thread.cpp revision 5959:438e13354adf
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/scopeDesc.hpp"
31#include "compiler/compileBroker.hpp"
32#include "interpreter/interpreter.hpp"
33#include "interpreter/linkResolver.hpp"
34#include "interpreter/oopMapCache.hpp"
35#include "jvmtifiles/jvmtiEnv.hpp"
36#include "memory/gcLocker.inline.hpp"
37#include "memory/metaspaceShared.hpp"
38#include "memory/oopFactory.hpp"
39#include "memory/universe.inline.hpp"
40#include "oops/instanceKlass.hpp"
41#include "oops/objArrayOop.hpp"
42#include "oops/oop.inline.hpp"
43#include "oops/symbol.hpp"
44#include "prims/jvm_misc.hpp"
45#include "prims/jvmtiExport.hpp"
46#include "prims/jvmtiThreadState.hpp"
47#include "prims/privilegedStack.hpp"
48#include "runtime/arguments.hpp"
49#include "runtime/biasedLocking.hpp"
50#include "runtime/deoptimization.hpp"
51#include "runtime/fprofiler.hpp"
52#include "runtime/frame.inline.hpp"
53#include "runtime/init.hpp"
54#include "runtime/interfaceSupport.hpp"
55#include "runtime/java.hpp"
56#include "runtime/javaCalls.hpp"
57#include "runtime/jniPeriodicChecker.hpp"
58#include "runtime/memprofiler.hpp"
59#include "runtime/mutexLocker.hpp"
60#include "runtime/objectMonitor.hpp"
61#include "runtime/osThread.hpp"
62#include "runtime/safepoint.hpp"
63#include "runtime/sharedRuntime.hpp"
64#include "runtime/statSampler.hpp"
65#include "runtime/stubRoutines.hpp"
66#include "runtime/task.hpp"
67#include "runtime/thread.inline.hpp"
68#include "runtime/threadCritical.hpp"
69#include "runtime/threadLocalStorage.hpp"
70#include "runtime/vframe.hpp"
71#include "runtime/vframeArray.hpp"
72#include "runtime/vframe_hp.hpp"
73#include "runtime/vmThread.hpp"
74#include "runtime/vm_operations.hpp"
75#include "services/attachListener.hpp"
76#include "services/management.hpp"
77#include "services/memTracker.hpp"
78#include "services/threadService.hpp"
79#include "trace/tracing.hpp"
80#include "trace/traceMacros.hpp"
81#include "utilities/defaultStream.hpp"
82#include "utilities/dtrace.hpp"
83#include "utilities/events.hpp"
84#include "utilities/preserveException.hpp"
85#include "utilities/macros.hpp"
86#ifdef TARGET_OS_FAMILY_linux
87# include "os_linux.inline.hpp"
88#endif
89#ifdef TARGET_OS_FAMILY_solaris
90# include "os_solaris.inline.hpp"
91#endif
92#ifdef TARGET_OS_FAMILY_windows
93# include "os_windows.inline.hpp"
94#endif
95#ifdef TARGET_OS_FAMILY_bsd
96# include "os_bsd.inline.hpp"
97#endif
98#if INCLUDE_ALL_GCS
99#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
100#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
101#include "gc_implementation/parallelScavenge/pcTasks.hpp"
102#endif // INCLUDE_ALL_GCS
103#ifdef COMPILER1
104#include "c1/c1_Compiler.hpp"
105#endif
106#ifdef COMPILER2
107#include "opto/c2compiler.hpp"
108#include "opto/idealGraphPrinter.hpp"
109#endif
110
111#ifdef DTRACE_ENABLED
112
113// Only bother with this argument setup if dtrace is available
114
115#ifndef USDT2
116HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
117HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
118HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
119  intptr_t, intptr_t, bool);
120HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
121  intptr_t, intptr_t, bool);
122
123#define DTRACE_THREAD_PROBE(probe, javathread)                             \
124  {                                                                        \
125    ResourceMark rm(this);                                                 \
126    int len = 0;                                                           \
127    const char* name = (javathread)->get_thread_name();                    \
128    len = strlen(name);                                                    \
129    HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
130      name, len,                                                           \
131      java_lang_Thread::thread_id((javathread)->threadObj()),              \
132      (javathread)->osthread()->thread_id(),                               \
133      java_lang_Thread::is_daemon((javathread)->threadObj()));             \
134  }
135
136#else /* USDT2 */
137
138#define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
139#define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
140
141#define DTRACE_THREAD_PROBE(probe, javathread)                             \
142  {                                                                        \
143    ResourceMark rm(this);                                                 \
144    int len = 0;                                                           \
145    const char* name = (javathread)->get_thread_name();                    \
146    len = strlen(name);                                                    \
147    HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
148      (char *) name, len,                                                           \
149      java_lang_Thread::thread_id((javathread)->threadObj()),              \
150      (uintptr_t) (javathread)->osthread()->thread_id(),                               \
151      java_lang_Thread::is_daemon((javathread)->threadObj()));             \
152  }
153
154#endif /* USDT2 */
155
156#else //  ndef DTRACE_ENABLED
157
158#define DTRACE_THREAD_PROBE(probe, javathread)
159
160#endif // ndef DTRACE_ENABLED
161
162
163// Class hierarchy
164// - Thread
165//   - VMThread
166//   - WatcherThread
167//   - ConcurrentMarkSweepThread
168//   - JavaThread
169//     - CompilerThread
170
171// ======= Thread ========
172// Support for forcing alignment of thread objects for biased locking
173void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
174  if (UseBiasedLocking) {
175    const int alignment = markOopDesc::biased_lock_alignment;
176    size_t aligned_size = size + (alignment - sizeof(intptr_t));
177    void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
178                                          : AllocateHeap(aligned_size, flags, CURRENT_PC,
179                                              AllocFailStrategy::RETURN_NULL);
180    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
181    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
182           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
183           "JavaThread alignment code overflowed allocated storage");
184    if (TraceBiasedLocking) {
185      if (aligned_addr != real_malloc_addr)
186        tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
187                      real_malloc_addr, aligned_addr);
188    }
189    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
190    return aligned_addr;
191  } else {
192    return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
193                       : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
194  }
195}
196
197void Thread::operator delete(void* p) {
198  if (UseBiasedLocking) {
199    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
200    FreeHeap(real_malloc_addr, mtThread);
201  } else {
202    FreeHeap(p, mtThread);
203  }
204}
205
206
207// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
208// JavaThread
209
210
211Thread::Thread() {
212  // stack and get_thread
213  set_stack_base(NULL);
214  set_stack_size(0);
215  set_self_raw_id(0);
216  set_lgrp_id(-1);
217
218  // allocated data structures
219  set_osthread(NULL);
220  set_resource_area(new (mtThread)ResourceArea());
221  set_handle_area(new (mtThread) HandleArea(NULL));
222  set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
223  set_active_handles(NULL);
224  set_free_handle_block(NULL);
225  set_last_handle_mark(NULL);
226
227  // This initial value ==> never claimed.
228  _oops_do_parity = 0;
229
230  // the handle mark links itself to last_handle_mark
231  new HandleMark(this);
232
233  // plain initialization
234  debug_only(_owned_locks = NULL;)
235  debug_only(_allow_allocation_count = 0;)
236  NOT_PRODUCT(_allow_safepoint_count = 0;)
237  NOT_PRODUCT(_skip_gcalot = false;)
238  CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
239  _jvmti_env_iteration_count = 0;
240  set_allocated_bytes(0);
241  _vm_operation_started_count = 0;
242  _vm_operation_completed_count = 0;
243  _current_pending_monitor = NULL;
244  _current_pending_monitor_is_from_java = true;
245  _current_waiting_monitor = NULL;
246  _num_nested_signal = 0;
247  omFreeList = NULL ;
248  omFreeCount = 0 ;
249  omFreeProvision = 32 ;
250  omInUseList = NULL ;
251  omInUseCount = 0 ;
252
253#ifdef ASSERT
254  _visited_for_critical_count = false;
255#endif
256
257  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
258  _suspend_flags = 0;
259
260  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
261  _hashStateX = os::random() ;
262  _hashStateY = 842502087 ;
263  _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
264  _hashStateW = 273326509 ;
265
266  _OnTrap   = 0 ;
267  _schedctl = NULL ;
268  _Stalled  = 0 ;
269  _TypeTag  = 0x2BAD ;
270
271  // Many of the following fields are effectively final - immutable
272  // Note that nascent threads can't use the Native Monitor-Mutex
273  // construct until the _MutexEvent is initialized ...
274  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
275  // we might instead use a stack of ParkEvents that we could provision on-demand.
276  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
277  // and ::Release()
278  _ParkEvent   = ParkEvent::Allocate (this) ;
279  _SleepEvent  = ParkEvent::Allocate (this) ;
280  _MutexEvent  = ParkEvent::Allocate (this) ;
281  _MuxEvent    = ParkEvent::Allocate (this) ;
282
283#ifdef CHECK_UNHANDLED_OOPS
284  if (CheckUnhandledOops) {
285    _unhandled_oops = new UnhandledOops(this);
286  }
287#endif // CHECK_UNHANDLED_OOPS
288#ifdef ASSERT
289  if (UseBiasedLocking) {
290    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
291    assert(this == _real_malloc_address ||
292           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
293           "bug in forced alignment of thread objects");
294  }
295#endif /* ASSERT */
296}
297
298void Thread::initialize_thread_local_storage() {
299  // Note: Make sure this method only calls
300  // non-blocking operations. Otherwise, it might not work
301  // with the thread-startup/safepoint interaction.
302
303  // During Java thread startup, safepoint code should allow this
304  // method to complete because it may need to allocate memory to
305  // store information for the new thread.
306
307  // initialize structure dependent on thread local storage
308  ThreadLocalStorage::set_thread(this);
309}
310
311void Thread::record_stack_base_and_size() {
312  set_stack_base(os::current_stack_base());
313  set_stack_size(os::current_stack_size());
314  if (is_Java_thread()) {
315    ((JavaThread*) this)->set_stack_overflow_limit();
316  }
317  // CR 7190089: on Solaris, primordial thread's stack is adjusted
318  // in initialize_thread(). Without the adjustment, stack size is
319  // incorrect if stack is set to unlimited (ulimit -s unlimited).
