thread.cpp revision 7235:763abe04c848
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/codeCache.hpp"
31#include "code/scopeDesc.hpp"
32#include "compiler/compileBroker.hpp"
33#include "interpreter/interpreter.hpp"
34#include "interpreter/linkResolver.hpp"
35#include "interpreter/oopMapCache.hpp"
36#include "jvmtifiles/jvmtiEnv.hpp"
37#include "memory/gcLocker.inline.hpp"
38#include "memory/metaspaceShared.hpp"
39#include "memory/oopFactory.hpp"
40#include "memory/universe.inline.hpp"
41#include "oops/instanceKlass.hpp"
42#include "oops/objArrayOop.hpp"
43#include "oops/oop.inline.hpp"
44#include "oops/symbol.hpp"
45#include "prims/jvm_misc.hpp"
46#include "prims/jvmtiExport.hpp"
47#include "prims/jvmtiThreadState.hpp"
48#include "prims/privilegedStack.hpp"
49#include "runtime/arguments.hpp"
50#include "runtime/atomic.inline.hpp"
51#include "runtime/biasedLocking.hpp"
52#include "runtime/deoptimization.hpp"
53#include "runtime/fprofiler.hpp"
54#include "runtime/frame.inline.hpp"
55#include "runtime/init.hpp"
56#include "runtime/interfaceSupport.hpp"
57#include "runtime/java.hpp"
58#include "runtime/javaCalls.hpp"
59#include "runtime/jniPeriodicChecker.hpp"
60#include "runtime/memprofiler.hpp"
61#include "runtime/mutexLocker.hpp"
62#include "runtime/objectMonitor.hpp"
63#include "runtime/orderAccess.inline.hpp"
64#include "runtime/osThread.hpp"
65#include "runtime/safepoint.hpp"
66#include "runtime/sharedRuntime.hpp"
67#include "runtime/statSampler.hpp"
68#include "runtime/stubRoutines.hpp"
69#include "runtime/task.hpp"
70#include "runtime/thread.inline.hpp"
71#include "runtime/threadCritical.hpp"
72#include "runtime/threadLocalStorage.hpp"
73#include "runtime/vframe.hpp"
74#include "runtime/vframeArray.hpp"
75#include "runtime/vframe_hp.hpp"
76#include "runtime/vmThread.hpp"
77#include "runtime/vm_operations.hpp"
78#include "runtime/vm_version.hpp"
79#include "services/attachListener.hpp"
80#include "services/management.hpp"
81#include "services/memTracker.hpp"
82#include "services/threadService.hpp"
83#include "trace/tracing.hpp"
84#include "trace/traceMacros.hpp"
85#include "utilities/defaultStream.hpp"
86#include "utilities/dtrace.hpp"
87#include "utilities/events.hpp"
88#include "utilities/preserveException.hpp"
89#include "utilities/macros.hpp"
90#if INCLUDE_ALL_GCS
91#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
92#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
93#include "gc_implementation/parallelScavenge/pcTasks.hpp"
94#endif // INCLUDE_ALL_GCS
95#ifdef COMPILER1
96#include "c1/c1_Compiler.hpp"
97#endif
98#ifdef COMPILER2
99#include "opto/c2compiler.hpp"
100#include "opto/idealGraphPrinter.hpp"
101#endif
102#if INCLUDE_RTM_OPT
103#include "runtime/rtmLocking.hpp"
104#endif
105
106PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
107
108#ifdef DTRACE_ENABLED
109
110// Only bother with this argument setup if dtrace is available
111
112  #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
113  #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
114
115  #define DTRACE_THREAD_PROBE(probe, javathread)                           \
116    {                                                                      \
117      ResourceMark rm(this);                                               \
118      int len = 0;                                                         \
119      const char* name = (javathread)->get_thread_name();                  \
120      len = strlen(name);                                                  \
121      HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
122        (char *) name, len,                                                \
123        java_lang_Thread::thread_id((javathread)->threadObj()),            \
124        (uintptr_t) (javathread)->osthread()->thread_id(),                 \
125        java_lang_Thread::is_daemon((javathread)->threadObj()));           \
126    }
127
128#else //  ndef DTRACE_ENABLED
129
130  #define DTRACE_THREAD_PROBE(probe, javathread)
131
132#endif // ndef DTRACE_ENABLED
133
134
135// Class hierarchy
136// - Thread
137//   - VMThread
138//   - WatcherThread
139//   - ConcurrentMarkSweepThread
140//   - JavaThread
141//     - CompilerThread
142
143// ======= Thread ========
144// Support for forcing alignment of thread objects for biased locking
145void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
146  if (UseBiasedLocking) {
147    const int alignment = markOopDesc::biased_lock_alignment;
148    size_t aligned_size = size + (alignment - sizeof(intptr_t));
149    void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
150                                          : AllocateHeap(aligned_size, flags, CURRENT_PC,
151                                                         AllocFailStrategy::RETURN_NULL);
152    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
153    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
154           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
155           "JavaThread alignment code overflowed allocated storage");
156    if (TraceBiasedLocking) {
157      if (aligned_addr != real_malloc_addr) {
158        tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
159                      real_malloc_addr, aligned_addr);
160      }
161    }
162    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
163    return aligned_addr;
164  } else {
165    return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
166                       : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
167  }
168}
169
170void Thread::operator delete(void* p) {
171  if (UseBiasedLocking) {
172    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
173    FreeHeap(real_malloc_addr, mtThread);
174  } else {
175    FreeHeap(p, mtThread);
176  }
177}
178
179
180// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
181// JavaThread
182
183
184Thread::Thread() {
185  // stack and get_thread
186  set_stack_base(NULL);
187  set_stack_size(0);
188  set_self_raw_id(0);
189  set_lgrp_id(-1);
190
191  // allocated data structures
192  set_osthread(NULL);
193  set_resource_area(new (mtThread)ResourceArea());
194  DEBUG_ONLY(_current_resource_mark = NULL;)
195  set_handle_area(new (mtThread) HandleArea(NULL));
196  set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
197  set_active_handles(NULL);
198  set_free_handle_block(NULL);
199  set_last_handle_mark(NULL);
200
201  // This initial value ==> never claimed.
202  _oops_do_parity = 0;
203
204  // the handle mark links itself to last_handle_mark
205  new HandleMark(this);
206
207  // plain initialization
208  debug_only(_owned_locks = NULL;)
209  debug_only(_allow_allocation_count = 0;)
210  NOT_PRODUCT(_allow_safepoint_count = 0;)
211  NOT_PRODUCT(_skip_gcalot = false;)
212  _jvmti_env_iteration_count = 0;
213  set_allocated_bytes(0);
214  _vm_operation_started_count = 0;
215  _vm_operation_completed_count = 0;
216  _current_pending_monitor = NULL;
217  _current_pending_monitor_is_from_java = true;
218  _current_waiting_monitor = NULL;
219  _num_nested_signal = 0;
220  omFreeList = NULL;
221  omFreeCount = 0;
222  omFreeProvision = 32;
223  omInUseList = NULL;
224  omInUseCount = 0;
225
226#ifdef ASSERT
227  _visited_for_critical_count = false;
228#endif
229
230  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
231  _suspend_flags = 0;
232
233  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
234  _hashStateX = os::random();
235  _hashStateY = 842502087;
236  _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
237  _hashStateW = 273326509;
238
239  _OnTrap   = 0;
240  _schedctl = NULL;
241  _Stalled  = 0;
242  _TypeTag  = 0x2BAD;
243
244  // Many of the following fields are effectively final - immutable
245  // Note that nascent threads can't use the Native Monitor-Mutex
246  // construct until the _MutexEvent is initialized ...
247  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
248  // we might instead use a stack of ParkEvents that we could provision on-demand.
249  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
250  // and ::Release()
251  _ParkEvent   = ParkEvent::Allocate(this);
252  _SleepEvent  = ParkEvent::Allocate(this);
253  _MutexEvent  = ParkEvent::Allocate(this);
254  _MuxEvent    = ParkEvent::Allocate(this);
255
256#ifdef CHECK_UNHANDLED_OOPS
257  if (CheckUnhandledOops) {
258    _unhandled_oops = new UnhandledOops(this);
259  }
260#endif // CHECK_UNHANDLED_OOPS
261#ifdef ASSERT
262  if (UseBiasedLocking) {
263    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
264    assert(this == _real_malloc_address ||
265           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
266           "bug in forced alignment of thread objects");
267  }
268#endif // ASSERT
269}
270
271void Thread::initialize_thread_local_storage() {
272  // Note: Make sure this method only calls
273  // non-blocking operations. Otherwise, it might not work
274  // with the thread-startup/safepoint interaction.
275
276  // During Java thread startup, safepoint code should allow this
277  // method to complete because it may need to allocate memory to
278  // store information for the new thread.
279
280  // initialize structure dependent on thread local storage
281  ThreadLocalStorage::set_thread(this);
282}
283
284void Thread::record_stack_base_and_size() {
285  set_stack_base(os::current_stack_base());
286  set_stack_size(os::current_stack_size());
287  if (is_Java_thread()) {
288    ((JavaThread*) this)->set_stack_overflow_limit();
289  }
290  // CR 7190089: on Solaris, primordial thread's stack is adjusted
291  // in initialize_thread(). Without the adjustment, stack size is
292  // incorrect if stack is set to unlimited (ulimit -s unlimited).
293  // So far, only Solaris has real implementation of initialize_thread().
294  //
295  // set up any platform-specific state.
296  os::initialize_thread(this);
297
298#if INCLUDE_NMT
299  // record thread's native stack, stack grows downward
300  address stack_low_addr = stack_base() - stack_size();
301  MemTracker::record_thread_stack(stack_low_addr, stack_size());
302#endif // INCLUDE_NMT
303}
304
305
306Thread::~Thread() {
307  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
308  ObjectSynchronizer::omFlush(this);
309
310  EVENT_THREAD_DESTRUCT(this);
311
312  // stack_base can be NULL if the thread is never started or exited before
313  // record_stack_base_and_size called. Although, we would like to ensure
314  // that all started threads do call record_stack_base_and_size(), there is
315  // not proper way to enforce that.
316#if INCLUDE_NMT
317  if (_stack_base != NULL) {
318    address low_stack_addr = stack_base() - stack_size();
319    MemTracker::release_thread_stack(low_stack_addr, stack_size());
320#ifdef ASSERT
321    set_stack_base(NULL);
322#endif
323  }
324#endif // INCLUDE_NMT
325
326  // deallocate data structures
327  delete resource_area();
328  // since the handle marks are using the handle area, we have to deallocated the root
329  // handle mark before deallocating the thread's handle area,
330  assert(last_handle_mark() != NULL, "check we have an element");
331  delete last_handle_mark();
332  assert(last_handle_mark() == NULL, "check we have reached the end");
333
334  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
335  // We NULL out the fields for good hygiene.
336  ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
337  ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
338  ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
339  ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
340
341  delete handle_area();
342  delete metadata_handles();
343
344  // osthread() can be NULL, if creation of thread failed.
345  if (osthread() != NULL) os::free_thread(osthread());
346
347  delete _SR_lock;
348
349  // clear thread local storage if the Thread is deleting itself
350  if (this == Thread::current()) {
351    ThreadLocalStorage::set_thread(NULL);
352  } else {
353    // In the case where we're not the current thread, invalidate all the
354    // caches in case some code tries to get the current thread or the
355    // thread that was destroyed, and gets stale information.
356    ThreadLocalStorage::invalidate_all();
357  }
358  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
359}
360
361// NOTE: dummy function for assertion purpose.
362void Thread::run() {
363  ShouldNotReachHere();
364}
365
366#ifdef ASSERT
367// Private method to check for dangling thread pointer
368void check_for_dangling_thread_pointer(Thread *thread) {
369  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
370         "possibility of dangling Thread pointer");
371}
372#endif
373
374
375#ifndef PRODUCT
376// Tracing method for basic thread operations
377void Thread::trace(const char* msg, const Thread* const thread) {
378  if (!TraceThreadEvents) return;
379  ResourceMark rm;
380  ThreadCritical tc;
381  const char *name = "non-Java thread";
382  int prio = -1;
383  if (thread->is_Java_thread()
384      && !thread->is_Compiler_thread()) {
385    // The Threads_lock must be held to get information about
386    // this thread but may not be in some situations when
387    // tracing  thread events.
388    bool release_Threads_lock = false;
389    if (!Threads_lock->owned_by_self()) {
390      Threads_lock->lock();
391      release_Threads_lock = true;
392    }
393    JavaThread* jt = (JavaThread *)thread;
394    name = (char *)jt->get_thread_name();
395    oop thread_oop = jt->threadObj();
396    if (thread_oop != NULL) {
397      prio = java_lang_Thread::priority(thread_oop);
398    }
399    if (release_Threads_lock) {
400      Threads_lock->unlock();
401    }
402  }
403  tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
404}
405#endif
406
407
408ThreadPriority Thread::get_priority(const Thread* const thread) {
409  trace("get priority", thread);
410  ThreadPriority priority;
411  // Can return an error!
412  (void)os::get_priority(thread, priority);
413  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
414  return priority;
415}
416
417void Thread::set_priority(Thread* thread, ThreadPriority priority) {
418  trace("set priority", thread);
419  debug_only(check_for_dangling_thread_pointer(thread);)
420  // Can return an error!
421  (void)os::set_priority(thread, priority);
422}
423
424
425void Thread::start(Thread* thread) {
426  trace("start", thread);
427  // Start is different from resume in that its safety is guaranteed by context or
428  // being called from a Java method synchronized on the Thread object.
429  if (!DisableStartThread) {
430    if (thread->is_Java_thread()) {
431      // Initialize the thread state to RUNNABLE before starting this thread.
432      // Can not set it after the thread started because we do not know the
433      // exact thread state at that time. It could be in MONITOR_WAIT or
434      // in SLEEPING or some other state.
435      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
436                                          java_lang_Thread::RUNNABLE);
437    }
438    os::start_thread(thread);
439  }
440}
441
442// Enqueue a VM_Operation to do the job for us - sometime later
443void Thread::send_async_exception(oop java_thread, oop java_throwable) {
444  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
445  VMThread::execute(vm_stop);
446}
447
448
449// Check if an external suspend request has completed (or has been
450// cancelled). Returns true if the thread is externally suspended and
451// false otherwise.
452//
453// The bits parameter returns information about the code path through
454// the routine. Useful for debugging:
455//
456// set in is_ext_suspend_completed():
457// 0x00000001 - routine was entered
458// 0x00000010 - routine return false at end
459// 0x00000100 - thread exited (return false)
460// 0x00000200 - suspend request cancelled (return false)
461// 0x00000400 - thread suspended (return true)
462// 0x00001000 - thread is in a suspend equivalent state (return true)
463// 0x00002000 - thread is native and walkable (return true)
464// 0x00004000 - thread is native_trans and walkable (needed retry)
465//
466// set in wait_for_ext_suspend_completion():
467// 0x00010000 - routine was entered
468// 0x00020000 - suspend request cancelled before loop (return false)
469// 0x00040000 - thread suspended before loop (return true)
470// 0x00080000 - suspend request cancelled in loop (return false)
471// 0x00100000 - thread suspended in loop (return true)
472// 0x00200000 - suspend not completed during retry loop (return false)
473
474// Helper class for tracing suspend wait debug bits.
475//
476// 0x00000100 indicates that the target thread exited before it could
477// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
478// 0x00080000 each indicate a cancelled suspend request so they don't
479// count as wait failures either.
480#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
481
482class TraceSuspendDebugBits : public StackObj {
483 private:
484  JavaThread * jt;
485  bool         is_wait;
486  bool         called_by_wait;  // meaningful when !is_wait
487  uint32_t *   bits;
488
489 public:
490  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
491                        uint32_t *_bits) {
492    jt             = _jt;
493    is_wait        = _is_wait;
494    called_by_wait = _called_by_wait;
495    bits           = _bits;
496  }
497
498  ~TraceSuspendDebugBits() {
499    if (!is_wait) {
500#if 1
501      // By default, don't trace bits for is_ext_suspend_completed() calls.
502      // That trace is very chatty.
503      return;
504#else
505      if (!called_by_wait) {
506        // If tracing for is_ext_suspend_completed() is enabled, then only
507        // trace calls to it from wait_for_ext_suspend_completion()
508        return;
509      }
510#endif
511    }
512
513    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
514      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
515        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
516        ResourceMark rm;
517
518        tty->print_cr(
519                      "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
520                      jt->get_thread_name(), *bits);
521
522        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
523      }
524    }
525  }
526};
527#undef DEBUG_FALSE_BITS
528
529
530bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
531                                          uint32_t *bits) {
532  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
533
534  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
535  bool do_trans_retry;           // flag to force the retry
536
537  *bits |= 0x00000001;
538
539  do {
540    do_trans_retry = false;
541
542    if (is_exiting()) {
543      // Thread is in the process of exiting. This is always checked
544      // first to reduce the risk of dereferencing a freed JavaThread.
545      *bits |= 0x00000100;
546      return false;
547    }
548
549    if (!is_external_suspend()) {
550      // Suspend request is cancelled. This is always checked before
551      // is_ext_suspended() to reduce the risk of a rogue resume
552      // confusing the thread that made the suspend request.
553      *bits |= 0x00000200;
554      return false;
555    }
556
557    if (is_ext_suspended()) {
558      // thread is suspended
559      *bits |= 0x00000400;
560      return true;
561    }
562
563    // Now that we no longer do hard suspends of threads running
564    // native code, the target thread can be changing thread state
565    // while we are in this routine:
566    //
567    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
568    //
569    // We save a copy of the thread state as observed at this moment
570    // and make our decision about suspend completeness based on the
571    // copy. This closes the race where the thread state is seen as
572    // _thread_in_native_trans in the if-thread_blocked check, but is
573    // seen as _thread_blocked in if-thread_in_native_trans check.
574    JavaThreadState save_state = thread_state();
575
576    if (save_state == _thread_blocked && is_suspend_equivalent()) {
577      // If the thread's state is _thread_blocked and this blocking
578      // condition is known to be equivalent to a suspend, then we can
579      // consider the thread to be externally suspended. This means that
580      // the code that sets _thread_blocked has been modified to do
581      // self-suspension if the blocking condition releases. We also
582      // used to check for CONDVAR_WAIT here, but that is now covered by
583      // the _thread_blocked with self-suspension check.
584      //
585      // Return true since we wouldn't be here unless there was still an
586      // external suspend request.
587      *bits |= 0x00001000;
588      return true;
589    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
590      // Threads running native code will self-suspend on native==>VM/Java
591      // transitions. If its stack is walkable (should always be the case
592      // unless this function is called before the actual java_suspend()
593      // call), then the wait is done.
