thread.cpp revision 6403:97356e139532
1274876Sbapt/*
2274876Sbapt * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3274876Sbapt * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4274876Sbapt *
5274876Sbapt * This code is free software; you can redistribute it and/or modify it
6294113Sbapt * under the terms of the GNU General Public License version 2 only, as
7274876Sbapt * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/scopeDesc.hpp"
31#include "compiler/compileBroker.hpp"
32#include "interpreter/interpreter.hpp"
33#include "interpreter/linkResolver.hpp"
34#include "interpreter/oopMapCache.hpp"
35#include "jvmtifiles/jvmtiEnv.hpp"
36#include "memory/gcLocker.inline.hpp"
37#include "memory/metaspaceShared.hpp"
38#include "memory/oopFactory.hpp"
39#include "memory/universe.inline.hpp"
40#include "oops/instanceKlass.hpp"
41#include "oops/objArrayOop.hpp"
42#include "oops/oop.inline.hpp"
43#include "oops/symbol.hpp"
44#include "prims/jvm_misc.hpp"
45#include "prims/jvmtiExport.hpp"
46#include "prims/jvmtiThreadState.hpp"
47#include "prims/privilegedStack.hpp"
48#include "runtime/arguments.hpp"
49#include "runtime/biasedLocking.hpp"
50#include "runtime/deoptimization.hpp"
51#include "runtime/fprofiler.hpp"
52#include "runtime/frame.inline.hpp"
53#include "runtime/init.hpp"
54#include "runtime/interfaceSupport.hpp"
55#include "runtime/java.hpp"
56#include "runtime/javaCalls.hpp"
57#include "runtime/jniPeriodicChecker.hpp"
58#include "runtime/memprofiler.hpp"
59#include "runtime/mutexLocker.hpp"
60#include "runtime/objectMonitor.hpp"
61#include "runtime/orderAccess.inline.hpp"
62#include "runtime/osThread.hpp"
63#include "runtime/safepoint.hpp"
64#include "runtime/sharedRuntime.hpp"
65#include "runtime/statSampler.hpp"
66#include "runtime/stubRoutines.hpp"
67#include "runtime/task.hpp"
68#include "runtime/thread.inline.hpp"
69#include "runtime/threadCritical.hpp"
70#include "runtime/threadLocalStorage.hpp"
71#include "runtime/vframe.hpp"
72#include "runtime/vframeArray.hpp"
73#include "runtime/vframe_hp.hpp"
74#include "runtime/vmThread.hpp"
75#include "runtime/vm_operations.hpp"
76#include "services/attachListener.hpp"
77#include "services/management.hpp"
78#include "services/memTracker.hpp"
79#include "services/threadService.hpp"
80#include "trace/tracing.hpp"
81#include "trace/traceMacros.hpp"
82#include "utilities/defaultStream.hpp"
83#include "utilities/dtrace.hpp"
84#include "utilities/events.hpp"
85#include "utilities/preserveException.hpp"
86#include "utilities/macros.hpp"
87#ifdef TARGET_OS_FAMILY_linux
88# include "os_linux.inline.hpp"
89#endif
90#ifdef TARGET_OS_FAMILY_solaris
91# include "os_solaris.inline.hpp"
92#endif
93#ifdef TARGET_OS_FAMILY_windows
94# include "os_windows.inline.hpp"
95#endif
96#ifdef TARGET_OS_FAMILY_bsd
97# include "os_bsd.inline.hpp"
98#endif
99#if INCLUDE_ALL_GCS
100#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
101#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
102#include "gc_implementation/parallelScavenge/pcTasks.hpp"
103#endif // INCLUDE_ALL_GCS
104#ifdef COMPILER1
105#include "c1/c1_Compiler.hpp"
106#endif
107#ifdef COMPILER2
108#include "opto/c2compiler.hpp"
109#include "opto/idealGraphPrinter.hpp"
110#endif
111#if INCLUDE_RTM_OPT
112#include "runtime/rtmLocking.hpp"
113#endif
114
115#ifdef DTRACE_ENABLED
116
117// Only bother with this argument setup if dtrace is available
118
119#define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
120#define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
121
122#define DTRACE_THREAD_PROBE(probe, javathread)                             \
123  {                                                                        \
124    ResourceMark rm(this);                                                 \
125    int len = 0;                                                           \
126    const char* name = (javathread)->get_thread_name();                    \
127    len = strlen(name);                                                    \
128    HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
129      (char *) name, len,                                                           \
130      java_lang_Thread::thread_id((javathread)->threadObj()),              \
131      (uintptr_t) (javathread)->osthread()->thread_id(),                               \
132      java_lang_Thread::is_daemon((javathread)->threadObj()));             \
133  }
134
135#else //  ndef DTRACE_ENABLED
136
137#define DTRACE_THREAD_PROBE(probe, javathread)
138
139#endif // ndef DTRACE_ENABLED
140
141
142// Class hierarchy
143// - Thread
144//   - VMThread
145//   - WatcherThread
146//   - ConcurrentMarkSweepThread
147//   - JavaThread
148//     - CompilerThread
149
150// ======= Thread ========
151// Support for forcing alignment of thread objects for biased locking
152void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
153  if (UseBiasedLocking) {
154    const int alignment = markOopDesc::biased_lock_alignment;
155    size_t aligned_size = size + (alignment - sizeof(intptr_t));
156    void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
157                                          : AllocateHeap(aligned_size, flags, CURRENT_PC,
158                                              AllocFailStrategy::RETURN_NULL);
159    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
160    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
161           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
162           "JavaThread alignment code overflowed allocated storage");
163    if (TraceBiasedLocking) {
164      if (aligned_addr != real_malloc_addr)
165        tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
166                      real_malloc_addr, aligned_addr);
167    }
168    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
169    return aligned_addr;
170  } else {
171    return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
172                       : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
173  }
174}
175
176void Thread::operator delete(void* p) {
177  if (UseBiasedLocking) {
178    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
179    FreeHeap(real_malloc_addr, mtThread);
180  } else {
181    FreeHeap(p, mtThread);
182  }
183}
184
185
186// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
187// JavaThread
188
189
190Thread::Thread() {
191  // stack and get_thread
192  set_stack_base(NULL);
193  set_stack_size(0);
194  set_self_raw_id(0);
195  set_lgrp_id(-1);
196
197  // allocated data structures
198  set_osthread(NULL);
199  set_resource_area(new (mtThread)ResourceArea());
200  DEBUG_ONLY(_current_resource_mark = NULL;)
201  set_handle_area(new (mtThread) HandleArea(NULL));
202  set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
203  set_active_handles(NULL);
204  set_free_handle_block(NULL);
205  set_last_handle_mark(NULL);
206
207  // This initial value ==> never claimed.
208  _oops_do_parity = 0;
209
210  // the handle mark links itself to last_handle_mark
211  new HandleMark(this);
212
213  // plain initialization
214  debug_only(_owned_locks = NULL;)
215  debug_only(_allow_allocation_count = 0;)
216  NOT_PRODUCT(_allow_safepoint_count = 0;)
217  NOT_PRODUCT(_skip_gcalot = false;)
218  _jvmti_env_iteration_count = 0;
219  set_allocated_bytes(0);
220  _vm_operation_started_count = 0;
221  _vm_operation_completed_count = 0;
222  _current_pending_monitor = NULL;
223  _current_pending_monitor_is_from_java = true;
224  _current_waiting_monitor = NULL;
225  _num_nested_signal = 0;
226  omFreeList = NULL ;
227  omFreeCount = 0 ;
228  omFreeProvision = 32 ;
229  omInUseList = NULL ;
230  omInUseCount = 0 ;
231
232#ifdef ASSERT
233  _visited_for_critical_count = false;
234#endif
235
236  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
237  _suspend_flags = 0;
238
239  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
240  _hashStateX = os::random() ;
241  _hashStateY = 842502087 ;
242  _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
243  _hashStateW = 273326509 ;
244
245  _OnTrap   = 0 ;
246  _schedctl = NULL ;
247  _Stalled  = 0 ;
248  _TypeTag  = 0x2BAD ;
249
250  // Many of the following fields are effectively final - immutable
251  // Note that nascent threads can't use the Native Monitor-Mutex
252  // construct until the _MutexEvent is initialized ...
253  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
254  // we might instead use a stack of ParkEvents that we could provision on-demand.
255  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
256  // and ::Release()
257  _ParkEvent   = ParkEvent::Allocate (this) ;
258  _SleepEvent  = ParkEvent::Allocate (this) ;
259  _MutexEvent  = ParkEvent::Allocate (this) ;
260  _MuxEvent    = ParkEvent::Allocate (this) ;
261
262#ifdef CHECK_UNHANDLED_OOPS
263  if (CheckUnhandledOops) {
264    _unhandled_oops = new UnhandledOops(this);
265  }
266#endif // CHECK_UNHANDLED_OOPS
267#ifdef ASSERT
268  if (UseBiasedLocking) {
269    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
270    assert(this == _real_malloc_address ||
271           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
272           "bug in forced alignment of thread objects");
273  }
274#endif /* ASSERT */
275}
276
277void Thread::initialize_thread_local_storage() {
278  // Note: Make sure this method only calls
279  // non-blocking operations. Otherwise, it might not work
280  // with the thread-startup/safepoint interaction.
281
282  // During Java thread startup, safepoint code should allow this
283  // method to complete because it may need to allocate memory to
284  // store information for the new thread.
285
286  // initialize structure dependent on thread local storage
287  ThreadLocalStorage::set_thread(this);
288}
289
290void Thread::record_stack_base_and_size() {
291  set_stack_base(os::current_stack_base());
292  set_stack_size(os::current_stack_size());
293  if (is_Java_thread()) {
294    ((JavaThread*) this)->set_stack_overflow_limit();
295  }
296  // CR 7190089: on Solaris, primordial thread's stack is adjusted
297  // in initialize_thread(). Without the adjustment, stack size is
298  // incorrect if stack is set to unlimited (ulimit -s unlimited).
299  // So far, only Solaris has real implementation of initialize_thread().
300  //
301  // set up any platform-specific state.
302  os::initialize_thread(this);
303
304#if INCLUDE_NMT
305  // record thread's native stack, stack grows downward
306  address stack_low_addr = stack_base() - stack_size();
307  MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
308      CURRENT_PC);
309#endif // INCLUDE_NMT
310}
311
312
313Thread::~Thread() {
314  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
315  ObjectSynchronizer::omFlush (this) ;
316
317  EVENT_THREAD_DESTRUCT(this);
318
319  // stack_base can be NULL if the thread is never started or exited before
320  // record_stack_base_and_size called. Although, we would like to ensure
321  // that all started threads do call record_stack_base_and_size(), there is
322  // not proper way to enforce that.
323#if INCLUDE_NMT
324  if (_stack_base != NULL) {
325    address low_stack_addr = stack_base() - stack_size();
326    MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
327#ifdef ASSERT
328    set_stack_base(NULL);
329#endif
330  }
331#endif // INCLUDE_NMT
332
333  // deallocate data structures
334  delete resource_area();
335  // since the handle marks are using the handle area, we have to deallocated the root
336  // handle mark before deallocating the thread's handle area,
337  assert(last_handle_mark() != NULL, "check we have an element");
338  delete last_handle_mark();
339  assert(last_handle_mark() == NULL, "check we have reached the end");
340
341  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
342  // We NULL out the fields for good hygiene.
343  ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
344  ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
345  ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
346  ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
347
348  delete handle_area();
349  delete metadata_handles();
350
351  // osthread() can be NULL, if creation of thread failed.
352  if (osthread() != NULL) os::free_thread(osthread());
353
354  delete _SR_lock;
355
356  // clear thread local storage if the Thread is deleting itself
357  if (this == Thread::current()) {
358    ThreadLocalStorage::set_thread(NULL);
359  } else {
360    // In the case where we're not the current thread, invalidate all the
361    // caches in case some code tries to get the current thread or the
362    // thread that was destroyed, and gets stale information.
363    ThreadLocalStorage::invalidate_all();
364  }
365  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
366}
367
368// NOTE: dummy function for assertion purpose.
369void Thread::run() {
370  ShouldNotReachHere();
371}
372
373#ifdef ASSERT
374// Private method to check for dangling thread pointer
375void check_for_dangling_thread_pointer(Thread *thread) {
376 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
377         "possibility of dangling Thread pointer");
378}
379#endif
380
381
382#ifndef PRODUCT
383// Tracing method for basic thread operations
384void Thread::trace(const char* msg, const Thread* const thread) {
385  if (!TraceThreadEvents) return;
386  ResourceMark rm;
387  ThreadCritical tc;
388  const char *name = "non-Java thread";
389  int prio = -1;
390  if (thread->is_Java_thread()
391      && !thread->is_Compiler_thread()) {
392    // The Threads_lock must be held to get information about
393    // this thread but may not be in some situations when
394    // tracing  thread events.
395    bool release_Threads_lock = false;
396    if (!Threads_lock->owned_by_self()) {
397      Threads_lock->lock();
398      release_Threads_lock = true;
399    }
400    JavaThread* jt = (JavaThread *)thread;
401    name = (char *)jt->get_thread_name();
402    oop thread_oop = jt->threadObj();
403    if (thread_oop != NULL) {
404      prio = java_lang_Thread::priority(thread_oop);
405    }
406    if (release_Threads_lock) {
407      Threads_lock->unlock();
408    }
409  }
410  tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
411}
412#endif
413
414
415ThreadPriority Thread::get_priority(const Thread* const thread) {
416  trace("get priority", thread);
417  ThreadPriority priority;
418  // Can return an error!
419  (void)os::get_priority(thread, priority);
420  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
421  return priority;
422}
423
424void Thread::set_priority(Thread* thread, ThreadPriority priority) {
425  trace("set priority", thread);
426  debug_only(check_for_dangling_thread_pointer(thread);)
427  // Can return an error!
428  (void)os::set_priority(thread, priority);
429}
430
431
432void Thread::start(Thread* thread) {
433  trace("start", thread);
434  // Start is different from resume in that its safety is guaranteed by context or
435  // being called from a Java method synchronized on the Thread object.
436  if (!DisableStartThread) {
437    if (thread->is_Java_thread()) {
438      // Initialize the thread state to RUNNABLE before starting this thread.
439      // Can not set it after the thread started because we do not know the
440      // exact thread state at that time. It could be in MONITOR_WAIT or
441      // in SLEEPING or some other state.
442      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
443                                          java_lang_Thread::RUNNABLE);
444    }
445    os::start_thread(thread);
446  }
447}
448
449// Enqueue a VM_Operation to do the job for us - sometime later
450void Thread::send_async_exception(oop java_thread, oop java_throwable) {
451  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
452  VMThread::execute(vm_stop);
453}
454
455
456//
457// Check if an external suspend request has completed (or has been
458// cancelled). Returns true if the thread is externally suspended and
459// false otherwise.
460//
461// The bits parameter returns information about the code path through
462// the routine. Useful for debugging:
463//
464// set in is_ext_suspend_completed():
465// 0x00000001 - routine was entered
466// 0x00000010 - routine return false at end
467// 0x00000100 - thread exited (return false)
468// 0x00000200 - suspend request cancelled (return false)
469// 0x00000400 - thread suspended (return true)
470// 0x00001000 - thread is in a suspend equivalent state (return true)
471// 0x00002000 - thread is native and walkable (return true)
472// 0x00004000 - thread is native_trans and walkable (needed retry)
473//
474// set in wait_for_ext_suspend_completion():
475// 0x00010000 - routine was entered
476// 0x00020000 - suspend request cancelled before loop (return false)
477// 0x00040000 - thread suspended before loop (return true)
478// 0x00080000 - suspend request cancelled in loop (return false)
479// 0x00100000 - thread suspended in loop (return true)
480// 0x00200000 - suspend not completed during retry loop (return false)
481//
482
483// Helper class for tracing suspend wait debug bits.
484//
485// 0x00000100 indicates that the target thread exited before it could
486// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
487// 0x00080000 each indicate a cancelled suspend request so they don't
488// count as wait failures either.
489#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
490
491class TraceSuspendDebugBits : public StackObj {
492 private:
493  JavaThread * jt;
494  bool         is_wait;
495  bool         called_by_wait;  // meaningful when !is_wait
496  uint32_t *   bits;
497
498 public:
499  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
500                        uint32_t *_bits) {
501    jt             = _jt;
502    is_wait        = _is_wait;
503    called_by_wait = _called_by_wait;
504    bits           = _bits;
505  }
506
507  ~TraceSuspendDebugBits() {
508    if (!is_wait) {
509#if 1
510      // By default, don't trace bits for is_ext_suspend_completed() calls.
511      // That trace is very chatty.
512      return;
513#else
514      if (!called_by_wait) {
515        // If tracing for is_ext_suspend_completed() is enabled, then only
516        // trace calls to it from wait_for_ext_suspend_completion()
517        return;
518      }
519#endif
520    }
521
522    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
523      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
524        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
525        ResourceMark rm;
526
527        tty->print_cr(
528            "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
529            jt->get_thread_name(), *bits);
530
531        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
532      }
533    }
534  }
535};
536#undef DEBUG_FALSE_BITS
537
538
539bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
540  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
541
542  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
543  bool do_trans_retry;           // flag to force the retry
544
545  *bits |= 0x00000001;
546
547  do {
548    do_trans_retry = false;
549
550    if (is_exiting()) {
551      // Thread is in the process of exiting. This is always checked
552      // first to reduce the risk of dereferencing a freed JavaThread.
553      *bits |= 0x00000100;
554      return false;
555    }
556
557    if (!is_external_suspend()) {
558      // Suspend request is cancelled. This is always checked before
559      // is_ext_suspended() to reduce the risk of a rogue resume
560      // confusing the thread that made the suspend request.
561      *bits |= 0x00000200;
562      return false;
563    }
564
565    if (is_ext_suspended()) {
566      // thread is suspended
567      *bits |= 0x00000400;
568      return true;
569    }
570
571    // Now that we no longer do hard suspends of threads running
572    // native code, the target thread can be changing thread state
573    // while we are in this routine:
574    //
575    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
576    //
577    // We save a copy of the thread state as observed at this moment
578    // and make our decision about suspend completeness based on the
579    // copy. This closes the race where the thread state is seen as
580    // _thread_in_native_trans in the if-thread_blocked check, but is
581    // seen as _thread_blocked in if-thread_in_native_trans check.
582    JavaThreadState save_state = thread_state();
583
584    if (save_state == _thread_blocked && is_suspend_equivalent()) {
585      // If the thread's state is _thread_blocked and this blocking
586      // condition is known to be equivalent to a suspend, then we can
587      // consider the thread to be externally suspended. This means that
588      // the code that sets _thread_blocked has been modified to do
589      // self-suspension if the blocking condition releases. We also
590      // used to check for CONDVAR_WAIT here, but that is now covered by
591      // the _thread_blocked with self-suspension check.