320  // So far, only Solaris has real implementation of initialize_thread().
321  //
322  // set up any platform-specific state.
323  os::initialize_thread(this);
324
325#if INCLUDE_NMT
326  // record thread's native stack, stack grows downward
327  address stack_low_addr = stack_base() - stack_size();
328  MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
329      CURRENT_PC);
330#endif // INCLUDE_NMT
331}
332
333
334Thread::~Thread() {
335  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
336  ObjectSynchronizer::omFlush (this) ;
337
338  // stack_base can be NULL if the thread is never started or exited before
339  // record_stack_base_and_size called. Although, we would like to ensure
340  // that all started threads do call record_stack_base_and_size(), there is
341  // not proper way to enforce that.
342#if INCLUDE_NMT
343  if (_stack_base != NULL) {
344    address low_stack_addr = stack_base() - stack_size();
345    MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
346#ifdef ASSERT
347    set_stack_base(NULL);
348#endif
349  }
350#endif // INCLUDE_NMT
351
352  // deallocate data structures
353  delete resource_area();
354  // since the handle marks are using the handle area, we have to deallocated the root
355  // handle mark before deallocating the thread's handle area,
356  assert(last_handle_mark() != NULL, "check we have an element");
357  delete last_handle_mark();
358  assert(last_handle_mark() == NULL, "check we have reached the end");
359
360  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
361  // We NULL out the fields for good hygiene.
362  ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
363  ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
364  ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
365  ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
366
367  delete handle_area();
368  delete metadata_handles();
369
370  // osthread() can be NULL, if creation of thread failed.
371  if (osthread() != NULL) os::free_thread(osthread());
372
373  delete _SR_lock;
374
375  // clear thread local storage if the Thread is deleting itself
376  if (this == Thread::current()) {
377    ThreadLocalStorage::set_thread(NULL);
378  } else {
379    // In the case where we're not the current thread, invalidate all the
380    // caches in case some code tries to get the current thread or the
381    // thread that was destroyed, and gets stale information.
382    ThreadLocalStorage::invalidate_all();
383  }
384  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
385}
386
387// NOTE: dummy function for assertion purpose.
388void Thread::run() {
389  ShouldNotReachHere();
390}
391
392#ifdef ASSERT
393// Private method to check for dangling thread pointer
394void check_for_dangling_thread_pointer(Thread *thread) {
395 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
396         "possibility of dangling Thread pointer");
397}
398#endif
399
400
401#ifndef PRODUCT
402// Tracing method for basic thread operations
403void Thread::trace(const char* msg, const Thread* const thread) {
404  if (!TraceThreadEvents) return;
405  ResourceMark rm;
406  ThreadCritical tc;
407  const char *name = "non-Java thread";
408  int prio = -1;
409  if (thread->is_Java_thread()
410      && !thread->is_Compiler_thread()) {
411    // The Threads_lock must be held to get information about
412    // this thread but may not be in some situations when
413    // tracing  thread events.
414    bool release_Threads_lock = false;
415    if (!Threads_lock->owned_by_self()) {
416      Threads_lock->lock();
417      release_Threads_lock = true;
418    }
419    JavaThread* jt = (JavaThread *)thread;
420    name = (char *)jt->get_thread_name();
421    oop thread_oop = jt->threadObj();
422    if (thread_oop != NULL) {
423      prio = java_lang_Thread::priority(thread_oop);
424    }
425    if (release_Threads_lock) {
426      Threads_lock->unlock();
427    }
428  }
429  tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
430}
431#endif
432
433
434ThreadPriority Thread::get_priority(const Thread* const thread) {
435  trace("get priority", thread);
436  ThreadPriority priority;
437  // Can return an error!
438  (void)os::get_priority(thread, priority);
439  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
440  return priority;
441}
442
443void Thread::set_priority(Thread* thread, ThreadPriority priority) {
444  trace("set priority", thread);
445  debug_only(check_for_dangling_thread_pointer(thread);)
446  // Can return an error!
447  (void)os::set_priority(thread, priority);
448}
449
450
451void Thread::start(Thread* thread) {
452  trace("start", thread);
453  // Start is different from resume in that its safety is guaranteed by context or
454  // being called from a Java method synchronized on the Thread object.
455  if (!DisableStartThread) {
456    if (thread->is_Java_thread()) {
457      // Initialize the thread state to RUNNABLE before starting this thread.
458      // Can not set it after the thread started because we do not know the
459      // exact thread state at that time. It could be in MONITOR_WAIT or
460      // in SLEEPING or some other state.
461      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
462                                          java_lang_Thread::RUNNABLE);
463    }
464    os::start_thread(thread);
465  }
466}
467
468// Enqueue a VM_Operation to do the job for us - sometime later
469void Thread::send_async_exception(oop java_thread, oop java_throwable) {
470  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
471  VMThread::execute(vm_stop);
472}
473
474
475//
476// Check if an external suspend request has completed (or has been
477// cancelled). Returns true if the thread is externally suspended and
478// false otherwise.
479//
480// The bits parameter returns information about the code path through
481// the routine. Useful for debugging:
482//
483// set in is_ext_suspend_completed():
484// 0x00000001 - routine was entered
485// 0x00000010 - routine return false at end
486// 0x00000100 - thread exited (return false)
487// 0x00000200 - suspend request cancelled (return false)
488// 0x00000400 - thread suspended (return true)
489// 0x00001000 - thread is in a suspend equivalent state (return true)
490// 0x00002000 - thread is native and walkable (return true)
491// 0x00004000 - thread is native_trans and walkable (needed retry)
492//
493// set in wait_for_ext_suspend_completion():
494// 0x00010000 - routine was entered
495// 0x00020000 - suspend request cancelled before loop (return false)
496// 0x00040000 - thread suspended before loop (return true)
497// 0x00080000 - suspend request cancelled in loop (return false)
498// 0x00100000 - thread suspended in loop (return true)
499// 0x00200000 - suspend not completed during retry loop (return false)
500//
501
502// Helper class for tracing suspend wait debug bits.
503//
504// 0x00000100 indicates that the target thread exited before it could
505// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
506// 0x00080000 each indicate a cancelled suspend request so they don't
507// count as wait failures either.
508#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
509
510class TraceSuspendDebugBits : public StackObj {
511 private:
512  JavaThread * jt;
513  bool         is_wait;
514  bool         called_by_wait;  // meaningful when !is_wait
515  uint32_t *   bits;
516
517 public:
518  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
519                        uint32_t *_bits) {
520    jt             = _jt;
521    is_wait        = _is_wait;
522    called_by_wait = _called_by_wait;
523    bits           = _bits;
524  }
525
526  ~TraceSuspendDebugBits() {
527    if (!is_wait) {
528#if 1
529      // By default, don't trace bits for is_ext_suspend_completed() calls.
530      // That trace is very chatty.
531      return;
532#else
533      if (!called_by_wait) {
534        // If tracing for is_ext_suspend_completed() is enabled, then only
535        // trace calls to it from wait_for_ext_suspend_completion()
536        return;
537      }
538#endif
539    }
540
541    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
542      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
543        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
544        ResourceMark rm;
545
546        tty->print_cr(
547            "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
548            jt->get_thread_name(), *bits);
549
550        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
551      }
552    }
553  }
554};
555#undef DEBUG_FALSE_BITS
556
557
558bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
559  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
560
561  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
562  bool do_trans_retry;           // flag to force the retry
563
564  *bits |= 0x00000001;
565
566  do {
567    do_trans_retry = false;
568
569    if (is_exiting()) {
570      // Thread is in the process of exiting. This is always checked
571      // first to reduce the risk of dereferencing a freed JavaThread.
572      *bits |= 0x00000100;
573      return false;
574    }
575
576    if (!is_external_suspend()) {
577      // Suspend request is cancelled. This is always checked before
578      // is_ext_suspended() to reduce the risk of a rogue resume
579      // confusing the thread that made the suspend request.
580      *bits |= 0x00000200;
581      return false;
582    }
583
584    if (is_ext_suspended()) {
585      // thread is suspended
586      *bits |= 0x00000400;
587      return true;
588    }
589
590    // Now that we no longer do hard suspends of threads running
591    // native code, the target thread can be changing thread state
592    // while we are in this routine:
593    //
594    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
595    //
596    // We save a copy of the thread state as observed at this moment
597    // and make our decision about suspend completeness based on the
598    // copy. This closes the race where the thread state is seen as
599    // _thread_in_native_trans in the if-thread_blocked check, but is
600    // seen as _thread_blocked in if-thread_in_native_trans check.
601    JavaThreadState save_state = thread_state();
602
603    if (save_state == _thread_blocked && is_suspend_equivalent()) {
604      // If the thread's state is _thread_blocked and this blocking
605      // condition is known to be equivalent to a suspend, then we can
606      // consider the thread to be externally suspended. This means that
607      // the code that sets _thread_blocked has been modified to do
608      // self-suspension if the blocking condition releases. We also
609      // used to check for CONDVAR_WAIT here, but that is now covered by
610      // the _thread_blocked with self-suspension check.
611      //
612      // Return true since we wouldn't be here unless there was still an
613      // external suspend request.
614      *bits |= 0x00001000;
615      return true;
616    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
617      // Threads running native code will self-suspend on native==>VM/Java
618      // transitions. If its stack is walkable (should always be the case
619      // unless this function is called before the actual java_suspend()
620      // call), then the wait is done.
621      *bits |= 0x00002000;
622      return true;
623    } else if (!called_by_wait && !did_trans_retry &&
624               save_state == _thread_in_native_trans &&
625               frame_anchor()->walkable()) {
626      // The thread is transitioning from thread_in_native to another
627      // thread state. check_safepoint_and_suspend_for_native_trans()
628      // will force the thread to self-suspend. If it hasn't gotten
629      // there yet we may have caught the thread in-between the native
630      // code check above and the self-suspend. Lucky us. If we were
631      // called by wait_for_ext_suspend_completion(), then it
632      // will be doing the retries so we don't have to.
