1493  pd_initialize();
1494}
1495
1496#if INCLUDE_ALL_GCS
1497SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1498DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1499#endif // INCLUDE_ALL_GCS
1500
1501JavaThread::JavaThread(bool is_attaching_via_jni) :
1502                       Thread()
1503#if INCLUDE_ALL_GCS
1504                       , _satb_mark_queue(&_satb_mark_queue_set),
1505                       _dirty_card_queue(&_dirty_card_queue_set)
1506#endif // INCLUDE_ALL_GCS
1507{
1508  initialize();
1509  if (is_attaching_via_jni) {
1510    _jni_attach_state = _attaching_via_jni;
1511  } else {
1512    _jni_attach_state = _not_attaching_via_jni;
1513  }
1514  assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1515}
1516
1517bool JavaThread::reguard_stack(address cur_sp) {
1518  if (_stack_guard_state != stack_guard_yellow_disabled) {
1519    return true; // Stack already guarded or guard pages not needed.
1520  }
1521
1522  if (register_stack_overflow()) {
1523    // For those architectures which have separate register and
1524    // memory stacks, we must check the register stack to see if
1525    // it has overflowed.
1526    return false;
1527  }
1528
1529  // Java code never executes within the yellow zone: the latter is only
1530  // there to provoke an exception during stack banging.  If java code
1531  // is executing there, either StackShadowPages should be larger, or
1532  // some exception code in c1, c2 or the interpreter isn't unwinding
1533  // when it should.
1534  guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1535
1536  enable_stack_yellow_zone();
1537  return true;
1538}
1539
1540bool JavaThread::reguard_stack(void) {
1541  return reguard_stack(os::current_stack_pointer());
1542}
1543
1544
1545void JavaThread::block_if_vm_exited() {
1546  if (_terminated == _vm_exited) {
1547    // _vm_exited is set at safepoint, and Threads_lock is never released
1548    // we will block here forever
1549    Threads_lock->lock_without_safepoint_check();
1550    ShouldNotReachHere();
1551  }
1552}
1553
1554
1555// Remove this ifdef when C1 is ported to the compiler interface.
1556static void compiler_thread_entry(JavaThread* thread, TRAPS);
1557static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1558
1559JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1560                       Thread()
1561#if INCLUDE_ALL_GCS
1562                       , _satb_mark_queue(&_satb_mark_queue_set),
1563                       _dirty_card_queue(&_dirty_card_queue_set)
1564#endif // INCLUDE_ALL_GCS
1565{
1566  if (TraceThreadEvents) {
1567    tty->print_cr("creating thread %p", this);
1568  }
1569  initialize();
1570  _jni_attach_state = _not_attaching_via_jni;
1571  set_entry_point(entry_point);
1572  // Create the native thread itself.
1573  // %note runtime_23
1574  os::ThreadType thr_type = os::java_thread;
1575  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1576                                                     os::java_thread;
1577  os::create_thread(this, thr_type, stack_sz);
1578  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1579  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1580  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1581  // the exception consists of creating the exception object & initializing it, initialization
1582  // will leave the VM via a JavaCall and then all locks must be unlocked).
1583  //
1584  // The thread is still suspended when we reach here. Thread must be explicit started
1585  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1586  // by calling Threads:add. The reason why this is not done here, is because the thread
1587  // object must be fully initialized (take a look at JVM_Start)
1588}
1589
1590JavaThread::~JavaThread() {
1591  if (TraceThreadEvents) {
1592    tty->print_cr("terminate thread %p", this);
1593  }
1594
1595  // JSR166 -- return the parker to the free list
1596  Parker::Release(_parker);
1597  _parker = NULL;
1598
1599  // Free any remaining  previous UnrollBlock
1600  vframeArray* old_array = vframe_array_last();
1601
1602  if (old_array != NULL) {
1603    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1604    old_array->set_unroll_block(NULL);
1605    delete old_info;
1606    delete old_array;
1607  }
1608
1609  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1610  if (deferred != NULL) {
1611    // This can only happen if thread is destroyed before deoptimization occurs.
1612    assert(deferred->length() != 0, "empty array!");
1613    do {
1614      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1615      deferred->remove_at(0);
1616      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1617      delete dlv;
1618    } while (deferred->length() != 0);
1619    delete deferred;
1620  }
1621
1622  // All Java related clean up happens in exit
1623  ThreadSafepointState::destroy(this);
1624  if (_thread_profiler != NULL) delete _thread_profiler;
1625  if (_thread_stat != NULL) delete _thread_stat;
1626}
1627
1628
1629// The first routine called by a new Java thread
1630void JavaThread::run() {
1631  // initialize thread-local alloc buffer related fields
1632  this->initialize_tlab();
1633
1634  // used to test validity of stack trace backs
1635  this->record_base_of_stack_pointer();
1636
1637  // Record real stack base and size.
1638  this->record_stack_base_and_size();
1639
1640  // Initialize thread local storage; set before calling MutexLocker
1641  this->initialize_thread_local_storage();
1642
1643  this->create_stack_guard_pages();
1644
1645  this->cache_global_variables();
1646
1647  // Thread is now sufficient initialized to be handled by the safepoint code as being
1648  // in the VM. Change thread state from _thread_new to _thread_in_vm
1649  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1650
1651  assert(JavaThread::current() == this, "sanity check");
1652  assert(!Thread::current()->owns_locks(), "sanity check");
1653
1654  DTRACE_THREAD_PROBE(start, this);
1655
1656  // This operation might block. We call that after all safepoint checks for a new thread has
1657  // been completed.
1658  this->set_active_handles(JNIHandleBlock::allocate_block());
1659
1660  if (JvmtiExport::should_post_thread_life()) {
1661    JvmtiExport::post_thread_start(this);
1662  }
1663
1664  EventThreadStart event;
1665  if (event.should_commit()) {
1666    event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1667    event.commit();
1668  }
1669
1670  // We call another function to do the rest so we are sure that the stack addresses used
1671  // from there will be lower than the stack base just computed
1672  thread_main_inner();
1673
1674  // Note, thread is no longer valid at this point!
1675}
1676
1677
1678void JavaThread::thread_main_inner() {
1679  assert(JavaThread::current() == this, "sanity check");
1680  assert(this->threadObj() != NULL, "just checking");
1681
1682  // Execute thread entry point unless this thread has a pending exception
1683  // or has been stopped before starting.
1684  // Note: Due to JVM_StopThread we can have pending exceptions already!
1685  if (!this->has_pending_exception() &&
1686      !java_lang_Thread::is_stillborn(this->threadObj())) {
1687    {
1688      ResourceMark rm(this);
1689      this->set_native_thread_name(this->get_thread_name());
1690    }
1691    HandleMark hm(this);
1692    this->entry_point()(this, this);
1693  }
1694
1695  DTRACE_THREAD_PROBE(stop, this);
1696
1697  this->exit(false);
1698  delete this;
1699}
1700
1701
1702static void ensure_join(JavaThread* thread) {
1703  // We do not need to grap the Threads_lock, since we are operating on ourself.
1704  Handle threadObj(thread, thread->threadObj());
1705  assert(threadObj.not_null(), "java thread object must exist");
1706  ObjectLocker lock(threadObj, thread);
1707  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1708  thread->clear_pending_exception();
1709  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1710  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1711  // Clear the native thread instance - this makes isAlive return false and allows the join()
1712  // to complete once we've done the notify_all below
1713  java_lang_Thread::set_thread(threadObj(), NULL);
1714  lock.notify_all(thread);
1715  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1716  thread->clear_pending_exception();
1717}
1718
1719
1720// For any new cleanup additions, please check to see if they need to be applied to
1721// cleanup_failed_attach_current_thread as well.
1722void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1723  assert(this == JavaThread::current(), "thread consistency check");
1724
1725  HandleMark hm(this);
1726  Handle uncaught_exception(this, this->pending_exception());
1727  this->clear_pending_exception();
1728  Handle threadObj(this, this->threadObj());
1729  assert(threadObj.not_null(), "Java thread object should be created");
1730
1731  if (get_thread_profiler() != NULL) {
1732    get_thread_profiler()->disengage();
1733    ResourceMark rm;
1734    get_thread_profiler()->print(get_thread_name());
1735  }
1736
1737
1738  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1739  {
1740    EXCEPTION_MARK;
1741
1742    CLEAR_PENDING_EXCEPTION;
1743  }
1744  if (!destroy_vm) {
1745    if (uncaught_exception.not_null()) {
1746      EXCEPTION_MARK;
1747      // Call method Thread.dispatchUncaughtException().
1748      KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1749      JavaValue result(T_VOID);
1750      JavaCalls::call_virtual(&result,
1751                              threadObj, thread_klass,
1752                              vmSymbols::dispatchUncaughtException_name(),
1753                              vmSymbols::throwable_void_signature(),
1754                              uncaught_exception,
1755                              THREAD);
1756      if (HAS_PENDING_EXCEPTION) {
1757        ResourceMark rm(this);
1758        jio_fprintf(defaultStream::error_stream(),
1759                    "\nException: %s thrown from the UncaughtExceptionHandler"
1760                    " in thread \"%s\"\n",
1761                    pending_exception()->klass()->external_name(),
1762                    get_thread_name());
1763        CLEAR_PENDING_EXCEPTION;
1764      }
1765    }
1766
1767    // Called before the java thread exit since we want to read info
1768    // from java_lang_Thread object
1769    EventThreadEnd event;
1770    if (event.should_commit()) {
1771      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1772      event.commit();
1773    }
1774
1775    // Call after last event on thread
1776    EVENT_THREAD_EXIT(this);
1777
1778    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1779    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1780    // is deprecated anyhow.
1781    if (!is_Compiler_thread()) {
1782      int count = 3;
1783      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1784        EXCEPTION_MARK;
1785        JavaValue result(T_VOID);
1786        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1787        JavaCalls::call_virtual(&result,
1788                                threadObj, thread_klass,
1789                                vmSymbols::exit_method_name(),
1790                                vmSymbols::void_method_signature(),
1791                                THREAD);
1792        CLEAR_PENDING_EXCEPTION;
1793      }
1794    }
1795    // notify JVMTI
1796    if (JvmtiExport::should_post_thread_life()) {
1797      JvmtiExport::post_thread_end(this);
1798    }
1799
1800    // We have notified the agents that we are exiting, before we go on,
1801    // we must check for a pending external suspend request and honor it
1802    // in order to not surprise the thread that made the suspend request.
1803    while (true) {
1804      {
1805        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1806        if (!is_external_suspend()) {
1807          set_terminated(_thread_exiting);
1808          ThreadService::current_thread_exiting(this);
1809          break;
1810        }
1811        // Implied else:
1812        // Things get a little tricky here. We have a pending external
1813        // suspend request, but we are holding the SR_lock so we
1814        // can't just self-suspend. So we temporarily drop the lock
1815        // and then self-suspend.
1816      }
1817
1818      ThreadBlockInVM tbivm(this);
1819      java_suspend_self();
1820
1821      // We're done with this suspend request, but we have to loop around
1822      // and check again. Eventually we will get SR_lock without a pending
1823      // external suspend request and will be able to mark ourselves as
1824      // exiting.
1825    }
1826    // no more external suspends are allowed at this point
1827  } else {
1828    // before_exit() has already posted JVMTI THREAD_END events
1829  }
1830
1831  // Notify waiters on thread object. This has to be done after exit() is called
1832  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1833  // group should have the destroyed bit set before waiters are notified).
1834  ensure_join(this);
1835  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1836
1837  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1838  // held by this thread must be released.  A detach operation must only
1839  // get here if there are no Java frames on the stack.  Therefore, any
1840  // owned monitors at this point MUST be JNI-acquired monitors which are
1841  // pre-inflated and in the monitor cache.
1842  //
1843  // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1844  if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1845    assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1846    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1847    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1848  }
1849
1850  // These things needs to be done while we are still a Java Thread. Make sure that thread
1851  // is in a consistent state, in case GC happens
1852  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1853
1854  if (active_handles() != NULL) {
1855    JNIHandleBlock* block = active_handles();
1856    set_active_handles(NULL);
1857    JNIHandleBlock::release_block(block);
1858  }
1859
1860  if (free_handle_block() != NULL) {
1861    JNIHandleBlock* block = free_handle_block();
1862    set_free_handle_block(NULL);
1863    JNIHandleBlock::release_block(block);
1864  }
1865
1866  // These have to be removed while this is still a valid thread.
1867  remove_stack_guard_pages();
1868
1869  if (UseTLAB) {
1870    tlab().make_parsable(true);  // retire TLAB
1871  }
1872
1873  if (JvmtiEnv::environments_might_exist()) {
1874    JvmtiExport::cleanup_thread(this);
1875  }
1876
1877  // We must flush any deferred card marks before removing a thread from
1878  // the list of active threads.