592      //
593      // Return true since we wouldn't be here unless there was still an
594      // external suspend request.
595      *bits |= 0x00001000;
596      return true;
597    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
598      // Threads running native code will self-suspend on native==>VM/Java
599      // transitions. If its stack is walkable (should always be the case
600      // unless this function is called before the actual java_suspend()
601      // call), then the wait is done.
602      *bits |= 0x00002000;
603      return true;
604    } else if (!called_by_wait && !did_trans_retry &&
605               save_state == _thread_in_native_trans &&
606               frame_anchor()->walkable()) {
607      // The thread is transitioning from thread_in_native to another
608      // thread state. check_safepoint_and_suspend_for_native_trans()
609      // will force the thread to self-suspend. If it hasn't gotten
610      // there yet we may have caught the thread in-between the native
611      // code check above and the self-suspend. Lucky us. If we were
612      // called by wait_for_ext_suspend_completion(), then it
613      // will be doing the retries so we don't have to.
614      //
615      // Since we use the saved thread state in the if-statement above,
616      // there is a chance that the thread has already transitioned to
617      // _thread_blocked by the time we get here. In that case, we will
618      // make a single unnecessary pass through the logic below. This
619      // doesn't hurt anything since we still do the trans retry.
620
621      *bits |= 0x00004000;
622
623      // Once the thread leaves thread_in_native_trans for another
624      // thread state, we break out of this retry loop. We shouldn't
625      // need this flag to prevent us from getting back here, but
626      // sometimes paranoia is good.
627      did_trans_retry = true;
628
629      // We wait for the thread to transition to a more usable state.
630      for (int i = 1; i <= SuspendRetryCount; i++) {
631        // We used to do an "os::yield_all(i)" call here with the intention
632        // that yielding would increase on each retry. However, the parameter
633        // is ignored on Linux which means the yield didn't scale up. Waiting
634        // on the SR_lock below provides a much more predictable scale up for
635        // the delay. It also provides a simple/direct point to check for any
636        // safepoint requests from the VMThread
637
638        // temporarily drops SR_lock while doing wait with safepoint check
639        // (if we're a JavaThread - the WatcherThread can also call this)
640        // and increase delay with each retry
641        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
642
643        // check the actual thread state instead of what we saved above
644        if (thread_state() != _thread_in_native_trans) {
645          // the thread has transitioned to another thread state so
646          // try all the checks (except this one) one more time.
647          do_trans_retry = true;
648          break;
649        }
650      } // end retry loop
651
652
653    }
654  } while (do_trans_retry);
655
656  *bits |= 0x00000010;
657  return false;
658}
659
660//
661// Wait for an external suspend request to complete (or be cancelled).
662// Returns true if the thread is externally suspended and false otherwise.
663//
664bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
665       uint32_t *bits) {
666  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
667                             false /* !called_by_wait */, bits);
668
669  // local flag copies to minimize SR_lock hold time
670  bool is_suspended;
671  bool pending;
672  uint32_t reset_bits;
673
674  // set a marker so is_ext_suspend_completed() knows we are the caller
675  *bits |= 0x00010000;
676
677  // We use reset_bits to reinitialize the bits value at the top of
678  // each retry loop. This allows the caller to make use of any
679  // unused bits for their own marking purposes.
680  reset_bits = *bits;
681
682  {
683    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
684    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
685                                            delay, bits);
686    pending = is_external_suspend();
687  }
688  // must release SR_lock to allow suspension to complete
689
690  if (!pending) {
691    // A cancelled suspend request is the only false return from
692    // is_ext_suspend_completed() that keeps us from entering the
693    // retry loop.
694    *bits |= 0x00020000;
695    return false;
696  }
697
698  if (is_suspended) {
699    *bits |= 0x00040000;
700    return true;
701  }
702
703  for (int i = 1; i <= retries; i++) {
704    *bits = reset_bits;  // reinit to only track last retry
705
706    // We used to do an "os::yield_all(i)" call here with the intention
707    // that yielding would increase on each retry. However, the parameter
708    // is ignored on Linux which means the yield didn't scale up. Waiting
709    // on the SR_lock below provides a much more predictable scale up for
710    // the delay. It also provides a simple/direct point to check for any
711    // safepoint requests from the VMThread
712
713    {
714      MutexLocker ml(SR_lock());
715      // wait with safepoint check (if we're a JavaThread - the WatcherThread
716      // can also call this)  and increase delay with each retry
717      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
718
719      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
720                                              delay, bits);
721
722      // It is possible for the external suspend request to be cancelled
723      // (by a resume) before the actual suspend operation is completed.
724      // Refresh our local copy to see if we still need to wait.
725      pending = is_external_suspend();
726    }
727
728    if (!pending) {
729      // A cancelled suspend request is the only false return from
730      // is_ext_suspend_completed() that keeps us from staying in the
731      // retry loop.
732      *bits |= 0x00080000;
733      return false;
734    }
735
736    if (is_suspended) {
737      *bits |= 0x00100000;
738      return true;
739    }
740  } // end retry loop
741
742  // thread did not suspend after all our retries
743  *bits |= 0x00200000;
744  return false;
745}
746
747#ifndef PRODUCT
748void JavaThread::record_jump(address target, address instr, const char* file, int line) {
749
750  // This should not need to be atomic as the only way for simultaneous
751  // updates is via interrupts. Even then this should be rare or non-existent
752  // and we don't care that much anyway.
753
754  int index = _jmp_ring_index;
755  _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
756  _jmp_ring[index]._target = (intptr_t) target;
757  _jmp_ring[index]._instruction = (intptr_t) instr;
758  _jmp_ring[index]._file = file;
759  _jmp_ring[index]._line = line;
760}
761#endif /* PRODUCT */
762
763// Called by flat profiler
764// Callers have already called wait_for_ext_suspend_completion
765// The assertion for that is currently too complex to put here:
766bool JavaThread::profile_last_Java_frame(frame* _fr) {
767  bool gotframe = false;
768  // self suspension saves needed state.
769  if (has_last_Java_frame() && _anchor.walkable()) {
770     *_fr = pd_last_frame();
771     gotframe = true;
772  }
773  return gotframe;
774}
775
776void Thread::interrupt(Thread* thread) {
777  trace("interrupt", thread);
778  debug_only(check_for_dangling_thread_pointer(thread);)
779  os::interrupt(thread);
780}
781
782bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
783  trace("is_interrupted", thread);
784  debug_only(check_for_dangling_thread_pointer(thread);)
785  // Note:  If clear_interrupted==false, this simply fetches and
786  // returns the value of the field osthread()->interrupted().
787  return os::is_interrupted(thread, clear_interrupted);
788}
789
790
791// GC Support
792bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
793  jint thread_parity = _oops_do_parity;
794  if (thread_parity != strong_roots_parity) {
795    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
796    if (res == thread_parity) {
797      return true;
798    } else {
799      guarantee(res == strong_roots_parity, "Or else what?");
800      assert(SharedHeap::heap()->workers()->active_workers() > 0,
801         "Should only fail when parallel.");
802      return false;
803    }
804  }
805  assert(SharedHeap::heap()->workers()->active_workers() > 0,
806         "Should only fail when parallel.");
807  return false;
808}
809
810void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
811  active_handles()->oops_do(f);
812  // Do oop for ThreadShadow
813  f->do_oop((oop*)&_pending_exception);
814  handle_area()->oops_do(f);
815}
816
817void Thread::nmethods_do(CodeBlobClosure* cf) {
818  // no nmethods in a generic thread...
819}
820
821void Thread::metadata_do(void f(Metadata*)) {
822  if (metadata_handles() != NULL) {
823    for (int i = 0; i< metadata_handles()->length(); i++) {
824      f(metadata_handles()->at(i));
825    }
826  }
827}
828
829void Thread::print_on(outputStream* st) const {
830  // get_priority assumes osthread initialized
831  if (osthread() != NULL) {
832    int os_prio;
833    if (os::get_native_priority(this, &os_prio) == OS_OK) {
834      st->print("os_prio=%d ", os_prio);
835    }
836    st->print("tid=" INTPTR_FORMAT " ", this);
837    osthread()->print_on(st);
838  }
839  debug_only(if (WizardMode) print_owned_locks_on(st);)
840}
841
842// Thread::print_on_error() is called by fatal error handler. Don't use
843// any lock or allocate memory.
844void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
845  if      (is_VM_thread())                  st->print("VMThread");
846  else if (is_Compiler_thread())            st->print("CompilerThread");
847  else if (is_Java_thread())                st->print("JavaThread");
848  else if (is_GC_task_thread())             st->print("GCTaskThread");
849  else if (is_Watcher_thread())             st->print("WatcherThread");
850  else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
851  else st->print("Thread");
852
853  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
854            _stack_base - _stack_size, _stack_base);
855
856  if (osthread()) {
857    st->print(" [id=%d]", osthread()->thread_id());
858  }
859}
860
861#ifdef ASSERT
862void Thread::print_owned_locks_on(outputStream* st) const {
863  Monitor *cur = _owned_locks;
864  if (cur == NULL) {
865    st->print(" (no locks) ");
866  } else {
867    st->print_cr(" Locks owned:");
868    while(cur) {
869      cur->print_on(st);
870      cur = cur->next();
871    }
872  }
873}
874
875static int ref_use_count  = 0;
876
877bool Thread::owns_locks_but_compiled_lock() const {
878  for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
879    if (cur != Compile_lock) return true;
880  }
881  return false;
882}
883
884
885#endif
886
887#ifndef PRODUCT
888
889// The flag: potential_vm_operation notifies if this particular safepoint state could potential
890// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
891// no threads which allow_vm_block's are held
892void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
893    // Check if current thread is allowed to block at a safepoint
894    if (!(_allow_safepoint_count == 0))
895      fatal("Possible safepoint reached by thread that does not allow it");
896    if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
897      fatal("LEAF method calling lock?");
898    }
899
900#ifdef ASSERT
901    if (potential_vm_operation && is_Java_thread()
902        && !Universe::is_bootstrapping()) {
903      // Make sure we do not hold any locks that the VM thread also uses.
904      // This could potentially lead to deadlocks
905      for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
906        // Threads_lock is special, since the safepoint synchronization will not start before this is
907        // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
908        // since it is used to transfer control between JavaThreads and the VMThread
909        // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
910        if ( (cur->allow_vm_block() &&
911              cur != Threads_lock &&
912              cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
913              cur != VMOperationRequest_lock &&
914              cur != VMOperationQueue_lock) ||
915              cur->rank() == Mutex::special) {
916          fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
917        }
918      }
919    }
920
921    if (GCALotAtAllSafepoints) {
922      // We could enter a safepoint here and thus have a gc
923      InterfaceSupport::check_gc_alot();
924    }
925#endif
926}
927#endif
928
929bool Thread::is_in_stack(address adr) const {
930  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
931  address end = os::current_stack_pointer();
932  // Allow non Java threads to call this without stack_base
933  if (_stack_base == NULL) return true;
934  if (stack_base() >= adr && adr >= end) return true;
935
936  return false;
937}
938
939
940bool Thread::is_in_usable_stack(address adr) const {
941  size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
942  size_t usable_stack_size = _stack_size - stack_guard_size;
943
944  return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
945}
946
947
948// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
949// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
950// used for compilation in the future. If that change is made, the need for these methods
951// should be revisited, and they should be removed if possible.
952
953bool Thread::is_lock_owned(address adr) const {
954  return on_local_stack(adr);
955}
956
957bool Thread::set_as_starting_thread() {
958 // NOTE: this must be called inside the main thread.
959  return os::create_main_thread((JavaThread*)this);
960}
961
962static void initialize_class(Symbol* class_name, TRAPS) {
963  Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
964  InstanceKlass::cast(klass)->initialize(CHECK);
965}
966
967
968// Creates the initial ThreadGroup
969static Handle create_initial_thread_group(TRAPS) {
970  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
971  instanceKlassHandle klass (THREAD, k);
972
973  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
974  {
975    JavaValue result(T_VOID);
976    JavaCalls::call_special(&result,
977                            system_instance,
978                            klass,
979                            vmSymbols::object_initializer_name(),
980                            vmSymbols::void_method_signature(),
981                            CHECK_NH);
982  }
983  Universe::set_system_thread_group(system_instance());
984
985  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
986  {
987    JavaValue result(T_VOID);
988    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
989    JavaCalls::call_special(&result,
990                            main_instance,
991                            klass,
992                            vmSymbols::object_initializer_name(),
993                            vmSymbols::threadgroup_string_void_signature(),
994                            system_instance,
995                            string,
996                            CHECK_NH);
997  }
998  return main_instance;
999}
1000
1001// Creates the initial Thread
1002static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
1003  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1004  instanceKlassHandle klass (THREAD, k);
1005  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1006
1007  java_lang_Thread::set_thread(thread_oop(), thread);
1008  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1009  thread->set_threadObj(thread_oop());
1010
1011  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1012
1013  JavaValue result(T_VOID);
1014  JavaCalls::call_special(&result, thread_oop,
1015                                   klass,
1016                                   vmSymbols::object_initializer_name(),
1017                                   vmSymbols::threadgroup_string_void_signature(),
1018                                   thread_group,
1019                                   string,
1020                                   CHECK_NULL);
1021  return thread_oop();
1022}
1023
1024static void call_initializeSystemClass(TRAPS) {
1025  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1026  instanceKlassHandle klass (THREAD, k);
1027
1028  JavaValue result(T_VOID);
1029  JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1030                                         vmSymbols::void_method_signature(), CHECK);
1031}
1032
1033char java_runtime_name[128] = "";
1034char java_runtime_version[128] = "";
1035
1036// extract the JRE name from sun.misc.Version.java_runtime_name
1037static const char* get_java_runtime_name(TRAPS) {
1038  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1039                                      Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1040  fieldDescriptor fd;
1041  bool found = k != NULL &&
1042               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1043                                                        vmSymbols::string_signature(), &fd);
1044  if (found) {
1045    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1046    if (name_oop == NULL)
1047      return NULL;
1048    const char* name = java_lang_String::as_utf8_string(name_oop,
1049                                                        java_runtime_name,
1050                                                        sizeof(java_runtime_name));
1051    return name;
1052  } else {
1053    return NULL;
1054  }
1055}
1056
1057// extract the JRE version from sun.misc.Version.java_runtime_version
1058static const char* get_java_runtime_version(TRAPS) {
1059  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1060                                      Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1061  fieldDescriptor fd;
1062  bool found = k != NULL &&
1063               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1064                                                        vmSymbols::string_signature(), &fd);
1065  if (found) {
1066    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1067    if (name_oop == NULL)
1068      return NULL;
1069    const char* name = java_lang_String::as_utf8_string(name_oop,
1070                                                        java_runtime_version,
1071                                                        sizeof(java_runtime_version));
1072    return name;
1073  } else {
1074    return NULL;
1075  }
1076}
1077
1078// General purpose hook into Java code, run once when the VM is initialized.
1079// The Java library method itself may be changed independently from the VM.
1080static void call_postVMInitHook(TRAPS) {
1081  Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1082  instanceKlassHandle klass (THREAD, k);
1083  if (klass.not_null()) {
1084    JavaValue result(T_VOID);
1085    JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1086                                           vmSymbols::void_method_signature(),
1087                                           CHECK);
1088  }
1089}
1090
1091static void reset_vm_info_property(TRAPS) {
1092  // the vm info string
1093  ResourceMark rm(THREAD);
1094  const char *vm_info = VM_Version::vm_info_string();
1095
1096  // java.lang.System class
1097  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1098  instanceKlassHandle klass (THREAD, k);
1099
1100  // setProperty arguments
1101  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1102  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1103
1104  // return value
1105  JavaValue r(T_OBJECT);
1106
1107  // public static String setProperty(String key, String value);
1108  JavaCalls::call_static(&r,
1109                         klass,
1110                         vmSymbols::setProperty_name(),
1111                         vmSymbols::string_string_string_signature(),
1112                         key_str,
1113                         value_str,
1114                         CHECK);
1115}
1116
1117
1118void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1119  assert(thread_group.not_null(), "thread group should be specified");
1120  assert(threadObj() == NULL, "should only create Java thread object once");
1121
1122  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1123  instanceKlassHandle klass (THREAD, k);
1124  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1125
1126  java_lang_Thread::set_thread(thread_oop(), this);
1127  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1128  set_threadObj(thread_oop());
1129
1130  JavaValue result(T_VOID);
1131  if (thread_name != NULL) {
1132    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1133    // Thread gets assigned specified name and null target
1134    JavaCalls::call_special(&result,
1135                            thread_oop,
1136                            klass,
1137                            vmSymbols::object_initializer_name(),
1138                            vmSymbols::threadgroup_string_void_signature(),
1139                            thread_group, // Argument 1
1140                            name,         // Argument 2
1141                            THREAD);
1142  } else {
1143    // Thread gets assigned name "Thread-nnn" and null target
1144    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1145    JavaCalls::call_special(&result,
1146                            thread_oop,
1147                            klass,
1148                            vmSymbols::object_initializer_name(),
1149                            vmSymbols::threadgroup_runnable_void_signature(),
1150                            thread_group, // Argument 1
1151                            Handle(),     // Argument 2
1152                            THREAD);
1153  }
1154
1155
1156  if (daemon) {
1157      java_lang_Thread::set_daemon(thread_oop());
1158  }
1159
1160  if (HAS_PENDING_EXCEPTION) {
1161    return;
1162  }
1163
1164  KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1165  Handle threadObj(this, this->threadObj());
1166
1167  JavaCalls::call_special(&result,
1168                         thread_group,
1169                         group,
1170                         vmSymbols::add_method_name(),
1171                         vmSymbols::thread_void_signature(),
1172                         threadObj,          // Arg 1
1173                         THREAD);
1174
1175
1176}
1177
1178// NamedThread --  non-JavaThread subclasses with multiple
1179// uniquely named instances should derive from this.
1180NamedThread::NamedThread() : Thread() {
1181  _name = NULL;
1182  _processed_thread = NULL;
1183}
1184
1185NamedThread::~NamedThread() {
1186  if (_name != NULL) {
1187    FREE_C_HEAP_ARRAY(char, _name, mtThread);
1188    _name = NULL;
1189  }
1190}
1191
1192void NamedThread::set_name(const char* format, ...) {
1193  guarantee(_name == NULL, "Only get to set name once.");
1194  _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1195  guarantee(_name != NULL, "alloc failure");
1196  va_list ap;
1197  va_start(ap, format);
1198  jio_vsnprintf(_name, max_name_len, format, ap);
1199  va_end(ap);
1200}
1201
1202void NamedThread::print_on(outputStream* st) const {
1203  st->print("\"%s\" ", name());
1204  Thread::print_on(st);
1205  st->cr();
1206}
1207
1208
1209// ======= WatcherThread ========
1210
1211// The watcher thread exists to simulate timer interrupts.  It should
1212// be replaced by an abstraction over whatever native support for
1213// timer interrupts exists on the platform.