594      *bits |= 0x00002000;
595      return true;
596    } else if (!called_by_wait && !did_trans_retry &&
597               save_state == _thread_in_native_trans &&
598               frame_anchor()->walkable()) {
599      // The thread is transitioning from thread_in_native to another
600      // thread state. check_safepoint_and_suspend_for_native_trans()
601      // will force the thread to self-suspend. If it hasn't gotten
602      // there yet we may have caught the thread in-between the native
603      // code check above and the self-suspend. Lucky us. If we were
604      // called by wait_for_ext_suspend_completion(), then it
605      // will be doing the retries so we don't have to.
606      //
607      // Since we use the saved thread state in the if-statement above,
608      // there is a chance that the thread has already transitioned to
609      // _thread_blocked by the time we get here. In that case, we will
610      // make a single unnecessary pass through the logic below. This
611      // doesn't hurt anything since we still do the trans retry.
612
613      *bits |= 0x00004000;
614
615      // Once the thread leaves thread_in_native_trans for another
616      // thread state, we break out of this retry loop. We shouldn't
617      // need this flag to prevent us from getting back here, but
618      // sometimes paranoia is good.
619      did_trans_retry = true;
620
621      // We wait for the thread to transition to a more usable state.
622      for (int i = 1; i <= SuspendRetryCount; i++) {
623        // We used to do an "os::yield_all(i)" call here with the intention
624        // that yielding would increase on each retry. However, the parameter
625        // is ignored on Linux which means the yield didn't scale up. Waiting
626        // on the SR_lock below provides a much more predictable scale up for
627        // the delay. It also provides a simple/direct point to check for any
628        // safepoint requests from the VMThread
629
630        // temporarily drops SR_lock while doing wait with safepoint check
631        // (if we're a JavaThread - the WatcherThread can also call this)
632        // and increase delay with each retry
633        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
634
635        // check the actual thread state instead of what we saved above
636        if (thread_state() != _thread_in_native_trans) {
637          // the thread has transitioned to another thread state so
638          // try all the checks (except this one) one more time.
639          do_trans_retry = true;
640          break;
641        }
642      } // end retry loop
643
644
645    }
646  } while (do_trans_retry);
647
648  *bits |= 0x00000010;
649  return false;
650}
651
652// Wait for an external suspend request to complete (or be cancelled).
653// Returns true if the thread is externally suspended and false otherwise.
654//
655bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
656                                                 uint32_t *bits) {
657  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
658                             false /* !called_by_wait */, bits);
659
660  // local flag copies to minimize SR_lock hold time
661  bool is_suspended;
662  bool pending;
663  uint32_t reset_bits;
664
665  // set a marker so is_ext_suspend_completed() knows we are the caller
666  *bits |= 0x00010000;
667
668  // We use reset_bits to reinitialize the bits value at the top of
669  // each retry loop. This allows the caller to make use of any
670  // unused bits for their own marking purposes.
671  reset_bits = *bits;
672
673  {
674    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
675    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
676                                            delay, bits);
677    pending = is_external_suspend();
678  }
679  // must release SR_lock to allow suspension to complete
680
681  if (!pending) {
682    // A cancelled suspend request is the only false return from
683    // is_ext_suspend_completed() that keeps us from entering the
684    // retry loop.
685    *bits |= 0x00020000;
686    return false;
687  }
688
689  if (is_suspended) {
690    *bits |= 0x00040000;
691    return true;
692  }
693
694  for (int i = 1; i <= retries; i++) {
695    *bits = reset_bits;  // reinit to only track last retry
696
697    // We used to do an "os::yield_all(i)" call here with the intention
698    // that yielding would increase on each retry. However, the parameter
699    // is ignored on Linux which means the yield didn't scale up. Waiting
700    // on the SR_lock below provides a much more predictable scale up for
701    // the delay. It also provides a simple/direct point to check for any
702    // safepoint requests from the VMThread
703
704    {
705      MutexLocker ml(SR_lock());
706      // wait with safepoint check (if we're a JavaThread - the WatcherThread
707      // can also call this)  and increase delay with each retry
708      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
709
710      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
711                                              delay, bits);
712
713      // It is possible for the external suspend request to be cancelled
714      // (by a resume) before the actual suspend operation is completed.
715      // Refresh our local copy to see if we still need to wait.
716      pending = is_external_suspend();
717    }
718
719    if (!pending) {
720      // A cancelled suspend request is the only false return from
721      // is_ext_suspend_completed() that keeps us from staying in the
722      // retry loop.
723      *bits |= 0x00080000;
724      return false;
725    }
726
727    if (is_suspended) {
728      *bits |= 0x00100000;
729      return true;
730    }
731  } // end retry loop
732
733  // thread did not suspend after all our retries
734  *bits |= 0x00200000;
735  return false;
736}
737
738#ifndef PRODUCT
739void JavaThread::record_jump(address target, address instr, const char* file,
740                             int line) {
741
742  // This should not need to be atomic as the only way for simultaneous
743  // updates is via interrupts. Even then this should be rare or non-existent
744  // and we don't care that much anyway.
745
746  int index = _jmp_ring_index;
747  _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
748  _jmp_ring[index]._target = (intptr_t) target;
749  _jmp_ring[index]._instruction = (intptr_t) instr;
750  _jmp_ring[index]._file = file;
751  _jmp_ring[index]._line = line;
752}
753#endif // PRODUCT
754
755// Called by flat profiler
756// Callers have already called wait_for_ext_suspend_completion
757// The assertion for that is currently too complex to put here:
758bool JavaThread::profile_last_Java_frame(frame* _fr) {
759  bool gotframe = false;
760  // self suspension saves needed state.
761  if (has_last_Java_frame() && _anchor.walkable()) {
762    *_fr = pd_last_frame();
763    gotframe = true;
764  }
765  return gotframe;
766}
767
768void Thread::interrupt(Thread* thread) {
769  trace("interrupt", thread);
770  debug_only(check_for_dangling_thread_pointer(thread);)
771  os::interrupt(thread);
772}
773
774bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
775  trace("is_interrupted", thread);
776  debug_only(check_for_dangling_thread_pointer(thread);)
777  // Note:  If clear_interrupted==false, this simply fetches and
778  // returns the value of the field osthread()->interrupted().
779  return os::is_interrupted(thread, clear_interrupted);
780}
781
782
783// GC Support
784bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
785  jint thread_parity = _oops_do_parity;
786  if (thread_parity != strong_roots_parity) {
787    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
788    if (res == thread_parity) {
789      return true;
790    } else {
791      guarantee(res == strong_roots_parity, "Or else what?");
792      assert(SharedHeap::heap()->workers()->active_workers() > 0,
793             "Should only fail when parallel.");
794      return false;
795    }
796  }
797  assert(SharedHeap::heap()->workers()->active_workers() > 0,
798         "Should only fail when parallel.");
799  return false;
800}
801
802void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
803  active_handles()->oops_do(f);
804  // Do oop for ThreadShadow
805  f->do_oop((oop*)&_pending_exception);
806  handle_area()->oops_do(f);
807}
808
809void Thread::nmethods_do(CodeBlobClosure* cf) {
810  // no nmethods in a generic thread...
811}
812
813void Thread::metadata_do(void f(Metadata*)) {
814  if (metadata_handles() != NULL) {
815    for (int i = 0; i< metadata_handles()->length(); i++) {
816      f(metadata_handles()->at(i));
817    }
818  }
819}
820
821void Thread::print_on(outputStream* st) const {
822  // get_priority assumes osthread initialized
823  if (osthread() != NULL) {
824    int os_prio;
825    if (os::get_native_priority(this, &os_prio) == OS_OK) {
826      st->print("os_prio=%d ", os_prio);
827    }
828    st->print("tid=" INTPTR_FORMAT " ", this);
829    ext().print_on(st);
830    osthread()->print_on(st);
831  }
832  debug_only(if (WizardMode) print_owned_locks_on(st);)
833}
834
835// Thread::print_on_error() is called by fatal error handler. Don't use
836// any lock or allocate memory.
837void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
838  if (is_VM_thread())                 st->print("VMThread");
839  else if (is_Compiler_thread())      st->print("CompilerThread");
840  else if (is_Java_thread())          st->print("JavaThread");
841  else if (is_GC_task_thread())       st->print("GCTaskThread");
842  else if (is_Watcher_thread())       st->print("WatcherThread");
843  else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
844  else                                st->print("Thread");
845
846  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
847            _stack_base - _stack_size, _stack_base);
848
849  if (osthread()) {
850    st->print(" [id=%d]", osthread()->thread_id());
851  }
852}
853
854#ifdef ASSERT
855void Thread::print_owned_locks_on(outputStream* st) const {
856  Monitor *cur = _owned_locks;
857  if (cur == NULL) {
858    st->print(" (no locks) ");
859  } else {
860    st->print_cr(" Locks owned:");
861    while (cur) {
862      cur->print_on(st);
863      cur = cur->next();
864    }
865  }
866}
867
868static int ref_use_count  = 0;
869
870bool Thread::owns_locks_but_compiled_lock() const {
871  for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
872    if (cur != Compile_lock) return true;
873  }
874  return false;
875}
876
877
878#endif
879
880#ifndef PRODUCT
881
882// The flag: potential_vm_operation notifies if this particular safepoint state could potential
883// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
884// no threads which allow_vm_block's are held
885void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
886  // Check if current thread is allowed to block at a safepoint
887  if (!(_allow_safepoint_count == 0)) {
888    fatal("Possible safepoint reached by thread that does not allow it");
889  }
890  if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
891    fatal("LEAF method calling lock?");
892  }
893
894#ifdef ASSERT
895  if (potential_vm_operation && is_Java_thread()
896      && !Universe::is_bootstrapping()) {
897    // Make sure we do not hold any locks that the VM thread also uses.
898    // This could potentially lead to deadlocks
899    for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
900      // Threads_lock is special, since the safepoint synchronization will not start before this is
901      // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
902      // since it is used to transfer control between JavaThreads and the VMThread
903      // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
904      if ((cur->allow_vm_block() &&
905           cur != Threads_lock &&
906           cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
907           cur != VMOperationRequest_lock &&
908           cur != VMOperationQueue_lock) ||
909           cur->rank() == Mutex::special) {
910        fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
911      }
912    }
913  }
914
915  if (GCALotAtAllSafepoints) {
916    // We could enter a safepoint here and thus have a gc
917    InterfaceSupport::check_gc_alot();
918  }
919#endif
920}
921#endif
922
923bool Thread::is_in_stack(address adr) const {
924  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
925  address end = os::current_stack_pointer();
926  // Allow non Java threads to call this without stack_base
927  if (_stack_base == NULL) return true;
928  if (stack_base() >= adr && adr >= end) return true;
929
930  return false;
931}
932
933
934bool Thread::is_in_usable_stack(address adr) const {
935  size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
936  size_t usable_stack_size = _stack_size - stack_guard_size;
937
938  return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
939}
940
941
942// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
943// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
944// used for compilation in the future. If that change is made, the need for these methods
945// should be revisited, and they should be removed if possible.
946
947bool Thread::is_lock_owned(address adr) const {
948  return on_local_stack(adr);
949}
950
951bool Thread::set_as_starting_thread() {
952  // NOTE: this must be called inside the main thread.
953  return os::create_main_thread((JavaThread*)this);
954}
955
956static void initialize_class(Symbol* class_name, TRAPS) {
957  Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
958  InstanceKlass::cast(klass)->initialize(CHECK);
959}
960
961
962// Creates the initial ThreadGroup
963static Handle create_initial_thread_group(TRAPS) {
964  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
965  instanceKlassHandle klass (THREAD, k);
966
967  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
968  {
969    JavaValue result(T_VOID);
970    JavaCalls::call_special(&result,
971                            system_instance,
972                            klass,
973                            vmSymbols::object_initializer_name(),
974                            vmSymbols::void_method_signature(),
975                            CHECK_NH);
976  }
977  Universe::set_system_thread_group(system_instance());
978
979  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
980  {
981    JavaValue result(T_VOID);
982    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
983    JavaCalls::call_special(&result,
984                            main_instance,
985                            klass,
986                            vmSymbols::object_initializer_name(),
987                            vmSymbols::threadgroup_string_void_signature(),
988                            system_instance,
989                            string,
990                            CHECK_NH);
991  }
992  return main_instance;
993}
994
995// Creates the initial Thread
996static oop create_initial_thread(Handle thread_group, JavaThread* thread,
997                                 TRAPS) {
998  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
999  instanceKlassHandle klass (THREAD, k);
1000  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1001
1002  java_lang_Thread::set_thread(thread_oop(), thread);
1003  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1004  thread->set_threadObj(thread_oop());
1005
1006  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1007
1008  JavaValue result(T_VOID);
1009  JavaCalls::call_special(&result, thread_oop,
1010                          klass,
1011                          vmSymbols::object_initializer_name(),
1012                          vmSymbols::threadgroup_string_void_signature(),
1013                          thread_group,
1014                          string,
1015                          CHECK_NULL);
1016  return thread_oop();
1017}
1018
1019static void call_initializeSystemClass(TRAPS) {
1020  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1021  instanceKlassHandle klass (THREAD, k);
1022
1023  JavaValue result(T_VOID);
1024  JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1025                         vmSymbols::void_method_signature(), CHECK);
1026}
1027
1028char java_runtime_name[128] = "";
1029char java_runtime_version[128] = "";
1030
1031// extract the JRE name from sun.misc.Version.java_runtime_name
1032static const char* get_java_runtime_name(TRAPS) {
1033  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1034                                    Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1035  fieldDescriptor fd;
1036  bool found = k != NULL &&
1037               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1038                                                        vmSymbols::string_signature(), &fd);
1039  if (found) {
1040    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1041    if (name_oop == NULL) {
1042      return NULL;
1043    }
1044    const char* name = java_lang_String::as_utf8_string(name_oop,
1045                                                        java_runtime_name,
1046                                                        sizeof(java_runtime_name));
1047    return name;
1048  } else {
1049    return NULL;
1050  }
1051}
1052
1053// extract the JRE version from sun.misc.Version.java_runtime_version
1054static const char* get_java_runtime_version(TRAPS) {
1055  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1056                                    Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1057  fieldDescriptor fd;
1058  bool found = k != NULL &&
1059               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1060                                                        vmSymbols::string_signature(), &fd);
1061  if (found) {
1062    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1063    if (name_oop == NULL) {
1064      return NULL;
1065    }
1066    const char* name = java_lang_String::as_utf8_string(name_oop,
1067                                                        java_runtime_version,
1068                                                        sizeof(java_runtime_version));
1069    return name;
1070  } else {
1071    return NULL;
1072  }
1073}
1074
1075// General purpose hook into Java code, run once when the VM is initialized.
1076// The Java library method itself may be changed independently from the VM.
1077static void call_postVMInitHook(TRAPS) {
1078  Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1079  instanceKlassHandle klass (THREAD, k);
1080  if (klass.not_null()) {
1081    JavaValue result(T_VOID);
1082    JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1083                           vmSymbols::void_method_signature(),
1084                           CHECK);
1085  }
1086}
1087
1088static void reset_vm_info_property(TRAPS) {
1089  // the vm info string
1090  ResourceMark rm(THREAD);
1091  const char *vm_info = VM_Version::vm_info_string();
1092
1093  // java.lang.System class
1094  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1095  instanceKlassHandle klass (THREAD, k);
1096
1097  // setProperty arguments
1098  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1099  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1100
1101  // return value
1102  JavaValue r(T_OBJECT);
1103
1104  // public static String setProperty(String key, String value);
1105  JavaCalls::call_static(&r,
1106                         klass,
1107                         vmSymbols::setProperty_name(),
1108                         vmSymbols::string_string_string_signature(),
1109                         key_str,
1110                         value_str,
1111                         CHECK);
1112}
1113
1114
1115void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name,
1116                                    bool daemon, TRAPS) {
1117  assert(thread_group.not_null(), "thread group should be specified");
1118  assert(threadObj() == NULL, "should only create Java thread object once");
1119
1120  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1121  instanceKlassHandle klass (THREAD, k);
1122  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1123
1124  java_lang_Thread::set_thread(thread_oop(), this);
1125  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1126  set_threadObj(thread_oop());
1127
1128  JavaValue result(T_VOID);
1129  if (thread_name != NULL) {
1130    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1131    // Thread gets assigned specified name and null target
1132    JavaCalls::call_special(&result,
1133                            thread_oop,
1134                            klass,
1135                            vmSymbols::object_initializer_name(),
1136                            vmSymbols::threadgroup_string_void_signature(),
1137                            thread_group, // Argument 1
1138                            name,         // Argument 2
1139                            THREAD);
1140  } else {
1141    // Thread gets assigned name "Thread-nnn" and null target
1142    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1143    JavaCalls::call_special(&result,
1144                            thread_oop,
1145                            klass,
1146                            vmSymbols::object_initializer_name(),
1147                            vmSymbols::threadgroup_runnable_void_signature(),
1148                            thread_group, // Argument 1
1149                            Handle(),     // Argument 2
1150                            THREAD);
1151  }
1152
1153
1154  if (daemon) {
1155    java_lang_Thread::set_daemon(thread_oop());
1156  }
1157
1158  if (HAS_PENDING_EXCEPTION) {
1159    return;
1160  }
1161
1162  KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1163  Handle threadObj(this, this->threadObj());
1164
1165  JavaCalls::call_special(&result,
1166                          thread_group,
1167                          group,
1168                          vmSymbols::add_method_name(),
1169                          vmSymbols::thread_void_signature(),
1170                          threadObj,          // Arg 1
1171                          THREAD);
1172
1173
1174}
1175
1176// NamedThread --  non-JavaThread subclasses with multiple
1177// uniquely named instances should derive from this.
1178NamedThread::NamedThread() : Thread() {
1179  _name = NULL;
1180  _processed_thread = NULL;
1181}
1182
1183NamedThread::~NamedThread() {
1184  if (_name != NULL) {
1185    FREE_C_HEAP_ARRAY(char, _name, mtThread);
1186    _name = NULL;
1187  }
1188}
1189
1190void NamedThread::set_name(const char* format, ...) {
1191  guarantee(_name == NULL, "Only get to set name once.");
1192  _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1193  guarantee(_name != NULL, "alloc failure");
1194  va_list ap;
1195  va_start(ap, format);
1196  jio_vsnprintf(_name, max_name_len, format, ap);
1197  va_end(ap);
1198}
1199
1200void NamedThread::print_on(outputStream* st) const {
1201  st->print("\"%s\" ", name());
1202  Thread::print_on(st);
1203  st->cr();
1204}
1205
1206
1207// ======= WatcherThread ========
1208
1209// The watcher thread exists to simulate timer interrupts.  It should
1210// be replaced by an abstraction over whatever native support for
1211// timer interrupts exists on the platform.
