thread.cpp revision 7051:0420e825bb3c
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/codeCache.hpp"
31#include "code/scopeDesc.hpp"
32#include "compiler/compileBroker.hpp"
33#include "interpreter/interpreter.hpp"
34#include "interpreter/linkResolver.hpp"
35#include "interpreter/oopMapCache.hpp"
36#include "jvmtifiles/jvmtiEnv.hpp"
37#include "memory/gcLocker.inline.hpp"
38#include "memory/metaspaceShared.hpp"
39#include "memory/oopFactory.hpp"
40#include "memory/universe.inline.hpp"
41#include "oops/instanceKlass.hpp"
42#include "oops/objArrayOop.hpp"
43#include "oops/oop.inline.hpp"
44#include "oops/symbol.hpp"
45#include "prims/jvm_misc.hpp"
46#include "prims/jvmtiExport.hpp"
47#include "prims/jvmtiThreadState.hpp"
48#include "prims/privilegedStack.hpp"
49#include "runtime/arguments.hpp"
50#include "runtime/atomic.inline.hpp"
51#include "runtime/biasedLocking.hpp"
52#include "runtime/deoptimization.hpp"
53#include "runtime/fprofiler.hpp"
54#include "runtime/frame.inline.hpp"
55#include "runtime/init.hpp"
56#include "runtime/interfaceSupport.hpp"
57#include "runtime/java.hpp"
58#include "runtime/javaCalls.hpp"
59#include "runtime/jniPeriodicChecker.hpp"
60#include "runtime/memprofiler.hpp"
61#include "runtime/mutexLocker.hpp"
62#include "runtime/objectMonitor.hpp"
63#include "runtime/orderAccess.inline.hpp"
64#include "runtime/osThread.hpp"
65#include "runtime/safepoint.hpp"
66#include "runtime/sharedRuntime.hpp"
67#include "runtime/statSampler.hpp"
68#include "runtime/stubRoutines.hpp"
69#include "runtime/task.hpp"
70#include "runtime/thread.inline.hpp"
71#include "runtime/threadCritical.hpp"
72#include "runtime/threadLocalStorage.hpp"
73#include "runtime/vframe.hpp"
74#include "runtime/vframeArray.hpp"
75#include "runtime/vframe_hp.hpp"
76#include "runtime/vmThread.hpp"
77#include "runtime/vm_operations.hpp"
78#include "runtime/vm_version.hpp"
79#include "services/attachListener.hpp"
80#include "services/management.hpp"
81#include "services/memTracker.hpp"
82#include "services/threadService.hpp"
83#include "trace/tracing.hpp"
84#include "trace/traceMacros.hpp"
85#include "utilities/defaultStream.hpp"
86#include "utilities/dtrace.hpp"
87#include "utilities/events.hpp"
88#include "utilities/preserveException.hpp"
89#include "utilities/macros.hpp"
90#if INCLUDE_ALL_GCS
91#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
92#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
93#include "gc_implementation/parallelScavenge/pcTasks.hpp"
94#endif // INCLUDE_ALL_GCS
95#ifdef COMPILER1
96#include "c1/c1_Compiler.hpp"
97#endif
98#ifdef COMPILER2
99#include "opto/c2compiler.hpp"
100#include "opto/idealGraphPrinter.hpp"
101#endif
102#if INCLUDE_RTM_OPT
103#include "runtime/rtmLocking.hpp"
104#endif
105
106PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
107
108#ifdef DTRACE_ENABLED
109
110// Only bother with this argument setup if dtrace is available
111
112  #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
113  #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
114
115  #define DTRACE_THREAD_PROBE(probe, javathread)                           \
116    {                                                                      \
117      ResourceMark rm(this);                                               \
118      int len = 0;                                                         \
119      const char* name = (javathread)->get_thread_name();                  \
120      len = strlen(name);                                                  \
121      HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
122        (char *) name, len,                                                \
123        java_lang_Thread::thread_id((javathread)->threadObj()),            \
124        (uintptr_t) (javathread)->osthread()->thread_id(),                 \
125        java_lang_Thread::is_daemon((javathread)->threadObj()));           \
126    }
127
128#else //  ndef DTRACE_ENABLED
129
130  #define DTRACE_THREAD_PROBE(probe, javathread)
131
132#endif // ndef DTRACE_ENABLED
133
134
135// Class hierarchy
136// - Thread
137//   - VMThread
138//   - WatcherThread
139//   - ConcurrentMarkSweepThread
140//   - JavaThread
141//     - CompilerThread
142
143// ======= Thread ========
144// Support for forcing alignment of thread objects for biased locking
145void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
146  if (UseBiasedLocking) {
147    const int alignment = markOopDesc::biased_lock_alignment;
148    size_t aligned_size = size + (alignment - sizeof(intptr_t));
149    void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
150                                          : AllocateHeap(aligned_size, flags, CURRENT_PC,
151                                                         AllocFailStrategy::RETURN_NULL);
152    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
153    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
154           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
155           "JavaThread alignment code overflowed allocated storage");
156    if (TraceBiasedLocking) {
157      if (aligned_addr != real_malloc_addr) {
158        tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
159                      real_malloc_addr, aligned_addr);
160      }
161    }
162    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
163    return aligned_addr;
164  } else {
165    return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
166                       : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
167  }
168}
169
170void Thread::operator delete(void* p) {
171  if (UseBiasedLocking) {
172    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
173    FreeHeap(real_malloc_addr, mtThread);
174  } else {
175    FreeHeap(p, mtThread);
176  }
177}
178
179
180// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
181// JavaThread
182
183
184Thread::Thread() {
185  // stack and get_thread
186  set_stack_base(NULL);
187  set_stack_size(0);
188  set_self_raw_id(0);
189  set_lgrp_id(-1);
190
191  // allocated data structures
192  set_osthread(NULL);
193  set_resource_area(new (mtThread)ResourceArea());
194  DEBUG_ONLY(_current_resource_mark = NULL;)
195  set_handle_area(new (mtThread) HandleArea(NULL));
196  set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
197  set_active_handles(NULL);
198  set_free_handle_block(NULL);
199  set_last_handle_mark(NULL);
200
201  // This initial value ==> never claimed.
202  _oops_do_parity = 0;
203
204  // the handle mark links itself to last_handle_mark
205  new HandleMark(this);
206
207  // plain initialization
208  debug_only(_owned_locks = NULL;)
209  debug_only(_allow_allocation_count = 0;)
210  NOT_PRODUCT(_allow_safepoint_count = 0;)
211  NOT_PRODUCT(_skip_gcalot = false;)
212  _jvmti_env_iteration_count = 0;
213  set_allocated_bytes(0);
214  _vm_operation_started_count = 0;
215  _vm_operation_completed_count = 0;
216  _current_pending_monitor = NULL;
217  _current_pending_monitor_is_from_java = true;
218  _current_waiting_monitor = NULL;
219  _num_nested_signal = 0;
220  omFreeList = NULL;
221  omFreeCount = 0;
222  omFreeProvision = 32;
223  omInUseList = NULL;
224  omInUseCount = 0;
225
226#ifdef ASSERT
227  _visited_for_critical_count = false;
228#endif
229
230  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
231  _suspend_flags = 0;
232
233  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
234  _hashStateX = os::random();
235  _hashStateY = 842502087;
236  _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
237  _hashStateW = 273326509;
238
239  _OnTrap   = 0;
240  _schedctl = NULL;
241  _Stalled  = 0;
242  _TypeTag  = 0x2BAD;
243
244  // Many of the following fields are effectively final - immutable
245  // Note that nascent threads can't use the Native Monitor-Mutex
246  // construct until the _MutexEvent is initialized ...
247  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
248  // we might instead use a stack of ParkEvents that we could provision on-demand.
249  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
250  // and ::Release()
251  _ParkEvent   = ParkEvent::Allocate(this);
252  _SleepEvent  = ParkEvent::Allocate(this);
253  _MutexEvent  = ParkEvent::Allocate(this);
254  _MuxEvent    = ParkEvent::Allocate(this);
255
256#ifdef CHECK_UNHANDLED_OOPS
257  if (CheckUnhandledOops) {
258    _unhandled_oops = new UnhandledOops(this);
259  }
260#endif // CHECK_UNHANDLED_OOPS
261#ifdef ASSERT
262  if (UseBiasedLocking) {
263    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
264    assert(this == _real_malloc_address ||
265           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
266           "bug in forced alignment of thread objects");
267  }
268#endif // ASSERT
269}
270
271void Thread::initialize_thread_local_storage() {
272  // Note: Make sure this method only calls
273  // non-blocking operations. Otherwise, it might not work
274  // with the thread-startup/safepoint interaction.
275
276  // During Java thread startup, safepoint code should allow this
277  // method to complete because it may need to allocate memory to
278  // store information for the new thread.
279
280  // initialize structure dependent on thread local storage
281  ThreadLocalStorage::set_thread(this);
282}
283
284void Thread::record_stack_base_and_size() {
285  set_stack_base(os::current_stack_base());
286  set_stack_size(os::current_stack_size());
287  if (is_Java_thread()) {
288    ((JavaThread*) this)->set_stack_overflow_limit();
289  }
290  // CR 7190089: on Solaris, primordial thread's stack is adjusted
291  // in initialize_thread(). Without the adjustment, stack size is
292  // incorrect if stack is set to unlimited (ulimit -s unlimited).
293  // So far, only Solaris has real implementation of initialize_thread().
294  //
295  // set up any platform-specific state.
296  os::initialize_thread(this);
297
298#if INCLUDE_NMT
299  // record thread's native stack, stack grows downward
300  address stack_low_addr = stack_base() - stack_size();
301  MemTracker::record_thread_stack(stack_low_addr, stack_size());
302#endif // INCLUDE_NMT
303}
304
305
306Thread::~Thread() {
307  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
308  ObjectSynchronizer::omFlush(this);
309
310  EVENT_THREAD_DESTRUCT(this);
311
312  // stack_base can be NULL if the thread is never started or exited before
313  // record_stack_base_and_size called. Although, we would like to ensure
314  // that all started threads do call record_stack_base_and_size(), there is
315  // not proper way to enforce that.
316#if INCLUDE_NMT
317  if (_stack_base != NULL) {
318    address low_stack_addr = stack_base() - stack_size();
319    MemTracker::release_thread_stack(low_stack_addr, stack_size());
320#ifdef ASSERT
321    set_stack_base(NULL);
322#endif
323  }
324#endif // INCLUDE_NMT
325
326  // deallocate data structures
327  delete resource_area();
328  // since the handle marks are using the handle area, we have to deallocated the root
329  // handle mark before deallocating the thread's handle area,
330  assert(last_handle_mark() != NULL, "check we have an element");
331  delete last_handle_mark();
332  assert(last_handle_mark() == NULL, "check we have reached the end");
333
334  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
335  // We NULL out the fields for good hygiene.
336  ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
337  ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
338  ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
339  ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
340
341  delete handle_area();
342  delete metadata_handles();
343
344  // osthread() can be NULL, if creation of thread failed.
345  if (osthread() != NULL) os::free_thread(osthread());
346
347  delete _SR_lock;
348
349  // clear thread local storage if the Thread is deleting itself
350  if (this == Thread::current()) {
351    ThreadLocalStorage::set_thread(NULL);
352  } else {
353    // In the case where we're not the current thread, invalidate all the
354    // caches in case some code tries to get the current thread or the
355    // thread that was destroyed, and gets stale information.
356    ThreadLocalStorage::invalidate_all();
357  }
358  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
359}
360
361// NOTE: dummy function for assertion purpose.
362void Thread::run() {
363  ShouldNotReachHere();
364}
365
366#ifdef ASSERT
367// Private method to check for dangling thread pointer
368void check_for_dangling_thread_pointer(Thread *thread) {
369  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
370         "possibility of dangling Thread pointer");
371}
372#endif
373
374
375#ifndef PRODUCT
376// Tracing method for basic thread operations
377void Thread::trace(const char* msg, const Thread* const thread) {
378  if (!TraceThreadEvents) return;
379  ResourceMark rm;
380  ThreadCritical tc;
381  const char *name = "non-Java thread";
382  int prio = -1;
383  if (thread->is_Java_thread()
384      && !thread->is_Compiler_thread()) {
385    // The Threads_lock must be held to get information about
386    // this thread but may not be in some situations when
387    // tracing  thread events.
388    bool release_Threads_lock = false;
389    if (!Threads_lock->owned_by_self()) {
390      Threads_lock->lock();
391      release_Threads_lock = true;
392    }
393    JavaThread* jt = (JavaThread *)thread;
394    name = (char *)jt->get_thread_name();
395    oop thread_oop = jt->threadObj();
396    if (thread_oop != NULL) {
397      prio = java_lang_Thread::priority(thread_oop);
398    }
399    if (release_Threads_lock) {
400      Threads_lock->unlock();
401    }
402  }
403  tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
404}
405#endif
406
407
408ThreadPriority Thread::get_priority(const Thread* const thread) {
409  trace("get priority", thread);
410  ThreadPriority priority;
411  // Can return an error!
412  (void)os::get_priority(thread, priority);
413  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
414  return priority;
415}
416
417void Thread::set_priority(Thread* thread, ThreadPriority priority) {
418  trace("set priority", thread);
419  debug_only(check_for_dangling_thread_pointer(thread);)
420  // Can return an error!
421  (void)os::set_priority(thread, priority);
422}
423
424
425void Thread::start(Thread* thread) {
426  trace("start", thread);
427  // Start is different from resume in that its safety is guaranteed by context or
428  // being called from a Java method synchronized on the Thread object.
429  if (!DisableStartThread) {
430    if (thread->is_Java_thread()) {
431      // Initialize the thread state to RUNNABLE before starting this thread.
432      // Can not set it after the thread started because we do not know the
433      // exact thread state at that time. It could be in MONITOR_WAIT or
434      // in SLEEPING or some other state.
435      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
436                                          java_lang_Thread::RUNNABLE);
437    }
438    os::start_thread(thread);
439  }
440}
441
442// Enqueue a VM_Operation to do the job for us - sometime later
443void Thread::send_async_exception(oop java_thread, oop java_throwable) {
444  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
445  VMThread::execute(vm_stop);
446}
447
448
449// Check if an external suspend request has completed (or has been
450// cancelled). Returns true if the thread is externally suspended and
451// false otherwise.
452//
453// The bits parameter returns information about the code path through
454// the routine. Useful for debugging:
455//
456// set in is_ext_suspend_completed():
457// 0x00000001 - routine was entered
458// 0x00000010 - routine return false at end
459// 0x00000100 - thread exited (return false)
460// 0x00000200 - suspend request cancelled (return false)
461// 0x00000400 - thread suspended (return true)
462// 0x00001000 - thread is in a suspend equivalent state (return true)
463// 0x00002000 - thread is native and walkable (return true)
464// 0x00004000 - thread is native_trans and walkable (needed retry)
465//
466// set in wait_for_ext_suspend_completion():
467// 0x00010000 - routine was entered
468// 0x00020000 - suspend request cancelled before loop (return false)
469// 0x00040000 - thread suspended before loop (return true)
470// 0x00080000 - suspend request cancelled in loop (return false)
471// 0x00100000 - thread suspended in loop (return true)
472// 0x00200000 - suspend not completed during retry loop (return false)
473
474// Helper class for tracing suspend wait debug bits.
475//
476// 0x00000100 indicates that the target thread exited before it could
477// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
478// 0x00080000 each indicate a cancelled suspend request so they don't
479// count as wait failures either.
480#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
481
482class TraceSuspendDebugBits : public StackObj {
483 private:
484  JavaThread * jt;
485  bool         is_wait;
486  bool         called_by_wait;  // meaningful when !is_wait
487  uint32_t *   bits;
488
489 public:
490  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
491                        uint32_t *_bits) {
492    jt             = _jt;
493    is_wait        = _is_wait;
494    called_by_wait = _called_by_wait;
495    bits           = _bits;
496  }
497
498  ~TraceSuspendDebugBits() {
499    if (!is_wait) {
500#if 1
501      // By default, don't trace bits for is_ext_suspend_completed() calls.
502      // That trace is very chatty.
503      return;
504#else
505      if (!called_by_wait) {
506        // If tracing for is_ext_suspend_completed() is enabled, then only
507        // trace calls to it from wait_for_ext_suspend_completion()
508        return;
509      }
510#endif
511    }
512
513    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
514      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
515        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
516        ResourceMark rm;
517
518        tty->print_cr(
519                      "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
520                      jt->get_thread_name(), *bits);
521
522        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
523      }
524    }
525  }
526};
527#undef DEBUG_FALSE_BITS
528
529
530bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
531                                          uint32_t *bits) {
532  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
533
534  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
535  bool do_trans_retry;           // flag to force the retry
536
537  *bits |= 0x00000001;
538
539  do {
540    do_trans_retry = false;
541
542    if (is_exiting()) {
543      // Thread is in the process of exiting. This is always checked
544      // first to reduce the risk of dereferencing a freed JavaThread.
545      *bits |= 0x00000100;
546      return false;
547    }
548
549    if (!is_external_suspend()) {
550      // Suspend request is cancelled. This is always checked before
551      // is_ext_suspended() to reduce the risk of a rogue resume
552      // confusing the thread that made the suspend request.
553      *bits |= 0x00000200;
554      return false;
555    }
556
557    if (is_ext_suspended()) {
558      // thread is suspended
559      *bits |= 0x00000400;
560      return true;
561    }
562
563    // Now that we no longer do hard suspends of threads running
564    // native code, the target thread can be changing thread state
565    // while we are in this routine:
566    //
567    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
568    //
569    // We save a copy of the thread state as observed at this moment
570    // and make our decision about suspend completeness based on the
571    // copy. This closes the race where the thread state is seen as
572    // _thread_in_native_trans in the if-thread_blocked check, but is
573    // seen as _thread_blocked in if-thread_in_native_trans check.
574    JavaThreadState save_state = thread_state();
575
576    if (save_state == _thread_blocked && is_suspend_equivalent()) {
577      // If the thread's state is _thread_blocked and this blocking
578      // condition is known to be equivalent to a suspend, then we can
579      // consider the thread to be externally suspended. This means that
580      // the code that sets _thread_blocked has been modified to do
581      // self-suspension if the blocking condition releases. We also
582      // used to check for CONDVAR_WAIT here, but that is now covered by
583      // the _thread_blocked with self-suspension check.
584      //
585      // Return true since we wouldn't be here unless there was still an
586      // external suspend request.