1879  Universe::heap()->flush_deferred_store_barrier(this);
1880  assert(deferred_card_mark().is_empty(), "Should have been flushed");
1881
1882#if INCLUDE_ALL_GCS
1883  // We must flush the G1-related buffers before removing a thread
1884  // from the list of active threads. We must do this after any deferred
1885  // card marks have been flushed (above) so that any entries that are
1886  // added to the thread's dirty card queue as a result are not lost.
1887  if (UseG1GC) {
1888    flush_barrier_queues();
1889  }
1890#endif // INCLUDE_ALL_GCS
1891
1892  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1893  Threads::remove(this);
1894}
1895
1896#if INCLUDE_ALL_GCS
1897// Flush G1-related queues.
1898void JavaThread::flush_barrier_queues() {
1899  satb_mark_queue().flush();
1900  dirty_card_queue().flush();
1901}
1902
1903void JavaThread::initialize_queues() {
1904  assert(!SafepointSynchronize::is_at_safepoint(),
1905         "we should not be at a safepoint");
1906
1907  ObjPtrQueue& satb_queue = satb_mark_queue();
1908  SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1909  // The SATB queue should have been constructed with its active
1910  // field set to false.
1911  assert(!satb_queue.is_active(), "SATB queue should not be active");
1912  assert(satb_queue.is_empty(), "SATB queue should be empty");
1913  // If we are creating the thread during a marking cycle, we should
1914  // set the active field of the SATB queue to true.
1915  if (satb_queue_set.is_active()) {
1916    satb_queue.set_active(true);
1917  }
1918
1919  DirtyCardQueue& dirty_queue = dirty_card_queue();
1920  // The dirty card queue should have been constructed with its
1921  // active field set to true.
1922  assert(dirty_queue.is_active(), "dirty card queue should be active");
1923}
1924#endif // INCLUDE_ALL_GCS
1925
1926void JavaThread::cleanup_failed_attach_current_thread() {
1927  if (get_thread_profiler() != NULL) {
1928    get_thread_profiler()->disengage();
1929    ResourceMark rm;
1930    get_thread_profiler()->print(get_thread_name());
1931  }
1932
1933  if (active_handles() != NULL) {
1934    JNIHandleBlock* block = active_handles();
1935    set_active_handles(NULL);
1936    JNIHandleBlock::release_block(block);
1937  }
1938
1939  if (free_handle_block() != NULL) {
1940    JNIHandleBlock* block = free_handle_block();
1941    set_free_handle_block(NULL);
1942    JNIHandleBlock::release_block(block);
1943  }
1944
1945  // These have to be removed while this is still a valid thread.
1946  remove_stack_guard_pages();
1947
1948  if (UseTLAB) {
1949    tlab().make_parsable(true);  // retire TLAB, if any
1950  }
1951
1952#if INCLUDE_ALL_GCS
1953  if (UseG1GC) {
1954    flush_barrier_queues();
1955  }
1956#endif // INCLUDE_ALL_GCS
1957
1958  Threads::remove(this);
1959  delete this;
1960}
1961
1962
1963
1964
1965JavaThread* JavaThread::active() {
1966  Thread* thread = ThreadLocalStorage::thread();
1967  assert(thread != NULL, "just checking");
1968  if (thread->is_Java_thread()) {
1969    return (JavaThread*) thread;
1970  } else {
1971    assert(thread->is_VM_thread(), "this must be a vm thread");
1972    VM_Operation* op = ((VMThread*) thread)->vm_operation();
1973    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1974    assert(ret->is_Java_thread(), "must be a Java thread");
1975    return ret;
1976  }
1977}
1978
1979bool JavaThread::is_lock_owned(address adr) const {
1980  if (Thread::is_lock_owned(adr)) return true;
1981
1982  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1983    if (chunk->contains(adr)) return true;
1984  }
1985
1986  return false;
1987}
1988
1989
1990void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1991  chunk->set_next(monitor_chunks());
1992  set_monitor_chunks(chunk);
1993}
1994
1995void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1996  guarantee(monitor_chunks() != NULL, "must be non empty");
1997  if (monitor_chunks() == chunk) {
1998    set_monitor_chunks(chunk->next());
1999  } else {
2000    MonitorChunk* prev = monitor_chunks();
2001    while (prev->next() != chunk) prev = prev->next();
2002    prev->set_next(chunk->next());
2003  }
2004}
2005
2006// JVM support.
2007
2008// Note: this function shouldn't block if it's called in
2009// _thread_in_native_trans state (such as from
2010// check_special_condition_for_native_trans()).
2011void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2012
2013  if (has_last_Java_frame() && has_async_condition()) {
2014    // If we are at a polling page safepoint (not a poll return)
2015    // then we must defer async exception because live registers
2016    // will be clobbered by the exception path. Poll return is
2017    // ok because the call we a returning from already collides
2018    // with exception handling registers and so there is no issue.
2019    // (The exception handling path kills call result registers but
2020    //  this is ok since the exception kills the result anyway).
2021
2022    if (is_at_poll_safepoint()) {
2023      // if the code we are returning to has deoptimized we must defer
2024      // the exception otherwise live registers get clobbered on the
2025      // exception path before deoptimization is able to retrieve them.
2026      //
2027      RegisterMap map(this, false);
2028      frame caller_fr = last_frame().sender(&map);
2029      assert(caller_fr.is_compiled_frame(), "what?");
2030      if (caller_fr.is_deoptimized_frame()) {
2031        if (TraceExceptions) {
2032          ResourceMark rm;
2033          tty->print_cr("deferred async exception at compiled safepoint");
2034        }
2035        return;
2036      }
2037    }
2038  }
2039
2040  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2041  if (condition == _no_async_condition) {
2042    // Conditions have changed since has_special_runtime_exit_condition()
2043    // was called:
2044    // - if we were here only because of an external suspend request,
2045    //   then that was taken care of above (or cancelled) so we are done
2046    // - if we were here because of another async request, then it has
2047    //   been cleared between the has_special_runtime_exit_condition()
2048    //   and now so again we are done
2049    return;
2050  }
2051
2052  // Check for pending async. exception
2053  if (_pending_async_exception != NULL) {
2054    // Only overwrite an already pending exception, if it is not a threadDeath.
2055    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2056
2057      // We cannot call Exceptions::_throw(...) here because we cannot block
2058      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2059
2060      if (TraceExceptions) {
2061        ResourceMark rm;
2062        tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2063        if (has_last_Java_frame()) {
2064          frame f = last_frame();
2065          tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2066        }
2067        tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2068      }
2069      _pending_async_exception = NULL;
2070      clear_has_async_exception();
2071    }
2072  }
2073
2074  if (check_unsafe_error &&
2075      condition == _async_unsafe_access_error && !has_pending_exception()) {
2076    condition = _no_async_condition;  // done
2077    switch (thread_state()) {
2078    case _thread_in_vm: {
2079      JavaThread* THREAD = this;
2080      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2081    }
2082    case _thread_in_native: {
2083      ThreadInVMfromNative tiv(this);
2084      JavaThread* THREAD = this;
2085      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2086    }
2087    case _thread_in_Java: {
2088      ThreadInVMfromJava tiv(this);
2089      JavaThread* THREAD = this;
2090      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2091    }
2092    default:
2093      ShouldNotReachHere();
2094    }
2095  }
2096
2097  assert(condition == _no_async_condition || has_pending_exception() ||
2098         (!check_unsafe_error && condition == _async_unsafe_access_error),
2099         "must have handled the async condition, if no exception");
2100}
2101
2102void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2103  //
2104  // Check for pending external suspend. Internal suspend requests do
2105  // not use handle_special_runtime_exit_condition().
2106  // If JNIEnv proxies are allowed, don't self-suspend if the target
2107  // thread is not the current thread. In older versions of jdbx, jdbx
2108  // threads could call into the VM with another thread's JNIEnv so we
2109  // can be here operating on behalf of a suspended thread (4432884).
2110  bool do_self_suspend = is_external_suspend_with_lock();
2111  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2112    //
2113    // Because thread is external suspended the safepoint code will count
2114    // thread as at a safepoint. This can be odd because we can be here
2115    // as _thread_in_Java which would normally transition to _thread_blocked
2116    // at a safepoint. We would like to mark the thread as _thread_blocked
2117    // before calling java_suspend_self like all other callers of it but
2118    // we must then observe proper safepoint protocol. (We can't leave
2119    // _thread_blocked with a safepoint in progress). However we can be
2120    // here as _thread_in_native_trans so we can't use a normal transition
2121    // constructor/destructor pair because they assert on that type of
2122    // transition. We could do something like:
2123    //
2124    // JavaThreadState state = thread_state();
2125    // set_thread_state(_thread_in_vm);
2126    // {
2127    //   ThreadBlockInVM tbivm(this);
2128    //   java_suspend_self()
2129    // }
2130    // set_thread_state(_thread_in_vm_trans);
2131    // if (safepoint) block;
2132    // set_thread_state(state);
2133    //
2134    // but that is pretty messy. Instead we just go with the way the
2135    // code has worked before and note that this is the only path to
2136    // java_suspend_self that doesn't put the thread in _thread_blocked
2137    // mode.
2138
2139    frame_anchor()->make_walkable(this);
2140    java_suspend_self();
2141
2142    // We might be here for reasons in addition to the self-suspend request
2143    // so check for other async requests.
2144  }
2145
2146  if (check_asyncs) {
2147    check_and_handle_async_exceptions();
2148  }
2149}
2150
2151void JavaThread::send_thread_stop(oop java_throwable)  {
2152  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2153  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2154  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2155
2156  // Do not throw asynchronous exceptions against the compiler thread
2157  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2158  if (is_Compiler_thread()) return;
2159
2160  {
2161    // Actually throw the Throwable against the target Thread - however
2162    // only if there is no thread death exception installed already.
2163    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2164      // If the topmost frame is a runtime stub, then we are calling into
2165      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2166      // must deoptimize the caller before continuing, as the compiled  exception handler table
2167      // may not be valid
2168      if (has_last_Java_frame()) {
2169        frame f = last_frame();
2170        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2171          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2172          RegisterMap reg_map(this, UseBiasedLocking);
2173          frame compiled_frame = f.sender(&reg_map);
2174          if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2175            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2176          }
2177        }
2178      }
2179
2180      // Set async. pending exception in thread.
2181      set_pending_async_exception(java_throwable);
2182
2183      if (TraceExceptions) {
2184        ResourceMark rm;
2185        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2186      }
2187      // for AbortVMOnException flag
2188      NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2189    }
2190  }
2191
2192
2193  // Interrupt thread so it will wake up from a potential wait()
2194  Thread::interrupt(this);
2195}
2196
2197// External suspension mechanism.
2198//
2199// Tell the VM to suspend a thread when ever it knows that it does not hold on
2200// to any VM_locks and it is at a transition
2201// Self-suspension will happen on the transition out of the vm.
2202// Catch "this" coming in from JNIEnv pointers when the thread has been freed
2203//
2204// Guarantees on return:
2205//   + Target thread will not execute any new bytecode (that's why we need to
2206//     force a safepoint)
2207//   + Target thread will not enter any new monitors
2208//
2209void JavaThread::java_suspend() {
2210  { MutexLocker mu(Threads_lock);
2211    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2212      return;
2213    }
2214  }
2215
2216  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2217    if (!is_external_suspend()) {
2218      // a racing resume has cancelled us; bail out now
2219      return;
2220    }
2221
2222    // suspend is done
2223    uint32_t debug_bits = 0;
2224    // Warning: is_ext_suspend_completed() may temporarily drop the
2225    // SR_lock to allow the thread to reach a stable thread state if
2226    // it is currently in a transient thread state.
2227    if (is_ext_suspend_completed(false /* !called_by_wait */,
2228                                 SuspendRetryDelay, &debug_bits)) {
2229      return;
2230    }
2231  }
2232
2233  VM_ForceSafepoint vm_suspend;
2234  VMThread::execute(&vm_suspend);
2235}
2236
2237// Part II of external suspension.
2238// A JavaThread self suspends when it detects a pending external suspend
2239// request. This is usually on transitions. It is also done in places
2240// where continuing to the next transition would surprise the caller,
2241// e.g., monitor entry.
2242//
2243// Returns the number of times that the thread self-suspended.
2244//
2245// Note: DO NOT call java_suspend_self() when you just want to block current
2246//       thread. java_suspend_self() is the second stage of cooperative
2247//       suspension for external suspend requests and should only be used
2248//       to complete an external suspend request.