1212
1213WatcherThread* WatcherThread::_watcher_thread   = NULL;
1214bool WatcherThread::_startable = false;
1215volatile bool  WatcherThread::_should_terminate = false;
1216
1217WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1218  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1219  if (os::create_thread(this, os::watcher_thread)) {
1220    _watcher_thread = this;
1221
1222    // Set the watcher thread to the highest OS priority which should not be
1223    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1224    // is created. The only normal thread using this priority is the reference
1225    // handler thread, which runs for very short intervals only.
1226    // If the VMThread's priority is not lower than the WatcherThread profiling
1227    // will be inaccurate.
1228    os::set_priority(this, MaxPriority);
1229    if (!DisableStartThread) {
1230      os::start_thread(this);
1231    }
1232  }
1233}
1234
1235int WatcherThread::sleep() const {
1236  MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1237
1238  // remaining will be zero if there are no tasks,
1239  // causing the WatcherThread to sleep until a task is
1240  // enrolled
1241  int remaining = PeriodicTask::time_to_wait();
1242  int time_slept = 0;
1243
1244  // we expect this to timeout - we only ever get unparked when
1245  // we should terminate or when a new task has been enrolled
1246  OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1247
1248  jlong time_before_loop = os::javaTimeNanos();
1249
1250  for (;;) {
1251    bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1252    jlong now = os::javaTimeNanos();
1253
1254    if (remaining == 0) {
1255      // if we didn't have any tasks we could have waited for a long time
1256      // consider the time_slept zero and reset time_before_loop
1257      time_slept = 0;
1258      time_before_loop = now;
1259    } else {
1260      // need to recalculate since we might have new tasks in _tasks
1261      time_slept = (int) ((now - time_before_loop) / 1000000);
1262    }
1263
1264    // Change to task list or spurious wakeup of some kind
1265    if (timedout || _should_terminate) {
1266      break;
1267    }
1268
1269    remaining = PeriodicTask::time_to_wait();
1270    if (remaining == 0) {
1271      // Last task was just disenrolled so loop around and wait until
1272      // another task gets enrolled
1273      continue;
1274    }
1275
1276    remaining -= time_slept;
1277    if (remaining <= 0) {
1278      break;
1279    }
1280  }
1281
1282  return time_slept;
1283}
1284
1285void WatcherThread::run() {
1286  assert(this == watcher_thread(), "just checking");
1287
1288  this->record_stack_base_and_size();
1289  this->initialize_thread_local_storage();
1290  this->set_native_thread_name(this->name());
1291  this->set_active_handles(JNIHandleBlock::allocate_block());
1292  while (!_should_terminate) {
1293    assert(watcher_thread() == Thread::current(), "thread consistency check");
1294    assert(watcher_thread() == this, "thread consistency check");
1295
1296    // Calculate how long it'll be until the next PeriodicTask work
1297    // should be done, and sleep that amount of time.
1298    int time_waited = sleep();
1299
1300    if (is_error_reported()) {
1301      // A fatal error has happened, the error handler(VMError::report_and_die)
1302      // should abort JVM after creating an error log file. However in some
1303      // rare cases, the error handler itself might deadlock. Here we try to
1304      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1305      //
1306      // This code is in WatcherThread because WatcherThread wakes up
1307      // periodically so the fatal error handler doesn't need to do anything;
1308      // also because the WatcherThread is less likely to crash than other
1309      // threads.
1310
1311      for (;;) {
1312        if (!ShowMessageBoxOnError
1313            && (OnError == NULL || OnError[0] == '\0')
1314            && Arguments::abort_hook() == NULL) {
1315          os::sleep(this, 2 * 60 * 1000, false);
1316          fdStream err(defaultStream::output_fd());
1317          err.print_raw_cr("# [ timer expired, abort... ]");
1318          // skip atexit/vm_exit/vm_abort hooks
1319          os::die();
1320        }
1321
1322        // Wake up 5 seconds later, the fatal handler may reset OnError or
1323        // ShowMessageBoxOnError when it is ready to abort.
1324        os::sleep(this, 5 * 1000, false);
1325      }
1326    }
1327
1328    PeriodicTask::real_time_tick(time_waited);
1329  }
1330
1331  // Signal that it is terminated
1332  {
1333    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1334    _watcher_thread = NULL;
1335    Terminator_lock->notify();
1336  }
1337
1338  // Thread destructor usually does this..
1339  ThreadLocalStorage::set_thread(NULL);
1340}
1341
1342void WatcherThread::start() {
1343  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1344
1345  if (watcher_thread() == NULL && _startable) {
1346    _should_terminate = false;
1347    // Create the single instance of WatcherThread
1348    new WatcherThread();
1349  }
1350}
1351
1352void WatcherThread::make_startable() {
1353  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1354  _startable = true;
1355}
1356
1357void WatcherThread::stop() {
1358  // Get the PeriodicTask_lock if we can. If we cannot, then the
1359  // WatcherThread is using it and we don't want to block on that lock
1360  // here because that might cause a safepoint deadlock depending on
1361  // what the current WatcherThread tasks are doing.
1362  bool have_lock = PeriodicTask_lock->try_lock();
1363
1364  _should_terminate = true;
1365  OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1366
1367  if (have_lock) {
1368    WatcherThread* watcher = watcher_thread();
1369    if (watcher != NULL) {
1370      // If we managed to get the lock, then we should unpark the
1371      // WatcherThread so that it can see we want it to stop.
1372      watcher->unpark();
1373    }
1374
1375    PeriodicTask_lock->unlock();
1376  }
1377
1378  // it is ok to take late safepoints here, if needed
1379  MutexLocker mu(Terminator_lock);
1380
1381  while (watcher_thread() != NULL) {
1382    // This wait should make safepoint checks, wait without a timeout,
1383    // and wait as a suspend-equivalent condition.
1384    //
1385    // Note: If the FlatProfiler is running, then this thread is waiting
1386    // for the WatcherThread to terminate and the WatcherThread, via the
1387    // FlatProfiler task, is waiting for the external suspend request on
1388    // this thread to complete. wait_for_ext_suspend_completion() will
1389    // eventually timeout, but that takes time. Making this wait a
1390    // suspend-equivalent condition solves that timeout problem.
1391    //
1392    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1393                          Mutex::_as_suspend_equivalent_flag);
1394  }
1395}
1396
1397void WatcherThread::unpark() {
1398  MutexLockerEx ml(PeriodicTask_lock->owned_by_self()
1399                   ? NULL
1400                   : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1401  PeriodicTask_lock->notify();
1402}
1403
1404void WatcherThread::print_on(outputStream* st) const {
1405  st->print("\"%s\" ", name());
1406  Thread::print_on(st);
1407  st->cr();
1408}
1409
1410// ======= JavaThread ========
1411
1412// A JavaThread is a normal Java thread
1413
1414void JavaThread::initialize() {
1415  // Initialize fields
1416
1417  // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1418  set_claimed_par_id(UINT_MAX);
1419
1420  set_saved_exception_pc(NULL);
1421  set_threadObj(NULL);
1422  _anchor.clear();
1423  set_entry_point(NULL);
1424  set_jni_functions(jni_functions());
1425  set_callee_target(NULL);
1426  set_vm_result(NULL);
1427  set_vm_result_2(NULL);
1428  set_vframe_array_head(NULL);
1429  set_vframe_array_last(NULL);
1430  set_deferred_locals(NULL);
1431  set_deopt_mark(NULL);
1432  set_deopt_nmethod(NULL);
1433  clear_must_deopt_id();
1434  set_monitor_chunks(NULL);
1435  set_next(NULL);
1436  set_thread_state(_thread_new);
1437  _terminated = _not_terminated;
1438  _privileged_stack_top = NULL;
1439  _array_for_gc = NULL;
1440  _suspend_equivalent = false;
1441  _in_deopt_handler = 0;
1442  _doing_unsafe_access = false;
1443  _stack_guard_state = stack_guard_unused;
1444  (void)const_cast<oop&>(_exception_oop = oop(NULL));
1445  _exception_pc  = 0;
1446  _exception_handler_pc = 0;
1447  _is_method_handle_return = 0;
1448  _jvmti_thread_state= NULL;
1449  _should_post_on_exceptions_flag = JNI_FALSE;
1450  _jvmti_get_loaded_classes_closure = NULL;
1451  _interp_only_mode    = 0;
1452  _special_runtime_exit_condition = _no_async_condition;
1453  _pending_async_exception = NULL;
1454  _thread_stat = NULL;
1455  _thread_stat = new ThreadStatistics();
1456  _blocked_on_compilation = false;
1457  _jni_active_critical = 0;
1458  _pending_jni_exception_check_fn = NULL;
1459  _do_not_unlock_if_synchronized = false;
1460  _cached_monitor_info = NULL;
1461  _parker = Parker::Allocate(this);
1462
1463#ifndef PRODUCT
1464  _jmp_ring_index = 0;
1465  for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1466    record_jump(NULL, NULL, NULL, 0);
1467  }
1468#endif // PRODUCT
1469
1470  set_thread_profiler(NULL);
1471  if (FlatProfiler::is_active()) {
1472    // This is where we would decide to either give each thread it's own profiler
1473    // or use one global one from FlatProfiler,
1474    // or up to some count of the number of profiled threads, etc.
1475    ThreadProfiler* pp = new ThreadProfiler();
1476    pp->engage();
1477    set_thread_profiler(pp);
1478  }
1479
1480  // Setup safepoint state info for this thread
1481  ThreadSafepointState::create(this);
1482
1483  debug_only(_java_call_counter = 0);
1484
1485  // JVMTI PopFrame support
1486  _popframe_condition = popframe_inactive;
1487  _popframe_preserved_args = NULL;
1488  _popframe_preserved_args_size = 0;
1489
1490  pd_initialize();
1491}
1492
1493#if INCLUDE_ALL_GCS
1494SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1495DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1496#endif // INCLUDE_ALL_GCS
1497
1498JavaThread::JavaThread(bool is_attaching_via_jni) :
1499                       Thread()
1500#if INCLUDE_ALL_GCS
1501                       , _satb_mark_queue(&_satb_mark_queue_set),
1502                       _dirty_card_queue(&_dirty_card_queue_set)
1503#endif // INCLUDE_ALL_GCS
1504{
1505  initialize();
1506  if (is_attaching_via_jni) {
1507    _jni_attach_state = _attaching_via_jni;
1508  } else {
1509    _jni_attach_state = _not_attaching_via_jni;
1510  }
1511  assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1512}
1513
1514bool JavaThread::reguard_stack(address cur_sp) {
1515  if (_stack_guard_state != stack_guard_yellow_disabled) {
1516    return true; // Stack already guarded or guard pages not needed.
1517  }
1518
1519  if (register_stack_overflow()) {
1520    // For those architectures which have separate register and
1521    // memory stacks, we must check the register stack to see if
1522    // it has overflowed.
1523    return false;
1524  }
1525
1526  // Java code never executes within the yellow zone: the latter is only
1527  // there to provoke an exception during stack banging.  If java code
1528  // is executing there, either StackShadowPages should be larger, or
1529  // some exception code in c1, c2 or the interpreter isn't unwinding
1530  // when it should.
1531  guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1532
1533  enable_stack_yellow_zone();
1534  return true;
1535}
1536
1537bool JavaThread::reguard_stack(void) {
1538  return reguard_stack(os::current_stack_pointer());
1539}
1540
1541
1542void JavaThread::block_if_vm_exited() {
1543  if (_terminated == _vm_exited) {
1544    // _vm_exited is set at safepoint, and Threads_lock is never released
1545    // we will block here forever
1546    Threads_lock->lock_without_safepoint_check();
1547    ShouldNotReachHere();
1548  }
1549}
1550
1551
1552// Remove this ifdef when C1 is ported to the compiler interface.
1553static void compiler_thread_entry(JavaThread* thread, TRAPS);
1554
1555JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1556                       Thread()
1557#if INCLUDE_ALL_GCS
1558                       , _satb_mark_queue(&_satb_mark_queue_set),
1559                       _dirty_card_queue(&_dirty_card_queue_set)
1560#endif // INCLUDE_ALL_GCS
1561{
1562  if (TraceThreadEvents) {
1563    tty->print_cr("creating thread %p", this);
1564  }
1565  initialize();
1566  _jni_attach_state = _not_attaching_via_jni;
1567  set_entry_point(entry_point);
1568  // Create the native thread itself.
1569  // %note runtime_23
1570  os::ThreadType thr_type = os::java_thread;
1571  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1572                                                     os::java_thread;
1573  os::create_thread(this, thr_type, stack_sz);
1574  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1575  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1576  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1577  // the exception consists of creating the exception object & initializing it, initialization
1578  // will leave the VM via a JavaCall and then all locks must be unlocked).
1579  //
1580  // The thread is still suspended when we reach here. Thread must be explicit started
1581  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1582  // by calling Threads:add. The reason why this is not done here, is because the thread
1583  // object must be fully initialized (take a look at JVM_Start)
1584}
1585
1586JavaThread::~JavaThread() {
1587  if (TraceThreadEvents) {
1588    tty->print_cr("terminate thread %p", this);
1589  }
1590
1591  // JSR166 -- return the parker to the free list
1592  Parker::Release(_parker);
1593  _parker = NULL;
1594
1595  // Free any remaining  previous UnrollBlock
1596  vframeArray* old_array = vframe_array_last();
1597
1598  if (old_array != NULL) {
1599    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1600    old_array->set_unroll_block(NULL);
1601    delete old_info;
1602    delete old_array;
1603  }
1604
1605  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1606  if (deferred != NULL) {
1607    // This can only happen if thread is destroyed before deoptimization occurs.
1608    assert(deferred->length() != 0, "empty array!");
1609    do {
1610      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1611      deferred->remove_at(0);
1612      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1613      delete dlv;
1614    } while (deferred->length() != 0);
1615    delete deferred;
1616  }
1617
1618  // All Java related clean up happens in exit
1619  ThreadSafepointState::destroy(this);
1620  if (_thread_profiler != NULL) delete _thread_profiler;
1621  if (_thread_stat != NULL) delete _thread_stat;
1622}
1623
1624
1625// The first routine called by a new Java thread
1626void JavaThread::run() {
1627  // initialize thread-local alloc buffer related fields
1628  this->initialize_tlab();
1629
1630  // used to test validity of stack trace backs
1631  this->record_base_of_stack_pointer();
1632
1633  // Record real stack base and size.
1634  this->record_stack_base_and_size();
1635
1636  // Initialize thread local storage; set before calling MutexLocker
1637  this->initialize_thread_local_storage();
1638
1639  this->create_stack_guard_pages();
1640
1641  this->cache_global_variables();
1642
1643  // Thread is now sufficient initialized to be handled by the safepoint code as being
1644  // in the VM. Change thread state from _thread_new to _thread_in_vm
1645  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1646
1647  assert(JavaThread::current() == this, "sanity check");
1648  assert(!Thread::current()->owns_locks(), "sanity check");
1649
1650  DTRACE_THREAD_PROBE(start, this);
1651
1652  // This operation might block. We call that after all safepoint checks for a new thread has
1653  // been completed.
1654  this->set_active_handles(JNIHandleBlock::allocate_block());
1655
1656  if (JvmtiExport::should_post_thread_life()) {
1657    JvmtiExport::post_thread_start(this);
1658  }
1659
1660  EventThreadStart event;
1661  if (event.should_commit()) {
1662    event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1663    event.commit();
1664  }
1665
1666  // We call another function to do the rest so we are sure that the stack addresses used
1667  // from there will be lower than the stack base just computed
1668  thread_main_inner();
1669
1670  // Note, thread is no longer valid at this point!
1671}
1672
1673
1674void JavaThread::thread_main_inner() {
1675  assert(JavaThread::current() == this, "sanity check");
1676  assert(this->threadObj() != NULL, "just checking");
1677
1678  // Execute thread entry point unless this thread has a pending exception
1679  // or has been stopped before starting.
1680  // Note: Due to JVM_StopThread we can have pending exceptions already!
1681  if (!this->has_pending_exception() &&
1682      !java_lang_Thread::is_stillborn(this->threadObj())) {
1683    {
1684      ResourceMark rm(this);
1685      this->set_native_thread_name(this->get_thread_name());
1686    }
1687    HandleMark hm(this);
1688    this->entry_point()(this, this);
1689  }
1690
1691  DTRACE_THREAD_PROBE(stop, this);
1692
1693  this->exit(false);
1694  delete this;
1695}
1696
1697
1698static void ensure_join(JavaThread* thread) {
1699  // We do not need to grap the Threads_lock, since we are operating on ourself.
1700  Handle threadObj(thread, thread->threadObj());
1701  assert(threadObj.not_null(), "java thread object must exist");
1702  ObjectLocker lock(threadObj, thread);
1703  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1704  thread->clear_pending_exception();
1705  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1706  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1707  // Clear the native thread instance - this makes isAlive return false and allows the join()
1708  // to complete once we've done the notify_all below
1709  java_lang_Thread::set_thread(threadObj(), NULL);
1710  lock.notify_all(thread);
1711  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1712  thread->clear_pending_exception();
1713}
1714
1715
1716// For any new cleanup additions, please check to see if they need to be applied to
1717// cleanup_failed_attach_current_thread as well.
1718void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1719  assert(this == JavaThread::current(), "thread consistency check");
1720
1721  HandleMark hm(this);
1722  Handle uncaught_exception(this, this->pending_exception());
1723  this->clear_pending_exception();
1724  Handle threadObj(this, this->threadObj());
1725  assert(threadObj.not_null(), "Java thread object should be created");
1726
1727  if (get_thread_profiler() != NULL) {
1728    get_thread_profiler()->disengage();
1729    ResourceMark rm;
1730    get_thread_profiler()->print(get_thread_name());
1731  }
1732
1733
1734  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1735  {
1736    EXCEPTION_MARK;
1737
1738    CLEAR_PENDING_EXCEPTION;
1739  }
1740  if (!destroy_vm) {
1741    if (uncaught_exception.not_null()) {
1742      EXCEPTION_MARK;
1743      // Call method Thread.dispatchUncaughtException().