587      *bits |= 0x00001000;
588      return true;
589    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
590      // Threads running native code will self-suspend on native==>VM/Java
591      // transitions. If its stack is walkable (should always be the case
592      // unless this function is called before the actual java_suspend()
593      // call), then the wait is done.
594      *bits |= 0x00002000;
595      return true;
596    } else if (!called_by_wait && !did_trans_retry &&
597               save_state == _thread_in_native_trans &&
598               frame_anchor()->walkable()) {
599      // The thread is transitioning from thread_in_native to another
600      // thread state. check_safepoint_and_suspend_for_native_trans()
601      // will force the thread to self-suspend. If it hasn't gotten
602      // there yet we may have caught the thread in-between the native
603      // code check above and the self-suspend. Lucky us. If we were
604      // called by wait_for_ext_suspend_completion(), then it
605      // will be doing the retries so we don't have to.
606      //
607      // Since we use the saved thread state in the if-statement above,
608      // there is a chance that the thread has already transitioned to
609      // _thread_blocked by the time we get here. In that case, we will
610      // make a single unnecessary pass through the logic below. This
611      // doesn't hurt anything since we still do the trans retry.
612
613      *bits |= 0x00004000;
614
615      // Once the thread leaves thread_in_native_trans for another
616      // thread state, we break out of this retry loop. We shouldn't
617      // need this flag to prevent us from getting back here, but
618      // sometimes paranoia is good.
619      did_trans_retry = true;
620
621      // We wait for the thread to transition to a more usable state.
622      for (int i = 1; i <= SuspendRetryCount; i++) {
623        // We used to do an "os::yield_all(i)" call here with the intention
624        // that yielding would increase on each retry. However, the parameter
625        // is ignored on Linux which means the yield didn't scale up. Waiting
626        // on the SR_lock below provides a much more predictable scale up for
627        // the delay. It also provides a simple/direct point to check for any
628        // safepoint requests from the VMThread
629
630        // temporarily drops SR_lock while doing wait with safepoint check
631        // (if we're a JavaThread - the WatcherThread can also call this)
632        // and increase delay with each retry
633        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
634
635        // check the actual thread state instead of what we saved above
636        if (thread_state() != _thread_in_native_trans) {
637          // the thread has transitioned to another thread state so
638          // try all the checks (except this one) one more time.
639          do_trans_retry = true;
640          break;
641        }
642      } // end retry loop
643
644
645    }
646  } while (do_trans_retry);
647
648  *bits |= 0x00000010;
649  return false;
650}
651
652// Wait for an external suspend request to complete (or be cancelled).
653// Returns true if the thread is externally suspended and false otherwise.
654//
655bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
656                                                 uint32_t *bits) {
657  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
658                             false /* !called_by_wait */, bits);
659
660  // local flag copies to minimize SR_lock hold time
661  bool is_suspended;
662  bool pending;
663  uint32_t reset_bits;
664
665  // set a marker so is_ext_suspend_completed() knows we are the caller
666  *bits |= 0x00010000;
667
668  // We use reset_bits to reinitialize the bits value at the top of
669  // each retry loop. This allows the caller to make use of any
670  // unused bits for their own marking purposes.
671  reset_bits = *bits;
672
673  {
674    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
675    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
676                                            delay, bits);
677    pending = is_external_suspend();
678  }
679  // must release SR_lock to allow suspension to complete
680
681  if (!pending) {
682    // A cancelled suspend request is the only false return from
683    // is_ext_suspend_completed() that keeps us from entering the
684    // retry loop.
685    *bits |= 0x00020000;
686    return false;
687  }
688
689  if (is_suspended) {
690    *bits |= 0x00040000;
691    return true;
692  }
693
694  for (int i = 1; i <= retries; i++) {
695    *bits = reset_bits;  // reinit to only track last retry
696
697    // We used to do an "os::yield_all(i)" call here with the intention
698    // that yielding would increase on each retry. However, the parameter
699    // is ignored on Linux which means the yield didn't scale up. Waiting
700    // on the SR_lock below provides a much more predictable scale up for
701    // the delay. It also provides a simple/direct point to check for any
702    // safepoint requests from the VMThread
703
704    {
705      MutexLocker ml(SR_lock());
706      // wait with safepoint check (if we're a JavaThread - the WatcherThread
707      // can also call this)  and increase delay with each retry
708      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
709
710      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
711                                              delay, bits);
712
713      // It is possible for the external suspend request to be cancelled
714      // (by a resume) before the actual suspend operation is completed.
715      // Refresh our local copy to see if we still need to wait.
716      pending = is_external_suspend();
717    }
718
719    if (!pending) {
720      // A cancelled suspend request is the only false return from
721      // is_ext_suspend_completed() that keeps us from staying in the
722      // retry loop.
723      *bits |= 0x00080000;
724      return false;
725    }
726
727    if (is_suspended) {
728      *bits |= 0x00100000;
729      return true;
730    }
731  } // end retry loop
732
733  // thread did not suspend after all our retries
734  *bits |= 0x00200000;
735  return false;
736}
737
738#ifndef PRODUCT
739void JavaThread::record_jump(address target, address instr, const char* file,
740                             int line) {
741
742  // This should not need to be atomic as the only way for simultaneous
743  // updates is via interrupts. Even then this should be rare or non-existent
744  // and we don't care that much anyway.
745
746  int index = _jmp_ring_index;
747  _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
748  _jmp_ring[index]._target = (intptr_t) target;
749  _jmp_ring[index]._instruction = (intptr_t) instr;
750  _jmp_ring[index]._file = file;
751  _jmp_ring[index]._line = line;
752}
753#endif // PRODUCT
754
755// Called by flat profiler
756// Callers have already called wait_for_ext_suspend_completion
757// The assertion for that is currently too complex to put here:
758bool JavaThread::profile_last_Java_frame(frame* _fr) {
759  bool gotframe = false;
760  // self suspension saves needed state.
761  if (has_last_Java_frame() && _anchor.walkable()) {
762    *_fr = pd_last_frame();
763    gotframe = true;
764  }
765  return gotframe;
766}
767
768void Thread::interrupt(Thread* thread) {
769  trace("interrupt", thread);
770  debug_only(check_for_dangling_thread_pointer(thread);)
771  os::interrupt(thread);
772}
773
774bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
775  trace("is_interrupted", thread);
776  debug_only(check_for_dangling_thread_pointer(thread);)
777  // Note:  If clear_interrupted==false, this simply fetches and
778  // returns the value of the field osthread()->interrupted().
779  return os::is_interrupted(thread, clear_interrupted);
780}
781
782
783// GC Support
784bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
785  jint thread_parity = _oops_do_parity;
786  if (thread_parity != strong_roots_parity) {
787    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
788    if (res == thread_parity) {
789      return true;
790    } else {
791      guarantee(res == strong_roots_parity, "Or else what?");
792      assert(SharedHeap::heap()->workers()->active_workers() > 0,
793             "Should only fail when parallel.");
794      return false;
795    }
796  }
797  assert(SharedHeap::heap()->workers()->active_workers() > 0,
798         "Should only fail when parallel.");
799  return false;
800}
801
802void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
803  active_handles()->oops_do(f);
804  // Do oop for ThreadShadow
805  f->do_oop((oop*)&_pending_exception);
806  handle_area()->oops_do(f);
807}
808
809void Thread::nmethods_do(CodeBlobClosure* cf) {
810  // no nmethods in a generic thread...
811}
812
813void Thread::metadata_do(void f(Metadata*)) {
814  if (metadata_handles() != NULL) {
815    for (int i = 0; i< metadata_handles()->length(); i++) {
816      f(metadata_handles()->at(i));
817    }
818  }
819}
820
821void Thread::print_on(outputStream* st) const {
822  // get_priority assumes osthread initialized
823  if (osthread() != NULL) {
824    int os_prio;
825    if (os::get_native_priority(this, &os_prio) == OS_OK) {
826      st->print("os_prio=%d ", os_prio);
827    }
828    st->print("tid=" INTPTR_FORMAT " ", this);
829    osthread()->print_on(st);
830  }
831  debug_only(if (WizardMode) print_owned_locks_on(st);)
832}
833
834// Thread::print_on_error() is called by fatal error handler. Don't use
835// any lock or allocate memory.
836void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
837  if (is_VM_thread())                 st->print("VMThread");
838  else if (is_Compiler_thread())      st->print("CompilerThread");
839  else if (is_Java_thread())          st->print("JavaThread");
840  else if (is_GC_task_thread())       st->print("GCTaskThread");
841  else if (is_Watcher_thread())       st->print("WatcherThread");
842  else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
843  else                                st->print("Thread");
844
845  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
846            _stack_base - _stack_size, _stack_base);
847
848  if (osthread()) {
849    st->print(" [id=%d]", osthread()->thread_id());
850  }
851}
852
853#ifdef ASSERT
854void Thread::print_owned_locks_on(outputStream* st) const {
855  Monitor *cur = _owned_locks;
856  if (cur == NULL) {
857    st->print(" (no locks) ");
858  } else {
859    st->print_cr(" Locks owned:");
860    while (cur) {
861      cur->print_on(st);
862      cur = cur->next();
863    }
864  }
865}
866
867static int ref_use_count  = 0;
868
869bool Thread::owns_locks_but_compiled_lock() const {
870  for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
871    if (cur != Compile_lock) return true;
872  }
873  return false;
874}
875
876
877#endif
878
879#ifndef PRODUCT
880
881// The flag: potential_vm_operation notifies if this particular safepoint state could potential
882// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
883// no threads which allow_vm_block's are held
884void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
885  // Check if current thread is allowed to block at a safepoint
886  if (!(_allow_safepoint_count == 0)) {
887    fatal("Possible safepoint reached by thread that does not allow it");
888  }
889  if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
890    fatal("LEAF method calling lock?");
891  }
892
893#ifdef ASSERT
894  if (potential_vm_operation && is_Java_thread()
895      && !Universe::is_bootstrapping()) {
896    // Make sure we do not hold any locks that the VM thread also uses.
897    // This could potentially lead to deadlocks
898    for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
899      // Threads_lock is special, since the safepoint synchronization will not start before this is
900      // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
901      // since it is used to transfer control between JavaThreads and the VMThread
902      // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
903      if ((cur->allow_vm_block() &&
904           cur != Threads_lock &&
905           cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
906           cur != VMOperationRequest_lock &&
907           cur != VMOperationQueue_lock) ||
908           cur->rank() == Mutex::special) {
909        fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
910      }
911    }
912  }
913
914  if (GCALotAtAllSafepoints) {
915    // We could enter a safepoint here and thus have a gc
916    InterfaceSupport::check_gc_alot();
917  }
918#endif
919}
920#endif
921
922bool Thread::is_in_stack(address adr) const {
923  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
924  address end = os::current_stack_pointer();
925  // Allow non Java threads to call this without stack_base
926  if (_stack_base == NULL) return true;
927  if (stack_base() >= adr && adr >= end) return true;
928
929  return false;
930}
931
932
933bool Thread::is_in_usable_stack(address adr) const {
934  size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
935  size_t usable_stack_size = _stack_size - stack_guard_size;
936
937  return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
938}
939
940
941// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
942// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
943// used for compilation in the future. If that change is made, the need for these methods
944// should be revisited, and they should be removed if possible.
945
946bool Thread::is_lock_owned(address adr) const {
947  return on_local_stack(adr);
948}
949
950bool Thread::set_as_starting_thread() {
951  // NOTE: this must be called inside the main thread.
952  return os::create_main_thread((JavaThread*)this);
953}
954
955static void initialize_class(Symbol* class_name, TRAPS) {
956  Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
957  InstanceKlass::cast(klass)->initialize(CHECK);
958}
959
960
961// Creates the initial ThreadGroup
962static Handle create_initial_thread_group(TRAPS) {
963  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
964  instanceKlassHandle klass (THREAD, k);
965
966  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
967  {
968    JavaValue result(T_VOID);
969    JavaCalls::call_special(&result,
970                            system_instance,
971                            klass,
972                            vmSymbols::object_initializer_name(),
973                            vmSymbols::void_method_signature(),
974                            CHECK_NH);
975  }
976  Universe::set_system_thread_group(system_instance());
977
978  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
979  {
980    JavaValue result(T_VOID);
981    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
982    JavaCalls::call_special(&result,
983                            main_instance,
984                            klass,
985                            vmSymbols::object_initializer_name(),
986                            vmSymbols::threadgroup_string_void_signature(),
987                            system_instance,
988                            string,
989                            CHECK_NH);
990  }
991  return main_instance;
992}
993
994// Creates the initial Thread
995static oop create_initial_thread(Handle thread_group, JavaThread* thread,
996                                 TRAPS) {
997  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
998  instanceKlassHandle klass (THREAD, k);
999  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1000
1001  java_lang_Thread::set_thread(thread_oop(), thread);
1002  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1003  thread->set_threadObj(thread_oop());
1004
1005  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1006
1007  JavaValue result(T_VOID);
1008  JavaCalls::call_special(&result, thread_oop,
1009                          klass,
1010                          vmSymbols::object_initializer_name(),
1011                          vmSymbols::threadgroup_string_void_signature(),
1012                          thread_group,
1013                          string,
1014                          CHECK_NULL);
1015  return thread_oop();
1016}
1017
1018static void call_initializeSystemClass(TRAPS) {
1019  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1020  instanceKlassHandle klass (THREAD, k);
1021
1022  JavaValue result(T_VOID);
1023  JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1024                         vmSymbols::void_method_signature(), CHECK);
1025}
1026
1027char java_runtime_name[128] = "";
1028char java_runtime_version[128] = "";
1029
1030// extract the JRE name from sun.misc.Version.java_runtime_name
1031static const char* get_java_runtime_name(TRAPS) {
1032  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1033                                    Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1034  fieldDescriptor fd;
1035  bool found = k != NULL &&
1036               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1037                                                        vmSymbols::string_signature(), &fd);
1038  if (found) {
1039    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1040    if (name_oop == NULL) {
1041      return NULL;
1042    }
1043    const char* name = java_lang_String::as_utf8_string(name_oop,
1044                                                        java_runtime_name,
1045                                                        sizeof(java_runtime_name));
1046    return name;
1047  } else {
1048    return NULL;
1049  }
1050}
1051
1052// extract the JRE version from sun.misc.Version.java_runtime_version
1053static const char* get_java_runtime_version(TRAPS) {
1054  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1055                                    Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1056  fieldDescriptor fd;
1057  bool found = k != NULL &&
1058               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1059                                                        vmSymbols::string_signature(), &fd);
1060  if (found) {
1061    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1062    if (name_oop == NULL) {
1063      return NULL;
1064    }
1065    const char* name = java_lang_String::as_utf8_string(name_oop,
1066                                                        java_runtime_version,
1067                                                        sizeof(java_runtime_version));
1068    return name;
1069  } else {
1070    return NULL;
1071  }
1072}
1073
1074// General purpose hook into Java code, run once when the VM is initialized.
1075// The Java library method itself may be changed independently from the VM.
1076static void call_postVMInitHook(TRAPS) {
1077  Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1078  instanceKlassHandle klass (THREAD, k);
1079  if (klass.not_null()) {
1080    JavaValue result(T_VOID);
1081    JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1082                           vmSymbols::void_method_signature(),
1083                           CHECK);
1084  }
1085}
1086
1087static void reset_vm_info_property(TRAPS) {
1088  // the vm info string
1089  ResourceMark rm(THREAD);
1090  const char *vm_info = VM_Version::vm_info_string();
1091
1092  // java.lang.System class
1093  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1094  instanceKlassHandle klass (THREAD, k);
1095
1096  // setProperty arguments
1097  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1098  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1099
1100  // return value
1101  JavaValue r(T_OBJECT);
1102
1103  // public static String setProperty(String key, String value);
1104  JavaCalls::call_static(&r,
1105                         klass,
1106                         vmSymbols::setProperty_name(),
1107                         vmSymbols::string_string_string_signature(),
1108                         key_str,
1109                         value_str,
1110                         CHECK);
1111}
1112
1113
1114void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name,
1115                                    bool daemon, TRAPS) {
1116  assert(thread_group.not_null(), "thread group should be specified");
1117  assert(threadObj() == NULL, "should only create Java thread object once");
1118
1119  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1120  instanceKlassHandle klass (THREAD, k);
1121  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1122
1123  java_lang_Thread::set_thread(thread_oop(), this);
1124  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1125  set_threadObj(thread_oop());
1126
1127  JavaValue result(T_VOID);
1128  if (thread_name != NULL) {
1129    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1130    // Thread gets assigned specified name and null target
1131    JavaCalls::call_special(&result,
1132                            thread_oop,
1133                            klass,
1134                            vmSymbols::object_initializer_name(),
1135                            vmSymbols::threadgroup_string_void_signature(),
1136                            thread_group, // Argument 1
1137                            name,         // Argument 2
1138                            THREAD);
1139  } else {
1140    // Thread gets assigned name "Thread-nnn" and null target
1141    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1142    JavaCalls::call_special(&result,
1143                            thread_oop,
1144                            klass,
1145                            vmSymbols::object_initializer_name(),
1146                            vmSymbols::threadgroup_runnable_void_signature(),
1147                            thread_group, // Argument 1
1148                            Handle(),     // Argument 2
1149                            THREAD);
1150  }
1151
1152
1153  if (daemon) {
1154    java_lang_Thread::set_daemon(thread_oop());
1155  }
1156
1157  if (HAS_PENDING_EXCEPTION) {
1158    return;
1159  }
1160
1161  KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1162  Handle threadObj(this, this->threadObj());
1163
1164  JavaCalls::call_special(&result,
1165                          thread_group,
1166                          group,
1167                          vmSymbols::add_method_name(),
1168                          vmSymbols::thread_void_signature(),
1169                          threadObj,          // Arg 1
1170                          THREAD);
1171
1172
1173}
1174
1175// NamedThread --  non-JavaThread subclasses with multiple
1176// uniquely named instances should derive from this.
1177NamedThread::NamedThread() : Thread() {
1178  _name = NULL;
1179  _processed_thread = NULL;
1180}
1181
1182NamedThread::~NamedThread() {
1183  if (_name != NULL) {
1184    FREE_C_HEAP_ARRAY(char, _name, mtThread);
1185    _name = NULL;
1186  }
1187}
1188
1189void NamedThread::set_name(const char* format, ...) {
1190  guarantee(_name == NULL, "Only get to set name once.");
1191  _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1192  guarantee(_name != NULL, "alloc failure");
1193  va_list ap;
1194  va_start(ap, format);
1195  jio_vsnprintf(_name, max_name_len, format, ap);
1196  va_end(ap);
1197}
1198
1199void NamedThread::print_on(outputStream* st) const {
1200  st->print("\"%s\" ", name());
1201  Thread::print_on(st);
1202  st->cr();
1203}
1204
1205
1206// ======= WatcherThread ========
1207
1208// The watcher thread exists to simulate timer interrupts.  It should
1209// be replaced by an abstraction over whatever native support for
1210// timer interrupts exists on the platform.
