thread.cpp revision 6014:8a9bb7821e28
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/scopeDesc.hpp"
31#include "compiler/compileBroker.hpp"
32#include "interpreter/interpreter.hpp"
33#include "interpreter/linkResolver.hpp"
34#include "interpreter/oopMapCache.hpp"
35#include "jvmtifiles/jvmtiEnv.hpp"
36#include "memory/gcLocker.inline.hpp"
37#include "memory/metaspaceShared.hpp"
38#include "memory/oopFactory.hpp"
39#include "memory/universe.inline.hpp"
40#include "oops/instanceKlass.hpp"
41#include "oops/objArrayOop.hpp"
42#include "oops/oop.inline.hpp"
43#include "oops/symbol.hpp"
44#include "prims/jvm_misc.hpp"
45#include "prims/jvmtiExport.hpp"
46#include "prims/jvmtiThreadState.hpp"
47#include "prims/privilegedStack.hpp"
48#include "runtime/arguments.hpp"
49#include "runtime/biasedLocking.hpp"
50#include "runtime/deoptimization.hpp"
51#include "runtime/fprofiler.hpp"
52#include "runtime/frame.inline.hpp"
53#include "runtime/init.hpp"
54#include "runtime/interfaceSupport.hpp"
55#include "runtime/java.hpp"
56#include "runtime/javaCalls.hpp"
57#include "runtime/jniPeriodicChecker.hpp"
58#include "runtime/memprofiler.hpp"
59#include "runtime/mutexLocker.hpp"
60#include "runtime/objectMonitor.hpp"
61#include "runtime/osThread.hpp"
62#include "runtime/safepoint.hpp"
63#include "runtime/sharedRuntime.hpp"
64#include "runtime/statSampler.hpp"
65#include "runtime/stubRoutines.hpp"
66#include "runtime/task.hpp"
67#include "runtime/thread.inline.hpp"
68#include "runtime/threadCritical.hpp"
69#include "runtime/threadLocalStorage.hpp"
70#include "runtime/vframe.hpp"
71#include "runtime/vframeArray.hpp"
72#include "runtime/vframe_hp.hpp"
73#include "runtime/vmThread.hpp"
74#include "runtime/vm_operations.hpp"
75#include "services/attachListener.hpp"
76#include "services/management.hpp"
77#include "services/memTracker.hpp"
78#include "services/threadService.hpp"
79#include "trace/tracing.hpp"
80#include "trace/traceMacros.hpp"
81#include "utilities/defaultStream.hpp"
82#include "utilities/dtrace.hpp"
83#include "utilities/events.hpp"
84#include "utilities/preserveException.hpp"
85#include "utilities/macros.hpp"
86#ifdef TARGET_OS_FAMILY_linux
87# include "os_linux.inline.hpp"
88#endif
89#ifdef TARGET_OS_FAMILY_solaris
90# include "os_solaris.inline.hpp"
91#endif
92#ifdef TARGET_OS_FAMILY_windows
93# include "os_windows.inline.hpp"
94#endif
95#ifdef TARGET_OS_FAMILY_bsd
96# include "os_bsd.inline.hpp"
97#endif
98#if INCLUDE_ALL_GCS
99#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
100#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
101#include "gc_implementation/parallelScavenge/pcTasks.hpp"
102#endif // INCLUDE_ALL_GCS
103#ifdef COMPILER1
104#include "c1/c1_Compiler.hpp"
105#endif
106#ifdef COMPILER2
107#include "opto/c2compiler.hpp"
108#include "opto/idealGraphPrinter.hpp"
109#endif
110
111#ifdef DTRACE_ENABLED
112
113// Only bother with this argument setup if dtrace is available
114
115#ifndef USDT2
116HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
117HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
118HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
119  intptr_t, intptr_t, bool);
120HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
121  intptr_t, intptr_t, bool);
122
123#define DTRACE_THREAD_PROBE(probe, javathread)                             \
124  {                                                                        \
125    ResourceMark rm(this);                                                 \
126    int len = 0;                                                           \
127    const char* name = (javathread)->get_thread_name();                    \
128    len = strlen(name);                                                    \
129    HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
130      name, len,                                                           \
131      java_lang_Thread::thread_id((javathread)->threadObj()),              \
132      (javathread)->osthread()->thread_id(),                               \
133      java_lang_Thread::is_daemon((javathread)->threadObj()));             \
134  }
135
136#else /* USDT2 */
137
138#define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
139#define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
140
141#define DTRACE_THREAD_PROBE(probe, javathread)                             \
142  {                                                                        \
143    ResourceMark rm(this);                                                 \
144    int len = 0;                                                           \
145    const char* name = (javathread)->get_thread_name();                    \
146    len = strlen(name);                                                    \
147    HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
148      (char *) name, len,                                                           \
149      java_lang_Thread::thread_id((javathread)->threadObj()),              \
150      (uintptr_t) (javathread)->osthread()->thread_id(),                               \
151      java_lang_Thread::is_daemon((javathread)->threadObj()));             \
152  }
153
154#endif /* USDT2 */
155
156#else //  ndef DTRACE_ENABLED
157
158#define DTRACE_THREAD_PROBE(probe, javathread)
159
160#endif // ndef DTRACE_ENABLED
161
162
163// Class hierarchy
164// - Thread
165//   - VMThread
166//   - WatcherThread
167//   - ConcurrentMarkSweepThread
168//   - JavaThread
169//     - CompilerThread
170
171// ======= Thread ========
172// Support for forcing alignment of thread objects for biased locking
173void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
174  if (UseBiasedLocking) {
175    const int alignment = markOopDesc::biased_lock_alignment;
176    size_t aligned_size = size + (alignment - sizeof(intptr_t));
177    void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
178                                          : AllocateHeap(aligned_size, flags, CURRENT_PC,
179                                              AllocFailStrategy::RETURN_NULL);
180    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
181    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
182           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
183           "JavaThread alignment code overflowed allocated storage");
184    if (TraceBiasedLocking) {
185      if (aligned_addr != real_malloc_addr)
186        tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
187                      real_malloc_addr, aligned_addr);
188    }
189    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
190    return aligned_addr;
191  } else {
192    return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
193                       : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
194  }
195}
196
197void Thread::operator delete(void* p) {
198  if (UseBiasedLocking) {
199    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
200    FreeHeap(real_malloc_addr, mtThread);
201  } else {
202    FreeHeap(p, mtThread);
203  }
204}
205
206
207// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
208// JavaThread
209
210
211Thread::Thread() {
212  // stack and get_thread
213  set_stack_base(NULL);
214  set_stack_size(0);
215  set_self_raw_id(0);
216  set_lgrp_id(-1);
217
218  // allocated data structures
219  set_osthread(NULL);
220  set_resource_area(new (mtThread)ResourceArea());
221  DEBUG_ONLY(_current_resource_mark = NULL;)
222  set_handle_area(new (mtThread) HandleArea(NULL));
223  set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
224  set_active_handles(NULL);
225  set_free_handle_block(NULL);
226  set_last_handle_mark(NULL);
227
228  // This initial value ==> never claimed.
229  _oops_do_parity = 0;
230
231  // the handle mark links itself to last_handle_mark
232  new HandleMark(this);
233
234  // plain initialization
235  debug_only(_owned_locks = NULL;)
236  debug_only(_allow_allocation_count = 0;)
237  NOT_PRODUCT(_allow_safepoint_count = 0;)
238  NOT_PRODUCT(_skip_gcalot = false;)
239  CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
240  _jvmti_env_iteration_count = 0;
241  set_allocated_bytes(0);
242  _vm_operation_started_count = 0;
243  _vm_operation_completed_count = 0;
244  _current_pending_monitor = NULL;
245  _current_pending_monitor_is_from_java = true;
246  _current_waiting_monitor = NULL;
247  _num_nested_signal = 0;
248  omFreeList = NULL ;
249  omFreeCount = 0 ;
250  omFreeProvision = 32 ;
251  omInUseList = NULL ;
252  omInUseCount = 0 ;
253
254#ifdef ASSERT
255  _visited_for_critical_count = false;
256#endif
257
258  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
259  _suspend_flags = 0;
260
261  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
262  _hashStateX = os::random() ;
263  _hashStateY = 842502087 ;
264  _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
265  _hashStateW = 273326509 ;
266
267  _OnTrap   = 0 ;
268  _schedctl = NULL ;
269  _Stalled  = 0 ;
270  _TypeTag  = 0x2BAD ;
271
272  // Many of the following fields are effectively final - immutable
273  // Note that nascent threads can't use the Native Monitor-Mutex
274  // construct until the _MutexEvent is initialized ...
275  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
276  // we might instead use a stack of ParkEvents that we could provision on-demand.
277  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
278  // and ::Release()
279  _ParkEvent   = ParkEvent::Allocate (this) ;
280  _SleepEvent  = ParkEvent::Allocate (this) ;
281  _MutexEvent  = ParkEvent::Allocate (this) ;
282  _MuxEvent    = ParkEvent::Allocate (this) ;
283
284#ifdef CHECK_UNHANDLED_OOPS
285  if (CheckUnhandledOops) {
286    _unhandled_oops = new UnhandledOops(this);
287  }
288#endif // CHECK_UNHANDLED_OOPS
289#ifdef ASSERT
290  if (UseBiasedLocking) {
291    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
292    assert(this == _real_malloc_address ||
293           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
294           "bug in forced alignment of thread objects");
295  }
296#endif /* ASSERT */
297}
298
299void Thread::initialize_thread_local_storage() {
300  // Note: Make sure this method only calls
301  // non-blocking operations. Otherwise, it might not work
302  // with the thread-startup/safepoint interaction.
303
304  // During Java thread startup, safepoint code should allow this
305  // method to complete because it may need to allocate memory to
306  // store information for the new thread.
307
308  // initialize structure dependent on thread local storage
309  ThreadLocalStorage::set_thread(this);
310}
311
312void Thread::record_stack_base_and_size() {
313  set_stack_base(os::current_stack_base());
314  set_stack_size(os::current_stack_size());
315  if (is_Java_thread()) {
316    ((JavaThread*) this)->set_stack_overflow_limit();
317  }
318  // CR 7190089: on Solaris, primordial thread's stack is adjusted
319  // in initialize_thread(). Without the adjustment, stack size is
320  // incorrect if stack is set to unlimited (ulimit -s unlimited).
321  // So far, only Solaris has real implementation of initialize_thread().
322  //
323  // set up any platform-specific state.
324  os::initialize_thread(this);
325
326#if INCLUDE_NMT
327  // record thread's native stack, stack grows downward
328  address stack_low_addr = stack_base() - stack_size();
329  MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
330      CURRENT_PC);
331#endif // INCLUDE_NMT
332}
333
334
335Thread::~Thread() {
336  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
337  ObjectSynchronizer::omFlush (this) ;
338
339  EVENT_THREAD_DESTRUCT(this);
340
341  // stack_base can be NULL if the thread is never started or exited before
342  // record_stack_base_and_size called. Although, we would like to ensure
343  // that all started threads do call record_stack_base_and_size(), there is
344  // not proper way to enforce that.
345#if INCLUDE_NMT
346  if (_stack_base != NULL) {
347    address low_stack_addr = stack_base() - stack_size();
348    MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
349#ifdef ASSERT
350    set_stack_base(NULL);
351#endif
352  }
353#endif // INCLUDE_NMT
354
355  // deallocate data structures
356  delete resource_area();
357  // since the handle marks are using the handle area, we have to deallocated the root
358  // handle mark before deallocating the thread's handle area,
359  assert(last_handle_mark() != NULL, "check we have an element");
360  delete last_handle_mark();
361  assert(last_handle_mark() == NULL, "check we have reached the end");
362
363  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
364  // We NULL out the fields for good hygiene.
365  ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
366  ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
367  ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
368  ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
369
370  delete handle_area();
371  delete metadata_handles();
372
373  // osthread() can be NULL, if creation of thread failed.
374  if (osthread() != NULL) os::free_thread(osthread());
375
376  delete _SR_lock;
377
378  // clear thread local storage if the Thread is deleting itself
379  if (this == Thread::current()) {
380    ThreadLocalStorage::set_thread(NULL);
381  } else {
382    // In the case where we're not the current thread, invalidate all the
383    // caches in case some code tries to get the current thread or the
384    // thread that was destroyed, and gets stale information.
385    ThreadLocalStorage::invalidate_all();
386  }
387  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
388}
389
390// NOTE: dummy function for assertion purpose.
391void Thread::run() {
392  ShouldNotReachHere();
393}
394
395#ifdef ASSERT
396// Private method to check for dangling thread pointer
397void check_for_dangling_thread_pointer(Thread *thread) {
398 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
399         "possibility of dangling Thread pointer");
400}
401#endif
402
403
404#ifndef PRODUCT
405// Tracing method for basic thread operations
406void Thread::trace(const char* msg, const Thread* const thread) {
407  if (!TraceThreadEvents) return;
408  ResourceMark rm;
409  ThreadCritical tc;
410  const char *name = "non-Java thread";
411  int prio = -1;
412  if (thread->is_Java_thread()
413      && !thread->is_Compiler_thread()) {
414    // The Threads_lock must be held to get information about
415    // this thread but may not be in some situations when
416    // tracing  thread events.
417    bool release_Threads_lock = false;
418    if (!Threads_lock->owned_by_self()) {
419      Threads_lock->lock();
420      release_Threads_lock = true;
421    }
422    JavaThread* jt = (JavaThread *)thread;
423    name = (char *)jt->get_thread_name();
424    oop thread_oop = jt->threadObj();
425    if (thread_oop != NULL) {
426      prio = java_lang_Thread::priority(thread_oop);
427    }
428    if (release_Threads_lock) {
429      Threads_lock->unlock();
430    }
431  }
432  tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
433}
434#endif
435
436
437ThreadPriority Thread::get_priority(const Thread* const thread) {
438  trace("get priority", thread);
439  ThreadPriority priority;
440  // Can return an error!
441  (void)os::get_priority(thread, priority);
442  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
443  return priority;
444}
445
446void Thread::set_priority(Thread* thread, ThreadPriority priority) {
447  trace("set priority", thread);
448  debug_only(check_for_dangling_thread_pointer(thread);)
449  // Can return an error!
450  (void)os::set_priority(thread, priority);
451}
452
453
454void Thread::start(Thread* thread) {
455  trace("start", thread);
456  // Start is different from resume in that its safety is guaranteed by context or
457  // being called from a Java method synchronized on the Thread object.
458  if (!DisableStartThread) {
459    if (thread->is_Java_thread()) {
460      // Initialize the thread state to RUNNABLE before starting this thread.
461      // Can not set it after the thread started because we do not know the
462      // exact thread state at that time. It could be in MONITOR_WAIT or
463      // in SLEEPING or some other state.
464      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
465                                          java_lang_Thread::RUNNABLE);
466    }
467    os::start_thread(thread);
468  }
469}
470
471// Enqueue a VM_Operation to do the job for us - sometime later
472void Thread::send_async_exception(oop java_thread, oop java_throwable) {
473  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
474  VMThread::execute(vm_stop);
475}
476
477
478//
479// Check if an external suspend request has completed (or has been
480// cancelled). Returns true if the thread is externally suspended and
481// false otherwise.
482//
483// The bits parameter returns information about the code path through
484// the routine. Useful for debugging:
485//
486// set in is_ext_suspend_completed():
487// 0x00000001 - routine was entered
488// 0x00000010 - routine return false at end
489// 0x00000100 - thread exited (return false)
490// 0x00000200 - suspend request cancelled (return false)
491// 0x00000400 - thread suspended (return true)
492// 0x00001000 - thread is in a suspend equivalent state (return true)
493// 0x00002000 - thread is native and walkable (return true)
494// 0x00004000 - thread is native_trans and walkable (needed retry)
495//
496// set in wait_for_ext_suspend_completion():
497// 0x00010000 - routine was entered
498// 0x00020000 - suspend request cancelled before loop (return false)
499// 0x00040000 - thread suspended before loop (return true)
500// 0x00080000 - suspend request cancelled in loop (return false)
501// 0x00100000 - thread suspended in loop (return true)
502// 0x00200000 - suspend not completed during retry loop (return false)
503//
504
505// Helper class for tracing suspend wait debug bits.
506//
507// 0x00000100 indicates that the target thread exited before it could
508// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
509// 0x00080000 each indicate a cancelled suspend request so they don't
510// count as wait failures either.
511#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
512
513class TraceSuspendDebugBits : public StackObj {
514 private:
515  JavaThread * jt;
516  bool         is_wait;
517  bool         called_by_wait;  // meaningful when !is_wait
518  uint32_t *   bits;
519
520 public:
521  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
522                        uint32_t *_bits) {
523    jt             = _jt;
524    is_wait        = _is_wait;
525    called_by_wait = _called_by_wait;
526    bits           = _bits;
527  }
528
529  ~TraceSuspendDebugBits() {
530    if (!is_wait) {
531#if 1
532      // By default, don't trace bits for is_ext_suspend_completed() calls.
533      // That trace is very chatty.
534      return;
535#else
536      if (!called_by_wait) {
537        // If tracing for is_ext_suspend_completed() is enabled, then only
538        // trace calls to it from wait_for_ext_suspend_completion()
539        return;
540      }
541#endif
542    }
543
544    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
545      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
546        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
547        ResourceMark rm;
548
549        tty->print_cr(
550            "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
551            jt->get_thread_name(), *bits);
552
553        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
554      }
555    }
556  }
557};
558#undef DEBUG_FALSE_BITS
559
560
561bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
562  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
563
564  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
565  bool do_trans_retry;           // flag to force the retry
566
567  *bits |= 0x00000001;
568
569  do {
570    do_trans_retry = false;
571
572    if (is_exiting()) {
573      // Thread is in the process of exiting. This is always checked
574      // first to reduce the risk of dereferencing a freed JavaThread.
575      *bits |= 0x00000100;
576      return false;
577    }
578
579    if (!is_external_suspend()) {
580      // Suspend request is cancelled. This is always checked before
581      // is_ext_suspended() to reduce the risk of a rogue resume
582      // confusing the thread that made the suspend request.
583      *bits |= 0x00000200;
584      return false;
585    }
586
587    if (is_ext_suspended()) {
588      // thread is suspended
589      *bits |= 0x00000400;
590      return true;
591    }
592
593    // Now that we no longer do hard suspends of threads running
594    // native code, the target thread can be changing thread state
595    // while we are in this routine:
596    //
597    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
598    //
599    // We save a copy of the thread state as observed at this moment
600    // and make our decision about suspend completeness based on the
601    // copy. This closes the race where the thread state is seen as
602    // _thread_in_native_trans in the if-thread_blocked check, but is
603    // seen as _thread_blocked in if-thread_in_native_trans check.