2249//
2250int JavaThread::java_suspend_self() {
2251  int ret = 0;
2252
2253  // we are in the process of exiting so don't suspend
2254  if (is_exiting()) {
2255    clear_external_suspend();
2256    return ret;
2257  }
2258
2259  assert(_anchor.walkable() ||
2260         (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2261         "must have walkable stack");
2262
2263  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2264
2265  assert(!this->is_ext_suspended(),
2266         "a thread trying to self-suspend should not already be suspended");
2267
2268  if (this->is_suspend_equivalent()) {
2269    // If we are self-suspending as a result of the lifting of a
2270    // suspend equivalent condition, then the suspend_equivalent
2271    // flag is not cleared until we set the ext_suspended flag so
2272    // that wait_for_ext_suspend_completion() returns consistent
2273    // results.
2274    this->clear_suspend_equivalent();
2275  }
2276
2277  // A racing resume may have cancelled us before we grabbed SR_lock
2278  // above. Or another external suspend request could be waiting for us
2279  // by the time we return from SR_lock()->wait(). The thread
2280  // that requested the suspension may already be trying to walk our
2281  // stack and if we return now, we can change the stack out from under
2282  // it. This would be a "bad thing (TM)" and cause the stack walker
2283  // to crash. We stay self-suspended until there are no more pending
2284  // external suspend requests.
2285  while (is_external_suspend()) {
2286    ret++;
2287    this->set_ext_suspended();
2288
2289    // _ext_suspended flag is cleared by java_resume()
2290    while (is_ext_suspended()) {
2291      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2292    }
2293  }
2294
2295  return ret;
2296}
2297
2298#ifdef ASSERT
2299// verify the JavaThread has not yet been published in the Threads::list, and
2300// hence doesn't need protection from concurrent access at this stage
2301void JavaThread::verify_not_published() {
2302  if (!Threads_lock->owned_by_self()) {
2303    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2304    assert(!Threads::includes(this),
2305           "java thread shouldn't have been published yet!");
2306  } else {
2307    assert(!Threads::includes(this),
2308           "java thread shouldn't have been published yet!");
2309  }
2310}
2311#endif
2312
2313// Slow path when the native==>VM/Java barriers detect a safepoint is in
2314// progress or when _suspend_flags is non-zero.
2315// Current thread needs to self-suspend if there is a suspend request and/or
2316// block if a safepoint is in progress.
2317// Async exception ISN'T checked.
2318// Note only the ThreadInVMfromNative transition can call this function
2319// directly and when thread state is _thread_in_native_trans
2320void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2321  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2322
2323  JavaThread *curJT = JavaThread::current();
2324  bool do_self_suspend = thread->is_external_suspend();
2325
2326  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2327
2328  // If JNIEnv proxies are allowed, don't self-suspend if the target
2329  // thread is not the current thread. In older versions of jdbx, jdbx
2330  // threads could call into the VM with another thread's JNIEnv so we
2331  // can be here operating on behalf of a suspended thread (4432884).
2332  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2333    JavaThreadState state = thread->thread_state();
2334
2335    // We mark this thread_blocked state as a suspend-equivalent so
2336    // that a caller to is_ext_suspend_completed() won't be confused.
2337    // The suspend-equivalent state is cleared by java_suspend_self().
2338    thread->set_suspend_equivalent();
2339
2340    // If the safepoint code sees the _thread_in_native_trans state, it will
2341    // wait until the thread changes to other thread state. There is no
2342    // guarantee on how soon we can obtain the SR_lock and complete the
2343    // self-suspend request. It would be a bad idea to let safepoint wait for
2344    // too long. Temporarily change the state to _thread_blocked to
2345    // let the VM thread know that this thread is ready for GC. The problem
2346    // of changing thread state is that safepoint could happen just after
2347    // java_suspend_self() returns after being resumed, and VM thread will
2348    // see the _thread_blocked state. We must check for safepoint
2349    // after restoring the state and make sure we won't leave while a safepoint
2350    // is in progress.
2351    thread->set_thread_state(_thread_blocked);
2352    thread->java_suspend_self();
2353    thread->set_thread_state(state);
2354    // Make sure new state is seen by VM thread
2355    if (os::is_MP()) {
2356      if (UseMembar) {
2357        // Force a fence between the write above and read below
2358        OrderAccess::fence();
2359      } else {
2360        // Must use this rather than serialization page in particular on Windows
2361        InterfaceSupport::serialize_memory(thread);
2362      }
2363    }
2364  }
2365
2366  if (SafepointSynchronize::do_call_back()) {
2367    // If we are safepointing, then block the caller which may not be
2368    // the same as the target thread (see above).
2369    SafepointSynchronize::block(curJT);
2370  }
2371
2372  if (thread->is_deopt_suspend()) {
2373    thread->clear_deopt_suspend();
2374    RegisterMap map(thread, false);
2375    frame f = thread->last_frame();
2376    while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2377      f = f.sender(&map);
2378    }
2379    if (f.id() == thread->must_deopt_id()) {
2380      thread->clear_must_deopt_id();
2381      f.deoptimize(thread);
2382    } else {
2383      fatal("missed deoptimization!");
2384    }
2385  }
2386}
2387
2388// Slow path when the native==>VM/Java barriers detect a safepoint is in
2389// progress or when _suspend_flags is non-zero.
2390// Current thread needs to self-suspend if there is a suspend request and/or
2391// block if a safepoint is in progress.
2392// Also check for pending async exception (not including unsafe access error).
2393// Note only the native==>VM/Java barriers can call this function and when
2394// thread state is _thread_in_native_trans.
2395void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2396  check_safepoint_and_suspend_for_native_trans(thread);
2397
2398  if (thread->has_async_exception()) {
2399    // We are in _thread_in_native_trans state, don't handle unsafe
2400    // access error since that may block.
2401    thread->check_and_handle_async_exceptions(false);
2402  }
2403}
2404
2405// This is a variant of the normal
2406// check_special_condition_for_native_trans with slightly different
2407// semantics for use by critical native wrappers.  It does all the
2408// normal checks but also performs the transition back into
2409// thread_in_Java state.  This is required so that critical natives
2410// can potentially block and perform a GC if they are the last thread
2411// exiting the GC_locker.
2412void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2413  check_special_condition_for_native_trans(thread);
2414
2415  // Finish the transition
2416  thread->set_thread_state(_thread_in_Java);
2417
2418  if (thread->do_critical_native_unlock()) {
2419    ThreadInVMfromJavaNoAsyncException tiv(thread);
2420    GC_locker::unlock_critical(thread);
2421    thread->clear_critical_native_unlock();
2422  }
2423}
2424
2425// We need to guarantee the Threads_lock here, since resumes are not
2426// allowed during safepoint synchronization
2427// Can only resume from an external suspension
2428void JavaThread::java_resume() {
2429  assert_locked_or_safepoint(Threads_lock);
2430
2431  // Sanity check: thread is gone, has started exiting or the thread
2432  // was not externally suspended.
2433  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2434    return;
2435  }
2436
2437  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2438
2439  clear_external_suspend();
2440
2441  if (is_ext_suspended()) {
2442    clear_ext_suspended();
2443    SR_lock()->notify_all();
2444  }
2445}
2446
2447void JavaThread::create_stack_guard_pages() {
2448  if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2449  address low_addr = stack_base() - stack_size();
2450  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2451
2452  int allocate = os::allocate_stack_guard_pages();
2453  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2454
2455  if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2456    warning("Attempt to allocate stack guard pages failed.");
2457    return;
2458  }
2459
2460  if (os::guard_memory((char *) low_addr, len)) {
2461    _stack_guard_state = stack_guard_enabled;
2462  } else {
2463    warning("Attempt to protect stack guard pages failed.");
2464    if (os::uncommit_memory((char *) low_addr, len)) {
2465      warning("Attempt to deallocate stack guard pages failed.");
2466    }
2467  }
2468}
2469
2470void JavaThread::remove_stack_guard_pages() {
2471  assert(Thread::current() == this, "from different thread");
2472  if (_stack_guard_state == stack_guard_unused) return;
2473  address low_addr = stack_base() - stack_size();
2474  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2475
2476  if (os::allocate_stack_guard_pages()) {
2477    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2478      _stack_guard_state = stack_guard_unused;
2479    } else {
2480      warning("Attempt to deallocate stack guard pages failed.");
2481    }
2482  } else {
2483    if (_stack_guard_state == stack_guard_unused) return;
2484    if (os::unguard_memory((char *) low_addr, len)) {
2485      _stack_guard_state = stack_guard_unused;
2486    } else {
2487      warning("Attempt to unprotect stack guard pages failed.");
2488    }
2489  }
2490}
2491
2492void JavaThread::enable_stack_yellow_zone() {
2493  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2494  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2495
2496  // The base notation is from the stacks point of view, growing downward.
2497  // We need to adjust it to work correctly with guard_memory()
2498  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2499
2500  guarantee(base < stack_base(), "Error calculating stack yellow zone");
2501  guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2502
2503  if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2504    _stack_guard_state = stack_guard_enabled;
2505  } else {
2506    warning("Attempt to guard stack yellow zone failed.");
2507  }
2508  enable_register_stack_guard();
2509}
2510
2511void JavaThread::disable_stack_yellow_zone() {
2512  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2513  assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2514
2515  // Simply return if called for a thread that does not use guard pages.
2516  if (_stack_guard_state == stack_guard_unused) return;
2517
2518  // The base notation is from the stacks point of view, growing downward.
2519  // We need to adjust it to work correctly with guard_memory()
2520  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2521
2522  if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2523    _stack_guard_state = stack_guard_yellow_disabled;
2524  } else {
2525    warning("Attempt to unguard stack yellow zone failed.");
2526  }
2527  disable_register_stack_guard();
2528}
2529
2530void JavaThread::enable_stack_red_zone() {
2531  // The base notation is from the stacks point of view, growing downward.
2532  // We need to adjust it to work correctly with guard_memory()
2533  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2534  address base = stack_red_zone_base() - stack_red_zone_size();
2535
2536  guarantee(base < stack_base(), "Error calculating stack red zone");
2537  guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2538
2539  if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2540    warning("Attempt to guard stack red zone failed.");
2541  }
2542}
2543
2544void JavaThread::disable_stack_red_zone() {
2545  // The base notation is from the stacks point of view, growing downward.
2546  // We need to adjust it to work correctly with guard_memory()
2547  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2548  address base = stack_red_zone_base() - stack_red_zone_size();
2549  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2550    warning("Attempt to unguard stack red zone failed.");
2551  }
2552}
2553
2554void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2555  // ignore is there is no stack
2556  if (!has_last_Java_frame()) return;
2557  // traverse the stack frames. Starts from top frame.
2558  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2559    frame* fr = fst.current();
2560    f(fr, fst.register_map());
2561  }
2562}
2563
2564
2565#ifndef PRODUCT
2566// Deoptimization
2567// Function for testing deoptimization
2568void JavaThread::deoptimize() {
2569  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2570  StackFrameStream fst(this, UseBiasedLocking);
2571  bool deopt = false;           // Dump stack only if a deopt actually happens.
2572  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2573  // Iterate over all frames in the thread and deoptimize
2574  for (; !fst.is_done(); fst.next()) {
2575    if (fst.current()->can_be_deoptimized()) {
2576
2577      if (only_at) {
2578        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2579        // consists of comma or carriage return separated numbers so
2580        // search for the current bci in that string.
2581        address pc = fst.current()->pc();
2582        nmethod* nm =  (nmethod*) fst.current()->cb();
2583        ScopeDesc* sd = nm->scope_desc_at(pc);
2584        char buffer[8];
2585        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2586        size_t len = strlen(buffer);
2587        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2588        while (found != NULL) {
2589          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2590              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2591            // Check that the bci found is bracketed by terminators.
2592            break;
2593          }
2594          found = strstr(found + 1, buffer);
2595        }
2596        if (!found) {
2597          continue;
2598        }
2599      }
2600
2601      if (DebugDeoptimization && !deopt) {
2602        deopt = true; // One-time only print before deopt
2603        tty->print_cr("[BEFORE Deoptimization]");
2604        trace_frames();
2605        trace_stack();
2606      }
2607      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2608    }
2609  }
2610
2611  if (DebugDeoptimization && deopt) {
2612    tty->print_cr("[AFTER Deoptimization]");
2613    trace_frames();
2614  }
2615}
2616
2617
2618// Make zombies
2619void JavaThread::make_zombies() {
2620  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2621    if (fst.current()->can_be_deoptimized()) {
2622      // it is a Java nmethod
2623      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2624      nm->make_not_entrant();
2625    }
2626  }
2627}
2628#endif // PRODUCT
2629
2630
2631void JavaThread::deoptimized_wrt_marked_nmethods() {
2632  if (!has_last_Java_frame()) return;
2633  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2634  StackFrameStream fst(this, UseBiasedLocking);
2635  for (; !fst.is_done(); fst.next()) {
2636    if (fst.current()->should_be_deoptimized()) {
2637      if (LogCompilation && xtty != NULL) {
2638        nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2639        xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2640                   this->name(), nm != NULL ? nm->compile_id() : -1);
2641      }
2642
2643      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2644    }
2645  }
2646}
2647
2648
2649// If the caller is a NamedThread, then remember, in the current scope,
2650// the given JavaThread in its _processed_thread field.