1211
1212WatcherThread* WatcherThread::_watcher_thread   = NULL;
1213bool WatcherThread::_startable = false;
1214volatile bool  WatcherThread::_should_terminate = false;
1215
1216WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1217  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1218  if (os::create_thread(this, os::watcher_thread)) {
1219    _watcher_thread = this;
1220
1221    // Set the watcher thread to the highest OS priority which should not be
1222    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1223    // is created. The only normal thread using this priority is the reference
1224    // handler thread, which runs for very short intervals only.
1225    // If the VMThread's priority is not lower than the WatcherThread profiling
1226    // will be inaccurate.
1227    os::set_priority(this, MaxPriority);
1228    if (!DisableStartThread) {
1229      os::start_thread(this);
1230    }
1231  }
1232}
1233
1234int WatcherThread::sleep() const {
1235  MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1236
1237  // remaining will be zero if there are no tasks,
1238  // causing the WatcherThread to sleep until a task is
1239  // enrolled
1240  int remaining = PeriodicTask::time_to_wait();
1241  int time_slept = 0;
1242
1243  // we expect this to timeout - we only ever get unparked when
1244  // we should terminate or when a new task has been enrolled
1245  OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1246
1247  jlong time_before_loop = os::javaTimeNanos();
1248
1249  for (;;) {
1250    bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1251    jlong now = os::javaTimeNanos();
1252
1253    if (remaining == 0) {
1254      // if we didn't have any tasks we could have waited for a long time
1255      // consider the time_slept zero and reset time_before_loop
1256      time_slept = 0;
1257      time_before_loop = now;
1258    } else {
1259      // need to recalculate since we might have new tasks in _tasks
1260      time_slept = (int) ((now - time_before_loop) / 1000000);
1261    }
1262
1263    // Change to task list or spurious wakeup of some kind
1264    if (timedout || _should_terminate) {
1265      break;
1266    }
1267
1268    remaining = PeriodicTask::time_to_wait();
1269    if (remaining == 0) {
1270      // Last task was just disenrolled so loop around and wait until
1271      // another task gets enrolled
1272      continue;
1273    }
1274
1275    remaining -= time_slept;
1276    if (remaining <= 0) {
1277      break;
1278    }
1279  }
1280
1281  return time_slept;
1282}
1283
1284void WatcherThread::run() {
1285  assert(this == watcher_thread(), "just checking");
1286
1287  this->record_stack_base_and_size();
1288  this->initialize_thread_local_storage();
1289  this->set_active_handles(JNIHandleBlock::allocate_block());
1290  while (!_should_terminate) {
1291    assert(watcher_thread() == Thread::current(), "thread consistency check");
1292    assert(watcher_thread() == this, "thread consistency check");
1293
1294    // Calculate how long it'll be until the next PeriodicTask work
1295    // should be done, and sleep that amount of time.
1296    int time_waited = sleep();
1297
1298    if (is_error_reported()) {
1299      // A fatal error has happened, the error handler(VMError::report_and_die)
1300      // should abort JVM after creating an error log file. However in some
1301      // rare cases, the error handler itself might deadlock. Here we try to
1302      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1303      //
1304      // This code is in WatcherThread because WatcherThread wakes up
1305      // periodically so the fatal error handler doesn't need to do anything;
1306      // also because the WatcherThread is less likely to crash than other
1307      // threads.
1308
1309      for (;;) {
1310        if (!ShowMessageBoxOnError
1311            && (OnError == NULL || OnError[0] == '\0')
1312            && Arguments::abort_hook() == NULL) {
1313          os::sleep(this, 2 * 60 * 1000, false);
1314          fdStream err(defaultStream::output_fd());
1315          err.print_raw_cr("# [ timer expired, abort... ]");
1316          // skip atexit/vm_exit/vm_abort hooks
1317          os::die();
1318        }
1319
1320        // Wake up 5 seconds later, the fatal handler may reset OnError or
1321        // ShowMessageBoxOnError when it is ready to abort.
1322        os::sleep(this, 5 * 1000, false);
1323      }
1324    }
1325
1326    PeriodicTask::real_time_tick(time_waited);
1327  }
1328
1329  // Signal that it is terminated
1330  {
1331    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1332    _watcher_thread = NULL;
1333    Terminator_lock->notify();
1334  }
1335
1336  // Thread destructor usually does this..
1337  ThreadLocalStorage::set_thread(NULL);
1338}
1339
1340void WatcherThread::start() {
1341  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1342
1343  if (watcher_thread() == NULL && _startable) {
1344    _should_terminate = false;
1345    // Create the single instance of WatcherThread
1346    new WatcherThread();
1347  }
1348}
1349
1350void WatcherThread::make_startable() {
1351  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1352  _startable = true;
1353}
1354
1355void WatcherThread::stop() {
1356  // Get the PeriodicTask_lock if we can. If we cannot, then the
1357  // WatcherThread is using it and we don't want to block on that lock
1358  // here because that might cause a safepoint deadlock depending on
1359  // what the current WatcherThread tasks are doing.
1360  bool have_lock = PeriodicTask_lock->try_lock();
1361
1362  _should_terminate = true;
1363  OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1364
1365  if (have_lock) {
1366    WatcherThread* watcher = watcher_thread();
1367    if (watcher != NULL) {
1368      // If we managed to get the lock, then we should unpark the
1369      // WatcherThread so that it can see we want it to stop.
1370      watcher->unpark();
1371    }
1372
1373    PeriodicTask_lock->unlock();
1374  }
1375
1376  // it is ok to take late safepoints here, if needed
1377  MutexLocker mu(Terminator_lock);
1378
1379  while (watcher_thread() != NULL) {
1380    // This wait should make safepoint checks, wait without a timeout,
1381    // and wait as a suspend-equivalent condition.
1382    //
1383    // Note: If the FlatProfiler is running, then this thread is waiting
1384    // for the WatcherThread to terminate and the WatcherThread, via the
1385    // FlatProfiler task, is waiting for the external suspend request on
1386    // this thread to complete. wait_for_ext_suspend_completion() will
1387    // eventually timeout, but that takes time. Making this wait a
1388    // suspend-equivalent condition solves that timeout problem.
1389    //
1390    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1391                          Mutex::_as_suspend_equivalent_flag);
1392  }
1393}
1394
1395void WatcherThread::unpark() {
1396  MutexLockerEx ml(PeriodicTask_lock->owned_by_self()
1397                   ? NULL
1398                   : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1399  PeriodicTask_lock->notify();
1400}
1401
1402void WatcherThread::print_on(outputStream* st) const {
1403  st->print("\"%s\" ", name());
1404  Thread::print_on(st);
1405  st->cr();
1406}
1407
1408// ======= JavaThread ========
1409
1410// A JavaThread is a normal Java thread
1411
1412void JavaThread::initialize() {
1413  // Initialize fields
1414
1415  // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1416  set_claimed_par_id(UINT_MAX);
1417
1418  set_saved_exception_pc(NULL);
1419  set_threadObj(NULL);
1420  _anchor.clear();
1421  set_entry_point(NULL);
1422  set_jni_functions(jni_functions());
1423  set_callee_target(NULL);
1424  set_vm_result(NULL);
1425  set_vm_result_2(NULL);
1426  set_vframe_array_head(NULL);
1427  set_vframe_array_last(NULL);
1428  set_deferred_locals(NULL);
1429  set_deopt_mark(NULL);
1430  set_deopt_nmethod(NULL);
1431  clear_must_deopt_id();
1432  set_monitor_chunks(NULL);
1433  set_next(NULL);
1434  set_thread_state(_thread_new);
1435  _terminated = _not_terminated;
1436  _privileged_stack_top = NULL;
1437  _array_for_gc = NULL;
1438  _suspend_equivalent = false;
1439  _in_deopt_handler = 0;
1440  _doing_unsafe_access = false;
1441  _stack_guard_state = stack_guard_unused;
1442  (void)const_cast<oop&>(_exception_oop = oop(NULL));
1443  _exception_pc  = 0;
1444  _exception_handler_pc = 0;
1445  _is_method_handle_return = 0;
1446  _jvmti_thread_state= NULL;
1447  _should_post_on_exceptions_flag = JNI_FALSE;
1448  _jvmti_get_loaded_classes_closure = NULL;
1449  _interp_only_mode    = 0;
1450  _special_runtime_exit_condition = _no_async_condition;
1451  _pending_async_exception = NULL;
1452  _thread_stat = NULL;
1453  _thread_stat = new ThreadStatistics();
1454  _blocked_on_compilation = false;
1455  _jni_active_critical = 0;
1456  _pending_jni_exception_check_fn = NULL;
1457  _do_not_unlock_if_synchronized = false;
1458  _cached_monitor_info = NULL;
1459  _parker = Parker::Allocate(this);
1460
1461#ifndef PRODUCT
1462  _jmp_ring_index = 0;
1463  for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1464    record_jump(NULL, NULL, NULL, 0);
1465  }
1466#endif // PRODUCT
1467
1468  set_thread_profiler(NULL);
1469  if (FlatProfiler::is_active()) {
1470    // This is where we would decide to either give each thread it's own profiler
1471    // or use one global one from FlatProfiler,
1472    // or up to some count of the number of profiled threads, etc.
1473    ThreadProfiler* pp = new ThreadProfiler();
1474    pp->engage();
1475    set_thread_profiler(pp);
1476  }
1477
1478  // Setup safepoint state info for this thread
1479  ThreadSafepointState::create(this);
1480
1481  debug_only(_java_call_counter = 0);
1482
1483  // JVMTI PopFrame support
1484  _popframe_condition = popframe_inactive;
1485  _popframe_preserved_args = NULL;
1486  _popframe_preserved_args_size = 0;
1487
1488  pd_initialize();
1489}
1490
1491#if INCLUDE_ALL_GCS
1492SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1493DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1494#endif // INCLUDE_ALL_GCS
1495
1496JavaThread::JavaThread(bool is_attaching_via_jni) :
1497                       Thread()
1498#if INCLUDE_ALL_GCS
1499                       , _satb_mark_queue(&_satb_mark_queue_set),
1500                       _dirty_card_queue(&_dirty_card_queue_set)
1501#endif // INCLUDE_ALL_GCS
1502{
1503  initialize();
1504  if (is_attaching_via_jni) {
1505    _jni_attach_state = _attaching_via_jni;
1506  } else {
1507    _jni_attach_state = _not_attaching_via_jni;
1508  }
1509  assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1510}
1511
1512bool JavaThread::reguard_stack(address cur_sp) {
1513  if (_stack_guard_state != stack_guard_yellow_disabled) {
1514    return true; // Stack already guarded or guard pages not needed.
1515  }
1516
1517  if (register_stack_overflow()) {
1518    // For those architectures which have separate register and
1519    // memory stacks, we must check the register stack to see if
1520    // it has overflowed.
1521    return false;
1522  }
1523
1524  // Java code never executes within the yellow zone: the latter is only
1525  // there to provoke an exception during stack banging.  If java code
1526  // is executing there, either StackShadowPages should be larger, or
1527  // some exception code in c1, c2 or the interpreter isn't unwinding
1528  // when it should.
1529  guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1530
1531  enable_stack_yellow_zone();
1532  return true;
1533}
1534
1535bool JavaThread::reguard_stack(void) {
1536  return reguard_stack(os::current_stack_pointer());
1537}
1538
1539
1540void JavaThread::block_if_vm_exited() {
1541  if (_terminated == _vm_exited) {
1542    // _vm_exited is set at safepoint, and Threads_lock is never released
1543    // we will block here forever
1544    Threads_lock->lock_without_safepoint_check();
1545    ShouldNotReachHere();
1546  }
1547}
1548
1549
1550// Remove this ifdef when C1 is ported to the compiler interface.
1551static void compiler_thread_entry(JavaThread* thread, TRAPS);
1552
1553JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1554                       Thread()
1555#if INCLUDE_ALL_GCS
1556                       , _satb_mark_queue(&_satb_mark_queue_set),
1557                       _dirty_card_queue(&_dirty_card_queue_set)
1558#endif // INCLUDE_ALL_GCS
1559{
1560  if (TraceThreadEvents) {
1561    tty->print_cr("creating thread %p", this);
1562  }
1563  initialize();
1564  _jni_attach_state = _not_attaching_via_jni;
1565  set_entry_point(entry_point);
1566  // Create the native thread itself.
1567  // %note runtime_23
1568  os::ThreadType thr_type = os::java_thread;
1569  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1570                                                     os::java_thread;
1571  os::create_thread(this, thr_type, stack_sz);
1572  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1573  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1574  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1575  // the exception consists of creating the exception object & initializing it, initialization
1576  // will leave the VM via a JavaCall and then all locks must be unlocked).
1577  //
1578  // The thread is still suspended when we reach here. Thread must be explicit started
1579  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1580  // by calling Threads:add. The reason why this is not done here, is because the thread
1581  // object must be fully initialized (take a look at JVM_Start)
1582}
1583
1584JavaThread::~JavaThread() {
1585  if (TraceThreadEvents) {
1586    tty->print_cr("terminate thread %p", this);
1587  }
1588
1589  // JSR166 -- return the parker to the free list
1590  Parker::Release(_parker);
1591  _parker = NULL;
1592
1593  // Free any remaining  previous UnrollBlock
1594  vframeArray* old_array = vframe_array_last();
1595
1596  if (old_array != NULL) {
1597    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1598    old_array->set_unroll_block(NULL);
1599    delete old_info;
1600    delete old_array;
1601  }
1602
1603  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1604  if (deferred != NULL) {
1605    // This can only happen if thread is destroyed before deoptimization occurs.
1606    assert(deferred->length() != 0, "empty array!");
1607    do {
1608      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1609      deferred->remove_at(0);
1610      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1611      delete dlv;
1612    } while (deferred->length() != 0);
1613    delete deferred;
1614  }
1615
1616  // All Java related clean up happens in exit
1617  ThreadSafepointState::destroy(this);
1618  if (_thread_profiler != NULL) delete _thread_profiler;
1619  if (_thread_stat != NULL) delete _thread_stat;
1620}
1621
1622
1623// The first routine called by a new Java thread
1624void JavaThread::run() {
1625  // initialize thread-local alloc buffer related fields
1626  this->initialize_tlab();
1627
1628  // used to test validity of stack trace backs
1629  this->record_base_of_stack_pointer();
1630
1631  // Record real stack base and size.
1632  this->record_stack_base_and_size();
1633
1634  // Initialize thread local storage; set before calling MutexLocker
1635  this->initialize_thread_local_storage();
1636
1637  this->create_stack_guard_pages();
1638
1639  this->cache_global_variables();
1640
1641  // Thread is now sufficient initialized to be handled by the safepoint code as being
1642  // in the VM. Change thread state from _thread_new to _thread_in_vm
1643  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1644
1645  assert(JavaThread::current() == this, "sanity check");
1646  assert(!Thread::current()->owns_locks(), "sanity check");
1647
1648  DTRACE_THREAD_PROBE(start, this);
1649
1650  // This operation might block. We call that after all safepoint checks for a new thread has
1651  // been completed.
1652  this->set_active_handles(JNIHandleBlock::allocate_block());
1653
1654  if (JvmtiExport::should_post_thread_life()) {
1655    JvmtiExport::post_thread_start(this);
1656  }
1657
1658  EventThreadStart event;
1659  if (event.should_commit()) {
1660    event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1661    event.commit();
1662  }
1663
1664  // We call another function to do the rest so we are sure that the stack addresses used
1665  // from there will be lower than the stack base just computed
1666  thread_main_inner();
1667
1668  // Note, thread is no longer valid at this point!
1669}
1670
1671
1672void JavaThread::thread_main_inner() {
1673  assert(JavaThread::current() == this, "sanity check");
1674  assert(this->threadObj() != NULL, "just checking");
1675
1676  // Execute thread entry point unless this thread has a pending exception
1677  // or has been stopped before starting.
1678  // Note: Due to JVM_StopThread we can have pending exceptions already!
1679  if (!this->has_pending_exception() &&
1680      !java_lang_Thread::is_stillborn(this->threadObj())) {
1681    {
1682      ResourceMark rm(this);
1683      this->set_native_thread_name(this->get_thread_name());
1684    }
1685    HandleMark hm(this);
1686    this->entry_point()(this, this);
1687  }
1688
1689  DTRACE_THREAD_PROBE(stop, this);
1690
1691  this->exit(false);
1692  delete this;
1693}
1694
1695
1696static void ensure_join(JavaThread* thread) {
1697  // We do not need to grap the Threads_lock, since we are operating on ourself.
1698  Handle threadObj(thread, thread->threadObj());
1699  assert(threadObj.not_null(), "java thread object must exist");
1700  ObjectLocker lock(threadObj, thread);
1701  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1702  thread->clear_pending_exception();
1703  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1704  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1705  // Clear the native thread instance - this makes isAlive return false and allows the join()
1706  // to complete once we've done the notify_all below
1707  java_lang_Thread::set_thread(threadObj(), NULL);
1708  lock.notify_all(thread);
1709  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1710  thread->clear_pending_exception();
1711}
1712
1713
1714// For any new cleanup additions, please check to see if they need to be applied to
1715// cleanup_failed_attach_current_thread as well.
1716void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1717  assert(this == JavaThread::current(), "thread consistency check");
1718
1719  HandleMark hm(this);
1720  Handle uncaught_exception(this, this->pending_exception());
1721  this->clear_pending_exception();
1722  Handle threadObj(this, this->threadObj());
1723  assert(threadObj.not_null(), "Java thread object should be created");
1724
1725  if (get_thread_profiler() != NULL) {
1726    get_thread_profiler()->disengage();
1727    ResourceMark rm;
1728    get_thread_profiler()->print(get_thread_name());
1729  }
1730
1731
1732  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1733  {
1734    EXCEPTION_MARK;
1735
1736    CLEAR_PENDING_EXCEPTION;
1737  }
1738  if (!destroy_vm) {
1739    if (uncaught_exception.not_null()) {
1740      EXCEPTION_MARK;
1741      // Call method Thread.dispatchUncaughtException().