1214
1215WatcherThread* WatcherThread::_watcher_thread   = NULL;
1216bool WatcherThread::_startable = false;
1217volatile bool  WatcherThread::_should_terminate = false;
1218
1219WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1220  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1221  if (os::create_thread(this, os::watcher_thread)) {
1222    _watcher_thread = this;
1223
1224    // Set the watcher thread to the highest OS priority which should not be
1225    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1226    // is created. The only normal thread using this priority is the reference
1227    // handler thread, which runs for very short intervals only.
1228    // If the VMThread's priority is not lower than the WatcherThread profiling
1229    // will be inaccurate.
1230    os::set_priority(this, MaxPriority);
1231    if (!DisableStartThread) {
1232      os::start_thread(this);
1233    }
1234  }
1235}
1236
1237int WatcherThread::sleep() const {
1238  MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1239
1240  // remaining will be zero if there are no tasks,
1241  // causing the WatcherThread to sleep until a task is
1242  // enrolled
1243  int remaining = PeriodicTask::time_to_wait();
1244  int time_slept = 0;
1245
1246  // we expect this to timeout - we only ever get unparked when
1247  // we should terminate or when a new task has been enrolled
1248  OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1249
1250  jlong time_before_loop = os::javaTimeNanos();
1251
1252  for (;;) {
1253    bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1254    jlong now = os::javaTimeNanos();
1255
1256    if (remaining == 0) {
1257        // if we didn't have any tasks we could have waited for a long time
1258        // consider the time_slept zero and reset time_before_loop
1259        time_slept = 0;
1260        time_before_loop = now;
1261    } else {
1262        // need to recalculate since we might have new tasks in _tasks
1263        time_slept = (int) ((now - time_before_loop) / 1000000);
1264    }
1265
1266    // Change to task list or spurious wakeup of some kind
1267    if (timedout || _should_terminate) {
1268        break;
1269    }
1270
1271    remaining = PeriodicTask::time_to_wait();
1272    if (remaining == 0) {
1273        // Last task was just disenrolled so loop around and wait until
1274        // another task gets enrolled
1275        continue;
1276    }
1277
1278    remaining -= time_slept;
1279    if (remaining <= 0)
1280      break;
1281  }
1282
1283  return time_slept;
1284}
1285
1286void WatcherThread::run() {
1287  assert(this == watcher_thread(), "just checking");
1288
1289  this->record_stack_base_and_size();
1290  this->initialize_thread_local_storage();
1291  this->set_active_handles(JNIHandleBlock::allocate_block());
1292  while(!_should_terminate) {
1293    assert(watcher_thread() == Thread::current(),  "thread consistency check");
1294    assert(watcher_thread() == this,  "thread consistency check");
1295
1296    // Calculate how long it'll be until the next PeriodicTask work
1297    // should be done, and sleep that amount of time.
1298    int time_waited = sleep();
1299
1300    if (is_error_reported()) {
1301      // A fatal error has happened, the error handler(VMError::report_and_die)
1302      // should abort JVM after creating an error log file. However in some
1303      // rare cases, the error handler itself might deadlock. Here we try to
1304      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1305      //
1306      // This code is in WatcherThread because WatcherThread wakes up
1307      // periodically so the fatal error handler doesn't need to do anything;
1308      // also because the WatcherThread is less likely to crash than other
1309      // threads.
1310
1311      for (;;) {
1312        if (!ShowMessageBoxOnError
1313         && (OnError == NULL || OnError[0] == '\0')
1314         && Arguments::abort_hook() == NULL) {
1315             os::sleep(this, 2 * 60 * 1000, false);
1316             fdStream err(defaultStream::output_fd());
1317             err.print_raw_cr("# [ timer expired, abort... ]");
1318             // skip atexit/vm_exit/vm_abort hooks
1319             os::die();
1320        }
1321
1322        // Wake up 5 seconds later, the fatal handler may reset OnError or
1323        // ShowMessageBoxOnError when it is ready to abort.
1324        os::sleep(this, 5 * 1000, false);
1325      }
1326    }
1327
1328    PeriodicTask::real_time_tick(time_waited);
1329  }
1330
1331  // Signal that it is terminated
1332  {
1333    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1334    _watcher_thread = NULL;
1335    Terminator_lock->notify();
1336  }
1337
1338  // Thread destructor usually does this..
1339  ThreadLocalStorage::set_thread(NULL);
1340}
1341
1342void WatcherThread::start() {
1343  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1344
1345  if (watcher_thread() == NULL && _startable) {
1346    _should_terminate = false;
1347    // Create the single instance of WatcherThread
1348    new WatcherThread();
1349  }
1350}
1351
1352void WatcherThread::make_startable() {
1353  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1354  _startable = true;
1355}
1356
1357void WatcherThread::stop() {
1358  {
1359    MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1360    _should_terminate = true;
1361    OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1362
1363    WatcherThread* watcher = watcher_thread();
1364    if (watcher != NULL)
1365      watcher->unpark();
1366  }
1367
1368  // it is ok to take late safepoints here, if needed
1369  MutexLocker mu(Terminator_lock);
1370
1371  while(watcher_thread() != NULL) {
1372    // This wait should make safepoint checks, wait without a timeout,
1373    // and wait as a suspend-equivalent condition.
1374    //
1375    // Note: If the FlatProfiler is running, then this thread is waiting
1376    // for the WatcherThread to terminate and the WatcherThread, via the
1377    // FlatProfiler task, is waiting for the external suspend request on
1378    // this thread to complete. wait_for_ext_suspend_completion() will
1379    // eventually timeout, but that takes time. Making this wait a
1380    // suspend-equivalent condition solves that timeout problem.
1381    //
1382    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1383                          Mutex::_as_suspend_equivalent_flag);
1384  }
1385}
1386
1387void WatcherThread::unpark() {
1388  MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1389  PeriodicTask_lock->notify();
1390}
1391
1392void WatcherThread::print_on(outputStream* st) const {
1393  st->print("\"%s\" ", name());
1394  Thread::print_on(st);
1395  st->cr();
1396}
1397
1398// ======= JavaThread ========
1399
1400// A JavaThread is a normal Java thread
1401
1402void JavaThread::initialize() {
1403  // Initialize fields
1404
1405  // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1406  set_claimed_par_id(UINT_MAX);
1407
1408  set_saved_exception_pc(NULL);
1409  set_threadObj(NULL);
1410  _anchor.clear();
1411  set_entry_point(NULL);
1412  set_jni_functions(jni_functions());
1413  set_callee_target(NULL);
1414  set_vm_result(NULL);
1415  set_vm_result_2(NULL);
1416  set_vframe_array_head(NULL);
1417  set_vframe_array_last(NULL);
1418  set_deferred_locals(NULL);
1419  set_deopt_mark(NULL);
1420  set_deopt_nmethod(NULL);
1421  clear_must_deopt_id();
1422  set_monitor_chunks(NULL);
1423  set_next(NULL);
1424  set_thread_state(_thread_new);
1425#if INCLUDE_NMT
1426  set_recorder(NULL);
1427#endif
1428  _terminated = _not_terminated;
1429  _privileged_stack_top = NULL;
1430  _array_for_gc = NULL;
1431  _suspend_equivalent = false;
1432  _in_deopt_handler = 0;
1433  _doing_unsafe_access = false;
1434  _stack_guard_state = stack_guard_unused;
1435  (void)const_cast<oop&>(_exception_oop = NULL);
1436  _exception_pc  = 0;
1437  _exception_handler_pc = 0;
1438  _is_method_handle_return = 0;
1439  _jvmti_thread_state= NULL;
1440  _should_post_on_exceptions_flag = JNI_FALSE;
1441  _jvmti_get_loaded_classes_closure = NULL;
1442  _interp_only_mode    = 0;
1443  _special_runtime_exit_condition = _no_async_condition;
1444  _pending_async_exception = NULL;
1445  _thread_stat = NULL;
1446  _thread_stat = new ThreadStatistics();
1447  _blocked_on_compilation = false;
1448  _jni_active_critical = 0;
1449  _do_not_unlock_if_synchronized = false;
1450  _cached_monitor_info = NULL;
1451  _parker = Parker::Allocate(this) ;
1452
1453#ifndef PRODUCT
1454  _jmp_ring_index = 0;
1455  for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1456    record_jump(NULL, NULL, NULL, 0);
1457  }
1458#endif /* PRODUCT */
1459
1460  set_thread_profiler(NULL);
1461  if (FlatProfiler::is_active()) {
1462    // This is where we would decide to either give each thread it's own profiler
1463    // or use one global one from FlatProfiler,
1464    // or up to some count of the number of profiled threads, etc.
1465    ThreadProfiler* pp = new ThreadProfiler();
1466    pp->engage();
1467    set_thread_profiler(pp);
1468  }
1469
1470  // Setup safepoint state info for this thread
1471  ThreadSafepointState::create(this);
1472
1473  debug_only(_java_call_counter = 0);
1474
1475  // JVMTI PopFrame support
1476  _popframe_condition = popframe_inactive;
1477  _popframe_preserved_args = NULL;
1478  _popframe_preserved_args_size = 0;
1479
1480  pd_initialize();
1481}
1482
1483#if INCLUDE_ALL_GCS
1484SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1485DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1486#endif // INCLUDE_ALL_GCS
1487
1488JavaThread::JavaThread(bool is_attaching_via_jni) :
1489  Thread()
1490#if INCLUDE_ALL_GCS
1491  , _satb_mark_queue(&_satb_mark_queue_set),
1492  _dirty_card_queue(&_dirty_card_queue_set)
1493#endif // INCLUDE_ALL_GCS
1494{
1495  initialize();
1496  if (is_attaching_via_jni) {
1497    _jni_attach_state = _attaching_via_jni;
1498  } else {
1499    _jni_attach_state = _not_attaching_via_jni;
1500  }
1501  assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1502  _safepoint_visible = false;
1503}
1504
1505bool JavaThread::reguard_stack(address cur_sp) {
1506  if (_stack_guard_state != stack_guard_yellow_disabled) {
1507    return true; // Stack already guarded or guard pages not needed.
1508  }
1509
1510  if (register_stack_overflow()) {
1511    // For those architectures which have separate register and
1512    // memory stacks, we must check the register stack to see if
1513    // it has overflowed.
1514    return false;
1515  }
1516
1517  // Java code never executes within the yellow zone: the latter is only
1518  // there to provoke an exception during stack banging.  If java code
1519  // is executing there, either StackShadowPages should be larger, or
1520  // some exception code in c1, c2 or the interpreter isn't unwinding
1521  // when it should.
1522  guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1523
1524  enable_stack_yellow_zone();
1525  return true;
1526}
1527
1528bool JavaThread::reguard_stack(void) {
1529  return reguard_stack(os::current_stack_pointer());
1530}
1531
1532
1533void JavaThread::block_if_vm_exited() {
1534  if (_terminated == _vm_exited) {
1535    // _vm_exited is set at safepoint, and Threads_lock is never released
1536    // we will block here forever
1537    Threads_lock->lock_without_safepoint_check();
1538    ShouldNotReachHere();
1539  }
1540}
1541
1542
1543// Remove this ifdef when C1 is ported to the compiler interface.
1544static void compiler_thread_entry(JavaThread* thread, TRAPS);
1545
1546JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1547  Thread()
1548#if INCLUDE_ALL_GCS
1549  , _satb_mark_queue(&_satb_mark_queue_set),
1550  _dirty_card_queue(&_dirty_card_queue_set)
1551#endif // INCLUDE_ALL_GCS
1552{
1553  if (TraceThreadEvents) {
1554    tty->print_cr("creating thread %p", this);
1555  }
1556  initialize();
1557  _jni_attach_state = _not_attaching_via_jni;
1558  set_entry_point(entry_point);
1559  // Create the native thread itself.
1560  // %note runtime_23
1561  os::ThreadType thr_type = os::java_thread;
1562  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1563                                                     os::java_thread;
1564  os::create_thread(this, thr_type, stack_sz);
1565  _safepoint_visible = false;
1566  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1567  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1568  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1569  // the exception consists of creating the exception object & initializing it, initialization
1570  // will leave the VM via a JavaCall and then all locks must be unlocked).
1571  //
1572  // The thread is still suspended when we reach here. Thread must be explicit started
1573  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1574  // by calling Threads:add. The reason why this is not done here, is because the thread
1575  // object must be fully initialized (take a look at JVM_Start)
1576}
1577
1578JavaThread::~JavaThread() {
1579  if (TraceThreadEvents) {
1580      tty->print_cr("terminate thread %p", this);
1581  }
1582
1583  // By now, this thread should already be invisible to safepoint,
1584  // and its per-thread recorder also collected.
1585  assert(!is_safepoint_visible(), "wrong state");
1586#if INCLUDE_NMT
1587  assert(get_recorder() == NULL, "Already collected");
1588#endif // INCLUDE_NMT
1589
1590  // JSR166 -- return the parker to the free list
1591  Parker::Release(_parker);
1592  _parker = NULL ;
1593
1594  // Free any remaining  previous UnrollBlock
1595  vframeArray* old_array = vframe_array_last();
1596
1597  if (old_array != NULL) {
1598    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1599    old_array->set_unroll_block(NULL);
1600    delete old_info;
1601    delete old_array;
1602  }
1603
1604  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1605  if (deferred != NULL) {
1606    // This can only happen if thread is destroyed before deoptimization occurs.
1607    assert(deferred->length() != 0, "empty array!");
1608    do {
1609      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1610      deferred->remove_at(0);
1611      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1612      delete dlv;
1613    } while (deferred->length() != 0);
1614    delete deferred;
1615  }
1616
1617  // All Java related clean up happens in exit
1618  ThreadSafepointState::destroy(this);
1619  if (_thread_profiler != NULL) delete _thread_profiler;
1620  if (_thread_stat != NULL) delete _thread_stat;
1621}
1622
1623
1624// The first routine called by a new Java thread
1625void JavaThread::run() {
1626  // initialize thread-local alloc buffer related fields
1627  this->initialize_tlab();
1628
1629  // used to test validity of stack trace backs
1630  this->record_base_of_stack_pointer();
1631
1632  // Record real stack base and size.
1633  this->record_stack_base_and_size();
1634
1635  // Initialize thread local storage; set before calling MutexLocker
1636  this->initialize_thread_local_storage();
1637
1638  this->create_stack_guard_pages();
1639
1640  this->cache_global_variables();
1641
1642  // Thread is now sufficient initialized to be handled by the safepoint code as being
1643  // in the VM. Change thread state from _thread_new to _thread_in_vm
1644  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1645
1646  assert(JavaThread::current() == this, "sanity check");
1647  assert(!Thread::current()->owns_locks(), "sanity check");
1648
1649  DTRACE_THREAD_PROBE(start, this);
1650
1651  // This operation might block. We call that after all safepoint checks for a new thread has
1652  // been completed.
1653  this->set_active_handles(JNIHandleBlock::allocate_block());
1654
1655  if (JvmtiExport::should_post_thread_life()) {
1656    JvmtiExport::post_thread_start(this);
1657  }
1658
1659  EventThreadStart event;
1660  if (event.should_commit()) {
1661     event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1662     event.commit();
1663  }
1664
1665  // We call another function to do the rest so we are sure that the stack addresses used
1666  // from there will be lower than the stack base just computed
1667  thread_main_inner();
1668
1669  // Note, thread is no longer valid at this point!
1670}
1671
1672
1673void JavaThread::thread_main_inner() {
1674  assert(JavaThread::current() == this, "sanity check");
1675  assert(this->threadObj() != NULL, "just checking");
1676
1677  // Execute thread entry point unless this thread has a pending exception
1678  // or has been stopped before starting.
1679  // Note: Due to JVM_StopThread we can have pending exceptions already!
1680  if (!this->has_pending_exception() &&
1681      !java_lang_Thread::is_stillborn(this->threadObj())) {
1682    {
1683      ResourceMark rm(this);
1684      this->set_native_thread_name(this->get_thread_name());
1685    }
1686    HandleMark hm(this);
1687    this->entry_point()(this, this);
1688  }
1689
1690  DTRACE_THREAD_PROBE(stop, this);
1691
1692  this->exit(false);
1693  delete this;
1694}
1695
1696
1697static void ensure_join(JavaThread* thread) {
1698  // We do not need to grap the Threads_lock, since we are operating on ourself.
1699  Handle threadObj(thread, thread->threadObj());
1700  assert(threadObj.not_null(), "java thread object must exist");
1701  ObjectLocker lock(threadObj, thread);
1702  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1703  thread->clear_pending_exception();
1704  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1705  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1706  // Clear the native thread instance - this makes isAlive return false and allows the join()
1707  // to complete once we've done the notify_all below
1708  java_lang_Thread::set_thread(threadObj(), NULL);
1709  lock.notify_all(thread);
1710  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1711  thread->clear_pending_exception();
1712}
1713
1714
1715// For any new cleanup additions, please check to see if they need to be applied to
1716// cleanup_failed_attach_current_thread as well.
1717void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1718  assert(this == JavaThread::current(),  "thread consistency check");
1719
1720  HandleMark hm(this);
1721  Handle uncaught_exception(this, this->pending_exception());
1722  this->clear_pending_exception();
1723  Handle threadObj(this, this->threadObj());
1724  assert(threadObj.not_null(), "Java thread object should be created");
1725
1726  if (get_thread_profiler() != NULL) {
1727    get_thread_profiler()->disengage();
1728    ResourceMark rm;
1729    get_thread_profiler()->print(get_thread_name());
1730  }
1731
1732
1733  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1734  {
1735    EXCEPTION_MARK;
1736
1737    CLEAR_PENDING_EXCEPTION;
1738  }
1739  // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1740  // has to be fixed by a runtime query method
1741  if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1742    // JSR-166: change call from from ThreadGroup.uncaughtException to
1743    // java.lang.Thread.dispatchUncaughtException
1744    if (uncaught_exception.not_null()) {
1745      Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1746      {
1747        EXCEPTION_MARK;
1748        // Check if the method Thread.dispatchUncaughtException() exists. If so
1749        // call it.  Otherwise we have an older library without the JSR-166 changes,
1750        // so call ThreadGroup.uncaughtException()
1751        KlassHandle recvrKlass(THREAD, threadObj->klass());
1752        CallInfo callinfo;
1753        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1754        LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1755                                           vmSymbols::dispatchUncaughtException_name(),
1756                                           vmSymbols::throwable_void_signature(),
1757                                           KlassHandle(), false, false, THREAD);
1758        CLEAR_PENDING_EXCEPTION;
1759        methodHandle method = callinfo.selected_method();
1760        if (method.not_null()) {
1761          JavaValue result(T_VOID);
1762          JavaCalls::call_virtual(&result,
1763                                  threadObj, thread_klass,
1764                                  vmSymbols::dispatchUncaughtException_name(),
1765                                  vmSymbols::throwable_void_signature(),
1766                                  uncaught_exception,
1767                                  THREAD);
1768        } else {
1769          KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1770          JavaValue result(T_VOID);
1771          JavaCalls::call_virtual(&result,
1772                                  group, thread_group,
1773                                  vmSymbols::uncaughtException_name(),
1774                                  vmSymbols::thread_throwable_void_signature(),
1775                                  threadObj,           // Arg 1
1776                                  uncaught_exception,  // Arg 2
1777                                  THREAD);
1778        }
1779        if (HAS_PENDING_EXCEPTION) {
1780          ResourceMark rm(this);
1781          jio_fprintf(defaultStream::error_stream(),
1782                "\nException: %s thrown from the UncaughtExceptionHandler"
1783                " in thread \"%s\"\n",
1784                pending_exception()->klass()->external_name(),
1785                get_thread_name());
1786          CLEAR_PENDING_EXCEPTION;
1787        }
1788      }
1789    }
1790
1791    // Called before the java thread exit since we want to read info
1792    // from java_lang_Thread object
1793    EventThreadEnd event;
1794    if (event.should_commit()) {
1795        event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1796        event.commit();
1797    }
1798
1799    // Call after last event on thread
1800    EVENT_THREAD_EXIT(this);
1801
1802    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1803    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1804    // is deprecated anyhow.
