thread.cpp revision 6687:da4514678bcf
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/scopeDesc.hpp"
31#include "compiler/compileBroker.hpp"
32#include "interpreter/interpreter.hpp"
33#include "interpreter/linkResolver.hpp"
34#include "interpreter/oopMapCache.hpp"
35#include "jvmtifiles/jvmtiEnv.hpp"
36#include "memory/gcLocker.inline.hpp"
37#include "memory/metaspaceShared.hpp"
38#include "memory/oopFactory.hpp"
39#include "memory/universe.inline.hpp"
40#include "oops/instanceKlass.hpp"
41#include "oops/objArrayOop.hpp"
42#include "oops/oop.inline.hpp"
43#include "oops/symbol.hpp"
44#include "prims/jvm_misc.hpp"
45#include "prims/jvmtiExport.hpp"
46#include "prims/jvmtiThreadState.hpp"
47#include "prims/privilegedStack.hpp"
48#include "runtime/arguments.hpp"
49#include "runtime/atomic.inline.hpp"
50#include "runtime/biasedLocking.hpp"
51#include "runtime/deoptimization.hpp"
52#include "runtime/fprofiler.hpp"
53#include "runtime/frame.inline.hpp"
54#include "runtime/init.hpp"
55#include "runtime/interfaceSupport.hpp"
56#include "runtime/java.hpp"
57#include "runtime/javaCalls.hpp"
58#include "runtime/jniPeriodicChecker.hpp"
59#include "runtime/memprofiler.hpp"
60#include "runtime/mutexLocker.hpp"
61#include "runtime/objectMonitor.hpp"
62#include "runtime/orderAccess.inline.hpp"
63#include "runtime/osThread.hpp"
64#include "runtime/safepoint.hpp"
65#include "runtime/sharedRuntime.hpp"
66#include "runtime/statSampler.hpp"
67#include "runtime/stubRoutines.hpp"
68#include "runtime/task.hpp"
69#include "runtime/thread.inline.hpp"
70#include "runtime/threadCritical.hpp"
71#include "runtime/threadLocalStorage.hpp"
72#include "runtime/vframe.hpp"
73#include "runtime/vframeArray.hpp"
74#include "runtime/vframe_hp.hpp"
75#include "runtime/vmThread.hpp"
76#include "runtime/vm_operations.hpp"
77#include "services/attachListener.hpp"
78#include "services/management.hpp"
79#include "services/memTracker.hpp"
80#include "services/threadService.hpp"
81#include "trace/tracing.hpp"
82#include "trace/traceMacros.hpp"
83#include "utilities/defaultStream.hpp"
84#include "utilities/dtrace.hpp"
85#include "utilities/events.hpp"
86#include "utilities/preserveException.hpp"
87#include "utilities/macros.hpp"
88#if INCLUDE_ALL_GCS
89#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
90#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
91#include "gc_implementation/parallelScavenge/pcTasks.hpp"
92#endif // INCLUDE_ALL_GCS
93#ifdef COMPILER1
94#include "c1/c1_Compiler.hpp"
95#endif
96#ifdef COMPILER2
97#include "opto/c2compiler.hpp"
98#include "opto/idealGraphPrinter.hpp"
99#endif
100#if INCLUDE_RTM_OPT
101#include "runtime/rtmLocking.hpp"
102#endif
103
104PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
105
106#ifdef DTRACE_ENABLED
107
108// Only bother with this argument setup if dtrace is available
109
110#define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
111#define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
112
113#define DTRACE_THREAD_PROBE(probe, javathread)                             \
114  {                                                                        \
115    ResourceMark rm(this);                                                 \
116    int len = 0;                                                           \
117    const char* name = (javathread)->get_thread_name();                    \
118    len = strlen(name);                                                    \
119    HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
120      (char *) name, len,                                                           \
121      java_lang_Thread::thread_id((javathread)->threadObj()),              \
122      (uintptr_t) (javathread)->osthread()->thread_id(),                               \
123      java_lang_Thread::is_daemon((javathread)->threadObj()));             \
124  }
125
126#else //  ndef DTRACE_ENABLED
127
128#define DTRACE_THREAD_PROBE(probe, javathread)
129
130#endif // ndef DTRACE_ENABLED
131
132
133// Class hierarchy
134// - Thread
135//   - VMThread
136//   - WatcherThread
137//   - ConcurrentMarkSweepThread
138//   - JavaThread
139//     - CompilerThread
140
141// ======= Thread ========
142// Support for forcing alignment of thread objects for biased locking
143void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
144  if (UseBiasedLocking) {
145    const int alignment = markOopDesc::biased_lock_alignment;
146    size_t aligned_size = size + (alignment - sizeof(intptr_t));
147    void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
148                                          : AllocateHeap(aligned_size, flags, CURRENT_PC,
149                                              AllocFailStrategy::RETURN_NULL);
150    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
151    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
152           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
153           "JavaThread alignment code overflowed allocated storage");
154    if (TraceBiasedLocking) {
155      if (aligned_addr != real_malloc_addr)
156        tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
157                      real_malloc_addr, aligned_addr);
158    }
159    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
160    return aligned_addr;
161  } else {
162    return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
163                       : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
164  }
165}
166
167void Thread::operator delete(void* p) {
168  if (UseBiasedLocking) {
169    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
170    FreeHeap(real_malloc_addr, mtThread);
171  } else {
172    FreeHeap(p, mtThread);
173  }
174}
175
176
177// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
178// JavaThread
179
180
181Thread::Thread() {
182  // stack and get_thread
183  set_stack_base(NULL);
184  set_stack_size(0);
185  set_self_raw_id(0);
186  set_lgrp_id(-1);
187
188  // allocated data structures
189  set_osthread(NULL);
190  set_resource_area(new (mtThread)ResourceArea());
191  DEBUG_ONLY(_current_resource_mark = NULL;)
192  set_handle_area(new (mtThread) HandleArea(NULL));
193  set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
194  set_active_handles(NULL);
195  set_free_handle_block(NULL);
196  set_last_handle_mark(NULL);
197
198  // This initial value ==> never claimed.
199  _oops_do_parity = 0;
200
201  // the handle mark links itself to last_handle_mark
202  new HandleMark(this);
203
204  // plain initialization
205  debug_only(_owned_locks = NULL;)
206  debug_only(_allow_allocation_count = 0;)
207  NOT_PRODUCT(_allow_safepoint_count = 0;)
208  NOT_PRODUCT(_skip_gcalot = false;)
209  _jvmti_env_iteration_count = 0;
210  set_allocated_bytes(0);
211  _vm_operation_started_count = 0;
212  _vm_operation_completed_count = 0;
213  _current_pending_monitor = NULL;
214  _current_pending_monitor_is_from_java = true;
215  _current_waiting_monitor = NULL;
216  _num_nested_signal = 0;
217  omFreeList = NULL;
218  omFreeCount = 0;
219  omFreeProvision = 32;
220  omInUseList = NULL;
221  omInUseCount = 0;
222
223#ifdef ASSERT
224  _visited_for_critical_count = false;
225#endif
226
227  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
228  _suspend_flags = 0;
229
230  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
231  _hashStateX = os::random();
232  _hashStateY = 842502087;
233  _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
234  _hashStateW = 273326509;
235
236  _OnTrap   = 0;
237  _schedctl = NULL;
238  _Stalled  = 0;
239  _TypeTag  = 0x2BAD;
240
241  // Many of the following fields are effectively final - immutable
242  // Note that nascent threads can't use the Native Monitor-Mutex
243  // construct until the _MutexEvent is initialized ...
244  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
245  // we might instead use a stack of ParkEvents that we could provision on-demand.
246  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
247  // and ::Release()
248  _ParkEvent   = ParkEvent::Allocate(this);
249  _SleepEvent  = ParkEvent::Allocate(this);
250  _MutexEvent  = ParkEvent::Allocate(this);
251  _MuxEvent    = ParkEvent::Allocate(this);
252
253#ifdef CHECK_UNHANDLED_OOPS
254  if (CheckUnhandledOops) {
255    _unhandled_oops = new UnhandledOops(this);
256  }
257#endif // CHECK_UNHANDLED_OOPS
258#ifdef ASSERT
259  if (UseBiasedLocking) {
260    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
261    assert(this == _real_malloc_address ||
262           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
263           "bug in forced alignment of thread objects");
264  }
265#endif /* ASSERT */
266}
267
268void Thread::initialize_thread_local_storage() {
269  // Note: Make sure this method only calls
270  // non-blocking operations. Otherwise, it might not work
271  // with the thread-startup/safepoint interaction.
272
273  // During Java thread startup, safepoint code should allow this
274  // method to complete because it may need to allocate memory to
275  // store information for the new thread.
276
277  // initialize structure dependent on thread local storage
278  ThreadLocalStorage::set_thread(this);
279}
280
281void Thread::record_stack_base_and_size() {
282  set_stack_base(os::current_stack_base());
283  set_stack_size(os::current_stack_size());
284  if (is_Java_thread()) {
285    ((JavaThread*) this)->set_stack_overflow_limit();
286  }
287  // CR 7190089: on Solaris, primordial thread's stack is adjusted
288  // in initialize_thread(). Without the adjustment, stack size is
289  // incorrect if stack is set to unlimited (ulimit -s unlimited).
290  // So far, only Solaris has real implementation of initialize_thread().
291  //
292  // set up any platform-specific state.
293  os::initialize_thread(this);
294
295#if INCLUDE_NMT
296  // record thread's native stack, stack grows downward
297  address stack_low_addr = stack_base() - stack_size();
298  MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
299      CURRENT_PC);
300#endif // INCLUDE_NMT
301}
302
303
304Thread::~Thread() {
305  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
306  ObjectSynchronizer::omFlush(this);
307
308  EVENT_THREAD_DESTRUCT(this);
309
310  // stack_base can be NULL if the thread is never started or exited before
311  // record_stack_base_and_size called. Although, we would like to ensure
312  // that all started threads do call record_stack_base_and_size(), there is
313  // not proper way to enforce that.
314#if INCLUDE_NMT
315  if (_stack_base != NULL) {
316    address low_stack_addr = stack_base() - stack_size();
317    MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
318#ifdef ASSERT
319    set_stack_base(NULL);
320#endif
321  }
322#endif // INCLUDE_NMT
323
324  // deallocate data structures
325  delete resource_area();
326  // since the handle marks are using the handle area, we have to deallocated the root
327  // handle mark before deallocating the thread's handle area,
328  assert(last_handle_mark() != NULL, "check we have an element");
329  delete last_handle_mark();
330  assert(last_handle_mark() == NULL, "check we have reached the end");
331
332  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
333  // We NULL out the fields for good hygiene.
334  ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
335  ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
336  ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
337  ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
338
339  delete handle_area();
340  delete metadata_handles();
341
342  // osthread() can be NULL, if creation of thread failed.
343  if (osthread() != NULL) os::free_thread(osthread());
344
345  delete _SR_lock;
346
347  // clear thread local storage if the Thread is deleting itself
348  if (this == Thread::current()) {
349    ThreadLocalStorage::set_thread(NULL);
350  } else {
351    // In the case where we're not the current thread, invalidate all the
352    // caches in case some code tries to get the current thread or the
353    // thread that was destroyed, and gets stale information.
354    ThreadLocalStorage::invalidate_all();
355  }
356  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
357}
358
359// NOTE: dummy function for assertion purpose.
360void Thread::run() {
361  ShouldNotReachHere();
362}
363
364#ifdef ASSERT
365// Private method to check for dangling thread pointer
366void check_for_dangling_thread_pointer(Thread *thread) {
367 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
368         "possibility of dangling Thread pointer");
369}
370#endif
371
372
373#ifndef PRODUCT
374// Tracing method for basic thread operations
375void Thread::trace(const char* msg, const Thread* const thread) {
376  if (!TraceThreadEvents) return;
377  ResourceMark rm;
378  ThreadCritical tc;
379  const char *name = "non-Java thread";
380  int prio = -1;
381  if (thread->is_Java_thread()
382      && !thread->is_Compiler_thread()) {
383    // The Threads_lock must be held to get information about
384    // this thread but may not be in some situations when
385    // tracing  thread events.
386    bool release_Threads_lock = false;
387    if (!Threads_lock->owned_by_self()) {
388      Threads_lock->lock();
389      release_Threads_lock = true;
390    }
391    JavaThread* jt = (JavaThread *)thread;
392    name = (char *)jt->get_thread_name();
393    oop thread_oop = jt->threadObj();
394    if (thread_oop != NULL) {
395      prio = java_lang_Thread::priority(thread_oop);
396    }
397    if (release_Threads_lock) {
398      Threads_lock->unlock();
399    }
400  }
401  tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
402}
403#endif
404
405
406ThreadPriority Thread::get_priority(const Thread* const thread) {
407  trace("get priority", thread);
408  ThreadPriority priority;
409  // Can return an error!
410  (void)os::get_priority(thread, priority);
411  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
412  return priority;
413}
414
415void Thread::set_priority(Thread* thread, ThreadPriority priority) {
416  trace("set priority", thread);
417  debug_only(check_for_dangling_thread_pointer(thread);)
418  // Can return an error!
419  (void)os::set_priority(thread, priority);
420}
421
422
423void Thread::start(Thread* thread) {
424  trace("start", thread);
425  // Start is different from resume in that its safety is guaranteed by context or
426  // being called from a Java method synchronized on the Thread object.
427  if (!DisableStartThread) {
428    if (thread->is_Java_thread()) {
429      // Initialize the thread state to RUNNABLE before starting this thread.
430      // Can not set it after the thread started because we do not know the
431      // exact thread state at that time. It could be in MONITOR_WAIT or
432      // in SLEEPING or some other state.
433      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
434                                          java_lang_Thread::RUNNABLE);
435    }
436    os::start_thread(thread);
437  }
438}
439
440// Enqueue a VM_Operation to do the job for us - sometime later
441void Thread::send_async_exception(oop java_thread, oop java_throwable) {
442  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
443  VMThread::execute(vm_stop);
444}
445
446
447//
448// Check if an external suspend request has completed (or has been
449// cancelled). Returns true if the thread is externally suspended and
450// false otherwise.
451//
452// The bits parameter returns information about the code path through
453// the routine. Useful for debugging:
454//
455// set in is_ext_suspend_completed():
456// 0x00000001 - routine was entered
457// 0x00000010 - routine return false at end
458// 0x00000100 - thread exited (return false)
459// 0x00000200 - suspend request cancelled (return false)
460// 0x00000400 - thread suspended (return true)
461// 0x00001000 - thread is in a suspend equivalent state (return true)
462// 0x00002000 - thread is native and walkable (return true)
463// 0x00004000 - thread is native_trans and walkable (needed retry)
464//
465// set in wait_for_ext_suspend_completion():
466// 0x00010000 - routine was entered
467// 0x00020000 - suspend request cancelled before loop (return false)
468// 0x00040000 - thread suspended before loop (return true)
469// 0x00080000 - suspend request cancelled in loop (return false)
470// 0x00100000 - thread suspended in loop (return true)
471// 0x00200000 - suspend not completed during retry loop (return false)
472//
473
474// Helper class for tracing suspend wait debug bits.
475//
476// 0x00000100 indicates that the target thread exited before it could
477// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
478// 0x00080000 each indicate a cancelled suspend request so they don't
479// count as wait failures either.
480#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
481
482class TraceSuspendDebugBits : public StackObj {
483 private:
484  JavaThread * jt;
485  bool         is_wait;
486  bool         called_by_wait;  // meaningful when !is_wait
487  uint32_t *   bits;
488
489 public:
490  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
491                        uint32_t *_bits) {
492    jt             = _jt;
493    is_wait        = _is_wait;
494    called_by_wait = _called_by_wait;
495    bits           = _bits;
496  }
497
498  ~TraceSuspendDebugBits() {
499    if (!is_wait) {
500#if 1
501      // By default, don't trace bits for is_ext_suspend_completed() calls.
502      // That trace is very chatty.
503      return;
504#else
505      if (!called_by_wait) {
506        // If tracing for is_ext_suspend_completed() is enabled, then only
507        // trace calls to it from wait_for_ext_suspend_completion()
508        return;
509      }
510#endif
511    }
512
513    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
514      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
515        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
516        ResourceMark rm;
517
518        tty->print_cr(
519            "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
520            jt->get_thread_name(), *bits);
521
522        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
523      }
524    }
525  }
526};
527#undef DEBUG_FALSE_BITS
528
529
530bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
531  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
532
533  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
534  bool do_trans_retry;           // flag to force the retry
535
536  *bits |= 0x00000001;
537
538  do {
539    do_trans_retry = false;
540
541    if (is_exiting()) {
542      // Thread is in the process of exiting. This is always checked
543      // first to reduce the risk of dereferencing a freed JavaThread.
544      *bits |= 0x00000100;
545      return false;
546    }
547
548    if (!is_external_suspend()) {
549      // Suspend request is cancelled. This is always checked before
550      // is_ext_suspended() to reduce the risk of a rogue resume
551      // confusing the thread that made the suspend request.
552      *bits |= 0x00000200;
553      return false;
554    }
555
556    if (is_ext_suspended()) {
557      // thread is suspended
558      *bits |= 0x00000400;
559      return true;
560    }
561
562    // Now that we no longer do hard suspends of threads running
563    // native code, the target thread can be changing thread state
564    // while we are in this routine:
565    //
566    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
567    //
568    // We save a copy of the thread state as observed at this moment
569    // and make our decision about suspend completeness based on the
570    // copy. This closes the race where the thread state is seen as
571    // _thread_in_native_trans in the if-thread_blocked check, but is
572    // seen as _thread_blocked in if-thread_in_native_trans check.
573    JavaThreadState save_state = thread_state();
574
575    if (save_state == _thread_blocked && is_suspend_equivalent()) {
576      // If the thread's state is _thread_blocked and this blocking
577      // condition is known to be equivalent to a suspend, then we can
578      // consider the thread to be externally suspended. This means that
579      // the code that sets _thread_blocked has been modified to do
580      // self-suspension if the blocking condition releases. We also
581      // used to check for CONDVAR_WAIT here, but that is now covered by
582      // the _thread_blocked with self-suspension check.
583      //
584      // Return true since we wouldn't be here unless there was still an
585      // external suspend request.
586      *bits |= 0x00001000;
587      return true;
588    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
589      // Threads running native code will self-suspend on native==>VM/Java
590      // transitions. If its stack is walkable (should always be the case
591      // unless this function is called before the actual java_suspend()
592      // call), then the wait is done.