1742      KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1743      JavaValue result(T_VOID);
1744      JavaCalls::call_virtual(&result,
1745                              threadObj, thread_klass,
1746                              vmSymbols::dispatchUncaughtException_name(),
1747                              vmSymbols::throwable_void_signature(),
1748                              uncaught_exception,
1749                              THREAD);
1750      if (HAS_PENDING_EXCEPTION) {
1751        ResourceMark rm(this);
1752        jio_fprintf(defaultStream::error_stream(),
1753                    "\nException: %s thrown from the UncaughtExceptionHandler"
1754                    " in thread \"%s\"\n",
1755                    pending_exception()->klass()->external_name(),
1756                    get_thread_name());
1757        CLEAR_PENDING_EXCEPTION;
1758      }
1759    }
1760
1761    // Called before the java thread exit since we want to read info
1762    // from java_lang_Thread object
1763    EventThreadEnd event;
1764    if (event.should_commit()) {
1765      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1766      event.commit();
1767    }
1768
1769    // Call after last event on thread
1770    EVENT_THREAD_EXIT(this);
1771
1772    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1773    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1774    // is deprecated anyhow.
1775    if (!is_Compiler_thread()) {
1776      int count = 3;
1777      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1778        EXCEPTION_MARK;
1779        JavaValue result(T_VOID);
1780        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1781        JavaCalls::call_virtual(&result,
1782                                threadObj, thread_klass,
1783                                vmSymbols::exit_method_name(),
1784                                vmSymbols::void_method_signature(),
1785                                THREAD);
1786        CLEAR_PENDING_EXCEPTION;
1787      }
1788    }
1789    // notify JVMTI
1790    if (JvmtiExport::should_post_thread_life()) {
1791      JvmtiExport::post_thread_end(this);
1792    }
1793
1794    // We have notified the agents that we are exiting, before we go on,
1795    // we must check for a pending external suspend request and honor it
1796    // in order to not surprise the thread that made the suspend request.
1797    while (true) {
1798      {
1799        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1800        if (!is_external_suspend()) {
1801          set_terminated(_thread_exiting);
1802          ThreadService::current_thread_exiting(this);
1803          break;
1804        }
1805        // Implied else:
1806        // Things get a little tricky here. We have a pending external
1807        // suspend request, but we are holding the SR_lock so we
1808        // can't just self-suspend. So we temporarily drop the lock
1809        // and then self-suspend.
1810      }
1811
1812      ThreadBlockInVM tbivm(this);
1813      java_suspend_self();
1814
1815      // We're done with this suspend request, but we have to loop around
1816      // and check again. Eventually we will get SR_lock without a pending
1817      // external suspend request and will be able to mark ourselves as
1818      // exiting.
1819    }
1820    // no more external suspends are allowed at this point
1821  } else {
1822    // before_exit() has already posted JVMTI THREAD_END events
1823  }
1824
1825  // Notify waiters on thread object. This has to be done after exit() is called
1826  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1827  // group should have the destroyed bit set before waiters are notified).
1828  ensure_join(this);
1829  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1830
1831  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1832  // held by this thread must be released.  A detach operation must only
1833  // get here if there are no Java frames on the stack.  Therefore, any
1834  // owned monitors at this point MUST be JNI-acquired monitors which are
1835  // pre-inflated and in the monitor cache.
1836  //
1837  // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1838  if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1839    assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1840    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1841    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1842  }
1843
1844  // These things needs to be done while we are still a Java Thread. Make sure that thread
1845  // is in a consistent state, in case GC happens
1846  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1847
1848  if (active_handles() != NULL) {
1849    JNIHandleBlock* block = active_handles();
1850    set_active_handles(NULL);
1851    JNIHandleBlock::release_block(block);
1852  }
1853
1854  if (free_handle_block() != NULL) {
1855    JNIHandleBlock* block = free_handle_block();
1856    set_free_handle_block(NULL);
1857    JNIHandleBlock::release_block(block);
1858  }
1859
1860  // These have to be removed while this is still a valid thread.
1861  remove_stack_guard_pages();
1862
1863  if (UseTLAB) {
1864    tlab().make_parsable(true);  // retire TLAB
1865  }
1866
1867  if (JvmtiEnv::environments_might_exist()) {
1868    JvmtiExport::cleanup_thread(this);
1869  }
1870
1871  // We must flush any deferred card marks before removing a thread from
1872  // the list of active threads.
1873  Universe::heap()->flush_deferred_store_barrier(this);
1874  assert(deferred_card_mark().is_empty(), "Should have been flushed");
1875
1876#if INCLUDE_ALL_GCS
1877  // We must flush the G1-related buffers before removing a thread
1878  // from the list of active threads. We must do this after any deferred
1879  // card marks have been flushed (above) so that any entries that are
1880  // added to the thread's dirty card queue as a result are not lost.
1881  if (UseG1GC) {
1882    flush_barrier_queues();
1883  }
1884#endif // INCLUDE_ALL_GCS
1885
1886  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1887  Threads::remove(this);
1888}
1889
1890#if INCLUDE_ALL_GCS
1891// Flush G1-related queues.
1892void JavaThread::flush_barrier_queues() {
1893  satb_mark_queue().flush();
1894  dirty_card_queue().flush();
1895}
1896
1897void JavaThread::initialize_queues() {
1898  assert(!SafepointSynchronize::is_at_safepoint(),
1899         "we should not be at a safepoint");
1900
1901  ObjPtrQueue& satb_queue = satb_mark_queue();
1902  SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1903  // The SATB queue should have been constructed with its active
1904  // field set to false.
1905  assert(!satb_queue.is_active(), "SATB queue should not be active");
1906  assert(satb_queue.is_empty(), "SATB queue should be empty");
1907  // If we are creating the thread during a marking cycle, we should
1908  // set the active field of the SATB queue to true.
1909  if (satb_queue_set.is_active()) {
1910    satb_queue.set_active(true);
1911  }
1912
1913  DirtyCardQueue& dirty_queue = dirty_card_queue();
1914  // The dirty card queue should have been constructed with its
1915  // active field set to true.
1916  assert(dirty_queue.is_active(), "dirty card queue should be active");
1917}
1918#endif // INCLUDE_ALL_GCS
1919
1920void JavaThread::cleanup_failed_attach_current_thread() {
1921  if (get_thread_profiler() != NULL) {
1922    get_thread_profiler()->disengage();
1923    ResourceMark rm;
1924    get_thread_profiler()->print(get_thread_name());
1925  }
1926
1927  if (active_handles() != NULL) {
1928    JNIHandleBlock* block = active_handles();
1929    set_active_handles(NULL);
1930    JNIHandleBlock::release_block(block);
1931  }
1932
1933  if (free_handle_block() != NULL) {
1934    JNIHandleBlock* block = free_handle_block();
1935    set_free_handle_block(NULL);
1936    JNIHandleBlock::release_block(block);
1937  }
1938
1939  // These have to be removed while this is still a valid thread.
1940  remove_stack_guard_pages();
1941
1942  if (UseTLAB) {
1943    tlab().make_parsable(true);  // retire TLAB, if any
1944  }
1945
1946#if INCLUDE_ALL_GCS
1947  if (UseG1GC) {
1948    flush_barrier_queues();
1949  }
1950#endif // INCLUDE_ALL_GCS
1951
1952  Threads::remove(this);
1953  delete this;
1954}
1955
1956
1957
1958
1959JavaThread* JavaThread::active() {
1960  Thread* thread = ThreadLocalStorage::thread();
1961  assert(thread != NULL, "just checking");
1962  if (thread->is_Java_thread()) {
1963    return (JavaThread*) thread;
1964  } else {
1965    assert(thread->is_VM_thread(), "this must be a vm thread");
1966    VM_Operation* op = ((VMThread*) thread)->vm_operation();
1967    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1968    assert(ret->is_Java_thread(), "must be a Java thread");
1969    return ret;
1970  }
1971}
1972
1973bool JavaThread::is_lock_owned(address adr) const {
1974  if (Thread::is_lock_owned(adr)) return true;
1975
1976  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1977    if (chunk->contains(adr)) return true;
1978  }
1979
1980  return false;
1981}
1982
1983
1984void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1985  chunk->set_next(monitor_chunks());
1986  set_monitor_chunks(chunk);
1987}
1988
1989void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1990  guarantee(monitor_chunks() != NULL, "must be non empty");
1991  if (monitor_chunks() == chunk) {
1992    set_monitor_chunks(chunk->next());
1993  } else {
1994    MonitorChunk* prev = monitor_chunks();
1995    while (prev->next() != chunk) prev = prev->next();
1996    prev->set_next(chunk->next());
1997  }
1998}
1999
2000// JVM support.
2001
2002// Note: this function shouldn't block if it's called in
2003// _thread_in_native_trans state (such as from
2004// check_special_condition_for_native_trans()).
2005void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2006
2007  if (has_last_Java_frame() && has_async_condition()) {
2008    // If we are at a polling page safepoint (not a poll return)
2009    // then we must defer async exception because live registers
2010    // will be clobbered by the exception path. Poll return is
2011    // ok because the call we a returning from already collides
2012    // with exception handling registers and so there is no issue.
2013    // (The exception handling path kills call result registers but
2014    //  this is ok since the exception kills the result anyway).
2015
2016    if (is_at_poll_safepoint()) {
2017      // if the code we are returning to has deoptimized we must defer
2018      // the exception otherwise live registers get clobbered on the
2019      // exception path before deoptimization is able to retrieve them.
2020      //
2021      RegisterMap map(this, false);
2022      frame caller_fr = last_frame().sender(&map);
2023      assert(caller_fr.is_compiled_frame(), "what?");
2024      if (caller_fr.is_deoptimized_frame()) {
2025        if (TraceExceptions) {
2026          ResourceMark rm;
2027          tty->print_cr("deferred async exception at compiled safepoint");
2028        }
2029        return;
2030      }
2031    }
2032  }
2033
2034  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2035  if (condition == _no_async_condition) {
2036    // Conditions have changed since has_special_runtime_exit_condition()
2037    // was called:
2038    // - if we were here only because of an external suspend request,
2039    //   then that was taken care of above (or cancelled) so we are done
2040    // - if we were here because of another async request, then it has
2041    //   been cleared between the has_special_runtime_exit_condition()
2042    //   and now so again we are done
2043    return;
2044  }
2045
2046  // Check for pending async. exception
2047  if (_pending_async_exception != NULL) {
2048    // Only overwrite an already pending exception, if it is not a threadDeath.
2049    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2050
2051      // We cannot call Exceptions::_throw(...) here because we cannot block
2052      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2053
2054      if (TraceExceptions) {
2055        ResourceMark rm;
2056        tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2057        if (has_last_Java_frame()) {
2058          frame f = last_frame();
2059          tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2060        }
2061        tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2062      }
2063      _pending_async_exception = NULL;
2064      clear_has_async_exception();
2065    }
2066  }
2067
2068  if (check_unsafe_error &&
2069      condition == _async_unsafe_access_error && !has_pending_exception()) {
2070    condition = _no_async_condition;  // done
2071    switch (thread_state()) {
2072    case _thread_in_vm: {
2073      JavaThread* THREAD = this;
2074      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2075    }
2076    case _thread_in_native: {
2077      ThreadInVMfromNative tiv(this);
2078      JavaThread* THREAD = this;
2079      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2080    }
2081    case _thread_in_Java: {
2082      ThreadInVMfromJava tiv(this);
2083      JavaThread* THREAD = this;
2084      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2085    }
2086    default:
2087      ShouldNotReachHere();
2088    }
2089  }
2090
2091  assert(condition == _no_async_condition || has_pending_exception() ||
2092         (!check_unsafe_error && condition == _async_unsafe_access_error),
2093         "must have handled the async condition, if no exception");
2094}
2095
2096void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2097  //
2098  // Check for pending external suspend. Internal suspend requests do
2099  // not use handle_special_runtime_exit_condition().
2100  // If JNIEnv proxies are allowed, don't self-suspend if the target
2101  // thread is not the current thread. In older versions of jdbx, jdbx
2102  // threads could call into the VM with another thread's JNIEnv so we
2103  // can be here operating on behalf of a suspended thread (4432884).
2104  bool do_self_suspend = is_external_suspend_with_lock();
2105  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2106    //
2107    // Because thread is external suspended the safepoint code will count
2108    // thread as at a safepoint. This can be odd because we can be here
2109    // as _thread_in_Java which would normally transition to _thread_blocked
2110    // at a safepoint. We would like to mark the thread as _thread_blocked
2111    // before calling java_suspend_self like all other callers of it but
2112    // we must then observe proper safepoint protocol. (We can't leave
2113    // _thread_blocked with a safepoint in progress). However we can be
2114    // here as _thread_in_native_trans so we can't use a normal transition
2115    // constructor/destructor pair because they assert on that type of
2116    // transition. We could do something like:
2117    //
2118    // JavaThreadState state = thread_state();
2119    // set_thread_state(_thread_in_vm);
2120    // {
2121    //   ThreadBlockInVM tbivm(this);
2122    //   java_suspend_self()
2123    // }
2124    // set_thread_state(_thread_in_vm_trans);
2125    // if (safepoint) block;
2126    // set_thread_state(state);
2127    //
2128    // but that is pretty messy. Instead we just go with the way the
2129    // code has worked before and note that this is the only path to
2130    // java_suspend_self that doesn't put the thread in _thread_blocked
2131    // mode.
2132
2133    frame_anchor()->make_walkable(this);
2134    java_suspend_self();
2135
2136    // We might be here for reasons in addition to the self-suspend request
2137    // so check for other async requests.
2138  }
2139
2140  if (check_asyncs) {
2141    check_and_handle_async_exceptions();
2142  }
2143}
2144
2145void JavaThread::send_thread_stop(oop java_throwable)  {
2146  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2147  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2148  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2149
2150  // Do not throw asynchronous exceptions against the compiler thread
2151  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2152  if (is_Compiler_thread()) return;
2153
2154  {
2155    // Actually throw the Throwable against the target Thread - however
2156    // only if there is no thread death exception installed already.
2157    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2158      // If the topmost frame is a runtime stub, then we are calling into
2159      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2160      // must deoptimize the caller before continuing, as the compiled  exception handler table
2161      // may not be valid
2162      if (has_last_Java_frame()) {
2163        frame f = last_frame();
2164        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2165          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2166          RegisterMap reg_map(this, UseBiasedLocking);
2167          frame compiled_frame = f.sender(&reg_map);
2168          if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2169            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2170          }
2171        }
2172      }
2173
2174      // Set async. pending exception in thread.
2175      set_pending_async_exception(java_throwable);
2176
2177      if (TraceExceptions) {
2178        ResourceMark rm;
2179        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2180      }
2181      // for AbortVMOnException flag
2182      NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2183    }
2184  }
2185
2186
2187  // Interrupt thread so it will wake up from a potential wait()
2188  Thread::interrupt(this);
2189}
2190
2191// External suspension mechanism.
2192//
2193// Tell the VM to suspend a thread when ever it knows that it does not hold on
2194// to any VM_locks and it is at a transition
2195// Self-suspension will happen on the transition out of the vm.
2196// Catch "this" coming in from JNIEnv pointers when the thread has been freed
2197//
2198// Guarantees on return:
2199//   + Target thread will not execute any new bytecode (that's why we need to
2200//     force a safepoint)
2201//   + Target thread will not enter any new monitors
2202//
2203void JavaThread::java_suspend() {
2204  { MutexLocker mu(Threads_lock);
2205    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2206      return;
2207    }
2208  }
2209
2210  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2211    if (!is_external_suspend()) {
2212      // a racing resume has cancelled us; bail out now
2213      return;
2214    }
2215
2216    // suspend is done
2217    uint32_t debug_bits = 0;
2218    // Warning: is_ext_suspend_completed() may temporarily drop the
2219    // SR_lock to allow the thread to reach a stable thread state if
2220    // it is currently in a transient thread state.
2221    if (is_ext_suspend_completed(false /* !called_by_wait */,
2222                                 SuspendRetryDelay, &debug_bits)) {
2223      return;
2224    }
2225  }
2226
2227  VM_ForceSafepoint vm_suspend;
2228  VMThread::execute(&vm_suspend);
2229}
2230
2231// Part II of external suspension.
2232// A JavaThread self suspends when it detects a pending external suspend
2233// request. This is usually on transitions. It is also done in places
2234// where continuing to the next transition would surprise the caller,
2235// e.g., monitor entry.
2236//
2237// Returns the number of times that the thread self-suspended.
2238//
2239// Note: DO NOT call java_suspend_self() when you just want to block current
2240//       thread. java_suspend_self() is the second stage of cooperative
2241//       suspension for external suspend requests and should only be used
2242//       to complete an external suspend request.
2243//
2244int JavaThread::java_suspend_self() {
2245  int ret = 0;
2246
2247  // we are in the process of exiting so don't suspend
2248  if (is_exiting()) {
2249    clear_external_suspend();
2250    return ret;
2251  }
2252
2253  assert(_anchor.walkable() ||
2254         (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2255         "must have walkable stack");
2256
2257  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2258
2259  assert(!this->is_ext_suspended(),
2260         "a thread trying to self-suspend should not already be suspended");
2261
2262  if (this->is_suspend_equivalent()) {
2263    // If we are self-suspending as a result of the lifting of a
2264    // suspend equivalent condition, then the suspend_equivalent
2265    // flag is not cleared until we set the ext_suspended flag so
2266    // that wait_for_ext_suspend_completion() returns consistent
2267    // results.
2268    this->clear_suspend_equivalent();
2269  }
2270
2271  // A racing resume may have cancelled us before we grabbed SR_lock
2272  // above. Or another external suspend request could be waiting for us
2273  // by the time we return from SR_lock()->wait(). The thread
2274  // that requested the suspension may already be trying to walk our
2275  // stack and if we return now, we can change the stack out from under
2276  // it. This would be a "bad thing (TM)" and cause the stack walker
2277  // to crash. We stay self-suspended until there are no more pending
2278  // external suspend requests.
2279  while (is_external_suspend()) {
2280    ret++;
2281    this->set_ext_suspended();
2282
2283    // _ext_suspended flag is cleared by java_resume()
2284    while (is_ext_suspended()) {
2285      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2286    }
2287  }
2288
2289  return ret;
2290}
2291
2292#ifdef ASSERT
2293// verify the JavaThread has not yet been published in the Threads::list, and
2294// hence doesn't need protection from concurrent access at this stage
2295void JavaThread::verify_not_published() {
2296  if (!Threads_lock->owned_by_self()) {
2297    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2298    assert(!Threads::includes(this),
2299           "java thread shouldn't have been published yet!");
2300  } else {
2301    assert(!Threads::includes(this),
2302           "java thread shouldn't have been published yet!");
2303  }
2304}
2305#endif
2306
2307// Slow path when the native==>VM/Java barriers detect a safepoint is in
2308// progress or when _suspend_flags is non-zero.