1805    if (!is_Compiler_thread()) {
1806      int count = 3;
1807      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1808        EXCEPTION_MARK;
1809        JavaValue result(T_VOID);
1810        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1811        JavaCalls::call_virtual(&result,
1812                              threadObj, thread_klass,
1813                              vmSymbols::exit_method_name(),
1814                              vmSymbols::void_method_signature(),
1815                              THREAD);
1816        CLEAR_PENDING_EXCEPTION;
1817      }
1818    }
1819    // notify JVMTI
1820    if (JvmtiExport::should_post_thread_life()) {
1821      JvmtiExport::post_thread_end(this);
1822    }
1823
1824    // We have notified the agents that we are exiting, before we go on,
1825    // we must check for a pending external suspend request and honor it
1826    // in order to not surprise the thread that made the suspend request.
1827    while (true) {
1828      {
1829        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1830        if (!is_external_suspend()) {
1831          set_terminated(_thread_exiting);
1832          ThreadService::current_thread_exiting(this);
1833          break;
1834        }
1835        // Implied else:
1836        // Things get a little tricky here. We have a pending external
1837        // suspend request, but we are holding the SR_lock so we
1838        // can't just self-suspend. So we temporarily drop the lock
1839        // and then self-suspend.
1840      }
1841
1842      ThreadBlockInVM tbivm(this);
1843      java_suspend_self();
1844
1845      // We're done with this suspend request, but we have to loop around
1846      // and check again. Eventually we will get SR_lock without a pending
1847      // external suspend request and will be able to mark ourselves as
1848      // exiting.
1849    }
1850    // no more external suspends are allowed at this point
1851  } else {
1852    // before_exit() has already posted JVMTI THREAD_END events
1853  }
1854
1855  // Notify waiters on thread object. This has to be done after exit() is called
1856  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1857  // group should have the destroyed bit set before waiters are notified).
1858  ensure_join(this);
1859  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1860
1861  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1862  // held by this thread must be released.  A detach operation must only
1863  // get here if there are no Java frames on the stack.  Therefore, any
1864  // owned monitors at this point MUST be JNI-acquired monitors which are
1865  // pre-inflated and in the monitor cache.
1866  //
1867  // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1868  if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1869    assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1870    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1871    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1872  }
1873
1874  // These things needs to be done while we are still a Java Thread. Make sure that thread
1875  // is in a consistent state, in case GC happens
1876  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1877
1878  if (active_handles() != NULL) {
1879    JNIHandleBlock* block = active_handles();
1880    set_active_handles(NULL);
1881    JNIHandleBlock::release_block(block);
1882  }
1883
1884  if (free_handle_block() != NULL) {
1885    JNIHandleBlock* block = free_handle_block();
1886    set_free_handle_block(NULL);
1887    JNIHandleBlock::release_block(block);
1888  }
1889
1890  // These have to be removed while this is still a valid thread.
1891  remove_stack_guard_pages();
1892
1893  if (UseTLAB) {
1894    tlab().make_parsable(true);  // retire TLAB
1895  }
1896
1897  if (JvmtiEnv::environments_might_exist()) {
1898    JvmtiExport::cleanup_thread(this);
1899  }
1900
1901  // We must flush any deferred card marks before removing a thread from
1902  // the list of active threads.
1903  Universe::heap()->flush_deferred_store_barrier(this);
1904  assert(deferred_card_mark().is_empty(), "Should have been flushed");
1905
1906#if INCLUDE_ALL_GCS
1907  // We must flush the G1-related buffers before removing a thread
1908  // from the list of active threads. We must do this after any deferred
1909  // card marks have been flushed (above) so that any entries that are
1910  // added to the thread's dirty card queue as a result are not lost.
1911  if (UseG1GC) {
1912    flush_barrier_queues();
1913  }
1914#endif // INCLUDE_ALL_GCS
1915
1916  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1917  Threads::remove(this);
1918}
1919
1920#if INCLUDE_ALL_GCS
1921// Flush G1-related queues.
1922void JavaThread::flush_barrier_queues() {
1923  satb_mark_queue().flush();
1924  dirty_card_queue().flush();
1925}
1926
1927void JavaThread::initialize_queues() {
1928  assert(!SafepointSynchronize::is_at_safepoint(),
1929         "we should not be at a safepoint");
1930
1931  ObjPtrQueue& satb_queue = satb_mark_queue();
1932  SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1933  // The SATB queue should have been constructed with its active
1934  // field set to false.
1935  assert(!satb_queue.is_active(), "SATB queue should not be active");
1936  assert(satb_queue.is_empty(), "SATB queue should be empty");
1937  // If we are creating the thread during a marking cycle, we should
1938  // set the active field of the SATB queue to true.
1939  if (satb_queue_set.is_active()) {
1940    satb_queue.set_active(true);
1941  }
1942
1943  DirtyCardQueue& dirty_queue = dirty_card_queue();
1944  // The dirty card queue should have been constructed with its
1945  // active field set to true.
1946  assert(dirty_queue.is_active(), "dirty card queue should be active");
1947}
1948#endif // INCLUDE_ALL_GCS
1949
1950void JavaThread::cleanup_failed_attach_current_thread() {
1951  if (get_thread_profiler() != NULL) {
1952    get_thread_profiler()->disengage();
1953    ResourceMark rm;
1954    get_thread_profiler()->print(get_thread_name());
1955  }
1956
1957  if (active_handles() != NULL) {
1958    JNIHandleBlock* block = active_handles();
1959    set_active_handles(NULL);
1960    JNIHandleBlock::release_block(block);
1961  }
1962
1963  if (free_handle_block() != NULL) {
1964    JNIHandleBlock* block = free_handle_block();
1965    set_free_handle_block(NULL);
1966    JNIHandleBlock::release_block(block);
1967  }
1968
1969  // These have to be removed while this is still a valid thread.
1970  remove_stack_guard_pages();
1971
1972  if (UseTLAB) {
1973    tlab().make_parsable(true);  // retire TLAB, if any
1974  }
1975
1976#if INCLUDE_ALL_GCS
1977  if (UseG1GC) {
1978    flush_barrier_queues();
1979  }
1980#endif // INCLUDE_ALL_GCS
1981
1982  Threads::remove(this);
1983  delete this;
1984}
1985
1986
1987
1988
1989JavaThread* JavaThread::active() {
1990  Thread* thread = ThreadLocalStorage::thread();
1991  assert(thread != NULL, "just checking");
1992  if (thread->is_Java_thread()) {
1993    return (JavaThread*) thread;
1994  } else {
1995    assert(thread->is_VM_thread(), "this must be a vm thread");
1996    VM_Operation* op = ((VMThread*) thread)->vm_operation();
1997    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1998    assert(ret->is_Java_thread(), "must be a Java thread");
1999    return ret;
2000  }
2001}
2002
2003bool JavaThread::is_lock_owned(address adr) const {
2004  if (Thread::is_lock_owned(adr)) return true;
2005
2006  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2007    if (chunk->contains(adr)) return true;
2008  }
2009
2010  return false;
2011}
2012
2013
2014void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2015  chunk->set_next(monitor_chunks());
2016  set_monitor_chunks(chunk);
2017}
2018
2019void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2020  guarantee(monitor_chunks() != NULL, "must be non empty");
2021  if (monitor_chunks() == chunk) {
2022    set_monitor_chunks(chunk->next());
2023  } else {
2024    MonitorChunk* prev = monitor_chunks();
2025    while (prev->next() != chunk) prev = prev->next();
2026    prev->set_next(chunk->next());
2027  }
2028}
2029
2030// JVM support.
2031
2032// Note: this function shouldn't block if it's called in
2033// _thread_in_native_trans state (such as from
2034// check_special_condition_for_native_trans()).
2035void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2036
2037  if (has_last_Java_frame() && has_async_condition()) {
2038    // If we are at a polling page safepoint (not a poll return)
2039    // then we must defer async exception because live registers
2040    // will be clobbered by the exception path. Poll return is
2041    // ok because the call we a returning from already collides
2042    // with exception handling registers and so there is no issue.
2043    // (The exception handling path kills call result registers but
2044    //  this is ok since the exception kills the result anyway).
2045
2046    if (is_at_poll_safepoint()) {
2047      // if the code we are returning to has deoptimized we must defer
2048      // the exception otherwise live registers get clobbered on the
2049      // exception path before deoptimization is able to retrieve them.
2050      //
2051      RegisterMap map(this, false);
2052      frame caller_fr = last_frame().sender(&map);
2053      assert(caller_fr.is_compiled_frame(), "what?");
2054      if (caller_fr.is_deoptimized_frame()) {
2055        if (TraceExceptions) {
2056          ResourceMark rm;
2057          tty->print_cr("deferred async exception at compiled safepoint");
2058        }
2059        return;
2060      }
2061    }
2062  }
2063
2064  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2065  if (condition == _no_async_condition) {
2066    // Conditions have changed since has_special_runtime_exit_condition()
2067    // was called:
2068    // - if we were here only because of an external suspend request,
2069    //   then that was taken care of above (or cancelled) so we are done
2070    // - if we were here because of another async request, then it has
2071    //   been cleared between the has_special_runtime_exit_condition()
2072    //   and now so again we are done
2073    return;
2074  }
2075
2076  // Check for pending async. exception
2077  if (_pending_async_exception != NULL) {
2078    // Only overwrite an already pending exception, if it is not a threadDeath.
2079    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2080
2081      // We cannot call Exceptions::_throw(...) here because we cannot block
2082      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2083
2084      if (TraceExceptions) {
2085        ResourceMark rm;
2086        tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2087        if (has_last_Java_frame() ) {
2088          frame f = last_frame();
2089          tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2090        }
2091        tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2092      }
2093      _pending_async_exception = NULL;
2094      clear_has_async_exception();
2095    }
2096  }
2097
2098  if (check_unsafe_error &&
2099      condition == _async_unsafe_access_error && !has_pending_exception()) {
2100    condition = _no_async_condition;  // done
2101    switch (thread_state()) {
2102    case _thread_in_vm:
2103      {
2104        JavaThread* THREAD = this;
2105        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2106      }
2107    case _thread_in_native:
2108      {
2109        ThreadInVMfromNative tiv(this);
2110        JavaThread* THREAD = this;
2111        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2112      }
2113    case _thread_in_Java:
2114      {
2115        ThreadInVMfromJava tiv(this);
2116        JavaThread* THREAD = this;
2117        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2118      }
2119    default:
2120      ShouldNotReachHere();
2121    }
2122  }
2123
2124  assert(condition == _no_async_condition || has_pending_exception() ||
2125         (!check_unsafe_error && condition == _async_unsafe_access_error),
2126         "must have handled the async condition, if no exception");
2127}
2128
2129void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2130  //
2131  // Check for pending external suspend. Internal suspend requests do
2132  // not use handle_special_runtime_exit_condition().
2133  // If JNIEnv proxies are allowed, don't self-suspend if the target
2134  // thread is not the current thread. In older versions of jdbx, jdbx
2135  // threads could call into the VM with another thread's JNIEnv so we
2136  // can be here operating on behalf of a suspended thread (4432884).
2137  bool do_self_suspend = is_external_suspend_with_lock();
2138  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2139    //
2140    // Because thread is external suspended the safepoint code will count
2141    // thread as at a safepoint. This can be odd because we can be here
2142    // as _thread_in_Java which would normally transition to _thread_blocked
2143    // at a safepoint. We would like to mark the thread as _thread_blocked
2144    // before calling java_suspend_self like all other callers of it but
2145    // we must then observe proper safepoint protocol. (We can't leave
2146    // _thread_blocked with a safepoint in progress). However we can be
2147    // here as _thread_in_native_trans so we can't use a normal transition
2148    // constructor/destructor pair because they assert on that type of
2149    // transition. We could do something like:
2150    //
2151    // JavaThreadState state = thread_state();
2152    // set_thread_state(_thread_in_vm);
2153    // {
2154    //   ThreadBlockInVM tbivm(this);
2155    //   java_suspend_self()
2156    // }
2157    // set_thread_state(_thread_in_vm_trans);
2158    // if (safepoint) block;
2159    // set_thread_state(state);
2160    //
2161    // but that is pretty messy. Instead we just go with the way the
2162    // code has worked before and note that this is the only path to
2163    // java_suspend_self that doesn't put the thread in _thread_blocked
2164    // mode.
2165
2166    frame_anchor()->make_walkable(this);
2167    java_suspend_self();
2168
2169    // We might be here for reasons in addition to the self-suspend request
2170    // so check for other async requests.
2171  }
2172
2173  if (check_asyncs) {
2174    check_and_handle_async_exceptions();
2175  }
2176}
2177
2178void JavaThread::send_thread_stop(oop java_throwable)  {
2179  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2180  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2181  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2182
2183  // Do not throw asynchronous exceptions against the compiler thread
2184  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2185  if (is_Compiler_thread()) return;
2186
2187  {
2188    // Actually throw the Throwable against the target Thread - however
2189    // only if there is no thread death exception installed already.
2190    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2191      // If the topmost frame is a runtime stub, then we are calling into
2192      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2193      // must deoptimize the caller before continuing, as the compiled  exception handler table
2194      // may not be valid
2195      if (has_last_Java_frame()) {
2196        frame f = last_frame();
2197        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2198          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2199          RegisterMap reg_map(this, UseBiasedLocking);
2200          frame compiled_frame = f.sender(&reg_map);
2201          if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2202            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2203          }
2204        }
2205      }
2206
2207      // Set async. pending exception in thread.
2208      set_pending_async_exception(java_throwable);
2209
2210      if (TraceExceptions) {
2211       ResourceMark rm;
2212       tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2213      }
2214      // for AbortVMOnException flag
2215      NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2216    }
2217  }
2218
2219
2220  // Interrupt thread so it will wake up from a potential wait()
2221  Thread::interrupt(this);
2222}
2223
2224// External suspension mechanism.
2225//
2226// Tell the VM to suspend a thread when ever it knows that it does not hold on
2227// to any VM_locks and it is at a transition
2228// Self-suspension will happen on the transition out of the vm.
2229// Catch "this" coming in from JNIEnv pointers when the thread has been freed
2230//
2231// Guarantees on return:
2232//   + Target thread will not execute any new bytecode (that's why we need to
2233//     force a safepoint)
2234//   + Target thread will not enter any new monitors
2235//
2236void JavaThread::java_suspend() {
2237  { MutexLocker mu(Threads_lock);
2238    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2239       return;
2240    }
2241  }
2242
2243  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2244    if (!is_external_suspend()) {
2245      // a racing resume has cancelled us; bail out now
2246      return;
2247    }
2248
2249    // suspend is done
2250    uint32_t debug_bits = 0;
2251    // Warning: is_ext_suspend_completed() may temporarily drop the
2252    // SR_lock to allow the thread to reach a stable thread state if
2253    // it is currently in a transient thread state.
2254    if (is_ext_suspend_completed(false /* !called_by_wait */,
2255                                 SuspendRetryDelay, &debug_bits) ) {
2256      return;
2257    }
2258  }
2259
2260  VM_ForceSafepoint vm_suspend;
2261  VMThread::execute(&vm_suspend);
2262}
2263
2264// Part II of external suspension.
2265// A JavaThread self suspends when it detects a pending external suspend
2266// request. This is usually on transitions. It is also done in places
2267// where continuing to the next transition would surprise the caller,
2268// e.g., monitor entry.
2269//
2270// Returns the number of times that the thread self-suspended.
2271//
2272// Note: DO NOT call java_suspend_self() when you just want to block current
2273//       thread. java_suspend_self() is the second stage of cooperative
2274//       suspension for external suspend requests and should only be used
2275//       to complete an external suspend request.
2276//
2277int JavaThread::java_suspend_self() {
2278  int ret = 0;
2279
2280  // we are in the process of exiting so don't suspend
2281  if (is_exiting()) {
2282     clear_external_suspend();
2283     return ret;
2284  }
2285
2286  assert(_anchor.walkable() ||
2287    (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2288    "must have walkable stack");
2289
2290  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2291
2292  assert(!this->is_ext_suspended(),
2293    "a thread trying to self-suspend should not already be suspended");
2294
2295  if (this->is_suspend_equivalent()) {
2296    // If we are self-suspending as a result of the lifting of a
2297    // suspend equivalent condition, then the suspend_equivalent
2298    // flag is not cleared until we set the ext_suspended flag so
2299    // that wait_for_ext_suspend_completion() returns consistent
2300    // results.
2301    this->clear_suspend_equivalent();
2302  }
2303
2304  // A racing resume may have cancelled us before we grabbed SR_lock
2305  // above. Or another external suspend request could be waiting for us
2306  // by the time we return from SR_lock()->wait(). The thread
2307  // that requested the suspension may already be trying to walk our
2308  // stack and if we return now, we can change the stack out from under
2309  // it. This would be a "bad thing (TM)" and cause the stack walker
2310  // to crash. We stay self-suspended until there are no more pending
2311  // external suspend requests.
2312  while (is_external_suspend()) {
2313    ret++;
2314    this->set_ext_suspended();
2315
2316    // _ext_suspended flag is cleared by java_resume()
2317    while (is_ext_suspended()) {
2318      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2319    }
2320  }
2321
2322  return ret;
2323}
2324
2325#ifdef ASSERT
2326// verify the JavaThread has not yet been published in the Threads::list, and
2327// hence doesn't need protection from concurrent access at this stage
2328void JavaThread::verify_not_published() {
2329  if (!Threads_lock->owned_by_self()) {
2330   MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2331   assert( !Threads::includes(this),
2332           "java thread shouldn't have been published yet!");
2333  }
2334  else {
2335   assert( !Threads::includes(this),
2336           "java thread shouldn't have been published yet!");
2337  }
2338}
2339#endif
2340
2341// Slow path when the native==>VM/Java barriers detect a safepoint is in
2342// progress or when _suspend_flags is non-zero.