593      *bits |= 0x00002000;
594      return true;
595    } else if (!called_by_wait && !did_trans_retry &&
596               save_state == _thread_in_native_trans &&
597               frame_anchor()->walkable()) {
598      // The thread is transitioning from thread_in_native to another
599      // thread state. check_safepoint_and_suspend_for_native_trans()
600      // will force the thread to self-suspend. If it hasn't gotten
601      // there yet we may have caught the thread in-between the native
602      // code check above and the self-suspend. Lucky us. If we were
603      // called by wait_for_ext_suspend_completion(), then it
604      // will be doing the retries so we don't have to.
605      //
606      // Since we use the saved thread state in the if-statement above,
607      // there is a chance that the thread has already transitioned to
608      // _thread_blocked by the time we get here. In that case, we will
609      // make a single unnecessary pass through the logic below. This
610      // doesn't hurt anything since we still do the trans retry.
611
612      *bits |= 0x00004000;
613
614      // Once the thread leaves thread_in_native_trans for another
615      // thread state, we break out of this retry loop. We shouldn't
616      // need this flag to prevent us from getting back here, but
617      // sometimes paranoia is good.
618      did_trans_retry = true;
619
620      // We wait for the thread to transition to a more usable state.
621      for (int i = 1; i <= SuspendRetryCount; i++) {
622        // We used to do an "os::yield_all(i)" call here with the intention
623        // that yielding would increase on each retry. However, the parameter
624        // is ignored on Linux which means the yield didn't scale up. Waiting
625        // on the SR_lock below provides a much more predictable scale up for
626        // the delay. It also provides a simple/direct point to check for any
627        // safepoint requests from the VMThread
628
629        // temporarily drops SR_lock while doing wait with safepoint check
630        // (if we're a JavaThread - the WatcherThread can also call this)
631        // and increase delay with each retry
632        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
633
634        // check the actual thread state instead of what we saved above
635        if (thread_state() != _thread_in_native_trans) {
636          // the thread has transitioned to another thread state so
637          // try all the checks (except this one) one more time.
638          do_trans_retry = true;
639          break;
640        }
641      } // end retry loop
642
643
644    }
645  } while (do_trans_retry);
646
647  *bits |= 0x00000010;
648  return false;
649}
650
651//
652// Wait for an external suspend request to complete (or be cancelled).
653// Returns true if the thread is externally suspended and false otherwise.
654//
655bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
656       uint32_t *bits) {
657  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
658                             false /* !called_by_wait */, bits);
659
660  // local flag copies to minimize SR_lock hold time
661  bool is_suspended;
662  bool pending;
663  uint32_t reset_bits;
664
665  // set a marker so is_ext_suspend_completed() knows we are the caller
666  *bits |= 0x00010000;
667
668  // We use reset_bits to reinitialize the bits value at the top of
669  // each retry loop. This allows the caller to make use of any
670  // unused bits for their own marking purposes.
671  reset_bits = *bits;
672
673  {
674    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
675    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
676                                            delay, bits);
677    pending = is_external_suspend();
678  }
679  // must release SR_lock to allow suspension to complete
680
681  if (!pending) {
682    // A cancelled suspend request is the only false return from
683    // is_ext_suspend_completed() that keeps us from entering the
684    // retry loop.
685    *bits |= 0x00020000;
686    return false;
687  }
688
689  if (is_suspended) {
690    *bits |= 0x00040000;
691    return true;
692  }
693
694  for (int i = 1; i <= retries; i++) {
695    *bits = reset_bits;  // reinit to only track last retry
696
697    // We used to do an "os::yield_all(i)" call here with the intention
698    // that yielding would increase on each retry. However, the parameter
699    // is ignored on Linux which means the yield didn't scale up. Waiting
700    // on the SR_lock below provides a much more predictable scale up for
701    // the delay. It also provides a simple/direct point to check for any
702    // safepoint requests from the VMThread
703
704    {
705      MutexLocker ml(SR_lock());
706      // wait with safepoint check (if we're a JavaThread - the WatcherThread
707      // can also call this)  and increase delay with each retry
708      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
709
710      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
711                                              delay, bits);
712
713      // It is possible for the external suspend request to be cancelled
714      // (by a resume) before the actual suspend operation is completed.
715      // Refresh our local copy to see if we still need to wait.
716      pending = is_external_suspend();
717    }
718
719    if (!pending) {
720      // A cancelled suspend request is the only false return from
721      // is_ext_suspend_completed() that keeps us from staying in the
722      // retry loop.
723      *bits |= 0x00080000;
724      return false;
725    }
726
727    if (is_suspended) {
728      *bits |= 0x00100000;
729      return true;
730    }
731  } // end retry loop
732
733  // thread did not suspend after all our retries
734  *bits |= 0x00200000;
735  return false;
736}
737
738#ifndef PRODUCT
739void JavaThread::record_jump(address target, address instr, const char* file, int line) {
740
741  // This should not need to be atomic as the only way for simultaneous
742  // updates is via interrupts. Even then this should be rare or non-existent
743  // and we don't care that much anyway.
744
745  int index = _jmp_ring_index;
746  _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
747  _jmp_ring[index]._target = (intptr_t) target;
748  _jmp_ring[index]._instruction = (intptr_t) instr;
749  _jmp_ring[index]._file = file;
750  _jmp_ring[index]._line = line;
751}
752#endif /* PRODUCT */
753
754// Called by flat profiler
755// Callers have already called wait_for_ext_suspend_completion
756// The assertion for that is currently too complex to put here:
757bool JavaThread::profile_last_Java_frame(frame* _fr) {
758  bool gotframe = false;
759  // self suspension saves needed state.
760  if (has_last_Java_frame() && _anchor.walkable()) {
761     *_fr = pd_last_frame();
762     gotframe = true;
763  }
764  return gotframe;
765}
766
767void Thread::interrupt(Thread* thread) {
768  trace("interrupt", thread);
769  debug_only(check_for_dangling_thread_pointer(thread);)
770  os::interrupt(thread);
771}
772
773bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
774  trace("is_interrupted", thread);
775  debug_only(check_for_dangling_thread_pointer(thread);)
776  // Note:  If clear_interrupted==false, this simply fetches and
777  // returns the value of the field osthread()->interrupted().
778  return os::is_interrupted(thread, clear_interrupted);
779}
780
781
782// GC Support
783bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
784  jint thread_parity = _oops_do_parity;
785  if (thread_parity != strong_roots_parity) {
786    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
787    if (res == thread_parity) {
788      return true;
789    } else {
790      guarantee(res == strong_roots_parity, "Or else what?");
791      assert(SharedHeap::heap()->workers()->active_workers() > 0,
792         "Should only fail when parallel.");
793      return false;
794    }
795  }
796  assert(SharedHeap::heap()->workers()->active_workers() > 0,
797         "Should only fail when parallel.");
798  return false;
799}
800
801void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
802  active_handles()->oops_do(f);
803  // Do oop for ThreadShadow
804  f->do_oop((oop*)&_pending_exception);
805  handle_area()->oops_do(f);
806}
807
808void Thread::nmethods_do(CodeBlobClosure* cf) {
809  // no nmethods in a generic thread...
810}
811
812void Thread::metadata_do(void f(Metadata*)) {
813  if (metadata_handles() != NULL) {
814    for (int i = 0; i< metadata_handles()->length(); i++) {
815      f(metadata_handles()->at(i));
816    }
817  }
818}
819
820void Thread::print_on(outputStream* st) const {
821  // get_priority assumes osthread initialized
822  if (osthread() != NULL) {
823    int os_prio;
824    if (os::get_native_priority(this, &os_prio) == OS_OK) {
825      st->print("os_prio=%d ", os_prio);
826    }
827    st->print("tid=" INTPTR_FORMAT " ", this);
828    osthread()->print_on(st);
829  }
830  debug_only(if (WizardMode) print_owned_locks_on(st);)
831}
832
833// Thread::print_on_error() is called by fatal error handler. Don't use
834// any lock or allocate memory.
835void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
836  if (is_VM_thread())                  st->print("VMThread");
837  else if (is_Compiler_thread())            st->print("CompilerThread");
838  else if (is_Java_thread())                st->print("JavaThread");
839  else if (is_GC_task_thread())             st->print("GCTaskThread");
840  else if (is_Watcher_thread())             st->print("WatcherThread");
841  else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
842  else st->print("Thread");
843
844  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
845            _stack_base - _stack_size, _stack_base);
846
847  if (osthread()) {
848    st->print(" [id=%d]", osthread()->thread_id());
849  }
850}
851
852#ifdef ASSERT
853void Thread::print_owned_locks_on(outputStream* st) const {
854  Monitor *cur = _owned_locks;
855  if (cur == NULL) {
856    st->print(" (no locks) ");
857  } else {
858    st->print_cr(" Locks owned:");
859    while (cur) {
860      cur->print_on(st);
861      cur = cur->next();
862    }
863  }
864}
865
866static int ref_use_count  = 0;
867
868bool Thread::owns_locks_but_compiled_lock() const {
869  for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
870    if (cur != Compile_lock) return true;
871  }
872  return false;
873}
874
875
876#endif
877
878#ifndef PRODUCT
879
880// The flag: potential_vm_operation notifies if this particular safepoint state could potential
881// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
882// no threads which allow_vm_block's are held
883void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
884    // Check if current thread is allowed to block at a safepoint
885    if (!(_allow_safepoint_count == 0))
886      fatal("Possible safepoint reached by thread that does not allow it");
887    if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
888      fatal("LEAF method calling lock?");
889    }
890
891#ifdef ASSERT
892    if (potential_vm_operation && is_Java_thread()
893        && !Universe::is_bootstrapping()) {
894      // Make sure we do not hold any locks that the VM thread also uses.
895      // This could potentially lead to deadlocks
896      for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
897        // Threads_lock is special, since the safepoint synchronization will not start before this is
898        // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
899        // since it is used to transfer control between JavaThreads and the VMThread
900        // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
901        if ((cur->allow_vm_block() &&
902              cur != Threads_lock &&
903              cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
904              cur != VMOperationRequest_lock &&
905              cur != VMOperationQueue_lock) ||
906              cur->rank() == Mutex::special) {
907          fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
908        }
909      }
910    }
911
912    if (GCALotAtAllSafepoints) {
913      // We could enter a safepoint here and thus have a gc
914      InterfaceSupport::check_gc_alot();
915    }
916#endif
917}
918#endif
919
920bool Thread::is_in_stack(address adr) const {
921  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
922  address end = os::current_stack_pointer();
923  // Allow non Java threads to call this without stack_base
924  if (_stack_base == NULL) return true;
925  if (stack_base() >= adr && adr >= end) return true;
926
927  return false;
928}
929
930
931bool Thread::is_in_usable_stack(address adr) const {
932  size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
933  size_t usable_stack_size = _stack_size - stack_guard_size;
934
935  return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
936}
937
938
939// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
940// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
941// used for compilation in the future. If that change is made, the need for these methods
942// should be revisited, and they should be removed if possible.
943
944bool Thread::is_lock_owned(address adr) const {
945  return on_local_stack(adr);
946}
947
948bool Thread::set_as_starting_thread() {
949 // NOTE: this must be called inside the main thread.
950  return os::create_main_thread((JavaThread*)this);
951}
952
953static void initialize_class(Symbol* class_name, TRAPS) {
954  Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
955  InstanceKlass::cast(klass)->initialize(CHECK);
956}
957
958
959// Creates the initial ThreadGroup
960static Handle create_initial_thread_group(TRAPS) {
961  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
962  instanceKlassHandle klass (THREAD, k);
963
964  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
965  {
966    JavaValue result(T_VOID);
967    JavaCalls::call_special(&result,
968                            system_instance,
969                            klass,
970                            vmSymbols::object_initializer_name(),
971                            vmSymbols::void_method_signature(),
972                            CHECK_NH);
973  }
974  Universe::set_system_thread_group(system_instance());
975
976  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
977  {
978    JavaValue result(T_VOID);
979    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
980    JavaCalls::call_special(&result,
981                            main_instance,
982                            klass,
983                            vmSymbols::object_initializer_name(),
984                            vmSymbols::threadgroup_string_void_signature(),
985                            system_instance,
986                            string,
987                            CHECK_NH);
988  }
989  return main_instance;
990}
991
992// Creates the initial Thread
993static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
994  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
995  instanceKlassHandle klass (THREAD, k);
996  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
997
998  java_lang_Thread::set_thread(thread_oop(), thread);
999  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1000  thread->set_threadObj(thread_oop());
1001
1002  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1003
1004  JavaValue result(T_VOID);
1005  JavaCalls::call_special(&result, thread_oop,
1006                                   klass,
1007                                   vmSymbols::object_initializer_name(),
1008                                   vmSymbols::threadgroup_string_void_signature(),
1009                                   thread_group,
1010                                   string,
1011                                   CHECK_NULL);
1012  return thread_oop();
1013}
1014
1015static void call_initializeSystemClass(TRAPS) {
1016  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1017  instanceKlassHandle klass (THREAD, k);
1018
1019  JavaValue result(T_VOID);
1020  JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1021                                         vmSymbols::void_method_signature(), CHECK);
1022}
1023
1024char java_runtime_name[128] = "";
1025char java_runtime_version[128] = "";
1026
1027// extract the JRE name from sun.misc.Version.java_runtime_name
1028static const char* get_java_runtime_name(TRAPS) {
1029  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1030                                      Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1031  fieldDescriptor fd;
1032  bool found = k != NULL &&
1033               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1034                                                        vmSymbols::string_signature(), &fd);
1035  if (found) {
1036    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1037    if (name_oop == NULL)
1038      return NULL;
1039    const char* name = java_lang_String::as_utf8_string(name_oop,
1040                                                        java_runtime_name,
1041                                                        sizeof(java_runtime_name));
1042    return name;
1043  } else {
1044    return NULL;
1045  }
1046}
1047
1048// extract the JRE version from sun.misc.Version.java_runtime_version
1049static const char* get_java_runtime_version(TRAPS) {
1050  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1051                                      Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1052  fieldDescriptor fd;
1053  bool found = k != NULL &&
1054               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1055                                                        vmSymbols::string_signature(), &fd);
1056  if (found) {
1057    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1058    if (name_oop == NULL)
1059      return NULL;
1060    const char* name = java_lang_String::as_utf8_string(name_oop,
1061                                                        java_runtime_version,
1062                                                        sizeof(java_runtime_version));
1063    return name;
1064  } else {
1065    return NULL;
1066  }
1067}
1068
1069// General purpose hook into Java code, run once when the VM is initialized.
1070// The Java library method itself may be changed independently from the VM.
1071static void call_postVMInitHook(TRAPS) {
1072  Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1073  instanceKlassHandle klass (THREAD, k);
1074  if (klass.not_null()) {
1075    JavaValue result(T_VOID);
1076    JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1077                                           vmSymbols::void_method_signature(),
1078                                           CHECK);
1079  }
1080}
1081
1082static void reset_vm_info_property(TRAPS) {
1083  // the vm info string
1084  ResourceMark rm(THREAD);
1085  const char *vm_info = VM_Version::vm_info_string();
1086
1087  // java.lang.System class
1088  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1089  instanceKlassHandle klass (THREAD, k);
1090
1091  // setProperty arguments
1092  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1093  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1094
1095  // return value
1096  JavaValue r(T_OBJECT);
1097
1098  // public static String setProperty(String key, String value);
1099  JavaCalls::call_static(&r,
1100                         klass,
1101                         vmSymbols::setProperty_name(),
1102                         vmSymbols::string_string_string_signature(),
1103                         key_str,
1104                         value_str,
1105                         CHECK);
1106}
1107
1108
1109void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1110  assert(thread_group.not_null(), "thread group should be specified");
1111  assert(threadObj() == NULL, "should only create Java thread object once");
1112
1113  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1114  instanceKlassHandle klass (THREAD, k);
1115  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1116
1117  java_lang_Thread::set_thread(thread_oop(), this);
1118  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1119  set_threadObj(thread_oop());
1120
1121  JavaValue result(T_VOID);
1122  if (thread_name != NULL) {
1123    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1124    // Thread gets assigned specified name and null target
1125    JavaCalls::call_special(&result,
1126                            thread_oop,
1127                            klass,
1128                            vmSymbols::object_initializer_name(),
1129                            vmSymbols::threadgroup_string_void_signature(),
1130                            thread_group, // Argument 1
1131                            name,         // Argument 2
1132                            THREAD);
1133  } else {
1134    // Thread gets assigned name "Thread-nnn" and null target
1135    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1136    JavaCalls::call_special(&result,
1137                            thread_oop,
1138                            klass,
1139                            vmSymbols::object_initializer_name(),
1140                            vmSymbols::threadgroup_runnable_void_signature(),
1141                            thread_group, // Argument 1
1142                            Handle(),     // Argument 2
1143                            THREAD);
1144  }
1145
1146
1147  if (daemon) {
1148      java_lang_Thread::set_daemon(thread_oop());
1149  }
1150
1151  if (HAS_PENDING_EXCEPTION) {
1152    return;
1153  }
1154
1155  KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1156  Handle threadObj(this, this->threadObj());
1157
1158  JavaCalls::call_special(&result,
1159                         thread_group,
1160                         group,
1161                         vmSymbols::add_method_name(),
1162                         vmSymbols::thread_void_signature(),
1163                         threadObj,          // Arg 1
1164                         THREAD);
1165
1166
1167}
1168
1169// NamedThread --  non-JavaThread subclasses with multiple
1170// uniquely named instances should derive from this.
1171NamedThread::NamedThread() : Thread() {
1172  _name = NULL;
1173  _processed_thread = NULL;
1174}
1175
1176NamedThread::~NamedThread() {
1177  if (_name != NULL) {
1178    FREE_C_HEAP_ARRAY(char, _name, mtThread);
1179    _name = NULL;
1180  }
1181}
1182
1183void NamedThread::set_name(const char* format, ...) {
1184  guarantee(_name == NULL, "Only get to set name once.");
1185  _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1186  guarantee(_name != NULL, "alloc failure");
1187  va_list ap;
1188  va_start(ap, format);
1189  jio_vsnprintf(_name, max_name_len, format, ap);
1190  va_end(ap);
1191}
1192
1193void NamedThread::print_on(outputStream* st) const {
1194  st->print("\"%s\" ", name());
1195  Thread::print_on(st);
1196  st->cr();
1197}
1198
1199
1200// ======= WatcherThread ========
1201
1202// The watcher thread exists to simulate timer interrupts.  It should
1203// be replaced by an abstraction over whatever native support for
1204// timer interrupts exists on the platform.
1205
1206WatcherThread* WatcherThread::_watcher_thread   = NULL;
1207bool WatcherThread::_startable = false;
1208volatile bool  WatcherThread::_should_terminate = false;
1209
1210WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1211  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1212  if (os::create_thread(this, os::watcher_thread)) {
1213    _watcher_thread = this;
1214
1215    // Set the watcher thread to the highest OS priority which should not be
1216    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1217    // is created. The only normal thread using this priority is the reference
1218    // handler thread, which runs for very short intervals only.