2309// Current thread needs to self-suspend if there is a suspend request and/or
2310// block if a safepoint is in progress.
2311// Async exception ISN'T checked.
2312// Note only the ThreadInVMfromNative transition can call this function
2313// directly and when thread state is _thread_in_native_trans
2314void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2315  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2316
2317  JavaThread *curJT = JavaThread::current();
2318  bool do_self_suspend = thread->is_external_suspend();
2319
2320  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2321
2322  // If JNIEnv proxies are allowed, don't self-suspend if the target
2323  // thread is not the current thread. In older versions of jdbx, jdbx
2324  // threads could call into the VM with another thread's JNIEnv so we
2325  // can be here operating on behalf of a suspended thread (4432884).
2326  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2327    JavaThreadState state = thread->thread_state();
2328
2329    // We mark this thread_blocked state as a suspend-equivalent so
2330    // that a caller to is_ext_suspend_completed() won't be confused.
2331    // The suspend-equivalent state is cleared by java_suspend_self().
2332    thread->set_suspend_equivalent();
2333
2334    // If the safepoint code sees the _thread_in_native_trans state, it will
2335    // wait until the thread changes to other thread state. There is no
2336    // guarantee on how soon we can obtain the SR_lock and complete the
2337    // self-suspend request. It would be a bad idea to let safepoint wait for
2338    // too long. Temporarily change the state to _thread_blocked to
2339    // let the VM thread know that this thread is ready for GC. The problem
2340    // of changing thread state is that safepoint could happen just after
2341    // java_suspend_self() returns after being resumed, and VM thread will
2342    // see the _thread_blocked state. We must check for safepoint
2343    // after restoring the state and make sure we won't leave while a safepoint
2344    // is in progress.
2345    thread->set_thread_state(_thread_blocked);
2346    thread->java_suspend_self();
2347    thread->set_thread_state(state);
2348    // Make sure new state is seen by VM thread
2349    if (os::is_MP()) {
2350      if (UseMembar) {
2351        // Force a fence between the write above and read below
2352        OrderAccess::fence();
2353      } else {
2354        // Must use this rather than serialization page in particular on Windows
2355        InterfaceSupport::serialize_memory(thread);
2356      }
2357    }
2358  }
2359
2360  if (SafepointSynchronize::do_call_back()) {
2361    // If we are safepointing, then block the caller which may not be
2362    // the same as the target thread (see above).
2363    SafepointSynchronize::block(curJT);
2364  }
2365
2366  if (thread->is_deopt_suspend()) {
2367    thread->clear_deopt_suspend();
2368    RegisterMap map(thread, false);
2369    frame f = thread->last_frame();
2370    while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2371      f = f.sender(&map);
2372    }
2373    if (f.id() == thread->must_deopt_id()) {
2374      thread->clear_must_deopt_id();
2375      f.deoptimize(thread);
2376    } else {
2377      fatal("missed deoptimization!");
2378    }
2379  }
2380}
2381
2382// Slow path when the native==>VM/Java barriers detect a safepoint is in
2383// progress or when _suspend_flags is non-zero.
2384// Current thread needs to self-suspend if there is a suspend request and/or
2385// block if a safepoint is in progress.
2386// Also check for pending async exception (not including unsafe access error).
2387// Note only the native==>VM/Java barriers can call this function and when
2388// thread state is _thread_in_native_trans.
2389void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2390  check_safepoint_and_suspend_for_native_trans(thread);
2391
2392  if (thread->has_async_exception()) {
2393    // We are in _thread_in_native_trans state, don't handle unsafe
2394    // access error since that may block.
2395    thread->check_and_handle_async_exceptions(false);
2396  }
2397}
2398
2399// This is a variant of the normal
2400// check_special_condition_for_native_trans with slightly different
2401// semantics for use by critical native wrappers.  It does all the
2402// normal checks but also performs the transition back into
2403// thread_in_Java state.  This is required so that critical natives
2404// can potentially block and perform a GC if they are the last thread
2405// exiting the GC_locker.
2406void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2407  check_special_condition_for_native_trans(thread);
2408
2409  // Finish the transition
2410  thread->set_thread_state(_thread_in_Java);
2411
2412  if (thread->do_critical_native_unlock()) {
2413    ThreadInVMfromJavaNoAsyncException tiv(thread);
2414    GC_locker::unlock_critical(thread);
2415    thread->clear_critical_native_unlock();
2416  }
2417}
2418
2419// We need to guarantee the Threads_lock here, since resumes are not
2420// allowed during safepoint synchronization
2421// Can only resume from an external suspension
2422void JavaThread::java_resume() {
2423  assert_locked_or_safepoint(Threads_lock);
2424
2425  // Sanity check: thread is gone, has started exiting or the thread
2426  // was not externally suspended.
2427  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2428    return;
2429  }
2430
2431  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2432
2433  clear_external_suspend();
2434
2435  if (is_ext_suspended()) {
2436    clear_ext_suspended();
2437    SR_lock()->notify_all();
2438  }
2439}
2440
2441void JavaThread::create_stack_guard_pages() {
2442  if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2443  address low_addr = stack_base() - stack_size();
2444  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2445
2446  int allocate = os::allocate_stack_guard_pages();
2447  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2448
2449  if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2450    warning("Attempt to allocate stack guard pages failed.");
2451    return;
2452  }
2453
2454  if (os::guard_memory((char *) low_addr, len)) {
2455    _stack_guard_state = stack_guard_enabled;
2456  } else {
2457    warning("Attempt to protect stack guard pages failed.");
2458    if (os::uncommit_memory((char *) low_addr, len)) {
2459      warning("Attempt to deallocate stack guard pages failed.");
2460    }
2461  }
2462}
2463
2464void JavaThread::remove_stack_guard_pages() {
2465  assert(Thread::current() == this, "from different thread");
2466  if (_stack_guard_state == stack_guard_unused) return;
2467  address low_addr = stack_base() - stack_size();
2468  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2469
2470  if (os::allocate_stack_guard_pages()) {
2471    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2472      _stack_guard_state = stack_guard_unused;
2473    } else {
2474      warning("Attempt to deallocate stack guard pages failed.");
2475    }
2476  } else {
2477    if (_stack_guard_state == stack_guard_unused) return;
2478    if (os::unguard_memory((char *) low_addr, len)) {
2479      _stack_guard_state = stack_guard_unused;
2480    } else {
2481      warning("Attempt to unprotect stack guard pages failed.");
2482    }
2483  }
2484}
2485
2486void JavaThread::enable_stack_yellow_zone() {
2487  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2488  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2489
2490  // The base notation is from the stacks point of view, growing downward.
2491  // We need to adjust it to work correctly with guard_memory()
2492  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2493
2494  guarantee(base < stack_base(), "Error calculating stack yellow zone");
2495  guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2496
2497  if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2498    _stack_guard_state = stack_guard_enabled;
2499  } else {
2500    warning("Attempt to guard stack yellow zone failed.");
2501  }
2502  enable_register_stack_guard();
2503}
2504
2505void JavaThread::disable_stack_yellow_zone() {
2506  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2507  assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2508
2509  // Simply return if called for a thread that does not use guard pages.
2510  if (_stack_guard_state == stack_guard_unused) return;
2511
2512  // The base notation is from the stacks point of view, growing downward.
2513  // We need to adjust it to work correctly with guard_memory()
2514  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2515
2516  if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2517    _stack_guard_state = stack_guard_yellow_disabled;
2518  } else {
2519    warning("Attempt to unguard stack yellow zone failed.");
2520  }
2521  disable_register_stack_guard();
2522}
2523
2524void JavaThread::enable_stack_red_zone() {
2525  // The base notation is from the stacks point of view, growing downward.
2526  // We need to adjust it to work correctly with guard_memory()
2527  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2528  address base = stack_red_zone_base() - stack_red_zone_size();
2529
2530  guarantee(base < stack_base(), "Error calculating stack red zone");
2531  guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2532
2533  if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2534    warning("Attempt to guard stack red zone failed.");
2535  }
2536}
2537
2538void JavaThread::disable_stack_red_zone() {
2539  // The base notation is from the stacks point of view, growing downward.
2540  // We need to adjust it to work correctly with guard_memory()
2541  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2542  address base = stack_red_zone_base() - stack_red_zone_size();
2543  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2544    warning("Attempt to unguard stack red zone failed.");
2545  }
2546}
2547
2548void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2549  // ignore is there is no stack
2550  if (!has_last_Java_frame()) return;
2551  // traverse the stack frames. Starts from top frame.
2552  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2553    frame* fr = fst.current();
2554    f(fr, fst.register_map());
2555  }
2556}
2557
2558
2559#ifndef PRODUCT
2560// Deoptimization
2561// Function for testing deoptimization
2562void JavaThread::deoptimize() {
2563  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2564  StackFrameStream fst(this, UseBiasedLocking);
2565  bool deopt = false;           // Dump stack only if a deopt actually happens.
2566  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2567  // Iterate over all frames in the thread and deoptimize
2568  for (; !fst.is_done(); fst.next()) {
2569    if (fst.current()->can_be_deoptimized()) {
2570
2571      if (only_at) {
2572        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2573        // consists of comma or carriage return separated numbers so
2574        // search for the current bci in that string.
2575        address pc = fst.current()->pc();
2576        nmethod* nm =  (nmethod*) fst.current()->cb();
2577        ScopeDesc* sd = nm->scope_desc_at(pc);
2578        char buffer[8];
2579        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2580        size_t len = strlen(buffer);
2581        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2582        while (found != NULL) {
2583          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2584              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2585            // Check that the bci found is bracketed by terminators.
2586            break;
2587          }
2588          found = strstr(found + 1, buffer);
2589        }
2590        if (!found) {
2591          continue;
2592        }
2593      }
2594
2595      if (DebugDeoptimization && !deopt) {
2596        deopt = true; // One-time only print before deopt
2597        tty->print_cr("[BEFORE Deoptimization]");
2598        trace_frames();
2599        trace_stack();
2600      }
2601      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2602    }
2603  }
2604
2605  if (DebugDeoptimization && deopt) {
2606    tty->print_cr("[AFTER Deoptimization]");
2607    trace_frames();
2608  }
2609}
2610
2611
2612// Make zombies
2613void JavaThread::make_zombies() {
2614  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2615    if (fst.current()->can_be_deoptimized()) {
2616      // it is a Java nmethod
2617      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2618      nm->make_not_entrant();
2619    }
2620  }
2621}
2622#endif // PRODUCT
2623
2624
2625void JavaThread::deoptimized_wrt_marked_nmethods() {
2626  if (!has_last_Java_frame()) return;
2627  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2628  StackFrameStream fst(this, UseBiasedLocking);
2629  for (; !fst.is_done(); fst.next()) {
2630    if (fst.current()->should_be_deoptimized()) {
2631      if (LogCompilation && xtty != NULL) {
2632        nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2633        xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2634                   this->name(), nm != NULL ? nm->compile_id() : -1);
2635      }
2636
2637      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2638    }
2639  }
2640}
2641
2642
2643// If the caller is a NamedThread, then remember, in the current scope,
2644// the given JavaThread in its _processed_thread field.
2645class RememberProcessedThread: public StackObj {
2646  NamedThread* _cur_thr;
2647 public:
2648  RememberProcessedThread(JavaThread* jthr) {
2649    Thread* thread = Thread::current();
2650    if (thread->is_Named_thread()) {
2651      _cur_thr = (NamedThread *)thread;
2652      _cur_thr->set_processed_thread(jthr);
2653    } else {
2654      _cur_thr = NULL;
2655    }
2656  }
2657
2658  ~RememberProcessedThread() {
2659    if (_cur_thr) {
2660      _cur_thr->set_processed_thread(NULL);
2661    }
2662  }
2663};
2664
2665void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2666  // Verify that the deferred card marks have been flushed.
2667  assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2668
2669  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2670  // since there may be more than one thread using each ThreadProfiler.
2671
2672  // Traverse the GCHandles
2673  Thread::oops_do(f, cld_f, cf);
2674
2675  assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2676         (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2677
2678  if (has_last_Java_frame()) {
2679    // Record JavaThread to GC thread
2680    RememberProcessedThread rpt(this);
2681
2682    // Traverse the privileged stack
2683    if (_privileged_stack_top != NULL) {
2684      _privileged_stack_top->oops_do(f);
2685    }
2686
2687    // traverse the registered growable array
2688    if (_array_for_gc != NULL) {
2689      for (int index = 0; index < _array_for_gc->length(); index++) {
2690        f->do_oop(_array_for_gc->adr_at(index));
2691      }
2692    }
2693
2694    // Traverse the monitor chunks
2695    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2696      chunk->oops_do(f);
2697    }
2698
2699    // Traverse the execution stack
2700    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2701      fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2702    }
2703  }
2704
2705  // callee_target is never live across a gc point so NULL it here should
2706  // it still contain a methdOop.
2707
2708  set_callee_target(NULL);
2709
2710  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2711  // If we have deferred set_locals there might be oops waiting to be
2712  // written
2713  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2714  if (list != NULL) {
2715    for (int i = 0; i < list->length(); i++) {
2716      list->at(i)->oops_do(f);
2717    }
2718  }
2719
2720  // Traverse instance variables at the end since the GC may be moving things
2721  // around using this function
2722  f->do_oop((oop*) &_threadObj);
2723  f->do_oop((oop*) &_vm_result);
2724  f->do_oop((oop*) &_exception_oop);
2725  f->do_oop((oop*) &_pending_async_exception);
2726
2727  if (jvmti_thread_state() != NULL) {
2728    jvmti_thread_state()->oops_do(f);
2729  }
2730}
2731
2732void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2733  Thread::nmethods_do(cf);  // (super method is a no-op)
2734
2735  assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2736         (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2737
2738  if (has_last_Java_frame()) {
2739    // Traverse the execution stack
2740    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2741      fst.current()->nmethods_do(cf);
2742    }
2743  }
2744}
2745
2746void JavaThread::metadata_do(void f(Metadata*)) {
2747  Thread::metadata_do(f);
2748  if (has_last_Java_frame()) {
2749    // Traverse the execution stack to call f() on the methods in the stack
2750    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2751      fst.current()->metadata_do(f);
2752    }
2753  } else if (is_Compiler_thread()) {
2754    // need to walk ciMetadata in current compile tasks to keep alive.
2755    CompilerThread* ct = (CompilerThread*)this;
2756    if (ct->env() != NULL) {
2757      ct->env()->metadata_do(f);
2758    }
2759  }
2760}
2761
2762// Printing
2763const char* _get_thread_state_name(JavaThreadState _thread_state) {
2764  switch (_thread_state) {
2765  case _thread_uninitialized:     return "_thread_uninitialized";
2766  case _thread_new:               return "_thread_new";
2767  case _thread_new_trans:         return "_thread_new_trans";
2768  case _thread_in_native:         return "_thread_in_native";
2769  case _thread_in_native_trans:   return "_thread_in_native_trans";
2770  case _thread_in_vm:             return "_thread_in_vm";
2771  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2772  case _thread_in_Java:           return "_thread_in_Java";
2773  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2774  case _thread_blocked:           return "_thread_blocked";
2775  case _thread_blocked_trans:     return "_thread_blocked_trans";
2776  default:                        return "unknown thread state";
2777  }
2778}
2779
2780#ifndef PRODUCT
2781void JavaThread::print_thread_state_on(outputStream *st) const {
2782  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2783};
2784void JavaThread::print_thread_state() const {
2785  print_thread_state_on(tty);
2786}
2787#endif // PRODUCT
2788
2789// Called by Threads::print() for VM_PrintThreads operation
2790void JavaThread::print_on(outputStream *st) const {
2791  st->print("\"%s\" ", get_thread_name());
2792  oop thread_oop = threadObj();
2793  if (thread_oop != NULL) {
2794    st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2795    if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2796    st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2797  }
2798  Thread::print_on(st);
2799  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2800  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2801  if (thread_oop != NULL) {
2802    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2803  }
2804#ifndef PRODUCT
2805  print_thread_state_on(st);
2806  _safepoint_state->print_on(st);
2807#endif // PRODUCT
2808}
2809
2810// Called by fatal error handler. The difference between this and
2811// JavaThread::print() is that we can't grab lock or allocate memory.
2812void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2813  st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2814  oop thread_obj = threadObj();
2815  if (thread_obj != NULL) {
2816    if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2817  }
2818  st->print(" [");
2819  st->print("%s", _get_thread_state_name(_thread_state));
2820  if (osthread()) {
2821    st->print(", id=%d", osthread()->thread_id());
2822  }
2823  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2824            _stack_base - _stack_size, _stack_base);
2825  st->print("]");
2826  return;
2827}
2828
2829// Verification
2830
2831static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2832
2833void JavaThread::verify() {
2834  // Verify oops in the thread.
2835  oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2836
2837  // Verify the stack frames.
2838  frames_do(frame_verify);
2839}
2840
2841// CR 6300358 (sub-CR 2137150)
2842// Most callers of this method assume that it can't return NULL but a
2843// thread may not have a name whilst it is in the process of attaching to
2844// the VM - see CR 6412693, and there are places where a JavaThread can be
2845// seen prior to having it's threadObj set (eg JNI attaching threads and
2846// if vm exit occurs during initialization). These cases can all be accounted
2847// for such that this method never returns NULL.
2848const char* JavaThread::get_thread_name() const {
2849#ifdef ASSERT
2850  // early safepoints can hit while current thread does not yet have TLS
2851  if (!SafepointSynchronize::is_at_safepoint()) {
2852    Thread *cur = Thread::current();
2853    if (!(cur->is_Java_thread() && cur == this)) {
2854      // Current JavaThreads are allowed to get their own name without
2855      // the Threads_lock.