633      //
634      // Since we use the saved thread state in the if-statement above,
635      // there is a chance that the thread has already transitioned to
636      // _thread_blocked by the time we get here. In that case, we will
637      // make a single unnecessary pass through the logic below. This
638      // doesn't hurt anything since we still do the trans retry.
639
640      *bits |= 0x00004000;
641
642      // Once the thread leaves thread_in_native_trans for another
643      // thread state, we break out of this retry loop. We shouldn't
644      // need this flag to prevent us from getting back here, but
645      // sometimes paranoia is good.
646      did_trans_retry = true;
647
648      // We wait for the thread to transition to a more usable state.
649      for (int i = 1; i <= SuspendRetryCount; i++) {
650        // We used to do an "os::yield_all(i)" call here with the intention
651        // that yielding would increase on each retry. However, the parameter
652        // is ignored on Linux which means the yield didn't scale up. Waiting
653        // on the SR_lock below provides a much more predictable scale up for
654        // the delay. It also provides a simple/direct point to check for any
655        // safepoint requests from the VMThread
656
657        // temporarily drops SR_lock while doing wait with safepoint check
658        // (if we're a JavaThread - the WatcherThread can also call this)
659        // and increase delay with each retry
660        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
661
662        // check the actual thread state instead of what we saved above
663        if (thread_state() != _thread_in_native_trans) {
664          // the thread has transitioned to another thread state so
665          // try all the checks (except this one) one more time.
666          do_trans_retry = true;
667          break;
668        }
669      } // end retry loop
670
671
672    }
673  } while (do_trans_retry);
674
675  *bits |= 0x00000010;
676  return false;
677}
678
679//
680// Wait for an external suspend request to complete (or be cancelled).
681// Returns true if the thread is externally suspended and false otherwise.
682//
683bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
684       uint32_t *bits) {
685  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
686                             false /* !called_by_wait */, bits);
687
688  // local flag copies to minimize SR_lock hold time
689  bool is_suspended;
690  bool pending;
691  uint32_t reset_bits;
692
693  // set a marker so is_ext_suspend_completed() knows we are the caller
694  *bits |= 0x00010000;
695
696  // We use reset_bits to reinitialize the bits value at the top of
697  // each retry loop. This allows the caller to make use of any
698  // unused bits for their own marking purposes.
699  reset_bits = *bits;
700
701  {
702    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
703    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
704                                            delay, bits);
705    pending = is_external_suspend();
706  }
707  // must release SR_lock to allow suspension to complete
708
709  if (!pending) {
710    // A cancelled suspend request is the only false return from
711    // is_ext_suspend_completed() that keeps us from entering the
712    // retry loop.
713    *bits |= 0x00020000;
714    return false;
715  }
716
717  if (is_suspended) {
718    *bits |= 0x00040000;
719    return true;
720  }
721
722  for (int i = 1; i <= retries; i++) {
723    *bits = reset_bits;  // reinit to only track last retry
724
725    // We used to do an "os::yield_all(i)" call here with the intention
726    // that yielding would increase on each retry. However, the parameter
727    // is ignored on Linux which means the yield didn't scale up. Waiting
728    // on the SR_lock below provides a much more predictable scale up for
729    // the delay. It also provides a simple/direct point to check for any
730    // safepoint requests from the VMThread
731
732    {
733      MutexLocker ml(SR_lock());
734      // wait with safepoint check (if we're a JavaThread - the WatcherThread
735      // can also call this)  and increase delay with each retry
736      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
737
738      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
739                                              delay, bits);
740
741      // It is possible for the external suspend request to be cancelled
742      // (by a resume) before the actual suspend operation is completed.
743      // Refresh our local copy to see if we still need to wait.
744      pending = is_external_suspend();
745    }
746
747    if (!pending) {
748      // A cancelled suspend request is the only false return from
749      // is_ext_suspend_completed() that keeps us from staying in the
750      // retry loop.
751      *bits |= 0x00080000;
752      return false;
753    }
754
755    if (is_suspended) {
756      *bits |= 0x00100000;
757      return true;
758    }
759  } // end retry loop
760
761  // thread did not suspend after all our retries
762  *bits |= 0x00200000;
763  return false;
764}
765
766#ifndef PRODUCT
767void JavaThread::record_jump(address target, address instr, const char* file, int line) {
768
769  // This should not need to be atomic as the only way for simultaneous
770  // updates is via interrupts. Even then this should be rare or non-existant
771  // and we don't care that much anyway.
772
773  int index = _jmp_ring_index;
774  _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
775  _jmp_ring[index]._target = (intptr_t) target;
776  _jmp_ring[index]._instruction = (intptr_t) instr;
777  _jmp_ring[index]._file = file;
778  _jmp_ring[index]._line = line;
779}
780#endif /* PRODUCT */
781
782// Called by flat profiler
783// Callers have already called wait_for_ext_suspend_completion
784// The assertion for that is currently too complex to put here:
785bool JavaThread::profile_last_Java_frame(frame* _fr) {
786  bool gotframe = false;
787  // self suspension saves needed state.
788  if (has_last_Java_frame() && _anchor.walkable()) {
789     *_fr = pd_last_frame();
790     gotframe = true;
791  }
792  return gotframe;
793}
794
795void Thread::interrupt(Thread* thread) {
796  trace("interrupt", thread);
797  debug_only(check_for_dangling_thread_pointer(thread);)
798  os::interrupt(thread);
799}
800
801bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
802  trace("is_interrupted", thread);
803  debug_only(check_for_dangling_thread_pointer(thread);)
804  // Note:  If clear_interrupted==false, this simply fetches and
805  // returns the value of the field osthread()->interrupted().
806  return os::is_interrupted(thread, clear_interrupted);
807}
808
809
810// GC Support
811bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
812  jint thread_parity = _oops_do_parity;
813  if (thread_parity != strong_roots_parity) {
814    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
815    if (res == thread_parity) {
816      return true;
817    } else {
818      guarantee(res == strong_roots_parity, "Or else what?");
819      assert(SharedHeap::heap()->workers()->active_workers() > 0,
820         "Should only fail when parallel.");
821      return false;
822    }
823  }
824  assert(SharedHeap::heap()->workers()->active_workers() > 0,
825         "Should only fail when parallel.");
826  return false;
827}
828
829void Thread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
830  active_handles()->oops_do(f);
831  // Do oop for ThreadShadow
832  f->do_oop((oop*)&_pending_exception);
833  handle_area()->oops_do(f);
834}
835
836void Thread::nmethods_do(CodeBlobClosure* cf) {
837  // no nmethods in a generic thread...
838}
839
840void Thread::metadata_do(void f(Metadata*)) {
841  if (metadata_handles() != NULL) {
842    for (int i = 0; i< metadata_handles()->length(); i++) {
843      f(metadata_handles()->at(i));
844    }
845  }
846}
847
848void Thread::print_on(outputStream* st) const {
849  // get_priority assumes osthread initialized
850  if (osthread() != NULL) {
851    int os_prio;
852    if (os::get_native_priority(this, &os_prio) == OS_OK) {
853      st->print("os_prio=%d ", os_prio);
854    }
855    st->print("tid=" INTPTR_FORMAT " ", this);
856    osthread()->print_on(st);
857  }
858  debug_only(if (WizardMode) print_owned_locks_on(st);)
859}
860
861// Thread::print_on_error() is called by fatal error handler. Don't use
862// any lock or allocate memory.
863void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
864  if      (is_VM_thread())                  st->print("VMThread");
865  else if (is_Compiler_thread())            st->print("CompilerThread");
866  else if (is_Java_thread())                st->print("JavaThread");
867  else if (is_GC_task_thread())             st->print("GCTaskThread");
868  else if (is_Watcher_thread())             st->print("WatcherThread");
869  else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
870  else st->print("Thread");
871
872  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
873            _stack_base - _stack_size, _stack_base);
874
875  if (osthread()) {
876    st->print(" [id=%d]", osthread()->thread_id());
877  }
878}
879
880#ifdef ASSERT
881void Thread::print_owned_locks_on(outputStream* st) const {
882  Monitor *cur = _owned_locks;
883  if (cur == NULL) {
884    st->print(" (no locks) ");
885  } else {
886    st->print_cr(" Locks owned:");
887    while(cur) {
888      cur->print_on(st);
889      cur = cur->next();
890    }
891  }
892}
893
894static int ref_use_count  = 0;
895
896bool Thread::owns_locks_but_compiled_lock() const {
897  for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
898    if (cur != Compile_lock) return true;
899  }
900  return false;
901}
902
903
904#endif
905
906#ifndef PRODUCT
907
908// The flag: potential_vm_operation notifies if this particular safepoint state could potential
909// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
910// no threads which allow_vm_block's are held
911void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
912    // Check if current thread is allowed to block at a safepoint
913    if (!(_allow_safepoint_count == 0))
914      fatal("Possible safepoint reached by thread that does not allow it");
915    if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
916      fatal("LEAF method calling lock?");
917    }
918
919#ifdef ASSERT
920    if (potential_vm_operation && is_Java_thread()
921        && !Universe::is_bootstrapping()) {
922      // Make sure we do not hold any locks that the VM thread also uses.
923      // This could potentially lead to deadlocks
924      for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
925        // Threads_lock is special, since the safepoint synchronization will not start before this is
926        // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
927        // since it is used to transfer control between JavaThreads and the VMThread
928        // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
929        if ( (cur->allow_vm_block() &&
930              cur != Threads_lock &&
931              cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
932              cur != VMOperationRequest_lock &&
933              cur != VMOperationQueue_lock) ||
934              cur->rank() == Mutex::special) {
935          warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
936        }
937      }
938    }
939
940    if (GCALotAtAllSafepoints) {
941      // We could enter a safepoint here and thus have a gc
942      InterfaceSupport::check_gc_alot();
943    }
944#endif
945}
946#endif
947
948bool Thread::is_in_stack(address adr) const {
949  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
950  address end = os::current_stack_pointer();
951  // Allow non Java threads to call this without stack_base
952  if (_stack_base == NULL) return true;
953  if (stack_base() >= adr && adr >= end) return true;
954
955  return false;
956}
957
958
959// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
960// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
961// used for compilation in the future. If that change is made, the need for these methods
962// should be revisited, and they should be removed if possible.