1219    // If the VMThread's priority is not lower than the WatcherThread profiling
1220    // will be inaccurate.
1221    os::set_priority(this, MaxPriority);
1222    if (!DisableStartThread) {
1223      os::start_thread(this);
1224    }
1225  }
1226}
1227
1228int WatcherThread::sleep() const {
1229  MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1230
1231  // remaining will be zero if there are no tasks,
1232  // causing the WatcherThread to sleep until a task is
1233  // enrolled
1234  int remaining = PeriodicTask::time_to_wait();
1235  int time_slept = 0;
1236
1237  // we expect this to timeout - we only ever get unparked when
1238  // we should terminate or when a new task has been enrolled
1239  OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1240
1241  jlong time_before_loop = os::javaTimeNanos();
1242
1243  for (;;) {
1244    bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1245    jlong now = os::javaTimeNanos();
1246
1247    if (remaining == 0) {
1248        // if we didn't have any tasks we could have waited for a long time
1249        // consider the time_slept zero and reset time_before_loop
1250        time_slept = 0;
1251        time_before_loop = now;
1252    } else {
1253        // need to recalculate since we might have new tasks in _tasks
1254        time_slept = (int) ((now - time_before_loop) / 1000000);
1255    }
1256
1257    // Change to task list or spurious wakeup of some kind
1258    if (timedout || _should_terminate) {
1259        break;
1260    }
1261
1262    remaining = PeriodicTask::time_to_wait();
1263    if (remaining == 0) {
1264        // Last task was just disenrolled so loop around and wait until
1265        // another task gets enrolled
1266        continue;
1267    }
1268
1269    remaining -= time_slept;
1270    if (remaining <= 0)
1271      break;
1272  }
1273
1274  return time_slept;
1275}
1276
1277void WatcherThread::run() {
1278  assert(this == watcher_thread(), "just checking");
1279
1280  this->record_stack_base_and_size();
1281  this->initialize_thread_local_storage();
1282  this->set_active_handles(JNIHandleBlock::allocate_block());
1283  while (!_should_terminate) {
1284    assert(watcher_thread() == Thread::current(), "thread consistency check");
1285    assert(watcher_thread() == this, "thread consistency check");
1286
1287    // Calculate how long it'll be until the next PeriodicTask work
1288    // should be done, and sleep that amount of time.
1289    int time_waited = sleep();
1290
1291    if (is_error_reported()) {
1292      // A fatal error has happened, the error handler(VMError::report_and_die)
1293      // should abort JVM after creating an error log file. However in some
1294      // rare cases, the error handler itself might deadlock. Here we try to
1295      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1296      //
1297      // This code is in WatcherThread because WatcherThread wakes up
1298      // periodically so the fatal error handler doesn't need to do anything;
1299      // also because the WatcherThread is less likely to crash than other
1300      // threads.
1301
1302      for (;;) {
1303        if (!ShowMessageBoxOnError
1304         && (OnError == NULL || OnError[0] == '\0')
1305         && Arguments::abort_hook() == NULL) {
1306             os::sleep(this, 2 * 60 * 1000, false);
1307             fdStream err(defaultStream::output_fd());
1308             err.print_raw_cr("# [ timer expired, abort... ]");
1309             // skip atexit/vm_exit/vm_abort hooks
1310             os::die();
1311        }
1312
1313        // Wake up 5 seconds later, the fatal handler may reset OnError or
1314        // ShowMessageBoxOnError when it is ready to abort.
1315        os::sleep(this, 5 * 1000, false);
1316      }
1317    }
1318
1319    PeriodicTask::real_time_tick(time_waited);
1320  }
1321
1322  // Signal that it is terminated
1323  {
1324    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1325    _watcher_thread = NULL;
1326    Terminator_lock->notify();
1327  }
1328
1329  // Thread destructor usually does this..
1330  ThreadLocalStorage::set_thread(NULL);
1331}
1332
1333void WatcherThread::start() {
1334  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1335
1336  if (watcher_thread() == NULL && _startable) {
1337    _should_terminate = false;
1338    // Create the single instance of WatcherThread
1339    new WatcherThread();
1340  }
1341}
1342
1343void WatcherThread::make_startable() {
1344  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1345  _startable = true;
1346}
1347
1348void WatcherThread::stop() {
1349  // Get the PeriodicTask_lock if we can. If we cannot, then the
1350  // WatcherThread is using it and we don't want to block on that lock
1351  // here because that might cause a safepoint deadlock depending on
1352  // what the current WatcherThread tasks are doing.
1353  bool have_lock = PeriodicTask_lock->try_lock();
1354
1355  _should_terminate = true;
1356  OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1357
1358  if (have_lock) {
1359    WatcherThread* watcher = watcher_thread();
1360    if (watcher != NULL) {
1361      // If we managed to get the lock, then we should unpark the
1362      // WatcherThread so that it can see we want it to stop.
1363      watcher->unpark();
1364    }
1365
1366    PeriodicTask_lock->unlock();
1367  }
1368
1369  // it is ok to take late safepoints here, if needed
1370  MutexLocker mu(Terminator_lock);
1371
1372  while (watcher_thread() != NULL) {
1373    // This wait should make safepoint checks, wait without a timeout,
1374    // and wait as a suspend-equivalent condition.
1375    //
1376    // Note: If the FlatProfiler is running, then this thread is waiting
1377    // for the WatcherThread to terminate and the WatcherThread, via the
1378    // FlatProfiler task, is waiting for the external suspend request on
1379    // this thread to complete. wait_for_ext_suspend_completion() will
1380    // eventually timeout, but that takes time. Making this wait a
1381    // suspend-equivalent condition solves that timeout problem.
1382    //
1383    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1384                          Mutex::_as_suspend_equivalent_flag);
1385  }
1386}
1387
1388void WatcherThread::unpark() {
1389  MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1390  PeriodicTask_lock->notify();
1391}
1392
1393void WatcherThread::print_on(outputStream* st) const {
1394  st->print("\"%s\" ", name());
1395  Thread::print_on(st);
1396  st->cr();
1397}
1398
1399// ======= JavaThread ========
1400
1401// A JavaThread is a normal Java thread
1402
1403void JavaThread::initialize() {
1404  // Initialize fields
1405
1406  // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1407  set_claimed_par_id(UINT_MAX);
1408
1409  set_saved_exception_pc(NULL);
1410  set_threadObj(NULL);
1411  _anchor.clear();
1412  set_entry_point(NULL);
1413  set_jni_functions(jni_functions());
1414  set_callee_target(NULL);
1415  set_vm_result(NULL);
1416  set_vm_result_2(NULL);
1417  set_vframe_array_head(NULL);
1418  set_vframe_array_last(NULL);
1419  set_deferred_locals(NULL);
1420  set_deopt_mark(NULL);
1421  set_deopt_nmethod(NULL);
1422  clear_must_deopt_id();
1423  set_monitor_chunks(NULL);
1424  set_next(NULL);
1425  set_thread_state(_thread_new);
1426#if INCLUDE_NMT
1427  set_recorder(NULL);
1428#endif
1429  _terminated = _not_terminated;
1430  _privileged_stack_top = NULL;
1431  _array_for_gc = NULL;
1432  _suspend_equivalent = false;
1433  _in_deopt_handler = 0;
1434  _doing_unsafe_access = false;
1435  _stack_guard_state = stack_guard_unused;
1436  (void)const_cast<oop&>(_exception_oop = oop(NULL));
1437  _exception_pc  = 0;
1438  _exception_handler_pc = 0;
1439  _is_method_handle_return = 0;
1440  _jvmti_thread_state= NULL;
1441  _should_post_on_exceptions_flag = JNI_FALSE;
1442  _jvmti_get_loaded_classes_closure = NULL;
1443  _interp_only_mode    = 0;
1444  _special_runtime_exit_condition = _no_async_condition;
1445  _pending_async_exception = NULL;
1446  _thread_stat = NULL;
1447  _thread_stat = new ThreadStatistics();
1448  _blocked_on_compilation = false;
1449  _jni_active_critical = 0;
1450  _pending_jni_exception_check_fn = NULL;
1451  _do_not_unlock_if_synchronized = false;
1452  _cached_monitor_info = NULL;
1453  _parker = Parker::Allocate(this);
1454
1455#ifndef PRODUCT
1456  _jmp_ring_index = 0;
1457  for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1458    record_jump(NULL, NULL, NULL, 0);
1459  }
1460#endif /* PRODUCT */
1461
1462  set_thread_profiler(NULL);
1463  if (FlatProfiler::is_active()) {
1464    // This is where we would decide to either give each thread it's own profiler
1465    // or use one global one from FlatProfiler,
1466    // or up to some count of the number of profiled threads, etc.
1467    ThreadProfiler* pp = new ThreadProfiler();
1468    pp->engage();
1469    set_thread_profiler(pp);
1470  }
1471
1472  // Setup safepoint state info for this thread
1473  ThreadSafepointState::create(this);
1474
1475  debug_only(_java_call_counter = 0);
1476
1477  // JVMTI PopFrame support
1478  _popframe_condition = popframe_inactive;
1479  _popframe_preserved_args = NULL;
1480  _popframe_preserved_args_size = 0;
1481
1482  pd_initialize();
1483}
1484
1485#if INCLUDE_ALL_GCS
1486SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1487DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1488#endif // INCLUDE_ALL_GCS
1489
1490JavaThread::JavaThread(bool is_attaching_via_jni) :
1491  Thread()
1492#if INCLUDE_ALL_GCS
1493  , _satb_mark_queue(&_satb_mark_queue_set),
1494  _dirty_card_queue(&_dirty_card_queue_set)
1495#endif // INCLUDE_ALL_GCS
1496{
1497  initialize();
1498  if (is_attaching_via_jni) {
1499    _jni_attach_state = _attaching_via_jni;
1500  } else {
1501    _jni_attach_state = _not_attaching_via_jni;
1502  }
1503  assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1504  _safepoint_visible = false;
1505}
1506
1507bool JavaThread::reguard_stack(address cur_sp) {
1508  if (_stack_guard_state != stack_guard_yellow_disabled) {
1509    return true; // Stack already guarded or guard pages not needed.
1510  }
1511
1512  if (register_stack_overflow()) {
1513    // For those architectures which have separate register and
1514    // memory stacks, we must check the register stack to see if
1515    // it has overflowed.
1516    return false;
1517  }
1518
1519  // Java code never executes within the yellow zone: the latter is only
1520  // there to provoke an exception during stack banging.  If java code
1521  // is executing there, either StackShadowPages should be larger, or
1522  // some exception code in c1, c2 or the interpreter isn't unwinding
1523  // when it should.
1524  guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1525
1526  enable_stack_yellow_zone();
1527  return true;
1528}
1529
1530bool JavaThread::reguard_stack(void) {
1531  return reguard_stack(os::current_stack_pointer());
1532}
1533
1534
1535void JavaThread::block_if_vm_exited() {
1536  if (_terminated == _vm_exited) {
1537    // _vm_exited is set at safepoint, and Threads_lock is never released
1538    // we will block here forever
1539    Threads_lock->lock_without_safepoint_check();
1540    ShouldNotReachHere();
1541  }
1542}
1543
1544
1545// Remove this ifdef when C1 is ported to the compiler interface.
1546static void compiler_thread_entry(JavaThread* thread, TRAPS);
1547
1548JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1549  Thread()
1550#if INCLUDE_ALL_GCS
1551  , _satb_mark_queue(&_satb_mark_queue_set),
1552  _dirty_card_queue(&_dirty_card_queue_set)
1553#endif // INCLUDE_ALL_GCS
1554{
1555  if (TraceThreadEvents) {
1556    tty->print_cr("creating thread %p", this);
1557  }
1558  initialize();
1559  _jni_attach_state = _not_attaching_via_jni;
1560  set_entry_point(entry_point);
1561  // Create the native thread itself.
1562  // %note runtime_23
1563  os::ThreadType thr_type = os::java_thread;
1564  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1565                                                     os::java_thread;
1566  os::create_thread(this, thr_type, stack_sz);
1567  _safepoint_visible = false;
1568  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1569  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1570  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1571  // the exception consists of creating the exception object & initializing it, initialization
1572  // will leave the VM via a JavaCall and then all locks must be unlocked).
1573  //
1574  // The thread is still suspended when we reach here. Thread must be explicit started
1575  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1576  // by calling Threads:add. The reason why this is not done here, is because the thread
1577  // object must be fully initialized (take a look at JVM_Start)
1578}
1579
1580JavaThread::~JavaThread() {
1581  if (TraceThreadEvents) {
1582      tty->print_cr("terminate thread %p", this);
1583  }
1584
1585  // By now, this thread should already be invisible to safepoint,
1586  // and its per-thread recorder also collected.
1587  assert(!is_safepoint_visible(), "wrong state");
1588#if INCLUDE_NMT
1589  assert(get_recorder() == NULL, "Already collected");
1590#endif // INCLUDE_NMT
1591
1592  // JSR166 -- return the parker to the free list
1593  Parker::Release(_parker);
1594  _parker = NULL;
1595
1596  // Free any remaining  previous UnrollBlock
1597  vframeArray* old_array = vframe_array_last();
1598
1599  if (old_array != NULL) {
1600    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1601    old_array->set_unroll_block(NULL);
1602    delete old_info;
1603    delete old_array;
1604  }
1605
1606  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1607  if (deferred != NULL) {
1608    // This can only happen if thread is destroyed before deoptimization occurs.
1609    assert(deferred->length() != 0, "empty array!");
1610    do {
1611      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1612      deferred->remove_at(0);
1613      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1614      delete dlv;
1615    } while (deferred->length() != 0);
1616    delete deferred;
1617  }
1618
1619  // All Java related clean up happens in exit
1620  ThreadSafepointState::destroy(this);
1621  if (_thread_profiler != NULL) delete _thread_profiler;
1622  if (_thread_stat != NULL) delete _thread_stat;
1623}
1624
1625
1626// The first routine called by a new Java thread
1627void JavaThread::run() {
1628  // initialize thread-local alloc buffer related fields
1629  this->initialize_tlab();
1630
1631  // used to test validity of stack trace backs
1632  this->record_base_of_stack_pointer();
1633
1634  // Record real stack base and size.
1635  this->record_stack_base_and_size();
1636
1637  // Initialize thread local storage; set before calling MutexLocker
1638  this->initialize_thread_local_storage();
1639
1640  this->create_stack_guard_pages();
1641
1642  this->cache_global_variables();
1643
1644  // Thread is now sufficient initialized to be handled by the safepoint code as being
1645  // in the VM. Change thread state from _thread_new to _thread_in_vm
1646  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1647
1648  assert(JavaThread::current() == this, "sanity check");
1649  assert(!Thread::current()->owns_locks(), "sanity check");
1650
1651  DTRACE_THREAD_PROBE(start, this);
1652
1653  // This operation might block. We call that after all safepoint checks for a new thread has
1654  // been completed.
1655  this->set_active_handles(JNIHandleBlock::allocate_block());
1656
1657  if (JvmtiExport::should_post_thread_life()) {
1658    JvmtiExport::post_thread_start(this);
1659  }
1660
1661  EventThreadStart event;
1662  if (event.should_commit()) {
1663     event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1664     event.commit();
1665  }
1666
1667  // We call another function to do the rest so we are sure that the stack addresses used
1668  // from there will be lower than the stack base just computed
1669  thread_main_inner();
1670
1671  // Note, thread is no longer valid at this point!
1672}
1673
1674
1675void JavaThread::thread_main_inner() {
1676  assert(JavaThread::current() == this, "sanity check");
1677  assert(this->threadObj() != NULL, "just checking");
1678
1679  // Execute thread entry point unless this thread has a pending exception
1680  // or has been stopped before starting.
1681  // Note: Due to JVM_StopThread we can have pending exceptions already!
1682  if (!this->has_pending_exception() &&
1683      !java_lang_Thread::is_stillborn(this->threadObj())) {
1684    {
1685      ResourceMark rm(this);
1686      this->set_native_thread_name(this->get_thread_name());
1687    }
1688    HandleMark hm(this);
1689    this->entry_point()(this, this);
1690  }
1691
1692  DTRACE_THREAD_PROBE(stop, this);
1693
1694  this->exit(false);
1695  delete this;
1696}
1697
1698
1699static void ensure_join(JavaThread* thread) {
1700  // We do not need to grap the Threads_lock, since we are operating on ourself.
1701  Handle threadObj(thread, thread->threadObj());
1702  assert(threadObj.not_null(), "java thread object must exist");
1703  ObjectLocker lock(threadObj, thread);
1704  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1705  thread->clear_pending_exception();
1706  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1707  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1708  // Clear the native thread instance - this makes isAlive return false and allows the join()
1709  // to complete once we've done the notify_all below
1710  java_lang_Thread::set_thread(threadObj(), NULL);
1711  lock.notify_all(thread);
1712  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1713  thread->clear_pending_exception();
1714}
1715
1716
1717// For any new cleanup additions, please check to see if they need to be applied to
1718// cleanup_failed_attach_current_thread as well.
1719void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1720  assert(this == JavaThread::current(), "thread consistency check");
1721
1722  HandleMark hm(this);
1723  Handle uncaught_exception(this, this->pending_exception());
1724  this->clear_pending_exception();
1725  Handle threadObj(this, this->threadObj());
1726  assert(threadObj.not_null(), "Java thread object should be created");
1727
1728  if (get_thread_profiler() != NULL) {
1729    get_thread_profiler()->disengage();
1730    ResourceMark rm;
1731    get_thread_profiler()->print(get_thread_name());
1732  }
1733
1734
1735  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1736  {
1737    EXCEPTION_MARK;
1738
1739    CLEAR_PENDING_EXCEPTION;
1740  }
1741  if (!destroy_vm) {
1742    if (uncaught_exception.not_null()) {
1743      EXCEPTION_MARK;
1744      // Call method Thread.dispatchUncaughtException().
1745      KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1746      JavaValue result(T_VOID);
1747      JavaCalls::call_virtual(&result,
1748                              threadObj, thread_klass,
1749                              vmSymbols::dispatchUncaughtException_name(),
1750                              vmSymbols::throwable_void_signature(),
1751                              uncaught_exception,
1752                              THREAD);
1753      if (HAS_PENDING_EXCEPTION) {
1754        ResourceMark rm(this);
1755        jio_fprintf(defaultStream::error_stream(),
1756              "\nException: %s thrown from the UncaughtExceptionHandler"
1757              " in thread \"%s\"\n",
1758              pending_exception()->klass()->external_name(),
1759              get_thread_name());
1760        CLEAR_PENDING_EXCEPTION;
1761      }
1762    }
1763
1764    // Called before the java thread exit since we want to read info
1765    // from java_lang_Thread object
1766    EventThreadEnd event;
1767    if (event.should_commit()) {
1768        event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1769        event.commit();
1770    }
1771
1772    // Call after last event on thread
1773    EVENT_THREAD_EXIT(this);
1774
1775    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1776    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1777    // is deprecated anyhow.