604    JavaThreadState save_state = thread_state();
605
606    if (save_state == _thread_blocked && is_suspend_equivalent()) {
607      // If the thread's state is _thread_blocked and this blocking
608      // condition is known to be equivalent to a suspend, then we can
609      // consider the thread to be externally suspended. This means that
610      // the code that sets _thread_blocked has been modified to do
611      // self-suspension if the blocking condition releases. We also
612      // used to check for CONDVAR_WAIT here, but that is now covered by
613      // the _thread_blocked with self-suspension check.
614      //
615      // Return true since we wouldn't be here unless there was still an
616      // external suspend request.
617      *bits |= 0x00001000;
618      return true;
619    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
620      // Threads running native code will self-suspend on native==>VM/Java
621      // transitions. If its stack is walkable (should always be the case
622      // unless this function is called before the actual java_suspend()
623      // call), then the wait is done.
624      *bits |= 0x00002000;
625      return true;
626    } else if (!called_by_wait && !did_trans_retry &&
627               save_state == _thread_in_native_trans &&
628               frame_anchor()->walkable()) {
629      // The thread is transitioning from thread_in_native to another
630      // thread state. check_safepoint_and_suspend_for_native_trans()
631      // will force the thread to self-suspend. If it hasn't gotten
632      // there yet we may have caught the thread in-between the native
633      // code check above and the self-suspend. Lucky us. If we were
634      // called by wait_for_ext_suspend_completion(), then it
635      // will be doing the retries so we don't have to.
636      //
637      // Since we use the saved thread state in the if-statement above,
638      // there is a chance that the thread has already transitioned to
639      // _thread_blocked by the time we get here. In that case, we will
640      // make a single unnecessary pass through the logic below. This
641      // doesn't hurt anything since we still do the trans retry.
642
643      *bits |= 0x00004000;
644
645      // Once the thread leaves thread_in_native_trans for another
646      // thread state, we break out of this retry loop. We shouldn't
647      // need this flag to prevent us from getting back here, but
648      // sometimes paranoia is good.
649      did_trans_retry = true;
650
651      // We wait for the thread to transition to a more usable state.
652      for (int i = 1; i <= SuspendRetryCount; i++) {
653        // We used to do an "os::yield_all(i)" call here with the intention
654        // that yielding would increase on each retry. However, the parameter
655        // is ignored on Linux which means the yield didn't scale up. Waiting
656        // on the SR_lock below provides a much more predictable scale up for
657        // the delay. It also provides a simple/direct point to check for any
658        // safepoint requests from the VMThread
659
660        // temporarily drops SR_lock while doing wait with safepoint check
661        // (if we're a JavaThread - the WatcherThread can also call this)
662        // and increase delay with each retry
663        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
664
665        // check the actual thread state instead of what we saved above
666        if (thread_state() != _thread_in_native_trans) {
667          // the thread has transitioned to another thread state so
668          // try all the checks (except this one) one more time.
669          do_trans_retry = true;
670          break;
671        }
672      } // end retry loop
673
674
675    }
676  } while (do_trans_retry);
677
678  *bits |= 0x00000010;
679  return false;
680}
681
682//
683// Wait for an external suspend request to complete (or be cancelled).
684// Returns true if the thread is externally suspended and false otherwise.
685//
686bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
687       uint32_t *bits) {
688  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
689                             false /* !called_by_wait */, bits);
690
691  // local flag copies to minimize SR_lock hold time
692  bool is_suspended;
693  bool pending;
694  uint32_t reset_bits;
695
696  // set a marker so is_ext_suspend_completed() knows we are the caller
697  *bits |= 0x00010000;
698
699  // We use reset_bits to reinitialize the bits value at the top of
700  // each retry loop. This allows the caller to make use of any
701  // unused bits for their own marking purposes.
702  reset_bits = *bits;
703
704  {
705    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
706    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
707                                            delay, bits);
708    pending = is_external_suspend();
709  }
710  // must release SR_lock to allow suspension to complete
711
712  if (!pending) {
713    // A cancelled suspend request is the only false return from
714    // is_ext_suspend_completed() that keeps us from entering the
715    // retry loop.
716    *bits |= 0x00020000;
717    return false;
718  }
719
720  if (is_suspended) {
721    *bits |= 0x00040000;
722    return true;
723  }
724
725  for (int i = 1; i <= retries; i++) {
726    *bits = reset_bits;  // reinit to only track last retry
727
728    // We used to do an "os::yield_all(i)" call here with the intention
729    // that yielding would increase on each retry. However, the parameter
730    // is ignored on Linux which means the yield didn't scale up. Waiting
731    // on the SR_lock below provides a much more predictable scale up for
732    // the delay. It also provides a simple/direct point to check for any
733    // safepoint requests from the VMThread
734
735    {
736      MutexLocker ml(SR_lock());
737      // wait with safepoint check (if we're a JavaThread - the WatcherThread
738      // can also call this)  and increase delay with each retry
739      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
740
741      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
742                                              delay, bits);
743
744      // It is possible for the external suspend request to be cancelled
745      // (by a resume) before the actual suspend operation is completed.
746      // Refresh our local copy to see if we still need to wait.
747      pending = is_external_suspend();
748    }
749
750    if (!pending) {
751      // A cancelled suspend request is the only false return from
752      // is_ext_suspend_completed() that keeps us from staying in the
753      // retry loop.
754      *bits |= 0x00080000;
755      return false;
756    }
757
758    if (is_suspended) {
759      *bits |= 0x00100000;
760      return true;
761    }
762  } // end retry loop
763
764  // thread did not suspend after all our retries
765  *bits |= 0x00200000;
766  return false;
767}
768
769#ifndef PRODUCT
770void JavaThread::record_jump(address target, address instr, const char* file, int line) {
771
772  // This should not need to be atomic as the only way for simultaneous
773  // updates is via interrupts. Even then this should be rare or non-existent
774  // and we don't care that much anyway.
775
776  int index = _jmp_ring_index;
777  _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
778  _jmp_ring[index]._target = (intptr_t) target;
779  _jmp_ring[index]._instruction = (intptr_t) instr;
780  _jmp_ring[index]._file = file;
781  _jmp_ring[index]._line = line;
782}
783#endif /* PRODUCT */
784
785// Called by flat profiler
786// Callers have already called wait_for_ext_suspend_completion
787// The assertion for that is currently too complex to put here:
788bool JavaThread::profile_last_Java_frame(frame* _fr) {
789  bool gotframe = false;
790  // self suspension saves needed state.
791  if (has_last_Java_frame() && _anchor.walkable()) {
792     *_fr = pd_last_frame();
793     gotframe = true;
794  }
795  return gotframe;
796}
797
798void Thread::interrupt(Thread* thread) {
799  trace("interrupt", thread);
800  debug_only(check_for_dangling_thread_pointer(thread);)
801  os::interrupt(thread);
802}
803
804bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
805  trace("is_interrupted", thread);
806  debug_only(check_for_dangling_thread_pointer(thread);)
807  // Note:  If clear_interrupted==false, this simply fetches and
808  // returns the value of the field osthread()->interrupted().
809  return os::is_interrupted(thread, clear_interrupted);
810}
811
812
813// GC Support
814bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
815  jint thread_parity = _oops_do_parity;
816  if (thread_parity != strong_roots_parity) {
817    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
818    if (res == thread_parity) {
819      return true;
820    } else {
821      guarantee(res == strong_roots_parity, "Or else what?");
822      assert(SharedHeap::heap()->workers()->active_workers() > 0,
823         "Should only fail when parallel.");
824      return false;
825    }
826  }
827  assert(SharedHeap::heap()->workers()->active_workers() > 0,
828         "Should only fail when parallel.");
829  return false;
830}
831
832void Thread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
833  active_handles()->oops_do(f);
834  // Do oop for ThreadShadow
835  f->do_oop((oop*)&_pending_exception);
836  handle_area()->oops_do(f);
837}
838
839void Thread::nmethods_do(CodeBlobClosure* cf) {
840  // no nmethods in a generic thread...
841}
842
843void Thread::metadata_do(void f(Metadata*)) {
844  if (metadata_handles() != NULL) {
845    for (int i = 0; i< metadata_handles()->length(); i++) {
846      f(metadata_handles()->at(i));
847    }
848  }
849}
850
851void Thread::print_on(outputStream* st) const {
852  // get_priority assumes osthread initialized
853  if (osthread() != NULL) {
854    int os_prio;
855    if (os::get_native_priority(this, &os_prio) == OS_OK) {
856      st->print("os_prio=%d ", os_prio);
857    }
858    st->print("tid=" INTPTR_FORMAT " ", this);
859    osthread()->print_on(st);
860  }
861  debug_only(if (WizardMode) print_owned_locks_on(st);)
862}
863
864// Thread::print_on_error() is called by fatal error handler. Don't use
865// any lock or allocate memory.
866void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
867  if      (is_VM_thread())                  st->print("VMThread");
868  else if (is_Compiler_thread())            st->print("CompilerThread");
869  else if (is_Java_thread())                st->print("JavaThread");
870  else if (is_GC_task_thread())             st->print("GCTaskThread");
871  else if (is_Watcher_thread())             st->print("WatcherThread");
872  else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
873  else st->print("Thread");
874
875  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
876            _stack_base - _stack_size, _stack_base);
877
878  if (osthread()) {
879    st->print(" [id=%d]", osthread()->thread_id());
880  }
881}
882
883#ifdef ASSERT
884void Thread::print_owned_locks_on(outputStream* st) const {
885  Monitor *cur = _owned_locks;
886  if (cur == NULL) {
887    st->print(" (no locks) ");
888  } else {
889    st->print_cr(" Locks owned:");
890    while(cur) {
891      cur->print_on(st);
892      cur = cur->next();
893    }
894  }
895}
896
897static int ref_use_count  = 0;
898
899bool Thread::owns_locks_but_compiled_lock() const {
900  for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
901    if (cur != Compile_lock) return true;
902  }
903  return false;
904}
905
906
907#endif
908
909#ifndef PRODUCT
910
911// The flag: potential_vm_operation notifies if this particular safepoint state could potential
912// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
913// no threads which allow_vm_block's are held
914void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
915    // Check if current thread is allowed to block at a safepoint
916    if (!(_allow_safepoint_count == 0))
917      fatal("Possible safepoint reached by thread that does not allow it");
918    if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
919      fatal("LEAF method calling lock?");
920    }
921
922#ifdef ASSERT
923    if (potential_vm_operation && is_Java_thread()
924        && !Universe::is_bootstrapping()) {
925      // Make sure we do not hold any locks that the VM thread also uses.
926      // This could potentially lead to deadlocks
927      for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
928        // Threads_lock is special, since the safepoint synchronization will not start before this is
929        // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
930        // since it is used to transfer control between JavaThreads and the VMThread
931        // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
932        if ( (cur->allow_vm_block() &&
933              cur != Threads_lock &&
934              cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
935              cur != VMOperationRequest_lock &&
936              cur != VMOperationQueue_lock) ||
937              cur->rank() == Mutex::special) {
938          warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
939        }
940      }
941    }
942
943    if (GCALotAtAllSafepoints) {
944      // We could enter a safepoint here and thus have a gc
945      InterfaceSupport::check_gc_alot();
946    }
947#endif
948}
949#endif
950
951bool Thread::is_in_stack(address adr) const {
952  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
953  address end = os::current_stack_pointer();
954  // Allow non Java threads to call this without stack_base
955  if (_stack_base == NULL) return true;
956  if (stack_base() >= adr && adr >= end) return true;
957
958  return false;
959}
960
961
962bool Thread::is_in_usable_stack(address adr) const {
963  size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
964  size_t usable_stack_size = _stack_size - stack_guard_size;
965
966  return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
967}
968
969
970// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
971// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
972// used for compilation in the future. If that change is made, the need for these methods
973// should be revisited, and they should be removed if possible.
974
975bool Thread::is_lock_owned(address adr) const {
976  return on_local_stack(adr);
977}
978
979bool Thread::set_as_starting_thread() {
980 // NOTE: this must be called inside the main thread.
981  return os::create_main_thread((JavaThread*)this);
982}
983
984static void initialize_class(Symbol* class_name, TRAPS) {
985  Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
986  InstanceKlass::cast(klass)->initialize(CHECK);
987}
988
989
990// Creates the initial ThreadGroup
991static Handle create_initial_thread_group(TRAPS) {
992  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
993  instanceKlassHandle klass (THREAD, k);
994
995  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
996  {
997    JavaValue result(T_VOID);
998    JavaCalls::call_special(&result,
999                            system_instance,
1000                            klass,
1001                            vmSymbols::object_initializer_name(),
1002                            vmSymbols::void_method_signature(),
1003                            CHECK_NH);
1004  }
1005  Universe::set_system_thread_group(system_instance());
1006
1007  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
1008  {
1009    JavaValue result(T_VOID);
1010    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1011    JavaCalls::call_special(&result,
1012                            main_instance,
1013                            klass,
1014                            vmSymbols::object_initializer_name(),
1015                            vmSymbols::threadgroup_string_void_signature(),
1016                            system_instance,
1017                            string,
1018                            CHECK_NH);
1019  }
1020  return main_instance;
1021}
1022
1023// Creates the initial Thread
1024static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
1025  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1026  instanceKlassHandle klass (THREAD, k);
1027  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1028
1029  java_lang_Thread::set_thread(thread_oop(), thread);
1030  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1031  thread->set_threadObj(thread_oop());
1032
1033  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1034
1035  JavaValue result(T_VOID);
1036  JavaCalls::call_special(&result, thread_oop,
1037                                   klass,
1038                                   vmSymbols::object_initializer_name(),
1039                                   vmSymbols::threadgroup_string_void_signature(),
1040                                   thread_group,
1041                                   string,
1042                                   CHECK_NULL);
1043  return thread_oop();
1044}
1045
1046static void call_initializeSystemClass(TRAPS) {
1047  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1048  instanceKlassHandle klass (THREAD, k);
1049
1050  JavaValue result(T_VOID);
1051  JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1052                                         vmSymbols::void_method_signature(), CHECK);
1053}
1054
1055char java_runtime_name[128] = "";
1056char java_runtime_version[128] = "";
1057
1058// extract the JRE name from sun.misc.Version.java_runtime_name
1059static const char* get_java_runtime_name(TRAPS) {
1060  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1061                                      Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1062  fieldDescriptor fd;
1063  bool found = k != NULL &&
1064               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1065                                                        vmSymbols::string_signature(), &fd);
1066  if (found) {
1067    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1068    if (name_oop == NULL)
1069      return NULL;
1070    const char* name = java_lang_String::as_utf8_string(name_oop,
1071                                                        java_runtime_name,
1072                                                        sizeof(java_runtime_name));
1073    return name;
1074  } else {
1075    return NULL;
1076  }
1077}
1078
1079// extract the JRE version from sun.misc.Version.java_runtime_version
1080static const char* get_java_runtime_version(TRAPS) {
1081  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1082                                      Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1083  fieldDescriptor fd;
1084  bool found = k != NULL &&
1085               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1086                                                        vmSymbols::string_signature(), &fd);
1087  if (found) {
1088    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1089    if (name_oop == NULL)
1090      return NULL;
1091    const char* name = java_lang_String::as_utf8_string(name_oop,
1092                                                        java_runtime_version,
1093                                                        sizeof(java_runtime_version));
1094    return name;
1095  } else {
1096    return NULL;
1097  }
1098}
1099
1100// General purpose hook into Java code, run once when the VM is initialized.
1101// The Java library method itself may be changed independently from the VM.
1102static void call_postVMInitHook(TRAPS) {
1103  Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1104  instanceKlassHandle klass (THREAD, k);
1105  if (klass.not_null()) {
1106    JavaValue result(T_VOID);
1107    JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1108                                           vmSymbols::void_method_signature(),
1109                                           CHECK);
1110  }
1111}
1112
1113static void reset_vm_info_property(TRAPS) {
1114  // the vm info string
1115  ResourceMark rm(THREAD);
1116  const char *vm_info = VM_Version::vm_info_string();
1117
1118  // java.lang.System class
1119  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1120  instanceKlassHandle klass (THREAD, k);
1121
1122  // setProperty arguments
1123  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1124  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1125
1126  // return value
1127  JavaValue r(T_OBJECT);
1128
1129  // public static String setProperty(String key, String value);
1130  JavaCalls::call_static(&r,
1131                         klass,
1132                         vmSymbols::setProperty_name(),
1133                         vmSymbols::string_string_string_signature(),
1134                         key_str,
1135                         value_str,
1136                         CHECK);
1137}
1138
1139
1140void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1141  assert(thread_group.not_null(), "thread group should be specified");
1142  assert(threadObj() == NULL, "should only create Java thread object once");
1143
1144  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1145  instanceKlassHandle klass (THREAD, k);
1146  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1147
1148  java_lang_Thread::set_thread(thread_oop(), this);
1149  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1150  set_threadObj(thread_oop());
1151
1152  JavaValue result(T_VOID);
1153  if (thread_name != NULL) {
1154    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1155    // Thread gets assigned specified name and null target
1156    JavaCalls::call_special(&result,
1157                            thread_oop,
1158                            klass,
1159                            vmSymbols::object_initializer_name(),
1160                            vmSymbols::threadgroup_string_void_signature(),
1161                            thread_group, // Argument 1
1162                            name,         // Argument 2
1163                            THREAD);
1164  } else {
1165    // Thread gets assigned name "Thread-nnn" and null target
1166    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1167    JavaCalls::call_special(&result,
1168                            thread_oop,
1169                            klass,
1170                            vmSymbols::object_initializer_name(),
1171                            vmSymbols::threadgroup_runnable_void_signature(),
1172                            thread_group, // Argument 1
1173                            Handle(),     // Argument 2
1174                            THREAD);
1175  }
1176
1177
1178  if (daemon) {
1179      java_lang_Thread::set_daemon(thread_oop());
1180  }
1181
1182  if (HAS_PENDING_EXCEPTION) {
1183    return;
1184  }
1185
1186  KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1187  Handle threadObj(this, this->threadObj());
1188
1189  JavaCalls::call_special(&result,
1190                         thread_group,
1191                         group,
1192                         vmSymbols::add_method_name(),
1193                         vmSymbols::thread_void_signature(),
1194                         threadObj,          // Arg 1
1195                         THREAD);
1196
1197
1198}
1199
1200// NamedThread --  non-JavaThread subclasses with multiple
1201// uniquely named instances should derive from this.
1202NamedThread::NamedThread() : Thread() {
1203  _name = NULL;
1204  _processed_thread = NULL;
1205}
1206
1207NamedThread::~NamedThread() {
1208  if (_name != NULL) {
1209    FREE_C_HEAP_ARRAY(char, _name, mtThread);
1210    _name = NULL;
1211  }
1212}
1213
1214void NamedThread::set_name(const char* format, ...) {
1215  guarantee(_name == NULL, "Only get to set name once.");
1216  _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1217  guarantee(_name != NULL, "alloc failure");
1218  va_list ap;
1219  va_start(ap, format);
1220  jio_vsnprintf(_name, max_name_len, format, ap);
1221  va_end(ap);
1222}
1223
1224// ======= WatcherThread ========
1225
1226// The watcher thread exists to simulate timer interrupts.  It should
1227// be replaced by an abstraction over whatever native support for
1228// timer interrupts exists on the platform.