2651class RememberProcessedThread: public StackObj {
2652  NamedThread* _cur_thr;
2653 public:
2654  RememberProcessedThread(JavaThread* jthr) {
2655    Thread* thread = Thread::current();
2656    if (thread->is_Named_thread()) {
2657      _cur_thr = (NamedThread *)thread;
2658      _cur_thr->set_processed_thread(jthr);
2659    } else {
2660      _cur_thr = NULL;
2661    }
2662  }
2663
2664  ~RememberProcessedThread() {
2665    if (_cur_thr) {
2666      _cur_thr->set_processed_thread(NULL);
2667    }
2668  }
2669};
2670
2671void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2672  // Verify that the deferred card marks have been flushed.
2673  assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2674
2675  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2676  // since there may be more than one thread using each ThreadProfiler.
2677
2678  // Traverse the GCHandles
2679  Thread::oops_do(f, cld_f, cf);
2680
2681  assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2682         (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2683
2684  if (has_last_Java_frame()) {
2685    // Record JavaThread to GC thread
2686    RememberProcessedThread rpt(this);
2687
2688    // Traverse the privileged stack
2689    if (_privileged_stack_top != NULL) {
2690      _privileged_stack_top->oops_do(f);
2691    }
2692
2693    // traverse the registered growable array
2694    if (_array_for_gc != NULL) {
2695      for (int index = 0; index < _array_for_gc->length(); index++) {
2696        f->do_oop(_array_for_gc->adr_at(index));
2697      }
2698    }
2699
2700    // Traverse the monitor chunks
2701    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2702      chunk->oops_do(f);
2703    }
2704
2705    // Traverse the execution stack
2706    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2707      fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2708    }
2709  }
2710
2711  // callee_target is never live across a gc point so NULL it here should
2712  // it still contain a methdOop.
2713
2714  set_callee_target(NULL);
2715
2716  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2717  // If we have deferred set_locals there might be oops waiting to be
2718  // written
2719  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2720  if (list != NULL) {
2721    for (int i = 0; i < list->length(); i++) {
2722      list->at(i)->oops_do(f);
2723    }
2724  }
2725
2726  // Traverse instance variables at the end since the GC may be moving things
2727  // around using this function
2728  f->do_oop((oop*) &_threadObj);
2729  f->do_oop((oop*) &_vm_result);
2730  f->do_oop((oop*) &_exception_oop);
2731  f->do_oop((oop*) &_pending_async_exception);
2732
2733  if (jvmti_thread_state() != NULL) {
2734    jvmti_thread_state()->oops_do(f);
2735  }
2736}
2737
2738void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2739  Thread::nmethods_do(cf);  // (super method is a no-op)
2740
2741  assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2742         (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2743
2744  if (has_last_Java_frame()) {
2745    // Traverse the execution stack
2746    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2747      fst.current()->nmethods_do(cf);
2748    }
2749  }
2750}
2751
2752void JavaThread::metadata_do(void f(Metadata*)) {
2753  Thread::metadata_do(f);
2754  if (has_last_Java_frame()) {
2755    // Traverse the execution stack to call f() on the methods in the stack
2756    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2757      fst.current()->metadata_do(f);
2758    }
2759  } else if (is_Compiler_thread()) {
2760    // need to walk ciMetadata in current compile tasks to keep alive.
2761    CompilerThread* ct = (CompilerThread*)this;
2762    if (ct->env() != NULL) {
2763      ct->env()->metadata_do(f);
2764    }
2765  }
2766}
2767
2768// Printing
2769const char* _get_thread_state_name(JavaThreadState _thread_state) {
2770  switch (_thread_state) {
2771  case _thread_uninitialized:     return "_thread_uninitialized";
2772  case _thread_new:               return "_thread_new";
2773  case _thread_new_trans:         return "_thread_new_trans";
2774  case _thread_in_native:         return "_thread_in_native";
2775  case _thread_in_native_trans:   return "_thread_in_native_trans";
2776  case _thread_in_vm:             return "_thread_in_vm";
2777  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2778  case _thread_in_Java:           return "_thread_in_Java";
2779  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2780  case _thread_blocked:           return "_thread_blocked";
2781  case _thread_blocked_trans:     return "_thread_blocked_trans";
2782  default:                        return "unknown thread state";
2783  }
2784}
2785
2786#ifndef PRODUCT
2787void JavaThread::print_thread_state_on(outputStream *st) const {
2788  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2789};
2790void JavaThread::print_thread_state() const {
2791  print_thread_state_on(tty);
2792}
2793#endif // PRODUCT
2794
2795// Called by Threads::print() for VM_PrintThreads operation
2796void JavaThread::print_on(outputStream *st) const {
2797  st->print("\"%s\" ", get_thread_name());
2798  oop thread_oop = threadObj();
2799  if (thread_oop != NULL) {
2800    st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2801    if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2802    st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2803  }
2804  Thread::print_on(st);
2805  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2806  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2807  if (thread_oop != NULL) {
2808    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2809  }
2810#ifndef PRODUCT
2811  print_thread_state_on(st);
2812  _safepoint_state->print_on(st);
2813#endif // PRODUCT
2814}
2815
2816// Called by fatal error handler. The difference between this and
2817// JavaThread::print() is that we can't grab lock or allocate memory.
2818void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2819  st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2820  oop thread_obj = threadObj();
2821  if (thread_obj != NULL) {
2822    if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2823  }
2824  st->print(" [");
2825  st->print("%s", _get_thread_state_name(_thread_state));
2826  if (osthread()) {
2827    st->print(", id=%d", osthread()->thread_id());
2828  }
2829  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2830            _stack_base - _stack_size, _stack_base);
2831  st->print("]");
2832  return;
2833}
2834
2835// Verification
2836
2837static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2838
2839void JavaThread::verify() {
2840  // Verify oops in the thread.
2841  oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2842
2843  // Verify the stack frames.
2844  frames_do(frame_verify);
2845}
2846
2847// CR 6300358 (sub-CR 2137150)
2848// Most callers of this method assume that it can't return NULL but a
2849// thread may not have a name whilst it is in the process of attaching to
2850// the VM - see CR 6412693, and there are places where a JavaThread can be
2851// seen prior to having it's threadObj set (eg JNI attaching threads and
2852// if vm exit occurs during initialization). These cases can all be accounted
2853// for such that this method never returns NULL.
2854const char* JavaThread::get_thread_name() const {
2855#ifdef ASSERT
2856  // early safepoints can hit while current thread does not yet have TLS
2857  if (!SafepointSynchronize::is_at_safepoint()) {
2858    Thread *cur = Thread::current();
2859    if (!(cur->is_Java_thread() && cur == this)) {
2860      // Current JavaThreads are allowed to get their own name without
2861      // the Threads_lock.
2862      assert_locked_or_safepoint(Threads_lock);
2863    }
2864  }
2865#endif // ASSERT
2866  return get_thread_name_string();
2867}
2868
2869// Returns a non-NULL representation of this thread's name, or a suitable
2870// descriptive string if there is no set name
2871const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2872  const char* name_str;
2873  oop thread_obj = threadObj();
2874  if (thread_obj != NULL) {
2875    typeArrayOop name = java_lang_Thread::name(thread_obj);
2876    if (name != NULL) {
2877      if (buf == NULL) {
2878        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR),
2879                                    name->length());
2880      } else {
2881        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR),
2882                                    name->length(), buf, buflen);
2883      }
2884    } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2885      name_str = "<no-name - thread is attaching>";
2886    } else {
2887      name_str = Thread::name();
2888    }
2889  } else {
2890    name_str = Thread::name();
2891  }
2892  assert(name_str != NULL, "unexpected NULL thread name");
2893  return name_str;
2894}
2895
2896
2897const char* JavaThread::get_threadgroup_name() const {
2898  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2899  oop thread_obj = threadObj();
2900  if (thread_obj != NULL) {
2901    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2902    if (thread_group != NULL) {
2903      typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2904      // ThreadGroup.name can be null
2905      if (name != NULL) {
2906        const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2907        return str;
2908      }
2909    }
2910  }
2911  return NULL;
2912}
2913
2914const char* JavaThread::get_parent_name() const {
2915  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2916  oop thread_obj = threadObj();
2917  if (thread_obj != NULL) {
2918    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2919    if (thread_group != NULL) {
2920      oop parent = java_lang_ThreadGroup::parent(thread_group);
2921      if (parent != NULL) {
2922        typeArrayOop name = java_lang_ThreadGroup::name(parent);
2923        // ThreadGroup.name can be null
2924        if (name != NULL) {
2925          const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2926          return str;
2927        }
2928      }
2929    }
2930  }
2931  return NULL;
2932}
2933
2934ThreadPriority JavaThread::java_priority() const {
2935  oop thr_oop = threadObj();
2936  if (thr_oop == NULL) return NormPriority; // Bootstrapping
2937  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2938  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2939  return priority;
2940}
2941
2942void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2943
2944  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2945  // Link Java Thread object <-> C++ Thread
2946
2947  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2948  // and put it into a new Handle.  The Handle "thread_oop" can then
2949  // be used to pass the C++ thread object to other methods.
2950
2951  // Set the Java level thread object (jthread) field of the
2952  // new thread (a JavaThread *) to C++ thread object using the
2953  // "thread_oop" handle.
2954
2955  // Set the thread field (a JavaThread *) of the
2956  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2957
2958  Handle thread_oop(Thread::current(),
2959                    JNIHandles::resolve_non_null(jni_thread));
2960  assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2961         "must be initialized");
2962  set_threadObj(thread_oop());
2963  java_lang_Thread::set_thread(thread_oop(), this);
2964
2965  if (prio == NoPriority) {
2966    prio = java_lang_Thread::priority(thread_oop());
2967    assert(prio != NoPriority, "A valid priority should be present");
2968  }
2969
2970  // Push the Java priority down to the native thread; needs Threads_lock
2971  Thread::set_priority(this, prio);
2972
2973  prepare_ext();
2974
2975  // Add the new thread to the Threads list and set it in motion.
2976  // We must have threads lock in order to call Threads::add.
2977  // It is crucial that we do not block before the thread is
2978  // added to the Threads list for if a GC happens, then the java_thread oop
2979  // will not be visited by GC.
2980  Threads::add(this);
2981}
2982
2983oop JavaThread::current_park_blocker() {
2984  // Support for JSR-166 locks
2985  oop thread_oop = threadObj();
2986  if (thread_oop != NULL &&
2987      JDK_Version::current().supports_thread_park_blocker()) {
2988    return java_lang_Thread::park_blocker(thread_oop);
2989  }
2990  return NULL;
2991}
2992
2993
2994void JavaThread::print_stack_on(outputStream* st) {
2995  if (!has_last_Java_frame()) return;
2996  ResourceMark rm;
2997  HandleMark   hm;
2998
2999  RegisterMap reg_map(this);
3000  vframe* start_vf = last_java_vframe(&reg_map);
3001  int count = 0;
3002  for (vframe* f = start_vf; f; f = f->sender()) {
3003    if (f->is_java_frame()) {
3004      javaVFrame* jvf = javaVFrame::cast(f);
3005      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3006
3007      // Print out lock information
3008      if (JavaMonitorsInStackTrace) {
3009        jvf->print_lock_info_on(st, count);
3010      }
3011    } else {
3012      // Ignore non-Java frames
3013    }
3014
3015    // Bail-out case for too deep stacks
3016    count++;
3017    if (MaxJavaStackTraceDepth == count) return;
3018  }
3019}
3020
3021
3022// JVMTI PopFrame support
3023void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3024  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3025  if (in_bytes(size_in_bytes) != 0) {
3026    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3027    _popframe_preserved_args_size = in_bytes(size_in_bytes);
3028    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3029  }
3030}
3031
3032void* JavaThread::popframe_preserved_args() {
3033  return _popframe_preserved_args;
3034}
3035
3036ByteSize JavaThread::popframe_preserved_args_size() {
3037  return in_ByteSize(_popframe_preserved_args_size);
3038}
3039
3040WordSize JavaThread::popframe_preserved_args_size_in_words() {
3041  int sz = in_bytes(popframe_preserved_args_size());
3042  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3043  return in_WordSize(sz / wordSize);
3044}
3045
3046void JavaThread::popframe_free_preserved_args() {
3047  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3048  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3049  _popframe_preserved_args = NULL;
3050  _popframe_preserved_args_size = 0;
3051}
3052
3053#ifndef PRODUCT
3054
3055void JavaThread::trace_frames() {
3056  tty->print_cr("[Describe stack]");
3057  int frame_no = 1;
3058  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3059    tty->print("  %d. ", frame_no++);
3060    fst.current()->print_value_on(tty, this);
3061    tty->cr();
3062  }
3063}
3064
3065class PrintAndVerifyOopClosure: public OopClosure {
3066 protected:
3067  template <class T> inline void do_oop_work(T* p) {
3068    oop obj = oopDesc::load_decode_heap_oop(p);
3069    if (obj == NULL) return;
3070    tty->print(INTPTR_FORMAT ": ", p);
3071    if (obj->is_oop_or_null()) {
3072      if (obj->is_objArray()) {
3073        tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3074      } else {
3075        obj->print();
3076      }
3077    } else {
3078      tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3079    }
3080    tty->cr();
3081  }
3082 public:
3083  virtual void do_oop(oop* p) { do_oop_work(p); }
3084  virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3085};
3086
3087
3088static void oops_print(frame* f, const RegisterMap *map) {
3089  PrintAndVerifyOopClosure print;
3090  f->print_value();
3091  f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3092}
3093
3094// Print our all the locations that contain oops and whether they are
3095// valid or not.  This useful when trying to find the oldest frame
3096// where an oop has gone bad since the frame walk is from youngest to
3097// oldest.