1778    if (!is_Compiler_thread()) {
1779      int count = 3;
1780      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1781        EXCEPTION_MARK;
1782        JavaValue result(T_VOID);
1783        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1784        JavaCalls::call_virtual(&result,
1785                              threadObj, thread_klass,
1786                              vmSymbols::exit_method_name(),
1787                              vmSymbols::void_method_signature(),
1788                              THREAD);
1789        CLEAR_PENDING_EXCEPTION;
1790      }
1791    }
1792    // notify JVMTI
1793    if (JvmtiExport::should_post_thread_life()) {
1794      JvmtiExport::post_thread_end(this);
1795    }
1796
1797    // We have notified the agents that we are exiting, before we go on,
1798    // we must check for a pending external suspend request and honor it
1799    // in order to not surprise the thread that made the suspend request.
1800    while (true) {
1801      {
1802        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1803        if (!is_external_suspend()) {
1804          set_terminated(_thread_exiting);
1805          ThreadService::current_thread_exiting(this);
1806          break;
1807        }
1808        // Implied else:
1809        // Things get a little tricky here. We have a pending external
1810        // suspend request, but we are holding the SR_lock so we
1811        // can't just self-suspend. So we temporarily drop the lock
1812        // and then self-suspend.
1813      }
1814
1815      ThreadBlockInVM tbivm(this);
1816      java_suspend_self();
1817
1818      // We're done with this suspend request, but we have to loop around
1819      // and check again. Eventually we will get SR_lock without a pending
1820      // external suspend request and will be able to mark ourselves as
1821      // exiting.
1822    }
1823    // no more external suspends are allowed at this point
1824  } else {
1825    // before_exit() has already posted JVMTI THREAD_END events
1826  }
1827
1828  // Notify waiters on thread object. This has to be done after exit() is called
1829  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1830  // group should have the destroyed bit set before waiters are notified).
1831  ensure_join(this);
1832  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1833
1834  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1835  // held by this thread must be released.  A detach operation must only
1836  // get here if there are no Java frames on the stack.  Therefore, any
1837  // owned monitors at this point MUST be JNI-acquired monitors which are
1838  // pre-inflated and in the monitor cache.
1839  //
1840  // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1841  if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1842    assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1843    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1844    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1845  }
1846
1847  // These things needs to be done while we are still a Java Thread. Make sure that thread
1848  // is in a consistent state, in case GC happens
1849  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1850
1851  if (active_handles() != NULL) {
1852    JNIHandleBlock* block = active_handles();
1853    set_active_handles(NULL);
1854    JNIHandleBlock::release_block(block);
1855  }
1856
1857  if (free_handle_block() != NULL) {
1858    JNIHandleBlock* block = free_handle_block();
1859    set_free_handle_block(NULL);
1860    JNIHandleBlock::release_block(block);
1861  }
1862
1863  // These have to be removed while this is still a valid thread.
1864  remove_stack_guard_pages();
1865
1866  if (UseTLAB) {
1867    tlab().make_parsable(true);  // retire TLAB
1868  }
1869
1870  if (JvmtiEnv::environments_might_exist()) {
1871    JvmtiExport::cleanup_thread(this);
1872  }
1873
1874  // We must flush any deferred card marks before removing a thread from
1875  // the list of active threads.
1876  Universe::heap()->flush_deferred_store_barrier(this);
1877  assert(deferred_card_mark().is_empty(), "Should have been flushed");
1878
1879#if INCLUDE_ALL_GCS
1880  // We must flush the G1-related buffers before removing a thread
1881  // from the list of active threads. We must do this after any deferred
1882  // card marks have been flushed (above) so that any entries that are
1883  // added to the thread's dirty card queue as a result are not lost.
1884  if (UseG1GC) {
1885    flush_barrier_queues();
1886  }
1887#endif // INCLUDE_ALL_GCS
1888
1889  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1890  Threads::remove(this);
1891}
1892
1893#if INCLUDE_ALL_GCS
1894// Flush G1-related queues.
1895void JavaThread::flush_barrier_queues() {
1896  satb_mark_queue().flush();
1897  dirty_card_queue().flush();
1898}
1899
1900void JavaThread::initialize_queues() {
1901  assert(!SafepointSynchronize::is_at_safepoint(),
1902         "we should not be at a safepoint");
1903
1904  ObjPtrQueue& satb_queue = satb_mark_queue();
1905  SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1906  // The SATB queue should have been constructed with its active
1907  // field set to false.
1908  assert(!satb_queue.is_active(), "SATB queue should not be active");
1909  assert(satb_queue.is_empty(), "SATB queue should be empty");
1910  // If we are creating the thread during a marking cycle, we should
1911  // set the active field of the SATB queue to true.
1912  if (satb_queue_set.is_active()) {
1913    satb_queue.set_active(true);
1914  }
1915
1916  DirtyCardQueue& dirty_queue = dirty_card_queue();
1917  // The dirty card queue should have been constructed with its
1918  // active field set to true.
1919  assert(dirty_queue.is_active(), "dirty card queue should be active");
1920}
1921#endif // INCLUDE_ALL_GCS
1922
1923void JavaThread::cleanup_failed_attach_current_thread() {
1924  if (get_thread_profiler() != NULL) {
1925    get_thread_profiler()->disengage();
1926    ResourceMark rm;
1927    get_thread_profiler()->print(get_thread_name());
1928  }
1929
1930  if (active_handles() != NULL) {
1931    JNIHandleBlock* block = active_handles();
1932    set_active_handles(NULL);
1933    JNIHandleBlock::release_block(block);
1934  }
1935
1936  if (free_handle_block() != NULL) {
1937    JNIHandleBlock* block = free_handle_block();
1938    set_free_handle_block(NULL);
1939    JNIHandleBlock::release_block(block);
1940  }
1941
1942  // These have to be removed while this is still a valid thread.
1943  remove_stack_guard_pages();
1944
1945  if (UseTLAB) {
1946    tlab().make_parsable(true);  // retire TLAB, if any
1947  }
1948
1949#if INCLUDE_ALL_GCS
1950  if (UseG1GC) {
1951    flush_barrier_queues();
1952  }
1953#endif // INCLUDE_ALL_GCS
1954
1955  Threads::remove(this);
1956  delete this;
1957}
1958
1959
1960
1961
1962JavaThread* JavaThread::active() {
1963  Thread* thread = ThreadLocalStorage::thread();
1964  assert(thread != NULL, "just checking");
1965  if (thread->is_Java_thread()) {
1966    return (JavaThread*) thread;
1967  } else {
1968    assert(thread->is_VM_thread(), "this must be a vm thread");
1969    VM_Operation* op = ((VMThread*) thread)->vm_operation();
1970    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1971    assert(ret->is_Java_thread(), "must be a Java thread");
1972    return ret;
1973  }
1974}
1975
1976bool JavaThread::is_lock_owned(address adr) const {
1977  if (Thread::is_lock_owned(adr)) return true;
1978
1979  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1980    if (chunk->contains(adr)) return true;
1981  }
1982
1983  return false;
1984}
1985
1986
1987void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1988  chunk->set_next(monitor_chunks());
1989  set_monitor_chunks(chunk);
1990}
1991
1992void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1993  guarantee(monitor_chunks() != NULL, "must be non empty");
1994  if (monitor_chunks() == chunk) {
1995    set_monitor_chunks(chunk->next());
1996  } else {
1997    MonitorChunk* prev = monitor_chunks();
1998    while (prev->next() != chunk) prev = prev->next();
1999    prev->set_next(chunk->next());
2000  }
2001}
2002
2003// JVM support.
2004
2005// Note: this function shouldn't block if it's called in
2006// _thread_in_native_trans state (such as from
2007// check_special_condition_for_native_trans()).
2008void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2009
2010  if (has_last_Java_frame() && has_async_condition()) {
2011    // If we are at a polling page safepoint (not a poll return)
2012    // then we must defer async exception because live registers
2013    // will be clobbered by the exception path. Poll return is
2014    // ok because the call we a returning from already collides
2015    // with exception handling registers and so there is no issue.
2016    // (The exception handling path kills call result registers but
2017    //  this is ok since the exception kills the result anyway).
2018
2019    if (is_at_poll_safepoint()) {
2020      // if the code we are returning to has deoptimized we must defer
2021      // the exception otherwise live registers get clobbered on the
2022      // exception path before deoptimization is able to retrieve them.
2023      //
2024      RegisterMap map(this, false);
2025      frame caller_fr = last_frame().sender(&map);
2026      assert(caller_fr.is_compiled_frame(), "what?");
2027      if (caller_fr.is_deoptimized_frame()) {
2028        if (TraceExceptions) {
2029          ResourceMark rm;
2030          tty->print_cr("deferred async exception at compiled safepoint");
2031        }
2032        return;
2033      }
2034    }
2035  }
2036
2037  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2038  if (condition == _no_async_condition) {
2039    // Conditions have changed since has_special_runtime_exit_condition()
2040    // was called:
2041    // - if we were here only because of an external suspend request,
2042    //   then that was taken care of above (or cancelled) so we are done
2043    // - if we were here because of another async request, then it has
2044    //   been cleared between the has_special_runtime_exit_condition()
2045    //   and now so again we are done
2046    return;
2047  }
2048
2049  // Check for pending async. exception
2050  if (_pending_async_exception != NULL) {
2051    // Only overwrite an already pending exception, if it is not a threadDeath.
2052    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2053
2054      // We cannot call Exceptions::_throw(...) here because we cannot block
2055      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2056
2057      if (TraceExceptions) {
2058        ResourceMark rm;
2059        tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2060        if (has_last_Java_frame()) {
2061          frame f = last_frame();
2062          tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2063        }
2064        tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2065      }
2066      _pending_async_exception = NULL;
2067      clear_has_async_exception();
2068    }
2069  }
2070
2071  if (check_unsafe_error &&
2072      condition == _async_unsafe_access_error && !has_pending_exception()) {
2073    condition = _no_async_condition;  // done
2074    switch (thread_state()) {
2075    case _thread_in_vm:
2076      {
2077        JavaThread* THREAD = this;
2078        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2079      }
2080    case _thread_in_native:
2081      {
2082        ThreadInVMfromNative tiv(this);
2083        JavaThread* THREAD = this;
2084        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2085      }
2086    case _thread_in_Java:
2087      {
2088        ThreadInVMfromJava tiv(this);
2089        JavaThread* THREAD = this;
2090        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2091      }
2092    default:
2093      ShouldNotReachHere();
2094    }
2095  }
2096
2097  assert(condition == _no_async_condition || has_pending_exception() ||
2098         (!check_unsafe_error && condition == _async_unsafe_access_error),
2099         "must have handled the async condition, if no exception");
2100}
2101
2102void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2103  //
2104  // Check for pending external suspend. Internal suspend requests do
2105  // not use handle_special_runtime_exit_condition().
2106  // If JNIEnv proxies are allowed, don't self-suspend if the target
2107  // thread is not the current thread. In older versions of jdbx, jdbx
2108  // threads could call into the VM with another thread's JNIEnv so we
2109  // can be here operating on behalf of a suspended thread (4432884).
2110  bool do_self_suspend = is_external_suspend_with_lock();
2111  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2112    //
2113    // Because thread is external suspended the safepoint code will count
2114    // thread as at a safepoint. This can be odd because we can be here
2115    // as _thread_in_Java which would normally transition to _thread_blocked
2116    // at a safepoint. We would like to mark the thread as _thread_blocked
2117    // before calling java_suspend_self like all other callers of it but
2118    // we must then observe proper safepoint protocol. (We can't leave
2119    // _thread_blocked with a safepoint in progress). However we can be
2120    // here as _thread_in_native_trans so we can't use a normal transition
2121    // constructor/destructor pair because they assert on that type of
2122    // transition. We could do something like:
2123    //
2124    // JavaThreadState state = thread_state();
2125    // set_thread_state(_thread_in_vm);
2126    // {
2127    //   ThreadBlockInVM tbivm(this);
2128    //   java_suspend_self()
2129    // }
2130    // set_thread_state(_thread_in_vm_trans);
2131    // if (safepoint) block;
2132    // set_thread_state(state);
2133    //
2134    // but that is pretty messy. Instead we just go with the way the
2135    // code has worked before and note that this is the only path to
2136    // java_suspend_self that doesn't put the thread in _thread_blocked
2137    // mode.
2138
2139    frame_anchor()->make_walkable(this);
2140    java_suspend_self();
2141
2142    // We might be here for reasons in addition to the self-suspend request
2143    // so check for other async requests.
2144  }
2145
2146  if (check_asyncs) {
2147    check_and_handle_async_exceptions();
2148  }
2149}
2150
2151void JavaThread::send_thread_stop(oop java_throwable)  {
2152  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2153  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2154  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2155
2156  // Do not throw asynchronous exceptions against the compiler thread
2157  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2158  if (is_Compiler_thread()) return;
2159
2160  {
2161    // Actually throw the Throwable against the target Thread - however
2162    // only if there is no thread death exception installed already.
2163    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2164      // If the topmost frame is a runtime stub, then we are calling into
2165      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2166      // must deoptimize the caller before continuing, as the compiled  exception handler table
2167      // may not be valid
2168      if (has_last_Java_frame()) {
2169        frame f = last_frame();
2170        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2171          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2172          RegisterMap reg_map(this, UseBiasedLocking);
2173          frame compiled_frame = f.sender(&reg_map);
2174          if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2175            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2176          }
2177        }
2178      }
2179
2180      // Set async. pending exception in thread.
2181      set_pending_async_exception(java_throwable);
2182
2183      if (TraceExceptions) {
2184       ResourceMark rm;
2185       tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2186      }
2187      // for AbortVMOnException flag
2188      NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2189    }
2190  }
2191
2192
2193  // Interrupt thread so it will wake up from a potential wait()
2194  Thread::interrupt(this);
2195}
2196
2197// External suspension mechanism.
2198//
2199// Tell the VM to suspend a thread when ever it knows that it does not hold on
2200// to any VM_locks and it is at a transition
2201// Self-suspension will happen on the transition out of the vm.
2202// Catch "this" coming in from JNIEnv pointers when the thread has been freed
2203//
2204// Guarantees on return:
2205//   + Target thread will not execute any new bytecode (that's why we need to
2206//     force a safepoint)
2207//   + Target thread will not enter any new monitors
2208//
2209void JavaThread::java_suspend() {
2210  { MutexLocker mu(Threads_lock);
2211    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2212       return;
2213    }
2214  }
2215
2216  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2217    if (!is_external_suspend()) {
2218      // a racing resume has cancelled us; bail out now
2219      return;
2220    }
2221
2222    // suspend is done
2223    uint32_t debug_bits = 0;
2224    // Warning: is_ext_suspend_completed() may temporarily drop the
2225    // SR_lock to allow the thread to reach a stable thread state if
2226    // it is currently in a transient thread state.
2227    if (is_ext_suspend_completed(false /* !called_by_wait */,
2228                                 SuspendRetryDelay, &debug_bits) ) {
2229      return;
2230    }
2231  }
2232
2233  VM_ForceSafepoint vm_suspend;
2234  VMThread::execute(&vm_suspend);
2235}
2236
2237// Part II of external suspension.
2238// A JavaThread self suspends when it detects a pending external suspend
2239// request. This is usually on transitions. It is also done in places
2240// where continuing to the next transition would surprise the caller,
2241// e.g., monitor entry.
2242//
2243// Returns the number of times that the thread self-suspended.
2244//
2245// Note: DO NOT call java_suspend_self() when you just want to block current
2246//       thread. java_suspend_self() is the second stage of cooperative
2247//       suspension for external suspend requests and should only be used
2248//       to complete an external suspend request.
2249//
2250int JavaThread::java_suspend_self() {
2251  int ret = 0;
2252
2253  // we are in the process of exiting so don't suspend
2254  if (is_exiting()) {
2255     clear_external_suspend();
2256     return ret;
2257  }
2258
2259  assert(_anchor.walkable() ||
2260    (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2261    "must have walkable stack");
2262
2263  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2264
2265  assert(!this->is_ext_suspended(),
2266    "a thread trying to self-suspend should not already be suspended");
2267
2268  if (this->is_suspend_equivalent()) {
2269    // If we are self-suspending as a result of the lifting of a
2270    // suspend equivalent condition, then the suspend_equivalent
2271    // flag is not cleared until we set the ext_suspended flag so
2272    // that wait_for_ext_suspend_completion() returns consistent
2273    // results.
2274    this->clear_suspend_equivalent();
2275  }
2276
2277  // A racing resume may have cancelled us before we grabbed SR_lock
2278  // above. Or another external suspend request could be waiting for us
2279  // by the time we return from SR_lock()->wait(). The thread
2280  // that requested the suspension may already be trying to walk our
2281  // stack and if we return now, we can change the stack out from under
2282  // it. This would be a "bad thing (TM)" and cause the stack walker
2283  // to crash. We stay self-suspended until there are no more pending
2284  // external suspend requests.
2285  while (is_external_suspend()) {
2286    ret++;
2287    this->set_ext_suspended();
2288
2289    // _ext_suspended flag is cleared by java_resume()
2290    while (is_ext_suspended()) {
2291      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2292    }
2293  }
2294
2295  return ret;
2296}
2297
2298#ifdef ASSERT
2299// verify the JavaThread has not yet been published in the Threads::list, and
2300// hence doesn't need protection from concurrent access at this stage
2301void JavaThread::verify_not_published() {
2302  if (!Threads_lock->owned_by_self()) {
2303   MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2304   assert(!Threads::includes(this),
2305           "java thread shouldn't have been published yet!");
2306  }
2307  else {
2308   assert(!Threads::includes(this),
2309           "java thread shouldn't have been published yet!");
2310  }
2311}
2312#endif
2313
2314// Slow path when the native==>VM/Java barriers detect a safepoint is in
2315// progress or when _suspend_flags is non-zero.
2316// Current thread needs to self-suspend if there is a suspend request and/or
2317// block if a safepoint is in progress.
2318// Async exception ISN'T checked.