1229
1230WatcherThread* WatcherThread::_watcher_thread   = NULL;
1231bool WatcherThread::_startable = false;
1232volatile bool  WatcherThread::_should_terminate = false;
1233
1234WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1235  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1236  if (os::create_thread(this, os::watcher_thread)) {
1237    _watcher_thread = this;
1238
1239    // Set the watcher thread to the highest OS priority which should not be
1240    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1241    // is created. The only normal thread using this priority is the reference
1242    // handler thread, which runs for very short intervals only.
1243    // If the VMThread's priority is not lower than the WatcherThread profiling
1244    // will be inaccurate.
1245    os::set_priority(this, MaxPriority);
1246    if (!DisableStartThread) {
1247      os::start_thread(this);
1248    }
1249  }
1250}
1251
1252int WatcherThread::sleep() const {
1253  MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1254
1255  // remaining will be zero if there are no tasks,
1256  // causing the WatcherThread to sleep until a task is
1257  // enrolled
1258  int remaining = PeriodicTask::time_to_wait();
1259  int time_slept = 0;
1260
1261  // we expect this to timeout - we only ever get unparked when
1262  // we should terminate or when a new task has been enrolled
1263  OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1264
1265  jlong time_before_loop = os::javaTimeNanos();
1266
1267  for (;;) {
1268    bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1269    jlong now = os::javaTimeNanos();
1270
1271    if (remaining == 0) {
1272        // if we didn't have any tasks we could have waited for a long time
1273        // consider the time_slept zero and reset time_before_loop
1274        time_slept = 0;
1275        time_before_loop = now;
1276    } else {
1277        // need to recalculate since we might have new tasks in _tasks
1278        time_slept = (int) ((now - time_before_loop) / 1000000);
1279    }
1280
1281    // Change to task list or spurious wakeup of some kind
1282    if (timedout || _should_terminate) {
1283        break;
1284    }
1285
1286    remaining = PeriodicTask::time_to_wait();
1287    if (remaining == 0) {
1288        // Last task was just disenrolled so loop around and wait until
1289        // another task gets enrolled
1290        continue;
1291    }
1292
1293    remaining -= time_slept;
1294    if (remaining <= 0)
1295      break;
1296  }
1297
1298  return time_slept;
1299}
1300
1301void WatcherThread::run() {
1302  assert(this == watcher_thread(), "just checking");
1303
1304  this->record_stack_base_and_size();
1305  this->initialize_thread_local_storage();
1306  this->set_active_handles(JNIHandleBlock::allocate_block());
1307  while(!_should_terminate) {
1308    assert(watcher_thread() == Thread::current(),  "thread consistency check");
1309    assert(watcher_thread() == this,  "thread consistency check");
1310
1311    // Calculate how long it'll be until the next PeriodicTask work
1312    // should be done, and sleep that amount of time.
1313    int time_waited = sleep();
1314
1315    if (is_error_reported()) {
1316      // A fatal error has happened, the error handler(VMError::report_and_die)
1317      // should abort JVM after creating an error log file. However in some
1318      // rare cases, the error handler itself might deadlock. Here we try to
1319      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1320      //
1321      // This code is in WatcherThread because WatcherThread wakes up
1322      // periodically so the fatal error handler doesn't need to do anything;
1323      // also because the WatcherThread is less likely to crash than other
1324      // threads.
1325
1326      for (;;) {
1327        if (!ShowMessageBoxOnError
1328         && (OnError == NULL || OnError[0] == '\0')
1329         && Arguments::abort_hook() == NULL) {
1330             os::sleep(this, 2 * 60 * 1000, false);
1331             fdStream err(defaultStream::output_fd());
1332             err.print_raw_cr("# [ timer expired, abort... ]");
1333             // skip atexit/vm_exit/vm_abort hooks
1334             os::die();
1335        }
1336
1337        // Wake up 5 seconds later, the fatal handler may reset OnError or
1338        // ShowMessageBoxOnError when it is ready to abort.
1339        os::sleep(this, 5 * 1000, false);
1340      }
1341    }
1342
1343    PeriodicTask::real_time_tick(time_waited);
1344  }
1345
1346  // Signal that it is terminated
1347  {
1348    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1349    _watcher_thread = NULL;
1350    Terminator_lock->notify();
1351  }
1352
1353  // Thread destructor usually does this..
1354  ThreadLocalStorage::set_thread(NULL);
1355}
1356
1357void WatcherThread::start() {
1358  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1359
1360  if (watcher_thread() == NULL && _startable) {
1361    _should_terminate = false;
1362    // Create the single instance of WatcherThread
1363    new WatcherThread();
1364  }
1365}
1366
1367void WatcherThread::make_startable() {
1368  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1369  _startable = true;
1370}
1371
1372void WatcherThread::stop() {
1373  {
1374    MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1375    _should_terminate = true;
1376    OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1377
1378    WatcherThread* watcher = watcher_thread();
1379    if (watcher != NULL)
1380      watcher->unpark();
1381  }
1382
1383  // it is ok to take late safepoints here, if needed
1384  MutexLocker mu(Terminator_lock);
1385
1386  while(watcher_thread() != NULL) {
1387    // This wait should make safepoint checks, wait without a timeout,
1388    // and wait as a suspend-equivalent condition.
1389    //
1390    // Note: If the FlatProfiler is running, then this thread is waiting
1391    // for the WatcherThread to terminate and the WatcherThread, via the
1392    // FlatProfiler task, is waiting for the external suspend request on
1393    // this thread to complete. wait_for_ext_suspend_completion() will
1394    // eventually timeout, but that takes time. Making this wait a
1395    // suspend-equivalent condition solves that timeout problem.
1396    //
1397    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1398                          Mutex::_as_suspend_equivalent_flag);
1399  }
1400}
1401
1402void WatcherThread::unpark() {
1403  MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1404  PeriodicTask_lock->notify();
1405}
1406
1407void WatcherThread::print_on(outputStream* st) const {
1408  st->print("\"%s\" ", name());
1409  Thread::print_on(st);
1410  st->cr();
1411}
1412
1413// ======= JavaThread ========
1414
1415// A JavaThread is a normal Java thread
1416
1417void JavaThread::initialize() {
1418  // Initialize fields
1419
1420  // Set the claimed par_id to -1 (ie not claiming any par_ids)
1421  set_claimed_par_id(-1);
1422
1423  set_saved_exception_pc(NULL);
1424  set_threadObj(NULL);
1425  _anchor.clear();
1426  set_entry_point(NULL);
1427  set_jni_functions(jni_functions());
1428  set_callee_target(NULL);
1429  set_vm_result(NULL);
1430  set_vm_result_2(NULL);
1431  set_vframe_array_head(NULL);
1432  set_vframe_array_last(NULL);
1433  set_deferred_locals(NULL);
1434  set_deopt_mark(NULL);
1435  set_deopt_nmethod(NULL);
1436  clear_must_deopt_id();
1437  set_monitor_chunks(NULL);
1438  set_next(NULL);
1439  set_thread_state(_thread_new);
1440#if INCLUDE_NMT
1441  set_recorder(NULL);
1442#endif
1443  _terminated = _not_terminated;
1444  _privileged_stack_top = NULL;
1445  _array_for_gc = NULL;
1446  _suspend_equivalent = false;
1447  _in_deopt_handler = 0;
1448  _doing_unsafe_access = false;
1449  _stack_guard_state = stack_guard_unused;
1450  (void)const_cast<oop&>(_exception_oop = NULL);
1451  _exception_pc  = 0;
1452  _exception_handler_pc = 0;
1453  _is_method_handle_return = 0;
1454  _jvmti_thread_state= NULL;
1455  _should_post_on_exceptions_flag = JNI_FALSE;
1456  _jvmti_get_loaded_classes_closure = NULL;
1457  _interp_only_mode    = 0;
1458  _special_runtime_exit_condition = _no_async_condition;
1459  _pending_async_exception = NULL;
1460  _thread_stat = NULL;
1461  _thread_stat = new ThreadStatistics();
1462  _blocked_on_compilation = false;
1463  _jni_active_critical = 0;
1464  _do_not_unlock_if_synchronized = false;
1465  _cached_monitor_info = NULL;
1466  _parker = Parker::Allocate(this) ;
1467
1468#ifndef PRODUCT
1469  _jmp_ring_index = 0;
1470  for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1471    record_jump(NULL, NULL, NULL, 0);
1472  }
1473#endif /* PRODUCT */
1474
1475  set_thread_profiler(NULL);
1476  if (FlatProfiler::is_active()) {
1477    // This is where we would decide to either give each thread it's own profiler
1478    // or use one global one from FlatProfiler,
1479    // or up to some count of the number of profiled threads, etc.
1480    ThreadProfiler* pp = new ThreadProfiler();
1481    pp->engage();
1482    set_thread_profiler(pp);
1483  }
1484
1485  // Setup safepoint state info for this thread
1486  ThreadSafepointState::create(this);
1487
1488  debug_only(_java_call_counter = 0);
1489
1490  // JVMTI PopFrame support
1491  _popframe_condition = popframe_inactive;
1492  _popframe_preserved_args = NULL;
1493  _popframe_preserved_args_size = 0;
1494
1495  pd_initialize();
1496}
1497
1498#if INCLUDE_ALL_GCS
1499SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1500DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1501#endif // INCLUDE_ALL_GCS
1502
1503JavaThread::JavaThread(bool is_attaching_via_jni) :
1504  Thread()
1505#if INCLUDE_ALL_GCS
1506  , _satb_mark_queue(&_satb_mark_queue_set),
1507  _dirty_card_queue(&_dirty_card_queue_set)
1508#endif // INCLUDE_ALL_GCS
1509{
1510  initialize();
1511  if (is_attaching_via_jni) {
1512    _jni_attach_state = _attaching_via_jni;
1513  } else {
1514    _jni_attach_state = _not_attaching_via_jni;
1515  }
1516  assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1517  _safepoint_visible = false;
1518}
1519
1520bool JavaThread::reguard_stack(address cur_sp) {
1521  if (_stack_guard_state != stack_guard_yellow_disabled) {
1522    return true; // Stack already guarded or guard pages not needed.
1523  }
1524
1525  if (register_stack_overflow()) {
1526    // For those architectures which have separate register and
1527    // memory stacks, we must check the register stack to see if
1528    // it has overflowed.
1529    return false;
1530  }
1531
1532  // Java code never executes within the yellow zone: the latter is only
1533  // there to provoke an exception during stack banging.  If java code
1534  // is executing there, either StackShadowPages should be larger, or
1535  // some exception code in c1, c2 or the interpreter isn't unwinding
1536  // when it should.
1537  guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1538
1539  enable_stack_yellow_zone();
1540  return true;
1541}
1542
1543bool JavaThread::reguard_stack(void) {
1544  return reguard_stack(os::current_stack_pointer());
1545}
1546
1547
1548void JavaThread::block_if_vm_exited() {
1549  if (_terminated == _vm_exited) {
1550    // _vm_exited is set at safepoint, and Threads_lock is never released
1551    // we will block here forever
1552    Threads_lock->lock_without_safepoint_check();
1553    ShouldNotReachHere();
1554  }
1555}
1556
1557
1558// Remove this ifdef when C1 is ported to the compiler interface.
1559static void compiler_thread_entry(JavaThread* thread, TRAPS);
1560
1561JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1562  Thread()
1563#if INCLUDE_ALL_GCS
1564  , _satb_mark_queue(&_satb_mark_queue_set),
1565  _dirty_card_queue(&_dirty_card_queue_set)
1566#endif // INCLUDE_ALL_GCS
1567{
1568  if (TraceThreadEvents) {
1569    tty->print_cr("creating thread %p", this);
1570  }
1571  initialize();
1572  _jni_attach_state = _not_attaching_via_jni;
1573  set_entry_point(entry_point);
1574  // Create the native thread itself.
1575  // %note runtime_23
1576  os::ThreadType thr_type = os::java_thread;
1577  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1578                                                     os::java_thread;
1579  os::create_thread(this, thr_type, stack_sz);
1580  _safepoint_visible = false;
1581  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1582  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1583  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1584  // the exception consists of creating the exception object & initializing it, initialization
1585  // will leave the VM via a JavaCall and then all locks must be unlocked).
1586  //
1587  // The thread is still suspended when we reach here. Thread must be explicit started
1588  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1589  // by calling Threads:add. The reason why this is not done here, is because the thread
1590  // object must be fully initialized (take a look at JVM_Start)
1591}
1592
1593JavaThread::~JavaThread() {
1594  if (TraceThreadEvents) {
1595      tty->print_cr("terminate thread %p", this);
1596  }
1597
1598  // By now, this thread should already be invisible to safepoint,
1599  // and its per-thread recorder also collected.
1600  assert(!is_safepoint_visible(), "wrong state");
1601#if INCLUDE_NMT
1602  assert(get_recorder() == NULL, "Already collected");
1603#endif // INCLUDE_NMT
1604
1605  // JSR166 -- return the parker to the free list
1606  Parker::Release(_parker);
1607  _parker = NULL ;
1608
1609  // Free any remaining  previous UnrollBlock
1610  vframeArray* old_array = vframe_array_last();
1611
1612  if (old_array != NULL) {
1613    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1614    old_array->set_unroll_block(NULL);
1615    delete old_info;
1616    delete old_array;
1617  }
1618
1619  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1620  if (deferred != NULL) {
1621    // This can only happen if thread is destroyed before deoptimization occurs.
1622    assert(deferred->length() != 0, "empty array!");
1623    do {
1624      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1625      deferred->remove_at(0);
1626      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1627      delete dlv;
1628    } while (deferred->length() != 0);
1629    delete deferred;
1630  }
1631
1632  // All Java related clean up happens in exit
1633  ThreadSafepointState::destroy(this);
1634  if (_thread_profiler != NULL) delete _thread_profiler;
1635  if (_thread_stat != NULL) delete _thread_stat;
1636}
1637
1638
1639// The first routine called by a new Java thread
1640void JavaThread::run() {
1641  // initialize thread-local alloc buffer related fields
1642  this->initialize_tlab();
1643
1644  // used to test validity of stack trace backs
1645  this->record_base_of_stack_pointer();
1646
1647  // Record real stack base and size.
1648  this->record_stack_base_and_size();
1649
1650  // Initialize thread local storage; set before calling MutexLocker
1651  this->initialize_thread_local_storage();
1652
1653  this->create_stack_guard_pages();
1654
1655  this->cache_global_variables();
1656
1657  // Thread is now sufficient initialized to be handled by the safepoint code as being
1658  // in the VM. Change thread state from _thread_new to _thread_in_vm
1659  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1660
1661  assert(JavaThread::current() == this, "sanity check");
1662  assert(!Thread::current()->owns_locks(), "sanity check");
1663
1664  DTRACE_THREAD_PROBE(start, this);
1665
1666  // This operation might block. We call that after all safepoint checks for a new thread has
1667  // been completed.
1668  this->set_active_handles(JNIHandleBlock::allocate_block());
1669
1670  if (JvmtiExport::should_post_thread_life()) {
1671    JvmtiExport::post_thread_start(this);
1672  }
1673
1674  EventThreadStart event;
1675  if (event.should_commit()) {
1676     event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1677     event.commit();
1678  }
1679
1680  // We call another function to do the rest so we are sure that the stack addresses used
1681  // from there will be lower than the stack base just computed
1682  thread_main_inner();
1683
1684  // Note, thread is no longer valid at this point!
1685}
1686
1687
1688void JavaThread::thread_main_inner() {
1689  assert(JavaThread::current() == this, "sanity check");
1690  assert(this->threadObj() != NULL, "just checking");
1691
1692  // Execute thread entry point unless this thread has a pending exception
1693  // or has been stopped before starting.
1694  // Note: Due to JVM_StopThread we can have pending exceptions already!
1695  if (!this->has_pending_exception() &&
1696      !java_lang_Thread::is_stillborn(this->threadObj())) {
1697    {
1698      ResourceMark rm(this);
1699      this->set_native_thread_name(this->get_thread_name());
1700    }
1701    HandleMark hm(this);
1702    this->entry_point()(this, this);
1703  }
1704
1705  DTRACE_THREAD_PROBE(stop, this);
1706
1707  this->exit(false);
1708  delete this;
1709}
1710
1711
1712static void ensure_join(JavaThread* thread) {
1713  // We do not need to grap the Threads_lock, since we are operating on ourself.
1714  Handle threadObj(thread, thread->threadObj());
1715  assert(threadObj.not_null(), "java thread object must exist");
1716  ObjectLocker lock(threadObj, thread);
1717  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1718  thread->clear_pending_exception();
1719  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1720  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1721  // Clear the native thread instance - this makes isAlive return false and allows the join()
1722  // to complete once we've done the notify_all below
1723  java_lang_Thread::set_thread(threadObj(), NULL);
1724  lock.notify_all(thread);
1725  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1726  thread->clear_pending_exception();
1727}
1728
1729
1730// For any new cleanup additions, please check to see if they need to be applied to
1731// cleanup_failed_attach_current_thread as well.
1732void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1733  assert(this == JavaThread::current(),  "thread consistency check");
1734
1735  HandleMark hm(this);
1736  Handle uncaught_exception(this, this->pending_exception());
1737  this->clear_pending_exception();
1738  Handle threadObj(this, this->threadObj());
1739  assert(threadObj.not_null(), "Java thread object should be created");
1740
1741  if (get_thread_profiler() != NULL) {
1742    get_thread_profiler()->disengage();
1743    ResourceMark rm;
1744    get_thread_profiler()->print(get_thread_name());
1745  }
1746
1747
1748  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1749  {
1750    EXCEPTION_MARK;
1751
1752    CLEAR_PENDING_EXCEPTION;
1753  }
1754  // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1755  // has to be fixed by a runtime query method
1756  if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1757    // JSR-166: change call from from ThreadGroup.uncaughtException to
1758    // java.lang.Thread.dispatchUncaughtException
1759    if (uncaught_exception.not_null()) {
1760      Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1761      {
1762        EXCEPTION_MARK;
1763        // Check if the method Thread.dispatchUncaughtException() exists. If so
1764        // call it.  Otherwise we have an older library without the JSR-166 changes,
1765        // so call ThreadGroup.uncaughtException()
1766        KlassHandle recvrKlass(THREAD, threadObj->klass());
1767        CallInfo callinfo;
1768        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1769        LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1770                                           vmSymbols::dispatchUncaughtException_name(),
1771                                           vmSymbols::throwable_void_signature(),
1772                                           KlassHandle(), false, false, THREAD);
1773        CLEAR_PENDING_EXCEPTION;
1774        methodHandle method = callinfo.selected_method();
1775        if (method.not_null()) {
1776          JavaValue result(T_VOID);
1777          JavaCalls::call_virtual(&result,
1778                                  threadObj, thread_klass,
1779                                  vmSymbols::dispatchUncaughtException_name(),
1780                                  vmSymbols::throwable_void_signature(),
1781                                  uncaught_exception,
1782                                  THREAD);
1783        } else {
1784          KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1785          JavaValue result(T_VOID);
1786          JavaCalls::call_virtual(&result,
1787                                  group, thread_group,
1788                                  vmSymbols::uncaughtException_name(),
1789                                  vmSymbols::thread_throwable_void_signature(),
1790                                  threadObj,           // Arg 1
1791                                  uncaught_exception,  // Arg 2
1792                                  THREAD);
1793        }
1794        if (HAS_PENDING_EXCEPTION) {
1795          ResourceMark rm(this);
1796          jio_fprintf(defaultStream::error_stream(),
1797                "\nException: %s thrown from the UncaughtExceptionHandler"
1798                " in thread \"%s\"\n",
1799                pending_exception()->klass()->external_name(),
1800                get_thread_name());
1801          CLEAR_PENDING_EXCEPTION;
1802        }
1803      }
1804    }
1805
1806    // Called before the java thread exit since we want to read info
1807    // from java_lang_Thread object
1808    EventThreadEnd event;
1809    if (event.should_commit()) {
1810        event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1811        event.commit();
1812    }
1813
1814    // Call after last event on thread
1815    EVENT_THREAD_EXIT(this);
1816
1817    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1818    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1819    // is deprecated anyhow.