2343// Current thread needs to self-suspend if there is a suspend request and/or
2344// block if a safepoint is in progress.
2345// Async exception ISN'T checked.
2346// Note only the ThreadInVMfromNative transition can call this function
2347// directly and when thread state is _thread_in_native_trans
2348void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2349  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2350
2351  JavaThread *curJT = JavaThread::current();
2352  bool do_self_suspend = thread->is_external_suspend();
2353
2354  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2355
2356  // If JNIEnv proxies are allowed, don't self-suspend if the target
2357  // thread is not the current thread. In older versions of jdbx, jdbx
2358  // threads could call into the VM with another thread's JNIEnv so we
2359  // can be here operating on behalf of a suspended thread (4432884).
2360  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2361    JavaThreadState state = thread->thread_state();
2362
2363    // We mark this thread_blocked state as a suspend-equivalent so
2364    // that a caller to is_ext_suspend_completed() won't be confused.
2365    // The suspend-equivalent state is cleared by java_suspend_self().
2366    thread->set_suspend_equivalent();
2367
2368    // If the safepoint code sees the _thread_in_native_trans state, it will
2369    // wait until the thread changes to other thread state. There is no
2370    // guarantee on how soon we can obtain the SR_lock and complete the
2371    // self-suspend request. It would be a bad idea to let safepoint wait for
2372    // too long. Temporarily change the state to _thread_blocked to
2373    // let the VM thread know that this thread is ready for GC. The problem
2374    // of changing thread state is that safepoint could happen just after
2375    // java_suspend_self() returns after being resumed, and VM thread will
2376    // see the _thread_blocked state. We must check for safepoint
2377    // after restoring the state and make sure we won't leave while a safepoint
2378    // is in progress.
2379    thread->set_thread_state(_thread_blocked);
2380    thread->java_suspend_self();
2381    thread->set_thread_state(state);
2382    // Make sure new state is seen by VM thread
2383    if (os::is_MP()) {
2384      if (UseMembar) {
2385        // Force a fence between the write above and read below
2386        OrderAccess::fence();
2387      } else {
2388        // Must use this rather than serialization page in particular on Windows
2389        InterfaceSupport::serialize_memory(thread);
2390      }
2391    }
2392  }
2393
2394  if (SafepointSynchronize::do_call_back()) {
2395    // If we are safepointing, then block the caller which may not be
2396    // the same as the target thread (see above).
2397    SafepointSynchronize::block(curJT);
2398  }
2399
2400  if (thread->is_deopt_suspend()) {
2401    thread->clear_deopt_suspend();
2402    RegisterMap map(thread, false);
2403    frame f = thread->last_frame();
2404    while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2405      f = f.sender(&map);
2406    }
2407    if (f.id() == thread->must_deopt_id()) {
2408      thread->clear_must_deopt_id();
2409      f.deoptimize(thread);
2410    } else {
2411      fatal("missed deoptimization!");
2412    }
2413  }
2414}
2415
2416// Slow path when the native==>VM/Java barriers detect a safepoint is in
2417// progress or when _suspend_flags is non-zero.
2418// Current thread needs to self-suspend if there is a suspend request and/or
2419// block if a safepoint is in progress.
2420// Also check for pending async exception (not including unsafe access error).
2421// Note only the native==>VM/Java barriers can call this function and when
2422// thread state is _thread_in_native_trans.
2423void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2424  check_safepoint_and_suspend_for_native_trans(thread);
2425
2426  if (thread->has_async_exception()) {
2427    // We are in _thread_in_native_trans state, don't handle unsafe
2428    // access error since that may block.
2429    thread->check_and_handle_async_exceptions(false);
2430  }
2431}
2432
2433// This is a variant of the normal
2434// check_special_condition_for_native_trans with slightly different
2435// semantics for use by critical native wrappers.  It does all the
2436// normal checks but also performs the transition back into
2437// thread_in_Java state.  This is required so that critical natives
2438// can potentially block and perform a GC if they are the last thread
2439// exiting the GC_locker.
2440void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2441  check_special_condition_for_native_trans(thread);
2442
2443  // Finish the transition
2444  thread->set_thread_state(_thread_in_Java);
2445
2446  if (thread->do_critical_native_unlock()) {
2447    ThreadInVMfromJavaNoAsyncException tiv(thread);
2448    GC_locker::unlock_critical(thread);
2449    thread->clear_critical_native_unlock();
2450  }
2451}
2452
2453// We need to guarantee the Threads_lock here, since resumes are not
2454// allowed during safepoint synchronization
2455// Can only resume from an external suspension
2456void JavaThread::java_resume() {
2457  assert_locked_or_safepoint(Threads_lock);
2458
2459  // Sanity check: thread is gone, has started exiting or the thread
2460  // was not externally suspended.
2461  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2462    return;
2463  }
2464
2465  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2466
2467  clear_external_suspend();
2468
2469  if (is_ext_suspended()) {
2470    clear_ext_suspended();
2471    SR_lock()->notify_all();
2472  }
2473}
2474
2475void JavaThread::create_stack_guard_pages() {
2476  if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2477  address low_addr = stack_base() - stack_size();
2478  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2479
2480  int allocate = os::allocate_stack_guard_pages();
2481  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2482
2483  if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2484    warning("Attempt to allocate stack guard pages failed.");
2485    return;
2486  }
2487
2488  if (os::guard_memory((char *) low_addr, len)) {
2489    _stack_guard_state = stack_guard_enabled;
2490  } else {
2491    warning("Attempt to protect stack guard pages failed.");
2492    if (os::uncommit_memory((char *) low_addr, len)) {
2493      warning("Attempt to deallocate stack guard pages failed.");
2494    }
2495  }
2496}
2497
2498void JavaThread::remove_stack_guard_pages() {
2499  assert(Thread::current() == this, "from different thread");
2500  if (_stack_guard_state == stack_guard_unused) return;
2501  address low_addr = stack_base() - stack_size();
2502  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2503
2504  if (os::allocate_stack_guard_pages()) {
2505    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2506      _stack_guard_state = stack_guard_unused;
2507    } else {
2508      warning("Attempt to deallocate stack guard pages failed.");
2509    }
2510  } else {
2511    if (_stack_guard_state == stack_guard_unused) return;
2512    if (os::unguard_memory((char *) low_addr, len)) {
2513      _stack_guard_state = stack_guard_unused;
2514    } else {
2515        warning("Attempt to unprotect stack guard pages failed.");
2516    }
2517  }
2518}
2519
2520void JavaThread::enable_stack_yellow_zone() {
2521  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2522  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2523
2524  // The base notation is from the stacks point of view, growing downward.
2525  // We need to adjust it to work correctly with guard_memory()
2526  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2527
2528  guarantee(base < stack_base(),"Error calculating stack yellow zone");
2529  guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2530
2531  if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2532    _stack_guard_state = stack_guard_enabled;
2533  } else {
2534    warning("Attempt to guard stack yellow zone failed.");
2535  }
2536  enable_register_stack_guard();
2537}
2538
2539void JavaThread::disable_stack_yellow_zone() {
2540  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2541  assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2542
2543  // Simply return if called for a thread that does not use guard pages.
2544  if (_stack_guard_state == stack_guard_unused) return;
2545
2546  // The base notation is from the stacks point of view, growing downward.
2547  // We need to adjust it to work correctly with guard_memory()
2548  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2549
2550  if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2551    _stack_guard_state = stack_guard_yellow_disabled;
2552  } else {
2553    warning("Attempt to unguard stack yellow zone failed.");
2554  }
2555  disable_register_stack_guard();
2556}
2557
2558void JavaThread::enable_stack_red_zone() {
2559  // The base notation is from the stacks point of view, growing downward.
2560  // We need to adjust it to work correctly with guard_memory()
2561  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2562  address base = stack_red_zone_base() - stack_red_zone_size();
2563
2564  guarantee(base < stack_base(),"Error calculating stack red zone");
2565  guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2566
2567  if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2568    warning("Attempt to guard stack red zone failed.");
2569  }
2570}
2571
2572void JavaThread::disable_stack_red_zone() {
2573  // The base notation is from the stacks point of view, growing downward.
2574  // We need to adjust it to work correctly with guard_memory()
2575  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2576  address base = stack_red_zone_base() - stack_red_zone_size();
2577  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2578    warning("Attempt to unguard stack red zone failed.");
2579  }
2580}
2581
2582void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2583  // ignore is there is no stack
2584  if (!has_last_Java_frame()) return;
2585  // traverse the stack frames. Starts from top frame.
2586  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2587    frame* fr = fst.current();
2588    f(fr, fst.register_map());
2589  }
2590}
2591
2592
2593#ifndef PRODUCT
2594// Deoptimization
2595// Function for testing deoptimization
2596void JavaThread::deoptimize() {
2597  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2598  StackFrameStream fst(this, UseBiasedLocking);
2599  bool deopt = false;           // Dump stack only if a deopt actually happens.
2600  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2601  // Iterate over all frames in the thread and deoptimize
2602  for(; !fst.is_done(); fst.next()) {
2603    if(fst.current()->can_be_deoptimized()) {
2604
2605      if (only_at) {
2606        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2607        // consists of comma or carriage return separated numbers so
2608        // search for the current bci in that string.
2609        address pc = fst.current()->pc();
2610        nmethod* nm =  (nmethod*) fst.current()->cb();
2611        ScopeDesc* sd = nm->scope_desc_at( pc);
2612        char buffer[8];
2613        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2614        size_t len = strlen(buffer);
2615        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2616        while (found != NULL) {
2617          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2618              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2619            // Check that the bci found is bracketed by terminators.
2620            break;
2621          }
2622          found = strstr(found + 1, buffer);
2623        }
2624        if (!found) {
2625          continue;
2626        }
2627      }
2628
2629      if (DebugDeoptimization && !deopt) {
2630        deopt = true; // One-time only print before deopt
2631        tty->print_cr("[BEFORE Deoptimization]");
2632        trace_frames();
2633        trace_stack();
2634      }
2635      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2636    }
2637  }
2638
2639  if (DebugDeoptimization && deopt) {
2640    tty->print_cr("[AFTER Deoptimization]");
2641    trace_frames();
2642  }
2643}
2644
2645
2646// Make zombies
2647void JavaThread::make_zombies() {
2648  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2649    if (fst.current()->can_be_deoptimized()) {
2650      // it is a Java nmethod
2651      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2652      nm->make_not_entrant();
2653    }
2654  }
2655}
2656#endif // PRODUCT
2657
2658
2659void JavaThread::deoptimized_wrt_marked_nmethods() {
2660  if (!has_last_Java_frame()) return;
2661  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2662  StackFrameStream fst(this, UseBiasedLocking);
2663  for(; !fst.is_done(); fst.next()) {
2664    if (fst.current()->should_be_deoptimized()) {
2665      if (LogCompilation && xtty != NULL) {
2666        nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2667        xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2668                   this->name(), nm != NULL ? nm->compile_id() : -1);
2669      }
2670
2671      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2672    }
2673  }
2674}
2675
2676
2677// GC support
2678static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2679
2680void JavaThread::gc_epilogue() {
2681  frames_do(frame_gc_epilogue);
2682}
2683
2684
2685static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2686
2687void JavaThread::gc_prologue() {
2688  frames_do(frame_gc_prologue);
2689}
2690
2691// If the caller is a NamedThread, then remember, in the current scope,
2692// the given JavaThread in its _processed_thread field.
2693class RememberProcessedThread: public StackObj {
2694  NamedThread* _cur_thr;
2695public:
2696  RememberProcessedThread(JavaThread* jthr) {
2697    Thread* thread = Thread::current();
2698    if (thread->is_Named_thread()) {
2699      _cur_thr = (NamedThread *)thread;
2700      _cur_thr->set_processed_thread(jthr);
2701    } else {
2702      _cur_thr = NULL;
2703    }
2704  }
2705
2706  ~RememberProcessedThread() {
2707    if (_cur_thr) {
2708      _cur_thr->set_processed_thread(NULL);
2709    }
2710  }
2711};
2712
2713void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2714  // Verify that the deferred card marks have been flushed.
2715  assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2716
2717  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2718  // since there may be more than one thread using each ThreadProfiler.
2719
2720  // Traverse the GCHandles
2721  Thread::oops_do(f, cld_f, cf);
2722
2723  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2724          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2725
2726  if (has_last_Java_frame()) {
2727    // Record JavaThread to GC thread
2728    RememberProcessedThread rpt(this);
2729
2730    // Traverse the privileged stack
2731    if (_privileged_stack_top != NULL) {
2732      _privileged_stack_top->oops_do(f);
2733    }
2734
2735    // traverse the registered growable array
2736    if (_array_for_gc != NULL) {
2737      for (int index = 0; index < _array_for_gc->length(); index++) {
2738        f->do_oop(_array_for_gc->adr_at(index));
2739      }
2740    }
2741
2742    // Traverse the monitor chunks
2743    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2744      chunk->oops_do(f);
2745    }
2746
2747    // Traverse the execution stack
2748    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2749      fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2750    }
2751  }
2752
2753  // callee_target is never live across a gc point so NULL it here should
2754  // it still contain a methdOop.
2755
2756  set_callee_target(NULL);
2757
2758  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2759  // If we have deferred set_locals there might be oops waiting to be
2760  // written
2761  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2762  if (list != NULL) {
2763    for (int i = 0; i < list->length(); i++) {
2764      list->at(i)->oops_do(f);
2765    }
2766  }
2767
2768  // Traverse instance variables at the end since the GC may be moving things
2769  // around using this function
2770  f->do_oop((oop*) &_threadObj);
2771  f->do_oop((oop*) &_vm_result);
2772  f->do_oop((oop*) &_exception_oop);
2773  f->do_oop((oop*) &_pending_async_exception);
2774
2775  if (jvmti_thread_state() != NULL) {
2776    jvmti_thread_state()->oops_do(f);
2777  }
2778}
2779
2780void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2781  Thread::nmethods_do(cf);  // (super method is a no-op)
2782
2783  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2784          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2785
2786  if (has_last_Java_frame()) {
2787    // Traverse the execution stack
2788    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2789      fst.current()->nmethods_do(cf);
2790    }
2791  }
2792}
2793
2794void JavaThread::metadata_do(void f(Metadata*)) {
2795  Thread::metadata_do(f);
2796  if (has_last_Java_frame()) {
2797    // Traverse the execution stack to call f() on the methods in the stack
2798    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2799      fst.current()->metadata_do(f);
2800    }
2801  } else if (is_Compiler_thread()) {
2802    // need to walk ciMetadata in current compile tasks to keep alive.
2803    CompilerThread* ct = (CompilerThread*)this;
2804    if (ct->env() != NULL) {
2805      ct->env()->metadata_do(f);
2806    }
2807  }
2808}
2809
2810// Printing
2811const char* _get_thread_state_name(JavaThreadState _thread_state) {
2812  switch (_thread_state) {
2813  case _thread_uninitialized:     return "_thread_uninitialized";
2814  case _thread_new:               return "_thread_new";
2815  case _thread_new_trans:         return "_thread_new_trans";
2816  case _thread_in_native:         return "_thread_in_native";
2817  case _thread_in_native_trans:   return "_thread_in_native_trans";
2818  case _thread_in_vm:             return "_thread_in_vm";
2819  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2820  case _thread_in_Java:           return "_thread_in_Java";
2821  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2822  case _thread_blocked:           return "_thread_blocked";
2823  case _thread_blocked_trans:     return "_thread_blocked_trans";
2824  default:                        return "unknown thread state";
2825  }
2826}
2827
2828#ifndef PRODUCT
2829void JavaThread::print_thread_state_on(outputStream *st) const {
2830  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2831};
2832void JavaThread::print_thread_state() const {
2833  print_thread_state_on(tty);
2834};
2835#endif // PRODUCT
2836
2837// Called by Threads::print() for VM_PrintThreads operation
2838void JavaThread::print_on(outputStream *st) const {
2839  st->print("\"%s\" ", get_thread_name());
2840  oop thread_oop = threadObj();
2841  if (thread_oop != NULL) {
2842    st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2843    if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2844    st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2845  }
2846  Thread::print_on(st);
2847  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2848  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2849  if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2850    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2851  }
2852#ifndef PRODUCT
2853  print_thread_state_on(st);
2854  _safepoint_state->print_on(st);
2855#endif // PRODUCT
2856}
2857
2858// Called by fatal error handler. The difference between this and
2859// JavaThread::print() is that we can't grab lock or allocate memory.
2860void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2861  st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2862  oop thread_obj = threadObj();
2863  if (thread_obj != NULL) {
2864     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2865  }
2866  st->print(" [");
2867  st->print("%s", _get_thread_state_name(_thread_state));
2868  if (osthread()) {
2869    st->print(", id=%d", osthread()->thread_id());
2870  }
2871  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2872            _stack_base - _stack_size, _stack_base);
2873  st->print("]");
2874  return;
2875}
2876
2877// Verification
2878
2879static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2880
2881void JavaThread::verify() {
2882  // Verify oops in the thread.
2883  oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2884
2885  // Verify the stack frames.
2886  frames_do(frame_verify);
2887}
2888
2889// CR 6300358 (sub-CR 2137150)
2890// Most callers of this method assume that it can't return NULL but a
2891// thread may not have a name whilst it is in the process of attaching to
2892// the VM - see CR 6412693, and there are places where a JavaThread can be
2893// seen prior to having it's threadObj set (eg JNI attaching threads and
2894// if vm exit occurs during initialization). These cases can all be accounted
2895// for such that this method never returns NULL.
2896const char* JavaThread::get_thread_name() const {
2897#ifdef ASSERT
2898  // early safepoints can hit while current thread does not yet have TLS
2899  if (!SafepointSynchronize::is_at_safepoint()) {
2900    Thread *cur = Thread::current();
2901    if (!(cur->is_Java_thread() && cur == this)) {
2902      // Current JavaThreads are allowed to get their own name without
2903      // the Threads_lock.