1744      KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1745      JavaValue result(T_VOID);
1746      JavaCalls::call_virtual(&result,
1747                              threadObj, thread_klass,
1748                              vmSymbols::dispatchUncaughtException_name(),
1749                              vmSymbols::throwable_void_signature(),
1750                              uncaught_exception,
1751                              THREAD);
1752      if (HAS_PENDING_EXCEPTION) {
1753        ResourceMark rm(this);
1754        jio_fprintf(defaultStream::error_stream(),
1755                    "\nException: %s thrown from the UncaughtExceptionHandler"
1756                    " in thread \"%s\"\n",
1757                    pending_exception()->klass()->external_name(),
1758                    get_thread_name());
1759        CLEAR_PENDING_EXCEPTION;
1760      }
1761    }
1762
1763    // Called before the java thread exit since we want to read info
1764    // from java_lang_Thread object
1765    EventThreadEnd event;
1766    if (event.should_commit()) {
1767      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1768      event.commit();
1769    }
1770
1771    // Call after last event on thread
1772    EVENT_THREAD_EXIT(this);
1773
1774    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1775    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1776    // is deprecated anyhow.
1777    if (!is_Compiler_thread()) {
1778      int count = 3;
1779      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1780        EXCEPTION_MARK;
1781        JavaValue result(T_VOID);
1782        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1783        JavaCalls::call_virtual(&result,
1784                                threadObj, thread_klass,
1785                                vmSymbols::exit_method_name(),
1786                                vmSymbols::void_method_signature(),
1787                                THREAD);
1788        CLEAR_PENDING_EXCEPTION;
1789      }
1790    }
1791    // notify JVMTI
1792    if (JvmtiExport::should_post_thread_life()) {
1793      JvmtiExport::post_thread_end(this);
1794    }
1795
1796    // We have notified the agents that we are exiting, before we go on,
1797    // we must check for a pending external suspend request and honor it
1798    // in order to not surprise the thread that made the suspend request.
1799    while (true) {
1800      {
1801        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1802        if (!is_external_suspend()) {
1803          set_terminated(_thread_exiting);
1804          ThreadService::current_thread_exiting(this);
1805          break;
1806        }
1807        // Implied else:
1808        // Things get a little tricky here. We have a pending external
1809        // suspend request, but we are holding the SR_lock so we
1810        // can't just self-suspend. So we temporarily drop the lock
1811        // and then self-suspend.
1812      }
1813
1814      ThreadBlockInVM tbivm(this);
1815      java_suspend_self();
1816
1817      // We're done with this suspend request, but we have to loop around
1818      // and check again. Eventually we will get SR_lock without a pending
1819      // external suspend request and will be able to mark ourselves as
1820      // exiting.
1821    }
1822    // no more external suspends are allowed at this point
1823  } else {
1824    // before_exit() has already posted JVMTI THREAD_END events
1825  }
1826
1827  // Notify waiters on thread object. This has to be done after exit() is called
1828  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1829  // group should have the destroyed bit set before waiters are notified).
1830  ensure_join(this);
1831  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1832
1833  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1834  // held by this thread must be released.  A detach operation must only
1835  // get here if there are no Java frames on the stack.  Therefore, any
1836  // owned monitors at this point MUST be JNI-acquired monitors which are
1837  // pre-inflated and in the monitor cache.
1838  //
1839  // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1840  if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1841    assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1842    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1843    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1844  }
1845
1846  // These things needs to be done while we are still a Java Thread. Make sure that thread
1847  // is in a consistent state, in case GC happens
1848  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1849
1850  if (active_handles() != NULL) {
1851    JNIHandleBlock* block = active_handles();
1852    set_active_handles(NULL);
1853    JNIHandleBlock::release_block(block);
1854  }
1855
1856  if (free_handle_block() != NULL) {
1857    JNIHandleBlock* block = free_handle_block();
1858    set_free_handle_block(NULL);
1859    JNIHandleBlock::release_block(block);
1860  }
1861
1862  // These have to be removed while this is still a valid thread.
1863  remove_stack_guard_pages();
1864
1865  if (UseTLAB) {
1866    tlab().make_parsable(true);  // retire TLAB
1867  }
1868
1869  if (JvmtiEnv::environments_might_exist()) {
1870    JvmtiExport::cleanup_thread(this);
1871  }
1872
1873  // We must flush any deferred card marks before removing a thread from
1874  // the list of active threads.
1875  Universe::heap()->flush_deferred_store_barrier(this);
1876  assert(deferred_card_mark().is_empty(), "Should have been flushed");
1877
1878#if INCLUDE_ALL_GCS
1879  // We must flush the G1-related buffers before removing a thread
1880  // from the list of active threads. We must do this after any deferred
1881  // card marks have been flushed (above) so that any entries that are
1882  // added to the thread's dirty card queue as a result are not lost.
1883  if (UseG1GC) {
1884    flush_barrier_queues();
1885  }
1886#endif // INCLUDE_ALL_GCS
1887
1888  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1889  Threads::remove(this);
1890}
1891
1892#if INCLUDE_ALL_GCS
1893// Flush G1-related queues.
1894void JavaThread::flush_barrier_queues() {
1895  satb_mark_queue().flush();
1896  dirty_card_queue().flush();
1897}
1898
1899void JavaThread::initialize_queues() {
1900  assert(!SafepointSynchronize::is_at_safepoint(),
1901         "we should not be at a safepoint");
1902
1903  ObjPtrQueue& satb_queue = satb_mark_queue();
1904  SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1905  // The SATB queue should have been constructed with its active
1906  // field set to false.
1907  assert(!satb_queue.is_active(), "SATB queue should not be active");
1908  assert(satb_queue.is_empty(), "SATB queue should be empty");
1909  // If we are creating the thread during a marking cycle, we should
1910  // set the active field of the SATB queue to true.
1911  if (satb_queue_set.is_active()) {
1912    satb_queue.set_active(true);
1913  }
1914
1915  DirtyCardQueue& dirty_queue = dirty_card_queue();
1916  // The dirty card queue should have been constructed with its
1917  // active field set to true.
1918  assert(dirty_queue.is_active(), "dirty card queue should be active");
1919}
1920#endif // INCLUDE_ALL_GCS
1921
1922void JavaThread::cleanup_failed_attach_current_thread() {
1923  if (get_thread_profiler() != NULL) {
1924    get_thread_profiler()->disengage();
1925    ResourceMark rm;
1926    get_thread_profiler()->print(get_thread_name());
1927  }
1928
1929  if (active_handles() != NULL) {
1930    JNIHandleBlock* block = active_handles();
1931    set_active_handles(NULL);
1932    JNIHandleBlock::release_block(block);
1933  }
1934
1935  if (free_handle_block() != NULL) {
1936    JNIHandleBlock* block = free_handle_block();
1937    set_free_handle_block(NULL);
1938    JNIHandleBlock::release_block(block);
1939  }
1940
1941  // These have to be removed while this is still a valid thread.
1942  remove_stack_guard_pages();
1943
1944  if (UseTLAB) {
1945    tlab().make_parsable(true);  // retire TLAB, if any
1946  }
1947
1948#if INCLUDE_ALL_GCS
1949  if (UseG1GC) {
1950    flush_barrier_queues();
1951  }
1952#endif // INCLUDE_ALL_GCS
1953
1954  Threads::remove(this);
1955  delete this;
1956}
1957
1958
1959
1960
1961JavaThread* JavaThread::active() {
1962  Thread* thread = ThreadLocalStorage::thread();
1963  assert(thread != NULL, "just checking");
1964  if (thread->is_Java_thread()) {
1965    return (JavaThread*) thread;
1966  } else {
1967    assert(thread->is_VM_thread(), "this must be a vm thread");
1968    VM_Operation* op = ((VMThread*) thread)->vm_operation();
1969    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1970    assert(ret->is_Java_thread(), "must be a Java thread");
1971    return ret;
1972  }
1973}
1974
1975bool JavaThread::is_lock_owned(address adr) const {
1976  if (Thread::is_lock_owned(adr)) return true;
1977
1978  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1979    if (chunk->contains(adr)) return true;
1980  }
1981
1982  return false;
1983}
1984
1985
1986void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1987  chunk->set_next(monitor_chunks());
1988  set_monitor_chunks(chunk);
1989}
1990
1991void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1992  guarantee(monitor_chunks() != NULL, "must be non empty");
1993  if (monitor_chunks() == chunk) {
1994    set_monitor_chunks(chunk->next());
1995  } else {
1996    MonitorChunk* prev = monitor_chunks();
1997    while (prev->next() != chunk) prev = prev->next();
1998    prev->set_next(chunk->next());
1999  }
2000}
2001
2002// JVM support.
2003
2004// Note: this function shouldn't block if it's called in
2005// _thread_in_native_trans state (such as from
2006// check_special_condition_for_native_trans()).
2007void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2008
2009  if (has_last_Java_frame() && has_async_condition()) {
2010    // If we are at a polling page safepoint (not a poll return)
2011    // then we must defer async exception because live registers
2012    // will be clobbered by the exception path. Poll return is
2013    // ok because the call we a returning from already collides
2014    // with exception handling registers and so there is no issue.
2015    // (The exception handling path kills call result registers but
2016    //  this is ok since the exception kills the result anyway).
2017
2018    if (is_at_poll_safepoint()) {
2019      // if the code we are returning to has deoptimized we must defer
2020      // the exception otherwise live registers get clobbered on the
2021      // exception path before deoptimization is able to retrieve them.
2022      //
2023      RegisterMap map(this, false);
2024      frame caller_fr = last_frame().sender(&map);
2025      assert(caller_fr.is_compiled_frame(), "what?");
2026      if (caller_fr.is_deoptimized_frame()) {
2027        if (TraceExceptions) {
2028          ResourceMark rm;
2029          tty->print_cr("deferred async exception at compiled safepoint");
2030        }
2031        return;
2032      }
2033    }
2034  }
2035
2036  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2037  if (condition == _no_async_condition) {
2038    // Conditions have changed since has_special_runtime_exit_condition()
2039    // was called:
2040    // - if we were here only because of an external suspend request,
2041    //   then that was taken care of above (or cancelled) so we are done
2042    // - if we were here because of another async request, then it has
2043    //   been cleared between the has_special_runtime_exit_condition()
2044    //   and now so again we are done
2045    return;
2046  }
2047
2048  // Check for pending async. exception
2049  if (_pending_async_exception != NULL) {
2050    // Only overwrite an already pending exception, if it is not a threadDeath.
2051    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2052
2053      // We cannot call Exceptions::_throw(...) here because we cannot block
2054      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2055
2056      if (TraceExceptions) {
2057        ResourceMark rm;
2058        tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2059        if (has_last_Java_frame()) {
2060          frame f = last_frame();
2061          tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2062        }
2063        tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2064      }
2065      _pending_async_exception = NULL;
2066      clear_has_async_exception();
2067    }
2068  }
2069
2070  if (check_unsafe_error &&
2071      condition == _async_unsafe_access_error && !has_pending_exception()) {
2072    condition = _no_async_condition;  // done
2073    switch (thread_state()) {
2074    case _thread_in_vm: {
2075      JavaThread* THREAD = this;
2076      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2077    }
2078    case _thread_in_native: {
2079      ThreadInVMfromNative tiv(this);
2080      JavaThread* THREAD = this;
2081      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2082    }
2083    case _thread_in_Java: {
2084      ThreadInVMfromJava tiv(this);
2085      JavaThread* THREAD = this;
2086      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2087    }
2088    default:
2089      ShouldNotReachHere();
2090    }
2091  }
2092
2093  assert(condition == _no_async_condition || has_pending_exception() ||
2094         (!check_unsafe_error && condition == _async_unsafe_access_error),
2095         "must have handled the async condition, if no exception");
2096}
2097
2098void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2099  //
2100  // Check for pending external suspend. Internal suspend requests do
2101  // not use handle_special_runtime_exit_condition().
2102  // If JNIEnv proxies are allowed, don't self-suspend if the target
2103  // thread is not the current thread. In older versions of jdbx, jdbx
2104  // threads could call into the VM with another thread's JNIEnv so we
2105  // can be here operating on behalf of a suspended thread (4432884).
2106  bool do_self_suspend = is_external_suspend_with_lock();
2107  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2108    //
2109    // Because thread is external suspended the safepoint code will count
2110    // thread as at a safepoint. This can be odd because we can be here
2111    // as _thread_in_Java which would normally transition to _thread_blocked
2112    // at a safepoint. We would like to mark the thread as _thread_blocked
2113    // before calling java_suspend_self like all other callers of it but
2114    // we must then observe proper safepoint protocol. (We can't leave
2115    // _thread_blocked with a safepoint in progress). However we can be
2116    // here as _thread_in_native_trans so we can't use a normal transition
2117    // constructor/destructor pair because they assert on that type of
2118    // transition. We could do something like:
2119    //
2120    // JavaThreadState state = thread_state();
2121    // set_thread_state(_thread_in_vm);
2122    // {
2123    //   ThreadBlockInVM tbivm(this);
2124    //   java_suspend_self()
2125    // }
2126    // set_thread_state(_thread_in_vm_trans);
2127    // if (safepoint) block;
2128    // set_thread_state(state);
2129    //
2130    // but that is pretty messy. Instead we just go with the way the
2131    // code has worked before and note that this is the only path to
2132    // java_suspend_self that doesn't put the thread in _thread_blocked
2133    // mode.
2134
2135    frame_anchor()->make_walkable(this);
2136    java_suspend_self();
2137
2138    // We might be here for reasons in addition to the self-suspend request
2139    // so check for other async requests.
2140  }
2141
2142  if (check_asyncs) {
2143    check_and_handle_async_exceptions();
2144  }
2145}
2146
2147void JavaThread::send_thread_stop(oop java_throwable)  {
2148  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2149  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2150  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2151
2152  // Do not throw asynchronous exceptions against the compiler thread
2153  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2154  if (is_Compiler_thread()) return;
2155
2156  {
2157    // Actually throw the Throwable against the target Thread - however
2158    // only if there is no thread death exception installed already.
2159    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2160      // If the topmost frame is a runtime stub, then we are calling into
2161      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2162      // must deoptimize the caller before continuing, as the compiled  exception handler table
2163      // may not be valid
2164      if (has_last_Java_frame()) {
2165        frame f = last_frame();
2166        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2167          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2168          RegisterMap reg_map(this, UseBiasedLocking);
2169          frame compiled_frame = f.sender(&reg_map);
2170          if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2171            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2172          }
2173        }
2174      }
2175
2176      // Set async. pending exception in thread.
2177      set_pending_async_exception(java_throwable);
2178
2179      if (TraceExceptions) {
2180        ResourceMark rm;
2181        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2182      }
2183      // for AbortVMOnException flag
2184      NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2185    }
2186  }
2187
2188
2189  // Interrupt thread so it will wake up from a potential wait()
2190  Thread::interrupt(this);
2191}
2192
2193// External suspension mechanism.
2194//
2195// Tell the VM to suspend a thread when ever it knows that it does not hold on
2196// to any VM_locks and it is at a transition
2197// Self-suspension will happen on the transition out of the vm.
2198// Catch "this" coming in from JNIEnv pointers when the thread has been freed
2199//
2200// Guarantees on return:
2201//   + Target thread will not execute any new bytecode (that's why we need to
2202//     force a safepoint)
2203//   + Target thread will not enter any new monitors
2204//
2205void JavaThread::java_suspend() {
2206  { MutexLocker mu(Threads_lock);
2207    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2208      return;
2209    }
2210  }
2211
2212  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2213    if (!is_external_suspend()) {
2214      // a racing resume has cancelled us; bail out now
2215      return;
2216    }
2217
2218    // suspend is done
2219    uint32_t debug_bits = 0;
2220    // Warning: is_ext_suspend_completed() may temporarily drop the
2221    // SR_lock to allow the thread to reach a stable thread state if
2222    // it is currently in a transient thread state.
2223    if (is_ext_suspend_completed(false /* !called_by_wait */,
2224                                 SuspendRetryDelay, &debug_bits)) {
2225      return;
2226    }
2227  }
2228
2229  VM_ForceSafepoint vm_suspend;
2230  VMThread::execute(&vm_suspend);
2231}
2232
2233// Part II of external suspension.
2234// A JavaThread self suspends when it detects a pending external suspend
2235// request. This is usually on transitions. It is also done in places
2236// where continuing to the next transition would surprise the caller,
2237// e.g., monitor entry.
2238//
2239// Returns the number of times that the thread self-suspended.
2240//
2241// Note: DO NOT call java_suspend_self() when you just want to block current
2242//       thread. java_suspend_self() is the second stage of cooperative
2243//       suspension for external suspend requests and should only be used
2244//       to complete an external suspend request.
2245//
2246int JavaThread::java_suspend_self() {
2247  int ret = 0;
2248
2249  // we are in the process of exiting so don't suspend
2250  if (is_exiting()) {
2251    clear_external_suspend();
2252    return ret;
2253  }
2254
2255  assert(_anchor.walkable() ||
2256         (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2257         "must have walkable stack");
2258
2259  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2260
2261  assert(!this->is_ext_suspended(),
2262         "a thread trying to self-suspend should not already be suspended");
2263
2264  if (this->is_suspend_equivalent()) {
2265    // If we are self-suspending as a result of the lifting of a
2266    // suspend equivalent condition, then the suspend_equivalent
2267    // flag is not cleared until we set the ext_suspended flag so
2268    // that wait_for_ext_suspend_completion() returns consistent
2269    // results.
2270    this->clear_suspend_equivalent();
2271  }
2272
2273  // A racing resume may have cancelled us before we grabbed SR_lock
2274  // above. Or another external suspend request could be waiting for us
2275  // by the time we return from SR_lock()->wait(). The thread
2276  // that requested the suspension may already be trying to walk our
2277  // stack and if we return now, we can change the stack out from under
2278  // it. This would be a "bad thing (TM)" and cause the stack walker
2279  // to crash. We stay self-suspended until there are no more pending
2280  // external suspend requests.
2281  while (is_external_suspend()) {
2282    ret++;
2283    this->set_ext_suspended();
2284
2285    // _ext_suspended flag is cleared by java_resume()
2286    while (is_ext_suspended()) {
2287      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2288    }
2289  }
2290
2291  return ret;
2292}
2293
2294#ifdef ASSERT
2295// verify the JavaThread has not yet been published in the Threads::list, and
2296// hence doesn't need protection from concurrent access at this stage
2297void JavaThread::verify_not_published() {
2298  if (!Threads_lock->owned_by_self()) {
2299    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2300    assert(!Threads::includes(this),
2301           "java thread shouldn't have been published yet!");
2302  } else {
2303    assert(!Threads::includes(this),
2304           "java thread shouldn't have been published yet!");
2305  }
2306}
2307#endif
2308
2309// Slow path when the native==>VM/Java barriers detect a safepoint is in
2310// progress or when _suspend_flags is non-zero.
2311// Current thread needs to self-suspend if there is a suspend request and/or
2312// block if a safepoint is in progress.