1820    if (!is_Compiler_thread()) {
1821      int count = 3;
1822      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1823        EXCEPTION_MARK;
1824        JavaValue result(T_VOID);
1825        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1826        JavaCalls::call_virtual(&result,
1827                              threadObj, thread_klass,
1828                              vmSymbols::exit_method_name(),
1829                              vmSymbols::void_method_signature(),
1830                              THREAD);
1831        CLEAR_PENDING_EXCEPTION;
1832      }
1833    }
1834    // notify JVMTI
1835    if (JvmtiExport::should_post_thread_life()) {
1836      JvmtiExport::post_thread_end(this);
1837    }
1838
1839    // We have notified the agents that we are exiting, before we go on,
1840    // we must check for a pending external suspend request and honor it
1841    // in order to not surprise the thread that made the suspend request.
1842    while (true) {
1843      {
1844        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1845        if (!is_external_suspend()) {
1846          set_terminated(_thread_exiting);
1847          ThreadService::current_thread_exiting(this);
1848          break;
1849        }
1850        // Implied else:
1851        // Things get a little tricky here. We have a pending external
1852        // suspend request, but we are holding the SR_lock so we
1853        // can't just self-suspend. So we temporarily drop the lock
1854        // and then self-suspend.
1855      }
1856
1857      ThreadBlockInVM tbivm(this);
1858      java_suspend_self();
1859
1860      // We're done with this suspend request, but we have to loop around
1861      // and check again. Eventually we will get SR_lock without a pending
1862      // external suspend request and will be able to mark ourselves as
1863      // exiting.
1864    }
1865    // no more external suspends are allowed at this point
1866  } else {
1867    // before_exit() has already posted JVMTI THREAD_END events
1868  }
1869
1870  // Notify waiters on thread object. This has to be done after exit() is called
1871  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1872  // group should have the destroyed bit set before waiters are notified).
1873  ensure_join(this);
1874  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1875
1876  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1877  // held by this thread must be released.  A detach operation must only
1878  // get here if there are no Java frames on the stack.  Therefore, any
1879  // owned monitors at this point MUST be JNI-acquired monitors which are
1880  // pre-inflated and in the monitor cache.
1881  //
1882  // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1883  if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1884    assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1885    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1886    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1887  }
1888
1889  // These things needs to be done while we are still a Java Thread. Make sure that thread
1890  // is in a consistent state, in case GC happens
1891  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1892
1893  if (active_handles() != NULL) {
1894    JNIHandleBlock* block = active_handles();
1895    set_active_handles(NULL);
1896    JNIHandleBlock::release_block(block);
1897  }
1898
1899  if (free_handle_block() != NULL) {
1900    JNIHandleBlock* block = free_handle_block();
1901    set_free_handle_block(NULL);
1902    JNIHandleBlock::release_block(block);
1903  }
1904
1905  // These have to be removed while this is still a valid thread.
1906  remove_stack_guard_pages();
1907
1908  if (UseTLAB) {
1909    tlab().make_parsable(true);  // retire TLAB
1910  }
1911
1912  if (JvmtiEnv::environments_might_exist()) {
1913    JvmtiExport::cleanup_thread(this);
1914  }
1915
1916  // We must flush any deferred card marks before removing a thread from
1917  // the list of active threads.
1918  Universe::heap()->flush_deferred_store_barrier(this);
1919  assert(deferred_card_mark().is_empty(), "Should have been flushed");
1920
1921#if INCLUDE_ALL_GCS
1922  // We must flush the G1-related buffers before removing a thread
1923  // from the list of active threads. We must do this after any deferred
1924  // card marks have been flushed (above) so that any entries that are
1925  // added to the thread's dirty card queue as a result are not lost.
1926  if (UseG1GC) {
1927    flush_barrier_queues();
1928  }
1929#endif // INCLUDE_ALL_GCS
1930
1931  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1932  Threads::remove(this);
1933}
1934
1935#if INCLUDE_ALL_GCS
1936// Flush G1-related queues.
1937void JavaThread::flush_barrier_queues() {
1938  satb_mark_queue().flush();
1939  dirty_card_queue().flush();
1940}
1941
1942void JavaThread::initialize_queues() {
1943  assert(!SafepointSynchronize::is_at_safepoint(),
1944         "we should not be at a safepoint");
1945
1946  ObjPtrQueue& satb_queue = satb_mark_queue();
1947  SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1948  // The SATB queue should have been constructed with its active
1949  // field set to false.
1950  assert(!satb_queue.is_active(), "SATB queue should not be active");
1951  assert(satb_queue.is_empty(), "SATB queue should be empty");
1952  // If we are creating the thread during a marking cycle, we should
1953  // set the active field of the SATB queue to true.
1954  if (satb_queue_set.is_active()) {
1955    satb_queue.set_active(true);
1956  }
1957
1958  DirtyCardQueue& dirty_queue = dirty_card_queue();
1959  // The dirty card queue should have been constructed with its
1960  // active field set to true.
1961  assert(dirty_queue.is_active(), "dirty card queue should be active");
1962}
1963#endif // INCLUDE_ALL_GCS
1964
1965void JavaThread::cleanup_failed_attach_current_thread() {
1966  if (get_thread_profiler() != NULL) {
1967    get_thread_profiler()->disengage();
1968    ResourceMark rm;
1969    get_thread_profiler()->print(get_thread_name());
1970  }
1971
1972  if (active_handles() != NULL) {
1973    JNIHandleBlock* block = active_handles();
1974    set_active_handles(NULL);
1975    JNIHandleBlock::release_block(block);
1976  }
1977
1978  if (free_handle_block() != NULL) {
1979    JNIHandleBlock* block = free_handle_block();
1980    set_free_handle_block(NULL);
1981    JNIHandleBlock::release_block(block);
1982  }
1983
1984  // These have to be removed while this is still a valid thread.
1985  remove_stack_guard_pages();
1986
1987  if (UseTLAB) {
1988    tlab().make_parsable(true);  // retire TLAB, if any
1989  }
1990
1991#if INCLUDE_ALL_GCS
1992  if (UseG1GC) {
1993    flush_barrier_queues();
1994  }
1995#endif // INCLUDE_ALL_GCS
1996
1997  Threads::remove(this);
1998  delete this;
1999}
2000
2001
2002
2003
2004JavaThread* JavaThread::active() {
2005  Thread* thread = ThreadLocalStorage::thread();
2006  assert(thread != NULL, "just checking");
2007  if (thread->is_Java_thread()) {
2008    return (JavaThread*) thread;
2009  } else {
2010    assert(thread->is_VM_thread(), "this must be a vm thread");
2011    VM_Operation* op = ((VMThread*) thread)->vm_operation();
2012    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2013    assert(ret->is_Java_thread(), "must be a Java thread");
2014    return ret;
2015  }
2016}
2017
2018bool JavaThread::is_lock_owned(address adr) const {
2019  if (Thread::is_lock_owned(adr)) return true;
2020
2021  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2022    if (chunk->contains(adr)) return true;
2023  }
2024
2025  return false;
2026}
2027
2028
2029void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2030  chunk->set_next(monitor_chunks());
2031  set_monitor_chunks(chunk);
2032}
2033
2034void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2035  guarantee(monitor_chunks() != NULL, "must be non empty");
2036  if (monitor_chunks() == chunk) {
2037    set_monitor_chunks(chunk->next());
2038  } else {
2039    MonitorChunk* prev = monitor_chunks();
2040    while (prev->next() != chunk) prev = prev->next();
2041    prev->set_next(chunk->next());
2042  }
2043}
2044
2045// JVM support.
2046
2047// Note: this function shouldn't block if it's called in
2048// _thread_in_native_trans state (such as from
2049// check_special_condition_for_native_trans()).
2050void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2051
2052  if (has_last_Java_frame() && has_async_condition()) {
2053    // If we are at a polling page safepoint (not a poll return)
2054    // then we must defer async exception because live registers
2055    // will be clobbered by the exception path. Poll return is
2056    // ok because the call we a returning from already collides
2057    // with exception handling registers and so there is no issue.
2058    // (The exception handling path kills call result registers but
2059    //  this is ok since the exception kills the result anyway).
2060
2061    if (is_at_poll_safepoint()) {
2062      // if the code we are returning to has deoptimized we must defer
2063      // the exception otherwise live registers get clobbered on the
2064      // exception path before deoptimization is able to retrieve them.
2065      //
2066      RegisterMap map(this, false);
2067      frame caller_fr = last_frame().sender(&map);
2068      assert(caller_fr.is_compiled_frame(), "what?");
2069      if (caller_fr.is_deoptimized_frame()) {
2070        if (TraceExceptions) {
2071          ResourceMark rm;
2072          tty->print_cr("deferred async exception at compiled safepoint");
2073        }
2074        return;
2075      }
2076    }
2077  }
2078
2079  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2080  if (condition == _no_async_condition) {
2081    // Conditions have changed since has_special_runtime_exit_condition()
2082    // was called:
2083    // - if we were here only because of an external suspend request,
2084    //   then that was taken care of above (or cancelled) so we are done
2085    // - if we were here because of another async request, then it has
2086    //   been cleared between the has_special_runtime_exit_condition()
2087    //   and now so again we are done
2088    return;
2089  }
2090
2091  // Check for pending async. exception
2092  if (_pending_async_exception != NULL) {
2093    // Only overwrite an already pending exception, if it is not a threadDeath.
2094    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2095
2096      // We cannot call Exceptions::_throw(...) here because we cannot block
2097      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2098
2099      if (TraceExceptions) {
2100        ResourceMark rm;
2101        tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2102        if (has_last_Java_frame() ) {
2103          frame f = last_frame();
2104          tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2105        }
2106        tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2107      }
2108      _pending_async_exception = NULL;
2109      clear_has_async_exception();
2110    }
2111  }
2112
2113  if (check_unsafe_error &&
2114      condition == _async_unsafe_access_error && !has_pending_exception()) {
2115    condition = _no_async_condition;  // done
2116    switch (thread_state()) {
2117    case _thread_in_vm:
2118      {
2119        JavaThread* THREAD = this;
2120        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2121      }
2122    case _thread_in_native:
2123      {
2124        ThreadInVMfromNative tiv(this);
2125        JavaThread* THREAD = this;
2126        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2127      }
2128    case _thread_in_Java:
2129      {
2130        ThreadInVMfromJava tiv(this);
2131        JavaThread* THREAD = this;
2132        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2133      }
2134    default:
2135      ShouldNotReachHere();
2136    }
2137  }
2138
2139  assert(condition == _no_async_condition || has_pending_exception() ||
2140         (!check_unsafe_error && condition == _async_unsafe_access_error),
2141         "must have handled the async condition, if no exception");
2142}
2143
2144void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2145  //
2146  // Check for pending external suspend. Internal suspend requests do
2147  // not use handle_special_runtime_exit_condition().
2148  // If JNIEnv proxies are allowed, don't self-suspend if the target
2149  // thread is not the current thread. In older versions of jdbx, jdbx
2150  // threads could call into the VM with another thread's JNIEnv so we
2151  // can be here operating on behalf of a suspended thread (4432884).
2152  bool do_self_suspend = is_external_suspend_with_lock();
2153  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2154    //
2155    // Because thread is external suspended the safepoint code will count
2156    // thread as at a safepoint. This can be odd because we can be here
2157    // as _thread_in_Java which would normally transition to _thread_blocked
2158    // at a safepoint. We would like to mark the thread as _thread_blocked
2159    // before calling java_suspend_self like all other callers of it but
2160    // we must then observe proper safepoint protocol. (We can't leave
2161    // _thread_blocked with a safepoint in progress). However we can be
2162    // here as _thread_in_native_trans so we can't use a normal transition
2163    // constructor/destructor pair because they assert on that type of
2164    // transition. We could do something like:
2165    //
2166    // JavaThreadState state = thread_state();
2167    // set_thread_state(_thread_in_vm);
2168    // {
2169    //   ThreadBlockInVM tbivm(this);
2170    //   java_suspend_self()
2171    // }
2172    // set_thread_state(_thread_in_vm_trans);
2173    // if (safepoint) block;
2174    // set_thread_state(state);
2175    //
2176    // but that is pretty messy. Instead we just go with the way the
2177    // code has worked before and note that this is the only path to
2178    // java_suspend_self that doesn't put the thread in _thread_blocked
2179    // mode.
2180
2181    frame_anchor()->make_walkable(this);
2182    java_suspend_self();
2183
2184    // We might be here for reasons in addition to the self-suspend request
2185    // so check for other async requests.
2186  }
2187
2188  if (check_asyncs) {
2189    check_and_handle_async_exceptions();
2190  }
2191}
2192
2193void JavaThread::send_thread_stop(oop java_throwable)  {
2194  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2195  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2196  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2197
2198  // Do not throw asynchronous exceptions against the compiler thread
2199  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2200  if (is_Compiler_thread()) return;
2201
2202  {
2203    // Actually throw the Throwable against the target Thread - however
2204    // only if there is no thread death exception installed already.
2205    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2206      // If the topmost frame is a runtime stub, then we are calling into
2207      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2208      // must deoptimize the caller before continuing, as the compiled  exception handler table
2209      // may not be valid
2210      if (has_last_Java_frame()) {
2211        frame f = last_frame();
2212        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2213          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2214          RegisterMap reg_map(this, UseBiasedLocking);
2215          frame compiled_frame = f.sender(&reg_map);
2216          if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2217            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2218          }
2219        }
2220      }
2221
2222      // Set async. pending exception in thread.
2223      set_pending_async_exception(java_throwable);
2224
2225      if (TraceExceptions) {
2226       ResourceMark rm;
2227       tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2228      }
2229      // for AbortVMOnException flag
2230      NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2231    }
2232  }
2233
2234
2235  // Interrupt thread so it will wake up from a potential wait()
2236  Thread::interrupt(this);
2237}
2238
2239// External suspension mechanism.
2240//
2241// Tell the VM to suspend a thread when ever it knows that it does not hold on
2242// to any VM_locks and it is at a transition
2243// Self-suspension will happen on the transition out of the vm.
2244// Catch "this" coming in from JNIEnv pointers when the thread has been freed
2245//
2246// Guarantees on return:
2247//   + Target thread will not execute any new bytecode (that's why we need to
2248//     force a safepoint)
2249//   + Target thread will not enter any new monitors
2250//
2251void JavaThread::java_suspend() {
2252  { MutexLocker mu(Threads_lock);
2253    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2254       return;
2255    }
2256  }
2257
2258  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2259    if (!is_external_suspend()) {
2260      // a racing resume has cancelled us; bail out now
2261      return;
2262    }
2263
2264    // suspend is done
2265    uint32_t debug_bits = 0;
2266    // Warning: is_ext_suspend_completed() may temporarily drop the
2267    // SR_lock to allow the thread to reach a stable thread state if
2268    // it is currently in a transient thread state.
2269    if (is_ext_suspend_completed(false /* !called_by_wait */,
2270                                 SuspendRetryDelay, &debug_bits) ) {
2271      return;
2272    }
2273  }
2274
2275  VM_ForceSafepoint vm_suspend;
2276  VMThread::execute(&vm_suspend);
2277}
2278
2279// Part II of external suspension.
2280// A JavaThread self suspends when it detects a pending external suspend
2281// request. This is usually on transitions. It is also done in places
2282// where continuing to the next transition would surprise the caller,
2283// e.g., monitor entry.
2284//
2285// Returns the number of times that the thread self-suspended.
2286//
2287// Note: DO NOT call java_suspend_self() when you just want to block current
2288//       thread. java_suspend_self() is the second stage of cooperative
2289//       suspension for external suspend requests and should only be used
2290//       to complete an external suspend request.
2291//
2292int JavaThread::java_suspend_self() {
2293  int ret = 0;
2294
2295  // we are in the process of exiting so don't suspend
2296  if (is_exiting()) {
2297     clear_external_suspend();
2298     return ret;
2299  }
2300
2301  assert(_anchor.walkable() ||
2302    (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2303    "must have walkable stack");
2304
2305  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2306
2307  assert(!this->is_ext_suspended(),
2308    "a thread trying to self-suspend should not already be suspended");
2309
2310  if (this->is_suspend_equivalent()) {
2311    // If we are self-suspending as a result of the lifting of a
2312    // suspend equivalent condition, then the suspend_equivalent
2313    // flag is not cleared until we set the ext_suspended flag so
2314    // that wait_for_ext_suspend_completion() returns consistent
2315    // results.
2316    this->clear_suspend_equivalent();
2317  }
2318
2319  // A racing resume may have cancelled us before we grabbed SR_lock
2320  // above. Or another external suspend request could be waiting for us
2321  // by the time we return from SR_lock()->wait(). The thread
2322  // that requested the suspension may already be trying to walk our
2323  // stack and if we return now, we can change the stack out from under
2324  // it. This would be a "bad thing (TM)" and cause the stack walker
2325  // to crash. We stay self-suspended until there are no more pending
2326  // external suspend requests.
2327  while (is_external_suspend()) {
2328    ret++;
2329    this->set_ext_suspended();
2330
2331    // _ext_suspended flag is cleared by java_resume()
2332    while (is_ext_suspended()) {
2333      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2334    }
2335  }
2336
2337  return ret;
2338}
2339
2340#ifdef ASSERT
2341// verify the JavaThread has not yet been published in the Threads::list, and
2342// hence doesn't need protection from concurrent access at this stage
2343void JavaThread::verify_not_published() {
2344  if (!Threads_lock->owned_by_self()) {
2345   MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2346   assert( !Threads::includes(this),
2347           "java thread shouldn't have been published yet!");
2348  }
2349  else {
2350   assert( !Threads::includes(this),
2351           "java thread shouldn't have been published yet!");
2352  }
2353}
2354#endif
2355
2356// Slow path when the native==>VM/Java barriers detect a safepoint is in
2357// progress or when _suspend_flags is non-zero.