2904      assert_locked_or_safepoint(Threads_lock);
2905    }
2906  }
2907#endif // ASSERT
2908    return get_thread_name_string();
2909}
2910
2911// Returns a non-NULL representation of this thread's name, or a suitable
2912// descriptive string if there is no set name
2913const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2914  const char* name_str;
2915  oop thread_obj = threadObj();
2916  if (thread_obj != NULL) {
2917    typeArrayOop name = java_lang_Thread::name(thread_obj);
2918    if (name != NULL) {
2919      if (buf == NULL) {
2920        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2921      }
2922      else {
2923        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2924      }
2925    }
2926    else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2927      name_str = "<no-name - thread is attaching>";
2928    }
2929    else {
2930      name_str = Thread::name();
2931    }
2932  }
2933  else {
2934    name_str = Thread::name();
2935  }
2936  assert(name_str != NULL, "unexpected NULL thread name");
2937  return name_str;
2938}
2939
2940
2941const char* JavaThread::get_threadgroup_name() const {
2942  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2943  oop thread_obj = threadObj();
2944  if (thread_obj != NULL) {
2945    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2946    if (thread_group != NULL) {
2947      typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2948      // ThreadGroup.name can be null
2949      if (name != NULL) {
2950        const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2951        return str;
2952      }
2953    }
2954  }
2955  return NULL;
2956}
2957
2958const char* JavaThread::get_parent_name() const {
2959  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2960  oop thread_obj = threadObj();
2961  if (thread_obj != NULL) {
2962    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2963    if (thread_group != NULL) {
2964      oop parent = java_lang_ThreadGroup::parent(thread_group);
2965      if (parent != NULL) {
2966        typeArrayOop name = java_lang_ThreadGroup::name(parent);
2967        // ThreadGroup.name can be null
2968        if (name != NULL) {
2969          const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2970          return str;
2971        }
2972      }
2973    }
2974  }
2975  return NULL;
2976}
2977
2978ThreadPriority JavaThread::java_priority() const {
2979  oop thr_oop = threadObj();
2980  if (thr_oop == NULL) return NormPriority; // Bootstrapping
2981  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2982  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2983  return priority;
2984}
2985
2986void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2987
2988  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2989  // Link Java Thread object <-> C++ Thread
2990
2991  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2992  // and put it into a new Handle.  The Handle "thread_oop" can then
2993  // be used to pass the C++ thread object to other methods.
2994
2995  // Set the Java level thread object (jthread) field of the
2996  // new thread (a JavaThread *) to C++ thread object using the
2997  // "thread_oop" handle.
2998
2999  // Set the thread field (a JavaThread *) of the
3000  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3001
3002  Handle thread_oop(Thread::current(),
3003                    JNIHandles::resolve_non_null(jni_thread));
3004  assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3005    "must be initialized");
3006  set_threadObj(thread_oop());
3007  java_lang_Thread::set_thread(thread_oop(), this);
3008
3009  if (prio == NoPriority) {
3010    prio = java_lang_Thread::priority(thread_oop());
3011    assert(prio != NoPriority, "A valid priority should be present");
3012  }
3013
3014  // Push the Java priority down to the native thread; needs Threads_lock
3015  Thread::set_priority(this, prio);
3016
3017  // Add the new thread to the Threads list and set it in motion.
3018  // We must have threads lock in order to call Threads::add.
3019  // It is crucial that we do not block before the thread is
3020  // added to the Threads list for if a GC happens, then the java_thread oop
3021  // will not be visited by GC.
3022  Threads::add(this);
3023}
3024
3025oop JavaThread::current_park_blocker() {
3026  // Support for JSR-166 locks
3027  oop thread_oop = threadObj();
3028  if (thread_oop != NULL &&
3029      JDK_Version::current().supports_thread_park_blocker()) {
3030    return java_lang_Thread::park_blocker(thread_oop);
3031  }
3032  return NULL;
3033}
3034
3035
3036void JavaThread::print_stack_on(outputStream* st) {
3037  if (!has_last_Java_frame()) return;
3038  ResourceMark rm;
3039  HandleMark   hm;
3040
3041  RegisterMap reg_map(this);
3042  vframe* start_vf = last_java_vframe(&reg_map);
3043  int count = 0;
3044  for (vframe* f = start_vf; f; f = f->sender() ) {
3045    if (f->is_java_frame()) {
3046      javaVFrame* jvf = javaVFrame::cast(f);
3047      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3048
3049      // Print out lock information
3050      if (JavaMonitorsInStackTrace) {
3051        jvf->print_lock_info_on(st, count);
3052      }
3053    } else {
3054      // Ignore non-Java frames
3055    }
3056
3057    // Bail-out case for too deep stacks
3058    count++;
3059    if (MaxJavaStackTraceDepth == count) return;
3060  }
3061}
3062
3063
3064// JVMTI PopFrame support
3065void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3066  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3067  if (in_bytes(size_in_bytes) != 0) {
3068    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3069    _popframe_preserved_args_size = in_bytes(size_in_bytes);
3070    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3071  }
3072}
3073
3074void* JavaThread::popframe_preserved_args() {
3075  return _popframe_preserved_args;
3076}
3077
3078ByteSize JavaThread::popframe_preserved_args_size() {
3079  return in_ByteSize(_popframe_preserved_args_size);
3080}
3081
3082WordSize JavaThread::popframe_preserved_args_size_in_words() {
3083  int sz = in_bytes(popframe_preserved_args_size());
3084  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3085  return in_WordSize(sz / wordSize);
3086}
3087
3088void JavaThread::popframe_free_preserved_args() {
3089  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3090  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3091  _popframe_preserved_args = NULL;
3092  _popframe_preserved_args_size = 0;
3093}
3094
3095#ifndef PRODUCT
3096
3097void JavaThread::trace_frames() {
3098  tty->print_cr("[Describe stack]");
3099  int frame_no = 1;
3100  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3101    tty->print("  %d. ", frame_no++);
3102    fst.current()->print_value_on(tty,this);
3103    tty->cr();
3104  }
3105}
3106
3107class PrintAndVerifyOopClosure: public OopClosure {
3108 protected:
3109  template <class T> inline void do_oop_work(T* p) {
3110    oop obj = oopDesc::load_decode_heap_oop(p);
3111    if (obj == NULL) return;
3112    tty->print(INTPTR_FORMAT ": ", p);
3113    if (obj->is_oop_or_null()) {
3114      if (obj->is_objArray()) {
3115        tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3116      } else {
3117        obj->print();
3118      }
3119    } else {
3120      tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3121    }
3122    tty->cr();
3123  }
3124 public:
3125  virtual void do_oop(oop* p) { do_oop_work(p); }
3126  virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3127};
3128
3129
3130static void oops_print(frame* f, const RegisterMap *map) {
3131  PrintAndVerifyOopClosure print;
3132  f->print_value();
3133  f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3134}
3135
3136// Print our all the locations that contain oops and whether they are
3137// valid or not.  This useful when trying to find the oldest frame
3138// where an oop has gone bad since the frame walk is from youngest to
3139// oldest.
3140void JavaThread::trace_oops() {
3141  tty->print_cr("[Trace oops]");
3142  frames_do(oops_print);
3143}
3144
3145
3146#ifdef ASSERT
3147// Print or validate the layout of stack frames
3148void JavaThread::print_frame_layout(int depth, bool validate_only) {
3149  ResourceMark rm;
3150  PRESERVE_EXCEPTION_MARK;
3151  FrameValues values;
3152  int frame_no = 0;
3153  for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3154    fst.current()->describe(values, ++frame_no);
3155    if (depth == frame_no) break;
3156  }
3157  if (validate_only) {
3158    values.validate();
3159  } else {
3160    tty->print_cr("[Describe stack layout]");
3161    values.print(this);
3162  }
3163}
3164#endif
3165
3166void JavaThread::trace_stack_from(vframe* start_vf) {
3167  ResourceMark rm;
3168  int vframe_no = 1;
3169  for (vframe* f = start_vf; f; f = f->sender() ) {
3170    if (f->is_java_frame()) {
3171      javaVFrame::cast(f)->print_activation(vframe_no++);
3172    } else {
3173      f->print();
3174    }
3175    if (vframe_no > StackPrintLimit) {
3176      tty->print_cr("...<more frames>...");
3177      return;
3178    }
3179  }
3180}
3181
3182
3183void JavaThread::trace_stack() {
3184  if (!has_last_Java_frame()) return;
3185  ResourceMark rm;
3186  HandleMark   hm;
3187  RegisterMap reg_map(this);
3188  trace_stack_from(last_java_vframe(&reg_map));
3189}
3190
3191
3192#endif // PRODUCT
3193
3194
3195javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3196  assert(reg_map != NULL, "a map must be given");
3197  frame f = last_frame();
3198  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3199    if (vf->is_java_frame()) return javaVFrame::cast(vf);
3200  }
3201  return NULL;
3202}
3203
3204
3205Klass* JavaThread::security_get_caller_class(int depth) {
3206  vframeStream vfst(this);
3207  vfst.security_get_caller_frame(depth);
3208  if (!vfst.at_end()) {
3209    return vfst.method()->method_holder();
3210  }
3211  return NULL;
3212}
3213
3214static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3215  assert(thread->is_Compiler_thread(), "must be compiler thread");
3216  CompileBroker::compiler_thread_loop();
3217}
3218
3219// Create a CompilerThread
3220CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3221: JavaThread(&compiler_thread_entry) {
3222  _env   = NULL;
3223  _log   = NULL;
3224  _task  = NULL;
3225  _queue = queue;
3226  _counters = counters;
3227  _buffer_blob = NULL;
3228  _scanned_nmethod = NULL;
3229  _compiler = NULL;
3230
3231#ifndef PRODUCT
3232  _ideal_graph_printer = NULL;
3233#endif
3234}
3235
3236void CompilerThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3237  JavaThread::oops_do(f, cld_f, cf);
3238  if (_scanned_nmethod != NULL && cf != NULL) {
3239    // Safepoints can occur when the sweeper is scanning an nmethod so
3240    // process it here to make sure it isn't unloaded in the middle of
3241    // a scan.
3242    cf->do_code_blob(_scanned_nmethod);
3243  }
3244}
3245
3246
3247// ======= Threads ========
3248
3249// The Threads class links together all active threads, and provides
3250// operations over all threads.  It is protected by its own Mutex
3251// lock, which is also used in other contexts to protect thread
3252// operations from having the thread being operated on from exiting
3253// and going away unexpectedly (e.g., safepoint synchronization)
3254
3255JavaThread* Threads::_thread_list = NULL;
3256int         Threads::_number_of_threads = 0;
3257int         Threads::_number_of_non_daemon_threads = 0;
3258int         Threads::_return_code = 0;
3259size_t      JavaThread::_stack_size_at_create = 0;
3260#ifdef ASSERT
3261bool        Threads::_vm_complete = false;
3262#endif
3263
3264// All JavaThreads
3265#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3266
3267// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3268void Threads::threads_do(ThreadClosure* tc) {
3269  assert_locked_or_safepoint(Threads_lock);
3270  // ALL_JAVA_THREADS iterates through all JavaThreads
3271  ALL_JAVA_THREADS(p) {
3272    tc->do_thread(p);
3273  }
3274  // Someday we could have a table or list of all non-JavaThreads.
3275  // For now, just manually iterate through them.
3276  tc->do_thread(VMThread::vm_thread());
3277  Universe::heap()->gc_threads_do(tc);
3278  WatcherThread *wt = WatcherThread::watcher_thread();
3279  // Strictly speaking, the following NULL check isn't sufficient to make sure
3280  // the data for WatcherThread is still valid upon being examined. However,
3281  // considering that WatchThread terminates when the VM is on the way to
3282  // exit at safepoint, the chance of the above is extremely small. The right
3283  // way to prevent termination of WatcherThread would be to acquire
3284  // Terminator_lock, but we can't do that without violating the lock rank
3285  // checking in some cases.
3286  if (wt != NULL)
3287    tc->do_thread(wt);
3288
3289  // If CompilerThreads ever become non-JavaThreads, add them here
3290}
3291
3292
3293void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3294  TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3295
3296  if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3297    create_vm_init_libraries();
3298  }
3299
3300  initialize_class(vmSymbols::java_lang_String(), CHECK);
3301
3302  // Initialize java_lang.System (needed before creating the thread)
3303  initialize_class(vmSymbols::java_lang_System(), CHECK);
3304  initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3305  Handle thread_group = create_initial_thread_group(CHECK);
3306  Universe::set_main_thread_group(thread_group());
3307  initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3308  oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3309  main_thread->set_threadObj(thread_object);
3310  // Set thread status to running since main thread has
3311  // been started and running.
3312  java_lang_Thread::set_thread_status(thread_object,
3313                                      java_lang_Thread::RUNNABLE);
3314
3315  // The VM creates & returns objects of this class. Make sure it's initialized.
3316  initialize_class(vmSymbols::java_lang_Class(), CHECK);
3317
3318  // The VM preresolves methods to these classes. Make sure that they get initialized
3319  initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3320  initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK);
3321  call_initializeSystemClass(CHECK);
3322
3323  // get the Java runtime name after java.lang.System is initialized
3324  JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3325  JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3326
3327  // an instance of OutOfMemory exception has been allocated earlier
3328  initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3329  initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3330  initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3331  initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3332  initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3333  initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3334  initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3335  initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3336}
3337
3338void Threads::initialize_jsr292_core_classes(TRAPS) {
3339  initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3340  initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3341  initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3342}
3343
3344jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3345
3346  extern void JDK_Version_init();
3347
3348  // Check version
3349  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3350
3351  // Initialize the output stream module
3352  ostream_init();
3353
3354  // Process java launcher properties.
3355  Arguments::process_sun_java_launcher_properties(args);
3356
3357  // Initialize the os module before using TLS
3358  os::init();
3359
3360  // Initialize system properties.
3361  Arguments::init_system_properties();
3362
3363  // So that JDK version can be used as a discriminator when parsing arguments
3364  JDK_Version_init();
3365
3366  // Update/Initialize System properties after JDK version number is known
3367  Arguments::init_version_specific_system_properties();
3368
3369  // Parse arguments
3370  jint parse_result = Arguments::parse(args);
3371  if (parse_result != JNI_OK) return parse_result;
3372
3373  os::init_before_ergo();
3374
3375  jint ergo_result = Arguments::apply_ergo();
3376  if (ergo_result != JNI_OK) return ergo_result;
3377
3378  if (PauseAtStartup) {
3379    os::pause();
3380  }
3381
3382  HOTSPOT_VM_INIT_BEGIN();
3383
3384  // Record VM creation timing statistics
3385  TraceVmCreationTime create_vm_timer;
3386  create_vm_timer.start();
3387
3388  // Timing (must come after argument parsing)
3389  TraceTime timer("Create VM", TraceStartupTime);
3390
3391  // Initialize the os module after parsing the args
3392  jint os_init_2_result = os::init_2();
3393  if (os_init_2_result != JNI_OK) return os_init_2_result;
3394
3395  jint adjust_after_os_result = Arguments::adjust_after_os();
3396  if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3397
3398  // initialize TLS
3399  ThreadLocalStorage::init();
3400
3401  // Bootstrap native memory tracking, so it can start recording memory
3402  // activities before worker thread is started. This is the first phase
3403  // of bootstrapping, VM is currently running in single-thread mode.
3404  MemTracker::bootstrap_single_thread();
3405
3406  // Initialize output stream logging
3407  ostream_init_log();
3408
3409  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3410  // Must be before create_vm_init_agents()
3411  if (Arguments::init_libraries_at_startup()) {
3412    convert_vm_init_libraries_to_agents();
3413  }
3414
3415  // Launch -agentlib/-agentpath and converted -Xrun agents
3416  if (Arguments::init_agents_at_startup()) {
3417    create_vm_init_agents();
3418  }
3419
3420  // Initialize Threads state
3421  _thread_list = NULL;
3422  _number_of_threads = 0;
3423  _number_of_non_daemon_threads = 0;
3424
3425  // Initialize global data structures and create system classes in heap
3426  vm_init_globals();
3427
3428  // Attach the main thread to this os thread
3429  JavaThread* main_thread = new JavaThread();
3430  main_thread->set_thread_state(_thread_in_vm);
3431  // must do this before set_active_handles and initialize_thread_local_storage
3432  // Note: on solaris initialize_thread_local_storage() will (indirectly)
3433  // change the stack size recorded here to one based on the java thread
3434  // stacksize. This adjusted size is what is used to figure the placement
3435  // of the guard pages.
3436  main_thread->record_stack_base_and_size();
3437  main_thread->initialize_thread_local_storage();
3438
3439  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3440
3441  if (!main_thread->set_as_starting_thread()) {
3442    vm_shutdown_during_initialization(
3443      "Failed necessary internal allocation. Out of swap space");
3444    delete main_thread;
3445    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3446    return JNI_ENOMEM;
3447  }
3448
3449  // Enable guard page *after* os::create_main_thread(), otherwise it would
3450  // crash Linux VM, see notes in os_linux.cpp.
3451  main_thread->create_stack_guard_pages();
3452
3453  // Initialize Java-Level synchronization subsystem
3454  ObjectMonitor::Initialize() ;
3455
3456  // Second phase of bootstrapping, VM is about entering multi-thread mode
3457  MemTracker::bootstrap_multi_thread();
3458
3459  // Initialize global modules
3460  jint status = init_globals();
3461  if (status != JNI_OK) {
3462    delete main_thread;
3463    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3464    return status;
3465  }
3466
3467  // Should be done after the heap is fully created
3468  main_thread->cache_global_variables();
3469
3470  HandleMark hm;
3471
3472  { MutexLocker mu(Threads_lock);
3473    Threads::add(main_thread);
3474  }
3475
3476  // Any JVMTI raw monitors entered in onload will transition into
3477  // real raw monitor. VM is setup enough here for raw monitor enter.
3478  JvmtiExport::transition_pending_onload_raw_monitors();
3479
3480  // Fully start NMT
3481  MemTracker::start();
3482
3483  // Create the VMThread
3484  { TraceTime timer("Start VMThread", TraceStartupTime);
3485    VMThread::create();
3486    Thread* vmthread = VMThread::vm_thread();
3487
3488    if (!os::create_thread(vmthread, os::vm_thread))
3489      vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3490
3491    // Wait for the VM thread to become ready, and VMThread::run to initialize
3492    // Monitors can have spurious returns, must always check another state flag
3493    {
3494      MutexLocker ml(Notify_lock);
3495      os::start_thread(vmthread);
3496      while (vmthread->active_handles() == NULL) {
3497        Notify_lock->wait();
3498      }
3499    }
3500  }
3501
3502  assert (Universe::is_fully_initialized(), "not initialized");
3503  if (VerifyDuringStartup) {
3504    // Make sure we're starting with a clean slate.
3505    VM_Verify verify_op;
3506    VMThread::execute(&verify_op);
3507  }
3508
3509  Thread* THREAD = Thread::current();
3510
3511  // At this point, the Universe is initialized, but we have not executed
3512  // any byte code.  Now is a good time (the only time) to dump out the
3513  // internal state of the JVM for sharing.
3514  if (DumpSharedSpaces) {
3515    MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3516    ShouldNotReachHere();
3517  }
3518
3519  // Always call even when there are not JVMTI environments yet, since environments
3520  // may be attached late and JVMTI must track phases of VM execution
3521  JvmtiExport::enter_start_phase();
3522
3523  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3524  JvmtiExport::post_vm_start();
3525
3526  initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3527
3528  // We need this for ClassDataSharing - the initial vm.info property is set
3529  // with the default value of CDS "sharing" which may be reset through
3530  // command line options.