3098void JavaThread::trace_oops() {
3099  tty->print_cr("[Trace oops]");
3100  frames_do(oops_print);
3101}
3102
3103
3104#ifdef ASSERT
3105// Print or validate the layout of stack frames
3106void JavaThread::print_frame_layout(int depth, bool validate_only) {
3107  ResourceMark rm;
3108  PRESERVE_EXCEPTION_MARK;
3109  FrameValues values;
3110  int frame_no = 0;
3111  for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3112    fst.current()->describe(values, ++frame_no);
3113    if (depth == frame_no) break;
3114  }
3115  if (validate_only) {
3116    values.validate();
3117  } else {
3118    tty->print_cr("[Describe stack layout]");
3119    values.print(this);
3120  }
3121}
3122#endif
3123
3124void JavaThread::trace_stack_from(vframe* start_vf) {
3125  ResourceMark rm;
3126  int vframe_no = 1;
3127  for (vframe* f = start_vf; f; f = f->sender()) {
3128    if (f->is_java_frame()) {
3129      javaVFrame::cast(f)->print_activation(vframe_no++);
3130    } else {
3131      f->print();
3132    }
3133    if (vframe_no > StackPrintLimit) {
3134      tty->print_cr("...<more frames>...");
3135      return;
3136    }
3137  }
3138}
3139
3140
3141void JavaThread::trace_stack() {
3142  if (!has_last_Java_frame()) return;
3143  ResourceMark rm;
3144  HandleMark   hm;
3145  RegisterMap reg_map(this);
3146  trace_stack_from(last_java_vframe(&reg_map));
3147}
3148
3149
3150#endif // PRODUCT
3151
3152
3153javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3154  assert(reg_map != NULL, "a map must be given");
3155  frame f = last_frame();
3156  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3157    if (vf->is_java_frame()) return javaVFrame::cast(vf);
3158  }
3159  return NULL;
3160}
3161
3162
3163Klass* JavaThread::security_get_caller_class(int depth) {
3164  vframeStream vfst(this);
3165  vfst.security_get_caller_frame(depth);
3166  if (!vfst.at_end()) {
3167    return vfst.method()->method_holder();
3168  }
3169  return NULL;
3170}
3171
3172static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3173  assert(thread->is_Compiler_thread(), "must be compiler thread");
3174  CompileBroker::compiler_thread_loop();
3175}
3176
3177static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3178  NMethodSweeper::sweeper_loop();
3179}
3180
3181// Create a CompilerThread
3182CompilerThread::CompilerThread(CompileQueue* queue,
3183                               CompilerCounters* counters)
3184                               : JavaThread(&compiler_thread_entry) {
3185  _env   = NULL;
3186  _log   = NULL;
3187  _task  = NULL;
3188  _queue = queue;
3189  _counters = counters;
3190  _buffer_blob = NULL;
3191  _compiler = NULL;
3192
3193#ifndef PRODUCT
3194  _ideal_graph_printer = NULL;
3195#endif
3196}
3197
3198// Create sweeper thread
3199CodeCacheSweeperThread::CodeCacheSweeperThread()
3200: JavaThread(&sweeper_thread_entry) {
3201  _scanned_nmethod = NULL;
3202}
3203void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3204  JavaThread::oops_do(f, cld_f, cf);
3205  if (_scanned_nmethod != NULL && cf != NULL) {
3206    // Safepoints can occur when the sweeper is scanning an nmethod so
3207    // process it here to make sure it isn't unloaded in the middle of
3208    // a scan.
3209    cf->do_code_blob(_scanned_nmethod);
3210  }
3211}
3212
3213
3214// ======= Threads ========
3215
3216// The Threads class links together all active threads, and provides
3217// operations over all threads.  It is protected by its own Mutex
3218// lock, which is also used in other contexts to protect thread
3219// operations from having the thread being operated on from exiting
3220// and going away unexpectedly (e.g., safepoint synchronization)
3221
3222JavaThread* Threads::_thread_list = NULL;
3223int         Threads::_number_of_threads = 0;
3224int         Threads::_number_of_non_daemon_threads = 0;
3225int         Threads::_return_code = 0;
3226size_t      JavaThread::_stack_size_at_create = 0;
3227#ifdef ASSERT
3228bool        Threads::_vm_complete = false;
3229#endif
3230
3231// All JavaThreads
3232#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3233
3234// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3235void Threads::threads_do(ThreadClosure* tc) {
3236  assert_locked_or_safepoint(Threads_lock);
3237  // ALL_JAVA_THREADS iterates through all JavaThreads
3238  ALL_JAVA_THREADS(p) {
3239    tc->do_thread(p);
3240  }
3241  // Someday we could have a table or list of all non-JavaThreads.
3242  // For now, just manually iterate through them.
3243  tc->do_thread(VMThread::vm_thread());
3244  Universe::heap()->gc_threads_do(tc);
3245  WatcherThread *wt = WatcherThread::watcher_thread();
3246  // Strictly speaking, the following NULL check isn't sufficient to make sure
3247  // the data for WatcherThread is still valid upon being examined. However,
3248  // considering that WatchThread terminates when the VM is on the way to
3249  // exit at safepoint, the chance of the above is extremely small. The right
3250  // way to prevent termination of WatcherThread would be to acquire
3251  // Terminator_lock, but we can't do that without violating the lock rank
3252  // checking in some cases.
3253  if (wt != NULL) {
3254    tc->do_thread(wt);
3255  }
3256
3257  // If CompilerThreads ever become non-JavaThreads, add them here
3258}
3259
3260
3261void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3262  TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3263
3264  if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3265    create_vm_init_libraries();
3266  }
3267
3268  initialize_class(vmSymbols::java_lang_String(), CHECK);
3269
3270  // Initialize java_lang.System (needed before creating the thread)
3271  initialize_class(vmSymbols::java_lang_System(), CHECK);
3272  initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3273  Handle thread_group = create_initial_thread_group(CHECK);
3274  Universe::set_main_thread_group(thread_group());
3275  initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3276  oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3277  main_thread->set_threadObj(thread_object);
3278  // Set thread status to running since main thread has
3279  // been started and running.
3280  java_lang_Thread::set_thread_status(thread_object,
3281                                      java_lang_Thread::RUNNABLE);
3282
3283  // The VM creates & returns objects of this class. Make sure it's initialized.
3284  initialize_class(vmSymbols::java_lang_Class(), CHECK);
3285
3286  // The VM preresolves methods to these classes. Make sure that they get initialized
3287  initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3288  initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3289  call_initializeSystemClass(CHECK);
3290
3291  // get the Java runtime name after java.lang.System is initialized
3292  JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3293  JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3294
3295  // an instance of OutOfMemory exception has been allocated earlier
3296  initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3297  initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3298  initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3299  initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3300  initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3301  initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3302  initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3303  initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3304}
3305
3306void Threads::initialize_jsr292_core_classes(TRAPS) {
3307  initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3308  initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3309  initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3310}
3311
3312jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3313  extern void JDK_Version_init();
3314
3315  // Check version
3316  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3317
3318  // Initialize the output stream module
3319  ostream_init();
3320
3321  // Process java launcher properties.
3322  Arguments::process_sun_java_launcher_properties(args);
3323
3324  // Initialize the os module before using TLS
3325  os::init();
3326
3327  // Initialize system properties.
3328  Arguments::init_system_properties();
3329
3330  // So that JDK version can be used as a discriminator when parsing arguments
3331  JDK_Version_init();
3332
3333  // Update/Initialize System properties after JDK version number is known
3334  Arguments::init_version_specific_system_properties();
3335
3336  // Parse arguments
3337  jint parse_result = Arguments::parse(args);
3338  if (parse_result != JNI_OK) return parse_result;
3339
3340  os::init_before_ergo();
3341
3342  jint ergo_result = Arguments::apply_ergo();
3343  if (ergo_result != JNI_OK) return ergo_result;
3344
3345  if (PauseAtStartup) {
3346    os::pause();
3347  }
3348
3349  HOTSPOT_VM_INIT_BEGIN();
3350
3351  // Record VM creation timing statistics
3352  TraceVmCreationTime create_vm_timer;
3353  create_vm_timer.start();
3354
3355  // Timing (must come after argument parsing)
3356  TraceTime timer("Create VM", TraceStartupTime);
3357
3358  // Initialize the os module after parsing the args
3359  jint os_init_2_result = os::init_2();
3360  if (os_init_2_result != JNI_OK) return os_init_2_result;
3361
3362  jint adjust_after_os_result = Arguments::adjust_after_os();
3363  if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3364
3365  // initialize TLS
3366  ThreadLocalStorage::init();
3367
3368  // Initialize output stream logging
3369  ostream_init_log();
3370
3371  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3372  // Must be before create_vm_init_agents()
3373  if (Arguments::init_libraries_at_startup()) {
3374    convert_vm_init_libraries_to_agents();
3375  }
3376
3377  // Launch -agentlib/-agentpath and converted -Xrun agents
3378  if (Arguments::init_agents_at_startup()) {
3379    create_vm_init_agents();
3380  }
3381
3382  // Initialize Threads state
3383  _thread_list = NULL;
3384  _number_of_threads = 0;
3385  _number_of_non_daemon_threads = 0;
3386
3387  // Initialize global data structures and create system classes in heap
3388  vm_init_globals();
3389
3390  // Attach the main thread to this os thread
3391  JavaThread* main_thread = new JavaThread();
3392  main_thread->set_thread_state(_thread_in_vm);
3393  // must do this before set_active_handles and initialize_thread_local_storage
3394  // Note: on solaris initialize_thread_local_storage() will (indirectly)
3395  // change the stack size recorded here to one based on the java thread
3396  // stacksize. This adjusted size is what is used to figure the placement
3397  // of the guard pages.
3398  main_thread->record_stack_base_and_size();
3399  main_thread->initialize_thread_local_storage();
3400
3401  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3402
3403  if (!main_thread->set_as_starting_thread()) {
3404    vm_shutdown_during_initialization(
3405                                      "Failed necessary internal allocation. Out of swap space");
3406    delete main_thread;
3407    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3408    return JNI_ENOMEM;
3409  }
3410
3411  // Enable guard page *after* os::create_main_thread(), otherwise it would
3412  // crash Linux VM, see notes in os_linux.cpp.
3413  main_thread->create_stack_guard_pages();
3414
3415  // Initialize Java-Level synchronization subsystem
3416  ObjectMonitor::Initialize();
3417
3418  // Initialize global modules
3419  jint status = init_globals();
3420  if (status != JNI_OK) {
3421    delete main_thread;
3422    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3423    return status;
3424  }
3425
3426  // Should be done after the heap is fully created
3427  main_thread->cache_global_variables();
3428
3429  HandleMark hm;
3430
3431  { MutexLocker mu(Threads_lock);
3432    Threads::add(main_thread);
3433  }
3434
3435  // Any JVMTI raw monitors entered in onload will transition into
3436  // real raw monitor. VM is setup enough here for raw monitor enter.
3437  JvmtiExport::transition_pending_onload_raw_monitors();
3438
3439  // Create the VMThread
3440  { TraceTime timer("Start VMThread", TraceStartupTime);
3441    VMThread::create();
3442    Thread* vmthread = VMThread::vm_thread();
3443
3444    if (!os::create_thread(vmthread, os::vm_thread)) {
3445      vm_exit_during_initialization("Cannot create VM thread. "
3446                                    "Out of system resources.");
3447    }
3448
3449    // Wait for the VM thread to become ready, and VMThread::run to initialize
3450    // Monitors can have spurious returns, must always check another state flag
3451    {
3452      MutexLocker ml(Notify_lock);
3453      os::start_thread(vmthread);
3454      while (vmthread->active_handles() == NULL) {
3455        Notify_lock->wait();
3456      }
3457    }
3458  }
3459
3460  assert(Universe::is_fully_initialized(), "not initialized");
3461  if (VerifyDuringStartup) {
3462    // Make sure we're starting with a clean slate.