2358// Current thread needs to self-suspend if there is a suspend request and/or
2359// block if a safepoint is in progress.
2360// Async exception ISN'T checked.
2361// Note only the ThreadInVMfromNative transition can call this function
2362// directly and when thread state is _thread_in_native_trans
2363void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2364  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2365
2366  JavaThread *curJT = JavaThread::current();
2367  bool do_self_suspend = thread->is_external_suspend();
2368
2369  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2370
2371  // If JNIEnv proxies are allowed, don't self-suspend if the target
2372  // thread is not the current thread. In older versions of jdbx, jdbx
2373  // threads could call into the VM with another thread's JNIEnv so we
2374  // can be here operating on behalf of a suspended thread (4432884).
2375  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2376    JavaThreadState state = thread->thread_state();
2377
2378    // We mark this thread_blocked state as a suspend-equivalent so
2379    // that a caller to is_ext_suspend_completed() won't be confused.
2380    // The suspend-equivalent state is cleared by java_suspend_self().
2381    thread->set_suspend_equivalent();
2382
2383    // If the safepoint code sees the _thread_in_native_trans state, it will
2384    // wait until the thread changes to other thread state. There is no
2385    // guarantee on how soon we can obtain the SR_lock and complete the
2386    // self-suspend request. It would be a bad idea to let safepoint wait for
2387    // too long. Temporarily change the state to _thread_blocked to
2388    // let the VM thread know that this thread is ready for GC. The problem
2389    // of changing thread state is that safepoint could happen just after
2390    // java_suspend_self() returns after being resumed, and VM thread will
2391    // see the _thread_blocked state. We must check for safepoint
2392    // after restoring the state and make sure we won't leave while a safepoint
2393    // is in progress.
2394    thread->set_thread_state(_thread_blocked);
2395    thread->java_suspend_self();
2396    thread->set_thread_state(state);
2397    // Make sure new state is seen by VM thread
2398    if (os::is_MP()) {
2399      if (UseMembar) {
2400        // Force a fence between the write above and read below
2401        OrderAccess::fence();
2402      } else {
2403        // Must use this rather than serialization page in particular on Windows
2404        InterfaceSupport::serialize_memory(thread);
2405      }
2406    }
2407  }
2408
2409  if (SafepointSynchronize::do_call_back()) {
2410    // If we are safepointing, then block the caller which may not be
2411    // the same as the target thread (see above).
2412    SafepointSynchronize::block(curJT);
2413  }
2414
2415  if (thread->is_deopt_suspend()) {
2416    thread->clear_deopt_suspend();
2417    RegisterMap map(thread, false);
2418    frame f = thread->last_frame();
2419    while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2420      f = f.sender(&map);
2421    }
2422    if (f.id() == thread->must_deopt_id()) {
2423      thread->clear_must_deopt_id();
2424      f.deoptimize(thread);
2425    } else {
2426      fatal("missed deoptimization!");
2427    }
2428  }
2429}
2430
2431// Slow path when the native==>VM/Java barriers detect a safepoint is in
2432// progress or when _suspend_flags is non-zero.
2433// Current thread needs to self-suspend if there is a suspend request and/or
2434// block if a safepoint is in progress.
2435// Also check for pending async exception (not including unsafe access error).
2436// Note only the native==>VM/Java barriers can call this function and when
2437// thread state is _thread_in_native_trans.
2438void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2439  check_safepoint_and_suspend_for_native_trans(thread);
2440
2441  if (thread->has_async_exception()) {
2442    // We are in _thread_in_native_trans state, don't handle unsafe
2443    // access error since that may block.
2444    thread->check_and_handle_async_exceptions(false);
2445  }
2446}
2447
2448// This is a variant of the normal
2449// check_special_condition_for_native_trans with slightly different
2450// semantics for use by critical native wrappers.  It does all the
2451// normal checks but also performs the transition back into
2452// thread_in_Java state.  This is required so that critical natives
2453// can potentially block and perform a GC if they are the last thread
2454// exiting the GC_locker.
2455void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2456  check_special_condition_for_native_trans(thread);
2457
2458  // Finish the transition
2459  thread->set_thread_state(_thread_in_Java);
2460
2461  if (thread->do_critical_native_unlock()) {
2462    ThreadInVMfromJavaNoAsyncException tiv(thread);
2463    GC_locker::unlock_critical(thread);
2464    thread->clear_critical_native_unlock();
2465  }
2466}
2467
2468// We need to guarantee the Threads_lock here, since resumes are not
2469// allowed during safepoint synchronization
2470// Can only resume from an external suspension
2471void JavaThread::java_resume() {
2472  assert_locked_or_safepoint(Threads_lock);
2473
2474  // Sanity check: thread is gone, has started exiting or the thread
2475  // was not externally suspended.
2476  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2477    return;
2478  }
2479
2480  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2481
2482  clear_external_suspend();
2483
2484  if (is_ext_suspended()) {
2485    clear_ext_suspended();
2486    SR_lock()->notify_all();
2487  }
2488}
2489
2490void JavaThread::create_stack_guard_pages() {
2491  if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2492  address low_addr = stack_base() - stack_size();
2493  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2494
2495  int allocate = os::allocate_stack_guard_pages();
2496  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2497
2498  if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2499    warning("Attempt to allocate stack guard pages failed.");
2500    return;
2501  }
2502
2503  if (os::guard_memory((char *) low_addr, len)) {
2504    _stack_guard_state = stack_guard_enabled;
2505  } else {
2506    warning("Attempt to protect stack guard pages failed.");
2507    if (os::uncommit_memory((char *) low_addr, len)) {
2508      warning("Attempt to deallocate stack guard pages failed.");
2509    }
2510  }
2511}
2512
2513void JavaThread::remove_stack_guard_pages() {
2514  assert(Thread::current() == this, "from different thread");
2515  if (_stack_guard_state == stack_guard_unused) return;
2516  address low_addr = stack_base() - stack_size();
2517  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2518
2519  if (os::allocate_stack_guard_pages()) {
2520    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2521      _stack_guard_state = stack_guard_unused;
2522    } else {
2523      warning("Attempt to deallocate stack guard pages failed.");
2524    }
2525  } else {
2526    if (_stack_guard_state == stack_guard_unused) return;
2527    if (os::unguard_memory((char *) low_addr, len)) {
2528      _stack_guard_state = stack_guard_unused;
2529    } else {
2530        warning("Attempt to unprotect stack guard pages failed.");
2531    }
2532  }
2533}
2534
2535void JavaThread::enable_stack_yellow_zone() {
2536  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2537  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2538
2539  // The base notation is from the stacks point of view, growing downward.
2540  // We need to adjust it to work correctly with guard_memory()
2541  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2542
2543  guarantee(base < stack_base(),"Error calculating stack yellow zone");
2544  guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2545
2546  if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2547    _stack_guard_state = stack_guard_enabled;
2548  } else {
2549    warning("Attempt to guard stack yellow zone failed.");
2550  }
2551  enable_register_stack_guard();
2552}
2553
2554void JavaThread::disable_stack_yellow_zone() {
2555  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2556  assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2557
2558  // Simply return if called for a thread that does not use guard pages.
2559  if (_stack_guard_state == stack_guard_unused) return;
2560
2561  // The base notation is from the stacks point of view, growing downward.
2562  // We need to adjust it to work correctly with guard_memory()
2563  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2564
2565  if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2566    _stack_guard_state = stack_guard_yellow_disabled;
2567  } else {
2568    warning("Attempt to unguard stack yellow zone failed.");
2569  }
2570  disable_register_stack_guard();
2571}
2572
2573void JavaThread::enable_stack_red_zone() {
2574  // The base notation is from the stacks point of view, growing downward.
2575  // We need to adjust it to work correctly with guard_memory()
2576  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2577  address base = stack_red_zone_base() - stack_red_zone_size();
2578
2579  guarantee(base < stack_base(),"Error calculating stack red zone");
2580  guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2581
2582  if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2583    warning("Attempt to guard stack red zone failed.");
2584  }
2585}
2586
2587void JavaThread::disable_stack_red_zone() {
2588  // The base notation is from the stacks point of view, growing downward.
2589  // We need to adjust it to work correctly with guard_memory()
2590  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2591  address base = stack_red_zone_base() - stack_red_zone_size();
2592  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2593    warning("Attempt to unguard stack red zone failed.");
2594  }
2595}
2596
2597void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2598  // ignore is there is no stack
2599  if (!has_last_Java_frame()) return;
2600  // traverse the stack frames. Starts from top frame.
2601  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2602    frame* fr = fst.current();
2603    f(fr, fst.register_map());
2604  }
2605}
2606
2607
2608#ifndef PRODUCT
2609// Deoptimization
2610// Function for testing deoptimization
2611void JavaThread::deoptimize() {
2612  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2613  StackFrameStream fst(this, UseBiasedLocking);
2614  bool deopt = false;           // Dump stack only if a deopt actually happens.
2615  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2616  // Iterate over all frames in the thread and deoptimize
2617  for(; !fst.is_done(); fst.next()) {
2618    if(fst.current()->can_be_deoptimized()) {
2619
2620      if (only_at) {
2621        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2622        // consists of comma or carriage return separated numbers so
2623        // search for the current bci in that string.
2624        address pc = fst.current()->pc();
2625        nmethod* nm =  (nmethod*) fst.current()->cb();
2626        ScopeDesc* sd = nm->scope_desc_at( pc);
2627        char buffer[8];
2628        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2629        size_t len = strlen(buffer);
2630        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2631        while (found != NULL) {
2632          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2633              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2634            // Check that the bci found is bracketed by terminators.
2635            break;
2636          }
2637          found = strstr(found + 1, buffer);
2638        }
2639        if (!found) {
2640          continue;
2641        }
2642      }
2643
2644      if (DebugDeoptimization && !deopt) {
2645        deopt = true; // One-time only print before deopt
2646        tty->print_cr("[BEFORE Deoptimization]");
2647        trace_frames();
2648        trace_stack();
2649      }
2650      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2651    }
2652  }
2653
2654  if (DebugDeoptimization && deopt) {
2655    tty->print_cr("[AFTER Deoptimization]");
2656    trace_frames();
2657  }
2658}
2659
2660
2661// Make zombies
2662void JavaThread::make_zombies() {
2663  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2664    if (fst.current()->can_be_deoptimized()) {
2665      // it is a Java nmethod
2666      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2667      nm->make_not_entrant();
2668    }
2669  }
2670}
2671#endif // PRODUCT
2672
2673
2674void JavaThread::deoptimized_wrt_marked_nmethods() {
2675  if (!has_last_Java_frame()) return;
2676  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2677  StackFrameStream fst(this, UseBiasedLocking);
2678  for(; !fst.is_done(); fst.next()) {
2679    if (fst.current()->should_be_deoptimized()) {
2680      if (LogCompilation && xtty != NULL) {
2681        nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2682        xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2683                   this->name(), nm != NULL ? nm->compile_id() : -1);
2684      }
2685
2686      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2687    }
2688  }
2689}
2690
2691
2692// GC support
2693static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2694
2695void JavaThread::gc_epilogue() {
2696  frames_do(frame_gc_epilogue);
2697}
2698
2699
2700static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2701
2702void JavaThread::gc_prologue() {
2703  frames_do(frame_gc_prologue);
2704}
2705
2706// If the caller is a NamedThread, then remember, in the current scope,
2707// the given JavaThread in its _processed_thread field.
2708class RememberProcessedThread: public StackObj {
2709  NamedThread* _cur_thr;
2710public:
2711  RememberProcessedThread(JavaThread* jthr) {
2712    Thread* thread = Thread::current();
2713    if (thread->is_Named_thread()) {
2714      _cur_thr = (NamedThread *)thread;
2715      _cur_thr->set_processed_thread(jthr);
2716    } else {
2717      _cur_thr = NULL;
2718    }
2719  }
2720
2721  ~RememberProcessedThread() {
2722    if (_cur_thr) {
2723      _cur_thr->set_processed_thread(NULL);
2724    }
2725  }
2726};
2727
2728void JavaThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
2729  // Verify that the deferred card marks have been flushed.
2730  assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2731
2732  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2733  // since there may be more than one thread using each ThreadProfiler.
2734
2735  // Traverse the GCHandles
2736  Thread::oops_do(f, cld_f, cf);
2737
2738  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2739          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2740
2741  if (has_last_Java_frame()) {
2742    // Record JavaThread to GC thread
2743    RememberProcessedThread rpt(this);
2744
2745    // Traverse the privileged stack
2746    if (_privileged_stack_top != NULL) {
2747      _privileged_stack_top->oops_do(f);
2748    }
2749
2750    // traverse the registered growable array
2751    if (_array_for_gc != NULL) {
2752      for (int index = 0; index < _array_for_gc->length(); index++) {
2753        f->do_oop(_array_for_gc->adr_at(index));
2754      }
2755    }
2756
2757    // Traverse the monitor chunks
2758    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2759      chunk->oops_do(f);
2760    }
2761
2762    // Traverse the execution stack
2763    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2764      fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2765    }
2766  }
2767
2768  // callee_target is never live across a gc point so NULL it here should
2769  // it still contain a methdOop.
2770
2771  set_callee_target(NULL);
2772
2773  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2774  // If we have deferred set_locals there might be oops waiting to be
2775  // written
2776  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2777  if (list != NULL) {
2778    for (int i = 0; i < list->length(); i++) {
2779      list->at(i)->oops_do(f);
2780    }
2781  }
2782
2783  // Traverse instance variables at the end since the GC may be moving things
2784  // around using this function
2785  f->do_oop((oop*) &_threadObj);
2786  f->do_oop((oop*) &_vm_result);
2787  f->do_oop((oop*) &_exception_oop);
2788  f->do_oop((oop*) &_pending_async_exception);
2789
2790  if (jvmti_thread_state() != NULL) {
2791    jvmti_thread_state()->oops_do(f);
2792  }
2793}
2794
2795void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2796  Thread::nmethods_do(cf);  // (super method is a no-op)
2797
2798  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2799          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2800
2801  if (has_last_Java_frame()) {
2802    // Traverse the execution stack
2803    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2804      fst.current()->nmethods_do(cf);
2805    }
2806  }
2807}
2808
2809void JavaThread::metadata_do(void f(Metadata*)) {
2810  Thread::metadata_do(f);
2811  if (has_last_Java_frame()) {
2812    // Traverse the execution stack to call f() on the methods in the stack
2813    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2814      fst.current()->metadata_do(f);
2815    }
2816  } else if (is_Compiler_thread()) {
2817    // need to walk ciMetadata in current compile tasks to keep alive.
2818    CompilerThread* ct = (CompilerThread*)this;
2819    if (ct->env() != NULL) {
2820      ct->env()->metadata_do(f);
2821    }
2822  }
2823}
2824
2825// Printing
2826const char* _get_thread_state_name(JavaThreadState _thread_state) {
2827  switch (_thread_state) {
2828  case _thread_uninitialized:     return "_thread_uninitialized";
2829  case _thread_new:               return "_thread_new";
2830  case _thread_new_trans:         return "_thread_new_trans";
2831  case _thread_in_native:         return "_thread_in_native";
2832  case _thread_in_native_trans:   return "_thread_in_native_trans";
2833  case _thread_in_vm:             return "_thread_in_vm";
2834  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2835  case _thread_in_Java:           return "_thread_in_Java";
2836  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2837  case _thread_blocked:           return "_thread_blocked";
2838  case _thread_blocked_trans:     return "_thread_blocked_trans";
2839  default:                        return "unknown thread state";
2840  }
2841}
2842
2843#ifndef PRODUCT
2844void JavaThread::print_thread_state_on(outputStream *st) const {
2845  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2846};
2847void JavaThread::print_thread_state() const {
2848  print_thread_state_on(tty);
2849};
2850#endif // PRODUCT
2851
2852// Called by Threads::print() for VM_PrintThreads operation
2853void JavaThread::print_on(outputStream *st) const {
2854  st->print("\"%s\" ", get_thread_name());
2855  oop thread_oop = threadObj();
2856  if (thread_oop != NULL) {
2857    st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2858    if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2859    st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2860  }
2861  Thread::print_on(st);
2862  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2863  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2864  if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2865    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2866  }
2867#ifndef PRODUCT
2868  print_thread_state_on(st);
2869  _safepoint_state->print_on(st);
2870#endif // PRODUCT
2871}
2872
2873// Called by fatal error handler. The difference between this and
2874// JavaThread::print() is that we can't grab lock or allocate memory.
2875void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2876  st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2877  oop thread_obj = threadObj();
2878  if (thread_obj != NULL) {
2879     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2880  }
2881  st->print(" [");
2882  st->print("%s", _get_thread_state_name(_thread_state));
2883  if (osthread()) {
2884    st->print(", id=%d", osthread()->thread_id());
2885  }
2886  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2887            _stack_base - _stack_size, _stack_base);
2888  st->print("]");
2889  return;
2890}
2891
2892// Verification
2893
2894static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2895
2896void JavaThread::verify() {
2897  // Verify oops in the thread.
2898  oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2899
2900  // Verify the stack frames.
2901  frames_do(frame_verify);
2902}
2903
2904// CR 6300358 (sub-CR 2137150)
2905// Most callers of this method assume that it can't return NULL but a
2906// thread may not have a name whilst it is in the process of attaching to
2907// the VM - see CR 6412693, and there are places where a JavaThread can be
2908// seen prior to having it's threadObj set (eg JNI attaching threads and
2909// if vm exit occurs during initialization). These cases can all be accounted
2910// for such that this method never returns NULL.
2911const char* JavaThread::get_thread_name() const {
2912#ifdef ASSERT
2913  // early safepoints can hit while current thread does not yet have TLS
2914  if (!SafepointSynchronize::is_at_safepoint()) {
2915    Thread *cur = Thread::current();
2916    if (!(cur->is_Java_thread() && cur == this)) {
2917      // Current JavaThreads are allowed to get their own name without
2918      // the Threads_lock.