2319// Note only the ThreadInVMfromNative transition can call this function
2320// directly and when thread state is _thread_in_native_trans
2321void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2322  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2323
2324  JavaThread *curJT = JavaThread::current();
2325  bool do_self_suspend = thread->is_external_suspend();
2326
2327  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2328
2329  // If JNIEnv proxies are allowed, don't self-suspend if the target
2330  // thread is not the current thread. In older versions of jdbx, jdbx
2331  // threads could call into the VM with another thread's JNIEnv so we
2332  // can be here operating on behalf of a suspended thread (4432884).
2333  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2334    JavaThreadState state = thread->thread_state();
2335
2336    // We mark this thread_blocked state as a suspend-equivalent so
2337    // that a caller to is_ext_suspend_completed() won't be confused.
2338    // The suspend-equivalent state is cleared by java_suspend_self().
2339    thread->set_suspend_equivalent();
2340
2341    // If the safepoint code sees the _thread_in_native_trans state, it will
2342    // wait until the thread changes to other thread state. There is no
2343    // guarantee on how soon we can obtain the SR_lock and complete the
2344    // self-suspend request. It would be a bad idea to let safepoint wait for
2345    // too long. Temporarily change the state to _thread_blocked to
2346    // let the VM thread know that this thread is ready for GC. The problem
2347    // of changing thread state is that safepoint could happen just after
2348    // java_suspend_self() returns after being resumed, and VM thread will
2349    // see the _thread_blocked state. We must check for safepoint
2350    // after restoring the state and make sure we won't leave while a safepoint
2351    // is in progress.
2352    thread->set_thread_state(_thread_blocked);
2353    thread->java_suspend_self();
2354    thread->set_thread_state(state);
2355    // Make sure new state is seen by VM thread
2356    if (os::is_MP()) {
2357      if (UseMembar) {
2358        // Force a fence between the write above and read below
2359        OrderAccess::fence();
2360      } else {
2361        // Must use this rather than serialization page in particular on Windows
2362        InterfaceSupport::serialize_memory(thread);
2363      }
2364    }
2365  }
2366
2367  if (SafepointSynchronize::do_call_back()) {
2368    // If we are safepointing, then block the caller which may not be
2369    // the same as the target thread (see above).
2370    SafepointSynchronize::block(curJT);
2371  }
2372
2373  if (thread->is_deopt_suspend()) {
2374    thread->clear_deopt_suspend();
2375    RegisterMap map(thread, false);
2376    frame f = thread->last_frame();
2377    while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2378      f = f.sender(&map);
2379    }
2380    if (f.id() == thread->must_deopt_id()) {
2381      thread->clear_must_deopt_id();
2382      f.deoptimize(thread);
2383    } else {
2384      fatal("missed deoptimization!");
2385    }
2386  }
2387}
2388
2389// Slow path when the native==>VM/Java barriers detect a safepoint is in
2390// progress or when _suspend_flags is non-zero.
2391// Current thread needs to self-suspend if there is a suspend request and/or
2392// block if a safepoint is in progress.
2393// Also check for pending async exception (not including unsafe access error).
2394// Note only the native==>VM/Java barriers can call this function and when
2395// thread state is _thread_in_native_trans.
2396void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2397  check_safepoint_and_suspend_for_native_trans(thread);
2398
2399  if (thread->has_async_exception()) {
2400    // We are in _thread_in_native_trans state, don't handle unsafe
2401    // access error since that may block.
2402    thread->check_and_handle_async_exceptions(false);
2403  }
2404}
2405
2406// This is a variant of the normal
2407// check_special_condition_for_native_trans with slightly different
2408// semantics for use by critical native wrappers.  It does all the
2409// normal checks but also performs the transition back into
2410// thread_in_Java state.  This is required so that critical natives
2411// can potentially block and perform a GC if they are the last thread
2412// exiting the GC_locker.
2413void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2414  check_special_condition_for_native_trans(thread);
2415
2416  // Finish the transition
2417  thread->set_thread_state(_thread_in_Java);
2418
2419  if (thread->do_critical_native_unlock()) {
2420    ThreadInVMfromJavaNoAsyncException tiv(thread);
2421    GC_locker::unlock_critical(thread);
2422    thread->clear_critical_native_unlock();
2423  }
2424}
2425
2426// We need to guarantee the Threads_lock here, since resumes are not
2427// allowed during safepoint synchronization
2428// Can only resume from an external suspension
2429void JavaThread::java_resume() {
2430  assert_locked_or_safepoint(Threads_lock);
2431
2432  // Sanity check: thread is gone, has started exiting or the thread
2433  // was not externally suspended.
2434  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2435    return;
2436  }
2437
2438  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2439
2440  clear_external_suspend();
2441
2442  if (is_ext_suspended()) {
2443    clear_ext_suspended();
2444    SR_lock()->notify_all();
2445  }
2446}
2447
2448void JavaThread::create_stack_guard_pages() {
2449  if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2450  address low_addr = stack_base() - stack_size();
2451  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2452
2453  int allocate = os::allocate_stack_guard_pages();
2454  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2455
2456  if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2457    warning("Attempt to allocate stack guard pages failed.");
2458    return;
2459  }
2460
2461  if (os::guard_memory((char *) low_addr, len)) {
2462    _stack_guard_state = stack_guard_enabled;
2463  } else {
2464    warning("Attempt to protect stack guard pages failed.");
2465    if (os::uncommit_memory((char *) low_addr, len)) {
2466      warning("Attempt to deallocate stack guard pages failed.");
2467    }
2468  }
2469}
2470
2471void JavaThread::remove_stack_guard_pages() {
2472  assert(Thread::current() == this, "from different thread");
2473  if (_stack_guard_state == stack_guard_unused) return;
2474  address low_addr = stack_base() - stack_size();
2475  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2476
2477  if (os::allocate_stack_guard_pages()) {
2478    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2479      _stack_guard_state = stack_guard_unused;
2480    } else {
2481      warning("Attempt to deallocate stack guard pages failed.");
2482    }
2483  } else {
2484    if (_stack_guard_state == stack_guard_unused) return;
2485    if (os::unguard_memory((char *) low_addr, len)) {
2486      _stack_guard_state = stack_guard_unused;
2487    } else {
2488        warning("Attempt to unprotect stack guard pages failed.");
2489    }
2490  }
2491}
2492
2493void JavaThread::enable_stack_yellow_zone() {
2494  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2495  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2496
2497  // The base notation is from the stacks point of view, growing downward.
2498  // We need to adjust it to work correctly with guard_memory()
2499  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2500
2501  guarantee(base < stack_base(), "Error calculating stack yellow zone");
2502  guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2503
2504  if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2505    _stack_guard_state = stack_guard_enabled;
2506  } else {
2507    warning("Attempt to guard stack yellow zone failed.");
2508  }
2509  enable_register_stack_guard();
2510}
2511
2512void JavaThread::disable_stack_yellow_zone() {
2513  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2514  assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2515
2516  // Simply return if called for a thread that does not use guard pages.
2517  if (_stack_guard_state == stack_guard_unused) return;
2518
2519  // The base notation is from the stacks point of view, growing downward.
2520  // We need to adjust it to work correctly with guard_memory()
2521  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2522
2523  if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2524    _stack_guard_state = stack_guard_yellow_disabled;
2525  } else {
2526    warning("Attempt to unguard stack yellow zone failed.");
2527  }
2528  disable_register_stack_guard();
2529}
2530
2531void JavaThread::enable_stack_red_zone() {
2532  // The base notation is from the stacks point of view, growing downward.
2533  // We need to adjust it to work correctly with guard_memory()
2534  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2535  address base = stack_red_zone_base() - stack_red_zone_size();
2536
2537  guarantee(base < stack_base(), "Error calculating stack red zone");
2538  guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2539
2540  if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2541    warning("Attempt to guard stack red zone failed.");
2542  }
2543}
2544
2545void JavaThread::disable_stack_red_zone() {
2546  // The base notation is from the stacks point of view, growing downward.
2547  // We need to adjust it to work correctly with guard_memory()
2548  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2549  address base = stack_red_zone_base() - stack_red_zone_size();
2550  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2551    warning("Attempt to unguard stack red zone failed.");
2552  }
2553}
2554
2555void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2556  // ignore is there is no stack
2557  if (!has_last_Java_frame()) return;
2558  // traverse the stack frames. Starts from top frame.
2559  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2560    frame* fr = fst.current();
2561    f(fr, fst.register_map());
2562  }
2563}
2564
2565
2566#ifndef PRODUCT
2567// Deoptimization
2568// Function for testing deoptimization
2569void JavaThread::deoptimize() {
2570  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2571  StackFrameStream fst(this, UseBiasedLocking);
2572  bool deopt = false;           // Dump stack only if a deopt actually happens.
2573  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2574  // Iterate over all frames in the thread and deoptimize
2575  for (; !fst.is_done(); fst.next()) {
2576    if (fst.current()->can_be_deoptimized()) {
2577
2578      if (only_at) {
2579        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2580        // consists of comma or carriage return separated numbers so
2581        // search for the current bci in that string.
2582        address pc = fst.current()->pc();
2583        nmethod* nm =  (nmethod*) fst.current()->cb();
2584        ScopeDesc* sd = nm->scope_desc_at( pc);
2585        char buffer[8];
2586        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2587        size_t len = strlen(buffer);
2588        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2589        while (found != NULL) {
2590          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2591              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2592            // Check that the bci found is bracketed by terminators.
2593            break;
2594          }
2595          found = strstr(found + 1, buffer);
2596        }
2597        if (!found) {
2598          continue;
2599        }
2600      }
2601
2602      if (DebugDeoptimization && !deopt) {
2603        deopt = true; // One-time only print before deopt
2604        tty->print_cr("[BEFORE Deoptimization]");
2605        trace_frames();
2606        trace_stack();
2607      }
2608      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2609    }
2610  }
2611
2612  if (DebugDeoptimization && deopt) {
2613    tty->print_cr("[AFTER Deoptimization]");
2614    trace_frames();
2615  }
2616}
2617
2618
2619// Make zombies
2620void JavaThread::make_zombies() {
2621  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2622    if (fst.current()->can_be_deoptimized()) {
2623      // it is a Java nmethod
2624      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2625      nm->make_not_entrant();
2626    }
2627  }
2628}
2629#endif // PRODUCT
2630
2631
2632void JavaThread::deoptimized_wrt_marked_nmethods() {
2633  if (!has_last_Java_frame()) return;
2634  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2635  StackFrameStream fst(this, UseBiasedLocking);
2636  for (; !fst.is_done(); fst.next()) {
2637    if (fst.current()->should_be_deoptimized()) {
2638      if (LogCompilation && xtty != NULL) {
2639        nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2640        xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2641                   this->name(), nm != NULL ? nm->compile_id() : -1);
2642      }
2643
2644      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2645    }
2646  }
2647}
2648
2649
2650// GC support
2651static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2652
2653void JavaThread::gc_epilogue() {
2654  frames_do(frame_gc_epilogue);
2655}
2656
2657
2658static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2659
2660void JavaThread::gc_prologue() {
2661  frames_do(frame_gc_prologue);
2662}
2663
2664// If the caller is a NamedThread, then remember, in the current scope,
2665// the given JavaThread in its _processed_thread field.
2666class RememberProcessedThread: public StackObj {
2667  NamedThread* _cur_thr;
2668public:
2669  RememberProcessedThread(JavaThread* jthr) {
2670    Thread* thread = Thread::current();
2671    if (thread->is_Named_thread()) {
2672      _cur_thr = (NamedThread *)thread;
2673      _cur_thr->set_processed_thread(jthr);
2674    } else {
2675      _cur_thr = NULL;
2676    }
2677  }
2678
2679  ~RememberProcessedThread() {
2680    if (_cur_thr) {
2681      _cur_thr->set_processed_thread(NULL);
2682    }
2683  }
2684};
2685
2686void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2687  // Verify that the deferred card marks have been flushed.
2688  assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2689
2690  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2691  // since there may be more than one thread using each ThreadProfiler.
2692
2693  // Traverse the GCHandles
2694  Thread::oops_do(f, cld_f, cf);
2695
2696  assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2697          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2698
2699  if (has_last_Java_frame()) {
2700    // Record JavaThread to GC thread
2701    RememberProcessedThread rpt(this);
2702
2703    // Traverse the privileged stack
2704    if (_privileged_stack_top != NULL) {
2705      _privileged_stack_top->oops_do(f);
2706    }
2707
2708    // traverse the registered growable array
2709    if (_array_for_gc != NULL) {
2710      for (int index = 0; index < _array_for_gc->length(); index++) {
2711        f->do_oop(_array_for_gc->adr_at(index));
2712      }
2713    }
2714
2715    // Traverse the monitor chunks
2716    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2717      chunk->oops_do(f);
2718    }
2719
2720    // Traverse the execution stack
2721    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2722      fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2723    }
2724  }
2725
2726  // callee_target is never live across a gc point so NULL it here should
2727  // it still contain a methdOop.
2728
2729  set_callee_target(NULL);
2730
2731  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2732  // If we have deferred set_locals there might be oops waiting to be
2733  // written
2734  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2735  if (list != NULL) {
2736    for (int i = 0; i < list->length(); i++) {
2737      list->at(i)->oops_do(f);
2738    }
2739  }
2740
2741  // Traverse instance variables at the end since the GC may be moving things
2742  // around using this function
2743  f->do_oop((oop*) &_threadObj);
2744  f->do_oop((oop*) &_vm_result);
2745  f->do_oop((oop*) &_exception_oop);
2746  f->do_oop((oop*) &_pending_async_exception);
2747
2748  if (jvmti_thread_state() != NULL) {
2749    jvmti_thread_state()->oops_do(f);
2750  }
2751}
2752
2753void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2754  Thread::nmethods_do(cf);  // (super method is a no-op)
2755
2756  assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2757          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2758
2759  if (has_last_Java_frame()) {
2760    // Traverse the execution stack
2761    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2762      fst.current()->nmethods_do(cf);
2763    }
2764  }
2765}
2766
2767void JavaThread::metadata_do(void f(Metadata*)) {
2768  Thread::metadata_do(f);
2769  if (has_last_Java_frame()) {
2770    // Traverse the execution stack to call f() on the methods in the stack
2771    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2772      fst.current()->metadata_do(f);
2773    }
2774  } else if (is_Compiler_thread()) {
2775    // need to walk ciMetadata in current compile tasks to keep alive.
2776    CompilerThread* ct = (CompilerThread*)this;
2777    if (ct->env() != NULL) {
2778      ct->env()->metadata_do(f);
2779    }
2780  }
2781}
2782
2783// Printing
2784const char* _get_thread_state_name(JavaThreadState _thread_state) {
2785  switch (_thread_state) {
2786  case _thread_uninitialized:     return "_thread_uninitialized";
2787  case _thread_new:               return "_thread_new";
2788  case _thread_new_trans:         return "_thread_new_trans";
2789  case _thread_in_native:         return "_thread_in_native";
2790  case _thread_in_native_trans:   return "_thread_in_native_trans";
2791  case _thread_in_vm:             return "_thread_in_vm";
2792  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2793  case _thread_in_Java:           return "_thread_in_Java";
2794  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2795  case _thread_blocked:           return "_thread_blocked";
2796  case _thread_blocked_trans:     return "_thread_blocked_trans";
2797  default:                        return "unknown thread state";
2798  }
2799}
2800
2801#ifndef PRODUCT
2802void JavaThread::print_thread_state_on(outputStream *st) const {
2803  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2804};
2805void JavaThread::print_thread_state() const {
2806  print_thread_state_on(tty);
2807};
2808#endif // PRODUCT
2809
2810// Called by Threads::print() for VM_PrintThreads operation
2811void JavaThread::print_on(outputStream *st) const {
2812  st->print("\"%s\" ", get_thread_name());
2813  oop thread_oop = threadObj();
2814  if (thread_oop != NULL) {
2815    st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2816    if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2817    st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2818  }
2819  Thread::print_on(st);
2820  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2821  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2822  if (thread_oop != NULL) {
2823    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2824  }
2825#ifndef PRODUCT
2826  print_thread_state_on(st);
2827  _safepoint_state->print_on(st);
2828#endif // PRODUCT
2829}
2830
2831// Called by fatal error handler. The difference between this and
2832// JavaThread::print() is that we can't grab lock or allocate memory.
2833void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2834  st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2835  oop thread_obj = threadObj();
2836  if (thread_obj != NULL) {
2837     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2838  }
2839  st->print(" [");
2840  st->print("%s", _get_thread_state_name(_thread_state));
2841  if (osthread()) {
2842    st->print(", id=%d", osthread()->thread_id());
2843  }
2844  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2845            _stack_base - _stack_size, _stack_base);
2846  st->print("]");
2847  return;
2848}
2849
2850// Verification
2851
2852static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2853
2854void JavaThread::verify() {
2855  // Verify oops in the thread.
2856  oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2857
2858  // Verify the stack frames.
2859  frames_do(frame_verify);
2860}
2861
2862// CR 6300358 (sub-CR 2137150)
2863// Most callers of this method assume that it can't return NULL but a
2864// thread may not have a name whilst it is in the process of attaching to
2865// the VM - see CR 6412693, and there are places where a JavaThread can be
2866// seen prior to having it's threadObj set (eg JNI attaching threads and
2867// if vm exit occurs during initialization). These cases can all be accounted
2868// for such that this method never returns NULL.
2869const char* JavaThread::get_thread_name() const {
2870#ifdef ASSERT
2871  // early safepoints can hit while current thread does not yet have TLS
2872  if (!SafepointSynchronize::is_at_safepoint()) {
2873    Thread *cur = Thread::current();
2874    if (!(cur->is_Java_thread() && cur == this)) {
2875      // Current JavaThreads are allowed to get their own name without
2876      // the Threads_lock.