2856      assert_locked_or_safepoint(Threads_lock);
2857    }
2858  }
2859#endif // ASSERT
2860  return get_thread_name_string();
2861}
2862
2863// Returns a non-NULL representation of this thread's name, or a suitable
2864// descriptive string if there is no set name
2865const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2866  const char* name_str;
2867  oop thread_obj = threadObj();
2868  if (thread_obj != NULL) {
2869    typeArrayOop name = java_lang_Thread::name(thread_obj);
2870    if (name != NULL) {
2871      if (buf == NULL) {
2872        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR),
2873                                    name->length());
2874      } else {
2875        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR),
2876                                    name->length(), buf, buflen);
2877      }
2878    } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2879      name_str = "<no-name - thread is attaching>";
2880    } else {
2881      name_str = Thread::name();
2882    }
2883  } else {
2884    name_str = Thread::name();
2885  }
2886  assert(name_str != NULL, "unexpected NULL thread name");
2887  return name_str;
2888}
2889
2890
2891const char* JavaThread::get_threadgroup_name() const {
2892  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2893  oop thread_obj = threadObj();
2894  if (thread_obj != NULL) {
2895    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2896    if (thread_group != NULL) {
2897      typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2898      // ThreadGroup.name can be null
2899      if (name != NULL) {
2900        const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2901        return str;
2902      }
2903    }
2904  }
2905  return NULL;
2906}
2907
2908const char* JavaThread::get_parent_name() const {
2909  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2910  oop thread_obj = threadObj();
2911  if (thread_obj != NULL) {
2912    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2913    if (thread_group != NULL) {
2914      oop parent = java_lang_ThreadGroup::parent(thread_group);
2915      if (parent != NULL) {
2916        typeArrayOop name = java_lang_ThreadGroup::name(parent);
2917        // ThreadGroup.name can be null
2918        if (name != NULL) {
2919          const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2920          return str;
2921        }
2922      }
2923    }
2924  }
2925  return NULL;
2926}
2927
2928ThreadPriority JavaThread::java_priority() const {
2929  oop thr_oop = threadObj();
2930  if (thr_oop == NULL) return NormPriority; // Bootstrapping
2931  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2932  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2933  return priority;
2934}
2935
2936void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2937
2938  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2939  // Link Java Thread object <-> C++ Thread
2940
2941  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2942  // and put it into a new Handle.  The Handle "thread_oop" can then
2943  // be used to pass the C++ thread object to other methods.
2944
2945  // Set the Java level thread object (jthread) field of the
2946  // new thread (a JavaThread *) to C++ thread object using the
2947  // "thread_oop" handle.
2948
2949  // Set the thread field (a JavaThread *) of the
2950  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2951
2952  Handle thread_oop(Thread::current(),
2953                    JNIHandles::resolve_non_null(jni_thread));
2954  assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2955         "must be initialized");
2956  set_threadObj(thread_oop());
2957  java_lang_Thread::set_thread(thread_oop(), this);
2958
2959  if (prio == NoPriority) {
2960    prio = java_lang_Thread::priority(thread_oop());
2961    assert(prio != NoPriority, "A valid priority should be present");
2962  }
2963
2964  // Push the Java priority down to the native thread; needs Threads_lock
2965  Thread::set_priority(this, prio);
2966
2967  // Add the new thread to the Threads list and set it in motion.
2968  // We must have threads lock in order to call Threads::add.
2969  // It is crucial that we do not block before the thread is
2970  // added to the Threads list for if a GC happens, then the java_thread oop
2971  // will not be visited by GC.
2972  Threads::add(this);
2973}
2974
2975oop JavaThread::current_park_blocker() {
2976  // Support for JSR-166 locks
2977  oop thread_oop = threadObj();
2978  if (thread_oop != NULL &&
2979      JDK_Version::current().supports_thread_park_blocker()) {
2980    return java_lang_Thread::park_blocker(thread_oop);
2981  }
2982  return NULL;
2983}
2984
2985
2986void JavaThread::print_stack_on(outputStream* st) {
2987  if (!has_last_Java_frame()) return;
2988  ResourceMark rm;
2989  HandleMark   hm;
2990
2991  RegisterMap reg_map(this);
2992  vframe* start_vf = last_java_vframe(&reg_map);
2993  int count = 0;
2994  for (vframe* f = start_vf; f; f = f->sender()) {
2995    if (f->is_java_frame()) {
2996      javaVFrame* jvf = javaVFrame::cast(f);
2997      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2998
2999      // Print out lock information
3000      if (JavaMonitorsInStackTrace) {
3001        jvf->print_lock_info_on(st, count);
3002      }
3003    } else {
3004      // Ignore non-Java frames
3005    }
3006
3007    // Bail-out case for too deep stacks
3008    count++;
3009    if (MaxJavaStackTraceDepth == count) return;
3010  }
3011}
3012
3013
3014// JVMTI PopFrame support
3015void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3016  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3017  if (in_bytes(size_in_bytes) != 0) {
3018    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3019    _popframe_preserved_args_size = in_bytes(size_in_bytes);
3020    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3021  }
3022}
3023
3024void* JavaThread::popframe_preserved_args() {
3025  return _popframe_preserved_args;
3026}
3027
3028ByteSize JavaThread::popframe_preserved_args_size() {
3029  return in_ByteSize(_popframe_preserved_args_size);
3030}
3031
3032WordSize JavaThread::popframe_preserved_args_size_in_words() {
3033  int sz = in_bytes(popframe_preserved_args_size());
3034  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3035  return in_WordSize(sz / wordSize);
3036}
3037
3038void JavaThread::popframe_free_preserved_args() {
3039  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3040  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3041  _popframe_preserved_args = NULL;
3042  _popframe_preserved_args_size = 0;
3043}
3044
3045#ifndef PRODUCT
3046
3047void JavaThread::trace_frames() {
3048  tty->print_cr("[Describe stack]");
3049  int frame_no = 1;
3050  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3051    tty->print("  %d. ", frame_no++);
3052    fst.current()->print_value_on(tty, this);
3053    tty->cr();
3054  }
3055}
3056
3057class PrintAndVerifyOopClosure: public OopClosure {
3058 protected:
3059  template <class T> inline void do_oop_work(T* p) {
3060    oop obj = oopDesc::load_decode_heap_oop(p);
3061    if (obj == NULL) return;
3062    tty->print(INTPTR_FORMAT ": ", p);
3063    if (obj->is_oop_or_null()) {
3064      if (obj->is_objArray()) {
3065        tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3066      } else {
3067        obj->print();
3068      }
3069    } else {
3070      tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3071    }
3072    tty->cr();
3073  }
3074 public:
3075  virtual void do_oop(oop* p) { do_oop_work(p); }
3076  virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3077};
3078
3079
3080static void oops_print(frame* f, const RegisterMap *map) {
3081  PrintAndVerifyOopClosure print;
3082  f->print_value();
3083  f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3084}
3085
3086// Print our all the locations that contain oops and whether they are
3087// valid or not.  This useful when trying to find the oldest frame
3088// where an oop has gone bad since the frame walk is from youngest to
3089// oldest.
3090void JavaThread::trace_oops() {
3091  tty->print_cr("[Trace oops]");
3092  frames_do(oops_print);
3093}
3094
3095
3096#ifdef ASSERT
3097// Print or validate the layout of stack frames
3098void JavaThread::print_frame_layout(int depth, bool validate_only) {
3099  ResourceMark rm;
3100  PRESERVE_EXCEPTION_MARK;
3101  FrameValues values;
3102  int frame_no = 0;
3103  for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3104    fst.current()->describe(values, ++frame_no);
3105    if (depth == frame_no) break;
3106  }
3107  if (validate_only) {
3108    values.validate();
3109  } else {
3110    tty->print_cr("[Describe stack layout]");
3111    values.print(this);
3112  }
3113}
3114#endif
3115
3116void JavaThread::trace_stack_from(vframe* start_vf) {
3117  ResourceMark rm;
3118  int vframe_no = 1;
3119  for (vframe* f = start_vf; f; f = f->sender()) {
3120    if (f->is_java_frame()) {
3121      javaVFrame::cast(f)->print_activation(vframe_no++);
3122    } else {
3123      f->print();
3124    }
3125    if (vframe_no > StackPrintLimit) {
3126      tty->print_cr("...<more frames>...");
3127      return;
3128    }
3129  }
3130}
3131
3132
3133void JavaThread::trace_stack() {
3134  if (!has_last_Java_frame()) return;
3135  ResourceMark rm;
3136  HandleMark   hm;
3137  RegisterMap reg_map(this);
3138  trace_stack_from(last_java_vframe(&reg_map));
3139}
3140
3141
3142#endif // PRODUCT
3143
3144
3145javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3146  assert(reg_map != NULL, "a map must be given");
3147  frame f = last_frame();
3148  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3149    if (vf->is_java_frame()) return javaVFrame::cast(vf);
3150  }
3151  return NULL;
3152}
3153
3154
3155Klass* JavaThread::security_get_caller_class(int depth) {
3156  vframeStream vfst(this);
3157  vfst.security_get_caller_frame(depth);
3158  if (!vfst.at_end()) {
3159    return vfst.method()->method_holder();
3160  }
3161  return NULL;
3162}
3163
3164static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3165  assert(thread->is_Compiler_thread(), "must be compiler thread");
3166  CompileBroker::compiler_thread_loop();
3167}
3168
3169// Create a CompilerThread
3170CompilerThread::CompilerThread(CompileQueue* queue,
3171                               CompilerCounters* counters)
3172                               : JavaThread(&compiler_thread_entry) {
3173  _env   = NULL;
3174  _log   = NULL;
3175  _task  = NULL;
3176  _queue = queue;
3177  _counters = counters;
3178  _buffer_blob = NULL;
3179  _scanned_nmethod = NULL;
3180  _compiler = NULL;
3181
3182#ifndef PRODUCT
3183  _ideal_graph_printer = NULL;
3184#endif
3185}
3186
3187void CompilerThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3188  JavaThread::oops_do(f, cld_f, cf);
3189  if (_scanned_nmethod != NULL && cf != NULL) {
3190    // Safepoints can occur when the sweeper is scanning an nmethod so
3191    // process it here to make sure it isn't unloaded in the middle of
3192    // a scan.
3193    cf->do_code_blob(_scanned_nmethod);
3194  }
3195}
3196
3197
3198// ======= Threads ========
3199
3200// The Threads class links together all active threads, and provides
3201// operations over all threads.  It is protected by its own Mutex
3202// lock, which is also used in other contexts to protect thread
3203// operations from having the thread being operated on from exiting
3204// and going away unexpectedly (e.g., safepoint synchronization)
3205
3206JavaThread* Threads::_thread_list = NULL;
3207int         Threads::_number_of_threads = 0;
3208int         Threads::_number_of_non_daemon_threads = 0;
3209int         Threads::_return_code = 0;
3210size_t      JavaThread::_stack_size_at_create = 0;
3211#ifdef ASSERT
3212bool        Threads::_vm_complete = false;
3213#endif
3214
3215// All JavaThreads
3216#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3217
3218// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3219void Threads::threads_do(ThreadClosure* tc) {
3220  assert_locked_or_safepoint(Threads_lock);
3221  // ALL_JAVA_THREADS iterates through all JavaThreads
3222  ALL_JAVA_THREADS(p) {
3223    tc->do_thread(p);
3224  }
3225  // Someday we could have a table or list of all non-JavaThreads.
3226  // For now, just manually iterate through them.
3227  tc->do_thread(VMThread::vm_thread());
3228  Universe::heap()->gc_threads_do(tc);
3229  WatcherThread *wt = WatcherThread::watcher_thread();
3230  // Strictly speaking, the following NULL check isn't sufficient to make sure
3231  // the data for WatcherThread is still valid upon being examined. However,
3232  // considering that WatchThread terminates when the VM is on the way to
3233  // exit at safepoint, the chance of the above is extremely small. The right
3234  // way to prevent termination of WatcherThread would be to acquire
3235  // Terminator_lock, but we can't do that without violating the lock rank
3236  // checking in some cases.
3237  if (wt != NULL) {
3238    tc->do_thread(wt);
3239  }
3240
3241  // If CompilerThreads ever become non-JavaThreads, add them here
3242}
3243
3244
3245void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3246  TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3247
3248  if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3249    create_vm_init_libraries();
3250  }
3251
3252  initialize_class(vmSymbols::java_lang_String(), CHECK);
3253
3254  // Initialize java_lang.System (needed before creating the thread)
3255  initialize_class(vmSymbols::java_lang_System(), CHECK);
3256  initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3257  Handle thread_group = create_initial_thread_group(CHECK);
3258  Universe::set_main_thread_group(thread_group());
3259  initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3260  oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3261  main_thread->set_threadObj(thread_object);
3262  // Set thread status to running since main thread has
3263  // been started and running.
3264  java_lang_Thread::set_thread_status(thread_object,
3265                                      java_lang_Thread::RUNNABLE);
3266
3267  // The VM creates & returns objects of this class. Make sure it's initialized.
3268  initialize_class(vmSymbols::java_lang_Class(), CHECK);
3269
3270  // The VM preresolves methods to these classes. Make sure that they get initialized
3271  initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3272  initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3273  call_initializeSystemClass(CHECK);
3274
3275  // get the Java runtime name after java.lang.System is initialized
3276  JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3277  JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3278
3279  // an instance of OutOfMemory exception has been allocated earlier
3280  initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3281  initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3282  initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3283  initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3284  initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3285  initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3286  initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3287  initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3288}
3289
3290void Threads::initialize_jsr292_core_classes(TRAPS) {
3291  initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3292  initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3293  initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3294}
3295
3296jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3297  extern void JDK_Version_init();
3298
3299  // Check version
3300  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3301
3302  // Initialize the output stream module
3303  ostream_init();
3304
3305  // Process java launcher properties.
3306  Arguments::process_sun_java_launcher_properties(args);
3307
3308  // Initialize the os module before using TLS
3309  os::init();
3310
3311  // Initialize system properties.
3312  Arguments::init_system_properties();
3313
3314  // So that JDK version can be used as a discriminator when parsing arguments
3315  JDK_Version_init();
3316
3317  // Update/Initialize System properties after JDK version number is known
3318  Arguments::init_version_specific_system_properties();
3319
3320  // Parse arguments
3321  jint parse_result = Arguments::parse(args);
3322  if (parse_result != JNI_OK) return parse_result;
3323
3324  os::init_before_ergo();
3325
3326  jint ergo_result = Arguments::apply_ergo();
3327  if (ergo_result != JNI_OK) return ergo_result;
3328
3329  if (PauseAtStartup) {
3330    os::pause();
3331  }
3332
3333  HOTSPOT_VM_INIT_BEGIN();
3334
3335  // Record VM creation timing statistics
3336  TraceVmCreationTime create_vm_timer;
3337  create_vm_timer.start();
3338
3339  // Timing (must come after argument parsing)
3340  TraceTime timer("Create VM", TraceStartupTime);
3341
3342  // Initialize the os module after parsing the args
3343  jint os_init_2_result = os::init_2();
3344  if (os_init_2_result != JNI_OK) return os_init_2_result;
3345
3346  jint adjust_after_os_result = Arguments::adjust_after_os();
3347  if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3348
3349  // initialize TLS
3350  ThreadLocalStorage::init();
3351
3352  // Initialize output stream logging
3353  ostream_init_log();
3354
3355  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3356  // Must be before create_vm_init_agents()
3357  if (Arguments::init_libraries_at_startup()) {
3358    convert_vm_init_libraries_to_agents();
3359  }
3360
3361  // Launch -agentlib/-agentpath and converted -Xrun agents
3362  if (Arguments::init_agents_at_startup()) {
3363    create_vm_init_agents();
3364  }
3365
3366  // Initialize Threads state
3367  _thread_list = NULL;
3368  _number_of_threads = 0;
3369  _number_of_non_daemon_threads = 0;
3370
3371  // Initialize global data structures and create system classes in heap
3372  vm_init_globals();
3373
3374  // Attach the main thread to this os thread
3375  JavaThread* main_thread = new JavaThread();
3376  main_thread->set_thread_state(_thread_in_vm);
3377  // must do this before set_active_handles and initialize_thread_local_storage
3378  // Note: on solaris initialize_thread_local_storage() will (indirectly)
3379  // change the stack size recorded here to one based on the java thread
3380  // stacksize. This adjusted size is what is used to figure the placement
3381  // of the guard pages.
3382  main_thread->record_stack_base_and_size();
3383  main_thread->initialize_thread_local_storage();
3384
3385  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3386
3387  if (!main_thread->set_as_starting_thread()) {
3388    vm_shutdown_during_initialization(
3389                                      "Failed necessary internal allocation. Out of swap space");
3390    delete main_thread;
3391    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3392    return JNI_ENOMEM;
3393  }
3394
3395  // Enable guard page *after* os::create_main_thread(), otherwise it would
3396  // crash Linux VM, see notes in os_linux.cpp.
3397  main_thread->create_stack_guard_pages();
3398
3399  // Initialize Java-Level synchronization subsystem
3400  ObjectMonitor::Initialize();
3401
3402  // Initialize global modules
3403  jint status = init_globals();
3404  if (status != JNI_OK) {
3405    delete main_thread;
3406    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3407    return status;
3408  }
3409
3410  // Should be done after the heap is fully created
3411  main_thread->cache_global_variables();
3412
3413  HandleMark hm;
3414
3415  { MutexLocker mu(Threads_lock);
3416    Threads::add(main_thread);
3417  }
3418
3419  // Any JVMTI raw monitors entered in onload will transition into
3420  // real raw monitor. VM is setup enough here for raw monitor enter.
3421  JvmtiExport::transition_pending_onload_raw_monitors();
3422
3423  // Create the VMThread
3424  { TraceTime timer("Start VMThread", TraceStartupTime);
3425    VMThread::create();
3426    Thread* vmthread = VMThread::vm_thread();
3427
3428    if (!os::create_thread(vmthread, os::vm_thread)) {
3429      vm_exit_during_initialization("Cannot create VM thread. "
3430                                    "Out of system resources.");
3431    }
3432
3433    // Wait for the VM thread to become ready, and VMThread::run to initialize
3434    // Monitors can have spurious returns, must always check another state flag
3435    {
3436      MutexLocker ml(Notify_lock);
3437      os::start_thread(vmthread);
3438      while (vmthread->active_handles() == NULL) {
3439        Notify_lock->wait();
3440      }
3441    }
3442  }
3443
3444  assert(Universe::is_fully_initialized(), "not initialized");
3445  if (VerifyDuringStartup) {
3446    // Make sure we're starting with a clean slate.
3447    VM_Verify verify_op;
3448    VMThread::execute(&verify_op);
3449  }
3450
3451  Thread* THREAD = Thread::current();
3452
3453  // At this point, the Universe is initialized, but we have not executed
3454  // any byte code.  Now is a good time (the only time) to dump out the
3455  // internal state of the JVM for sharing.
3456  if (DumpSharedSpaces) {
3457    MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3458    ShouldNotReachHere();
3459  }
3460
3461  // Always call even when there are not JVMTI environments yet, since environments
3462  // may be attached late and JVMTI must track phases of VM execution
3463  JvmtiExport::enter_start_phase();
3464
3465  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3466  JvmtiExport::post_vm_start();
3467
3468  initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3469
3470  // We need this for ClassDataSharing - the initial vm.info property is set
3471  // with the default value of CDS "sharing" which may be reset through
3472  // command line options.