2919      assert_locked_or_safepoint(Threads_lock);
2920    }
2921  }
2922#endif // ASSERT
2923    return get_thread_name_string();
2924}
2925
2926// Returns a non-NULL representation of this thread's name, or a suitable
2927// descriptive string if there is no set name
2928const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2929  const char* name_str;
2930  oop thread_obj = threadObj();
2931  if (thread_obj != NULL) {
2932    typeArrayOop name = java_lang_Thread::name(thread_obj);
2933    if (name != NULL) {
2934      if (buf == NULL) {
2935        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2936      }
2937      else {
2938        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2939      }
2940    }
2941    else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2942      name_str = "<no-name - thread is attaching>";
2943    }
2944    else {
2945      name_str = Thread::name();
2946    }
2947  }
2948  else {
2949    name_str = Thread::name();
2950  }
2951  assert(name_str != NULL, "unexpected NULL thread name");
2952  return name_str;
2953}
2954
2955
2956const char* JavaThread::get_threadgroup_name() const {
2957  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2958  oop thread_obj = threadObj();
2959  if (thread_obj != NULL) {
2960    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2961    if (thread_group != NULL) {
2962      typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2963      // ThreadGroup.name can be null
2964      if (name != NULL) {
2965        const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2966        return str;
2967      }
2968    }
2969  }
2970  return NULL;
2971}
2972
2973const char* JavaThread::get_parent_name() const {
2974  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2975  oop thread_obj = threadObj();
2976  if (thread_obj != NULL) {
2977    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2978    if (thread_group != NULL) {
2979      oop parent = java_lang_ThreadGroup::parent(thread_group);
2980      if (parent != NULL) {
2981        typeArrayOop name = java_lang_ThreadGroup::name(parent);
2982        // ThreadGroup.name can be null
2983        if (name != NULL) {
2984          const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2985          return str;
2986        }
2987      }
2988    }
2989  }
2990  return NULL;
2991}
2992
2993ThreadPriority JavaThread::java_priority() const {
2994  oop thr_oop = threadObj();
2995  if (thr_oop == NULL) return NormPriority; // Bootstrapping
2996  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2997  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2998  return priority;
2999}
3000
3001void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3002
3003  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3004  // Link Java Thread object <-> C++ Thread
3005
3006  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3007  // and put it into a new Handle.  The Handle "thread_oop" can then
3008  // be used to pass the C++ thread object to other methods.
3009
3010  // Set the Java level thread object (jthread) field of the
3011  // new thread (a JavaThread *) to C++ thread object using the
3012  // "thread_oop" handle.
3013
3014  // Set the thread field (a JavaThread *) of the
3015  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3016
3017  Handle thread_oop(Thread::current(),
3018                    JNIHandles::resolve_non_null(jni_thread));
3019  assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3020    "must be initialized");
3021  set_threadObj(thread_oop());
3022  java_lang_Thread::set_thread(thread_oop(), this);
3023
3024  if (prio == NoPriority) {
3025    prio = java_lang_Thread::priority(thread_oop());
3026    assert(prio != NoPriority, "A valid priority should be present");
3027  }
3028
3029  // Push the Java priority down to the native thread; needs Threads_lock
3030  Thread::set_priority(this, prio);
3031
3032  // Add the new thread to the Threads list and set it in motion.
3033  // We must have threads lock in order to call Threads::add.
3034  // It is crucial that we do not block before the thread is
3035  // added to the Threads list for if a GC happens, then the java_thread oop
3036  // will not be visited by GC.
3037  Threads::add(this);
3038}
3039
3040oop JavaThread::current_park_blocker() {
3041  // Support for JSR-166 locks
3042  oop thread_oop = threadObj();
3043  if (thread_oop != NULL &&
3044      JDK_Version::current().supports_thread_park_blocker()) {
3045    return java_lang_Thread::park_blocker(thread_oop);
3046  }
3047  return NULL;
3048}
3049
3050
3051void JavaThread::print_stack_on(outputStream* st) {
3052  if (!has_last_Java_frame()) return;
3053  ResourceMark rm;
3054  HandleMark   hm;
3055
3056  RegisterMap reg_map(this);
3057  vframe* start_vf = last_java_vframe(&reg_map);
3058  int count = 0;
3059  for (vframe* f = start_vf; f; f = f->sender() ) {
3060    if (f->is_java_frame()) {
3061      javaVFrame* jvf = javaVFrame::cast(f);
3062      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3063
3064      // Print out lock information
3065      if (JavaMonitorsInStackTrace) {
3066        jvf->print_lock_info_on(st, count);
3067      }
3068    } else {
3069      // Ignore non-Java frames
3070    }
3071
3072    // Bail-out case for too deep stacks
3073    count++;
3074    if (MaxJavaStackTraceDepth == count) return;
3075  }
3076}
3077
3078
3079// JVMTI PopFrame support
3080void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3081  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3082  if (in_bytes(size_in_bytes) != 0) {
3083    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3084    _popframe_preserved_args_size = in_bytes(size_in_bytes);
3085    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3086  }
3087}
3088
3089void* JavaThread::popframe_preserved_args() {
3090  return _popframe_preserved_args;
3091}
3092
3093ByteSize JavaThread::popframe_preserved_args_size() {
3094  return in_ByteSize(_popframe_preserved_args_size);
3095}
3096
3097WordSize JavaThread::popframe_preserved_args_size_in_words() {
3098  int sz = in_bytes(popframe_preserved_args_size());
3099  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3100  return in_WordSize(sz / wordSize);
3101}
3102
3103void JavaThread::popframe_free_preserved_args() {
3104  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3105  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3106  _popframe_preserved_args = NULL;
3107  _popframe_preserved_args_size = 0;
3108}
3109
3110#ifndef PRODUCT
3111
3112void JavaThread::trace_frames() {
3113  tty->print_cr("[Describe stack]");
3114  int frame_no = 1;
3115  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3116    tty->print("  %d. ", frame_no++);
3117    fst.current()->print_value_on(tty,this);
3118    tty->cr();
3119  }
3120}
3121
3122class PrintAndVerifyOopClosure: public OopClosure {
3123 protected:
3124  template <class T> inline void do_oop_work(T* p) {
3125    oop obj = oopDesc::load_decode_heap_oop(p);
3126    if (obj == NULL) return;
3127    tty->print(INTPTR_FORMAT ": ", p);
3128    if (obj->is_oop_or_null()) {
3129      if (obj->is_objArray()) {
3130        tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3131      } else {
3132        obj->print();
3133      }
3134    } else {
3135      tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3136    }
3137    tty->cr();
3138  }
3139 public:
3140  virtual void do_oop(oop* p) { do_oop_work(p); }
3141  virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3142};
3143
3144
3145static void oops_print(frame* f, const RegisterMap *map) {
3146  PrintAndVerifyOopClosure print;
3147  f->print_value();
3148  f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3149}
3150
3151// Print our all the locations that contain oops and whether they are
3152// valid or not.  This useful when trying to find the oldest frame
3153// where an oop has gone bad since the frame walk is from youngest to
3154// oldest.
3155void JavaThread::trace_oops() {
3156  tty->print_cr("[Trace oops]");
3157  frames_do(oops_print);
3158}
3159
3160
3161#ifdef ASSERT
3162// Print or validate the layout of stack frames
3163void JavaThread::print_frame_layout(int depth, bool validate_only) {
3164  ResourceMark rm;
3165  PRESERVE_EXCEPTION_MARK;
3166  FrameValues values;
3167  int frame_no = 0;
3168  for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3169    fst.current()->describe(values, ++frame_no);
3170    if (depth == frame_no) break;
3171  }
3172  if (validate_only) {
3173    values.validate();
3174  } else {
3175    tty->print_cr("[Describe stack layout]");
3176    values.print(this);
3177  }
3178}
3179#endif
3180
3181void JavaThread::trace_stack_from(vframe* start_vf) {
3182  ResourceMark rm;
3183  int vframe_no = 1;
3184  for (vframe* f = start_vf; f; f = f->sender() ) {
3185    if (f->is_java_frame()) {
3186      javaVFrame::cast(f)->print_activation(vframe_no++);
3187    } else {
3188      f->print();
3189    }
3190    if (vframe_no > StackPrintLimit) {
3191      tty->print_cr("...<more frames>...");
3192      return;
3193    }
3194  }
3195}
3196
3197
3198void JavaThread::trace_stack() {
3199  if (!has_last_Java_frame()) return;
3200  ResourceMark rm;
3201  HandleMark   hm;
3202  RegisterMap reg_map(this);
3203  trace_stack_from(last_java_vframe(&reg_map));
3204}
3205
3206
3207#endif // PRODUCT
3208
3209
3210javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3211  assert(reg_map != NULL, "a map must be given");
3212  frame f = last_frame();
3213  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3214    if (vf->is_java_frame()) return javaVFrame::cast(vf);
3215  }
3216  return NULL;
3217}
3218
3219
3220Klass* JavaThread::security_get_caller_class(int depth) {
3221  vframeStream vfst(this);
3222  vfst.security_get_caller_frame(depth);
3223  if (!vfst.at_end()) {
3224    return vfst.method()->method_holder();
3225  }
3226  return NULL;
3227}
3228
3229static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3230  assert(thread->is_Compiler_thread(), "must be compiler thread");
3231  CompileBroker::compiler_thread_loop();
3232}
3233
3234// Create a CompilerThread
3235CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3236: JavaThread(&compiler_thread_entry) {
3237  _env   = NULL;
3238  _log   = NULL;
3239  _task  = NULL;
3240  _queue = queue;
3241  _counters = counters;
3242  _buffer_blob = NULL;
3243  _scanned_nmethod = NULL;
3244  _compiler = NULL;
3245
3246#ifndef PRODUCT
3247  _ideal_graph_printer = NULL;
3248#endif
3249}
3250
3251void CompilerThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
3252  JavaThread::oops_do(f, cld_f, cf);
3253  if (_scanned_nmethod != NULL && cf != NULL) {
3254    // Safepoints can occur when the sweeper is scanning an nmethod so
3255    // process it here to make sure it isn't unloaded in the middle of
3256    // a scan.
3257    cf->do_code_blob(_scanned_nmethod);
3258  }
3259}
3260
3261
3262// ======= Threads ========
3263
3264// The Threads class links together all active threads, and provides
3265// operations over all threads.  It is protected by its own Mutex
3266// lock, which is also used in other contexts to protect thread
3267// operations from having the thread being operated on from exiting
3268// and going away unexpectedly (e.g., safepoint synchronization)
3269
3270JavaThread* Threads::_thread_list = NULL;
3271int         Threads::_number_of_threads = 0;
3272int         Threads::_number_of_non_daemon_threads = 0;
3273int         Threads::_return_code = 0;
3274size_t      JavaThread::_stack_size_at_create = 0;
3275#ifdef ASSERT
3276bool        Threads::_vm_complete = false;
3277#endif
3278
3279// All JavaThreads
3280#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3281
3282// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3283void Threads::threads_do(ThreadClosure* tc) {
3284  assert_locked_or_safepoint(Threads_lock);
3285  // ALL_JAVA_THREADS iterates through all JavaThreads
3286  ALL_JAVA_THREADS(p) {
3287    tc->do_thread(p);
3288  }
3289  // Someday we could have a table or list of all non-JavaThreads.
3290  // For now, just manually iterate through them.
3291  tc->do_thread(VMThread::vm_thread());
3292  Universe::heap()->gc_threads_do(tc);
3293  WatcherThread *wt = WatcherThread::watcher_thread();
3294  // Strictly speaking, the following NULL check isn't sufficient to make sure
3295  // the data for WatcherThread is still valid upon being examined. However,
3296  // considering that WatchThread terminates when the VM is on the way to
3297  // exit at safepoint, the chance of the above is extremely small. The right
3298  // way to prevent termination of WatcherThread would be to acquire
3299  // Terminator_lock, but we can't do that without violating the lock rank
3300  // checking in some cases.
3301  if (wt != NULL)
3302    tc->do_thread(wt);
3303
3304  // If CompilerThreads ever become non-JavaThreads, add them here
3305}
3306
3307
3308void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3309  TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3310
3311  if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3312    create_vm_init_libraries();
3313  }
3314
3315  initialize_class(vmSymbols::java_lang_String(), CHECK);
3316
3317  // Initialize java_lang.System (needed before creating the thread)
3318  initialize_class(vmSymbols::java_lang_System(), CHECK);
3319  initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3320  Handle thread_group = create_initial_thread_group(CHECK);
3321  Universe::set_main_thread_group(thread_group());
3322  initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3323  oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3324  main_thread->set_threadObj(thread_object);
3325  // Set thread status to running since main thread has
3326  // been started and running.
3327  java_lang_Thread::set_thread_status(thread_object,
3328                                      java_lang_Thread::RUNNABLE);
3329
3330  // The VM creates & returns objects of this class. Make sure it's initialized.
3331  initialize_class(vmSymbols::java_lang_Class(), CHECK);
3332
3333  // The VM preresolves methods to these classes. Make sure that they get initialized
3334  initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3335  initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK);
3336  call_initializeSystemClass(CHECK);
3337
3338  // get the Java runtime name after java.lang.System is initialized
3339  JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3340  JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3341
3342  // an instance of OutOfMemory exception has been allocated earlier
3343  initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3344  initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3345  initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3346  initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3347  initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3348  initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3349  initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3350  initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3351}
3352
3353void Threads::initialize_jsr292_core_classes(TRAPS) {
3354  initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3355  initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3356  initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3357}
3358
3359jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3360
3361  extern void JDK_Version_init();
3362
3363  // Check version
3364  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3365
3366  // Initialize the output stream module
3367  ostream_init();
3368
3369  // Process java launcher properties.
3370  Arguments::process_sun_java_launcher_properties(args);
3371
3372  // Initialize the os module before using TLS
3373  os::init();
3374
3375  // Initialize system properties.
3376  Arguments::init_system_properties();
3377
3378  // So that JDK version can be used as a discriminator when parsing arguments
3379  JDK_Version_init();
3380
3381  // Update/Initialize System properties after JDK version number is known
3382  Arguments::init_version_specific_system_properties();
3383
3384  // Parse arguments
3385  jint parse_result = Arguments::parse(args);
3386  if (parse_result != JNI_OK) return parse_result;
3387
3388  os::init_before_ergo();
3389
3390  jint ergo_result = Arguments::apply_ergo();
3391  if (ergo_result != JNI_OK) return ergo_result;
3392
3393  if (PauseAtStartup) {
3394    os::pause();
3395  }
3396
3397#ifndef USDT2
3398  HS_DTRACE_PROBE(hotspot, vm__init__begin);
3399#else /* USDT2 */
3400  HOTSPOT_VM_INIT_BEGIN();
3401#endif /* USDT2 */
3402
3403  // Record VM creation timing statistics
3404  TraceVmCreationTime create_vm_timer;
3405  create_vm_timer.start();
3406
3407  // Timing (must come after argument parsing)
3408  TraceTime timer("Create VM", TraceStartupTime);
3409
3410  // Initialize the os module after parsing the args
3411  jint os_init_2_result = os::init_2();
3412  if (os_init_2_result != JNI_OK) return os_init_2_result;
3413
3414  jint adjust_after_os_result = Arguments::adjust_after_os();
3415  if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3416
3417  // initialize TLS
3418  ThreadLocalStorage::init();
3419
3420  // Bootstrap native memory tracking, so it can start recording memory
3421  // activities before worker thread is started. This is the first phase
3422  // of bootstrapping, VM is currently running in single-thread mode.
3423  MemTracker::bootstrap_single_thread();
3424
3425  // Initialize output stream logging
3426  ostream_init_log();
3427
3428  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3429  // Must be before create_vm_init_agents()
3430  if (Arguments::init_libraries_at_startup()) {
3431    convert_vm_init_libraries_to_agents();
3432  }
3433
3434  // Launch -agentlib/-agentpath and converted -Xrun agents
3435  if (Arguments::init_agents_at_startup()) {
3436    create_vm_init_agents();
3437  }
3438
3439  // Initialize Threads state
3440  _thread_list = NULL;
3441  _number_of_threads = 0;
3442  _number_of_non_daemon_threads = 0;
3443
3444  // Initialize global data structures and create system classes in heap
3445  vm_init_globals();
3446
3447  // Attach the main thread to this os thread
3448  JavaThread* main_thread = new JavaThread();
3449  main_thread->set_thread_state(_thread_in_vm);
3450  // must do this before set_active_handles and initialize_thread_local_storage
3451  // Note: on solaris initialize_thread_local_storage() will (indirectly)
3452  // change the stack size recorded here to one based on the java thread
3453  // stacksize. This adjusted size is what is used to figure the placement
3454  // of the guard pages.
3455  main_thread->record_stack_base_and_size();
3456  main_thread->initialize_thread_local_storage();
3457
3458  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3459
3460  if (!main_thread->set_as_starting_thread()) {
3461    vm_shutdown_during_initialization(
3462      "Failed necessary internal allocation. Out of swap space");
3463    delete main_thread;
3464    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3465    return JNI_ENOMEM;
3466  }
3467
3468  // Enable guard page *after* os::create_main_thread(), otherwise it would
3469  // crash Linux VM, see notes in os_linux.cpp.
3470  main_thread->create_stack_guard_pages();
3471
3472  // Initialize Java-Level synchronization subsystem
3473  ObjectMonitor::Initialize() ;
3474
3475  // Second phase of bootstrapping, VM is about entering multi-thread mode
3476  MemTracker::bootstrap_multi_thread();
3477
3478  // Initialize global modules
3479  jint status = init_globals();
3480  if (status != JNI_OK) {
3481    delete main_thread;
3482    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3483    return status;
3484  }
3485
3486  // Should be done after the heap is fully created
3487  main_thread->cache_global_variables();
3488
3489  HandleMark hm;
3490
3491  { MutexLocker mu(Threads_lock);
3492    Threads::add(main_thread);
3493  }
3494
3495  // Any JVMTI raw monitors entered in onload will transition into
3496  // real raw monitor. VM is setup enough here for raw monitor enter.
3497  JvmtiExport::transition_pending_onload_raw_monitors();
3498
3499  // Fully start NMT
3500  MemTracker::start();
3501
3502  // Create the VMThread
3503  { TraceTime timer("Start VMThread", TraceStartupTime);
3504    VMThread::create();
3505    Thread* vmthread = VMThread::vm_thread();
3506
3507    if (!os::create_thread(vmthread, os::vm_thread))
3508      vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3509
3510    // Wait for the VM thread to become ready, and VMThread::run to initialize
3511    // Monitors can have spurious returns, must always check another state flag
3512    {
3513      MutexLocker ml(Notify_lock);
3514      os::start_thread(vmthread);
3515      while (vmthread->active_handles() == NULL) {
3516        Notify_lock->wait();
3517      }
3518    }
3519  }
3520
3521  assert (Universe::is_fully_initialized(), "not initialized");
3522  if (VerifyDuringStartup) {
3523    // Make sure we're starting with a clean slate.
3524    VM_Verify verify_op;
3525    VMThread::execute(&verify_op);
3526  }
3527
3528  Thread* THREAD = Thread::current();
3529
3530  // At this point, the Universe is initialized, but we have not executed
3531  // any byte code.  Now is a good time (the only time) to dump out the
3532  // internal state of the JVM for sharing.
3533  if (DumpSharedSpaces) {
3534    MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3535    ShouldNotReachHere();
3536  }
3537
3538  // Always call even when there are not JVMTI environments yet, since environments
3539  // may be attached late and JVMTI must track phases of VM execution
3540  JvmtiExport::enter_start_phase();
3541
3542  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3543  JvmtiExport::post_vm_start();
3544
3545  initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3546
3547  // We need this for ClassDataSharing - the initial vm.info property is set
3548  // with the default value of CDS "sharing" which may be reset through
3549  // command line options.