3463    VM_Verify verify_op;
3464    VMThread::execute(&verify_op);
3465  }
3466
3467  Thread* THREAD = Thread::current();
3468
3469  // At this point, the Universe is initialized, but we have not executed
3470  // any byte code.  Now is a good time (the only time) to dump out the
3471  // internal state of the JVM for sharing.
3472  if (DumpSharedSpaces) {
3473    MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3474    ShouldNotReachHere();
3475  }
3476
3477  // Always call even when there are not JVMTI environments yet, since environments
3478  // may be attached late and JVMTI must track phases of VM execution
3479  JvmtiExport::enter_start_phase();
3480
3481  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3482  JvmtiExport::post_vm_start();
3483
3484  initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3485
3486  // We need this for ClassDataSharing - the initial vm.info property is set
3487  // with the default value of CDS "sharing" which may be reset through
3488  // command line options.
3489  reset_vm_info_property(CHECK_JNI_ERR);
3490
3491  quicken_jni_functions();
3492
3493  // Must be run after init_ft which initializes ft_enabled
3494  if (TRACE_INITIALIZE() != JNI_OK) {
3495    vm_exit_during_initialization("Failed to initialize tracing backend");
3496  }
3497
3498  // Set flag that basic initialization has completed. Used by exceptions and various
3499  // debug stuff, that does not work until all basic classes have been initialized.
3500  set_init_completed();
3501
3502  Metaspace::post_initialize();
3503
3504  HOTSPOT_VM_INIT_END();
3505
3506  // record VM initialization completion time
3507#if INCLUDE_MANAGEMENT
3508  Management::record_vm_init_completed();
3509#endif // INCLUDE_MANAGEMENT
3510
3511  // Compute system loader. Note that this has to occur after set_init_completed, since
3512  // valid exceptions may be thrown in the process.
3513  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3514  // set_init_completed has just been called, causing exceptions not to be shortcut
3515  // anymore. We call vm_exit_during_initialization directly instead.
3516  SystemDictionary::compute_java_system_loader(CHECK_JNI_ERR);
3517
3518#if INCLUDE_ALL_GCS
3519  // Support for ConcurrentMarkSweep. This should be cleaned up
3520  // and better encapsulated. The ugly nested if test would go away
3521  // once things are properly refactored. XXX YSR
3522  if (UseConcMarkSweepGC || UseG1GC) {
3523    if (UseConcMarkSweepGC) {
3524      ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3525    } else {
3526      ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3527    }
3528  }
3529#endif // INCLUDE_ALL_GCS
3530
3531  // Always call even when there are not JVMTI environments yet, since environments
3532  // may be attached late and JVMTI must track phases of VM execution
3533  JvmtiExport::enter_live_phase();
3534
3535  // Signal Dispatcher needs to be started before VMInit event is posted
3536  os::signal_init();
3537
3538  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3539  if (!DisableAttachMechanism) {
3540    AttachListener::vm_start();
3541    if (StartAttachListener || AttachListener::init_at_startup()) {
3542      AttachListener::init();
3543    }
3544  }
3545
3546  // Launch -Xrun agents
3547  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3548  // back-end can launch with -Xdebug -Xrunjdwp.
3549  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3550    create_vm_init_libraries();
3551  }
3552
3553  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3554  JvmtiExport::post_vm_initialized();
3555
3556  if (TRACE_START() != JNI_OK) {
3557    vm_exit_during_initialization("Failed to start tracing backend.");
3558  }
3559
3560  if (CleanChunkPoolAsync) {
3561    Chunk::start_chunk_pool_cleaner_task();
3562  }
3563
3564  // initialize compiler(s)
3565#if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3566  CompileBroker::compilation_init();
3567#endif
3568
3569  // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3570  // It is done after compilers are initialized, because otherwise compilations of
3571  // signature polymorphic MH intrinsics can be missed
3572  // (see SystemDictionary::find_method_handle_intrinsic).
3573  initialize_jsr292_core_classes(CHECK_JNI_ERR);
3574
3575#if INCLUDE_MANAGEMENT
3576  Management::initialize(THREAD);
3577
3578  if (HAS_PENDING_EXCEPTION) {
3579    // management agent fails to start possibly due to
3580    // configuration problem and is responsible for printing
3581    // stack trace if appropriate. Simply exit VM.
3582    vm_exit(1);
3583  }
3584#endif // INCLUDE_MANAGEMENT
3585
3586  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3587  if (MemProfiling)                   MemProfiler::engage();
3588  StatSampler::engage();
3589  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3590
3591  BiasedLocking::init();
3592
3593#if INCLUDE_RTM_OPT
3594  RTMLockingCounters::init();
3595#endif
3596
3597  if (JDK_Version::current().post_vm_init_hook_enabled()) {
3598    call_postVMInitHook(THREAD);
3599    // The Java side of PostVMInitHook.run must deal with all
3600    // exceptions and provide means of diagnosis.
3601    if (HAS_PENDING_EXCEPTION) {
3602      CLEAR_PENDING_EXCEPTION;
3603    }
3604  }
3605
3606  {
3607    MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3608    // Make sure the watcher thread can be started by WatcherThread::start()
3609    // or by dynamic enrollment.
3610    WatcherThread::make_startable();
3611    // Start up the WatcherThread if there are any periodic tasks
3612    // NOTE:  All PeriodicTasks should be registered by now. If they
3613    //   aren't, late joiners might appear to start slowly (we might
3614    //   take a while to process their first tick).
3615    if (PeriodicTask::num_tasks() > 0) {
3616      WatcherThread::start();
3617    }
3618  }
3619
3620  create_vm_timer.end();
3621#ifdef ASSERT
3622  _vm_complete = true;
3623#endif
3624  return JNI_OK;
3625}
3626
3627// type for the Agent_OnLoad and JVM_OnLoad entry points
3628extern "C" {
3629  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3630}
3631// Find a command line agent library and return its entry point for
3632//         -agentlib:  -agentpath:   -Xrun
3633// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3634static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3635                                    const char *on_load_symbols[],
3636                                    size_t num_symbol_entries) {
3637  OnLoadEntry_t on_load_entry = NULL;
3638  void *library = NULL;
3639
3640  if (!agent->valid()) {
3641    char buffer[JVM_MAXPATHLEN];
3642    char ebuf[1024];
3643    const char *name = agent->name();
3644    const char *msg = "Could not find agent library ";
3645
3646    // First check to see if agent is statically linked into executable
3647    if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3648      library = agent->os_lib();
3649    } else if (agent->is_absolute_path()) {
3650      library = os::dll_load(name, ebuf, sizeof ebuf);
3651      if (library == NULL) {
3652        const char *sub_msg = " in absolute path, with error: ";
3653        size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3654        char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3655        jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3656        // If we can't find the agent, exit.
3657        vm_exit_during_initialization(buf, NULL);
3658        FREE_C_HEAP_ARRAY(char, buf, mtThread);
3659      }
3660    } else {
3661      // Try to load the agent from the standard dll directory
3662      if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3663                             name)) {
3664        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3665      }
3666      if (library == NULL) { // Try the local directory
3667        char ns[1] = {0};
3668        if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3669          library = os::dll_load(buffer, ebuf, sizeof ebuf);
3670        }
3671        if (library == NULL) {
3672          const char *sub_msg = " on the library path, with error: ";
3673          size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3674          char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3675          jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3676          // If we can't find the agent, exit.
3677          vm_exit_during_initialization(buf, NULL);
3678          FREE_C_HEAP_ARRAY(char, buf, mtThread);
3679        }
3680      }
3681    }
3682    agent->set_os_lib(library);
3683    agent->set_valid();
3684  }
3685
3686  // Find the OnLoad function.
3687  on_load_entry =
3688    CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3689                                                          false,
3690                                                          on_load_symbols,
3691                                                          num_symbol_entries));
3692  return on_load_entry;
3693}
3694
3695// Find the JVM_OnLoad entry point
3696static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3697  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3698  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3699}
3700
3701// Find the Agent_OnLoad entry point
3702static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3703  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3704  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3705}
3706
3707// For backwards compatibility with -Xrun
3708// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3709// treated like -agentpath:
3710// Must be called before agent libraries are created
3711void Threads::convert_vm_init_libraries_to_agents() {
3712  AgentLibrary* agent;
3713  AgentLibrary* next;
3714
3715  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3716    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3717    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3718
3719    // If there is an JVM_OnLoad function it will get called later,
3720    // otherwise see if there is an Agent_OnLoad
3721    if (on_load_entry == NULL) {
3722      on_load_entry = lookup_agent_on_load(agent);
3723      if (on_load_entry != NULL) {
3724        // switch it to the agent list -- so that Agent_OnLoad will be called,
3725        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3726        Arguments::convert_library_to_agent(agent);
3727      } else {
3728        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3729      }
3730    }
3731  }
3732}
3733
3734// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3735// Invokes Agent_OnLoad
3736// Called very early -- before JavaThreads exist
3737void Threads::create_vm_init_agents() {
3738  extern struct JavaVM_ main_vm;
3739  AgentLibrary* agent;
3740
3741  JvmtiExport::enter_onload_phase();
3742
3743  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3744    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3745
3746    if (on_load_entry != NULL) {
3747      // Invoke the Agent_OnLoad function
3748      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3749      if (err != JNI_OK) {
3750        vm_exit_during_initialization("agent library failed to init", agent->name());
3751      }
3752    } else {
3753      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3754    }
3755  }
3756  JvmtiExport::enter_primordial_phase();
3757}
3758
3759extern "C" {
3760  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3761}
3762
3763void Threads::shutdown_vm_agents() {
3764  // Send any Agent_OnUnload notifications
3765  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3766  size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3767  extern struct JavaVM_ main_vm;
3768  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3769
3770    // Find the Agent_OnUnload function.
3771    Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3772                                                   os::find_agent_function(agent,
3773                                                   false,
3774                                                   on_unload_symbols,
3775                                                   num_symbol_entries));
3776
3777    // Invoke the Agent_OnUnload function
3778    if (unload_entry != NULL) {
3779      JavaThread* thread = JavaThread::current();
3780      ThreadToNativeFromVM ttn(thread);
3781      HandleMark hm(thread);
3782      (*unload_entry)(&main_vm);
3783    }
3784  }
3785}
3786
3787// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3788// Invokes JVM_OnLoad
3789void Threads::create_vm_init_libraries() {
3790  extern struct JavaVM_ main_vm;
3791  AgentLibrary* agent;
3792
3793  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3794    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3795
3796    if (on_load_entry != NULL) {
3797      // Invoke the JVM_OnLoad function
3798      JavaThread* thread = JavaThread::current();
3799      ThreadToNativeFromVM ttn(thread);
3800      HandleMark hm(thread);
3801      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3802      if (err != JNI_OK) {
3803        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3804      }
3805    } else {
3806      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3807    }
3808  }
3809}
3810
3811JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3812  assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3813
3814  JavaThread* java_thread = NULL;
3815  // Sequential search for now.  Need to do better optimization later.
3816  for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3817    oop tobj = thread->threadObj();
3818    if (!thread->is_exiting() &&
3819        tobj != NULL &&
3820        java_tid == java_lang_Thread::thread_id(tobj)) {
3821      java_thread = thread;
3822      break;
3823    }
3824  }
3825  return java_thread;
3826}
3827
3828
3829// Last thread running calls java.lang.Shutdown.shutdown()
3830void JavaThread::invoke_shutdown_hooks() {
3831  HandleMark hm(this);
3832
3833  // We could get here with a pending exception, if so clear it now.
3834  if (this->has_pending_exception()) {
3835    this->clear_pending_exception();
3836  }
3837
3838  EXCEPTION_MARK;
3839  Klass* k =
3840    SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3841                                      THREAD);
3842  if (k != NULL) {
3843    // SystemDictionary::resolve_or_null will return null if there was
3844    // an exception.  If we cannot load the Shutdown class, just don't
3845    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3846    // and finalizers (if runFinalizersOnExit is set) won't be run.
3847    // Note that if a shutdown hook was registered or runFinalizersOnExit
3848    // was called, the Shutdown class would have already been loaded
3849    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3850    instanceKlassHandle shutdown_klass (THREAD, k);
3851    JavaValue result(T_VOID);
3852    JavaCalls::call_static(&result,
3853                           shutdown_klass,
3854                           vmSymbols::shutdown_method_name(),
3855                           vmSymbols::void_method_signature(),
3856                           THREAD);
3857  }
3858  CLEAR_PENDING_EXCEPTION;
3859}
3860
3861// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3862// the program falls off the end of main(). Another VM exit path is through
3863// vm_exit() when the program calls System.exit() to return a value or when
3864// there is a serious error in VM. The two shutdown paths are not exactly
3865// the same, but they share Shutdown.shutdown() at Java level and before_exit()
3866// and VM_Exit op at VM level.