963
964bool Thread::is_lock_owned(address adr) const {
965  return on_local_stack(adr);
966}
967
968bool Thread::set_as_starting_thread() {
969 // NOTE: this must be called inside the main thread.
970  return os::create_main_thread((JavaThread*)this);
971}
972
973static void initialize_class(Symbol* class_name, TRAPS) {
974  Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
975  InstanceKlass::cast(klass)->initialize(CHECK);
976}
977
978
979// Creates the initial ThreadGroup
980static Handle create_initial_thread_group(TRAPS) {
981  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
982  instanceKlassHandle klass (THREAD, k);
983
984  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
985  {
986    JavaValue result(T_VOID);
987    JavaCalls::call_special(&result,
988                            system_instance,
989                            klass,
990                            vmSymbols::object_initializer_name(),
991                            vmSymbols::void_method_signature(),
992                            CHECK_NH);
993  }
994  Universe::set_system_thread_group(system_instance());
995
996  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
997  {
998    JavaValue result(T_VOID);
999    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1000    JavaCalls::call_special(&result,
1001                            main_instance,
1002                            klass,
1003                            vmSymbols::object_initializer_name(),
1004                            vmSymbols::threadgroup_string_void_signature(),
1005                            system_instance,
1006                            string,
1007                            CHECK_NH);
1008  }
1009  return main_instance;
1010}
1011
1012// Creates the initial Thread
1013static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
1014  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1015  instanceKlassHandle klass (THREAD, k);
1016  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1017
1018  java_lang_Thread::set_thread(thread_oop(), thread);
1019  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1020  thread->set_threadObj(thread_oop());
1021
1022  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1023
1024  JavaValue result(T_VOID);
1025  JavaCalls::call_special(&result, thread_oop,
1026                                   klass,
1027                                   vmSymbols::object_initializer_name(),
1028                                   vmSymbols::threadgroup_string_void_signature(),
1029                                   thread_group,
1030                                   string,
1031                                   CHECK_NULL);
1032  return thread_oop();
1033}
1034
1035static void call_initializeSystemClass(TRAPS) {
1036  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1037  instanceKlassHandle klass (THREAD, k);
1038
1039  JavaValue result(T_VOID);
1040  JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1041                                         vmSymbols::void_method_signature(), CHECK);
1042}
1043
1044char java_runtime_name[128] = "";
1045char java_runtime_version[128] = "";
1046
1047// extract the JRE name from sun.misc.Version.java_runtime_name
1048static const char* get_java_runtime_name(TRAPS) {
1049  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1050                                      Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1051  fieldDescriptor fd;
1052  bool found = k != NULL &&
1053               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1054                                                        vmSymbols::string_signature(), &fd);
1055  if (found) {
1056    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1057    if (name_oop == NULL)
1058      return NULL;
1059    const char* name = java_lang_String::as_utf8_string(name_oop,
1060                                                        java_runtime_name,
1061                                                        sizeof(java_runtime_name));
1062    return name;
1063  } else {
1064    return NULL;
1065  }
1066}
1067
1068// extract the JRE version from sun.misc.Version.java_runtime_version
1069static const char* get_java_runtime_version(TRAPS) {
1070  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1071                                      Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1072  fieldDescriptor fd;
1073  bool found = k != NULL &&
1074               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1075                                                        vmSymbols::string_signature(), &fd);
1076  if (found) {
1077    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1078    if (name_oop == NULL)
1079      return NULL;
1080    const char* name = java_lang_String::as_utf8_string(name_oop,
1081                                                        java_runtime_version,
1082                                                        sizeof(java_runtime_version));
1083    return name;
1084  } else {
1085    return NULL;
1086  }
1087}
1088
1089// General purpose hook into Java code, run once when the VM is initialized.
1090// The Java library method itself may be changed independently from the VM.
1091static void call_postVMInitHook(TRAPS) {
1092  Klass* k = SystemDictionary::PostVMInitHook_klass();
1093  instanceKlassHandle klass (THREAD, k);
1094  if (klass.not_null()) {
1095    JavaValue result(T_VOID);
1096    JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1097                                           vmSymbols::void_method_signature(),
1098                                           CHECK);
1099  }
1100}
1101
1102static void reset_vm_info_property(TRAPS) {
1103  // the vm info string
1104  ResourceMark rm(THREAD);
1105  const char *vm_info = VM_Version::vm_info_string();
1106
1107  // java.lang.System class
1108  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1109  instanceKlassHandle klass (THREAD, k);
1110
1111  // setProperty arguments
1112  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1113  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1114
1115  // return value
1116  JavaValue r(T_OBJECT);
1117
1118  // public static String setProperty(String key, String value);
1119  JavaCalls::call_static(&r,
1120                         klass,
1121                         vmSymbols::setProperty_name(),
1122                         vmSymbols::string_string_string_signature(),
1123                         key_str,
1124                         value_str,
1125                         CHECK);
1126}
1127
1128
1129void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1130  assert(thread_group.not_null(), "thread group should be specified");
1131  assert(threadObj() == NULL, "should only create Java thread object once");
1132
1133  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1134  instanceKlassHandle klass (THREAD, k);
1135  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1136
1137  java_lang_Thread::set_thread(thread_oop(), this);
1138  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1139  set_threadObj(thread_oop());
1140
1141  JavaValue result(T_VOID);
1142  if (thread_name != NULL) {
1143    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1144    // Thread gets assigned specified name and null target
1145    JavaCalls::call_special(&result,
1146                            thread_oop,
1147                            klass,
1148                            vmSymbols::object_initializer_name(),
1149                            vmSymbols::threadgroup_string_void_signature(),
1150                            thread_group, // Argument 1
1151                            name,         // Argument 2
1152                            THREAD);
1153  } else {
1154    // Thread gets assigned name "Thread-nnn" and null target
1155    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1156    JavaCalls::call_special(&result,
1157                            thread_oop,
1158                            klass,
1159                            vmSymbols::object_initializer_name(),
1160                            vmSymbols::threadgroup_runnable_void_signature(),
1161                            thread_group, // Argument 1
1162                            Handle(),     // Argument 2
1163                            THREAD);
1164  }
1165
1166
1167  if (daemon) {
1168      java_lang_Thread::set_daemon(thread_oop());
1169  }
1170
1171  if (HAS_PENDING_EXCEPTION) {
1172    return;
1173  }
1174
1175  KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1176  Handle threadObj(this, this->threadObj());
1177
1178  JavaCalls::call_special(&result,
1179                         thread_group,
1180                         group,
1181                         vmSymbols::add_method_name(),
1182                         vmSymbols::thread_void_signature(),
1183                         threadObj,          // Arg 1
1184                         THREAD);
1185
1186
1187}
1188
1189// NamedThread --  non-JavaThread subclasses with multiple
1190// uniquely named instances should derive from this.
1191NamedThread::NamedThread() : Thread() {
1192  _name = NULL;
1193  _processed_thread = NULL;
1194}
1195
1196NamedThread::~NamedThread() {
1197  if (_name != NULL) {
1198    FREE_C_HEAP_ARRAY(char, _name, mtThread);
1199    _name = NULL;
1200  }
1201}
1202
1203void NamedThread::set_name(const char* format, ...) {
1204  guarantee(_name == NULL, "Only get to set name once.");
1205  _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1206  guarantee(_name != NULL, "alloc failure");
1207  va_list ap;
1208  va_start(ap, format);
1209  jio_vsnprintf(_name, max_name_len, format, ap);
1210  va_end(ap);
1211}
1212
1213// ======= WatcherThread ========
1214
1215// The watcher thread exists to simulate timer interrupts.  It should
1216// be replaced by an abstraction over whatever native support for
1217// timer interrupts exists on the platform.
1218
1219WatcherThread* WatcherThread::_watcher_thread   = NULL;
1220bool WatcherThread::_startable = false;
1221volatile bool  WatcherThread::_should_terminate = false;
1222
1223WatcherThread::WatcherThread() : Thread() {
1224  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1225  if (os::create_thread(this, os::watcher_thread)) {
1226    _watcher_thread = this;
1227
1228    // Set the watcher thread to the highest OS priority which should not be
1229    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1230    // is created. The only normal thread using this priority is the reference
1231    // handler thread, which runs for very short intervals only.
1232    // If the VMThread's priority is not lower than the WatcherThread profiling
1233    // will be inaccurate.
1234    os::set_priority(this, MaxPriority);
1235    if (!DisableStartThread) {
1236      os::start_thread(this);
1237    }
1238  }
1239}
1240
1241int WatcherThread::sleep() const {
1242  MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1243
1244  // remaining will be zero if there are no tasks,
1245  // causing the WatcherThread to sleep until a task is
1246  // enrolled
1247  int remaining = PeriodicTask::time_to_wait();
1248  int time_slept = 0;
1249
1250  // we expect this to timeout - we only ever get unparked when
1251  // we should terminate or when a new task has been enrolled
1252  OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1253
1254  jlong time_before_loop = os::javaTimeNanos();
1255
1256  for (;;) {
1257    bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1258    jlong now = os::javaTimeNanos();
1259
1260    if (remaining == 0) {
1261        // if we didn't have any tasks we could have waited for a long time
1262        // consider the time_slept zero and reset time_before_loop
1263        time_slept = 0;
1264        time_before_loop = now;
1265    } else {
1266        // need to recalulate since we might have new tasks in _tasks
1267        time_slept = (int) ((now - time_before_loop) / 1000000);
1268    }
1269
1270    // Change to task list or spurious wakeup of some kind
1271    if (timedout || _should_terminate) {
1272        break;
1273    }
1274
1275    remaining = PeriodicTask::time_to_wait();
1276    if (remaining == 0) {
1277        // Last task was just disenrolled so loop around and wait until
1278        // another task gets enrolled
1279        continue;
1280    }
1281
1282    remaining -= time_slept;
1283    if (remaining <= 0)
1284      break;
1285  }
1286
1287  return time_slept;
1288}
1289
1290void WatcherThread::run() {
1291  assert(this == watcher_thread(), "just checking");
1292
1293  this->record_stack_base_and_size();
1294  this->initialize_thread_local_storage();
1295  this->set_active_handles(JNIHandleBlock::allocate_block());
1296  while(!_should_terminate) {
1297    assert(watcher_thread() == Thread::current(),  "thread consistency check");
1298    assert(watcher_thread() == this,  "thread consistency check");
1299
1300    // Calculate how long it'll be until the next PeriodicTask work
1301    // should be done, and sleep that amount of time.