3550  reset_vm_info_property(CHECK_JNI_ERR);
3551
3552  quicken_jni_functions();
3553
3554  // Must be run after init_ft which initializes ft_enabled
3555  if (TRACE_INITIALIZE() != JNI_OK) {
3556    vm_exit_during_initialization("Failed to initialize tracing backend");
3557  }
3558
3559  // Set flag that basic initialization has completed. Used by exceptions and various
3560  // debug stuff, that does not work until all basic classes have been initialized.
3561  set_init_completed();
3562
3563#ifndef USDT2
3564  HS_DTRACE_PROBE(hotspot, vm__init__end);
3565#else /* USDT2 */
3566  HOTSPOT_VM_INIT_END();
3567#endif /* USDT2 */
3568
3569  // record VM initialization completion time
3570#if INCLUDE_MANAGEMENT
3571  Management::record_vm_init_completed();
3572#endif // INCLUDE_MANAGEMENT
3573
3574  // Compute system loader. Note that this has to occur after set_init_completed, since
3575  // valid exceptions may be thrown in the process.
3576  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3577  // set_init_completed has just been called, causing exceptions not to be shortcut
3578  // anymore. We call vm_exit_during_initialization directly instead.
3579  SystemDictionary::compute_java_system_loader(CHECK_JNI_ERR);
3580
3581#if INCLUDE_ALL_GCS
3582  // Support for ConcurrentMarkSweep. This should be cleaned up
3583  // and better encapsulated. The ugly nested if test would go away
3584  // once things are properly refactored. XXX YSR
3585  if (UseConcMarkSweepGC || UseG1GC) {
3586    if (UseConcMarkSweepGC) {
3587      ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3588    } else {
3589      ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3590    }
3591  }
3592#endif // INCLUDE_ALL_GCS
3593
3594  // Always call even when there are not JVMTI environments yet, since environments
3595  // may be attached late and JVMTI must track phases of VM execution
3596  JvmtiExport::enter_live_phase();
3597
3598  // Signal Dispatcher needs to be started before VMInit event is posted
3599  os::signal_init();
3600
3601  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3602  if (!DisableAttachMechanism) {
3603    AttachListener::vm_start();
3604    if (StartAttachListener || AttachListener::init_at_startup()) {
3605      AttachListener::init();
3606    }
3607  }
3608
3609  // Launch -Xrun agents
3610  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3611  // back-end can launch with -Xdebug -Xrunjdwp.
3612  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3613    create_vm_init_libraries();
3614  }
3615
3616  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3617  JvmtiExport::post_vm_initialized();
3618
3619  if (TRACE_START() != JNI_OK) {
3620    vm_exit_during_initialization("Failed to start tracing backend.");
3621  }
3622
3623  if (CleanChunkPoolAsync) {
3624    Chunk::start_chunk_pool_cleaner_task();
3625  }
3626
3627  // initialize compiler(s)
3628#if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3629  CompileBroker::compilation_init();
3630#endif
3631
3632  // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3633  // It is done after compilers are initialized, because otherwise compilations of
3634  // signature polymorphic MH intrinsics can be missed
3635  // (see SystemDictionary::find_method_handle_intrinsic).
3636  if (EnableInvokeDynamic) {
3637    initialize_jsr292_core_classes(CHECK_JNI_ERR);
3638  }
3639
3640#if INCLUDE_MANAGEMENT
3641  Management::initialize(THREAD);
3642
3643  if (HAS_PENDING_EXCEPTION) {
3644    // management agent fails to start possibly due to
3645    // configuration problem and is responsible for printing
3646    // stack trace if appropriate. Simply exit VM.
3647    vm_exit(1);
3648  }
3649#endif // INCLUDE_MANAGEMENT
3650
3651  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3652  if (MemProfiling)                   MemProfiler::engage();
3653  StatSampler::engage();
3654  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3655
3656  BiasedLocking::init();
3657
3658  if (JDK_Version::current().post_vm_init_hook_enabled()) {
3659    call_postVMInitHook(THREAD);
3660    // The Java side of PostVMInitHook.run must deal with all
3661    // exceptions and provide means of diagnosis.
3662    if (HAS_PENDING_EXCEPTION) {
3663      CLEAR_PENDING_EXCEPTION;
3664    }
3665  }
3666
3667  {
3668      MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3669      // Make sure the watcher thread can be started by WatcherThread::start()
3670      // or by dynamic enrollment.
3671      WatcherThread::make_startable();
3672      // Start up the WatcherThread if there are any periodic tasks
3673      // NOTE:  All PeriodicTasks should be registered by now. If they
3674      //   aren't, late joiners might appear to start slowly (we might
3675      //   take a while to process their first tick).
3676      if (PeriodicTask::num_tasks() > 0) {
3677          WatcherThread::start();
3678      }
3679  }
3680
3681  // Give os specific code one last chance to start
3682  os::init_3();
3683
3684  create_vm_timer.end();
3685#ifdef ASSERT
3686  _vm_complete = true;
3687#endif
3688  return JNI_OK;
3689}
3690
3691// type for the Agent_OnLoad and JVM_OnLoad entry points
3692extern "C" {
3693  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3694}
3695// Find a command line agent library and return its entry point for
3696//         -agentlib:  -agentpath:   -Xrun
3697// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3698static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3699  OnLoadEntry_t on_load_entry = NULL;
3700  void *library = NULL;
3701
3702  if (!agent->valid()) {
3703    char buffer[JVM_MAXPATHLEN];
3704    char ebuf[1024];
3705    const char *name = agent->name();
3706    const char *msg = "Could not find agent library ";
3707
3708    // First check to see if agent is statically linked into executable
3709    if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3710      library = agent->os_lib();
3711    } else if (agent->is_absolute_path()) {
3712      library = os::dll_load(name, ebuf, sizeof ebuf);
3713      if (library == NULL) {
3714        const char *sub_msg = " in absolute path, with error: ";
3715        size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3716        char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3717        jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3718        // If we can't find the agent, exit.
3719        vm_exit_during_initialization(buf, NULL);
3720        FREE_C_HEAP_ARRAY(char, buf, mtThread);
3721      }
3722    } else {
3723      // Try to load the agent from the standard dll directory
3724      if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3725                             name)) {
3726        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3727      }
3728      if (library == NULL) { // Try the local directory
3729        char ns[1] = {0};
3730        if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3731          library = os::dll_load(buffer, ebuf, sizeof ebuf);
3732        }
3733        if (library == NULL) {
3734          const char *sub_msg = " on the library path, with error: ";
3735          size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3736          char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3737          jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3738          // If we can't find the agent, exit.
3739          vm_exit_during_initialization(buf, NULL);
3740          FREE_C_HEAP_ARRAY(char, buf, mtThread);
3741        }
3742      }
3743    }
3744    agent->set_os_lib(library);
3745    agent->set_valid();
3746  }
3747
3748  // Find the OnLoad function.
3749  on_load_entry =
3750    CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3751                                                          false,
3752                                                          on_load_symbols,
3753                                                          num_symbol_entries));
3754  return on_load_entry;
3755}
3756
3757// Find the JVM_OnLoad entry point
3758static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3759  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3760  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3761}
3762
3763// Find the Agent_OnLoad entry point
3764static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3765  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3766  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3767}
3768
3769// For backwards compatibility with -Xrun
3770// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3771// treated like -agentpath:
3772// Must be called before agent libraries are created
3773void Threads::convert_vm_init_libraries_to_agents() {
3774  AgentLibrary* agent;
3775  AgentLibrary* next;
3776
3777  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3778    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3779    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3780
3781    // If there is an JVM_OnLoad function it will get called later,
3782    // otherwise see if there is an Agent_OnLoad
3783    if (on_load_entry == NULL) {
3784      on_load_entry = lookup_agent_on_load(agent);
3785      if (on_load_entry != NULL) {
3786        // switch it to the agent list -- so that Agent_OnLoad will be called,
3787        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3788        Arguments::convert_library_to_agent(agent);
3789      } else {
3790        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3791      }
3792    }
3793  }
3794}
3795
3796// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3797// Invokes Agent_OnLoad
3798// Called very early -- before JavaThreads exist
3799void Threads::create_vm_init_agents() {
3800  extern struct JavaVM_ main_vm;
3801  AgentLibrary* agent;
3802
3803  JvmtiExport::enter_onload_phase();
3804
3805  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3806    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3807
3808    if (on_load_entry != NULL) {
3809      // Invoke the Agent_OnLoad function
3810      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3811      if (err != JNI_OK) {
3812        vm_exit_during_initialization("agent library failed to init", agent->name());
3813      }
3814    } else {
3815      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3816    }
3817  }
3818  JvmtiExport::enter_primordial_phase();
3819}
3820
3821extern "C" {
3822  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3823}
3824
3825void Threads::shutdown_vm_agents() {
3826  // Send any Agent_OnUnload notifications
3827  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3828  size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3829  extern struct JavaVM_ main_vm;
3830  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3831
3832    // Find the Agent_OnUnload function.
3833    Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3834      os::find_agent_function(agent,
3835      false,
3836      on_unload_symbols,
3837      num_symbol_entries));
3838
3839    // Invoke the Agent_OnUnload function
3840    if (unload_entry != NULL) {
3841      JavaThread* thread = JavaThread::current();
3842      ThreadToNativeFromVM ttn(thread);
3843      HandleMark hm(thread);
3844      (*unload_entry)(&main_vm);
3845    }
3846  }
3847}
3848
3849// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3850// Invokes JVM_OnLoad
3851void Threads::create_vm_init_libraries() {
3852  extern struct JavaVM_ main_vm;
3853  AgentLibrary* agent;
3854
3855  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3856    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3857
3858    if (on_load_entry != NULL) {
3859      // Invoke the JVM_OnLoad function
3860      JavaThread* thread = JavaThread::current();
3861      ThreadToNativeFromVM ttn(thread);
3862      HandleMark hm(thread);
3863      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3864      if (err != JNI_OK) {
3865        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3866      }
3867    } else {
3868      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3869    }
3870  }
3871}
3872
3873// Last thread running calls java.lang.Shutdown.shutdown()
3874void JavaThread::invoke_shutdown_hooks() {
3875  HandleMark hm(this);
3876
3877  // We could get here with a pending exception, if so clear it now.
3878  if (this->has_pending_exception()) {
3879    this->clear_pending_exception();
3880  }
3881
3882  EXCEPTION_MARK;
3883  Klass* k =
3884    SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3885                                      THREAD);
3886  if (k != NULL) {
3887    // SystemDictionary::resolve_or_null will return null if there was
3888    // an exception.  If we cannot load the Shutdown class, just don't
3889    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3890    // and finalizers (if runFinalizersOnExit is set) won't be run.
3891    // Note that if a shutdown hook was registered or runFinalizersOnExit
3892    // was called, the Shutdown class would have already been loaded
3893    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3894    instanceKlassHandle shutdown_klass (THREAD, k);
3895    JavaValue result(T_VOID);
3896    JavaCalls::call_static(&result,
3897                           shutdown_klass,
3898                           vmSymbols::shutdown_method_name(),
3899                           vmSymbols::void_method_signature(),
3900                           THREAD);
3901  }
3902  CLEAR_PENDING_EXCEPTION;
3903}
3904
3905// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3906// the program falls off the end of main(). Another VM exit path is through
3907// vm_exit() when the program calls System.exit() to return a value or when
3908// there is a serious error in VM. The two shutdown paths are not exactly
3909// the same, but they share Shutdown.shutdown() at Java level and before_exit()
3910// and VM_Exit op at VM level.
3911//
3912// Shutdown sequence:
3913//   + Shutdown native memory tracking if it is on
3914//   + Wait until we are the last non-daemon thread to execute
3915//     <-- every thing is still working at this moment -->
3916//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3917//        shutdown hooks, run finalizers if finalization-on-exit
3918//   + Call before_exit(), prepare for VM exit
3919//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3920//        currently the only user of this mechanism is File.deleteOnExit())
3921//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3922//        post thread end and vm death events to JVMTI,
3923//        stop signal thread
3924//   + Call JavaThread::exit(), it will:
3925//      > release JNI handle blocks, remove stack guard pages
3926//      > remove this thread from Threads list
3927//     <-- no more Java code from this thread after this point -->
3928//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3929//     the compiler threads at safepoint
3930//     <-- do not use anything that could get blocked by Safepoint -->
3931//   + Disable tracing at JNI/JVM barriers
3932//   + Set _vm_exited flag for threads that are still running native code
3933//   + Delete this thread
3934//   + Call exit_globals()
3935//      > deletes tty
3936//      > deletes PerfMemory resources
3937//   + Return to caller
3938
3939bool Threads::destroy_vm() {
3940  JavaThread* thread = JavaThread::current();
3941
3942#ifdef ASSERT
3943  _vm_complete = false;
3944#endif
3945  // Wait until we are the last non-daemon thread to execute
3946  { MutexLocker nu(Threads_lock);
3947    while (Threads::number_of_non_daemon_threads() > 1 )
3948      // This wait should make safepoint checks, wait without a timeout,
3949      // and wait as a suspend-equivalent condition.
3950      //
3951      // Note: If the FlatProfiler is running and this thread is waiting
3952      // for another non-daemon thread to finish, then the FlatProfiler
3953      // is waiting for the external suspend request on this thread to
3954      // complete. wait_for_ext_suspend_completion() will eventually
3955      // timeout, but that takes time. Making this wait a suspend-
3956      // equivalent condition solves that timeout problem.
3957      //
3958      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3959                         Mutex::_as_suspend_equivalent_flag);
3960  }
3961
3962  // Hang forever on exit if we are reporting an error.
3963  if (ShowMessageBoxOnError && is_error_reported()) {
3964    os::infinite_sleep();
3965  }
3966  os::wait_for_keypress_at_exit();
3967
3968  if (JDK_Version::is_jdk12x_version()) {
3969    // We are the last thread running, so check if finalizers should be run.
3970    // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3971    HandleMark rm(thread);
3972    Universe::run_finalizers_on_exit();
3973  } else {
3974    // run Java level shutdown hooks
3975    thread->invoke_shutdown_hooks();
3976  }
3977
3978  before_exit(thread);
3979
3980  thread->exit(true);
3981
3982  // Stop VM thread.
3983  {
3984    // 4945125 The vm thread comes to a safepoint during exit.
3985    // GC vm_operations can get caught at the safepoint, and the
3986    // heap is unparseable if they are caught. Grab the Heap_lock
3987    // to prevent this. The GC vm_operations will not be able to
3988    // queue until after the vm thread is dead.
3989    // After this point, we'll never emerge out of the safepoint before
3990    // the VM exits, so concurrent GC threads do not need to be explicitly
3991    // stopped; they remain inactive until the process exits.
3992    // Note: some concurrent G1 threads may be running during a safepoint,
3993    // but these will not be accessing the heap, just some G1-specific side
3994    // data structures that are not accessed by any other threads but them
3995    // after this point in a terminal safepoint.
3996
3997    MutexLocker ml(Heap_lock);
3998
3999    VMThread::wait_for_vm_thread_exit();
4000    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4001    VMThread::destroy();
4002  }
4003
4004  // clean up ideal graph printers
4005#if defined(COMPILER2) && !defined(PRODUCT)
4006  IdealGraphPrinter::clean_up();
4007#endif
4008
4009  // Now, all Java threads are gone except daemon threads. Daemon threads
4010  // running Java code or in VM are stopped by the Safepoint. However,
4011  // daemon threads executing native code are still running.  But they
4012  // will be stopped at native=>Java/VM barriers. Note that we can't
4013  // simply kill or suspend them, as it is inherently deadlock-prone.
4014
4015#ifndef PRODUCT
4016  // disable function tracing at JNI/JVM barriers
4017  TraceJNICalls = false;
4018  TraceJVMCalls = false;
4019  TraceRuntimeCalls = false;
4020#endif
4021
4022  VM_Exit::set_vm_exited();
4023
4024  notify_vm_shutdown();
4025
4026  delete thread;
4027
4028  // exit_globals() will delete tty
4029  exit_globals();
4030
4031  return true;
4032}
4033
4034
4035jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4036  if (version == JNI_VERSION_1_1) return JNI_TRUE;
4037  return is_supported_jni_version(version);
4038}
4039
4040
4041jboolean Threads::is_supported_jni_version(jint version) {
4042  if (version == JNI_VERSION_1_2) return JNI_TRUE;
4043  if (version == JNI_VERSION_1_4) return JNI_TRUE;
4044  if (version == JNI_VERSION_1_6) return JNI_TRUE;
4045  if (version == JNI_VERSION_1_8) return JNI_TRUE;
4046  return JNI_FALSE;
4047}
4048
4049
4050void Threads::add(JavaThread* p, bool force_daemon) {
4051  // The threads lock must be owned at this point
4052  assert_locked_or_safepoint(Threads_lock);
4053
4054  // See the comment for this method in thread.hpp for its purpose and
4055  // why it is called here.
4056  p->initialize_queues();
4057  p->set_next(_thread_list);
4058  _thread_list = p;
4059  _number_of_threads++;
4060  oop threadObj = p->threadObj();
4061  bool daemon = true;
4062  // Bootstrapping problem: threadObj can be null for initial
4063  // JavaThread (or for threads attached via JNI)
4064  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4065    _number_of_non_daemon_threads++;
4066    daemon = false;
4067  }
4068
4069  p->set_safepoint_visible(true);
4070
4071  ThreadService::add_thread(p, daemon);
4072
4073  // Possible GC point.
4074  Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4075}
4076
4077void Threads::remove(JavaThread* p) {
4078  // Extra scope needed for Thread_lock, so we can check
4079  // that we do not remove thread without safepoint code notice
4080  { MutexLocker ml(Threads_lock);
4081
4082    assert(includes(p), "p must be present");
4083
4084    JavaThread* current = _thread_list;
4085    JavaThread* prev    = NULL;
4086
4087    while (current != p) {
4088      prev    = current;
4089      current = current->next();
4090    }
4091
4092    if (prev) {
4093      prev->set_next(current->next());
4094    } else {
4095      _thread_list = p->next();
4096    }
4097    _number_of_threads--;
4098    oop threadObj = p->threadObj();
4099    bool daemon = true;
4100    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4101      _number_of_non_daemon_threads--;
4102      daemon = false;
4103
4104      // Only one thread left, do a notify on the Threads_lock so a thread waiting
4105      // on destroy_vm will wake up.
4106      if (number_of_non_daemon_threads() == 1)
4107        Threads_lock->notify_all();
4108    }
4109    ThreadService::remove_thread(p, daemon);
4110
4111    // Make sure that safepoint code disregard this thread. This is needed since
4112    // the thread might mess around with locks after this point. This can cause it
4113    // to do callbacks into the safepoint code. However, the safepoint code is not aware
4114    // of this thread since it is removed from the queue.