3531  reset_vm_info_property(CHECK_JNI_ERR);
3532
3533  quicken_jni_functions();
3534
3535  // Must be run after init_ft which initializes ft_enabled
3536  if (TRACE_INITIALIZE() != JNI_OK) {
3537    vm_exit_during_initialization("Failed to initialize tracing backend");
3538  }
3539
3540  // Set flag that basic initialization has completed. Used by exceptions and various
3541  // debug stuff, that does not work until all basic classes have been initialized.
3542  set_init_completed();
3543
3544  HOTSPOT_VM_INIT_END();
3545
3546  // record VM initialization completion time
3547#if INCLUDE_MANAGEMENT
3548  Management::record_vm_init_completed();
3549#endif // INCLUDE_MANAGEMENT
3550
3551  // Compute system loader. Note that this has to occur after set_init_completed, since
3552  // valid exceptions may be thrown in the process.
3553  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3554  // set_init_completed has just been called, causing exceptions not to be shortcut
3555  // anymore. We call vm_exit_during_initialization directly instead.
3556  SystemDictionary::compute_java_system_loader(CHECK_JNI_ERR);
3557
3558#if INCLUDE_ALL_GCS
3559  // Support for ConcurrentMarkSweep. This should be cleaned up
3560  // and better encapsulated. The ugly nested if test would go away
3561  // once things are properly refactored. XXX YSR
3562  if (UseConcMarkSweepGC || UseG1GC) {
3563    if (UseConcMarkSweepGC) {
3564      ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3565    } else {
3566      ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3567    }
3568  }
3569#endif // INCLUDE_ALL_GCS
3570
3571  // Always call even when there are not JVMTI environments yet, since environments
3572  // may be attached late and JVMTI must track phases of VM execution
3573  JvmtiExport::enter_live_phase();
3574
3575  // Signal Dispatcher needs to be started before VMInit event is posted
3576  os::signal_init();
3577
3578  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3579  if (!DisableAttachMechanism) {
3580    AttachListener::vm_start();
3581    if (StartAttachListener || AttachListener::init_at_startup()) {
3582      AttachListener::init();
3583    }
3584  }
3585
3586  // Launch -Xrun agents
3587  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3588  // back-end can launch with -Xdebug -Xrunjdwp.
3589  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3590    create_vm_init_libraries();
3591  }
3592
3593  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3594  JvmtiExport::post_vm_initialized();
3595
3596  if (TRACE_START() != JNI_OK) {
3597    vm_exit_during_initialization("Failed to start tracing backend.");
3598  }
3599
3600  if (CleanChunkPoolAsync) {
3601    Chunk::start_chunk_pool_cleaner_task();
3602  }
3603
3604  // initialize compiler(s)
3605#if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3606  CompileBroker::compilation_init();
3607#endif
3608
3609  // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3610  // It is done after compilers are initialized, because otherwise compilations of
3611  // signature polymorphic MH intrinsics can be missed
3612  // (see SystemDictionary::find_method_handle_intrinsic).
3613  initialize_jsr292_core_classes(CHECK_JNI_ERR);
3614
3615#if INCLUDE_MANAGEMENT
3616  Management::initialize(THREAD);
3617
3618  if (HAS_PENDING_EXCEPTION) {
3619    // management agent fails to start possibly due to
3620    // configuration problem and is responsible for printing
3621    // stack trace if appropriate. Simply exit VM.
3622    vm_exit(1);
3623  }
3624#endif // INCLUDE_MANAGEMENT
3625
3626  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3627  if (MemProfiling)                   MemProfiler::engage();
3628  StatSampler::engage();
3629  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3630
3631  BiasedLocking::init();
3632
3633#if INCLUDE_RTM_OPT
3634  RTMLockingCounters::init();
3635#endif
3636
3637  if (JDK_Version::current().post_vm_init_hook_enabled()) {
3638    call_postVMInitHook(THREAD);
3639    // The Java side of PostVMInitHook.run must deal with all
3640    // exceptions and provide means of diagnosis.
3641    if (HAS_PENDING_EXCEPTION) {
3642      CLEAR_PENDING_EXCEPTION;
3643    }
3644  }
3645
3646  {
3647      MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3648      // Make sure the watcher thread can be started by WatcherThread::start()
3649      // or by dynamic enrollment.
3650      WatcherThread::make_startable();
3651      // Start up the WatcherThread if there are any periodic tasks
3652      // NOTE:  All PeriodicTasks should be registered by now. If they
3653      //   aren't, late joiners might appear to start slowly (we might
3654      //   take a while to process their first tick).
3655      if (PeriodicTask::num_tasks() > 0) {
3656          WatcherThread::start();
3657      }
3658  }
3659
3660  // Give os specific code one last chance to start
3661  os::init_3();
3662
3663  create_vm_timer.end();
3664#ifdef ASSERT
3665  _vm_complete = true;
3666#endif
3667  return JNI_OK;
3668}
3669
3670// type for the Agent_OnLoad and JVM_OnLoad entry points
3671extern "C" {
3672  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3673}
3674// Find a command line agent library and return its entry point for
3675//         -agentlib:  -agentpath:   -Xrun
3676// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3677static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3678  OnLoadEntry_t on_load_entry = NULL;
3679  void *library = NULL;
3680
3681  if (!agent->valid()) {
3682    char buffer[JVM_MAXPATHLEN];
3683    char ebuf[1024];
3684    const char *name = agent->name();
3685    const char *msg = "Could not find agent library ";
3686
3687    // First check to see if agent is statically linked into executable
3688    if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3689      library = agent->os_lib();
3690    } else if (agent->is_absolute_path()) {
3691      library = os::dll_load(name, ebuf, sizeof ebuf);
3692      if (library == NULL) {
3693        const char *sub_msg = " in absolute path, with error: ";
3694        size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3695        char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3696        jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3697        // If we can't find the agent, exit.
3698        vm_exit_during_initialization(buf, NULL);
3699        FREE_C_HEAP_ARRAY(char, buf, mtThread);
3700      }
3701    } else {
3702      // Try to load the agent from the standard dll directory
3703      if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3704                             name)) {
3705        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3706      }
3707      if (library == NULL) { // Try the local directory
3708        char ns[1] = {0};
3709        if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3710          library = os::dll_load(buffer, ebuf, sizeof ebuf);
3711        }
3712        if (library == NULL) {
3713          const char *sub_msg = " on the library path, with error: ";
3714          size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3715          char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3716          jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3717          // If we can't find the agent, exit.
3718          vm_exit_during_initialization(buf, NULL);
3719          FREE_C_HEAP_ARRAY(char, buf, mtThread);
3720        }
3721      }
3722    }
3723    agent->set_os_lib(library);
3724    agent->set_valid();
3725  }
3726
3727  // Find the OnLoad function.
3728  on_load_entry =
3729    CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3730                                                          false,
3731                                                          on_load_symbols,
3732                                                          num_symbol_entries));
3733  return on_load_entry;
3734}
3735
3736// Find the JVM_OnLoad entry point
3737static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3738  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3739  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3740}
3741
3742// Find the Agent_OnLoad entry point
3743static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3744  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3745  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3746}
3747
3748// For backwards compatibility with -Xrun
3749// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3750// treated like -agentpath:
3751// Must be called before agent libraries are created
3752void Threads::convert_vm_init_libraries_to_agents() {
3753  AgentLibrary* agent;
3754  AgentLibrary* next;
3755
3756  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3757    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3758    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3759
3760    // If there is an JVM_OnLoad function it will get called later,
3761    // otherwise see if there is an Agent_OnLoad
3762    if (on_load_entry == NULL) {
3763      on_load_entry = lookup_agent_on_load(agent);
3764      if (on_load_entry != NULL) {
3765        // switch it to the agent list -- so that Agent_OnLoad will be called,
3766        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3767        Arguments::convert_library_to_agent(agent);
3768      } else {
3769        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3770      }
3771    }
3772  }
3773}
3774
3775// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3776// Invokes Agent_OnLoad
3777// Called very early -- before JavaThreads exist
3778void Threads::create_vm_init_agents() {
3779  extern struct JavaVM_ main_vm;
3780  AgentLibrary* agent;
3781
3782  JvmtiExport::enter_onload_phase();
3783
3784  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3785    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3786
3787    if (on_load_entry != NULL) {
3788      // Invoke the Agent_OnLoad function
3789      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3790      if (err != JNI_OK) {
3791        vm_exit_during_initialization("agent library failed to init", agent->name());
3792      }
3793    } else {
3794      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3795    }
3796  }
3797  JvmtiExport::enter_primordial_phase();
3798}
3799
3800extern "C" {
3801  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3802}
3803
3804void Threads::shutdown_vm_agents() {
3805  // Send any Agent_OnUnload notifications
3806  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3807  size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3808  extern struct JavaVM_ main_vm;
3809  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3810
3811    // Find the Agent_OnUnload function.
3812    Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3813      os::find_agent_function(agent,
3814      false,
3815      on_unload_symbols,
3816      num_symbol_entries));
3817
3818    // Invoke the Agent_OnUnload function
3819    if (unload_entry != NULL) {
3820      JavaThread* thread = JavaThread::current();
3821      ThreadToNativeFromVM ttn(thread);
3822      HandleMark hm(thread);
3823      (*unload_entry)(&main_vm);
3824    }
3825  }
3826}
3827
3828// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3829// Invokes JVM_OnLoad
3830void Threads::create_vm_init_libraries() {
3831  extern struct JavaVM_ main_vm;
3832  AgentLibrary* agent;
3833
3834  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3835    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3836
3837    if (on_load_entry != NULL) {
3838      // Invoke the JVM_OnLoad function
3839      JavaThread* thread = JavaThread::current();
3840      ThreadToNativeFromVM ttn(thread);
3841      HandleMark hm(thread);
3842      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3843      if (err != JNI_OK) {
3844        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3845      }
3846    } else {
3847      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3848    }
3849  }
3850}
3851
3852// Last thread running calls java.lang.Shutdown.shutdown()
3853void JavaThread::invoke_shutdown_hooks() {
3854  HandleMark hm(this);
3855
3856  // We could get here with a pending exception, if so clear it now.
3857  if (this->has_pending_exception()) {
3858    this->clear_pending_exception();
3859  }
3860
3861  EXCEPTION_MARK;
3862  Klass* k =
3863    SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3864                                      THREAD);
3865  if (k != NULL) {
3866    // SystemDictionary::resolve_or_null will return null if there was
3867    // an exception.  If we cannot load the Shutdown class, just don't
3868    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3869    // and finalizers (if runFinalizersOnExit is set) won't be run.
3870    // Note that if a shutdown hook was registered or runFinalizersOnExit
3871    // was called, the Shutdown class would have already been loaded
3872    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3873    instanceKlassHandle shutdown_klass (THREAD, k);
3874    JavaValue result(T_VOID);
3875    JavaCalls::call_static(&result,
3876                           shutdown_klass,
3877                           vmSymbols::shutdown_method_name(),
3878                           vmSymbols::void_method_signature(),
3879                           THREAD);
3880  }
3881  CLEAR_PENDING_EXCEPTION;
3882}
3883
3884// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3885// the program falls off the end of main(). Another VM exit path is through
3886// vm_exit() when the program calls System.exit() to return a value or when
3887// there is a serious error in VM. The two shutdown paths are not exactly
3888// the same, but they share Shutdown.shutdown() at Java level and before_exit()
3889// and VM_Exit op at VM level.
3890//
3891// Shutdown sequence:
3892//   + Shutdown native memory tracking if it is on
3893//   + Wait until we are the last non-daemon thread to execute
3894//     <-- every thing is still working at this moment -->
3895//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3896//        shutdown hooks, run finalizers if finalization-on-exit
3897//   + Call before_exit(), prepare for VM exit
3898//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3899//        currently the only user of this mechanism is File.deleteOnExit())
3900//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3901//        post thread end and vm death events to JVMTI,
3902//        stop signal thread
3903//   + Call JavaThread::exit(), it will:
3904//      > release JNI handle blocks, remove stack guard pages
3905//      > remove this thread from Threads list
3906//     <-- no more Java code from this thread after this point -->
3907//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3908//     the compiler threads at safepoint
3909//     <-- do not use anything that could get blocked by Safepoint -->
3910//   + Disable tracing at JNI/JVM barriers
3911//   + Set _vm_exited flag for threads that are still running native code
3912//   + Delete this thread
3913//   + Call exit_globals()
3914//      > deletes tty
3915//      > deletes PerfMemory resources
3916//   + Return to caller
3917
3918bool Threads::destroy_vm() {
3919  JavaThread* thread = JavaThread::current();
3920
3921#ifdef ASSERT
3922  _vm_complete = false;
3923#endif
3924  // Wait until we are the last non-daemon thread to execute
3925  { MutexLocker nu(Threads_lock);
3926    while (Threads::number_of_non_daemon_threads() > 1 )
3927      // This wait should make safepoint checks, wait without a timeout,
3928      // and wait as a suspend-equivalent condition.
3929      //
3930      // Note: If the FlatProfiler is running and this thread is waiting
3931      // for another non-daemon thread to finish, then the FlatProfiler
3932      // is waiting for the external suspend request on this thread to
3933      // complete. wait_for_ext_suspend_completion() will eventually
3934      // timeout, but that takes time. Making this wait a suspend-
3935      // equivalent condition solves that timeout problem.
3936      //
3937      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3938                         Mutex::_as_suspend_equivalent_flag);
3939  }
3940
3941  // Hang forever on exit if we are reporting an error.
3942  if (ShowMessageBoxOnError && is_error_reported()) {
3943    os::infinite_sleep();
3944  }
3945  os::wait_for_keypress_at_exit();
3946
3947  if (JDK_Version::is_jdk12x_version()) {
3948    // We are the last thread running, so check if finalizers should be run.
3949    // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3950    HandleMark rm(thread);
3951    Universe::run_finalizers_on_exit();
3952  } else {
3953    // run Java level shutdown hooks
3954    thread->invoke_shutdown_hooks();
3955  }
3956
3957  before_exit(thread);
3958
3959  thread->exit(true);
3960
3961  // Stop VM thread.
3962  {
3963    // 4945125 The vm thread comes to a safepoint during exit.
3964    // GC vm_operations can get caught at the safepoint, and the
3965    // heap is unparseable if they are caught. Grab the Heap_lock
3966    // to prevent this. The GC vm_operations will not be able to
3967    // queue until after the vm thread is dead.
3968    // After this point, we'll never emerge out of the safepoint before
3969    // the VM exits, so concurrent GC threads do not need to be explicitly
3970    // stopped; they remain inactive until the process exits.
3971    // Note: some concurrent G1 threads may be running during a safepoint,
3972    // but these will not be accessing the heap, just some G1-specific side
3973    // data structures that are not accessed by any other threads but them
3974    // after this point in a terminal safepoint.
3975
3976    MutexLocker ml(Heap_lock);
3977
3978    VMThread::wait_for_vm_thread_exit();
3979    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3980    VMThread::destroy();
3981  }
3982
3983  // clean up ideal graph printers
3984#if defined(COMPILER2) && !defined(PRODUCT)
3985  IdealGraphPrinter::clean_up();
3986#endif
3987
3988  // Now, all Java threads are gone except daemon threads. Daemon threads
3989  // running Java code or in VM are stopped by the Safepoint. However,
3990  // daemon threads executing native code are still running.  But they
3991  // will be stopped at native=>Java/VM barriers. Note that we can't
3992  // simply kill or suspend them, as it is inherently deadlock-prone.
3993
3994#ifndef PRODUCT
3995  // disable function tracing at JNI/JVM barriers
3996  TraceJNICalls = false;
3997  TraceJVMCalls = false;
3998  TraceRuntimeCalls = false;
3999#endif
4000
4001  VM_Exit::set_vm_exited();
4002
4003  notify_vm_shutdown();
4004
4005  delete thread;
4006
4007  // exit_globals() will delete tty
4008  exit_globals();
4009
4010  return true;
4011}
4012
4013
4014jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4015  if (version == JNI_VERSION_1_1) return JNI_TRUE;
4016  return is_supported_jni_version(version);
4017}
4018
4019
4020jboolean Threads::is_supported_jni_version(jint version) {
4021  if (version == JNI_VERSION_1_2) return JNI_TRUE;
4022  if (version == JNI_VERSION_1_4) return JNI_TRUE;
4023  if (version == JNI_VERSION_1_6) return JNI_TRUE;
4024  if (version == JNI_VERSION_1_8) return JNI_TRUE;
4025  return JNI_FALSE;
4026}
4027
4028
4029void Threads::add(JavaThread* p, bool force_daemon) {
4030  // The threads lock must be owned at this point
4031  assert_locked_or_safepoint(Threads_lock);
4032
4033  // See the comment for this method in thread.hpp for its purpose and
4034  // why it is called here.
4035  p->initialize_queues();
4036  p->set_next(_thread_list);
4037  _thread_list = p;
4038  _number_of_threads++;
4039  oop threadObj = p->threadObj();
4040  bool daemon = true;
4041  // Bootstrapping problem: threadObj can be null for initial
4042  // JavaThread (or for threads attached via JNI)
4043  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4044    _number_of_non_daemon_threads++;
4045    daemon = false;
4046  }
4047
4048  p->set_safepoint_visible(true);
4049
4050  ThreadService::add_thread(p, daemon);
4051
4052  // Possible GC point.
4053  Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4054}
4055
4056void Threads::remove(JavaThread* p) {
4057  // Extra scope needed for Thread_lock, so we can check
4058  // that we do not remove thread without safepoint code notice
4059  { MutexLocker ml(Threads_lock);
4060
4061    assert(includes(p), "p must be present");
4062
4063    JavaThread* current = _thread_list;
4064    JavaThread* prev    = NULL;
4065
4066    while (current != p) {
4067      prev    = current;
4068      current = current->next();
4069    }
4070
4071    if (prev) {
4072      prev->set_next(current->next());
4073    } else {
4074      _thread_list = p->next();
4075    }
4076    _number_of_threads--;
4077    oop threadObj = p->threadObj();
4078    bool daemon = true;
4079    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4080      _number_of_non_daemon_threads--;
4081      daemon = false;
4082
4083      // Only one thread left, do a notify on the Threads_lock so a thread waiting
4084      // on destroy_vm will wake up.
4085      if (number_of_non_daemon_threads() == 1)
4086        Threads_lock->notify_all();
4087    }
4088    ThreadService::remove_thread(p, daemon);
4089
4090    // Make sure that safepoint code disregard this thread. This is needed since
4091    // the thread might mess around with locks after this point. This can cause it
4092    // to do callbacks into the safepoint code. However, the safepoint code is not aware
4093    // of this thread since it is removed from the queue.