1302    int time_waited = sleep();
1303
1304    if (is_error_reported()) {
1305      // A fatal error has happened, the error handler(VMError::report_and_die)
1306      // should abort JVM after creating an error log file. However in some
1307      // rare cases, the error handler itself might deadlock. Here we try to
1308      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1309      //
1310      // This code is in WatcherThread because WatcherThread wakes up
1311      // periodically so the fatal error handler doesn't need to do anything;
1312      // also because the WatcherThread is less likely to crash than other
1313      // threads.
1314
1315      for (;;) {
1316        if (!ShowMessageBoxOnError
1317         && (OnError == NULL || OnError[0] == '\0')
1318         && Arguments::abort_hook() == NULL) {
1319             os::sleep(this, 2 * 60 * 1000, false);
1320             fdStream err(defaultStream::output_fd());
1321             err.print_raw_cr("# [ timer expired, abort... ]");
1322             // skip atexit/vm_exit/vm_abort hooks
1323             os::die();
1324        }
1325
1326        // Wake up 5 seconds later, the fatal handler may reset OnError or
1327        // ShowMessageBoxOnError when it is ready to abort.
1328        os::sleep(this, 5 * 1000, false);
1329      }
1330    }
1331
1332    PeriodicTask::real_time_tick(time_waited);
1333  }
1334
1335  // Signal that it is terminated
1336  {
1337    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1338    _watcher_thread = NULL;
1339    Terminator_lock->notify();
1340  }
1341
1342  // Thread destructor usually does this..
1343  ThreadLocalStorage::set_thread(NULL);
1344}
1345
1346void WatcherThread::start() {
1347  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1348
1349  if (watcher_thread() == NULL && _startable) {
1350    _should_terminate = false;
1351    // Create the single instance of WatcherThread
1352    new WatcherThread();
1353  }
1354}
1355
1356void WatcherThread::make_startable() {
1357  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1358  _startable = true;
1359}
1360
1361void WatcherThread::stop() {
1362  {
1363    MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1364    _should_terminate = true;
1365    OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1366
1367    WatcherThread* watcher = watcher_thread();
1368    if (watcher != NULL)
1369      watcher->unpark();
1370  }
1371
1372  // it is ok to take late safepoints here, if needed
1373  MutexLocker mu(Terminator_lock);
1374
1375  while(watcher_thread() != NULL) {
1376    // This wait should make safepoint checks, wait without a timeout,
1377    // and wait as a suspend-equivalent condition.
1378    //
1379    // Note: If the FlatProfiler is running, then this thread is waiting
1380    // for the WatcherThread to terminate and the WatcherThread, via the
1381    // FlatProfiler task, is waiting for the external suspend request on
1382    // this thread to complete. wait_for_ext_suspend_completion() will
1383    // eventually timeout, but that takes time. Making this wait a
1384    // suspend-equivalent condition solves that timeout problem.
1385    //
1386    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1387                          Mutex::_as_suspend_equivalent_flag);
1388  }
1389}
1390
1391void WatcherThread::unpark() {
1392  MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1393  PeriodicTask_lock->notify();
1394}
1395
1396void WatcherThread::print_on(outputStream* st) const {
1397  st->print("\"%s\" ", name());
1398  Thread::print_on(st);
1399  st->cr();
1400}
1401
1402// ======= JavaThread ========
1403
1404// A JavaThread is a normal Java thread
1405
1406void JavaThread::initialize() {
1407  // Initialize fields
1408
1409  // Set the claimed par_id to -1 (ie not claiming any par_ids)
1410  set_claimed_par_id(-1);
1411
1412  set_saved_exception_pc(NULL);
1413  set_threadObj(NULL);
1414  _anchor.clear();
1415  set_entry_point(NULL);
1416  set_jni_functions(jni_functions());
1417  set_callee_target(NULL);
1418  set_vm_result(NULL);
1419  set_vm_result_2(NULL);
1420  set_vframe_array_head(NULL);
1421  set_vframe_array_last(NULL);
1422  set_deferred_locals(NULL);
1423  set_deopt_mark(NULL);
1424  set_deopt_nmethod(NULL);
1425  clear_must_deopt_id();
1426  set_monitor_chunks(NULL);
1427  set_next(NULL);
1428  set_thread_state(_thread_new);
1429#if INCLUDE_NMT
1430  set_recorder(NULL);
1431#endif
1432  _terminated = _not_terminated;
1433  _privileged_stack_top = NULL;
1434  _array_for_gc = NULL;
1435  _suspend_equivalent = false;
1436  _in_deopt_handler = 0;
1437  _doing_unsafe_access = false;
1438  _stack_guard_state = stack_guard_unused;
1439  _exception_oop = NULL;
1440  _exception_pc  = 0;
1441  _exception_handler_pc = 0;
1442  _is_method_handle_return = 0;
1443  _jvmti_thread_state= NULL;
1444  _should_post_on_exceptions_flag = JNI_FALSE;
1445  _jvmti_get_loaded_classes_closure = NULL;
1446  _interp_only_mode    = 0;
1447  _special_runtime_exit_condition = _no_async_condition;
1448  _pending_async_exception = NULL;
1449  _is_compiling = false;
1450  _thread_stat = NULL;
1451  _thread_stat = new ThreadStatistics();
1452  _blocked_on_compilation = false;
1453  _jni_active_critical = 0;
1454  _do_not_unlock_if_synchronized = false;
1455  _cached_monitor_info = NULL;
1456  _parker = Parker::Allocate(this) ;
1457
1458#ifndef PRODUCT
1459  _jmp_ring_index = 0;
1460  for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1461    record_jump(NULL, NULL, NULL, 0);
1462  }
1463#endif /* PRODUCT */
1464
1465  set_thread_profiler(NULL);
1466  if (FlatProfiler::is_active()) {
1467    // This is where we would decide to either give each thread it's own profiler
1468    // or use one global one from FlatProfiler,
1469    // or up to some count of the number of profiled threads, etc.
1470    ThreadProfiler* pp = new ThreadProfiler();
1471    pp->engage();
1472    set_thread_profiler(pp);
1473  }
1474
1475  // Setup safepoint state info for this thread
1476  ThreadSafepointState::create(this);
1477
1478  debug_only(_java_call_counter = 0);
1479
1480  // JVMTI PopFrame support
1481  _popframe_condition = popframe_inactive;
1482  _popframe_preserved_args = NULL;
1483  _popframe_preserved_args_size = 0;
1484
1485  pd_initialize();
1486}
1487
1488#if INCLUDE_ALL_GCS
1489SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1490DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1491#endif // INCLUDE_ALL_GCS
1492
1493JavaThread::JavaThread(bool is_attaching_via_jni) :
1494  Thread()
1495#if INCLUDE_ALL_GCS
1496  , _satb_mark_queue(&_satb_mark_queue_set),
1497  _dirty_card_queue(&_dirty_card_queue_set)
1498#endif // INCLUDE_ALL_GCS
1499{
1500  initialize();
1501  if (is_attaching_via_jni) {
1502    _jni_attach_state = _attaching_via_jni;
1503  } else {
1504    _jni_attach_state = _not_attaching_via_jni;
1505  }
1506  assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1507  _safepoint_visible = false;
1508}
1509
1510bool JavaThread::reguard_stack(address cur_sp) {
1511  if (_stack_guard_state != stack_guard_yellow_disabled) {
1512    return true; // Stack already guarded or guard pages not needed.
1513  }
1514
1515  if (register_stack_overflow()) {
1516    // For those architectures which have separate register and
1517    // memory stacks, we must check the register stack to see if
1518    // it has overflowed.
1519    return false;
1520  }
1521
1522  // Java code never executes within the yellow zone: the latter is only
1523  // there to provoke an exception during stack banging.  If java code
1524  // is executing there, either StackShadowPages should be larger, or
1525  // some exception code in c1, c2 or the interpreter isn't unwinding
1526  // when it should.
1527  guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1528
1529  enable_stack_yellow_zone();
1530  return true;
1531}
1532
1533bool JavaThread::reguard_stack(void) {
1534  return reguard_stack(os::current_stack_pointer());
1535}
1536
1537
1538void JavaThread::block_if_vm_exited() {
1539  if (_terminated == _vm_exited) {
1540    // _vm_exited is set at safepoint, and Threads_lock is never released
1541    // we will block here forever
1542    Threads_lock->lock_without_safepoint_check();
1543    ShouldNotReachHere();
1544  }
1545}
1546
1547
1548// Remove this ifdef when C1 is ported to the compiler interface.
1549static void compiler_thread_entry(JavaThread* thread, TRAPS);
1550
1551JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1552  Thread()
1553#if INCLUDE_ALL_GCS
1554  , _satb_mark_queue(&_satb_mark_queue_set),
1555  _dirty_card_queue(&_dirty_card_queue_set)
1556#endif // INCLUDE_ALL_GCS
1557{
1558  if (TraceThreadEvents) {
1559    tty->print_cr("creating thread %p", this);
1560  }
1561  initialize();
1562  _jni_attach_state = _not_attaching_via_jni;
1563  set_entry_point(entry_point);
1564  // Create the native thread itself.