4115    p->set_terminated_value();
4116
4117    // Now, this thread is not visible to safepoint
4118    p->set_safepoint_visible(false);
4119    // once the thread becomes safepoint invisible, we can not use its per-thread
4120    // recorder. And Threads::do_threads() no longer walks this thread, so we have
4121    // to release its per-thread recorder here.
4122    MemTracker::thread_exiting(p);
4123  } // unlock Threads_lock
4124
4125  // Since Events::log uses a lock, we grab it outside the Threads_lock
4126  Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4127}
4128
4129// Threads_lock must be held when this is called (or must be called during a safepoint)
4130bool Threads::includes(JavaThread* p) {
4131  assert(Threads_lock->is_locked(), "sanity check");
4132  ALL_JAVA_THREADS(q) {
4133    if (q == p ) {
4134      return true;
4135    }
4136  }
4137  return false;
4138}
4139
4140// Operations on the Threads list for GC.  These are not explicitly locked,
4141// but the garbage collector must provide a safe context for them to run.
4142// In particular, these things should never be called when the Threads_lock
4143// is held by some other thread. (Note: the Safepoint abstraction also
4144// uses the Threads_lock to guarantee this property. It also makes sure that
4145// all threads gets blocked when exiting or starting).
4146
4147void Threads::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
4148  ALL_JAVA_THREADS(p) {
4149    p->oops_do(f, cld_f, cf);
4150  }
4151  VMThread::vm_thread()->oops_do(f, cld_f, cf);
4152}
4153
4154void Threads::possibly_parallel_oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
4155  // Introduce a mechanism allowing parallel threads to claim threads as
4156  // root groups.  Overhead should be small enough to use all the time,
4157  // even in sequential code.
4158  SharedHeap* sh = SharedHeap::heap();
4159  // Cannot yet substitute active_workers for n_par_threads
4160  // because of G1CollectedHeap::verify() use of
4161  // SharedHeap::process_strong_roots().  n_par_threads == 0 will
4162  // turn off parallelism in process_strong_roots while active_workers
4163  // is being used for parallelism elsewhere.
4164  bool is_par = sh->n_par_threads() > 0;
4165  assert(!is_par ||
4166         (SharedHeap::heap()->n_par_threads() ==
4167          SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4168  int cp = SharedHeap::heap()->strong_roots_parity();
4169  ALL_JAVA_THREADS(p) {
4170    if (p->claim_oops_do(is_par, cp)) {
4171      p->oops_do(f, cld_f, cf);
4172    }
4173  }
4174  VMThread* vmt = VMThread::vm_thread();
4175  if (vmt->claim_oops_do(is_par, cp)) {
4176    vmt->oops_do(f, cld_f, cf);
4177  }
4178}
4179
4180#if INCLUDE_ALL_GCS
4181// Used by ParallelScavenge
4182void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4183  ALL_JAVA_THREADS(p) {
4184    q->enqueue(new ThreadRootsTask(p));
4185  }
4186  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4187}
4188
4189// Used by Parallel Old
4190void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4191  ALL_JAVA_THREADS(p) {
4192    q->enqueue(new ThreadRootsMarkingTask(p));
4193  }
4194  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4195}
4196#endif // INCLUDE_ALL_GCS
4197
4198void Threads::nmethods_do(CodeBlobClosure* cf) {
4199  ALL_JAVA_THREADS(p) {
4200    p->nmethods_do(cf);
4201  }
4202  VMThread::vm_thread()->nmethods_do(cf);
4203}
4204
4205void Threads::metadata_do(void f(Metadata*)) {
4206  ALL_JAVA_THREADS(p) {
4207    p->metadata_do(f);
4208  }
4209}
4210
4211void Threads::gc_epilogue() {
4212  ALL_JAVA_THREADS(p) {
4213    p->gc_epilogue();
4214  }
4215}
4216
4217void Threads::gc_prologue() {
4218  ALL_JAVA_THREADS(p) {
4219    p->gc_prologue();
4220  }
4221}
4222
4223void Threads::deoptimized_wrt_marked_nmethods() {
4224  ALL_JAVA_THREADS(p) {
4225    p->deoptimized_wrt_marked_nmethods();
4226  }
4227}
4228
4229
4230// Get count Java threads that are waiting to enter the specified monitor.
4231GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4232  address monitor, bool doLock) {
4233  assert(doLock || SafepointSynchronize::is_at_safepoint(),
4234    "must grab Threads_lock or be at safepoint");
4235  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4236
4237  int i = 0;
4238  {
4239    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4240    ALL_JAVA_THREADS(p) {
4241      if (p->is_Compiler_thread()) continue;
4242
4243      address pending = (address)p->current_pending_monitor();
4244      if (pending == monitor) {             // found a match
4245        if (i < count) result->append(p);   // save the first count matches
4246        i++;
4247      }
4248    }
4249  }
4250  return result;
4251}
4252
4253
4254JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4255  assert(doLock ||
4256         Threads_lock->owned_by_self() ||
4257         SafepointSynchronize::is_at_safepoint(),
4258         "must grab Threads_lock or be at safepoint");
4259
4260  // NULL owner means not locked so we can skip the search
4261  if (owner == NULL) return NULL;
4262
4263  {
4264    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4265    ALL_JAVA_THREADS(p) {
4266      // first, see if owner is the address of a Java thread
4267      if (owner == (address)p) return p;
4268    }
4269  }
4270  // Cannot assert on lack of success here since this function may be
4271  // used by code that is trying to report useful problem information
4272  // like deadlock detection.
4273  if (UseHeavyMonitors) return NULL;
4274
4275  //
4276  // If we didn't find a matching Java thread and we didn't force use of
4277  // heavyweight monitors, then the owner is the stack address of the
4278  // Lock Word in the owning Java thread's stack.
4279  //
4280  JavaThread* the_owner = NULL;
4281  {
4282    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4283    ALL_JAVA_THREADS(q) {
4284      if (q->is_lock_owned(owner)) {
4285        the_owner = q;
4286        break;
4287      }
4288    }
4289  }
4290  // cannot assert on lack of success here; see above comment
4291  return the_owner;
4292}
4293
4294// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4295void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4296  char buf[32];
4297  st->print_cr(os::local_time_string(buf, sizeof(buf)));
4298
4299  st->print_cr("Full thread dump %s (%s %s):",
4300                Abstract_VM_Version::vm_name(),
4301                Abstract_VM_Version::vm_release(),
4302                Abstract_VM_Version::vm_info_string()
4303               );
4304  st->cr();
4305
4306#if INCLUDE_ALL_GCS
4307  // Dump concurrent locks
4308  ConcurrentLocksDump concurrent_locks;
4309  if (print_concurrent_locks) {
4310    concurrent_locks.dump_at_safepoint();
4311  }
4312#endif // INCLUDE_ALL_GCS
4313
4314  ALL_JAVA_THREADS(p) {
4315    ResourceMark rm;
4316    p->print_on(st);
4317    if (print_stacks) {
4318      if (internal_format) {
4319        p->trace_stack();
4320      } else {
4321        p->print_stack_on(st);
4322      }
4323    }
4324    st->cr();
4325#if INCLUDE_ALL_GCS
4326    if (print_concurrent_locks) {
4327      concurrent_locks.print_locks_on(p, st);
4328    }
4329#endif // INCLUDE_ALL_GCS
4330  }
4331
4332  VMThread::vm_thread()->print_on(st);
4333  st->cr();
4334  Universe::heap()->print_gc_threads_on(st);
4335  WatcherThread* wt = WatcherThread::watcher_thread();
4336  if (wt != NULL) {
4337    wt->print_on(st);
4338    st->cr();
4339  }
4340  CompileBroker::print_compiler_threads_on(st);
4341  st->flush();
4342}
4343
4344// Threads::print_on_error() is called by fatal error handler. It's possible
4345// that VM is not at safepoint and/or current thread is inside signal handler.
4346// Don't print stack trace, as the stack may not be walkable. Don't allocate
4347// memory (even in resource area), it might deadlock the error handler.
4348void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4349  bool found_current = false;
4350  st->print_cr("Java Threads: ( => current thread )");
4351  ALL_JAVA_THREADS(thread) {
4352    bool is_current = (current == thread);
4353    found_current = found_current || is_current;
4354
4355    st->print("%s", is_current ? "=>" : "  ");
4356
4357    st->print(PTR_FORMAT, thread);
4358    st->print(" ");
4359    thread->print_on_error(st, buf, buflen);
4360    st->cr();
4361  }
4362  st->cr();
4363
4364  st->print_cr("Other Threads:");
4365  if (VMThread::vm_thread()) {
4366    bool is_current = (current == VMThread::vm_thread());
4367    found_current = found_current || is_current;
4368    st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4369
4370    st->print(PTR_FORMAT, VMThread::vm_thread());
4371    st->print(" ");
4372    VMThread::vm_thread()->print_on_error(st, buf, buflen);
4373    st->cr();
4374  }
4375  WatcherThread* wt = WatcherThread::watcher_thread();
4376  if (wt != NULL) {
4377    bool is_current = (current == wt);
4378    found_current = found_current || is_current;
4379    st->print("%s", is_current ? "=>" : "  ");
4380
4381    st->print(PTR_FORMAT, wt);
4382    st->print(" ");
4383    wt->print_on_error(st, buf, buflen);
4384    st->cr();
4385  }
4386  if (!found_current) {
4387    st->cr();
4388    st->print("=>" PTR_FORMAT " (exited) ", current);
4389    current->print_on_error(st, buf, buflen);
4390    st->cr();
4391  }
4392}
4393
4394// Internal SpinLock and Mutex
4395// Based on ParkEvent
4396
4397// Ad-hoc mutual exclusion primitives: SpinLock and Mux
4398//
4399// We employ SpinLocks _only for low-contention, fixed-length
4400// short-duration critical sections where we're concerned
4401// about native mutex_t or HotSpot Mutex:: latency.
4402// The mux construct provides a spin-then-block mutual exclusion
4403// mechanism.
4404//
4405// Testing has shown that contention on the ListLock guarding gFreeList
4406// is common.  If we implement ListLock as a simple SpinLock it's common
4407// for the JVM to devolve to yielding with little progress.  This is true
4408// despite the fact that the critical sections protected by ListLock are
4409// extremely short.
4410//
4411// TODO-FIXME: ListLock should be of type SpinLock.
4412// We should make this a 1st-class type, integrated into the lock
4413// hierarchy as leaf-locks.  Critically, the SpinLock structure
4414// should have sufficient padding to avoid false-sharing and excessive
4415// cache-coherency traffic.
4416
4417
4418typedef volatile int SpinLockT ;
4419
4420void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4421  if (Atomic::cmpxchg (1, adr, 0) == 0) {
4422     return ;   // normal fast-path return
4423  }
4424
4425  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4426  TEVENT (SpinAcquire - ctx) ;
4427  int ctr = 0 ;
4428  int Yields = 0 ;
4429  for (;;) {
4430     while (*adr != 0) {
4431        ++ctr ;
4432        if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4433           if (Yields > 5) {
4434             os::naked_short_sleep(1);
4435           } else {
4436             os::NakedYield() ;
4437             ++Yields ;
4438           }
4439        } else {
4440           SpinPause() ;
4441        }
4442     }
4443     if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4444  }
4445}
4446
4447void Thread::SpinRelease (volatile int * adr) {
4448  assert (*adr != 0, "invariant") ;
4449  OrderAccess::fence() ;      // guarantee at least release consistency.
4450  // Roach-motel semantics.
4451  // It's safe if subsequent LDs and STs float "up" into the critical section,
4452  // but prior LDs and STs within the critical section can't be allowed
4453  // to reorder or float past the ST that releases the lock.
4454  *adr = 0 ;
4455}
4456
4457// muxAcquire and muxRelease:
4458//
4459// *  muxAcquire and muxRelease support a single-word lock-word construct.
4460//    The LSB of the word is set IFF the lock is held.
4461//    The remainder of the word points to the head of a singly-linked list
4462//    of threads blocked on the lock.
4463//
4464// *  The current implementation of muxAcquire-muxRelease uses its own
4465//    dedicated Thread._MuxEvent instance.  If we're interested in
4466//    minimizing the peak number of extant ParkEvent instances then
4467//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4468//    as certain invariants were satisfied.  Specifically, care would need
4469//    to be taken with regards to consuming unpark() "permits".
4470//    A safe rule of thumb is that a thread would never call muxAcquire()
4471//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4472//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4473//    consume an unpark() permit intended for monitorenter, for instance.
4474//    One way around this would be to widen the restricted-range semaphore
4475//    implemented in park().  Another alternative would be to provide
4476//    multiple instances of the PlatformEvent() for each thread.  One
4477//    instance would be dedicated to muxAcquire-muxRelease, for instance.
4478//
4479// *  Usage:
4480//    -- Only as leaf locks
4481//    -- for short-term locking only as muxAcquire does not perform
4482//       thread state transitions.
4483//
4484// Alternatives:
4485// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4486//    but with parking or spin-then-park instead of pure spinning.
4487// *  Use Taura-Oyama-Yonenzawa locks.
4488// *  It's possible to construct a 1-0 lock if we encode the lockword as
4489//    (List,LockByte).  Acquire will CAS the full lockword while Release
4490//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4491//    acquiring threads use timers (ParkTimed) to detect and recover from
4492//    the stranding window.  Thread/Node structures must be aligned on 256-byte
4493//    boundaries by using placement-new.
4494// *  Augment MCS with advisory back-link fields maintained with CAS().
4495//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4496//    The validity of the backlinks must be ratified before we trust the value.
4497//    If the backlinks are invalid the exiting thread must back-track through the
4498//    the forward links, which are always trustworthy.
4499// *  Add a successor indication.  The LockWord is currently encoded as
4500//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4501//    to provide the usual futile-wakeup optimization.
4502//    See RTStt for details.
4503// *  Consider schedctl.sc_nopreempt to cover the critical section.
4504//
4505
4506
4507typedef volatile intptr_t MutexT ;      // Mux Lock-word
4508enum MuxBits { LOCKBIT = 1 } ;
4509
4510void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4511  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4512  if (w == 0) return ;
4513  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4514     return ;
4515  }
4516
4517  TEVENT (muxAcquire - Contention) ;
4518  ParkEvent * const Self = Thread::current()->_MuxEvent ;
4519  assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4520  for (;;) {
4521     int its = (os::is_MP() ? 100 : 0) + 1 ;
4522
4523     // Optional spin phase: spin-then-park strategy
4524     while (--its >= 0) {
4525       w = *Lock ;
4526       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4527          return ;
4528       }
4529     }
4530
4531     Self->reset() ;
4532     Self->OnList = intptr_t(Lock) ;
4533     // The following fence() isn't _strictly necessary as the subsequent
4534     // CAS() both serializes execution and ratifies the fetched *Lock value.
4535     OrderAccess::fence();
4536     for (;;) {
4537        w = *Lock ;
4538        if ((w & LOCKBIT) == 0) {
4539            if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4540                Self->OnList = 0 ;   // hygiene - allows stronger asserts
4541                return ;
4542            }
4543            continue ;      // Interference -- *Lock changed -- Just retry
4544        }
4545        assert (w & LOCKBIT, "invariant") ;
4546        Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4547        if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4548     }
4549
4550     while (Self->OnList != 0) {
4551        Self->park() ;
4552     }
4553  }
4554}
4555
4556void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4557  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4558  if (w == 0) return ;
4559  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4560    return ;
4561  }
4562
4563  TEVENT (muxAcquire - Contention) ;
4564  ParkEvent * ReleaseAfter = NULL ;
4565  if (ev == NULL) {
4566    ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4567  }
4568  assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4569  for (;;) {
4570    guarantee (ev->OnList == 0, "invariant") ;
4571    int its = (os::is_MP() ? 100 : 0) + 1 ;
4572
4573    // Optional spin phase: spin-then-park strategy
4574    while (--its >= 0) {
4575      w = *Lock ;
4576      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4577        if (ReleaseAfter != NULL) {
4578          ParkEvent::Release (ReleaseAfter) ;
4579        }
4580        return ;
4581      }
4582    }
4583
4584    ev->reset() ;
4585    ev->OnList = intptr_t(Lock) ;
4586    // The following fence() isn't _strictly necessary as the subsequent
4587    // CAS() both serializes execution and ratifies the fetched *Lock value.
4588    OrderAccess::fence();
4589    for (;;) {
4590      w = *Lock ;
4591      if ((w & LOCKBIT) == 0) {
4592        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4593          ev->OnList = 0 ;
4594          // We call ::Release while holding the outer lock, thus
4595          // artificially lengthening the critical section.
4596          // Consider deferring the ::Release() until the subsequent unlock(),
4597          // after we've dropped the outer lock.
4598          if (ReleaseAfter != NULL) {
4599            ParkEvent::Release (ReleaseAfter) ;
4600          }
4601          return ;
4602        }
4603        continue ;      // Interference -- *Lock changed -- Just retry
4604      }
4605      assert (w & LOCKBIT, "invariant") ;
4606      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4607      if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4608    }
4609
4610    while (ev->OnList != 0) {
4611      ev->park() ;
4612    }
4613  }
4614}
4615
4616// Release() must extract a successor from the list and then wake that thread.
4617// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4618// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4619// Release() would :
4620// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4621// (B) Extract a successor from the private list "in-hand"
4622// (C) attempt to CAS() the residual back into *Lock over null.
4623//     If there were any newly arrived threads and the CAS() would fail.
4624//     In that case Release() would detach the RATs, re-merge the list in-hand
4625//     with the RATs and repeat as needed.  Alternately, Release() might
4626//     detach and extract a successor, but then pass the residual list to the wakee.
4627//     The wakee would be responsible for reattaching and remerging before it
4628//     competed for the lock.
4629//
4630// Both "pop" and DMR are immune from ABA corruption -- there can be
4631// multiple concurrent pushers, but only one popper or detacher.
4632// This implementation pops from the head of the list.  This is unfair,
4633// but tends to provide excellent throughput as hot threads remain hot.
4634// (We wake recently run threads first).
4635
4636void Thread::muxRelease (volatile intptr_t * Lock)  {
4637  for (;;) {
4638    const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4639    assert (w & LOCKBIT, "invariant") ;
4640    if (w == LOCKBIT) return ;
4641    ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4642    assert (List != NULL, "invariant") ;
4643    assert (List->OnList == intptr_t(Lock), "invariant") ;
4644    ParkEvent * nxt = List->ListNext ;
4645
4646    // The following CAS() releases the lock and pops the head element.
4647    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4648      continue ;
4649    }
4650    List->OnList = 0 ;
4651    OrderAccess::fence() ;
4652    List->unpark () ;
4653    return ;
4654  }
4655}
4656
4657
4658void Threads::verify() {
4659  ALL_JAVA_THREADS(p) {
4660    p->verify();
4661  }
4662  VMThread* thread = VMThread::vm_thread();
4663  if (thread != NULL) thread->verify();
4664}
4665