2877      assert_locked_or_safepoint(Threads_lock);
2878    }
2879  }
2880#endif // ASSERT
2881    return get_thread_name_string();
2882}
2883
2884// Returns a non-NULL representation of this thread's name, or a suitable
2885// descriptive string if there is no set name
2886const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2887  const char* name_str;
2888  oop thread_obj = threadObj();
2889  if (thread_obj != NULL) {
2890    typeArrayOop name = java_lang_Thread::name(thread_obj);
2891    if (name != NULL) {
2892      if (buf == NULL) {
2893        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2894      }
2895      else {
2896        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2897      }
2898    }
2899    else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2900      name_str = "<no-name - thread is attaching>";
2901    }
2902    else {
2903      name_str = Thread::name();
2904    }
2905  }
2906  else {
2907    name_str = Thread::name();
2908  }
2909  assert(name_str != NULL, "unexpected NULL thread name");
2910  return name_str;
2911}
2912
2913
2914const char* JavaThread::get_threadgroup_name() const {
2915  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2916  oop thread_obj = threadObj();
2917  if (thread_obj != NULL) {
2918    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2919    if (thread_group != NULL) {
2920      typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2921      // ThreadGroup.name can be null
2922      if (name != NULL) {
2923        const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2924        return str;
2925      }
2926    }
2927  }
2928  return NULL;
2929}
2930
2931const char* JavaThread::get_parent_name() const {
2932  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2933  oop thread_obj = threadObj();
2934  if (thread_obj != NULL) {
2935    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2936    if (thread_group != NULL) {
2937      oop parent = java_lang_ThreadGroup::parent(thread_group);
2938      if (parent != NULL) {
2939        typeArrayOop name = java_lang_ThreadGroup::name(parent);
2940        // ThreadGroup.name can be null
2941        if (name != NULL) {
2942          const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2943          return str;
2944        }
2945      }
2946    }
2947  }
2948  return NULL;
2949}
2950
2951ThreadPriority JavaThread::java_priority() const {
2952  oop thr_oop = threadObj();
2953  if (thr_oop == NULL) return NormPriority; // Bootstrapping
2954  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2955  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2956  return priority;
2957}
2958
2959void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2960
2961  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2962  // Link Java Thread object <-> C++ Thread
2963
2964  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2965  // and put it into a new Handle.  The Handle "thread_oop" can then
2966  // be used to pass the C++ thread object to other methods.
2967
2968  // Set the Java level thread object (jthread) field of the
2969  // new thread (a JavaThread *) to C++ thread object using the
2970  // "thread_oop" handle.
2971
2972  // Set the thread field (a JavaThread *) of the
2973  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2974
2975  Handle thread_oop(Thread::current(),
2976                    JNIHandles::resolve_non_null(jni_thread));
2977  assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2978    "must be initialized");
2979  set_threadObj(thread_oop());
2980  java_lang_Thread::set_thread(thread_oop(), this);
2981
2982  if (prio == NoPriority) {
2983    prio = java_lang_Thread::priority(thread_oop());
2984    assert(prio != NoPriority, "A valid priority should be present");
2985  }
2986
2987  // Push the Java priority down to the native thread; needs Threads_lock
2988  Thread::set_priority(this, prio);
2989
2990  // Add the new thread to the Threads list and set it in motion.
2991  // We must have threads lock in order to call Threads::add.
2992  // It is crucial that we do not block before the thread is
2993  // added to the Threads list for if a GC happens, then the java_thread oop
2994  // will not be visited by GC.
2995  Threads::add(this);
2996}
2997
2998oop JavaThread::current_park_blocker() {
2999  // Support for JSR-166 locks
3000  oop thread_oop = threadObj();
3001  if (thread_oop != NULL &&
3002      JDK_Version::current().supports_thread_park_blocker()) {
3003    return java_lang_Thread::park_blocker(thread_oop);
3004  }
3005  return NULL;
3006}
3007
3008
3009void JavaThread::print_stack_on(outputStream* st) {
3010  if (!has_last_Java_frame()) return;
3011  ResourceMark rm;
3012  HandleMark   hm;
3013
3014  RegisterMap reg_map(this);
3015  vframe* start_vf = last_java_vframe(&reg_map);
3016  int count = 0;
3017  for (vframe* f = start_vf; f; f = f->sender()) {
3018    if (f->is_java_frame()) {
3019      javaVFrame* jvf = javaVFrame::cast(f);
3020      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3021
3022      // Print out lock information
3023      if (JavaMonitorsInStackTrace) {
3024        jvf->print_lock_info_on(st, count);
3025      }
3026    } else {
3027      // Ignore non-Java frames
3028    }
3029
3030    // Bail-out case for too deep stacks
3031    count++;
3032    if (MaxJavaStackTraceDepth == count) return;
3033  }
3034}
3035
3036
3037// JVMTI PopFrame support
3038void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3039  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3040  if (in_bytes(size_in_bytes) != 0) {
3041    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3042    _popframe_preserved_args_size = in_bytes(size_in_bytes);
3043    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3044  }
3045}
3046
3047void* JavaThread::popframe_preserved_args() {
3048  return _popframe_preserved_args;
3049}
3050
3051ByteSize JavaThread::popframe_preserved_args_size() {
3052  return in_ByteSize(_popframe_preserved_args_size);
3053}
3054
3055WordSize JavaThread::popframe_preserved_args_size_in_words() {
3056  int sz = in_bytes(popframe_preserved_args_size());
3057  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3058  return in_WordSize(sz / wordSize);
3059}
3060
3061void JavaThread::popframe_free_preserved_args() {
3062  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3063  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3064  _popframe_preserved_args = NULL;
3065  _popframe_preserved_args_size = 0;
3066}
3067
3068#ifndef PRODUCT
3069
3070void JavaThread::trace_frames() {
3071  tty->print_cr("[Describe stack]");
3072  int frame_no = 1;
3073  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3074    tty->print("  %d. ", frame_no++);
3075    fst.current()->print_value_on(tty, this);
3076    tty->cr();
3077  }
3078}
3079
3080class PrintAndVerifyOopClosure: public OopClosure {
3081 protected:
3082  template <class T> inline void do_oop_work(T* p) {
3083    oop obj = oopDesc::load_decode_heap_oop(p);
3084    if (obj == NULL) return;
3085    tty->print(INTPTR_FORMAT ": ", p);
3086    if (obj->is_oop_or_null()) {
3087      if (obj->is_objArray()) {
3088        tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3089      } else {
3090        obj->print();
3091      }
3092    } else {
3093      tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3094    }
3095    tty->cr();
3096  }
3097 public:
3098  virtual void do_oop(oop* p) { do_oop_work(p); }
3099  virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3100};
3101
3102
3103static void oops_print(frame* f, const RegisterMap *map) {
3104  PrintAndVerifyOopClosure print;
3105  f->print_value();
3106  f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3107}
3108
3109// Print our all the locations that contain oops and whether they are
3110// valid or not.  This useful when trying to find the oldest frame
3111// where an oop has gone bad since the frame walk is from youngest to
3112// oldest.
3113void JavaThread::trace_oops() {
3114  tty->print_cr("[Trace oops]");
3115  frames_do(oops_print);
3116}
3117
3118
3119#ifdef ASSERT
3120// Print or validate the layout of stack frames
3121void JavaThread::print_frame_layout(int depth, bool validate_only) {
3122  ResourceMark rm;
3123  PRESERVE_EXCEPTION_MARK;
3124  FrameValues values;
3125  int frame_no = 0;
3126  for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3127    fst.current()->describe(values, ++frame_no);
3128    if (depth == frame_no) break;
3129  }
3130  if (validate_only) {
3131    values.validate();
3132  } else {
3133    tty->print_cr("[Describe stack layout]");
3134    values.print(this);
3135  }
3136}
3137#endif
3138
3139void JavaThread::trace_stack_from(vframe* start_vf) {
3140  ResourceMark rm;
3141  int vframe_no = 1;
3142  for (vframe* f = start_vf; f; f = f->sender()) {
3143    if (f->is_java_frame()) {
3144      javaVFrame::cast(f)->print_activation(vframe_no++);
3145    } else {
3146      f->print();
3147    }
3148    if (vframe_no > StackPrintLimit) {
3149      tty->print_cr("...<more frames>...");
3150      return;
3151    }
3152  }
3153}
3154
3155
3156void JavaThread::trace_stack() {
3157  if (!has_last_Java_frame()) return;
3158  ResourceMark rm;
3159  HandleMark   hm;
3160  RegisterMap reg_map(this);
3161  trace_stack_from(last_java_vframe(&reg_map));
3162}
3163
3164
3165#endif // PRODUCT
3166
3167
3168javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3169  assert(reg_map != NULL, "a map must be given");
3170  frame f = last_frame();
3171  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3172    if (vf->is_java_frame()) return javaVFrame::cast(vf);
3173  }
3174  return NULL;
3175}
3176
3177
3178Klass* JavaThread::security_get_caller_class(int depth) {
3179  vframeStream vfst(this);
3180  vfst.security_get_caller_frame(depth);
3181  if (!vfst.at_end()) {
3182    return vfst.method()->method_holder();
3183  }
3184  return NULL;
3185}
3186
3187static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3188  assert(thread->is_Compiler_thread(), "must be compiler thread");
3189  CompileBroker::compiler_thread_loop();
3190}
3191
3192// Create a CompilerThread
3193CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3194: JavaThread(&compiler_thread_entry) {
3195  _env   = NULL;
3196  _log   = NULL;
3197  _task  = NULL;
3198  _queue = queue;
3199  _counters = counters;
3200  _buffer_blob = NULL;
3201  _scanned_nmethod = NULL;
3202  _compiler = NULL;
3203
3204#ifndef PRODUCT
3205  _ideal_graph_printer = NULL;
3206#endif
3207}
3208
3209void CompilerThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3210  JavaThread::oops_do(f, cld_f, cf);
3211  if (_scanned_nmethod != NULL && cf != NULL) {
3212    // Safepoints can occur when the sweeper is scanning an nmethod so
3213    // process it here to make sure it isn't unloaded in the middle of
3214    // a scan.
3215    cf->do_code_blob(_scanned_nmethod);
3216  }
3217}
3218
3219
3220// ======= Threads ========
3221
3222// The Threads class links together all active threads, and provides
3223// operations over all threads.  It is protected by its own Mutex
3224// lock, which is also used in other contexts to protect thread
3225// operations from having the thread being operated on from exiting
3226// and going away unexpectedly (e.g., safepoint synchronization)
3227
3228JavaThread* Threads::_thread_list = NULL;
3229int         Threads::_number_of_threads = 0;
3230int         Threads::_number_of_non_daemon_threads = 0;
3231int         Threads::_return_code = 0;
3232size_t      JavaThread::_stack_size_at_create = 0;
3233#ifdef ASSERT
3234bool        Threads::_vm_complete = false;
3235#endif
3236
3237// All JavaThreads
3238#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3239
3240// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3241void Threads::threads_do(ThreadClosure* tc) {
3242  assert_locked_or_safepoint(Threads_lock);
3243  // ALL_JAVA_THREADS iterates through all JavaThreads
3244  ALL_JAVA_THREADS(p) {
3245    tc->do_thread(p);
3246  }
3247  // Someday we could have a table or list of all non-JavaThreads.
3248  // For now, just manually iterate through them.
3249  tc->do_thread(VMThread::vm_thread());
3250  Universe::heap()->gc_threads_do(tc);
3251  WatcherThread *wt = WatcherThread::watcher_thread();
3252  // Strictly speaking, the following NULL check isn't sufficient to make sure
3253  // the data for WatcherThread is still valid upon being examined. However,
3254  // considering that WatchThread terminates when the VM is on the way to
3255  // exit at safepoint, the chance of the above is extremely small. The right
3256  // way to prevent termination of WatcherThread would be to acquire
3257  // Terminator_lock, but we can't do that without violating the lock rank
3258  // checking in some cases.
3259  if (wt != NULL)
3260    tc->do_thread(wt);
3261
3262  // If CompilerThreads ever become non-JavaThreads, add them here
3263}
3264
3265
3266void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3267  TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3268
3269  if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3270    create_vm_init_libraries();
3271  }
3272
3273  initialize_class(vmSymbols::java_lang_String(), CHECK);
3274
3275  // Initialize java_lang.System (needed before creating the thread)
3276  initialize_class(vmSymbols::java_lang_System(), CHECK);
3277  initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3278  Handle thread_group = create_initial_thread_group(CHECK);
3279  Universe::set_main_thread_group(thread_group());
3280  initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3281  oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3282  main_thread->set_threadObj(thread_object);
3283  // Set thread status to running since main thread has
3284  // been started and running.
3285  java_lang_Thread::set_thread_status(thread_object,
3286                                      java_lang_Thread::RUNNABLE);
3287
3288  // The VM creates & returns objects of this class. Make sure it's initialized.
3289  initialize_class(vmSymbols::java_lang_Class(), CHECK);
3290
3291  // The VM preresolves methods to these classes. Make sure that they get initialized
3292  initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3293  initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3294  call_initializeSystemClass(CHECK);
3295
3296  // get the Java runtime name after java.lang.System is initialized
3297  JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3298  JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3299
3300  // an instance of OutOfMemory exception has been allocated earlier
3301  initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3302  initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3303  initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3304  initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3305  initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3306  initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3307  initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3308  initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3309}
3310
3311void Threads::initialize_jsr292_core_classes(TRAPS) {
3312  initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3313  initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3314  initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3315}
3316
3317jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3318
3319  extern void JDK_Version_init();
3320
3321  // Check version
3322  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3323
3324  // Initialize the output stream module
3325  ostream_init();
3326
3327  // Process java launcher properties.
3328  Arguments::process_sun_java_launcher_properties(args);
3329
3330  // Initialize the os module before using TLS
3331  os::init();
3332
3333  // Initialize system properties.
3334  Arguments::init_system_properties();
3335
3336  // So that JDK version can be used as a discriminator when parsing arguments
3337  JDK_Version_init();
3338
3339  // Update/Initialize System properties after JDK version number is known
3340  Arguments::init_version_specific_system_properties();
3341
3342  // Parse arguments
3343  jint parse_result = Arguments::parse(args);
3344  if (parse_result != JNI_OK) return parse_result;
3345
3346  os::init_before_ergo();
3347
3348  jint ergo_result = Arguments::apply_ergo();
3349  if (ergo_result != JNI_OK) return ergo_result;
3350
3351  if (PauseAtStartup) {
3352    os::pause();
3353  }
3354
3355  HOTSPOT_VM_INIT_BEGIN();
3356
3357  // Record VM creation timing statistics
3358  TraceVmCreationTime create_vm_timer;
3359  create_vm_timer.start();
3360
3361  // Timing (must come after argument parsing)
3362  TraceTime timer("Create VM", TraceStartupTime);
3363
3364  // Initialize the os module after parsing the args
3365  jint os_init_2_result = os::init_2();
3366  if (os_init_2_result != JNI_OK) return os_init_2_result;
3367
3368  jint adjust_after_os_result = Arguments::adjust_after_os();
3369  if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3370
3371  // initialize TLS
3372  ThreadLocalStorage::init();
3373
3374  // Bootstrap native memory tracking, so it can start recording memory
3375  // activities before worker thread is started. This is the first phase
3376  // of bootstrapping, VM is currently running in single-thread mode.
3377  MemTracker::bootstrap_single_thread();
3378
3379  // Initialize output stream logging
3380  ostream_init_log();
3381
3382  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3383  // Must be before create_vm_init_agents()
3384  if (Arguments::init_libraries_at_startup()) {
3385    convert_vm_init_libraries_to_agents();
3386  }
3387
3388  // Launch -agentlib/-agentpath and converted -Xrun agents
3389  if (Arguments::init_agents_at_startup()) {
3390    create_vm_init_agents();
3391  }
3392
3393  // Initialize Threads state
3394  _thread_list = NULL;
3395  _number_of_threads = 0;
3396  _number_of_non_daemon_threads = 0;
3397
3398  // Initialize global data structures and create system classes in heap
3399  vm_init_globals();
3400
3401  // Attach the main thread to this os thread
3402  JavaThread* main_thread = new JavaThread();
3403  main_thread->set_thread_state(_thread_in_vm);
3404  // must do this before set_active_handles and initialize_thread_local_storage
3405  // Note: on solaris initialize_thread_local_storage() will (indirectly)
3406  // change the stack size recorded here to one based on the java thread
3407  // stacksize. This adjusted size is what is used to figure the placement
3408  // of the guard pages.
3409  main_thread->record_stack_base_and_size();
3410  main_thread->initialize_thread_local_storage();
3411
3412  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3413
3414  if (!main_thread->set_as_starting_thread()) {
3415    vm_shutdown_during_initialization(
3416      "Failed necessary internal allocation. Out of swap space");
3417    delete main_thread;
3418    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3419    return JNI_ENOMEM;
3420  }
3421
3422  // Enable guard page *after* os::create_main_thread(), otherwise it would
3423  // crash Linux VM, see notes in os_linux.cpp.
3424  main_thread->create_stack_guard_pages();
3425
3426  // Initialize Java-Level synchronization subsystem
3427  ObjectMonitor::Initialize();
3428
3429  // Second phase of bootstrapping, VM is about entering multi-thread mode
3430  MemTracker::bootstrap_multi_thread();
3431
3432  // Initialize global modules
3433  jint status = init_globals();
3434  if (status != JNI_OK) {
3435    delete main_thread;
3436    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3437    return status;
3438  }
3439
3440  // Should be done after the heap is fully created
3441  main_thread->cache_global_variables();
3442
3443  HandleMark hm;
3444
3445  { MutexLocker mu(Threads_lock);
3446    Threads::add(main_thread);
3447  }
3448
3449  // Any JVMTI raw monitors entered in onload will transition into
3450  // real raw monitor. VM is setup enough here for raw monitor enter.
3451  JvmtiExport::transition_pending_onload_raw_monitors();
3452
3453  // Fully start NMT
3454  MemTracker::start();
3455
3456  // Create the VMThread
3457  { TraceTime timer("Start VMThread", TraceStartupTime);
3458    VMThread::create();
3459    Thread* vmthread = VMThread::vm_thread();
3460
3461    if (!os::create_thread(vmthread, os::vm_thread))
3462      vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3463
3464    // Wait for the VM thread to become ready, and VMThread::run to initialize
3465    // Monitors can have spurious returns, must always check another state flag
3466    {
3467      MutexLocker ml(Notify_lock);
3468      os::start_thread(vmthread);
3469      while (vmthread->active_handles() == NULL) {
3470        Notify_lock->wait();
3471      }
3472    }
3473  }
3474
3475  assert(Universe::is_fully_initialized(), "not initialized");
3476  if (VerifyDuringStartup) {
3477    // Make sure we're starting with a clean slate.
3478    VM_Verify verify_op;
3479    VMThread::execute(&verify_op);
3480  }
3481
3482  Thread* THREAD = Thread::current();
3483
3484  // At this point, the Universe is initialized, but we have not executed
3485  // any byte code.  Now is a good time (the only time) to dump out the
3486  // internal state of the JVM for sharing.
3487  if (DumpSharedSpaces) {
3488    MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3489    ShouldNotReachHere();
3490  }
3491
3492  // Always call even when there are not JVMTI environments yet, since environments
3493  // may be attached late and JVMTI must track phases of VM execution
3494  JvmtiExport::enter_start_phase();
3495
3496  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3497  JvmtiExport::post_vm_start();
3498
3499  initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3500
3501  // We need this for ClassDataSharing - the initial vm.info property is set
3502  // with the default value of CDS "sharing" which may be reset through
3503  // command line options.