1565  // %note runtime_23
1566  os::ThreadType thr_type = os::java_thread;
1567  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1568                                                     os::java_thread;
1569  os::create_thread(this, thr_type, stack_sz);
1570  _safepoint_visible = false;
1571  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1572  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1573  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1574  // the exception consists of creating the exception object & initializing it, initialization
1575  // will leave the VM via a JavaCall and then all locks must be unlocked).
1576  //
1577  // The thread is still suspended when we reach here. Thread must be explicit started
1578  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1579  // by calling Threads:add. The reason why this is not done here, is because the thread
1580  // object must be fully initialized (take a look at JVM_Start)
1581}
1582
1583JavaThread::~JavaThread() {
1584  if (TraceThreadEvents) {
1585      tty->print_cr("terminate thread %p", this);
1586  }
1587
1588  // By now, this thread should already be invisible to safepoint,
1589  // and its per-thread recorder also collected.
1590  assert(!is_safepoint_visible(), "wrong state");
1591#if INCLUDE_NMT
1592  assert(get_recorder() == NULL, "Already collected");
1593#endif // INCLUDE_NMT
1594
1595  // JSR166 -- return the parker to the free list
1596  Parker::Release(_parker);
1597  _parker = NULL ;
1598
1599  // Free any remaining  previous UnrollBlock
1600  vframeArray* old_array = vframe_array_last();
1601
1602  if (old_array != NULL) {
1603    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1604    old_array->set_unroll_block(NULL);
1605    delete old_info;
1606    delete old_array;
1607  }
1608
1609  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1610  if (deferred != NULL) {
1611    // This can only happen if thread is destroyed before deoptimization occurs.
1612    assert(deferred->length() != 0, "empty array!");
1613    do {
1614      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1615      deferred->remove_at(0);
1616      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1617      delete dlv;
1618    } while (deferred->length() != 0);
1619    delete deferred;
1620  }
1621
1622  // All Java related clean up happens in exit
1623  ThreadSafepointState::destroy(this);
1624  if (_thread_profiler != NULL) delete _thread_profiler;
1625  if (_thread_stat != NULL) delete _thread_stat;
1626}
1627
1628
1629// The first routine called by a new Java thread
1630void JavaThread::run() {
1631  // initialize thread-local alloc buffer related fields
1632  this->initialize_tlab();
1633
1634  // used to test validitity of stack trace backs
1635  this->record_base_of_stack_pointer();
1636
1637  // Record real stack base and size.
1638  this->record_stack_base_and_size();
1639
1640  // Initialize thread local storage; set before calling MutexLocker
1641  this->initialize_thread_local_storage();
1642
1643  this->create_stack_guard_pages();
1644
1645  this->cache_global_variables();
1646
1647  // Thread is now sufficient initialized to be handled by the safepoint code as being
1648  // in the VM. Change thread state from _thread_new to _thread_in_vm
1649  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1650
1651  assert(JavaThread::current() == this, "sanity check");
1652  assert(!Thread::current()->owns_locks(), "sanity check");
1653
1654  DTRACE_THREAD_PROBE(start, this);
1655
1656  // This operation might block. We call that after all safepoint checks for a new thread has
1657  // been completed.
1658  this->set_active_handles(JNIHandleBlock::allocate_block());
1659
1660  if (JvmtiExport::should_post_thread_life()) {
1661    JvmtiExport::post_thread_start(this);
1662  }
1663
1664  EventThreadStart event;
1665  if (event.should_commit()) {
1666     event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1667     event.commit();
1668  }
1669
1670  // We call another function to do the rest so we are sure that the stack addresses used
1671  // from there will be lower than the stack base just computed
1672  thread_main_inner();
1673
1674  // Note, thread is no longer valid at this point!
1675}
1676
1677
1678void JavaThread::thread_main_inner() {
1679  assert(JavaThread::current() == this, "sanity check");
1680  assert(this->threadObj() != NULL, "just checking");
1681
1682  // Execute thread entry point unless this thread has a pending exception
1683  // or has been stopped before starting.
1684  // Note: Due to JVM_StopThread we can have pending exceptions already!
1685  if (!this->has_pending_exception() &&
1686      !java_lang_Thread::is_stillborn(this->threadObj())) {
1687    {
1688      ResourceMark rm(this);
1689      this->set_native_thread_name(this->get_thread_name());
1690    }
1691    HandleMark hm(this);
1692    this->entry_point()(this, this);
1693  }
1694
1695  DTRACE_THREAD_PROBE(stop, this);
1696
1697  this->exit(false);
1698  delete this;
1699}
1700
1701
1702static void ensure_join(JavaThread* thread) {
1703  // We do not need to grap the Threads_lock, since we are operating on ourself.
1704  Handle threadObj(thread, thread->threadObj());
1705  assert(threadObj.not_null(), "java thread object must exist");
1706  ObjectLocker lock(threadObj, thread);
1707  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1708  thread->clear_pending_exception();
1709  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1710  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1711  // Clear the native thread instance - this makes isAlive return false and allows the join()
1712  // to complete once we've done the notify_all below
1713  java_lang_Thread::set_thread(threadObj(), NULL);
1714  lock.notify_all(thread);
1715  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1716  thread->clear_pending_exception();
1717}
1718
1719
1720// For any new cleanup additions, please check to see if they need to be applied to
1721// cleanup_failed_attach_current_thread as well.
1722void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1723  assert(this == JavaThread::current(),  "thread consistency check");
1724
1725  HandleMark hm(this);
1726  Handle uncaught_exception(this, this->pending_exception());
1727  this->clear_pending_exception();
1728  Handle threadObj(this, this->threadObj());
1729  assert(threadObj.not_null(), "Java thread object should be created");
1730
1731  if (get_thread_profiler() != NULL) {
1732    get_thread_profiler()->disengage();
1733    ResourceMark rm;
1734    get_thread_profiler()->print(get_thread_name());
1735  }
1736
1737
1738  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1739  {
1740    EXCEPTION_MARK;
1741
1742    CLEAR_PENDING_EXCEPTION;
1743  }
1744  // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1745  // has to be fixed by a runtime query method
1746  if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1747    // JSR-166: change call from from ThreadGroup.uncaughtException to
1748    // java.lang.Thread.dispatchUncaughtException
1749    if (uncaught_exception.not_null()) {
1750      Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1751      {
1752        EXCEPTION_MARK;
1753        // Check if the method Thread.dispatchUncaughtException() exists. If so
1754        // call it.  Otherwise we have an older library without the JSR-166 changes,
1755        // so call ThreadGroup.uncaughtException()
1756        KlassHandle recvrKlass(THREAD, threadObj->klass());
1757        CallInfo callinfo;
1758        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1759        LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1760                                           vmSymbols::dispatchUncaughtException_name(),
1761                                           vmSymbols::throwable_void_signature(),
1762                                           KlassHandle(), false, false, THREAD);
1763        CLEAR_PENDING_EXCEPTION;
1764        methodHandle method = callinfo.selected_method();
1765        if (method.not_null()) {
1766          JavaValue result(T_VOID);
1767          JavaCalls::call_virtual(&result,
1768                                  threadObj, thread_klass,
1769                                  vmSymbols::dispatchUncaughtException_name(),
1770                                  vmSymbols::throwable_void_signature(),
1771                                  uncaught_exception,
1772                                  THREAD);
1773        } else {
1774          KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1775          JavaValue result(T_VOID);
1776          JavaCalls::call_virtual(&result,
1777                                  group, thread_group,
1778                                  vmSymbols::uncaughtException_name(),
1779                                  vmSymbols::thread_throwable_void_signature(),
1780                                  threadObj,           // Arg 1
1781                                  uncaught_exception,  // Arg 2
1782                                  THREAD);
1783        }
1784        if (HAS_PENDING_EXCEPTION) {
1785          ResourceMark rm(this);
1786          jio_fprintf(defaultStream::error_stream(),
1787                "\nException: %s thrown from the UncaughtExceptionHandler"
1788                " in thread \"%s\"\n",
1789                pending_exception()->klass()->external_name(),
1790                get_thread_name());
1791          CLEAR_PENDING_EXCEPTION;
1792        }
1793      }
1794    }
1795
1796    // Called before the java thread exit since we want to read info
1797    // from java_lang_Thread object
1798    EventThreadEnd event;
1799    if (event.should_commit()) {
1800        event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1801        event.commit();
1802    }
1803
1804    // Call after last event on thread
1805    EVENT_THREAD_EXIT(this);
1806
1807    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1808    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1809    // is deprecated anyhow.
1810    { int count = 3;
1811      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1812        EXCEPTION_MARK;
1813        JavaValue result(T_VOID);
1814        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1815        JavaCalls::call_virtual(&result,
1816                              threadObj, thread_klass,
1817                              vmSymbols::exit_method_name(),
1818                              vmSymbols::void_method_signature(),
1819                              THREAD);
1820        CLEAR_PENDING_EXCEPTION;
1821      }
1822    }
1823
1824    // notify JVMTI
1825    if (JvmtiExport::should_post_thread_life()) {
1826      JvmtiExport::post_thread_end(this);
1827    }
1828
1829    // We have notified the agents that we are exiting, before we go on,
1830    // we must check for a pending external suspend request and honor it
1831    // in order to not surprise the thread that made the suspend request.
1832    while (true) {
1833      {
1834        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1835        if (!is_external_suspend()) {
1836          set_terminated(_thread_exiting);
1837          ThreadService::current_thread_exiting(this);
1838          break;
1839        }
1840        // Implied else:
1841        // Things get a little tricky here. We have a pending external
1842        // suspend request, but we are holding the SR_lock so we
1843        // can't just self-suspend. So we temporarily drop the lock
1844        // and then self-suspend.
1845      }
1846
1847      ThreadBlockInVM tbivm(this);
1848      java_suspend_self();
1849
1850      // We're done with this suspend request, but we have to loop around
1851      // and check again. Eventually we will get SR_lock without a pending
1852      // external suspend request and will be able to mark ourselves as
1853      // exiting.