3473  reset_vm_info_property(CHECK_JNI_ERR);
3474
3475  quicken_jni_functions();
3476
3477  // Must be run after init_ft which initializes ft_enabled
3478  if (TRACE_INITIALIZE() != JNI_OK) {
3479    vm_exit_during_initialization("Failed to initialize tracing backend");
3480  }
3481
3482  // Set flag that basic initialization has completed. Used by exceptions and various
3483  // debug stuff, that does not work until all basic classes have been initialized.
3484  set_init_completed();
3485
3486  Metaspace::post_initialize();
3487
3488  HOTSPOT_VM_INIT_END();
3489
3490  // record VM initialization completion time
3491#if INCLUDE_MANAGEMENT
3492  Management::record_vm_init_completed();
3493#endif // INCLUDE_MANAGEMENT
3494
3495  // Compute system loader. Note that this has to occur after set_init_completed, since
3496  // valid exceptions may be thrown in the process.
3497  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3498  // set_init_completed has just been called, causing exceptions not to be shortcut
3499  // anymore. We call vm_exit_during_initialization directly instead.
3500  SystemDictionary::compute_java_system_loader(CHECK_JNI_ERR);
3501
3502#if INCLUDE_ALL_GCS
3503  // Support for ConcurrentMarkSweep. This should be cleaned up
3504  // and better encapsulated. The ugly nested if test would go away
3505  // once things are properly refactored. XXX YSR
3506  if (UseConcMarkSweepGC || UseG1GC) {
3507    if (UseConcMarkSweepGC) {
3508      ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3509    } else {
3510      ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3511    }
3512  }
3513#endif // INCLUDE_ALL_GCS
3514
3515  // Always call even when there are not JVMTI environments yet, since environments
3516  // may be attached late and JVMTI must track phases of VM execution
3517  JvmtiExport::enter_live_phase();
3518
3519  // Signal Dispatcher needs to be started before VMInit event is posted
3520  os::signal_init();
3521
3522  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3523  if (!DisableAttachMechanism) {
3524    AttachListener::vm_start();
3525    if (StartAttachListener || AttachListener::init_at_startup()) {
3526      AttachListener::init();
3527    }
3528  }
3529
3530  // Launch -Xrun agents
3531  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3532  // back-end can launch with -Xdebug -Xrunjdwp.
3533  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3534    create_vm_init_libraries();
3535  }
3536
3537  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3538  JvmtiExport::post_vm_initialized();
3539
3540  if (TRACE_START() != JNI_OK) {
3541    vm_exit_during_initialization("Failed to start tracing backend.");
3542  }
3543
3544  if (CleanChunkPoolAsync) {
3545    Chunk::start_chunk_pool_cleaner_task();
3546  }
3547
3548  // initialize compiler(s)
3549#if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3550  CompileBroker::compilation_init();
3551#endif
3552
3553  // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3554  // It is done after compilers are initialized, because otherwise compilations of
3555  // signature polymorphic MH intrinsics can be missed
3556  // (see SystemDictionary::find_method_handle_intrinsic).
3557  initialize_jsr292_core_classes(CHECK_JNI_ERR);
3558
3559#if INCLUDE_MANAGEMENT
3560  Management::initialize(THREAD);
3561
3562  if (HAS_PENDING_EXCEPTION) {
3563    // management agent fails to start possibly due to
3564    // configuration problem and is responsible for printing
3565    // stack trace if appropriate. Simply exit VM.
3566    vm_exit(1);
3567  }
3568#endif // INCLUDE_MANAGEMENT
3569
3570  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3571  if (MemProfiling)                   MemProfiler::engage();
3572  StatSampler::engage();
3573  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3574
3575  BiasedLocking::init();
3576
3577#if INCLUDE_RTM_OPT
3578  RTMLockingCounters::init();
3579#endif
3580
3581  if (JDK_Version::current().post_vm_init_hook_enabled()) {
3582    call_postVMInitHook(THREAD);
3583    // The Java side of PostVMInitHook.run must deal with all
3584    // exceptions and provide means of diagnosis.
3585    if (HAS_PENDING_EXCEPTION) {
3586      CLEAR_PENDING_EXCEPTION;
3587    }
3588  }
3589
3590  {
3591    MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3592    // Make sure the watcher thread can be started by WatcherThread::start()
3593    // or by dynamic enrollment.
3594    WatcherThread::make_startable();
3595    // Start up the WatcherThread if there are any periodic tasks
3596    // NOTE:  All PeriodicTasks should be registered by now. If they
3597    //   aren't, late joiners might appear to start slowly (we might
3598    //   take a while to process their first tick).
3599    if (PeriodicTask::num_tasks() > 0) {
3600      WatcherThread::start();
3601    }
3602  }
3603
3604  // Give os specific code one last chance to start
3605  os::init_3();
3606
3607  create_vm_timer.end();
3608#ifdef ASSERT
3609  _vm_complete = true;
3610#endif
3611  return JNI_OK;
3612}
3613
3614// type for the Agent_OnLoad and JVM_OnLoad entry points
3615extern "C" {
3616  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3617}
3618// Find a command line agent library and return its entry point for
3619//         -agentlib:  -agentpath:   -Xrun
3620// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3621static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3622                                    const char *on_load_symbols[],
3623                                    size_t num_symbol_entries) {
3624  OnLoadEntry_t on_load_entry = NULL;
3625  void *library = NULL;
3626
3627  if (!agent->valid()) {
3628    char buffer[JVM_MAXPATHLEN];
3629    char ebuf[1024];
3630    const char *name = agent->name();
3631    const char *msg = "Could not find agent library ";
3632
3633    // First check to see if agent is statically linked into executable
3634    if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3635      library = agent->os_lib();
3636    } else if (agent->is_absolute_path()) {
3637      library = os::dll_load(name, ebuf, sizeof ebuf);
3638      if (library == NULL) {
3639        const char *sub_msg = " in absolute path, with error: ";
3640        size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3641        char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3642        jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3643        // If we can't find the agent, exit.
3644        vm_exit_during_initialization(buf, NULL);
3645        FREE_C_HEAP_ARRAY(char, buf, mtThread);
3646      }
3647    } else {
3648      // Try to load the agent from the standard dll directory
3649      if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3650                             name)) {
3651        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3652      }
3653      if (library == NULL) { // Try the local directory
3654        char ns[1] = {0};
3655        if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3656          library = os::dll_load(buffer, ebuf, sizeof ebuf);
3657        }
3658        if (library == NULL) {
3659          const char *sub_msg = " on the library path, with error: ";
3660          size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3661          char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3662          jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3663          // If we can't find the agent, exit.
3664          vm_exit_during_initialization(buf, NULL);
3665          FREE_C_HEAP_ARRAY(char, buf, mtThread);
3666        }
3667      }
3668    }
3669    agent->set_os_lib(library);
3670    agent->set_valid();
3671  }
3672
3673  // Find the OnLoad function.
3674  on_load_entry =
3675    CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3676                                                          false,
3677                                                          on_load_symbols,
3678                                                          num_symbol_entries));
3679  return on_load_entry;
3680}
3681
3682// Find the JVM_OnLoad entry point
3683static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3684  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3685  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3686}
3687
3688// Find the Agent_OnLoad entry point
3689static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3690  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3691  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3692}
3693
3694// For backwards compatibility with -Xrun
3695// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3696// treated like -agentpath:
3697// Must be called before agent libraries are created
3698void Threads::convert_vm_init_libraries_to_agents() {
3699  AgentLibrary* agent;
3700  AgentLibrary* next;
3701
3702  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3703    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3704    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3705
3706    // If there is an JVM_OnLoad function it will get called later,
3707    // otherwise see if there is an Agent_OnLoad
3708    if (on_load_entry == NULL) {
3709      on_load_entry = lookup_agent_on_load(agent);
3710      if (on_load_entry != NULL) {
3711        // switch it to the agent list -- so that Agent_OnLoad will be called,
3712        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3713        Arguments::convert_library_to_agent(agent);
3714      } else {
3715        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3716      }
3717    }
3718  }
3719}
3720
3721// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3722// Invokes Agent_OnLoad
3723// Called very early -- before JavaThreads exist
3724void Threads::create_vm_init_agents() {
3725  extern struct JavaVM_ main_vm;
3726  AgentLibrary* agent;
3727
3728  JvmtiExport::enter_onload_phase();
3729
3730  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3731    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3732
3733    if (on_load_entry != NULL) {
3734      // Invoke the Agent_OnLoad function
3735      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3736      if (err != JNI_OK) {
3737        vm_exit_during_initialization("agent library failed to init", agent->name());
3738      }
3739    } else {
3740      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3741    }
3742  }
3743  JvmtiExport::enter_primordial_phase();
3744}
3745
3746extern "C" {
3747  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3748}
3749
3750void Threads::shutdown_vm_agents() {
3751  // Send any Agent_OnUnload notifications
3752  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3753  size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3754  extern struct JavaVM_ main_vm;
3755  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3756
3757    // Find the Agent_OnUnload function.
3758    Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3759                                                   os::find_agent_function(agent,
3760                                                   false,
3761                                                   on_unload_symbols,
3762                                                   num_symbol_entries));
3763
3764    // Invoke the Agent_OnUnload function
3765    if (unload_entry != NULL) {
3766      JavaThread* thread = JavaThread::current();
3767      ThreadToNativeFromVM ttn(thread);
3768      HandleMark hm(thread);
3769      (*unload_entry)(&main_vm);
3770    }
3771  }
3772}
3773
3774// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3775// Invokes JVM_OnLoad
3776void Threads::create_vm_init_libraries() {
3777  extern struct JavaVM_ main_vm;
3778  AgentLibrary* agent;
3779
3780  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3781    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3782
3783    if (on_load_entry != NULL) {
3784      // Invoke the JVM_OnLoad function
3785      JavaThread* thread = JavaThread::current();
3786      ThreadToNativeFromVM ttn(thread);
3787      HandleMark hm(thread);
3788      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3789      if (err != JNI_OK) {
3790        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3791      }
3792    } else {
3793      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3794    }
3795  }
3796}
3797
3798// Last thread running calls java.lang.Shutdown.shutdown()
3799void JavaThread::invoke_shutdown_hooks() {
3800  HandleMark hm(this);
3801
3802  // We could get here with a pending exception, if so clear it now.
3803  if (this->has_pending_exception()) {
3804    this->clear_pending_exception();
3805  }
3806
3807  EXCEPTION_MARK;
3808  Klass* k =
3809    SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3810                                      THREAD);
3811  if (k != NULL) {
3812    // SystemDictionary::resolve_or_null will return null if there was
3813    // an exception.  If we cannot load the Shutdown class, just don't
3814    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3815    // and finalizers (if runFinalizersOnExit is set) won't be run.
3816    // Note that if a shutdown hook was registered or runFinalizersOnExit
3817    // was called, the Shutdown class would have already been loaded
3818    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3819    instanceKlassHandle shutdown_klass (THREAD, k);
3820    JavaValue result(T_VOID);
3821    JavaCalls::call_static(&result,
3822                           shutdown_klass,
3823                           vmSymbols::shutdown_method_name(),
3824                           vmSymbols::void_method_signature(),
3825                           THREAD);
3826  }
3827  CLEAR_PENDING_EXCEPTION;
3828}
3829
3830// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3831// the program falls off the end of main(). Another VM exit path is through
3832// vm_exit() when the program calls System.exit() to return a value or when
3833// there is a serious error in VM. The two shutdown paths are not exactly
3834// the same, but they share Shutdown.shutdown() at Java level and before_exit()
3835// and VM_Exit op at VM level.
3836//
3837// Shutdown sequence:
3838//   + Shutdown native memory tracking if it is on
3839//   + Wait until we are the last non-daemon thread to execute
3840//     <-- every thing is still working at this moment -->
3841//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3842//        shutdown hooks, run finalizers if finalization-on-exit
3843//   + Call before_exit(), prepare for VM exit
3844//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3845//        currently the only user of this mechanism is File.deleteOnExit())
3846//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3847//        post thread end and vm death events to JVMTI,
3848//        stop signal thread
3849//   + Call JavaThread::exit(), it will:
3850//      > release JNI handle blocks, remove stack guard pages
3851//      > remove this thread from Threads list
3852//     <-- no more Java code from this thread after this point -->
3853//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3854//     the compiler threads at safepoint
3855//     <-- do not use anything that could get blocked by Safepoint -->
3856//   + Disable tracing at JNI/JVM barriers
3857//   + Set _vm_exited flag for threads that are still running native code
3858//   + Delete this thread
3859//   + Call exit_globals()
3860//      > deletes tty
3861//      > deletes PerfMemory resources
3862//   + Return to caller
3863
3864bool Threads::destroy_vm() {
3865  JavaThread* thread = JavaThread::current();
3866
3867#ifdef ASSERT
3868  _vm_complete = false;
3869#endif
3870  // Wait until we are the last non-daemon thread to execute
3871  { MutexLocker nu(Threads_lock);
3872    while (Threads::number_of_non_daemon_threads() > 1)
3873      // This wait should make safepoint checks, wait without a timeout,
3874      // and wait as a suspend-equivalent condition.
3875      //
3876      // Note: If the FlatProfiler is running and this thread is waiting
3877      // for another non-daemon thread to finish, then the FlatProfiler
3878      // is waiting for the external suspend request on this thread to
3879      // complete. wait_for_ext_suspend_completion() will eventually
3880      // timeout, but that takes time. Making this wait a suspend-
3881      // equivalent condition solves that timeout problem.
3882      //
3883      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3884                         Mutex::_as_suspend_equivalent_flag);
3885  }
3886
3887  // Hang forever on exit if we are reporting an error.
3888  if (ShowMessageBoxOnError && is_error_reported()) {
3889    os::infinite_sleep();
3890  }
3891  os::wait_for_keypress_at_exit();
3892
3893  // run Java level shutdown hooks
3894  thread->invoke_shutdown_hooks();
3895
3896  before_exit(thread);
3897
3898  thread->exit(true);
3899
3900  // Stop VM thread.
3901  {
3902    // 4945125 The vm thread comes to a safepoint during exit.
3903    // GC vm_operations can get caught at the safepoint, and the
3904    // heap is unparseable if they are caught. Grab the Heap_lock
3905    // to prevent this. The GC vm_operations will not be able to
3906    // queue until after the vm thread is dead. After this point,
3907    // we'll never emerge out of the safepoint before the VM exits.
3908
3909    MutexLocker ml(Heap_lock);
3910
3911    VMThread::wait_for_vm_thread_exit();
3912    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3913    VMThread::destroy();
3914  }
3915
3916  // clean up ideal graph printers
3917#if defined(COMPILER2) && !defined(PRODUCT)
3918  IdealGraphPrinter::clean_up();
3919#endif
3920
3921  // Now, all Java threads are gone except daemon threads. Daemon threads
3922  // running Java code or in VM are stopped by the Safepoint. However,
3923  // daemon threads executing native code are still running.  But they
3924  // will be stopped at native=>Java/VM barriers. Note that we can't
3925  // simply kill or suspend them, as it is inherently deadlock-prone.
3926
3927#ifndef PRODUCT
3928  // disable function tracing at JNI/JVM barriers
3929  TraceJNICalls = false;
3930  TraceJVMCalls = false;
3931  TraceRuntimeCalls = false;
3932#endif
3933
3934  VM_Exit::set_vm_exited();
3935
3936  notify_vm_shutdown();
3937
3938  delete thread;
3939
3940  // exit_globals() will delete tty
3941  exit_globals();
3942
3943  return true;
3944}
3945
3946
3947jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3948  if (version == JNI_VERSION_1_1) return JNI_TRUE;
3949  return is_supported_jni_version(version);
3950}
3951
3952
3953jboolean Threads::is_supported_jni_version(jint version) {
3954  if (version == JNI_VERSION_1_2) return JNI_TRUE;
3955  if (version == JNI_VERSION_1_4) return JNI_TRUE;
3956  if (version == JNI_VERSION_1_6) return JNI_TRUE;
3957  if (version == JNI_VERSION_1_8) return JNI_TRUE;
3958  return JNI_FALSE;
3959}
3960
3961
3962void Threads::add(JavaThread* p, bool force_daemon) {
3963  // The threads lock must be owned at this point
3964  assert_locked_or_safepoint(Threads_lock);
3965
3966  // See the comment for this method in thread.hpp for its purpose and
3967  // why it is called here.
3968  p->initialize_queues();
3969  p->set_next(_thread_list);
3970  _thread_list = p;
3971  _number_of_threads++;
3972  oop threadObj = p->threadObj();
3973  bool daemon = true;
3974  // Bootstrapping problem: threadObj can be null for initial
3975  // JavaThread (or for threads attached via JNI)
3976  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3977    _number_of_non_daemon_threads++;
3978    daemon = false;
3979  }
3980
3981  ThreadService::add_thread(p, daemon);
3982
3983  // Possible GC point.
3984  Events::log(p, "Thread added: " INTPTR_FORMAT, p);
3985}
3986
3987void Threads::remove(JavaThread* p) {
3988  // Extra scope needed for Thread_lock, so we can check
3989  // that we do not remove thread without safepoint code notice
3990  { MutexLocker ml(Threads_lock);
3991
3992    assert(includes(p), "p must be present");
3993
3994    JavaThread* current = _thread_list;
3995    JavaThread* prev    = NULL;
3996
3997    while (current != p) {
3998      prev    = current;
3999      current = current->next();
4000    }
4001
4002    if (prev) {
4003      prev->set_next(current->next());
4004    } else {
4005      _thread_list = p->next();
4006    }
4007    _number_of_threads--;
4008    oop threadObj = p->threadObj();
4009    bool daemon = true;
4010    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4011      _number_of_non_daemon_threads--;
4012      daemon = false;
4013
4014      // Only one thread left, do a notify on the Threads_lock so a thread waiting
4015      // on destroy_vm will wake up.
4016      if (number_of_non_daemon_threads() == 1) {
4017        Threads_lock->notify_all();
4018      }
4019    }
4020    ThreadService::remove_thread(p, daemon);
4021
4022    // Make sure that safepoint code disregard this thread. This is needed since
4023    // the thread might mess around with locks after this point. This can cause it
4024    // to do callbacks into the safepoint code. However, the safepoint code is not aware
4025    // of this thread since it is removed from the queue.