4094    p->set_terminated_value();
4095
4096    // Now, this thread is not visible to safepoint
4097    p->set_safepoint_visible(false);
4098    // once the thread becomes safepoint invisible, we can not use its per-thread
4099    // recorder. And Threads::do_threads() no longer walks this thread, so we have
4100    // to release its per-thread recorder here.
4101    MemTracker::thread_exiting(p);
4102  } // unlock Threads_lock
4103
4104  // Since Events::log uses a lock, we grab it outside the Threads_lock
4105  Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4106}
4107
4108// Threads_lock must be held when this is called (or must be called during a safepoint)
4109bool Threads::includes(JavaThread* p) {
4110  assert(Threads_lock->is_locked(), "sanity check");
4111  ALL_JAVA_THREADS(q) {
4112    if (q == p ) {
4113      return true;
4114    }
4115  }
4116  return false;
4117}
4118
4119// Operations on the Threads list for GC.  These are not explicitly locked,
4120// but the garbage collector must provide a safe context for them to run.
4121// In particular, these things should never be called when the Threads_lock
4122// is held by some other thread. (Note: the Safepoint abstraction also
4123// uses the Threads_lock to guarantee this property. It also makes sure that
4124// all threads gets blocked when exiting or starting).
4125
4126void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4127  ALL_JAVA_THREADS(p) {
4128    p->oops_do(f, cld_f, cf);
4129  }
4130  VMThread::vm_thread()->oops_do(f, cld_f, cf);
4131}
4132
4133void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4134  // Introduce a mechanism allowing parallel threads to claim threads as
4135  // root groups.  Overhead should be small enough to use all the time,
4136  // even in sequential code.
4137  SharedHeap* sh = SharedHeap::heap();
4138  // Cannot yet substitute active_workers for n_par_threads
4139  // because of G1CollectedHeap::verify() use of
4140  // SharedHeap::process_strong_roots().  n_par_threads == 0 will
4141  // turn off parallelism in process_strong_roots while active_workers
4142  // is being used for parallelism elsewhere.
4143  bool is_par = sh->n_par_threads() > 0;
4144  assert(!is_par ||
4145         (SharedHeap::heap()->n_par_threads() ==
4146          SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4147  int cp = SharedHeap::heap()->strong_roots_parity();
4148  ALL_JAVA_THREADS(p) {
4149    if (p->claim_oops_do(is_par, cp)) {
4150      p->oops_do(f, cld_f, cf);
4151    }
4152  }
4153  VMThread* vmt = VMThread::vm_thread();
4154  if (vmt->claim_oops_do(is_par, cp)) {
4155    vmt->oops_do(f, cld_f, cf);
4156  }
4157}
4158
4159#if INCLUDE_ALL_GCS
4160// Used by ParallelScavenge
4161void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4162  ALL_JAVA_THREADS(p) {
4163    q->enqueue(new ThreadRootsTask(p));
4164  }
4165  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4166}
4167
4168// Used by Parallel Old
4169void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4170  ALL_JAVA_THREADS(p) {
4171    q->enqueue(new ThreadRootsMarkingTask(p));
4172  }
4173  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4174}
4175#endif // INCLUDE_ALL_GCS
4176
4177void Threads::nmethods_do(CodeBlobClosure* cf) {
4178  ALL_JAVA_THREADS(p) {
4179    p->nmethods_do(cf);
4180  }
4181  VMThread::vm_thread()->nmethods_do(cf);
4182}
4183
4184void Threads::metadata_do(void f(Metadata*)) {
4185  ALL_JAVA_THREADS(p) {
4186    p->metadata_do(f);
4187  }
4188}
4189
4190void Threads::gc_epilogue() {
4191  ALL_JAVA_THREADS(p) {
4192    p->gc_epilogue();
4193  }
4194}
4195
4196void Threads::gc_prologue() {
4197  ALL_JAVA_THREADS(p) {
4198    p->gc_prologue();
4199  }
4200}
4201
4202void Threads::deoptimized_wrt_marked_nmethods() {
4203  ALL_JAVA_THREADS(p) {
4204    p->deoptimized_wrt_marked_nmethods();
4205  }
4206}
4207
4208
4209// Get count Java threads that are waiting to enter the specified monitor.
4210GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4211  address monitor, bool doLock) {
4212  assert(doLock || SafepointSynchronize::is_at_safepoint(),
4213    "must grab Threads_lock or be at safepoint");
4214  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4215
4216  int i = 0;
4217  {
4218    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4219    ALL_JAVA_THREADS(p) {
4220      if (p->is_Compiler_thread()) continue;
4221
4222      address pending = (address)p->current_pending_monitor();
4223      if (pending == monitor) {             // found a match
4224        if (i < count) result->append(p);   // save the first count matches
4225        i++;
4226      }
4227    }
4228  }
4229  return result;
4230}
4231
4232
4233JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4234  assert(doLock ||
4235         Threads_lock->owned_by_self() ||
4236         SafepointSynchronize::is_at_safepoint(),
4237         "must grab Threads_lock or be at safepoint");
4238
4239  // NULL owner means not locked so we can skip the search
4240  if (owner == NULL) return NULL;
4241
4242  {
4243    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4244    ALL_JAVA_THREADS(p) {
4245      // first, see if owner is the address of a Java thread
4246      if (owner == (address)p) return p;
4247    }
4248  }
4249  // Cannot assert on lack of success here since this function may be
4250  // used by code that is trying to report useful problem information
4251  // like deadlock detection.
4252  if (UseHeavyMonitors) return NULL;
4253
4254  //
4255  // If we didn't find a matching Java thread and we didn't force use of
4256  // heavyweight monitors, then the owner is the stack address of the
4257  // Lock Word in the owning Java thread's stack.
4258  //
4259  JavaThread* the_owner = NULL;
4260  {
4261    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4262    ALL_JAVA_THREADS(q) {
4263      if (q->is_lock_owned(owner)) {
4264        the_owner = q;
4265        break;
4266      }
4267    }
4268  }
4269  // cannot assert on lack of success here; see above comment
4270  return the_owner;
4271}
4272
4273// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4274void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4275  char buf[32];
4276  st->print_cr(os::local_time_string(buf, sizeof(buf)));
4277
4278  st->print_cr("Full thread dump %s (%s %s):",
4279                Abstract_VM_Version::vm_name(),
4280                Abstract_VM_Version::vm_release(),
4281                Abstract_VM_Version::vm_info_string()
4282               );
4283  st->cr();
4284
4285#if INCLUDE_ALL_GCS
4286  // Dump concurrent locks
4287  ConcurrentLocksDump concurrent_locks;
4288  if (print_concurrent_locks) {
4289    concurrent_locks.dump_at_safepoint();
4290  }
4291#endif // INCLUDE_ALL_GCS
4292
4293  ALL_JAVA_THREADS(p) {
4294    ResourceMark rm;
4295    p->print_on(st);
4296    if (print_stacks) {
4297      if (internal_format) {
4298        p->trace_stack();
4299      } else {
4300        p->print_stack_on(st);
4301      }
4302    }
4303    st->cr();
4304#if INCLUDE_ALL_GCS
4305    if (print_concurrent_locks) {
4306      concurrent_locks.print_locks_on(p, st);
4307    }
4308#endif // INCLUDE_ALL_GCS
4309  }
4310
4311  VMThread::vm_thread()->print_on(st);
4312  st->cr();
4313  Universe::heap()->print_gc_threads_on(st);
4314  WatcherThread* wt = WatcherThread::watcher_thread();
4315  if (wt != NULL) {
4316    wt->print_on(st);
4317    st->cr();
4318  }
4319  CompileBroker::print_compiler_threads_on(st);
4320  st->flush();
4321}
4322
4323// Threads::print_on_error() is called by fatal error handler. It's possible
4324// that VM is not at safepoint and/or current thread is inside signal handler.
4325// Don't print stack trace, as the stack may not be walkable. Don't allocate
4326// memory (even in resource area), it might deadlock the error handler.
4327void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4328  bool found_current = false;
4329  st->print_cr("Java Threads: ( => current thread )");
4330  ALL_JAVA_THREADS(thread) {
4331    bool is_current = (current == thread);
4332    found_current = found_current || is_current;
4333
4334    st->print("%s", is_current ? "=>" : "  ");
4335
4336    st->print(PTR_FORMAT, thread);
4337    st->print(" ");
4338    thread->print_on_error(st, buf, buflen);
4339    st->cr();
4340  }
4341  st->cr();
4342
4343  st->print_cr("Other Threads:");
4344  if (VMThread::vm_thread()) {
4345    bool is_current = (current == VMThread::vm_thread());
4346    found_current = found_current || is_current;
4347    st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4348
4349    st->print(PTR_FORMAT, VMThread::vm_thread());
4350    st->print(" ");
4351    VMThread::vm_thread()->print_on_error(st, buf, buflen);
4352    st->cr();
4353  }
4354  WatcherThread* wt = WatcherThread::watcher_thread();
4355  if (wt != NULL) {
4356    bool is_current = (current == wt);
4357    found_current = found_current || is_current;
4358    st->print("%s", is_current ? "=>" : "  ");
4359
4360    st->print(PTR_FORMAT, wt);
4361    st->print(" ");
4362    wt->print_on_error(st, buf, buflen);
4363    st->cr();
4364  }
4365  if (!found_current) {
4366    st->cr();
4367    st->print("=>" PTR_FORMAT " (exited) ", current);
4368    current->print_on_error(st, buf, buflen);
4369    st->cr();
4370  }
4371}
4372
4373// Internal SpinLock and Mutex
4374// Based on ParkEvent
4375
4376// Ad-hoc mutual exclusion primitives: SpinLock and Mux
4377//
4378// We employ SpinLocks _only for low-contention, fixed-length
4379// short-duration critical sections where we're concerned
4380// about native mutex_t or HotSpot Mutex:: latency.
4381// The mux construct provides a spin-then-block mutual exclusion
4382// mechanism.
4383//
4384// Testing has shown that contention on the ListLock guarding gFreeList
4385// is common.  If we implement ListLock as a simple SpinLock it's common
4386// for the JVM to devolve to yielding with little progress.  This is true
4387// despite the fact that the critical sections protected by ListLock are
4388// extremely short.
4389//
4390// TODO-FIXME: ListLock should be of type SpinLock.
4391// We should make this a 1st-class type, integrated into the lock
4392// hierarchy as leaf-locks.  Critically, the SpinLock structure
4393// should have sufficient padding to avoid false-sharing and excessive
4394// cache-coherency traffic.
4395
4396
4397typedef volatile int SpinLockT ;
4398
4399void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4400  if (Atomic::cmpxchg (1, adr, 0) == 0) {
4401     return ;   // normal fast-path return
4402  }
4403
4404  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4405  TEVENT (SpinAcquire - ctx) ;
4406  int ctr = 0 ;
4407  int Yields = 0 ;
4408  for (;;) {
4409     while (*adr != 0) {
4410        ++ctr ;
4411        if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4412           if (Yields > 5) {
4413             os::naked_short_sleep(1);
4414           } else {
4415             os::NakedYield() ;
4416             ++Yields ;
4417           }
4418        } else {
4419           SpinPause() ;
4420        }
4421     }
4422     if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4423  }
4424}
4425
4426void Thread::SpinRelease (volatile int * adr) {
4427  assert (*adr != 0, "invariant") ;
4428  OrderAccess::fence() ;      // guarantee at least release consistency.
4429  // Roach-motel semantics.
4430  // It's safe if subsequent LDs and STs float "up" into the critical section,
4431  // but prior LDs and STs within the critical section can't be allowed
4432  // to reorder or float past the ST that releases the lock.
4433  *adr = 0 ;
4434}
4435
4436// muxAcquire and muxRelease:
4437//
4438// *  muxAcquire and muxRelease support a single-word lock-word construct.
4439//    The LSB of the word is set IFF the lock is held.
4440//    The remainder of the word points to the head of a singly-linked list
4441//    of threads blocked on the lock.
4442//
4443// *  The current implementation of muxAcquire-muxRelease uses its own
4444//    dedicated Thread._MuxEvent instance.  If we're interested in
4445//    minimizing the peak number of extant ParkEvent instances then
4446//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4447//    as certain invariants were satisfied.  Specifically, care would need
4448//    to be taken with regards to consuming unpark() "permits".
4449//    A safe rule of thumb is that a thread would never call muxAcquire()
4450//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4451//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4452//    consume an unpark() permit intended for monitorenter, for instance.
4453//    One way around this would be to widen the restricted-range semaphore
4454//    implemented in park().  Another alternative would be to provide
4455//    multiple instances of the PlatformEvent() for each thread.  One
4456//    instance would be dedicated to muxAcquire-muxRelease, for instance.
4457//
4458// *  Usage:
4459//    -- Only as leaf locks
4460//    -- for short-term locking only as muxAcquire does not perform
4461//       thread state transitions.
4462//
4463// Alternatives:
4464// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4465//    but with parking or spin-then-park instead of pure spinning.
4466// *  Use Taura-Oyama-Yonenzawa locks.
4467// *  It's possible to construct a 1-0 lock if we encode the lockword as
4468//    (List,LockByte).  Acquire will CAS the full lockword while Release
4469//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4470//    acquiring threads use timers (ParkTimed) to detect and recover from
4471//    the stranding window.  Thread/Node structures must be aligned on 256-byte
4472//    boundaries by using placement-new.
4473// *  Augment MCS with advisory back-link fields maintained with CAS().
4474//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4475//    The validity of the backlinks must be ratified before we trust the value.
4476//    If the backlinks are invalid the exiting thread must back-track through the
4477//    the forward links, which are always trustworthy.
4478// *  Add a successor indication.  The LockWord is currently encoded as
4479//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4480//    to provide the usual futile-wakeup optimization.
4481//    See RTStt for details.
4482// *  Consider schedctl.sc_nopreempt to cover the critical section.
4483//
4484
4485
4486typedef volatile intptr_t MutexT ;      // Mux Lock-word
4487enum MuxBits { LOCKBIT = 1 } ;
4488
4489void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4490  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4491  if (w == 0) return ;
4492  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4493     return ;
4494  }
4495
4496  TEVENT (muxAcquire - Contention) ;
4497  ParkEvent * const Self = Thread::current()->_MuxEvent ;
4498  assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4499  for (;;) {
4500     int its = (os::is_MP() ? 100 : 0) + 1 ;
4501
4502     // Optional spin phase: spin-then-park strategy
4503     while (--its >= 0) {
4504       w = *Lock ;
4505       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4506          return ;
4507       }
4508     }
4509
4510     Self->reset() ;
4511     Self->OnList = intptr_t(Lock) ;
4512     // The following fence() isn't _strictly necessary as the subsequent
4513     // CAS() both serializes execution and ratifies the fetched *Lock value.
4514     OrderAccess::fence();
4515     for (;;) {
4516        w = *Lock ;
4517        if ((w & LOCKBIT) == 0) {
4518            if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4519                Self->OnList = 0 ;   // hygiene - allows stronger asserts
4520                return ;
4521            }
4522            continue ;      // Interference -- *Lock changed -- Just retry
4523        }
4524        assert (w & LOCKBIT, "invariant") ;
4525        Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4526        if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4527     }
4528
4529     while (Self->OnList != 0) {
4530        Self->park() ;
4531     }
4532  }
4533}
4534
4535void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4536  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4537  if (w == 0) return ;
4538  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4539    return ;
4540  }
4541
4542  TEVENT (muxAcquire - Contention) ;
4543  ParkEvent * ReleaseAfter = NULL ;
4544  if (ev == NULL) {
4545    ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4546  }
4547  assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4548  for (;;) {
4549    guarantee (ev->OnList == 0, "invariant") ;
4550    int its = (os::is_MP() ? 100 : 0) + 1 ;
4551
4552    // Optional spin phase: spin-then-park strategy
4553    while (--its >= 0) {
4554      w = *Lock ;
4555      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4556        if (ReleaseAfter != NULL) {
4557          ParkEvent::Release (ReleaseAfter) ;
4558        }
4559        return ;
4560      }
4561    }
4562
4563    ev->reset() ;
4564    ev->OnList = intptr_t(Lock) ;
4565    // The following fence() isn't _strictly necessary as the subsequent
4566    // CAS() both serializes execution and ratifies the fetched *Lock value.
4567    OrderAccess::fence();
4568    for (;;) {
4569      w = *Lock ;
4570      if ((w & LOCKBIT) == 0) {
4571        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4572          ev->OnList = 0 ;
4573          // We call ::Release while holding the outer lock, thus
4574          // artificially lengthening the critical section.
4575          // Consider deferring the ::Release() until the subsequent unlock(),
4576          // after we've dropped the outer lock.
4577          if (ReleaseAfter != NULL) {
4578            ParkEvent::Release (ReleaseAfter) ;
4579          }
4580          return ;
4581        }
4582        continue ;      // Interference -- *Lock changed -- Just retry
4583      }
4584      assert (w & LOCKBIT, "invariant") ;
4585      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4586      if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4587    }
4588
4589    while (ev->OnList != 0) {
4590      ev->park() ;
4591    }
4592  }
4593}
4594
4595// Release() must extract a successor from the list and then wake that thread.
4596// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4597// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4598// Release() would :
4599// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4600// (B) Extract a successor from the private list "in-hand"
4601// (C) attempt to CAS() the residual back into *Lock over null.
4602//     If there were any newly arrived threads and the CAS() would fail.
4603//     In that case Release() would detach the RATs, re-merge the list in-hand
4604//     with the RATs and repeat as needed.  Alternately, Release() might
4605//     detach and extract a successor, but then pass the residual list to the wakee.
4606//     The wakee would be responsible for reattaching and remerging before it
4607//     competed for the lock.
4608//
4609// Both "pop" and DMR are immune from ABA corruption -- there can be
4610// multiple concurrent pushers, but only one popper or detacher.
4611// This implementation pops from the head of the list.  This is unfair,
4612// but tends to provide excellent throughput as hot threads remain hot.
4613// (We wake recently run threads first).
4614
4615void Thread::muxRelease (volatile intptr_t * Lock)  {
4616  for (;;) {
4617    const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4618    assert (w & LOCKBIT, "invariant") ;
4619    if (w == LOCKBIT) return ;
4620    ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4621    assert (List != NULL, "invariant") ;
4622    assert (List->OnList == intptr_t(Lock), "invariant") ;
4623    ParkEvent * nxt = List->ListNext ;
4624
4625    // The following CAS() releases the lock and pops the head element.
4626    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4627      continue ;
4628    }
4629    List->OnList = 0 ;
4630    OrderAccess::fence() ;
4631    List->unpark () ;
4632    return ;
4633  }
4634}
4635
4636
4637void Threads::verify() {
4638  ALL_JAVA_THREADS(p) {
4639    p->verify();
4640  }
4641  VMThread* thread = VMThread::vm_thread();
4642  if (thread != NULL) thread->verify();
4643}
4644