2313// Async exception ISN'T checked.
2314// Note only the ThreadInVMfromNative transition can call this function
2315// directly and when thread state is _thread_in_native_trans
2316void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2317  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2318
2319  JavaThread *curJT = JavaThread::current();
2320  bool do_self_suspend = thread->is_external_suspend();
2321
2322  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2323
2324  // If JNIEnv proxies are allowed, don't self-suspend if the target
2325  // thread is not the current thread. In older versions of jdbx, jdbx
2326  // threads could call into the VM with another thread's JNIEnv so we
2327  // can be here operating on behalf of a suspended thread (4432884).
2328  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2329    JavaThreadState state = thread->thread_state();
2330
2331    // We mark this thread_blocked state as a suspend-equivalent so
2332    // that a caller to is_ext_suspend_completed() won't be confused.
2333    // The suspend-equivalent state is cleared by java_suspend_self().
2334    thread->set_suspend_equivalent();
2335
2336    // If the safepoint code sees the _thread_in_native_trans state, it will
2337    // wait until the thread changes to other thread state. There is no
2338    // guarantee on how soon we can obtain the SR_lock and complete the
2339    // self-suspend request. It would be a bad idea to let safepoint wait for
2340    // too long. Temporarily change the state to _thread_blocked to
2341    // let the VM thread know that this thread is ready for GC. The problem
2342    // of changing thread state is that safepoint could happen just after
2343    // java_suspend_self() returns after being resumed, and VM thread will
2344    // see the _thread_blocked state. We must check for safepoint
2345    // after restoring the state and make sure we won't leave while a safepoint
2346    // is in progress.
2347    thread->set_thread_state(_thread_blocked);
2348    thread->java_suspend_self();
2349    thread->set_thread_state(state);
2350    // Make sure new state is seen by VM thread
2351    if (os::is_MP()) {
2352      if (UseMembar) {
2353        // Force a fence between the write above and read below
2354        OrderAccess::fence();
2355      } else {
2356        // Must use this rather than serialization page in particular on Windows
2357        InterfaceSupport::serialize_memory(thread);
2358      }
2359    }
2360  }
2361
2362  if (SafepointSynchronize::do_call_back()) {
2363    // If we are safepointing, then block the caller which may not be
2364    // the same as the target thread (see above).
2365    SafepointSynchronize::block(curJT);
2366  }
2367
2368  if (thread->is_deopt_suspend()) {
2369    thread->clear_deopt_suspend();
2370    RegisterMap map(thread, false);
2371    frame f = thread->last_frame();
2372    while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2373      f = f.sender(&map);
2374    }
2375    if (f.id() == thread->must_deopt_id()) {
2376      thread->clear_must_deopt_id();
2377      f.deoptimize(thread);
2378    } else {
2379      fatal("missed deoptimization!");
2380    }
2381  }
2382}
2383
2384// Slow path when the native==>VM/Java barriers detect a safepoint is in
2385// progress or when _suspend_flags is non-zero.
2386// Current thread needs to self-suspend if there is a suspend request and/or
2387// block if a safepoint is in progress.
2388// Also check for pending async exception (not including unsafe access error).
2389// Note only the native==>VM/Java barriers can call this function and when
2390// thread state is _thread_in_native_trans.
2391void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2392  check_safepoint_and_suspend_for_native_trans(thread);
2393
2394  if (thread->has_async_exception()) {
2395    // We are in _thread_in_native_trans state, don't handle unsafe
2396    // access error since that may block.
2397    thread->check_and_handle_async_exceptions(false);
2398  }
2399}
2400
2401// This is a variant of the normal
2402// check_special_condition_for_native_trans with slightly different
2403// semantics for use by critical native wrappers.  It does all the
2404// normal checks but also performs the transition back into
2405// thread_in_Java state.  This is required so that critical natives
2406// can potentially block and perform a GC if they are the last thread
2407// exiting the GC_locker.
2408void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2409  check_special_condition_for_native_trans(thread);
2410
2411  // Finish the transition
2412  thread->set_thread_state(_thread_in_Java);
2413
2414  if (thread->do_critical_native_unlock()) {
2415    ThreadInVMfromJavaNoAsyncException tiv(thread);
2416    GC_locker::unlock_critical(thread);
2417    thread->clear_critical_native_unlock();
2418  }
2419}
2420
2421// We need to guarantee the Threads_lock here, since resumes are not
2422// allowed during safepoint synchronization
2423// Can only resume from an external suspension
2424void JavaThread::java_resume() {
2425  assert_locked_or_safepoint(Threads_lock);
2426
2427  // Sanity check: thread is gone, has started exiting or the thread
2428  // was not externally suspended.
2429  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2430    return;
2431  }
2432
2433  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2434
2435  clear_external_suspend();
2436
2437  if (is_ext_suspended()) {
2438    clear_ext_suspended();
2439    SR_lock()->notify_all();
2440  }
2441}
2442
2443void JavaThread::create_stack_guard_pages() {
2444  if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2445  address low_addr = stack_base() - stack_size();
2446  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2447
2448  int allocate = os::allocate_stack_guard_pages();
2449  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2450
2451  if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2452    warning("Attempt to allocate stack guard pages failed.");
2453    return;
2454  }
2455
2456  if (os::guard_memory((char *) low_addr, len)) {
2457    _stack_guard_state = stack_guard_enabled;
2458  } else {
2459    warning("Attempt to protect stack guard pages failed.");
2460    if (os::uncommit_memory((char *) low_addr, len)) {
2461      warning("Attempt to deallocate stack guard pages failed.");
2462    }
2463  }
2464}
2465
2466void JavaThread::remove_stack_guard_pages() {
2467  assert(Thread::current() == this, "from different thread");
2468  if (_stack_guard_state == stack_guard_unused) return;
2469  address low_addr = stack_base() - stack_size();
2470  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2471
2472  if (os::allocate_stack_guard_pages()) {
2473    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2474      _stack_guard_state = stack_guard_unused;
2475    } else {
2476      warning("Attempt to deallocate stack guard pages failed.");
2477    }
2478  } else {
2479    if (_stack_guard_state == stack_guard_unused) return;
2480    if (os::unguard_memory((char *) low_addr, len)) {
2481      _stack_guard_state = stack_guard_unused;
2482    } else {
2483      warning("Attempt to unprotect stack guard pages failed.");
2484    }
2485  }
2486}
2487
2488void JavaThread::enable_stack_yellow_zone() {
2489  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2490  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2491
2492  // The base notation is from the stacks point of view, growing downward.
2493  // We need to adjust it to work correctly with guard_memory()
2494  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2495
2496  guarantee(base < stack_base(), "Error calculating stack yellow zone");
2497  guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2498
2499  if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2500    _stack_guard_state = stack_guard_enabled;
2501  } else {
2502    warning("Attempt to guard stack yellow zone failed.");
2503  }
2504  enable_register_stack_guard();
2505}
2506
2507void JavaThread::disable_stack_yellow_zone() {
2508  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2509  assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2510
2511  // Simply return if called for a thread that does not use guard pages.
2512  if (_stack_guard_state == stack_guard_unused) return;
2513
2514  // The base notation is from the stacks point of view, growing downward.
2515  // We need to adjust it to work correctly with guard_memory()
2516  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2517
2518  if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2519    _stack_guard_state = stack_guard_yellow_disabled;
2520  } else {
2521    warning("Attempt to unguard stack yellow zone failed.");
2522  }
2523  disable_register_stack_guard();
2524}
2525
2526void JavaThread::enable_stack_red_zone() {
2527  // The base notation is from the stacks point of view, growing downward.
2528  // We need to adjust it to work correctly with guard_memory()
2529  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2530  address base = stack_red_zone_base() - stack_red_zone_size();
2531
2532  guarantee(base < stack_base(), "Error calculating stack red zone");
2533  guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2534
2535  if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2536    warning("Attempt to guard stack red zone failed.");
2537  }
2538}
2539
2540void JavaThread::disable_stack_red_zone() {
2541  // The base notation is from the stacks point of view, growing downward.
2542  // We need to adjust it to work correctly with guard_memory()
2543  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2544  address base = stack_red_zone_base() - stack_red_zone_size();
2545  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2546    warning("Attempt to unguard stack red zone failed.");
2547  }
2548}
2549
2550void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2551  // ignore is there is no stack
2552  if (!has_last_Java_frame()) return;
2553  // traverse the stack frames. Starts from top frame.
2554  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2555    frame* fr = fst.current();
2556    f(fr, fst.register_map());
2557  }
2558}
2559
2560
2561#ifndef PRODUCT
2562// Deoptimization
2563// Function for testing deoptimization
2564void JavaThread::deoptimize() {
2565  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2566  StackFrameStream fst(this, UseBiasedLocking);
2567  bool deopt = false;           // Dump stack only if a deopt actually happens.
2568  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2569  // Iterate over all frames in the thread and deoptimize
2570  for (; !fst.is_done(); fst.next()) {
2571    if (fst.current()->can_be_deoptimized()) {
2572
2573      if (only_at) {
2574        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2575        // consists of comma or carriage return separated numbers so
2576        // search for the current bci in that string.
2577        address pc = fst.current()->pc();
2578        nmethod* nm =  (nmethod*) fst.current()->cb();
2579        ScopeDesc* sd = nm->scope_desc_at(pc);
2580        char buffer[8];
2581        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2582        size_t len = strlen(buffer);
2583        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2584        while (found != NULL) {
2585          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2586              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2587            // Check that the bci found is bracketed by terminators.
2588            break;
2589          }
2590          found = strstr(found + 1, buffer);
2591        }
2592        if (!found) {
2593          continue;
2594        }
2595      }
2596
2597      if (DebugDeoptimization && !deopt) {
2598        deopt = true; // One-time only print before deopt
2599        tty->print_cr("[BEFORE Deoptimization]");
2600        trace_frames();
2601        trace_stack();
2602      }
2603      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2604    }
2605  }
2606
2607  if (DebugDeoptimization && deopt) {
2608    tty->print_cr("[AFTER Deoptimization]");
2609    trace_frames();
2610  }
2611}
2612
2613
2614// Make zombies
2615void JavaThread::make_zombies() {
2616  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2617    if (fst.current()->can_be_deoptimized()) {
2618      // it is a Java nmethod
2619      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2620      nm->make_not_entrant();
2621    }
2622  }
2623}
2624#endif // PRODUCT
2625
2626
2627void JavaThread::deoptimized_wrt_marked_nmethods() {
2628  if (!has_last_Java_frame()) return;
2629  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2630  StackFrameStream fst(this, UseBiasedLocking);
2631  for (; !fst.is_done(); fst.next()) {
2632    if (fst.current()->should_be_deoptimized()) {
2633      if (LogCompilation && xtty != NULL) {
2634        nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2635        xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2636                   this->name(), nm != NULL ? nm->compile_id() : -1);
2637      }
2638
2639      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2640    }
2641  }
2642}
2643
2644
2645// If the caller is a NamedThread, then remember, in the current scope,
2646// the given JavaThread in its _processed_thread field.
2647class RememberProcessedThread: public StackObj {
2648  NamedThread* _cur_thr;
2649 public:
2650  RememberProcessedThread(JavaThread* jthr) {
2651    Thread* thread = Thread::current();
2652    if (thread->is_Named_thread()) {
2653      _cur_thr = (NamedThread *)thread;
2654      _cur_thr->set_processed_thread(jthr);
2655    } else {
2656      _cur_thr = NULL;
2657    }
2658  }
2659
2660  ~RememberProcessedThread() {
2661    if (_cur_thr) {
2662      _cur_thr->set_processed_thread(NULL);
2663    }
2664  }
2665};
2666
2667void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2668  // Verify that the deferred card marks have been flushed.
2669  assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2670
2671  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2672  // since there may be more than one thread using each ThreadProfiler.
2673
2674  // Traverse the GCHandles
2675  Thread::oops_do(f, cld_f, cf);
2676
2677  assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2678         (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2679
2680  if (has_last_Java_frame()) {
2681    // Record JavaThread to GC thread
2682    RememberProcessedThread rpt(this);
2683
2684    // Traverse the privileged stack
2685    if (_privileged_stack_top != NULL) {
2686      _privileged_stack_top->oops_do(f);
2687    }
2688
2689    // traverse the registered growable array
2690    if (_array_for_gc != NULL) {
2691      for (int index = 0; index < _array_for_gc->length(); index++) {
2692        f->do_oop(_array_for_gc->adr_at(index));
2693      }
2694    }
2695
2696    // Traverse the monitor chunks
2697    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2698      chunk->oops_do(f);
2699    }
2700
2701    // Traverse the execution stack
2702    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2703      fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2704    }
2705  }
2706
2707  // callee_target is never live across a gc point so NULL it here should
2708  // it still contain a methdOop.
2709
2710  set_callee_target(NULL);
2711
2712  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2713  // If we have deferred set_locals there might be oops waiting to be
2714  // written
2715  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2716  if (list != NULL) {
2717    for (int i = 0; i < list->length(); i++) {
2718      list->at(i)->oops_do(f);
2719    }
2720  }
2721
2722  // Traverse instance variables at the end since the GC may be moving things
2723  // around using this function
2724  f->do_oop((oop*) &_threadObj);
2725  f->do_oop((oop*) &_vm_result);
2726  f->do_oop((oop*) &_exception_oop);
2727  f->do_oop((oop*) &_pending_async_exception);
2728
2729  if (jvmti_thread_state() != NULL) {
2730    jvmti_thread_state()->oops_do(f);
2731  }
2732}
2733
2734void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2735  Thread::nmethods_do(cf);  // (super method is a no-op)
2736
2737  assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2738         (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2739
2740  if (has_last_Java_frame()) {
2741    // Traverse the execution stack
2742    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2743      fst.current()->nmethods_do(cf);
2744    }
2745  }
2746}
2747
2748void JavaThread::metadata_do(void f(Metadata*)) {
2749  Thread::metadata_do(f);
2750  if (has_last_Java_frame()) {
2751    // Traverse the execution stack to call f() on the methods in the stack
2752    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2753      fst.current()->metadata_do(f);
2754    }
2755  } else if (is_Compiler_thread()) {
2756    // need to walk ciMetadata in current compile tasks to keep alive.
2757    CompilerThread* ct = (CompilerThread*)this;
2758    if (ct->env() != NULL) {
2759      ct->env()->metadata_do(f);
2760    }
2761  }
2762}
2763
2764// Printing
2765const char* _get_thread_state_name(JavaThreadState _thread_state) {
2766  switch (_thread_state) {
2767  case _thread_uninitialized:     return "_thread_uninitialized";
2768  case _thread_new:               return "_thread_new";
2769  case _thread_new_trans:         return "_thread_new_trans";
2770  case _thread_in_native:         return "_thread_in_native";
2771  case _thread_in_native_trans:   return "_thread_in_native_trans";
2772  case _thread_in_vm:             return "_thread_in_vm";
2773  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2774  case _thread_in_Java:           return "_thread_in_Java";
2775  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2776  case _thread_blocked:           return "_thread_blocked";
2777  case _thread_blocked_trans:     return "_thread_blocked_trans";
2778  default:                        return "unknown thread state";
2779  }
2780}
2781
2782#ifndef PRODUCT
2783void JavaThread::print_thread_state_on(outputStream *st) const {
2784  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2785};
2786void JavaThread::print_thread_state() const {
2787  print_thread_state_on(tty);
2788}
2789#endif // PRODUCT
2790
2791// Called by Threads::print() for VM_PrintThreads operation
2792void JavaThread::print_on(outputStream *st) const {
2793  st->print("\"%s\" ", get_thread_name());
2794  oop thread_oop = threadObj();
2795  if (thread_oop != NULL) {
2796    st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2797    if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2798    st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2799  }
2800  Thread::print_on(st);
2801  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2802  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2803  if (thread_oop != NULL) {
2804    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2805  }
2806#ifndef PRODUCT
2807  print_thread_state_on(st);
2808  _safepoint_state->print_on(st);
2809#endif // PRODUCT
2810}
2811
2812// Called by fatal error handler. The difference between this and
2813// JavaThread::print() is that we can't grab lock or allocate memory.
2814void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2815  st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2816  oop thread_obj = threadObj();
2817  if (thread_obj != NULL) {
2818    if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2819  }
2820  st->print(" [");
2821  st->print("%s", _get_thread_state_name(_thread_state));
2822  if (osthread()) {
2823    st->print(", id=%d", osthread()->thread_id());
2824  }
2825  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2826            _stack_base - _stack_size, _stack_base);
2827  st->print("]");
2828  return;
2829}
2830
2831// Verification
2832
2833static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2834
2835void JavaThread::verify() {
2836  // Verify oops in the thread.
2837  oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2838
2839  // Verify the stack frames.
2840  frames_do(frame_verify);
2841}
2842
2843// CR 6300358 (sub-CR 2137150)
2844// Most callers of this method assume that it can't return NULL but a
2845// thread may not have a name whilst it is in the process of attaching to
2846// the VM - see CR 6412693, and there are places where a JavaThread can be
2847// seen prior to having it's threadObj set (eg JNI attaching threads and
2848// if vm exit occurs during initialization). These cases can all be accounted
2849// for such that this method never returns NULL.
2850const char* JavaThread::get_thread_name() const {
2851#ifdef ASSERT
2852  // early safepoints can hit while current thread does not yet have TLS
2853  if (!SafepointSynchronize::is_at_safepoint()) {
2854    Thread *cur = Thread::current();
2855    if (!(cur->is_Java_thread() && cur == this)) {
2856      // Current JavaThreads are allowed to get their own name without
2857      // the Threads_lock.