1854    }
1855    // no more external suspends are allowed at this point
1856  } else {
1857    // before_exit() has already posted JVMTI THREAD_END events
1858  }
1859
1860  // Notify waiters on thread object. This has to be done after exit() is called
1861  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1862  // group should have the destroyed bit set before waiters are notified).
1863  ensure_join(this);
1864  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1865
1866  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1867  // held by this thread must be released.  A detach operation must only
1868  // get here if there are no Java frames on the stack.  Therefore, any
1869  // owned monitors at this point MUST be JNI-acquired monitors which are
1870  // pre-inflated and in the monitor cache.
1871  //
1872  // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1873  if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1874    assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1875    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1876    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1877  }
1878
1879  // These things needs to be done while we are still a Java Thread. Make sure that thread
1880  // is in a consistent state, in case GC happens
1881  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1882
1883  if (active_handles() != NULL) {
1884    JNIHandleBlock* block = active_handles();
1885    set_active_handles(NULL);
1886    JNIHandleBlock::release_block(block);
1887  }
1888
1889  if (free_handle_block() != NULL) {
1890    JNIHandleBlock* block = free_handle_block();
1891    set_free_handle_block(NULL);
1892    JNIHandleBlock::release_block(block);
1893  }
1894
1895  // These have to be removed while this is still a valid thread.
1896  remove_stack_guard_pages();
1897
1898  if (UseTLAB) {
1899    tlab().make_parsable(true);  // retire TLAB
1900  }
1901
1902  if (JvmtiEnv::environments_might_exist()) {
1903    JvmtiExport::cleanup_thread(this);
1904  }
1905
1906  // We must flush any deferred card marks before removing a thread from
1907  // the list of active threads.
1908  Universe::heap()->flush_deferred_store_barrier(this);
1909  assert(deferred_card_mark().is_empty(), "Should have been flushed");
1910
1911#if INCLUDE_ALL_GCS
1912  // We must flush the G1-related buffers before removing a thread
1913  // from the list of active threads. We must do this after any deferred
1914  // card marks have been flushed (above) so that any entries that are
1915  // added to the thread's dirty card queue as a result are not lost.
1916  if (UseG1GC) {
1917    flush_barrier_queues();
1918  }
1919#endif // INCLUDE_ALL_GCS
1920
1921  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1922  Threads::remove(this);
1923}
1924
1925#if INCLUDE_ALL_GCS
1926// Flush G1-related queues.
1927void JavaThread::flush_barrier_queues() {
1928  satb_mark_queue().flush();
1929  dirty_card_queue().flush();
1930}
1931
1932void JavaThread::initialize_queues() {
1933  assert(!SafepointSynchronize::is_at_safepoint(),
1934         "we should not be at a safepoint");
1935
1936  ObjPtrQueue& satb_queue = satb_mark_queue();
1937  SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1938  // The SATB queue should have been constructed with its active
1939  // field set to false.
1940  assert(!satb_queue.is_active(), "SATB queue should not be active");
1941  assert(satb_queue.is_empty(), "SATB queue should be empty");
1942  // If we are creating the thread during a marking cycle, we should
1943  // set the active field of the SATB queue to true.
1944  if (satb_queue_set.is_active()) {
1945    satb_queue.set_active(true);
1946  }
1947
1948  DirtyCardQueue& dirty_queue = dirty_card_queue();
1949  // The dirty card queue should have been constructed with its
1950  // active field set to true.
1951  assert(dirty_queue.is_active(), "dirty card queue should be active");
1952}
1953#endif // INCLUDE_ALL_GCS
1954
1955void JavaThread::cleanup_failed_attach_current_thread() {
1956  if (get_thread_profiler() != NULL) {
1957    get_thread_profiler()->disengage();
1958    ResourceMark rm;
1959    get_thread_profiler()->print(get_thread_name());
1960  }
1961
1962  if (active_handles() != NULL) {
1963    JNIHandleBlock* block = active_handles();
1964    set_active_handles(NULL);
1965    JNIHandleBlock::release_block(block);
1966  }
1967
1968  if (free_handle_block() != NULL) {
1969    JNIHandleBlock* block = free_handle_block();
1970    set_free_handle_block(NULL);
1971    JNIHandleBlock::release_block(block);
1972  }
1973
1974  // These have to be removed while this is still a valid thread.
1975  remove_stack_guard_pages();
1976
1977  if (UseTLAB) {
1978    tlab().make_parsable(true);  // retire TLAB, if any
1979  }
1980
1981#if INCLUDE_ALL_GCS
1982  if (UseG1GC) {
1983    flush_barrier_queues();
1984  }
1985#endif // INCLUDE_ALL_GCS
1986
1987  Threads::remove(this);
1988  delete this;
1989}
1990
1991
1992
1993
1994JavaThread* JavaThread::active() {
1995  Thread* thread = ThreadLocalStorage::thread();
1996  assert(thread != NULL, "just checking");
1997  if (thread->is_Java_thread()) {
1998    return (JavaThread*) thread;
1999  } else {
2000    assert(thread->is_VM_thread(), "this must be a vm thread");
2001    VM_Operation* op = ((VMThread*) thread)->vm_operation();
2002    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2003    assert(ret->is_Java_thread(), "must be a Java thread");
2004    return ret;
2005  }
2006}
2007
2008bool JavaThread::is_lock_owned(address adr) const {
2009  if (Thread::is_lock_owned(adr)) return true;
2010
2011  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2012    if (chunk->contains(adr)) return true;
2013  }
2014
2015  return false;
2016}
2017
2018
2019void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2020  chunk->set_next(monitor_chunks());
2021  set_monitor_chunks(chunk);
2022}
2023
2024void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2025  guarantee(monitor_chunks() != NULL, "must be non empty");
2026  if (monitor_chunks() == chunk) {
2027    set_monitor_chunks(chunk->next());
2028  } else {
2029    MonitorChunk* prev = monitor_chunks();
2030    while (prev->next() != chunk) prev = prev->next();
2031    prev->set_next(chunk->next());
2032  }
2033}
2034
2035// JVM support.
2036
2037// Note: this function shouldn't block if it's called in
2038// _thread_in_native_trans state (such as from
2039// check_special_condition_for_native_trans()).
2040void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2041
2042  if (has_last_Java_frame() && has_async_condition()) {
2043    // If we are at a polling page safepoint (not a poll return)
2044    // then we must defer async exception because live registers
2045    // will be clobbered by the exception path. Poll return is
2046    // ok because the call we a returning from already collides
2047    // with exception handling registers and so there is no issue.
2048    // (The exception handling path kills call result registers but
2049    //  this is ok since the exception kills the result anyway).
2050
2051    if (is_at_poll_safepoint()) {
2052      // if the code we are returning to has deoptimized we must defer
2053      // the exception otherwise live registers get clobbered on the
2054      // exception path before deoptimization is able to retrieve them.
2055      //
2056      RegisterMap map(this, false);
2057      frame caller_fr = last_frame().sender(&map);
2058      assert(caller_fr.is_compiled_frame(), "what?");
2059      if (caller_fr.is_deoptimized_frame()) {
2060        if (TraceExceptions) {
2061          ResourceMark rm;
2062          tty->print_cr("deferred async exception at compiled safepoint");
2063        }
2064        return;
2065      }
2066    }
2067  }
2068
2069  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2070  if (condition == _no_async_condition) {
2071    // Conditions have changed since has_special_runtime_exit_condition()
2072    // was called:
2073    // - if we were here only because of an external suspend request,
2074    //   then that was taken care of above (or cancelled) so we are done
2075    // - if we were here because of another async request, then it has
2076    //   been cleared between the has_special_runtime_exit_condition()
2077    //   and now so again we are done
2078    return;
2079  }
2080
2081  // Check for pending async. exception
2082  if (_pending_async_exception != NULL) {
2083    // Only overwrite an already pending exception, if it is not a threadDeath.
2084    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2085
2086      // We cannot call Exceptions::_throw(...) here because we cannot block
2087      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2088
2089      if (TraceExceptions) {
2090        ResourceMark rm;
2091        tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2092        if (has_last_Java_frame() ) {
2093          frame f = last_frame();
2094          tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2095        }
2096        tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2097      }
2098      _pending_async_exception = NULL;
2099      clear_has_async_exception();
2100    }
2101  }
2102
2103  if (check_unsafe_error &&
2104      condition == _async_unsafe_access_error && !has_pending_exception()) {
2105    condition = _no_async_condition;  // done
2106    switch (thread_state()) {
2107    case _thread_in_vm:
2108      {
2109        JavaThread* THREAD = this;
2110        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2111      }
2112    case _thread_in_native:
2113      {
2114        ThreadInVMfromNative tiv(this);
2115        JavaThread* THREAD = this;
2116        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2117      }
2118    case _thread_in_Java:
2119      {
2120        ThreadInVMfromJava tiv(this);
2121        JavaThread* THREAD = this;
2122        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2123      }
2124    default:
2125      ShouldNotReachHere();
2126    }
2127  }
2128
2129  assert(condition == _no_async_condition || has_pending_exception() ||
2130         (!check_unsafe_error && condition == _async_unsafe_access_error),
2131         "must have handled the async condition, if no exception");
2132}
2133
2134void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2135  //
2136  // Check for pending external suspend. Internal suspend requests do
2137  // not use handle_special_runtime_exit_condition().
2138  // If JNIEnv proxies are allowed, don't self-suspend if the target
2139  // thread is not the current thread. In older versions of jdbx, jdbx
2140  // threads could call into the VM with another thread's JNIEnv so we
2141  // can be here operating on behalf of a suspended thread (4432884).