4026    p->set_terminated_value();
4027  } // unlock Threads_lock
4028
4029  // Since Events::log uses a lock, we grab it outside the Threads_lock
4030  Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4031}
4032
4033// Threads_lock must be held when this is called (or must be called during a safepoint)
4034bool Threads::includes(JavaThread* p) {
4035  assert(Threads_lock->is_locked(), "sanity check");
4036  ALL_JAVA_THREADS(q) {
4037    if (q == p) {
4038      return true;
4039    }
4040  }
4041  return false;
4042}
4043
4044// Operations on the Threads list for GC.  These are not explicitly locked,
4045// but the garbage collector must provide a safe context for them to run.
4046// In particular, these things should never be called when the Threads_lock
4047// is held by some other thread. (Note: the Safepoint abstraction also
4048// uses the Threads_lock to guarantee this property. It also makes sure that
4049// all threads gets blocked when exiting or starting).
4050
4051void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4052  ALL_JAVA_THREADS(p) {
4053    p->oops_do(f, cld_f, cf);
4054  }
4055  VMThread::vm_thread()->oops_do(f, cld_f, cf);
4056}
4057
4058void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4059  // Introduce a mechanism allowing parallel threads to claim threads as
4060  // root groups.  Overhead should be small enough to use all the time,
4061  // even in sequential code.
4062  SharedHeap* sh = SharedHeap::heap();
4063  // Cannot yet substitute active_workers for n_par_threads
4064  // because of G1CollectedHeap::verify() use of
4065  // SharedHeap::process_roots().  n_par_threads == 0 will
4066  // turn off parallelism in process_roots while active_workers
4067  // is being used for parallelism elsewhere.
4068  bool is_par = sh->n_par_threads() > 0;
4069  assert(!is_par ||
4070         (SharedHeap::heap()->n_par_threads() ==
4071         SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4072  int cp = SharedHeap::heap()->strong_roots_parity();
4073  ALL_JAVA_THREADS(p) {
4074    if (p->claim_oops_do(is_par, cp)) {
4075      p->oops_do(f, cld_f, cf);
4076    }
4077  }
4078  VMThread* vmt = VMThread::vm_thread();
4079  if (vmt->claim_oops_do(is_par, cp)) {
4080    vmt->oops_do(f, cld_f, cf);
4081  }
4082}
4083
4084#if INCLUDE_ALL_GCS
4085// Used by ParallelScavenge
4086void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4087  ALL_JAVA_THREADS(p) {
4088    q->enqueue(new ThreadRootsTask(p));
4089  }
4090  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4091}
4092
4093// Used by Parallel Old
4094void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4095  ALL_JAVA_THREADS(p) {
4096    q->enqueue(new ThreadRootsMarkingTask(p));
4097  }
4098  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4099}
4100#endif // INCLUDE_ALL_GCS
4101
4102void Threads::nmethods_do(CodeBlobClosure* cf) {
4103  ALL_JAVA_THREADS(p) {
4104    p->nmethods_do(cf);
4105  }
4106  VMThread::vm_thread()->nmethods_do(cf);
4107}
4108
4109void Threads::metadata_do(void f(Metadata*)) {
4110  ALL_JAVA_THREADS(p) {
4111    p->metadata_do(f);
4112  }
4113}
4114
4115void Threads::deoptimized_wrt_marked_nmethods() {
4116  ALL_JAVA_THREADS(p) {
4117    p->deoptimized_wrt_marked_nmethods();
4118  }
4119}
4120
4121
4122// Get count Java threads that are waiting to enter the specified monitor.
4123GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4124                                                         address monitor,
4125                                                         bool doLock) {
4126  assert(doLock || SafepointSynchronize::is_at_safepoint(),
4127         "must grab Threads_lock or be at safepoint");
4128  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4129
4130  int i = 0;
4131  {
4132    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4133    ALL_JAVA_THREADS(p) {
4134      if (p->is_Compiler_thread()) continue;
4135
4136      address pending = (address)p->current_pending_monitor();
4137      if (pending == monitor) {             // found a match
4138        if (i < count) result->append(p);   // save the first count matches
4139        i++;
4140      }
4141    }
4142  }
4143  return result;
4144}
4145
4146
4147JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4148                                                      bool doLock) {
4149  assert(doLock ||
4150         Threads_lock->owned_by_self() ||
4151         SafepointSynchronize::is_at_safepoint(),
4152         "must grab Threads_lock or be at safepoint");
4153
4154  // NULL owner means not locked so we can skip the search
4155  if (owner == NULL) return NULL;
4156
4157  {
4158    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4159    ALL_JAVA_THREADS(p) {
4160      // first, see if owner is the address of a Java thread
4161      if (owner == (address)p) return p;
4162    }
4163  }
4164  // Cannot assert on lack of success here since this function may be
4165  // used by code that is trying to report useful problem information
4166  // like deadlock detection.
4167  if (UseHeavyMonitors) return NULL;
4168
4169  // If we didn't find a matching Java thread and we didn't force use of
4170  // heavyweight monitors, then the owner is the stack address of the
4171  // Lock Word in the owning Java thread's stack.
4172  //
4173  JavaThread* the_owner = NULL;
4174  {
4175    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4176    ALL_JAVA_THREADS(q) {
4177      if (q->is_lock_owned(owner)) {
4178        the_owner = q;
4179        break;
4180      }
4181    }
4182  }
4183  // cannot assert on lack of success here; see above comment
4184  return the_owner;
4185}
4186
4187// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4188void Threads::print_on(outputStream* st, bool print_stacks,
4189                       bool internal_format, bool print_concurrent_locks) {
4190  char buf[32];
4191  st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
4192
4193  st->print_cr("Full thread dump %s (%s %s):",
4194               Abstract_VM_Version::vm_name(),
4195               Abstract_VM_Version::vm_release(),
4196               Abstract_VM_Version::vm_info_string());
4197  st->cr();
4198
4199#if INCLUDE_ALL_GCS
4200  // Dump concurrent locks
4201  ConcurrentLocksDump concurrent_locks;
4202  if (print_concurrent_locks) {
4203    concurrent_locks.dump_at_safepoint();
4204  }
4205#endif // INCLUDE_ALL_GCS
4206
4207  ALL_JAVA_THREADS(p) {
4208    ResourceMark rm;
4209    p->print_on(st);
4210    if (print_stacks) {
4211      if (internal_format) {
4212        p->trace_stack();
4213      } else {
4214        p->print_stack_on(st);
4215      }
4216    }
4217    st->cr();
4218#if INCLUDE_ALL_GCS
4219    if (print_concurrent_locks) {
4220      concurrent_locks.print_locks_on(p, st);
4221    }
4222#endif // INCLUDE_ALL_GCS
4223  }
4224
4225  VMThread::vm_thread()->print_on(st);
4226  st->cr();
4227  Universe::heap()->print_gc_threads_on(st);
4228  WatcherThread* wt = WatcherThread::watcher_thread();
4229  if (wt != NULL) {
4230    wt->print_on(st);
4231    st->cr();
4232  }
4233  CompileBroker::print_compiler_threads_on(st);
4234  st->flush();
4235}
4236
4237// Threads::print_on_error() is called by fatal error handler. It's possible
4238// that VM is not at safepoint and/or current thread is inside signal handler.
4239// Don't print stack trace, as the stack may not be walkable. Don't allocate
4240// memory (even in resource area), it might deadlock the error handler.
4241void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4242                             int buflen) {
4243  bool found_current = false;
4244  st->print_cr("Java Threads: ( => current thread )");
4245  ALL_JAVA_THREADS(thread) {
4246    bool is_current = (current == thread);
4247    found_current = found_current || is_current;
4248
4249    st->print("%s", is_current ? "=>" : "  ");
4250
4251    st->print(PTR_FORMAT, thread);
4252    st->print(" ");
4253    thread->print_on_error(st, buf, buflen);
4254    st->cr();
4255  }
4256  st->cr();
4257
4258  st->print_cr("Other Threads:");
4259  if (VMThread::vm_thread()) {
4260    bool is_current = (current == VMThread::vm_thread());
4261    found_current = found_current || is_current;
4262    st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4263
4264    st->print(PTR_FORMAT, VMThread::vm_thread());
4265    st->print(" ");
4266    VMThread::vm_thread()->print_on_error(st, buf, buflen);
4267    st->cr();
4268  }
4269  WatcherThread* wt = WatcherThread::watcher_thread();
4270  if (wt != NULL) {
4271    bool is_current = (current == wt);
4272    found_current = found_current || is_current;
4273    st->print("%s", is_current ? "=>" : "  ");
4274
4275    st->print(PTR_FORMAT, wt);
4276    st->print(" ");
4277    wt->print_on_error(st, buf, buflen);
4278    st->cr();
4279  }
4280  if (!found_current) {
4281    st->cr();
4282    st->print("=>" PTR_FORMAT " (exited) ", current);
4283    current->print_on_error(st, buf, buflen);
4284    st->cr();
4285  }
4286}
4287
4288// Internal SpinLock and Mutex
4289// Based on ParkEvent
4290
4291// Ad-hoc mutual exclusion primitives: SpinLock and Mux
4292//
4293// We employ SpinLocks _only for low-contention, fixed-length
4294// short-duration critical sections where we're concerned
4295// about native mutex_t or HotSpot Mutex:: latency.
4296// The mux construct provides a spin-then-block mutual exclusion
4297// mechanism.
4298//
4299// Testing has shown that contention on the ListLock guarding gFreeList
4300// is common.  If we implement ListLock as a simple SpinLock it's common
4301// for the JVM to devolve to yielding with little progress.  This is true
4302// despite the fact that the critical sections protected by ListLock are
4303// extremely short.
4304//
4305// TODO-FIXME: ListLock should be of type SpinLock.
4306// We should make this a 1st-class type, integrated into the lock
4307// hierarchy as leaf-locks.  Critically, the SpinLock structure
4308// should have sufficient padding to avoid false-sharing and excessive
4309// cache-coherency traffic.
4310
4311
4312typedef volatile int SpinLockT;
4313
4314void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4315  if (Atomic::cmpxchg (1, adr, 0) == 0) {
4316    return;   // normal fast-path return
4317  }
4318
4319  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4320  TEVENT(SpinAcquire - ctx);
4321  int ctr = 0;
4322  int Yields = 0;
4323  for (;;) {
4324    while (*adr != 0) {
4325      ++ctr;
4326      if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4327        if (Yields > 5) {
4328          os::naked_short_sleep(1);
4329        } else {
4330          os::naked_yield();
4331          ++Yields;
4332        }
4333      } else {
4334        SpinPause();
4335      }
4336    }
4337    if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4338  }
4339}
4340
4341void Thread::SpinRelease(volatile int * adr) {
4342  assert(*adr != 0, "invariant");
4343  OrderAccess::fence();      // guarantee at least release consistency.
4344  // Roach-motel semantics.
4345  // It's safe if subsequent LDs and STs float "up" into the critical section,
4346  // but prior LDs and STs within the critical section can't be allowed
4347  // to reorder or float past the ST that releases the lock.
4348  // Loads and stores in the critical section - which appear in program
4349  // order before the store that releases the lock - must also appear
4350  // before the store that releases the lock in memory visibility order.
4351  // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4352  // the ST of 0 into the lock-word which releases the lock, so fence
4353  // more than covers this on all platforms.
4354  *adr = 0;
4355}
4356
4357// muxAcquire and muxRelease:
4358//
4359// *  muxAcquire and muxRelease support a single-word lock-word construct.
4360//    The LSB of the word is set IFF the lock is held.
4361//    The remainder of the word points to the head of a singly-linked list
4362//    of threads blocked on the lock.
4363//
4364// *  The current implementation of muxAcquire-muxRelease uses its own
4365//    dedicated Thread._MuxEvent instance.  If we're interested in
4366//    minimizing the peak number of extant ParkEvent instances then
4367//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4368//    as certain invariants were satisfied.  Specifically, care would need
4369//    to be taken with regards to consuming unpark() "permits".
4370//    A safe rule of thumb is that a thread would never call muxAcquire()
4371//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4372//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4373//    consume an unpark() permit intended for monitorenter, for instance.
4374//    One way around this would be to widen the restricted-range semaphore
4375//    implemented in park().  Another alternative would be to provide
4376//    multiple instances of the PlatformEvent() for each thread.  One
4377//    instance would be dedicated to muxAcquire-muxRelease, for instance.
4378//
4379// *  Usage:
4380//    -- Only as leaf locks
4381//    -- for short-term locking only as muxAcquire does not perform
4382//       thread state transitions.
4383//
4384// Alternatives:
4385// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4386//    but with parking or spin-then-park instead of pure spinning.
4387// *  Use Taura-Oyama-Yonenzawa locks.
4388// *  It's possible to construct a 1-0 lock if we encode the lockword as
4389//    (List,LockByte).  Acquire will CAS the full lockword while Release
4390//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4391//    acquiring threads use timers (ParkTimed) to detect and recover from
4392//    the stranding window.  Thread/Node structures must be aligned on 256-byte
4393//    boundaries by using placement-new.
4394// *  Augment MCS with advisory back-link fields maintained with CAS().
4395//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4396//    The validity of the backlinks must be ratified before we trust the value.
4397//    If the backlinks are invalid the exiting thread must back-track through the
4398//    the forward links, which are always trustworthy.
4399// *  Add a successor indication.  The LockWord is currently encoded as
4400//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4401//    to provide the usual futile-wakeup optimization.
4402//    See RTStt for details.
4403// *  Consider schedctl.sc_nopreempt to cover the critical section.
4404//
4405
4406
4407typedef volatile intptr_t MutexT;      // Mux Lock-word
4408enum MuxBits { LOCKBIT = 1 };
4409
4410void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4411  intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4412  if (w == 0) return;
4413  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4414    return;
4415  }
4416
4417  TEVENT(muxAcquire - Contention);
4418  ParkEvent * const Self = Thread::current()->_MuxEvent;
4419  assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4420  for (;;) {
4421    int its = (os::is_MP() ? 100 : 0) + 1;
4422
4423    // Optional spin phase: spin-then-park strategy
4424    while (--its >= 0) {
4425      w = *Lock;
4426      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4427        return;
4428      }
4429    }
4430
4431    Self->reset();
4432    Self->OnList = intptr_t(Lock);
4433    // The following fence() isn't _strictly necessary as the subsequent
4434    // CAS() both serializes execution and ratifies the fetched *Lock value.
4435    OrderAccess::fence();
4436    for (;;) {
4437      w = *Lock;
4438      if ((w & LOCKBIT) == 0) {
4439        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4440          Self->OnList = 0;   // hygiene - allows stronger asserts
4441          return;
4442        }
4443        continue;      // Interference -- *Lock changed -- Just retry
4444      }
4445      assert(w & LOCKBIT, "invariant");
4446      Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4447      if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4448    }
4449
4450    while (Self->OnList != 0) {
4451      Self->park();
4452    }
4453  }
4454}
4455
4456void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4457  intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4458  if (w == 0) return;
4459  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4460    return;
4461  }
4462
4463  TEVENT(muxAcquire - Contention);
4464  ParkEvent * ReleaseAfter = NULL;
4465  if (ev == NULL) {
4466    ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4467  }
4468  assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4469  for (;;) {
4470    guarantee(ev->OnList == 0, "invariant");
4471    int its = (os::is_MP() ? 100 : 0) + 1;
4472
4473    // Optional spin phase: spin-then-park strategy
4474    while (--its >= 0) {
4475      w = *Lock;
4476      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4477        if (ReleaseAfter != NULL) {
4478          ParkEvent::Release(ReleaseAfter);
4479        }
4480        return;
4481      }
4482    }
4483
4484    ev->reset();
4485    ev->OnList = intptr_t(Lock);
4486    // The following fence() isn't _strictly necessary as the subsequent
4487    // CAS() both serializes execution and ratifies the fetched *Lock value.
4488    OrderAccess::fence();
4489    for (;;) {
4490      w = *Lock;
4491      if ((w & LOCKBIT) == 0) {
4492        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4493          ev->OnList = 0;
4494          // We call ::Release while holding the outer lock, thus
4495          // artificially lengthening the critical section.
4496          // Consider deferring the ::Release() until the subsequent unlock(),
4497          // after we've dropped the outer lock.
4498          if (ReleaseAfter != NULL) {
4499            ParkEvent::Release(ReleaseAfter);
4500          }
4501          return;
4502        }
4503        continue;      // Interference -- *Lock changed -- Just retry
4504      }
4505      assert(w & LOCKBIT, "invariant");
4506      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4507      if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4508    }
4509
4510    while (ev->OnList != 0) {
4511      ev->park();
4512    }
4513  }
4514}
4515
4516// Release() must extract a successor from the list and then wake that thread.
4517// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4518// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4519// Release() would :
4520// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4521// (B) Extract a successor from the private list "in-hand"
4522// (C) attempt to CAS() the residual back into *Lock over null.
4523//     If there were any newly arrived threads and the CAS() would fail.
4524//     In that case Release() would detach the RATs, re-merge the list in-hand
4525//     with the RATs and repeat as needed.  Alternately, Release() might
4526//     detach and extract a successor, but then pass the residual list to the wakee.
4527//     The wakee would be responsible for reattaching and remerging before it
4528//     competed for the lock.
4529//
4530// Both "pop" and DMR are immune from ABA corruption -- there can be
4531// multiple concurrent pushers, but only one popper or detacher.
4532// This implementation pops from the head of the list.  This is unfair,
4533// but tends to provide excellent throughput as hot threads remain hot.
4534// (We wake recently run threads first).
4535//
4536// All paths through muxRelease() will execute a CAS.
4537// Release consistency -- We depend on the CAS in muxRelease() to provide full
4538// bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4539// executed within the critical section are complete and globally visible before the
4540// store (CAS) to the lock-word that releases the lock becomes globally visible.
4541void Thread::muxRelease(volatile intptr_t * Lock)  {
4542  for (;;) {
4543    const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4544    assert(w & LOCKBIT, "invariant");
4545    if (w == LOCKBIT) return;
4546    ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4547    assert(List != NULL, "invariant");
4548    assert(List->OnList == intptr_t(Lock), "invariant");
4549    ParkEvent * const nxt = List->ListNext;
4550    guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4551
4552    // The following CAS() releases the lock and pops the head element.
4553    // The CAS() also ratifies the previously fetched lock-word value.
4554    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4555      continue;
4556    }
4557    List->OnList = 0;
4558    OrderAccess::fence();
4559    List->unpark();
4560    return;
4561  }
4562}
4563
4564
4565void Threads::verify() {
4566  ALL_JAVA_THREADS(p) {
4567    p->verify();
4568  }
4569  VMThread* thread = VMThread::vm_thread();
4570  if (thread != NULL) thread->verify();
4571}
4572