2858      assert_locked_or_safepoint(Threads_lock);
2859    }
2860  }
2861#endif // ASSERT
2862  return get_thread_name_string();
2863}
2864
2865// Returns a non-NULL representation of this thread's name, or a suitable
2866// descriptive string if there is no set name
2867const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2868  const char* name_str;
2869  oop thread_obj = threadObj();
2870  if (thread_obj != NULL) {
2871    typeArrayOop name = java_lang_Thread::name(thread_obj);
2872    if (name != NULL) {
2873      if (buf == NULL) {
2874        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR),
2875                                    name->length());
2876      } else {
2877        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR),
2878                                    name->length(), buf, buflen);
2879      }
2880    } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2881      name_str = "<no-name - thread is attaching>";
2882    } else {
2883      name_str = Thread::name();
2884    }
2885  } else {
2886    name_str = Thread::name();
2887  }
2888  assert(name_str != NULL, "unexpected NULL thread name");
2889  return name_str;
2890}
2891
2892
2893const char* JavaThread::get_threadgroup_name() const {
2894  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2895  oop thread_obj = threadObj();
2896  if (thread_obj != NULL) {
2897    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2898    if (thread_group != NULL) {
2899      typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2900      // ThreadGroup.name can be null
2901      if (name != NULL) {
2902        const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2903        return str;
2904      }
2905    }
2906  }
2907  return NULL;
2908}
2909
2910const char* JavaThread::get_parent_name() const {
2911  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2912  oop thread_obj = threadObj();
2913  if (thread_obj != NULL) {
2914    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2915    if (thread_group != NULL) {
2916      oop parent = java_lang_ThreadGroup::parent(thread_group);
2917      if (parent != NULL) {
2918        typeArrayOop name = java_lang_ThreadGroup::name(parent);
2919        // ThreadGroup.name can be null
2920        if (name != NULL) {
2921          const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2922          return str;
2923        }
2924      }
2925    }
2926  }
2927  return NULL;
2928}
2929
2930ThreadPriority JavaThread::java_priority() const {
2931  oop thr_oop = threadObj();
2932  if (thr_oop == NULL) return NormPriority; // Bootstrapping
2933  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2934  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2935  return priority;
2936}
2937
2938void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2939
2940  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2941  // Link Java Thread object <-> C++ Thread
2942
2943  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2944  // and put it into a new Handle.  The Handle "thread_oop" can then
2945  // be used to pass the C++ thread object to other methods.
2946
2947  // Set the Java level thread object (jthread) field of the
2948  // new thread (a JavaThread *) to C++ thread object using the
2949  // "thread_oop" handle.
2950
2951  // Set the thread field (a JavaThread *) of the
2952  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2953
2954  Handle thread_oop(Thread::current(),
2955                    JNIHandles::resolve_non_null(jni_thread));
2956  assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2957         "must be initialized");
2958  set_threadObj(thread_oop());
2959  java_lang_Thread::set_thread(thread_oop(), this);
2960
2961  if (prio == NoPriority) {
2962    prio = java_lang_Thread::priority(thread_oop());
2963    assert(prio != NoPriority, "A valid priority should be present");
2964  }
2965
2966  // Push the Java priority down to the native thread; needs Threads_lock
2967  Thread::set_priority(this, prio);
2968
2969  prepare_ext();
2970
2971  // Add the new thread to the Threads list and set it in motion.
2972  // We must have threads lock in order to call Threads::add.
2973  // It is crucial that we do not block before the thread is
2974  // added to the Threads list for if a GC happens, then the java_thread oop
2975  // will not be visited by GC.
2976  Threads::add(this);
2977}
2978
2979oop JavaThread::current_park_blocker() {
2980  // Support for JSR-166 locks
2981  oop thread_oop = threadObj();
2982  if (thread_oop != NULL &&
2983      JDK_Version::current().supports_thread_park_blocker()) {
2984    return java_lang_Thread::park_blocker(thread_oop);
2985  }
2986  return NULL;
2987}
2988
2989
2990void JavaThread::print_stack_on(outputStream* st) {
2991  if (!has_last_Java_frame()) return;
2992  ResourceMark rm;
2993  HandleMark   hm;
2994
2995  RegisterMap reg_map(this);
2996  vframe* start_vf = last_java_vframe(&reg_map);
2997  int count = 0;
2998  for (vframe* f = start_vf; f; f = f->sender()) {
2999    if (f->is_java_frame()) {
3000      javaVFrame* jvf = javaVFrame::cast(f);
3001      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3002
3003      // Print out lock information
3004      if (JavaMonitorsInStackTrace) {
3005        jvf->print_lock_info_on(st, count);
3006      }
3007    } else {
3008      // Ignore non-Java frames
3009    }
3010
3011    // Bail-out case for too deep stacks
3012    count++;
3013    if (MaxJavaStackTraceDepth == count) return;
3014  }
3015}
3016
3017
3018// JVMTI PopFrame support
3019void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3020  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3021  if (in_bytes(size_in_bytes) != 0) {
3022    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3023    _popframe_preserved_args_size = in_bytes(size_in_bytes);
3024    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3025  }
3026}
3027
3028void* JavaThread::popframe_preserved_args() {
3029  return _popframe_preserved_args;
3030}
3031
3032ByteSize JavaThread::popframe_preserved_args_size() {
3033  return in_ByteSize(_popframe_preserved_args_size);
3034}
3035
3036WordSize JavaThread::popframe_preserved_args_size_in_words() {
3037  int sz = in_bytes(popframe_preserved_args_size());
3038  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3039  return in_WordSize(sz / wordSize);
3040}
3041
3042void JavaThread::popframe_free_preserved_args() {
3043  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3044  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3045  _popframe_preserved_args = NULL;
3046  _popframe_preserved_args_size = 0;
3047}
3048
3049#ifndef PRODUCT
3050
3051void JavaThread::trace_frames() {
3052  tty->print_cr("[Describe stack]");
3053  int frame_no = 1;
3054  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3055    tty->print("  %d. ", frame_no++);
3056    fst.current()->print_value_on(tty, this);
3057    tty->cr();
3058  }
3059}
3060
3061class PrintAndVerifyOopClosure: public OopClosure {
3062 protected:
3063  template <class T> inline void do_oop_work(T* p) {
3064    oop obj = oopDesc::load_decode_heap_oop(p);
3065    if (obj == NULL) return;
3066    tty->print(INTPTR_FORMAT ": ", p);
3067    if (obj->is_oop_or_null()) {
3068      if (obj->is_objArray()) {
3069        tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3070      } else {
3071        obj->print();
3072      }
3073    } else {
3074      tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3075    }
3076    tty->cr();
3077  }
3078 public:
3079  virtual void do_oop(oop* p) { do_oop_work(p); }
3080  virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3081};
3082
3083
3084static void oops_print(frame* f, const RegisterMap *map) {
3085  PrintAndVerifyOopClosure print;
3086  f->print_value();
3087  f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3088}
3089
3090// Print our all the locations that contain oops and whether they are
3091// valid or not.  This useful when trying to find the oldest frame
3092// where an oop has gone bad since the frame walk is from youngest to
3093// oldest.
3094void JavaThread::trace_oops() {
3095  tty->print_cr("[Trace oops]");
3096  frames_do(oops_print);
3097}
3098
3099
3100#ifdef ASSERT
3101// Print or validate the layout of stack frames
3102void JavaThread::print_frame_layout(int depth, bool validate_only) {
3103  ResourceMark rm;
3104  PRESERVE_EXCEPTION_MARK;
3105  FrameValues values;
3106  int frame_no = 0;
3107  for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3108    fst.current()->describe(values, ++frame_no);
3109    if (depth == frame_no) break;
3110  }
3111  if (validate_only) {
3112    values.validate();
3113  } else {
3114    tty->print_cr("[Describe stack layout]");
3115    values.print(this);
3116  }
3117}
3118#endif
3119
3120void JavaThread::trace_stack_from(vframe* start_vf) {
3121  ResourceMark rm;
3122  int vframe_no = 1;
3123  for (vframe* f = start_vf; f; f = f->sender()) {
3124    if (f->is_java_frame()) {
3125      javaVFrame::cast(f)->print_activation(vframe_no++);
3126    } else {
3127      f->print();
3128    }
3129    if (vframe_no > StackPrintLimit) {
3130      tty->print_cr("...<more frames>...");
3131      return;
3132    }
3133  }
3134}
3135
3136
3137void JavaThread::trace_stack() {
3138  if (!has_last_Java_frame()) return;
3139  ResourceMark rm;
3140  HandleMark   hm;
3141  RegisterMap reg_map(this);
3142  trace_stack_from(last_java_vframe(&reg_map));
3143}
3144
3145
3146#endif // PRODUCT
3147
3148
3149javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3150  assert(reg_map != NULL, "a map must be given");
3151  frame f = last_frame();
3152  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3153    if (vf->is_java_frame()) return javaVFrame::cast(vf);
3154  }
3155  return NULL;
3156}
3157
3158
3159Klass* JavaThread::security_get_caller_class(int depth) {
3160  vframeStream vfst(this);
3161  vfst.security_get_caller_frame(depth);
3162  if (!vfst.at_end()) {
3163    return vfst.method()->method_holder();
3164  }
3165  return NULL;
3166}
3167
3168static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3169  assert(thread->is_Compiler_thread(), "must be compiler thread");
3170  CompileBroker::compiler_thread_loop();
3171}
3172
3173// Create a CompilerThread
3174CompilerThread::CompilerThread(CompileQueue* queue,
3175                               CompilerCounters* counters)
3176                               : JavaThread(&compiler_thread_entry) {
3177  _env   = NULL;
3178  _log   = NULL;
3179  _task  = NULL;
3180  _queue = queue;
3181  _counters = counters;
3182  _buffer_blob = NULL;
3183  _scanned_nmethod = NULL;
3184  _compiler = NULL;
3185
3186#ifndef PRODUCT
3187  _ideal_graph_printer = NULL;
3188#endif
3189}
3190
3191void CompilerThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3192  JavaThread::oops_do(f, cld_f, cf);
3193  if (_scanned_nmethod != NULL && cf != NULL) {
3194    // Safepoints can occur when the sweeper is scanning an nmethod so
3195    // process it here to make sure it isn't unloaded in the middle of
3196    // a scan.
3197    cf->do_code_blob(_scanned_nmethod);
3198  }
3199}
3200
3201
3202// ======= Threads ========
3203
3204// The Threads class links together all active threads, and provides
3205// operations over all threads.  It is protected by its own Mutex
3206// lock, which is also used in other contexts to protect thread
3207// operations from having the thread being operated on from exiting
3208// and going away unexpectedly (e.g., safepoint synchronization)
3209
3210JavaThread* Threads::_thread_list = NULL;
3211int         Threads::_number_of_threads = 0;
3212int         Threads::_number_of_non_daemon_threads = 0;
3213int         Threads::_return_code = 0;
3214size_t      JavaThread::_stack_size_at_create = 0;
3215#ifdef ASSERT
3216bool        Threads::_vm_complete = false;
3217#endif
3218
3219// All JavaThreads
3220#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3221
3222// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3223void Threads::threads_do(ThreadClosure* tc) {
3224  assert_locked_or_safepoint(Threads_lock);
3225  // ALL_JAVA_THREADS iterates through all JavaThreads
3226  ALL_JAVA_THREADS(p) {
3227    tc->do_thread(p);
3228  }
3229  // Someday we could have a table or list of all non-JavaThreads.
3230  // For now, just manually iterate through them.
3231  tc->do_thread(VMThread::vm_thread());
3232  Universe::heap()->gc_threads_do(tc);
3233  WatcherThread *wt = WatcherThread::watcher_thread();
3234  // Strictly speaking, the following NULL check isn't sufficient to make sure
3235  // the data for WatcherThread is still valid upon being examined. However,
3236  // considering that WatchThread terminates when the VM is on the way to
3237  // exit at safepoint, the chance of the above is extremely small. The right
3238  // way to prevent termination of WatcherThread would be to acquire
3239  // Terminator_lock, but we can't do that without violating the lock rank
3240  // checking in some cases.
3241  if (wt != NULL) {
3242    tc->do_thread(wt);
3243  }
3244
3245  // If CompilerThreads ever become non-JavaThreads, add them here
3246}
3247
3248
3249void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3250  TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3251
3252  if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3253    create_vm_init_libraries();
3254  }
3255
3256  initialize_class(vmSymbols::java_lang_String(), CHECK);
3257
3258  // Initialize java_lang.System (needed before creating the thread)
3259  initialize_class(vmSymbols::java_lang_System(), CHECK);
3260  initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3261  Handle thread_group = create_initial_thread_group(CHECK);
3262  Universe::set_main_thread_group(thread_group());
3263  initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3264  oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3265  main_thread->set_threadObj(thread_object);
3266  // Set thread status to running since main thread has
3267  // been started and running.
3268  java_lang_Thread::set_thread_status(thread_object,
3269                                      java_lang_Thread::RUNNABLE);
3270
3271  // The VM creates & returns objects of this class. Make sure it's initialized.
3272  initialize_class(vmSymbols::java_lang_Class(), CHECK);
3273
3274  // The VM preresolves methods to these classes. Make sure that they get initialized
3275  initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3276  initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3277  call_initializeSystemClass(CHECK);
3278
3279  // get the Java runtime name after java.lang.System is initialized
3280  JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3281  JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3282
3283  // an instance of OutOfMemory exception has been allocated earlier
3284  initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3285  initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3286  initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3287  initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3288  initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3289  initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3290  initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3291  initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3292}
3293
3294void Threads::initialize_jsr292_core_classes(TRAPS) {
3295  initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3296  initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3297  initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3298}
3299
3300jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3301  extern void JDK_Version_init();
3302
3303  // Check version
3304  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3305
3306  // Initialize the output stream module
3307  ostream_init();
3308
3309  // Process java launcher properties.
3310  Arguments::process_sun_java_launcher_properties(args);
3311
3312  // Initialize the os module before using TLS
3313  os::init();
3314
3315  // Initialize system properties.
3316  Arguments::init_system_properties();
3317
3318  // So that JDK version can be used as a discriminator when parsing arguments
3319  JDK_Version_init();
3320
3321  // Update/Initialize System properties after JDK version number is known
3322  Arguments::init_version_specific_system_properties();
3323
3324  // Parse arguments
3325  jint parse_result = Arguments::parse(args);
3326  if (parse_result != JNI_OK) return parse_result;
3327
3328  os::init_before_ergo();
3329
3330  jint ergo_result = Arguments::apply_ergo();
3331  if (ergo_result != JNI_OK) return ergo_result;
3332
3333  if (PauseAtStartup) {
3334    os::pause();
3335  }
3336
3337  HOTSPOT_VM_INIT_BEGIN();
3338
3339  // Record VM creation timing statistics
3340  TraceVmCreationTime create_vm_timer;
3341  create_vm_timer.start();
3342
3343  // Timing (must come after argument parsing)
3344  TraceTime timer("Create VM", TraceStartupTime);
3345
3346  // Initialize the os module after parsing the args
3347  jint os_init_2_result = os::init_2();
3348  if (os_init_2_result != JNI_OK) return os_init_2_result;
3349
3350  jint adjust_after_os_result = Arguments::adjust_after_os();
3351  if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3352
3353  // initialize TLS
3354  ThreadLocalStorage::init();
3355
3356  // Initialize output stream logging
3357  ostream_init_log();
3358
3359  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3360  // Must be before create_vm_init_agents()
3361  if (Arguments::init_libraries_at_startup()) {
3362    convert_vm_init_libraries_to_agents();
3363  }
3364
3365  // Launch -agentlib/-agentpath and converted -Xrun agents
3366  if (Arguments::init_agents_at_startup()) {
3367    create_vm_init_agents();
3368  }
3369
3370  // Initialize Threads state
3371  _thread_list = NULL;
3372  _number_of_threads = 0;
3373  _number_of_non_daemon_threads = 0;
3374
3375  // Initialize global data structures and create system classes in heap
3376  vm_init_globals();
3377
3378  // Attach the main thread to this os thread
3379  JavaThread* main_thread = new JavaThread();
3380  main_thread->set_thread_state(_thread_in_vm);
3381  // must do this before set_active_handles and initialize_thread_local_storage
3382  // Note: on solaris initialize_thread_local_storage() will (indirectly)
3383  // change the stack size recorded here to one based on the java thread
3384  // stacksize. This adjusted size is what is used to figure the placement
3385  // of the guard pages.
3386  main_thread->record_stack_base_and_size();
3387  main_thread->initialize_thread_local_storage();
3388
3389  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3390
3391  if (!main_thread->set_as_starting_thread()) {
3392    vm_shutdown_during_initialization(
3393                                      "Failed necessary internal allocation. Out of swap space");
3394    delete main_thread;
3395    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3396    return JNI_ENOMEM;
3397  }
3398
3399  // Enable guard page *after* os::create_main_thread(), otherwise it would
3400  // crash Linux VM, see notes in os_linux.cpp.
3401  main_thread->create_stack_guard_pages();
3402
3403  // Initialize Java-Level synchronization subsystem
3404  ObjectMonitor::Initialize();
3405
3406  // Initialize global modules
3407  jint status = init_globals();
3408  if (status != JNI_OK) {
3409    delete main_thread;
3410    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3411    return status;
3412  }
3413
3414  // Should be done after the heap is fully created
3415  main_thread->cache_global_variables();
3416
3417  HandleMark hm;
3418
3419  { MutexLocker mu(Threads_lock);
3420    Threads::add(main_thread);
3421  }
3422
3423  // Any JVMTI raw monitors entered in onload will transition into
3424  // real raw monitor. VM is setup enough here for raw monitor enter.
3425  JvmtiExport::transition_pending_onload_raw_monitors();
3426
3427  // Create the VMThread
3428  { TraceTime timer("Start VMThread", TraceStartupTime);
3429    VMThread::create();
3430    Thread* vmthread = VMThread::vm_thread();
3431
3432    if (!os::create_thread(vmthread, os::vm_thread)) {
3433      vm_exit_during_initialization("Cannot create VM thread. "
3434                                    "Out of system resources.");
3435    }
3436
3437    // Wait for the VM thread to become ready, and VMThread::run to initialize
3438    // Monitors can have spurious returns, must always check another state flag
3439    {
3440      MutexLocker ml(Notify_lock);
3441      os::start_thread(vmthread);
3442      while (vmthread->active_handles() == NULL) {
3443        Notify_lock->wait();
3444      }
3445    }
3446  }
3447
3448  assert(Universe::is_fully_initialized(), "not initialized");
3449  if (VerifyDuringStartup) {
3450    // Make sure we're starting with a clean slate.
3451    VM_Verify verify_op;
3452    VMThread::execute(&verify_op);
3453  }
3454
3455  Thread* THREAD = Thread::current();
3456
3457  // At this point, the Universe is initialized, but we have not executed
3458  // any byte code.  Now is a good time (the only time) to dump out the
3459  // internal state of the JVM for sharing.
3460  if (DumpSharedSpaces) {
3461    MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3462    ShouldNotReachHere();
3463  }
3464
3465  // Always call even when there are not JVMTI environments yet, since environments
3466  // may be attached late and JVMTI must track phases of VM execution
3467  JvmtiExport::enter_start_phase();
3468
3469  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3470  JvmtiExport::post_vm_start();
3471
3472  initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3473
3474  // We need this for ClassDataSharing - the initial vm.info property is set
3475  // with the default value of CDS "sharing" which may be reset through
3476  // command line options.