3867//
3868// Shutdown sequence:
3869//   + Shutdown native memory tracking if it is on
3870//   + Wait until we are the last non-daemon thread to execute
3871//     <-- every thing is still working at this moment -->
3872//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3873//        shutdown hooks, run finalizers if finalization-on-exit
3874//   + Call before_exit(), prepare for VM exit
3875//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3876//        currently the only user of this mechanism is File.deleteOnExit())
3877//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3878//        post thread end and vm death events to JVMTI,
3879//        stop signal thread
3880//   + Call JavaThread::exit(), it will:
3881//      > release JNI handle blocks, remove stack guard pages
3882//      > remove this thread from Threads list
3883//     <-- no more Java code from this thread after this point -->
3884//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3885//     the compiler threads at safepoint
3886//     <-- do not use anything that could get blocked by Safepoint -->
3887//   + Disable tracing at JNI/JVM barriers
3888//   + Set _vm_exited flag for threads that are still running native code
3889//   + Delete this thread
3890//   + Call exit_globals()
3891//      > deletes tty
3892//      > deletes PerfMemory resources
3893//   + Return to caller
3894
3895bool Threads::destroy_vm() {
3896  JavaThread* thread = JavaThread::current();
3897
3898#ifdef ASSERT
3899  _vm_complete = false;
3900#endif
3901  // Wait until we are the last non-daemon thread to execute
3902  { MutexLocker nu(Threads_lock);
3903    while (Threads::number_of_non_daemon_threads() > 1)
3904      // This wait should make safepoint checks, wait without a timeout,
3905      // and wait as a suspend-equivalent condition.
3906      //
3907      // Note: If the FlatProfiler is running and this thread is waiting
3908      // for another non-daemon thread to finish, then the FlatProfiler
3909      // is waiting for the external suspend request on this thread to
3910      // complete. wait_for_ext_suspend_completion() will eventually
3911      // timeout, but that takes time. Making this wait a suspend-
3912      // equivalent condition solves that timeout problem.
3913      //
3914      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3915                         Mutex::_as_suspend_equivalent_flag);
3916  }
3917
3918  // Hang forever on exit if we are reporting an error.
3919  if (ShowMessageBoxOnError && is_error_reported()) {
3920    os::infinite_sleep();
3921  }
3922  os::wait_for_keypress_at_exit();
3923
3924  // run Java level shutdown hooks
3925  thread->invoke_shutdown_hooks();
3926
3927  before_exit(thread);
3928
3929  thread->exit(true);
3930
3931  // Stop VM thread.
3932  {
3933    // 4945125 The vm thread comes to a safepoint during exit.
3934    // GC vm_operations can get caught at the safepoint, and the
3935    // heap is unparseable if they are caught. Grab the Heap_lock
3936    // to prevent this. The GC vm_operations will not be able to
3937    // queue until after the vm thread is dead. After this point,
3938    // we'll never emerge out of the safepoint before the VM exits.
3939
3940    MutexLocker ml(Heap_lock);
3941
3942    VMThread::wait_for_vm_thread_exit();
3943    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3944    VMThread::destroy();
3945  }
3946
3947  // clean up ideal graph printers
3948#if defined(COMPILER2) && !defined(PRODUCT)
3949  IdealGraphPrinter::clean_up();
3950#endif
3951
3952  // Now, all Java threads are gone except daemon threads. Daemon threads
3953  // running Java code or in VM are stopped by the Safepoint. However,
3954  // daemon threads executing native code are still running.  But they
3955  // will be stopped at native=>Java/VM barriers. Note that we can't
3956  // simply kill or suspend them, as it is inherently deadlock-prone.
3957
3958#ifndef PRODUCT
3959  // disable function tracing at JNI/JVM barriers
3960  TraceJNICalls = false;
3961  TraceJVMCalls = false;
3962  TraceRuntimeCalls = false;
3963#endif
3964
3965  VM_Exit::set_vm_exited();
3966
3967  notify_vm_shutdown();
3968
3969  delete thread;
3970
3971  // exit_globals() will delete tty
3972  exit_globals();
3973
3974  return true;
3975}
3976
3977
3978jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3979  if (version == JNI_VERSION_1_1) return JNI_TRUE;
3980  return is_supported_jni_version(version);
3981}
3982
3983
3984jboolean Threads::is_supported_jni_version(jint version) {
3985  if (version == JNI_VERSION_1_2) return JNI_TRUE;
3986  if (version == JNI_VERSION_1_4) return JNI_TRUE;
3987  if (version == JNI_VERSION_1_6) return JNI_TRUE;
3988  if (version == JNI_VERSION_1_8) return JNI_TRUE;
3989  return JNI_FALSE;
3990}
3991
3992
3993void Threads::add(JavaThread* p, bool force_daemon) {
3994  // The threads lock must be owned at this point
3995  assert_locked_or_safepoint(Threads_lock);
3996
3997  // See the comment for this method in thread.hpp for its purpose and
3998  // why it is called here.
3999  p->initialize_queues();
4000  p->set_next(_thread_list);
4001  _thread_list = p;
4002  _number_of_threads++;
4003  oop threadObj = p->threadObj();
4004  bool daemon = true;
4005  // Bootstrapping problem: threadObj can be null for initial
4006  // JavaThread (or for threads attached via JNI)
4007  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4008    _number_of_non_daemon_threads++;
4009    daemon = false;
4010  }
4011
4012  ThreadService::add_thread(p, daemon);
4013
4014  // Possible GC point.
4015  Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4016}
4017
4018void Threads::remove(JavaThread* p) {
4019  // Extra scope needed for Thread_lock, so we can check
4020  // that we do not remove thread without safepoint code notice
4021  { MutexLocker ml(Threads_lock);
4022
4023    assert(includes(p), "p must be present");
4024
4025    JavaThread* current = _thread_list;
4026    JavaThread* prev    = NULL;
4027
4028    while (current != p) {
4029      prev    = current;
4030      current = current->next();
4031    }
4032
4033    if (prev) {
4034      prev->set_next(current->next());
4035    } else {
4036      _thread_list = p->next();
4037    }
4038    _number_of_threads--;
4039    oop threadObj = p->threadObj();
4040    bool daemon = true;
4041    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4042      _number_of_non_daemon_threads--;
4043      daemon = false;
4044
4045      // Only one thread left, do a notify on the Threads_lock so a thread waiting
4046      // on destroy_vm will wake up.
4047      if (number_of_non_daemon_threads() == 1) {
4048        Threads_lock->notify_all();
4049      }
4050    }
4051    ThreadService::remove_thread(p, daemon);
4052
4053    // Make sure that safepoint code disregard this thread. This is needed since
4054    // the thread might mess around with locks after this point. This can cause it
4055    // to do callbacks into the safepoint code. However, the safepoint code is not aware
4056    // of this thread since it is removed from the queue.
4057    p->set_terminated_value();
4058  } // unlock Threads_lock
4059
4060  // Since Events::log uses a lock, we grab it outside the Threads_lock
4061  Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4062}
4063
4064// Threads_lock must be held when this is called (or must be called during a safepoint)
4065bool Threads::includes(JavaThread* p) {
4066  assert(Threads_lock->is_locked(), "sanity check");
4067  ALL_JAVA_THREADS(q) {
4068    if (q == p) {
4069      return true;
4070    }
4071  }
4072  return false;
4073}
4074
4075// Operations on the Threads list for GC.  These are not explicitly locked,
4076// but the garbage collector must provide a safe context for them to run.
4077// In particular, these things should never be called when the Threads_lock
4078// is held by some other thread. (Note: the Safepoint abstraction also
4079// uses the Threads_lock to guarantee this property. It also makes sure that
4080// all threads gets blocked when exiting or starting).
4081
4082void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4083  ALL_JAVA_THREADS(p) {
4084    p->oops_do(f, cld_f, cf);
4085  }
4086  VMThread::vm_thread()->oops_do(f, cld_f, cf);
4087}
4088
4089void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4090  // Introduce a mechanism allowing parallel threads to claim threads as
4091  // root groups.  Overhead should be small enough to use all the time,
4092  // even in sequential code.
4093  SharedHeap* sh = SharedHeap::heap();
4094  // Cannot yet substitute active_workers for n_par_threads
4095  // because of G1CollectedHeap::verify() use of
4096  // SharedHeap::process_roots().  n_par_threads == 0 will
4097  // turn off parallelism in process_roots while active_workers
4098  // is being used for parallelism elsewhere.
4099  bool is_par = sh->n_par_threads() > 0;
4100  assert(!is_par ||
4101         (SharedHeap::heap()->n_par_threads() ==
4102         SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4103  int cp = SharedHeap::heap()->strong_roots_parity();
4104  ALL_JAVA_THREADS(p) {
4105    if (p->claim_oops_do(is_par, cp)) {
4106      p->oops_do(f, cld_f, cf);
4107    }
4108  }
4109  VMThread* vmt = VMThread::vm_thread();
4110  if (vmt->claim_oops_do(is_par, cp)) {
4111    vmt->oops_do(f, cld_f, cf);
4112  }
4113}
4114
4115#if INCLUDE_ALL_GCS
4116// Used by ParallelScavenge
4117void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4118  ALL_JAVA_THREADS(p) {
4119    q->enqueue(new ThreadRootsTask(p));
4120  }
4121  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4122}
4123
4124// Used by Parallel Old
4125void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4126  ALL_JAVA_THREADS(p) {
4127    q->enqueue(new ThreadRootsMarkingTask(p));
4128  }
4129  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4130}
4131#endif // INCLUDE_ALL_GCS
4132
4133void Threads::nmethods_do(CodeBlobClosure* cf) {
4134  ALL_JAVA_THREADS(p) {
4135    p->nmethods_do(cf);
4136  }
4137  VMThread::vm_thread()->nmethods_do(cf);
4138}
4139
4140void Threads::metadata_do(void f(Metadata*)) {
4141  ALL_JAVA_THREADS(p) {
4142    p->metadata_do(f);
4143  }
4144}
4145
4146void Threads::deoptimized_wrt_marked_nmethods() {
4147  ALL_JAVA_THREADS(p) {
4148    p->deoptimized_wrt_marked_nmethods();
4149  }
4150}
4151
4152
4153// Get count Java threads that are waiting to enter the specified monitor.
4154GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4155                                                         address monitor,
4156                                                         bool doLock) {
4157  assert(doLock || SafepointSynchronize::is_at_safepoint(),
4158         "must grab Threads_lock or be at safepoint");
4159  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4160
4161  int i = 0;
4162  {
4163    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4164    ALL_JAVA_THREADS(p) {
4165      if (p->is_Compiler_thread()) continue;
4166
4167      address pending = (address)p->current_pending_monitor();
4168      if (pending == monitor) {             // found a match
4169        if (i < count) result->append(p);   // save the first count matches
4170        i++;
4171      }
4172    }
4173  }
4174  return result;
4175}
4176
4177
4178JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4179                                                      bool doLock) {
4180  assert(doLock ||
4181         Threads_lock->owned_by_self() ||
4182         SafepointSynchronize::is_at_safepoint(),
4183         "must grab Threads_lock or be at safepoint");
4184
4185  // NULL owner means not locked so we can skip the search
4186  if (owner == NULL) return NULL;
4187
4188  {
4189    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4190    ALL_JAVA_THREADS(p) {
4191      // first, see if owner is the address of a Java thread
4192      if (owner == (address)p) return p;
4193    }
4194  }
4195  // Cannot assert on lack of success here since this function may be
4196  // used by code that is trying to report useful problem information
4197  // like deadlock detection.
4198  if (UseHeavyMonitors) return NULL;
4199
4200  // If we didn't find a matching Java thread and we didn't force use of
4201  // heavyweight monitors, then the owner is the stack address of the
4202  // Lock Word in the owning Java thread's stack.