3504  reset_vm_info_property(CHECK_JNI_ERR);
3505
3506  quicken_jni_functions();
3507
3508  // Must be run after init_ft which initializes ft_enabled
3509  if (TRACE_INITIALIZE() != JNI_OK) {
3510    vm_exit_during_initialization("Failed to initialize tracing backend");
3511  }
3512
3513  // Set flag that basic initialization has completed. Used by exceptions and various
3514  // debug stuff, that does not work until all basic classes have been initialized.
3515  set_init_completed();
3516
3517  Metaspace::post_initialize();
3518
3519  HOTSPOT_VM_INIT_END();
3520
3521  // record VM initialization completion time
3522#if INCLUDE_MANAGEMENT
3523  Management::record_vm_init_completed();
3524#endif // INCLUDE_MANAGEMENT
3525
3526  // Compute system loader. Note that this has to occur after set_init_completed, since
3527  // valid exceptions may be thrown in the process.
3528  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3529  // set_init_completed has just been called, causing exceptions not to be shortcut
3530  // anymore. We call vm_exit_during_initialization directly instead.
3531  SystemDictionary::compute_java_system_loader(CHECK_JNI_ERR);
3532
3533#if INCLUDE_ALL_GCS
3534  // Support for ConcurrentMarkSweep. This should be cleaned up
3535  // and better encapsulated. The ugly nested if test would go away
3536  // once things are properly refactored. XXX YSR
3537  if (UseConcMarkSweepGC || UseG1GC) {
3538    if (UseConcMarkSweepGC) {
3539      ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3540    } else {
3541      ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3542    }
3543  }
3544#endif // INCLUDE_ALL_GCS
3545
3546  // Always call even when there are not JVMTI environments yet, since environments
3547  // may be attached late and JVMTI must track phases of VM execution
3548  JvmtiExport::enter_live_phase();
3549
3550  // Signal Dispatcher needs to be started before VMInit event is posted
3551  os::signal_init();
3552
3553  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3554  if (!DisableAttachMechanism) {
3555    AttachListener::vm_start();
3556    if (StartAttachListener || AttachListener::init_at_startup()) {
3557      AttachListener::init();
3558    }
3559  }
3560
3561  // Launch -Xrun agents
3562  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3563  // back-end can launch with -Xdebug -Xrunjdwp.
3564  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3565    create_vm_init_libraries();
3566  }
3567
3568  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3569  JvmtiExport::post_vm_initialized();
3570
3571  if (TRACE_START() != JNI_OK) {
3572    vm_exit_during_initialization("Failed to start tracing backend.");
3573  }
3574
3575  if (CleanChunkPoolAsync) {
3576    Chunk::start_chunk_pool_cleaner_task();
3577  }
3578
3579  // initialize compiler(s)
3580#if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3581  CompileBroker::compilation_init();
3582#endif
3583
3584  // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3585  // It is done after compilers are initialized, because otherwise compilations of
3586  // signature polymorphic MH intrinsics can be missed
3587  // (see SystemDictionary::find_method_handle_intrinsic).
3588  initialize_jsr292_core_classes(CHECK_JNI_ERR);
3589
3590#if INCLUDE_MANAGEMENT
3591  Management::initialize(THREAD);
3592
3593  if (HAS_PENDING_EXCEPTION) {
3594    // management agent fails to start possibly due to
3595    // configuration problem and is responsible for printing
3596    // stack trace if appropriate. Simply exit VM.
3597    vm_exit(1);
3598  }
3599#endif // INCLUDE_MANAGEMENT
3600
3601  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3602  if (MemProfiling)                   MemProfiler::engage();
3603  StatSampler::engage();
3604  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3605
3606  BiasedLocking::init();
3607
3608#if INCLUDE_RTM_OPT
3609  RTMLockingCounters::init();
3610#endif
3611
3612  if (JDK_Version::current().post_vm_init_hook_enabled()) {
3613    call_postVMInitHook(THREAD);
3614    // The Java side of PostVMInitHook.run must deal with all
3615    // exceptions and provide means of diagnosis.
3616    if (HAS_PENDING_EXCEPTION) {
3617      CLEAR_PENDING_EXCEPTION;
3618    }
3619  }
3620
3621  {
3622      MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3623      // Make sure the watcher thread can be started by WatcherThread::start()
3624      // or by dynamic enrollment.
3625      WatcherThread::make_startable();
3626      // Start up the WatcherThread if there are any periodic tasks
3627      // NOTE:  All PeriodicTasks should be registered by now. If they
3628      //   aren't, late joiners might appear to start slowly (we might
3629      //   take a while to process their first tick).
3630      if (PeriodicTask::num_tasks() > 0) {
3631          WatcherThread::start();
3632      }
3633  }
3634
3635  // Give os specific code one last chance to start
3636  os::init_3();
3637
3638  create_vm_timer.end();
3639#ifdef ASSERT
3640  _vm_complete = true;
3641#endif
3642  return JNI_OK;
3643}
3644
3645// type for the Agent_OnLoad and JVM_OnLoad entry points
3646extern "C" {
3647  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3648}
3649// Find a command line agent library and return its entry point for
3650//         -agentlib:  -agentpath:   -Xrun
3651// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3652static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3653  OnLoadEntry_t on_load_entry = NULL;
3654  void *library = NULL;
3655
3656  if (!agent->valid()) {
3657    char buffer[JVM_MAXPATHLEN];
3658    char ebuf[1024];
3659    const char *name = agent->name();
3660    const char *msg = "Could not find agent library ";
3661
3662    // First check to see if agent is statically linked into executable
3663    if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3664      library = agent->os_lib();
3665    } else if (agent->is_absolute_path()) {
3666      library = os::dll_load(name, ebuf, sizeof ebuf);
3667      if (library == NULL) {
3668        const char *sub_msg = " in absolute path, with error: ";
3669        size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3670        char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3671        jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3672        // If we can't find the agent, exit.
3673        vm_exit_during_initialization(buf, NULL);
3674        FREE_C_HEAP_ARRAY(char, buf, mtThread);
3675      }
3676    } else {
3677      // Try to load the agent from the standard dll directory
3678      if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3679                             name)) {
3680        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3681      }
3682      if (library == NULL) { // Try the local directory
3683        char ns[1] = {0};
3684        if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3685          library = os::dll_load(buffer, ebuf, sizeof ebuf);
3686        }
3687        if (library == NULL) {
3688          const char *sub_msg = " on the library path, with error: ";
3689          size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3690          char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3691          jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3692          // If we can't find the agent, exit.
3693          vm_exit_during_initialization(buf, NULL);
3694          FREE_C_HEAP_ARRAY(char, buf, mtThread);
3695        }
3696      }
3697    }
3698    agent->set_os_lib(library);
3699    agent->set_valid();
3700  }
3701
3702  // Find the OnLoad function.
3703  on_load_entry =
3704    CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3705                                                          false,
3706                                                          on_load_symbols,
3707                                                          num_symbol_entries));
3708  return on_load_entry;
3709}
3710
3711// Find the JVM_OnLoad entry point
3712static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3713  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3714  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3715}
3716
3717// Find the Agent_OnLoad entry point
3718static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3719  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3720  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3721}
3722
3723// For backwards compatibility with -Xrun
3724// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3725// treated like -agentpath:
3726// Must be called before agent libraries are created
3727void Threads::convert_vm_init_libraries_to_agents() {
3728  AgentLibrary* agent;
3729  AgentLibrary* next;
3730
3731  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3732    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3733    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3734
3735    // If there is an JVM_OnLoad function it will get called later,
3736    // otherwise see if there is an Agent_OnLoad
3737    if (on_load_entry == NULL) {
3738      on_load_entry = lookup_agent_on_load(agent);
3739      if (on_load_entry != NULL) {
3740        // switch it to the agent list -- so that Agent_OnLoad will be called,
3741        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3742        Arguments::convert_library_to_agent(agent);
3743      } else {
3744        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3745      }
3746    }
3747  }
3748}
3749
3750// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3751// Invokes Agent_OnLoad
3752// Called very early -- before JavaThreads exist
3753void Threads::create_vm_init_agents() {
3754  extern struct JavaVM_ main_vm;
3755  AgentLibrary* agent;
3756
3757  JvmtiExport::enter_onload_phase();
3758
3759  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3760    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3761
3762    if (on_load_entry != NULL) {
3763      // Invoke the Agent_OnLoad function
3764      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3765      if (err != JNI_OK) {
3766        vm_exit_during_initialization("agent library failed to init", agent->name());
3767      }
3768    } else {
3769      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3770    }
3771  }
3772  JvmtiExport::enter_primordial_phase();
3773}
3774
3775extern "C" {
3776  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3777}
3778
3779void Threads::shutdown_vm_agents() {
3780  // Send any Agent_OnUnload notifications
3781  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3782  size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3783  extern struct JavaVM_ main_vm;
3784  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3785
3786    // Find the Agent_OnUnload function.
3787    Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3788      os::find_agent_function(agent,
3789      false,
3790      on_unload_symbols,
3791      num_symbol_entries));
3792
3793    // Invoke the Agent_OnUnload function
3794    if (unload_entry != NULL) {
3795      JavaThread* thread = JavaThread::current();
3796      ThreadToNativeFromVM ttn(thread);
3797      HandleMark hm(thread);
3798      (*unload_entry)(&main_vm);
3799    }
3800  }
3801}
3802
3803// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3804// Invokes JVM_OnLoad
3805void Threads::create_vm_init_libraries() {
3806  extern struct JavaVM_ main_vm;
3807  AgentLibrary* agent;
3808
3809  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3810    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3811
3812    if (on_load_entry != NULL) {
3813      // Invoke the JVM_OnLoad function
3814      JavaThread* thread = JavaThread::current();
3815      ThreadToNativeFromVM ttn(thread);
3816      HandleMark hm(thread);
3817      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3818      if (err != JNI_OK) {
3819        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3820      }
3821    } else {
3822      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3823    }
3824  }
3825}
3826
3827// Last thread running calls java.lang.Shutdown.shutdown()
3828void JavaThread::invoke_shutdown_hooks() {
3829  HandleMark hm(this);
3830
3831  // We could get here with a pending exception, if so clear it now.
3832  if (this->has_pending_exception()) {
3833    this->clear_pending_exception();
3834  }
3835
3836  EXCEPTION_MARK;
3837  Klass* k =
3838    SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3839                                      THREAD);
3840  if (k != NULL) {
3841    // SystemDictionary::resolve_or_null will return null if there was
3842    // an exception.  If we cannot load the Shutdown class, just don't
3843    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3844    // and finalizers (if runFinalizersOnExit is set) won't be run.
3845    // Note that if a shutdown hook was registered or runFinalizersOnExit
3846    // was called, the Shutdown class would have already been loaded
3847    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3848    instanceKlassHandle shutdown_klass (THREAD, k);
3849    JavaValue result(T_VOID);
3850    JavaCalls::call_static(&result,
3851                           shutdown_klass,
3852                           vmSymbols::shutdown_method_name(),
3853                           vmSymbols::void_method_signature(),
3854                           THREAD);
3855  }
3856  CLEAR_PENDING_EXCEPTION;
3857}
3858
3859// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3860// the program falls off the end of main(). Another VM exit path is through
3861// vm_exit() when the program calls System.exit() to return a value or when
3862// there is a serious error in VM. The two shutdown paths are not exactly
3863// the same, but they share Shutdown.shutdown() at Java level and before_exit()
3864// and VM_Exit op at VM level.
3865//
3866// Shutdown sequence:
3867//   + Shutdown native memory tracking if it is on
3868//   + Wait until we are the last non-daemon thread to execute
3869//     <-- every thing is still working at this moment -->
3870//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3871//        shutdown hooks, run finalizers if finalization-on-exit
3872//   + Call before_exit(), prepare for VM exit
3873//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3874//        currently the only user of this mechanism is File.deleteOnExit())
3875//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3876//        post thread end and vm death events to JVMTI,
3877//        stop signal thread
3878//   + Call JavaThread::exit(), it will:
3879//      > release JNI handle blocks, remove stack guard pages
3880//      > remove this thread from Threads list
3881//     <-- no more Java code from this thread after this point -->
3882//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3883//     the compiler threads at safepoint
3884//     <-- do not use anything that could get blocked by Safepoint -->
3885//   + Disable tracing at JNI/JVM barriers
3886//   + Set _vm_exited flag for threads that are still running native code
3887//   + Delete this thread
3888//   + Call exit_globals()
3889//      > deletes tty
3890//      > deletes PerfMemory resources
3891//   + Return to caller
3892
3893bool Threads::destroy_vm() {
3894  JavaThread* thread = JavaThread::current();
3895
3896#ifdef ASSERT
3897  _vm_complete = false;
3898#endif
3899  // Wait until we are the last non-daemon thread to execute
3900  { MutexLocker nu(Threads_lock);
3901    while (Threads::number_of_non_daemon_threads() > 1)
3902      // This wait should make safepoint checks, wait without a timeout,
3903      // and wait as a suspend-equivalent condition.
3904      //
3905      // Note: If the FlatProfiler is running and this thread is waiting
3906      // for another non-daemon thread to finish, then the FlatProfiler
3907      // is waiting for the external suspend request on this thread to
3908      // complete. wait_for_ext_suspend_completion() will eventually
3909      // timeout, but that takes time. Making this wait a suspend-
3910      // equivalent condition solves that timeout problem.
3911      //
3912      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3913                         Mutex::_as_suspend_equivalent_flag);
3914  }
3915
3916  // Hang forever on exit if we are reporting an error.
3917  if (ShowMessageBoxOnError && is_error_reported()) {
3918    os::infinite_sleep();
3919  }
3920  os::wait_for_keypress_at_exit();
3921
3922  // run Java level shutdown hooks
3923  thread->invoke_shutdown_hooks();
3924
3925  before_exit(thread);
3926
3927  thread->exit(true);
3928
3929  // Stop VM thread.
3930  {
3931    // 4945125 The vm thread comes to a safepoint during exit.
3932    // GC vm_operations can get caught at the safepoint, and the
3933    // heap is unparseable if they are caught. Grab the Heap_lock
3934    // to prevent this. The GC vm_operations will not be able to
3935    // queue until after the vm thread is dead. After this point,
3936    // we'll never emerge out of the safepoint before the VM exits.
3937
3938    MutexLocker ml(Heap_lock);
3939
3940    VMThread::wait_for_vm_thread_exit();
3941    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3942    VMThread::destroy();
3943  }
3944
3945  // clean up ideal graph printers
3946#if defined(COMPILER2) && !defined(PRODUCT)
3947  IdealGraphPrinter::clean_up();
3948#endif
3949
3950  // Now, all Java threads are gone except daemon threads. Daemon threads
3951  // running Java code or in VM are stopped by the Safepoint. However,
3952  // daemon threads executing native code are still running.  But they
3953  // will be stopped at native=>Java/VM barriers. Note that we can't
3954  // simply kill or suspend them, as it is inherently deadlock-prone.
3955
3956#ifndef PRODUCT
3957  // disable function tracing at JNI/JVM barriers
3958  TraceJNICalls = false;
3959  TraceJVMCalls = false;
3960  TraceRuntimeCalls = false;
3961#endif
3962
3963  VM_Exit::set_vm_exited();
3964
3965  notify_vm_shutdown();
3966
3967  delete thread;
3968
3969  // exit_globals() will delete tty
3970  exit_globals();
3971
3972  return true;
3973}
3974
3975
3976jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3977  if (version == JNI_VERSION_1_1) return JNI_TRUE;
3978  return is_supported_jni_version(version);
3979}
3980
3981
3982jboolean Threads::is_supported_jni_version(jint version) {
3983  if (version == JNI_VERSION_1_2) return JNI_TRUE;
3984  if (version == JNI_VERSION_1_4) return JNI_TRUE;
3985  if (version == JNI_VERSION_1_6) return JNI_TRUE;
3986  if (version == JNI_VERSION_1_8) return JNI_TRUE;
3987  return JNI_FALSE;
3988}
3989
3990
3991void Threads::add(JavaThread* p, bool force_daemon) {
3992  // The threads lock must be owned at this point
3993  assert_locked_or_safepoint(Threads_lock);
3994
3995  // See the comment for this method in thread.hpp for its purpose and
3996  // why it is called here.
3997  p->initialize_queues();
3998  p->set_next(_thread_list);
3999  _thread_list = p;
4000  _number_of_threads++;
4001  oop threadObj = p->threadObj();
4002  bool daemon = true;
4003  // Bootstrapping problem: threadObj can be null for initial
4004  // JavaThread (or for threads attached via JNI)
4005  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4006    _number_of_non_daemon_threads++;
4007    daemon = false;
4008  }
4009
4010  p->set_safepoint_visible(true);
4011
4012  ThreadService::add_thread(p, daemon);
4013
4014  // Possible GC point.
4015  Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4016}
4017
4018void Threads::remove(JavaThread* p) {
4019  // Extra scope needed for Thread_lock, so we can check
4020  // that we do not remove thread without safepoint code notice
4021  { MutexLocker ml(Threads_lock);
4022
4023    assert(includes(p), "p must be present");
4024
4025    JavaThread* current = _thread_list;
4026    JavaThread* prev    = NULL;
4027
4028    while (current != p) {
4029      prev    = current;
4030      current = current->next();
4031    }
4032
4033    if (prev) {
4034      prev->set_next(current->next());
4035    } else {
4036      _thread_list = p->next();
4037    }
4038    _number_of_threads--;
4039    oop threadObj = p->threadObj();
4040    bool daemon = true;
4041    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4042      _number_of_non_daemon_threads--;
4043      daemon = false;
4044
4045      // Only one thread left, do a notify on the Threads_lock so a thread waiting
4046      // on destroy_vm will wake up.
4047      if (number_of_non_daemon_threads() == 1)
4048        Threads_lock->notify_all();
4049    }
4050    ThreadService::remove_thread(p, daemon);
4051
4052    // Make sure that safepoint code disregard this thread. This is needed since
4053    // the thread might mess around with locks after this point. This can cause it
4054    // to do callbacks into the safepoint code. However, the safepoint code is not aware
4055    // of this thread since it is removed from the queue.
4056    p->set_terminated_value();
4057
4058    // Now, this thread is not visible to safepoint
4059    p->set_safepoint_visible(false);
4060    // once the thread becomes safepoint invisible, we can not use its per-thread
4061    // recorder. And Threads::do_threads() no longer walks this thread, so we have
4062    // to release its per-thread recorder here.