3477  reset_vm_info_property(CHECK_JNI_ERR);
3478
3479  quicken_jni_functions();
3480
3481  // Must be run after init_ft which initializes ft_enabled
3482  if (TRACE_INITIALIZE() != JNI_OK) {
3483    vm_exit_during_initialization("Failed to initialize tracing backend");
3484  }
3485
3486  // Set flag that basic initialization has completed. Used by exceptions and various
3487  // debug stuff, that does not work until all basic classes have been initialized.
3488  set_init_completed();
3489
3490  Metaspace::post_initialize();
3491
3492  HOTSPOT_VM_INIT_END();
3493
3494  // record VM initialization completion time
3495#if INCLUDE_MANAGEMENT
3496  Management::record_vm_init_completed();
3497#endif // INCLUDE_MANAGEMENT
3498
3499  // Compute system loader. Note that this has to occur after set_init_completed, since
3500  // valid exceptions may be thrown in the process.
3501  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3502  // set_init_completed has just been called, causing exceptions not to be shortcut
3503  // anymore. We call vm_exit_during_initialization directly instead.
3504  SystemDictionary::compute_java_system_loader(CHECK_JNI_ERR);
3505
3506#if INCLUDE_ALL_GCS
3507  // Support for ConcurrentMarkSweep. This should be cleaned up
3508  // and better encapsulated. The ugly nested if test would go away
3509  // once things are properly refactored. XXX YSR
3510  if (UseConcMarkSweepGC || UseG1GC) {
3511    if (UseConcMarkSweepGC) {
3512      ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3513    } else {
3514      ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3515    }
3516  }
3517#endif // INCLUDE_ALL_GCS
3518
3519  // Always call even when there are not JVMTI environments yet, since environments
3520  // may be attached late and JVMTI must track phases of VM execution
3521  JvmtiExport::enter_live_phase();
3522
3523  // Signal Dispatcher needs to be started before VMInit event is posted
3524  os::signal_init();
3525
3526  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3527  if (!DisableAttachMechanism) {
3528    AttachListener::vm_start();
3529    if (StartAttachListener || AttachListener::init_at_startup()) {
3530      AttachListener::init();
3531    }
3532  }
3533
3534  // Launch -Xrun agents
3535  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3536  // back-end can launch with -Xdebug -Xrunjdwp.
3537  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3538    create_vm_init_libraries();
3539  }
3540
3541  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3542  JvmtiExport::post_vm_initialized();
3543
3544  if (TRACE_START() != JNI_OK) {
3545    vm_exit_during_initialization("Failed to start tracing backend.");
3546  }
3547
3548  if (CleanChunkPoolAsync) {
3549    Chunk::start_chunk_pool_cleaner_task();
3550  }
3551
3552  // initialize compiler(s)
3553#if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3554  CompileBroker::compilation_init();
3555#endif
3556
3557  // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3558  // It is done after compilers are initialized, because otherwise compilations of
3559  // signature polymorphic MH intrinsics can be missed
3560  // (see SystemDictionary::find_method_handle_intrinsic).
3561  initialize_jsr292_core_classes(CHECK_JNI_ERR);
3562
3563#if INCLUDE_MANAGEMENT
3564  Management::initialize(THREAD);
3565
3566  if (HAS_PENDING_EXCEPTION) {
3567    // management agent fails to start possibly due to
3568    // configuration problem and is responsible for printing
3569    // stack trace if appropriate. Simply exit VM.
3570    vm_exit(1);
3571  }
3572#endif // INCLUDE_MANAGEMENT
3573
3574  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3575  if (MemProfiling)                   MemProfiler::engage();
3576  StatSampler::engage();
3577  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3578
3579  BiasedLocking::init();
3580
3581#if INCLUDE_RTM_OPT
3582  RTMLockingCounters::init();
3583#endif
3584
3585  if (JDK_Version::current().post_vm_init_hook_enabled()) {
3586    call_postVMInitHook(THREAD);
3587    // The Java side of PostVMInitHook.run must deal with all
3588    // exceptions and provide means of diagnosis.
3589    if (HAS_PENDING_EXCEPTION) {
3590      CLEAR_PENDING_EXCEPTION;
3591    }
3592  }
3593
3594  {
3595    MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3596    // Make sure the watcher thread can be started by WatcherThread::start()
3597    // or by dynamic enrollment.
3598    WatcherThread::make_startable();
3599    // Start up the WatcherThread if there are any periodic tasks
3600    // NOTE:  All PeriodicTasks should be registered by now. If they
3601    //   aren't, late joiners might appear to start slowly (we might
3602    //   take a while to process their first tick).
3603    if (PeriodicTask::num_tasks() > 0) {
3604      WatcherThread::start();
3605    }
3606  }
3607
3608  // Give os specific code one last chance to start
3609  os::init_3();
3610
3611  create_vm_timer.end();
3612#ifdef ASSERT
3613  _vm_complete = true;
3614#endif
3615  return JNI_OK;
3616}
3617
3618// type for the Agent_OnLoad and JVM_OnLoad entry points
3619extern "C" {
3620  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3621}
3622// Find a command line agent library and return its entry point for
3623//         -agentlib:  -agentpath:   -Xrun
3624// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3625static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3626                                    const char *on_load_symbols[],
3627                                    size_t num_symbol_entries) {
3628  OnLoadEntry_t on_load_entry = NULL;
3629  void *library = NULL;
3630
3631  if (!agent->valid()) {
3632    char buffer[JVM_MAXPATHLEN];
3633    char ebuf[1024];
3634    const char *name = agent->name();
3635    const char *msg = "Could not find agent library ";
3636
3637    // First check to see if agent is statically linked into executable
3638    if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3639      library = agent->os_lib();
3640    } else if (agent->is_absolute_path()) {
3641      library = os::dll_load(name, ebuf, sizeof ebuf);
3642      if (library == NULL) {
3643        const char *sub_msg = " in absolute path, with error: ";
3644        size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3645        char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3646        jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3647        // If we can't find the agent, exit.
3648        vm_exit_during_initialization(buf, NULL);
3649        FREE_C_HEAP_ARRAY(char, buf, mtThread);
3650      }
3651    } else {
3652      // Try to load the agent from the standard dll directory
3653      if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3654                             name)) {
3655        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3656      }
3657      if (library == NULL) { // Try the local directory
3658        char ns[1] = {0};
3659        if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3660          library = os::dll_load(buffer, ebuf, sizeof ebuf);
3661        }
3662        if (library == NULL) {
3663          const char *sub_msg = " on the library path, with error: ";
3664          size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3665          char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3666          jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3667          // If we can't find the agent, exit.
3668          vm_exit_during_initialization(buf, NULL);
3669          FREE_C_HEAP_ARRAY(char, buf, mtThread);
3670        }
3671      }
3672    }
3673    agent->set_os_lib(library);
3674    agent->set_valid();
3675  }
3676
3677  // Find the OnLoad function.
3678  on_load_entry =
3679    CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3680                                                          false,
3681                                                          on_load_symbols,
3682                                                          num_symbol_entries));
3683  return on_load_entry;
3684}
3685
3686// Find the JVM_OnLoad entry point
3687static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3688  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3689  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3690}
3691
3692// Find the Agent_OnLoad entry point
3693static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3694  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3695  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3696}
3697
3698// For backwards compatibility with -Xrun
3699// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3700// treated like -agentpath:
3701// Must be called before agent libraries are created
3702void Threads::convert_vm_init_libraries_to_agents() {
3703  AgentLibrary* agent;
3704  AgentLibrary* next;
3705
3706  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3707    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3708    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3709
3710    // If there is an JVM_OnLoad function it will get called later,
3711    // otherwise see if there is an Agent_OnLoad
3712    if (on_load_entry == NULL) {
3713      on_load_entry = lookup_agent_on_load(agent);
3714      if (on_load_entry != NULL) {
3715        // switch it to the agent list -- so that Agent_OnLoad will be called,
3716        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3717        Arguments::convert_library_to_agent(agent);
3718      } else {
3719        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3720      }
3721    }
3722  }
3723}
3724
3725// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3726// Invokes Agent_OnLoad
3727// Called very early -- before JavaThreads exist
3728void Threads::create_vm_init_agents() {
3729  extern struct JavaVM_ main_vm;
3730  AgentLibrary* agent;
3731
3732  JvmtiExport::enter_onload_phase();
3733
3734  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3735    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3736
3737    if (on_load_entry != NULL) {
3738      // Invoke the Agent_OnLoad function
3739      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3740      if (err != JNI_OK) {
3741        vm_exit_during_initialization("agent library failed to init", agent->name());
3742      }
3743    } else {
3744      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3745    }
3746  }
3747  JvmtiExport::enter_primordial_phase();
3748}
3749
3750extern "C" {
3751  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3752}
3753
3754void Threads::shutdown_vm_agents() {
3755  // Send any Agent_OnUnload notifications
3756  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3757  size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3758  extern struct JavaVM_ main_vm;
3759  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3760
3761    // Find the Agent_OnUnload function.
3762    Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3763                                                   os::find_agent_function(agent,
3764                                                   false,
3765                                                   on_unload_symbols,
3766                                                   num_symbol_entries));
3767
3768    // Invoke the Agent_OnUnload function
3769    if (unload_entry != NULL) {
3770      JavaThread* thread = JavaThread::current();
3771      ThreadToNativeFromVM ttn(thread);
3772      HandleMark hm(thread);
3773      (*unload_entry)(&main_vm);
3774    }
3775  }
3776}
3777
3778// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3779// Invokes JVM_OnLoad
3780void Threads::create_vm_init_libraries() {
3781  extern struct JavaVM_ main_vm;
3782  AgentLibrary* agent;
3783
3784  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3785    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3786
3787    if (on_load_entry != NULL) {
3788      // Invoke the JVM_OnLoad function
3789      JavaThread* thread = JavaThread::current();
3790      ThreadToNativeFromVM ttn(thread);
3791      HandleMark hm(thread);
3792      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3793      if (err != JNI_OK) {
3794        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3795      }
3796    } else {
3797      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3798    }
3799  }
3800}
3801
3802JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3803  assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3804
3805  JavaThread* java_thread = NULL;
3806  // Sequential search for now.  Need to do better optimization later.
3807  for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3808    oop tobj = thread->threadObj();
3809    if (!thread->is_exiting() &&
3810        tobj != NULL &&
3811        java_tid == java_lang_Thread::thread_id(tobj)) {
3812      java_thread = thread;
3813      break;
3814    }
3815  }
3816  return java_thread;
3817}
3818
3819
3820// Last thread running calls java.lang.Shutdown.shutdown()
3821void JavaThread::invoke_shutdown_hooks() {
3822  HandleMark hm(this);
3823
3824  // We could get here with a pending exception, if so clear it now.
3825  if (this->has_pending_exception()) {
3826    this->clear_pending_exception();
3827  }
3828
3829  EXCEPTION_MARK;
3830  Klass* k =
3831    SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3832                                      THREAD);
3833  if (k != NULL) {
3834    // SystemDictionary::resolve_or_null will return null if there was
3835    // an exception.  If we cannot load the Shutdown class, just don't
3836    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3837    // and finalizers (if runFinalizersOnExit is set) won't be run.
3838    // Note that if a shutdown hook was registered or runFinalizersOnExit
3839    // was called, the Shutdown class would have already been loaded
3840    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3841    instanceKlassHandle shutdown_klass (THREAD, k);
3842    JavaValue result(T_VOID);
3843    JavaCalls::call_static(&result,
3844                           shutdown_klass,
3845                           vmSymbols::shutdown_method_name(),
3846                           vmSymbols::void_method_signature(),
3847                           THREAD);
3848  }
3849  CLEAR_PENDING_EXCEPTION;
3850}
3851
3852// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3853// the program falls off the end of main(). Another VM exit path is through
3854// vm_exit() when the program calls System.exit() to return a value or when
3855// there is a serious error in VM. The two shutdown paths are not exactly
3856// the same, but they share Shutdown.shutdown() at Java level and before_exit()
3857// and VM_Exit op at VM level.
3858//
3859// Shutdown sequence:
3860//   + Shutdown native memory tracking if it is on
3861//   + Wait until we are the last non-daemon thread to execute
3862//     <-- every thing is still working at this moment -->
3863//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3864//        shutdown hooks, run finalizers if finalization-on-exit
3865//   + Call before_exit(), prepare for VM exit
3866//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3867//        currently the only user of this mechanism is File.deleteOnExit())
3868//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3869//        post thread end and vm death events to JVMTI,
3870//        stop signal thread
3871//   + Call JavaThread::exit(), it will:
3872//      > release JNI handle blocks, remove stack guard pages
3873//      > remove this thread from Threads list
3874//     <-- no more Java code from this thread after this point -->
3875//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3876//     the compiler threads at safepoint
3877//     <-- do not use anything that could get blocked by Safepoint -->
3878//   + Disable tracing at JNI/JVM barriers
3879//   + Set _vm_exited flag for threads that are still running native code
3880//   + Delete this thread
3881//   + Call exit_globals()
3882//      > deletes tty
3883//      > deletes PerfMemory resources
3884//   + Return to caller
3885
3886bool Threads::destroy_vm() {
3887  JavaThread* thread = JavaThread::current();
3888
3889#ifdef ASSERT
3890  _vm_complete = false;
3891#endif
3892  // Wait until we are the last non-daemon thread to execute
3893  { MutexLocker nu(Threads_lock);
3894    while (Threads::number_of_non_daemon_threads() > 1)
3895      // This wait should make safepoint checks, wait without a timeout,
3896      // and wait as a suspend-equivalent condition.
3897      //
3898      // Note: If the FlatProfiler is running and this thread is waiting
3899      // for another non-daemon thread to finish, then the FlatProfiler
3900      // is waiting for the external suspend request on this thread to
3901      // complete. wait_for_ext_suspend_completion() will eventually
3902      // timeout, but that takes time. Making this wait a suspend-
3903      // equivalent condition solves that timeout problem.
3904      //
3905      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3906                         Mutex::_as_suspend_equivalent_flag);
3907  }
3908
3909  // Hang forever on exit if we are reporting an error.
3910  if (ShowMessageBoxOnError && is_error_reported()) {
3911    os::infinite_sleep();
3912  }
3913  os::wait_for_keypress_at_exit();
3914
3915  // run Java level shutdown hooks
3916  thread->invoke_shutdown_hooks();
3917
3918  before_exit(thread);
3919
3920  thread->exit(true);
3921
3922  // Stop VM thread.
3923  {
3924    // 4945125 The vm thread comes to a safepoint during exit.
3925    // GC vm_operations can get caught at the safepoint, and the
3926    // heap is unparseable if they are caught. Grab the Heap_lock
3927    // to prevent this. The GC vm_operations will not be able to
3928    // queue until after the vm thread is dead. After this point,
3929    // we'll never emerge out of the safepoint before the VM exits.
3930
3931    MutexLocker ml(Heap_lock);
3932
3933    VMThread::wait_for_vm_thread_exit();
3934    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3935    VMThread::destroy();
3936  }
3937
3938  // clean up ideal graph printers
3939#if defined(COMPILER2) && !defined(PRODUCT)
3940  IdealGraphPrinter::clean_up();
3941#endif
3942
3943  // Now, all Java threads are gone except daemon threads. Daemon threads
3944  // running Java code or in VM are stopped by the Safepoint. However,
3945  // daemon threads executing native code are still running.  But they
3946  // will be stopped at native=>Java/VM barriers. Note that we can't
3947  // simply kill or suspend them, as it is inherently deadlock-prone.
3948
3949#ifndef PRODUCT
3950  // disable function tracing at JNI/JVM barriers
3951  TraceJNICalls = false;
3952  TraceJVMCalls = false;
3953  TraceRuntimeCalls = false;
3954#endif
3955
3956  VM_Exit::set_vm_exited();
3957
3958  notify_vm_shutdown();
3959
3960  delete thread;
3961
3962  // exit_globals() will delete tty
3963  exit_globals();
3964
3965  return true;
3966}
3967
3968
3969jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3970  if (version == JNI_VERSION_1_1) return JNI_TRUE;
3971  return is_supported_jni_version(version);
3972}
3973
3974
3975jboolean Threads::is_supported_jni_version(jint version) {
3976  if (version == JNI_VERSION_1_2) return JNI_TRUE;
3977  if (version == JNI_VERSION_1_4) return JNI_TRUE;
3978  if (version == JNI_VERSION_1_6) return JNI_TRUE;
3979  if (version == JNI_VERSION_1_8) return JNI_TRUE;
3980  return JNI_FALSE;
3981}
3982
3983
3984void Threads::add(JavaThread* p, bool force_daemon) {
3985  // The threads lock must be owned at this point
3986  assert_locked_or_safepoint(Threads_lock);
3987
3988  // See the comment for this method in thread.hpp for its purpose and
3989  // why it is called here.
3990  p->initialize_queues();
3991  p->set_next(_thread_list);
3992  _thread_list = p;
3993  _number_of_threads++;
3994  oop threadObj = p->threadObj();
3995  bool daemon = true;
3996  // Bootstrapping problem: threadObj can be null for initial
3997  // JavaThread (or for threads attached via JNI)
3998  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3999    _number_of_non_daemon_threads++;
4000    daemon = false;
4001  }
4002
4003  ThreadService::add_thread(p, daemon);
4004
4005  // Possible GC point.
4006  Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4007}
4008
4009void Threads::remove(JavaThread* p) {
4010  // Extra scope needed for Thread_lock, so we can check
4011  // that we do not remove thread without safepoint code notice
4012  { MutexLocker ml(Threads_lock);
4013
4014    assert(includes(p), "p must be present");
4015
4016    JavaThread* current = _thread_list;
4017    JavaThread* prev    = NULL;
4018
4019    while (current != p) {
4020      prev    = current;
4021      current = current->next();
4022    }
4023
4024    if (prev) {
4025      prev->set_next(current->next());
4026    } else {
4027      _thread_list = p->next();
4028    }
4029    _number_of_threads--;
4030    oop threadObj = p->threadObj();
4031    bool daemon = true;
4032    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4033      _number_of_non_daemon_threads--;
4034      daemon = false;
4035
4036      // Only one thread left, do a notify on the Threads_lock so a thread waiting
4037      // on destroy_vm will wake up.
4038      if (number_of_non_daemon_threads() == 1) {
4039        Threads_lock->notify_all();
4040      }
4041    }
4042    ThreadService::remove_thread(p, daemon);
4043
4044    // Make sure that safepoint code disregard this thread. This is needed since
4045    // the thread might mess around with locks after this point. This can cause it
4046    // to do callbacks into the safepoint code. However, the safepoint code is not aware
4047    // of this thread since it is removed from the queue.