4203  //
4204  JavaThread* the_owner = NULL;
4205  {
4206    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4207    ALL_JAVA_THREADS(q) {
4208      if (q->is_lock_owned(owner)) {
4209        the_owner = q;
4210        break;
4211      }
4212    }
4213  }
4214  // cannot assert on lack of success here; see above comment
4215  return the_owner;
4216}
4217
4218// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4219void Threads::print_on(outputStream* st, bool print_stacks,
4220                       bool internal_format, bool print_concurrent_locks) {
4221  char buf[32];
4222  st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
4223
4224  st->print_cr("Full thread dump %s (%s %s):",
4225               Abstract_VM_Version::vm_name(),
4226               Abstract_VM_Version::vm_release(),
4227               Abstract_VM_Version::vm_info_string());
4228  st->cr();
4229
4230#if INCLUDE_ALL_GCS
4231  // Dump concurrent locks
4232  ConcurrentLocksDump concurrent_locks;
4233  if (print_concurrent_locks) {
4234    concurrent_locks.dump_at_safepoint();
4235  }
4236#endif // INCLUDE_ALL_GCS
4237
4238  ALL_JAVA_THREADS(p) {
4239    ResourceMark rm;
4240    p->print_on(st);
4241    if (print_stacks) {
4242      if (internal_format) {
4243        p->trace_stack();
4244      } else {
4245        p->print_stack_on(st);
4246      }
4247    }
4248    st->cr();
4249#if INCLUDE_ALL_GCS
4250    if (print_concurrent_locks) {
4251      concurrent_locks.print_locks_on(p, st);
4252    }
4253#endif // INCLUDE_ALL_GCS
4254  }
4255
4256  VMThread::vm_thread()->print_on(st);
4257  st->cr();
4258  Universe::heap()->print_gc_threads_on(st);
4259  WatcherThread* wt = WatcherThread::watcher_thread();
4260  if (wt != NULL) {
4261    wt->print_on(st);
4262    st->cr();
4263  }
4264  CompileBroker::print_compiler_threads_on(st);
4265  st->flush();
4266}
4267
4268// Threads::print_on_error() is called by fatal error handler. It's possible
4269// that VM is not at safepoint and/or current thread is inside signal handler.
4270// Don't print stack trace, as the stack may not be walkable. Don't allocate
4271// memory (even in resource area), it might deadlock the error handler.
4272void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4273                             int buflen) {
4274  bool found_current = false;
4275  st->print_cr("Java Threads: ( => current thread )");
4276  ALL_JAVA_THREADS(thread) {
4277    bool is_current = (current == thread);
4278    found_current = found_current || is_current;
4279
4280    st->print("%s", is_current ? "=>" : "  ");
4281
4282    st->print(PTR_FORMAT, thread);
4283    st->print(" ");
4284    thread->print_on_error(st, buf, buflen);
4285    st->cr();
4286  }
4287  st->cr();
4288
4289  st->print_cr("Other Threads:");
4290  if (VMThread::vm_thread()) {
4291    bool is_current = (current == VMThread::vm_thread());
4292    found_current = found_current || is_current;
4293    st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4294
4295    st->print(PTR_FORMAT, VMThread::vm_thread());
4296    st->print(" ");
4297    VMThread::vm_thread()->print_on_error(st, buf, buflen);
4298    st->cr();
4299  }
4300  WatcherThread* wt = WatcherThread::watcher_thread();
4301  if (wt != NULL) {
4302    bool is_current = (current == wt);
4303    found_current = found_current || is_current;
4304    st->print("%s", is_current ? "=>" : "  ");
4305
4306    st->print(PTR_FORMAT, wt);
4307    st->print(" ");
4308    wt->print_on_error(st, buf, buflen);
4309    st->cr();
4310  }
4311  if (!found_current) {
4312    st->cr();
4313    st->print("=>" PTR_FORMAT " (exited) ", current);
4314    current->print_on_error(st, buf, buflen);
4315    st->cr();
4316  }
4317}
4318
4319// Internal SpinLock and Mutex
4320// Based on ParkEvent
4321
4322// Ad-hoc mutual exclusion primitives: SpinLock and Mux
4323//
4324// We employ SpinLocks _only for low-contention, fixed-length
4325// short-duration critical sections where we're concerned
4326// about native mutex_t or HotSpot Mutex:: latency.
4327// The mux construct provides a spin-then-block mutual exclusion
4328// mechanism.
4329//
4330// Testing has shown that contention on the ListLock guarding gFreeList
4331// is common.  If we implement ListLock as a simple SpinLock it's common
4332// for the JVM to devolve to yielding with little progress.  This is true
4333// despite the fact that the critical sections protected by ListLock are
4334// extremely short.
4335//
4336// TODO-FIXME: ListLock should be of type SpinLock.
4337// We should make this a 1st-class type, integrated into the lock
4338// hierarchy as leaf-locks.  Critically, the SpinLock structure
4339// should have sufficient padding to avoid false-sharing and excessive
4340// cache-coherency traffic.
4341
4342
4343typedef volatile int SpinLockT;
4344
4345void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4346  if (Atomic::cmpxchg (1, adr, 0) == 0) {
4347    return;   // normal fast-path return
4348  }
4349
4350  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4351  TEVENT(SpinAcquire - ctx);
4352  int ctr = 0;
4353  int Yields = 0;
4354  for (;;) {
4355    while (*adr != 0) {
4356      ++ctr;
4357      if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4358        if (Yields > 5) {
4359          os::naked_short_sleep(1);
4360        } else {
4361          os::naked_yield();
4362          ++Yields;
4363        }
4364      } else {
4365        SpinPause();
4366      }
4367    }
4368    if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4369  }
4370}
4371
4372void Thread::SpinRelease(volatile int * adr) {
4373  assert(*adr != 0, "invariant");
4374  OrderAccess::fence();      // guarantee at least release consistency.
4375  // Roach-motel semantics.
4376  // It's safe if subsequent LDs and STs float "up" into the critical section,
4377  // but prior LDs and STs within the critical section can't be allowed
4378  // to reorder or float past the ST that releases the lock.
4379  // Loads and stores in the critical section - which appear in program
4380  // order before the store that releases the lock - must also appear
4381  // before the store that releases the lock in memory visibility order.
4382  // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4383  // the ST of 0 into the lock-word which releases the lock, so fence
4384  // more than covers this on all platforms.
4385  *adr = 0;
4386}
4387
4388// muxAcquire and muxRelease:
4389//
4390// *  muxAcquire and muxRelease support a single-word lock-word construct.
4391//    The LSB of the word is set IFF the lock is held.
4392//    The remainder of the word points to the head of a singly-linked list
4393//    of threads blocked on the lock.
4394//
4395// *  The current implementation of muxAcquire-muxRelease uses its own
4396//    dedicated Thread._MuxEvent instance.  If we're interested in
4397//    minimizing the peak number of extant ParkEvent instances then
4398//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4399//    as certain invariants were satisfied.  Specifically, care would need
4400//    to be taken with regards to consuming unpark() "permits".
4401//    A safe rule of thumb is that a thread would never call muxAcquire()
4402//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4403//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4404//    consume an unpark() permit intended for monitorenter, for instance.
4405//    One way around this would be to widen the restricted-range semaphore
4406//    implemented in park().  Another alternative would be to provide
4407//    multiple instances of the PlatformEvent() for each thread.  One
4408//    instance would be dedicated to muxAcquire-muxRelease, for instance.
4409//
4410// *  Usage:
4411//    -- Only as leaf locks
4412//    -- for short-term locking only as muxAcquire does not perform
4413//       thread state transitions.
4414//
4415// Alternatives:
4416// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4417//    but with parking or spin-then-park instead of pure spinning.
4418// *  Use Taura-Oyama-Yonenzawa locks.
4419// *  It's possible to construct a 1-0 lock if we encode the lockword as
4420//    (List,LockByte).  Acquire will CAS the full lockword while Release
4421//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4422//    acquiring threads use timers (ParkTimed) to detect and recover from
4423//    the stranding window.  Thread/Node structures must be aligned on 256-byte
4424//    boundaries by using placement-new.
4425// *  Augment MCS with advisory back-link fields maintained with CAS().
4426//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4427//    The validity of the backlinks must be ratified before we trust the value.
4428//    If the backlinks are invalid the exiting thread must back-track through the
4429//    the forward links, which are always trustworthy.
4430// *  Add a successor indication.  The LockWord is currently encoded as
4431//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4432//    to provide the usual futile-wakeup optimization.
4433//    See RTStt for details.
4434// *  Consider schedctl.sc_nopreempt to cover the critical section.
4435//
4436
4437
4438typedef volatile intptr_t MutexT;      // Mux Lock-word
4439enum MuxBits { LOCKBIT = 1 };
4440
4441void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4442  intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4443  if (w == 0) return;
4444  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4445    return;
4446  }
4447
4448  TEVENT(muxAcquire - Contention);
4449  ParkEvent * const Self = Thread::current()->_MuxEvent;
4450  assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4451  for (;;) {
4452    int its = (os::is_MP() ? 100 : 0) + 1;
4453
4454    // Optional spin phase: spin-then-park strategy
4455    while (--its >= 0) {
4456      w = *Lock;
4457      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4458        return;
4459      }
4460    }
4461
4462    Self->reset();
4463    Self->OnList = intptr_t(Lock);
4464    // The following fence() isn't _strictly necessary as the subsequent
4465    // CAS() both serializes execution and ratifies the fetched *Lock value.
4466    OrderAccess::fence();
4467    for (;;) {
4468      w = *Lock;
4469      if ((w & LOCKBIT) == 0) {
4470        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4471          Self->OnList = 0;   // hygiene - allows stronger asserts
4472          return;
4473        }
4474        continue;      // Interference -- *Lock changed -- Just retry
4475      }
4476      assert(w & LOCKBIT, "invariant");
4477      Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4478      if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4479    }
4480
4481    while (Self->OnList != 0) {
4482      Self->park();
4483    }
4484  }
4485}
4486
4487void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4488  intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4489  if (w == 0) return;
4490  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4491    return;
4492  }
4493
4494  TEVENT(muxAcquire - Contention);
4495  ParkEvent * ReleaseAfter = NULL;
4496  if (ev == NULL) {
4497    ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4498  }
4499  assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4500  for (;;) {
4501    guarantee(ev->OnList == 0, "invariant");
4502    int its = (os::is_MP() ? 100 : 0) + 1;
4503
4504    // Optional spin phase: spin-then-park strategy
4505    while (--its >= 0) {
4506      w = *Lock;
4507      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4508        if (ReleaseAfter != NULL) {
4509          ParkEvent::Release(ReleaseAfter);
4510        }
4511        return;
4512      }
4513    }
4514
4515    ev->reset();
4516    ev->OnList = intptr_t(Lock);
4517    // The following fence() isn't _strictly necessary as the subsequent
4518    // CAS() both serializes execution and ratifies the fetched *Lock value.
4519    OrderAccess::fence();
4520    for (;;) {
4521      w = *Lock;
4522      if ((w & LOCKBIT) == 0) {
4523        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4524          ev->OnList = 0;
4525          // We call ::Release while holding the outer lock, thus
4526          // artificially lengthening the critical section.
4527          // Consider deferring the ::Release() until the subsequent unlock(),
4528          // after we've dropped the outer lock.
4529          if (ReleaseAfter != NULL) {
4530            ParkEvent::Release(ReleaseAfter);
4531          }
4532          return;
4533        }
4534        continue;      // Interference -- *Lock changed -- Just retry
4535      }
4536      assert(w & LOCKBIT, "invariant");
4537      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4538      if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4539    }
4540
4541    while (ev->OnList != 0) {
4542      ev->park();
4543    }
4544  }
4545}
4546
4547// Release() must extract a successor from the list and then wake that thread.
4548// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4549// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4550// Release() would :
4551// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4552// (B) Extract a successor from the private list "in-hand"
4553// (C) attempt to CAS() the residual back into *Lock over null.
4554//     If there were any newly arrived threads and the CAS() would fail.
4555//     In that case Release() would detach the RATs, re-merge the list in-hand
4556//     with the RATs and repeat as needed.  Alternately, Release() might
4557//     detach and extract a successor, but then pass the residual list to the wakee.
4558//     The wakee would be responsible for reattaching and remerging before it
4559//     competed for the lock.
4560//
4561// Both "pop" and DMR are immune from ABA corruption -- there can be
4562// multiple concurrent pushers, but only one popper or detacher.
4563// This implementation pops from the head of the list.  This is unfair,
4564// but tends to provide excellent throughput as hot threads remain hot.
4565// (We wake recently run threads first).
4566//
4567// All paths through muxRelease() will execute a CAS.
4568// Release consistency -- We depend on the CAS in muxRelease() to provide full
4569// bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4570// executed within the critical section are complete and globally visible before the
4571// store (CAS) to the lock-word that releases the lock becomes globally visible.
4572void Thread::muxRelease(volatile intptr_t * Lock)  {
4573  for (;;) {
4574    const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4575    assert(w & LOCKBIT, "invariant");
4576    if (w == LOCKBIT) return;
4577    ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4578    assert(List != NULL, "invariant");
4579    assert(List->OnList == intptr_t(Lock), "invariant");
4580    ParkEvent * const nxt = List->ListNext;
4581    guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4582
4583    // The following CAS() releases the lock and pops the head element.
4584    // The CAS() also ratifies the previously fetched lock-word value.
4585    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4586      continue;
4587    }
4588    List->OnList = 0;
4589    OrderAccess::fence();
4590    List->unpark();
4591    return;
4592  }
4593}
4594
4595
4596void Threads::verify() {
4597  ALL_JAVA_THREADS(p) {
4598    p->verify();
4599  }
4600  VMThread* thread = VMThread::vm_thread();
4601  if (thread != NULL) thread->verify();
4602}
4603