4063    MemTracker::thread_exiting(p);
4064  } // unlock Threads_lock
4065
4066  // Since Events::log uses a lock, we grab it outside the Threads_lock
4067  Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4068}
4069
4070// Threads_lock must be held when this is called (or must be called during a safepoint)
4071bool Threads::includes(JavaThread* p) {
4072  assert(Threads_lock->is_locked(), "sanity check");
4073  ALL_JAVA_THREADS(q) {
4074    if (q == p) {
4075      return true;
4076    }
4077  }
4078  return false;
4079}
4080
4081// Operations on the Threads list for GC.  These are not explicitly locked,
4082// but the garbage collector must provide a safe context for them to run.
4083// In particular, these things should never be called when the Threads_lock
4084// is held by some other thread. (Note: the Safepoint abstraction also
4085// uses the Threads_lock to guarantee this property. It also makes sure that
4086// all threads gets blocked when exiting or starting).
4087
4088void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4089  ALL_JAVA_THREADS(p) {
4090    p->oops_do(f, cld_f, cf);
4091  }
4092  VMThread::vm_thread()->oops_do(f, cld_f, cf);
4093}
4094
4095void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4096  // Introduce a mechanism allowing parallel threads to claim threads as
4097  // root groups.  Overhead should be small enough to use all the time,
4098  // even in sequential code.
4099  SharedHeap* sh = SharedHeap::heap();
4100  // Cannot yet substitute active_workers for n_par_threads
4101  // because of G1CollectedHeap::verify() use of
4102  // SharedHeap::process_strong_roots().  n_par_threads == 0 will
4103  // turn off parallelism in process_strong_roots while active_workers
4104  // is being used for parallelism elsewhere.
4105  bool is_par = sh->n_par_threads() > 0;
4106  assert(!is_par ||
4107         (SharedHeap::heap()->n_par_threads() ==
4108          SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4109  int cp = SharedHeap::heap()->strong_roots_parity();
4110  ALL_JAVA_THREADS(p) {
4111    if (p->claim_oops_do(is_par, cp)) {
4112      p->oops_do(f, cld_f, cf);
4113    }
4114  }
4115  VMThread* vmt = VMThread::vm_thread();
4116  if (vmt->claim_oops_do(is_par, cp)) {
4117    vmt->oops_do(f, cld_f, cf);
4118  }
4119}
4120
4121#if INCLUDE_ALL_GCS
4122// Used by ParallelScavenge
4123void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4124  ALL_JAVA_THREADS(p) {
4125    q->enqueue(new ThreadRootsTask(p));
4126  }
4127  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4128}
4129
4130// Used by Parallel Old
4131void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4132  ALL_JAVA_THREADS(p) {
4133    q->enqueue(new ThreadRootsMarkingTask(p));
4134  }
4135  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4136}
4137#endif // INCLUDE_ALL_GCS
4138
4139void Threads::nmethods_do(CodeBlobClosure* cf) {
4140  ALL_JAVA_THREADS(p) {
4141    p->nmethods_do(cf);
4142  }
4143  VMThread::vm_thread()->nmethods_do(cf);
4144}
4145
4146void Threads::metadata_do(void f(Metadata*)) {
4147  ALL_JAVA_THREADS(p) {
4148    p->metadata_do(f);
4149  }
4150}
4151
4152void Threads::gc_epilogue() {
4153  ALL_JAVA_THREADS(p) {
4154    p->gc_epilogue();
4155  }
4156}
4157
4158void Threads::gc_prologue() {
4159  ALL_JAVA_THREADS(p) {
4160    p->gc_prologue();
4161  }
4162}
4163
4164void Threads::deoptimized_wrt_marked_nmethods() {
4165  ALL_JAVA_THREADS(p) {
4166    p->deoptimized_wrt_marked_nmethods();
4167  }
4168}
4169
4170
4171// Get count Java threads that are waiting to enter the specified monitor.
4172GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4173  address monitor, bool doLock) {
4174  assert(doLock || SafepointSynchronize::is_at_safepoint(),
4175    "must grab Threads_lock or be at safepoint");
4176  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4177
4178  int i = 0;
4179  {
4180    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4181    ALL_JAVA_THREADS(p) {
4182      if (p->is_Compiler_thread()) continue;
4183
4184      address pending = (address)p->current_pending_monitor();
4185      if (pending == monitor) {             // found a match
4186        if (i < count) result->append(p);   // save the first count matches
4187        i++;
4188      }
4189    }
4190  }
4191  return result;
4192}
4193
4194
4195JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4196  assert(doLock ||
4197         Threads_lock->owned_by_self() ||
4198         SafepointSynchronize::is_at_safepoint(),
4199         "must grab Threads_lock or be at safepoint");
4200
4201  // NULL owner means not locked so we can skip the search
4202  if (owner == NULL) return NULL;
4203
4204  {
4205    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4206    ALL_JAVA_THREADS(p) {
4207      // first, see if owner is the address of a Java thread
4208      if (owner == (address)p) return p;
4209    }
4210  }
4211  // Cannot assert on lack of success here since this function may be
4212  // used by code that is trying to report useful problem information
4213  // like deadlock detection.
4214  if (UseHeavyMonitors) return NULL;
4215
4216  //
4217  // If we didn't find a matching Java thread and we didn't force use of
4218  // heavyweight monitors, then the owner is the stack address of the
4219  // Lock Word in the owning Java thread's stack.
4220  //
4221  JavaThread* the_owner = NULL;
4222  {
4223    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4224    ALL_JAVA_THREADS(q) {
4225      if (q->is_lock_owned(owner)) {
4226        the_owner = q;
4227        break;
4228      }
4229    }
4230  }
4231  // cannot assert on lack of success here; see above comment
4232  return the_owner;
4233}
4234
4235// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4236void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4237  char buf[32];
4238  st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
4239
4240  st->print_cr("Full thread dump %s (%s %s):",
4241                Abstract_VM_Version::vm_name(),
4242                Abstract_VM_Version::vm_release(),
4243                Abstract_VM_Version::vm_info_string()
4244               );
4245  st->cr();
4246
4247#if INCLUDE_ALL_GCS
4248  // Dump concurrent locks
4249  ConcurrentLocksDump concurrent_locks;
4250  if (print_concurrent_locks) {
4251    concurrent_locks.dump_at_safepoint();
4252  }
4253#endif // INCLUDE_ALL_GCS
4254
4255  ALL_JAVA_THREADS(p) {
4256    ResourceMark rm;
4257    p->print_on(st);
4258    if (print_stacks) {
4259      if (internal_format) {
4260        p->trace_stack();
4261      } else {
4262        p->print_stack_on(st);
4263      }
4264    }
4265    st->cr();
4266#if INCLUDE_ALL_GCS
4267    if (print_concurrent_locks) {
4268      concurrent_locks.print_locks_on(p, st);
4269    }
4270#endif // INCLUDE_ALL_GCS
4271  }
4272
4273  VMThread::vm_thread()->print_on(st);
4274  st->cr();
4275  Universe::heap()->print_gc_threads_on(st);
4276  WatcherThread* wt = WatcherThread::watcher_thread();
4277  if (wt != NULL) {
4278    wt->print_on(st);
4279    st->cr();
4280  }
4281  CompileBroker::print_compiler_threads_on(st);
4282  st->flush();
4283}
4284
4285// Threads::print_on_error() is called by fatal error handler. It's possible
4286// that VM is not at safepoint and/or current thread is inside signal handler.
4287// Don't print stack trace, as the stack may not be walkable. Don't allocate
4288// memory (even in resource area), it might deadlock the error handler.
4289void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4290  bool found_current = false;
4291  st->print_cr("Java Threads: ( => current thread )");
4292  ALL_JAVA_THREADS(thread) {
4293    bool is_current = (current == thread);
4294    found_current = found_current || is_current;
4295
4296    st->print("%s", is_current ? "=>" : "  ");
4297
4298    st->print(PTR_FORMAT, thread);
4299    st->print(" ");
4300    thread->print_on_error(st, buf, buflen);
4301    st->cr();
4302  }
4303  st->cr();
4304
4305  st->print_cr("Other Threads:");
4306  if (VMThread::vm_thread()) {
4307    bool is_current = (current == VMThread::vm_thread());
4308    found_current = found_current || is_current;
4309    st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4310
4311    st->print(PTR_FORMAT, VMThread::vm_thread());
4312    st->print(" ");
4313    VMThread::vm_thread()->print_on_error(st, buf, buflen);
4314    st->cr();
4315  }
4316  WatcherThread* wt = WatcherThread::watcher_thread();
4317  if (wt != NULL) {
4318    bool is_current = (current == wt);
4319    found_current = found_current || is_current;
4320    st->print("%s", is_current ? "=>" : "  ");
4321
4322    st->print(PTR_FORMAT, wt);
4323    st->print(" ");
4324    wt->print_on_error(st, buf, buflen);
4325    st->cr();
4326  }
4327  if (!found_current) {
4328    st->cr();
4329    st->print("=>" PTR_FORMAT " (exited) ", current);
4330    current->print_on_error(st, buf, buflen);
4331    st->cr();
4332  }
4333}
4334
4335// Internal SpinLock and Mutex
4336// Based on ParkEvent
4337
4338// Ad-hoc mutual exclusion primitives: SpinLock and Mux
4339//
4340// We employ SpinLocks _only for low-contention, fixed-length
4341// short-duration critical sections where we're concerned
4342// about native mutex_t or HotSpot Mutex:: latency.
4343// The mux construct provides a spin-then-block mutual exclusion
4344// mechanism.
4345//
4346// Testing has shown that contention on the ListLock guarding gFreeList
4347// is common.  If we implement ListLock as a simple SpinLock it's common
4348// for the JVM to devolve to yielding with little progress.  This is true
4349// despite the fact that the critical sections protected by ListLock are
4350// extremely short.
4351//
4352// TODO-FIXME: ListLock should be of type SpinLock.
4353// We should make this a 1st-class type, integrated into the lock
4354// hierarchy as leaf-locks.  Critically, the SpinLock structure
4355// should have sufficient padding to avoid false-sharing and excessive
4356// cache-coherency traffic.
4357
4358
4359typedef volatile int SpinLockT;
4360
4361void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4362  if (Atomic::cmpxchg (1, adr, 0) == 0) {
4363     return;   // normal fast-path return
4364  }
4365
4366  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4367  TEVENT(SpinAcquire - ctx);
4368  int ctr = 0;
4369  int Yields = 0;
4370  for (;;) {
4371     while (*adr != 0) {
4372        ++ctr;
4373        if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4374           if (Yields > 5) {
4375             os::naked_short_sleep(1);
4376           } else {
4377             os::NakedYield();
4378             ++Yields;
4379           }
4380        } else {
4381           SpinPause();
4382        }
4383     }
4384     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4385  }
4386}
4387
4388void Thread::SpinRelease (volatile int * adr) {
4389  assert(*adr != 0, "invariant");
4390  OrderAccess::fence();      // guarantee at least release consistency.
4391  // Roach-motel semantics.
4392  // It's safe if subsequent LDs and STs float "up" into the critical section,
4393  // but prior LDs and STs within the critical section can't be allowed
4394  // to reorder or float past the ST that releases the lock.
4395  // Loads and stores in the critical section - which appear in program
4396  // order before the store that releases the lock - must also appear
4397  // before the store that releases the lock in memory visibility order.
4398  // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4399  // the ST of 0 into the lock-word which releases the lock, so fence
4400  // more than covers this on all platforms.
4401  *adr = 0;
4402}
4403
4404// muxAcquire and muxRelease:
4405//
4406// *  muxAcquire and muxRelease support a single-word lock-word construct.
4407//    The LSB of the word is set IFF the lock is held.
4408//    The remainder of the word points to the head of a singly-linked list
4409//    of threads blocked on the lock.
4410//
4411// *  The current implementation of muxAcquire-muxRelease uses its own
4412//    dedicated Thread._MuxEvent instance.  If we're interested in
4413//    minimizing the peak number of extant ParkEvent instances then
4414//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4415//    as certain invariants were satisfied.  Specifically, care would need
4416//    to be taken with regards to consuming unpark() "permits".
4417//    A safe rule of thumb is that a thread would never call muxAcquire()
4418//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4419//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4420//    consume an unpark() permit intended for monitorenter, for instance.
4421//    One way around this would be to widen the restricted-range semaphore
4422//    implemented in park().  Another alternative would be to provide
4423//    multiple instances of the PlatformEvent() for each thread.  One
4424//    instance would be dedicated to muxAcquire-muxRelease, for instance.
4425//
4426// *  Usage:
4427//    -- Only as leaf locks
4428//    -- for short-term locking only as muxAcquire does not perform
4429//       thread state transitions.
4430//
4431// Alternatives:
4432// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4433//    but with parking or spin-then-park instead of pure spinning.
4434// *  Use Taura-Oyama-Yonenzawa locks.
4435// *  It's possible to construct a 1-0 lock if we encode the lockword as
4436//    (List,LockByte).  Acquire will CAS the full lockword while Release
4437//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4438//    acquiring threads use timers (ParkTimed) to detect and recover from
4439//    the stranding window.  Thread/Node structures must be aligned on 256-byte
4440//    boundaries by using placement-new.
4441// *  Augment MCS with advisory back-link fields maintained with CAS().
4442//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4443//    The validity of the backlinks must be ratified before we trust the value.
4444//    If the backlinks are invalid the exiting thread must back-track through the
4445//    the forward links, which are always trustworthy.
4446// *  Add a successor indication.  The LockWord is currently encoded as
4447//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4448//    to provide the usual futile-wakeup optimization.
4449//    See RTStt for details.
4450// *  Consider schedctl.sc_nopreempt to cover the critical section.
4451//
4452
4453
4454typedef volatile intptr_t MutexT;      // Mux Lock-word
4455enum MuxBits { LOCKBIT = 1 };
4456
4457void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4458  intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4459  if (w == 0) return;
4460  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4461     return;
4462  }
4463
4464  TEVENT(muxAcquire - Contention);
4465  ParkEvent * const Self = Thread::current()->_MuxEvent;
4466  assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4467  for (;;) {
4468     int its = (os::is_MP() ? 100 : 0) + 1;
4469
4470     // Optional spin phase: spin-then-park strategy
4471     while (--its >= 0) {
4472       w = *Lock;
4473       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4474          return;
4475       }
4476     }
4477
4478     Self->reset();
4479     Self->OnList = intptr_t(Lock);
4480     // The following fence() isn't _strictly necessary as the subsequent
4481     // CAS() both serializes execution and ratifies the fetched *Lock value.
4482     OrderAccess::fence();
4483     for (;;) {
4484        w = *Lock;
4485        if ((w & LOCKBIT) == 0) {
4486            if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4487                Self->OnList = 0;   // hygiene - allows stronger asserts
4488                return;
4489            }
4490            continue;      // Interference -- *Lock changed -- Just retry
4491        }
4492        assert(w & LOCKBIT, "invariant");
4493        Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4494        if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4495     }
4496
4497     while (Self->OnList != 0) {
4498        Self->park();
4499     }
4500  }
4501}
4502
4503void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4504  intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4505  if (w == 0) return;
4506  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4507    return;
4508  }
4509
4510  TEVENT(muxAcquire - Contention);
4511  ParkEvent * ReleaseAfter = NULL;
4512  if (ev == NULL) {
4513    ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4514  }
4515  assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4516  for (;;) {
4517    guarantee(ev->OnList == 0, "invariant");
4518    int its = (os::is_MP() ? 100 : 0) + 1;
4519
4520    // Optional spin phase: spin-then-park strategy
4521    while (--its >= 0) {
4522      w = *Lock;
4523      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4524        if (ReleaseAfter != NULL) {
4525          ParkEvent::Release(ReleaseAfter);
4526        }
4527        return;
4528      }
4529    }
4530
4531    ev->reset();
4532    ev->OnList = intptr_t(Lock);
4533    // The following fence() isn't _strictly necessary as the subsequent
4534    // CAS() both serializes execution and ratifies the fetched *Lock value.
4535    OrderAccess::fence();
4536    for (;;) {
4537      w = *Lock;
4538      if ((w & LOCKBIT) == 0) {
4539        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4540          ev->OnList = 0;
4541          // We call ::Release while holding the outer lock, thus
4542          // artificially lengthening the critical section.
4543          // Consider deferring the ::Release() until the subsequent unlock(),
4544          // after we've dropped the outer lock.
4545          if (ReleaseAfter != NULL) {
4546            ParkEvent::Release(ReleaseAfter);
4547          }
4548          return;
4549        }
4550        continue;      // Interference -- *Lock changed -- Just retry
4551      }
4552      assert(w & LOCKBIT, "invariant");
4553      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4554      if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4555    }
4556
4557    while (ev->OnList != 0) {
4558      ev->park();
4559    }
4560  }
4561}
4562
4563// Release() must extract a successor from the list and then wake that thread.
4564// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4565// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4566// Release() would :
4567// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4568// (B) Extract a successor from the private list "in-hand"
4569// (C) attempt to CAS() the residual back into *Lock over null.
4570//     If there were any newly arrived threads and the CAS() would fail.
4571//     In that case Release() would detach the RATs, re-merge the list in-hand
4572//     with the RATs and repeat as needed.  Alternately, Release() might
4573//     detach and extract a successor, but then pass the residual list to the wakee.
4574//     The wakee would be responsible for reattaching and remerging before it
4575//     competed for the lock.
4576//
4577// Both "pop" and DMR are immune from ABA corruption -- there can be
4578// multiple concurrent pushers, but only one popper or detacher.
4579// This implementation pops from the head of the list.  This is unfair,
4580// but tends to provide excellent throughput as hot threads remain hot.
4581// (We wake recently run threads first).
4582//
4583// All paths through muxRelease() will execute a CAS.
4584// Release consistency -- We depend on the CAS in muxRelease() to provide full
4585// bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4586// executed within the critical section are complete and globally visible before the
4587// store (CAS) to the lock-word that releases the lock becomes globally visible.
4588void Thread::muxRelease (volatile intptr_t * Lock)  {
4589  for (;;) {
4590    const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4591    assert(w & LOCKBIT, "invariant");
4592    if (w == LOCKBIT) return;
4593    ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4594    assert(List != NULL, "invariant");
4595    assert(List->OnList == intptr_t(Lock), "invariant");
4596    ParkEvent * const nxt = List->ListNext;
4597    guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4598
4599    // The following CAS() releases the lock and pops the head element.
4600    // The CAS() also ratifies the previously fetched lock-word value.
4601    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4602      continue;
4603    }
4604    List->OnList = 0;
4605    OrderAccess::fence();
4606    List->unpark();
4607    return;
4608  }
4609}
4610
4611
4612void Threads::verify() {
4613  ALL_JAVA_THREADS(p) {
4614    p->verify();
4615  }
4616  VMThread* thread = VMThread::vm_thread();
4617  if (thread != NULL) thread->verify();
4618}
4619