4048    p->set_terminated_value();
4049  } // unlock Threads_lock
4050
4051  // Since Events::log uses a lock, we grab it outside the Threads_lock
4052  Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4053}
4054
4055// Threads_lock must be held when this is called (or must be called during a safepoint)
4056bool Threads::includes(JavaThread* p) {
4057  assert(Threads_lock->is_locked(), "sanity check");
4058  ALL_JAVA_THREADS(q) {
4059    if (q == p) {
4060      return true;
4061    }
4062  }
4063  return false;
4064}
4065
4066// Operations on the Threads list for GC.  These are not explicitly locked,
4067// but the garbage collector must provide a safe context for them to run.
4068// In particular, these things should never be called when the Threads_lock
4069// is held by some other thread. (Note: the Safepoint abstraction also
4070// uses the Threads_lock to guarantee this property. It also makes sure that
4071// all threads gets blocked when exiting or starting).
4072
4073void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4074  ALL_JAVA_THREADS(p) {
4075    p->oops_do(f, cld_f, cf);
4076  }
4077  VMThread::vm_thread()->oops_do(f, cld_f, cf);
4078}
4079
4080void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4081  // Introduce a mechanism allowing parallel threads to claim threads as
4082  // root groups.  Overhead should be small enough to use all the time,
4083  // even in sequential code.
4084  SharedHeap* sh = SharedHeap::heap();
4085  // Cannot yet substitute active_workers for n_par_threads
4086  // because of G1CollectedHeap::verify() use of
4087  // SharedHeap::process_roots().  n_par_threads == 0 will
4088  // turn off parallelism in process_roots while active_workers
4089  // is being used for parallelism elsewhere.
4090  bool is_par = sh->n_par_threads() > 0;
4091  assert(!is_par ||
4092         (SharedHeap::heap()->n_par_threads() ==
4093         SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4094  int cp = SharedHeap::heap()->strong_roots_parity();
4095  ALL_JAVA_THREADS(p) {
4096    if (p->claim_oops_do(is_par, cp)) {
4097      p->oops_do(f, cld_f, cf);
4098    }
4099  }
4100  VMThread* vmt = VMThread::vm_thread();
4101  if (vmt->claim_oops_do(is_par, cp)) {
4102    vmt->oops_do(f, cld_f, cf);
4103  }
4104}
4105
4106#if INCLUDE_ALL_GCS
4107// Used by ParallelScavenge
4108void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4109  ALL_JAVA_THREADS(p) {
4110    q->enqueue(new ThreadRootsTask(p));
4111  }
4112  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4113}
4114
4115// Used by Parallel Old
4116void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4117  ALL_JAVA_THREADS(p) {
4118    q->enqueue(new ThreadRootsMarkingTask(p));
4119  }
4120  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4121}
4122#endif // INCLUDE_ALL_GCS
4123
4124void Threads::nmethods_do(CodeBlobClosure* cf) {
4125  ALL_JAVA_THREADS(p) {
4126    p->nmethods_do(cf);
4127  }
4128  VMThread::vm_thread()->nmethods_do(cf);
4129}
4130
4131void Threads::metadata_do(void f(Metadata*)) {
4132  ALL_JAVA_THREADS(p) {
4133    p->metadata_do(f);
4134  }
4135}
4136
4137void Threads::deoptimized_wrt_marked_nmethods() {
4138  ALL_JAVA_THREADS(p) {
4139    p->deoptimized_wrt_marked_nmethods();
4140  }
4141}
4142
4143
4144// Get count Java threads that are waiting to enter the specified monitor.
4145GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4146                                                         address monitor,
4147                                                         bool doLock) {
4148  assert(doLock || SafepointSynchronize::is_at_safepoint(),
4149         "must grab Threads_lock or be at safepoint");
4150  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4151
4152  int i = 0;
4153  {
4154    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4155    ALL_JAVA_THREADS(p) {
4156      if (p->is_Compiler_thread()) continue;
4157
4158      address pending = (address)p->current_pending_monitor();
4159      if (pending == monitor) {             // found a match
4160        if (i < count) result->append(p);   // save the first count matches
4161        i++;
4162      }
4163    }
4164  }
4165  return result;
4166}
4167
4168
4169JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4170                                                      bool doLock) {
4171  assert(doLock ||
4172         Threads_lock->owned_by_self() ||
4173         SafepointSynchronize::is_at_safepoint(),
4174         "must grab Threads_lock or be at safepoint");
4175
4176  // NULL owner means not locked so we can skip the search
4177  if (owner == NULL) return NULL;
4178
4179  {
4180    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4181    ALL_JAVA_THREADS(p) {
4182      // first, see if owner is the address of a Java thread
4183      if (owner == (address)p) return p;
4184    }
4185  }
4186  // Cannot assert on lack of success here since this function may be
4187  // used by code that is trying to report useful problem information
4188  // like deadlock detection.
4189  if (UseHeavyMonitors) return NULL;
4190
4191  // If we didn't find a matching Java thread and we didn't force use of
4192  // heavyweight monitors, then the owner is the stack address of the
4193  // Lock Word in the owning Java thread's stack.
4194  //
4195  JavaThread* the_owner = NULL;
4196  {
4197    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4198    ALL_JAVA_THREADS(q) {
4199      if (q->is_lock_owned(owner)) {
4200        the_owner = q;
4201        break;
4202      }
4203    }
4204  }
4205  // cannot assert on lack of success here; see above comment
4206  return the_owner;
4207}
4208
4209// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4210void Threads::print_on(outputStream* st, bool print_stacks,
4211                       bool internal_format, bool print_concurrent_locks) {
4212  char buf[32];
4213  st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
4214
4215  st->print_cr("Full thread dump %s (%s %s):",
4216               Abstract_VM_Version::vm_name(),
4217               Abstract_VM_Version::vm_release(),
4218               Abstract_VM_Version::vm_info_string());
4219  st->cr();
4220
4221#if INCLUDE_ALL_GCS
4222  // Dump concurrent locks
4223  ConcurrentLocksDump concurrent_locks;
4224  if (print_concurrent_locks) {
4225    concurrent_locks.dump_at_safepoint();
4226  }
4227#endif // INCLUDE_ALL_GCS
4228
4229  ALL_JAVA_THREADS(p) {
4230    ResourceMark rm;
4231    p->print_on(st);
4232    if (print_stacks) {
4233      if (internal_format) {
4234        p->trace_stack();
4235      } else {
4236        p->print_stack_on(st);
4237      }
4238    }
4239    st->cr();
4240#if INCLUDE_ALL_GCS
4241    if (print_concurrent_locks) {
4242      concurrent_locks.print_locks_on(p, st);
4243    }
4244#endif // INCLUDE_ALL_GCS
4245  }
4246
4247  VMThread::vm_thread()->print_on(st);
4248  st->cr();
4249  Universe::heap()->print_gc_threads_on(st);
4250  WatcherThread* wt = WatcherThread::watcher_thread();
4251  if (wt != NULL) {
4252    wt->print_on(st);
4253    st->cr();
4254  }
4255  CompileBroker::print_compiler_threads_on(st);
4256  st->flush();
4257}
4258
4259// Threads::print_on_error() is called by fatal error handler. It's possible
4260// that VM is not at safepoint and/or current thread is inside signal handler.
4261// Don't print stack trace, as the stack may not be walkable. Don't allocate
4262// memory (even in resource area), it might deadlock the error handler.
4263void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4264                             int buflen) {
4265  bool found_current = false;
4266  st->print_cr("Java Threads: ( => current thread )");
4267  ALL_JAVA_THREADS(thread) {
4268    bool is_current = (current == thread);
4269    found_current = found_current || is_current;
4270
4271    st->print("%s", is_current ? "=>" : "  ");
4272
4273    st->print(PTR_FORMAT, thread);
4274    st->print(" ");
4275    thread->print_on_error(st, buf, buflen);
4276    st->cr();
4277  }
4278  st->cr();
4279
4280  st->print_cr("Other Threads:");
4281  if (VMThread::vm_thread()) {
4282    bool is_current = (current == VMThread::vm_thread());
4283    found_current = found_current || is_current;
4284    st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4285
4286    st->print(PTR_FORMAT, VMThread::vm_thread());
4287    st->print(" ");
4288    VMThread::vm_thread()->print_on_error(st, buf, buflen);
4289    st->cr();
4290  }
4291  WatcherThread* wt = WatcherThread::watcher_thread();
4292  if (wt != NULL) {
4293    bool is_current = (current == wt);
4294    found_current = found_current || is_current;
4295    st->print("%s", is_current ? "=>" : "  ");
4296
4297    st->print(PTR_FORMAT, wt);
4298    st->print(" ");
4299    wt->print_on_error(st, buf, buflen);
4300    st->cr();
4301  }
4302  if (!found_current) {
4303    st->cr();
4304    st->print("=>" PTR_FORMAT " (exited) ", current);
4305    current->print_on_error(st, buf, buflen);
4306    st->cr();
4307  }
4308}
4309
4310// Internal SpinLock and Mutex
4311// Based on ParkEvent
4312
4313// Ad-hoc mutual exclusion primitives: SpinLock and Mux
4314//
4315// We employ SpinLocks _only for low-contention, fixed-length
4316// short-duration critical sections where we're concerned
4317// about native mutex_t or HotSpot Mutex:: latency.
4318// The mux construct provides a spin-then-block mutual exclusion
4319// mechanism.
4320//
4321// Testing has shown that contention on the ListLock guarding gFreeList
4322// is common.  If we implement ListLock as a simple SpinLock it's common
4323// for the JVM to devolve to yielding with little progress.  This is true
4324// despite the fact that the critical sections protected by ListLock are
4325// extremely short.
4326//
4327// TODO-FIXME: ListLock should be of type SpinLock.
4328// We should make this a 1st-class type, integrated into the lock
4329// hierarchy as leaf-locks.  Critically, the SpinLock structure
4330// should have sufficient padding to avoid false-sharing and excessive
4331// cache-coherency traffic.
4332
4333
4334typedef volatile int SpinLockT;
4335
4336void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4337  if (Atomic::cmpxchg (1, adr, 0) == 0) {
4338    return;   // normal fast-path return
4339  }
4340
4341  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4342  TEVENT(SpinAcquire - ctx);
4343  int ctr = 0;
4344  int Yields = 0;
4345  for (;;) {
4346    while (*adr != 0) {
4347      ++ctr;
4348      if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4349        if (Yields > 5) {
4350          os::naked_short_sleep(1);
4351        } else {
4352          os::naked_yield();
4353          ++Yields;
4354        }
4355      } else {
4356        SpinPause();
4357      }
4358    }
4359    if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4360  }
4361}
4362
4363void Thread::SpinRelease(volatile int * adr) {
4364  assert(*adr != 0, "invariant");
4365  OrderAccess::fence();      // guarantee at least release consistency.
4366  // Roach-motel semantics.
4367  // It's safe if subsequent LDs and STs float "up" into the critical section,
4368  // but prior LDs and STs within the critical section can't be allowed
4369  // to reorder or float past the ST that releases the lock.
4370  // Loads and stores in the critical section - which appear in program
4371  // order before the store that releases the lock - must also appear
4372  // before the store that releases the lock in memory visibility order.
4373  // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4374  // the ST of 0 into the lock-word which releases the lock, so fence
4375  // more than covers this on all platforms.
4376  *adr = 0;
4377}
4378
4379// muxAcquire and muxRelease:
4380//
4381// *  muxAcquire and muxRelease support a single-word lock-word construct.
4382//    The LSB of the word is set IFF the lock is held.
4383//    The remainder of the word points to the head of a singly-linked list
4384//    of threads blocked on the lock.
4385//
4386// *  The current implementation of muxAcquire-muxRelease uses its own
4387//    dedicated Thread._MuxEvent instance.  If we're interested in
4388//    minimizing the peak number of extant ParkEvent instances then
4389//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4390//    as certain invariants were satisfied.  Specifically, care would need
4391//    to be taken with regards to consuming unpark() "permits".
4392//    A safe rule of thumb is that a thread would never call muxAcquire()
4393//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4394//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4395//    consume an unpark() permit intended for monitorenter, for instance.
4396//    One way around this would be to widen the restricted-range semaphore
4397//    implemented in park().  Another alternative would be to provide
4398//    multiple instances of the PlatformEvent() for each thread.  One
4399//    instance would be dedicated to muxAcquire-muxRelease, for instance.
4400//
4401// *  Usage:
4402//    -- Only as leaf locks
4403//    -- for short-term locking only as muxAcquire does not perform
4404//       thread state transitions.
4405//
4406// Alternatives:
4407// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4408//    but with parking or spin-then-park instead of pure spinning.
4409// *  Use Taura-Oyama-Yonenzawa locks.
4410// *  It's possible to construct a 1-0 lock if we encode the lockword as
4411//    (List,LockByte).  Acquire will CAS the full lockword while Release
4412//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4413//    acquiring threads use timers (ParkTimed) to detect and recover from
4414//    the stranding window.  Thread/Node structures must be aligned on 256-byte
4415//    boundaries by using placement-new.
4416// *  Augment MCS with advisory back-link fields maintained with CAS().
4417//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4418//    The validity of the backlinks must be ratified before we trust the value.
4419//    If the backlinks are invalid the exiting thread must back-track through the
4420//    the forward links, which are always trustworthy.
4421// *  Add a successor indication.  The LockWord is currently encoded as
4422//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4423//    to provide the usual futile-wakeup optimization.
4424//    See RTStt for details.
4425// *  Consider schedctl.sc_nopreempt to cover the critical section.
4426//
4427
4428
4429typedef volatile intptr_t MutexT;      // Mux Lock-word
4430enum MuxBits { LOCKBIT = 1 };
4431
4432void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4433  intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4434  if (w == 0) return;
4435  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4436    return;
4437  }
4438
4439  TEVENT(muxAcquire - Contention);
4440  ParkEvent * const Self = Thread::current()->_MuxEvent;
4441  assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4442  for (;;) {
4443    int its = (os::is_MP() ? 100 : 0) + 1;
4444
4445    // Optional spin phase: spin-then-park strategy
4446    while (--its >= 0) {
4447      w = *Lock;
4448      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4449        return;
4450      }
4451    }
4452
4453    Self->reset();
4454    Self->OnList = intptr_t(Lock);
4455    // The following fence() isn't _strictly necessary as the subsequent
4456    // CAS() both serializes execution and ratifies the fetched *Lock value.
4457    OrderAccess::fence();
4458    for (;;) {
4459      w = *Lock;
4460      if ((w & LOCKBIT) == 0) {
4461        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4462          Self->OnList = 0;   // hygiene - allows stronger asserts
4463          return;
4464        }
4465        continue;      // Interference -- *Lock changed -- Just retry
4466      }
4467      assert(w & LOCKBIT, "invariant");
4468      Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4469      if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4470    }
4471
4472    while (Self->OnList != 0) {
4473      Self->park();
4474    }
4475  }
4476}
4477
4478void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4479  intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4480  if (w == 0) return;
4481  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4482    return;
4483  }
4484
4485  TEVENT(muxAcquire - Contention);
4486  ParkEvent * ReleaseAfter = NULL;
4487  if (ev == NULL) {
4488    ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4489  }
4490  assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4491  for (;;) {
4492    guarantee(ev->OnList == 0, "invariant");
4493    int its = (os::is_MP() ? 100 : 0) + 1;
4494
4495    // Optional spin phase: spin-then-park strategy
4496    while (--its >= 0) {
4497      w = *Lock;
4498      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4499        if (ReleaseAfter != NULL) {
4500          ParkEvent::Release(ReleaseAfter);
4501        }
4502        return;
4503      }
4504    }
4505
4506    ev->reset();
4507    ev->OnList = intptr_t(Lock);
4508    // The following fence() isn't _strictly necessary as the subsequent
4509    // CAS() both serializes execution and ratifies the fetched *Lock value.
4510    OrderAccess::fence();
4511    for (;;) {
4512      w = *Lock;
4513      if ((w & LOCKBIT) == 0) {
4514        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4515          ev->OnList = 0;
4516          // We call ::Release while holding the outer lock, thus
4517          // artificially lengthening the critical section.
4518          // Consider deferring the ::Release() until the subsequent unlock(),
4519          // after we've dropped the outer lock.
4520          if (ReleaseAfter != NULL) {
4521            ParkEvent::Release(ReleaseAfter);
4522          }
4523          return;
4524        }
4525        continue;      // Interference -- *Lock changed -- Just retry
4526      }
4527      assert(w & LOCKBIT, "invariant");
4528      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4529      if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4530    }
4531
4532    while (ev->OnList != 0) {
4533      ev->park();
4534    }
4535  }
4536}
4537
4538// Release() must extract a successor from the list and then wake that thread.
4539// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4540// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4541// Release() would :
4542// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4543// (B) Extract a successor from the private list "in-hand"
4544// (C) attempt to CAS() the residual back into *Lock over null.
4545//     If there were any newly arrived threads and the CAS() would fail.
4546//     In that case Release() would detach the RATs, re-merge the list in-hand
4547//     with the RATs and repeat as needed.  Alternately, Release() might
4548//     detach and extract a successor, but then pass the residual list to the wakee.
4549//     The wakee would be responsible for reattaching and remerging before it
4550//     competed for the lock.
4551//
4552// Both "pop" and DMR are immune from ABA corruption -- there can be
4553// multiple concurrent pushers, but only one popper or detacher.
4554// This implementation pops from the head of the list.  This is unfair,
4555// but tends to provide excellent throughput as hot threads remain hot.
4556// (We wake recently run threads first).
4557//
4558// All paths through muxRelease() will execute a CAS.
4559// Release consistency -- We depend on the CAS in muxRelease() to provide full
4560// bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4561// executed within the critical section are complete and globally visible before the
4562// store (CAS) to the lock-word that releases the lock becomes globally visible.
4563void Thread::muxRelease(volatile intptr_t * Lock)  {
4564  for (;;) {
4565    const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4566    assert(w & LOCKBIT, "invariant");
4567    if (w == LOCKBIT) return;
4568    ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4569    assert(List != NULL, "invariant");
4570    assert(List->OnList == intptr_t(Lock), "invariant");
4571    ParkEvent * const nxt = List->ListNext;
4572    guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4573
4574    // The following CAS() releases the lock and pops the head element.
4575    // The CAS() also ratifies the previously fetched lock-word value.
4576    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4577      continue;
4578    }
4579    List->OnList = 0;
4580    OrderAccess::fence();
4581    List->unpark();
4582    return;
4583  }
4584}
4585
4586
4587void Threads::verify() {
4588  ALL_JAVA_THREADS(p) {
4589    p->verify();
4590  }
4591  VMThread* thread = VMThread::vm_thread();
4592  if (thread != NULL) thread->verify();
4593}
4594