2142  bool do_self_suspend = is_external_suspend_with_lock();
2143  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2144    //
2145    // Because thread is external suspended the safepoint code will count
2146    // thread as at a safepoint. This can be odd because we can be here
2147    // as _thread_in_Java which would normally transition to _thread_blocked
2148    // at a safepoint. We would like to mark the thread as _thread_blocked
2149    // before calling java_suspend_self like all other callers of it but
2150    // we must then observe proper safepoint protocol. (We can't leave
2151    // _thread_blocked with a safepoint in progress). However we can be
2152    // here as _thread_in_native_trans so we can't use a normal transition
2153    // constructor/destructor pair because they assert on that type of
2154    // transition. We could do something like:
2155    //
2156    // JavaThreadState state = thread_state();
2157    // set_thread_state(_thread_in_vm);
2158    // {
2159    //   ThreadBlockInVM tbivm(this);
2160    //   java_suspend_self()
2161    // }
2162    // set_thread_state(_thread_in_vm_trans);
2163    // if (safepoint) block;
2164    // set_thread_state(state);
2165    //
2166    // but that is pretty messy. Instead we just go with the way the
2167    // code has worked before and note that this is the only path to
2168    // java_suspend_self that doesn't put the thread in _thread_blocked
2169    // mode.
2170
2171    frame_anchor()->make_walkable(this);
2172    java_suspend_self();
2173
2174    // We might be here for reasons in addition to the self-suspend request
2175    // so check for other async requests.
2176  }
2177
2178  if (check_asyncs) {
2179    check_and_handle_async_exceptions();
2180  }
2181}
2182
2183void JavaThread::send_thread_stop(oop java_throwable)  {
2184  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2185  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2186  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2187
2188  // Do not throw asynchronous exceptions against the compiler thread
2189  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2190  if (is_Compiler_thread()) return;
2191
2192  {
2193    // Actually throw the Throwable against the target Thread - however
2194    // only if there is no thread death exception installed already.
2195    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2196      // If the topmost frame is a runtime stub, then we are calling into
2197      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2198      // must deoptimize the caller before continuing, as the compiled  exception handler table
2199      // may not be valid
2200      if (has_last_Java_frame()) {
2201        frame f = last_frame();
2202        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2203          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2204          RegisterMap reg_map(this, UseBiasedLocking);
2205          frame compiled_frame = f.sender(&reg_map);
2206          if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2207            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2208          }
2209        }
2210      }
2211
2212      // Set async. pending exception in thread.
2213      set_pending_async_exception(java_throwable);
2214
2215      if (TraceExceptions) {
2216       ResourceMark rm;
2217       tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2218      }
2219      // for AbortVMOnException flag
2220      NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2221    }
2222  }
2223
2224
2225  // Interrupt thread so it will wake up from a potential wait()
2226  Thread::interrupt(this);
2227}
2228
2229// External suspension mechanism.
2230//
2231// Tell the VM to suspend a thread when ever it knows that it does not hold on
2232// to any VM_locks and it is at a transition
2233// Self-suspension will happen on the transition out of the vm.
2234// Catch "this" coming in from JNIEnv pointers when the thread has been freed
2235//
2236// Guarantees on return:
2237//   + Target thread will not execute any new bytecode (that's why we need to
2238//     force a safepoint)
2239//   + Target thread will not enter any new monitors
2240//
2241void JavaThread::java_suspend() {
2242  { MutexLocker mu(Threads_lock);
2243    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2244       return;
2245    }
2246  }
2247
2248  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2249    if (!is_external_suspend()) {
2250      // a racing resume has cancelled us; bail out now
2251      return;
2252    }
2253
2254    // suspend is done
2255    uint32_t debug_bits = 0;
2256    // Warning: is_ext_suspend_completed() may temporarily drop the
2257    // SR_lock to allow the thread to reach a stable thread state if
2258    // it is currently in a transient thread state.
2259    if (is_ext_suspend_completed(false /* !called_by_wait */,
2260                                 SuspendRetryDelay, &debug_bits) ) {
2261      return;
2262    }
2263  }
2264
2265  VM_ForceSafepoint vm_suspend;
2266  VMThread::execute(&vm_suspend);
2267}
2268
2269// Part II of external suspension.
2270// A JavaThread self suspends when it detects a pending external suspend
2271// request. This is usually on transitions. It is also done in places
2272// where continuing to the next transition would surprise the caller,
2273// e.g., monitor entry.
2274//
2275// Returns the number of times that the thread self-suspended.
2276//
2277// Note: DO NOT call java_suspend_self() when you just want to block current
2278//       thread. java_suspend_self() is the second stage of cooperative
2279//       suspension for external suspend requests and should only be used
2280//       to complete an external suspend request.
2281//
2282int JavaThread::java_suspend_self() {
2283  int ret = 0;
2284
2285  // we are in the process of exiting so don't suspend
2286  if (is_exiting()) {
2287     clear_external_suspend();
2288     return ret;
2289  }
2290
2291  assert(_anchor.walkable() ||
2292    (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2293    "must have walkable stack");
2294
2295  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2296
2297  assert(!this->is_ext_suspended(),
2298    "a thread trying to self-suspend should not already be suspended");
2299
2300  if (this->is_suspend_equivalent()) {
2301    // If we are self-suspending as a result of the lifting of a
2302    // suspend equivalent condition, then the suspend_equivalent
2303    // flag is not cleared until we set the ext_suspended flag so
2304    // that wait_for_ext_suspend_completion() returns consistent
2305    // results.
2306    this->clear_suspend_equivalent();
2307  }
2308
2309  // A racing resume may have cancelled us before we grabbed SR_lock
2310  // above. Or another external suspend request could be waiting for us
2311  // by the time we return from SR_lock()->wait(). The thread
2312  // that requested the suspension may already be trying to walk our
2313  // stack and if we return now, we can change the stack out from under
2314  // it. This would be a "bad thing (TM)" and cause the stack walker
2315  // to crash. We stay self-suspended until there are no more pending
2316  // external suspend requests.
2317  while (is_external_suspend()) {
2318    ret++;
2319    this->set_ext_suspended();
2320
2321    // _ext_suspended flag is cleared by java_resume()
2322    while (is_ext_suspended()) {
2323      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2324    }
2325  }
2326
2327  return ret;
2328}
2329
2330#ifdef ASSERT
2331// verify the JavaThread has not yet been published in the Threads::list, and
2332// hence doesn't need protection from concurrent access at this stage
2333void JavaThread::verify_not_published() {
2334  if (!Threads_lock->owned_by_self()) {
2335   MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2336   assert( !Threads::includes(this),
2337           "java thread shouldn't have been published yet!");
2338  }
2339  else {
2340   assert( !Threads::includes(this),
2341           "java thread shouldn't have been published yet!");
2342  }
2343}
2344#endif
2345
2346// Slow path when the native==>VM/Java barriers detect a safepoint is in
2347// progress or when _suspend_flags is non-zero.
2348// Current thread needs to self-suspend if there is a suspend request and/or
2349// block if a safepoint is in progress.
2350// Async exception ISN'T checked.
2351// Note only the ThreadInVMfromNative transition can call this function
2352// directly and when thread state is _thread_in_native_trans
2353void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2354  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2355
2356  JavaThread *curJT = JavaThread::current();
2357  bool do_self_suspend = thread->is_external_suspend();
2358
2359  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2360
2361  // If JNIEnv proxies are allowed, don't self-suspend if the target
2362  // thread is not the current thread. In older versions of jdbx, jdbx
2363  // threads could call into the VM with another thread's JNIEnv so we
2364  // can be here operating on behalf of a suspended thread (4432884).
2365  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2366    JavaThreadState state = thread->thread_state();
2367
2368    // We mark this thread_blocked state as a suspend-equivalent so
2369    // that a caller to is_ext_suspend_completed() won't be confused.
2370    // The suspend-equivalent state is cleared by java_suspend_self().
2371    thread->set_suspend_equivalent();
2372
2373    // If the safepoint code sees the _thread_in_native_trans state, it will
2374    // wait until the thread changes to other thread state. There is no
2375    // guarantee on how soon we can obtain the SR_lock and complete the
2376    // self-suspend request. It would be a bad idea to let safepoint wait for
2377    // too long. Temporarily change the state to _thread_blocked to
2378    // let the VM thread know that this thread is ready for GC. The problem
2379    // of changing thread state is that safepoint could happen just after
2380    // java_suspend_self() returns after being resumed, and VM thread will
2381    // see the _thread_blocked state. We must check for safepoint
2382    // after restoring the state and make sure we won't leave while a safepoint
2383    // is in progress.
2384    thread->set_thread_state(_thread_blocked);
2385    thread->java_suspend_self();
2386    thread->set_thread_state(state);
2387    // Make sure new state is seen by VM thread
2388    if (os::is_MP()) {
2389      if (UseMembar) {
2390        // Force a fence between the write above and read below
2391        OrderAccess::fence();
2392      } else {
2393        // Must use this rather than serialization page in particular on Windows
2394        InterfaceSupport::serialize_memory(thread);
2395      }
2396    }
2397  }
2398
2399  if (SafepointSynchronize::do_call_back()) {
2400    // If we are safepointing, then block the caller which may not be
2401    // the same as the target thread (see above).
2402    SafepointSynchronize::block(curJT);
2403  }
2404
2405  if (thread->is_deopt_suspend()) {
2406    thread->clear_deopt_suspend();
2407    RegisterMap map(thread, false);
2408    frame f = thread->last_frame();
2409    while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2410      f = f.sender(&map);
2411    }
2412    if (f.id() == thread->must_deopt_id()) {
2413      thread->clear_must_deopt_id();
2414      f.deoptimize(thread);
2415    } else {
2416      fatal("missed deoptimization!");
2417    }
2418  }
2419}
2420
2421// Slow path when the native==>VM/Java barriers detect a safepoint is in
2422// progress or when _suspend_flags is non-zero.
2423// Current thread needs to self-suspend if there is a suspend request and/or
2424// block if a safepoint is in progress.
2425// Also check for pending async exception (not including unsafe access error).
2426// Note only the native==>VM/Java barriers can call this function and when
2427// thread state is _thread_in_native_trans.
2428void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2429  check_safepoint_and_suspend_for_native_trans(thread);
2430
2431  if (thread->has_async_exception()) {
2432    // We are in _thread_in_native_trans state, don't handle unsafe
2433    // access error since that may block.
2434    thread->check_and_handle_async_exceptions(false);
2435  }
2436}
2437
2438// This is a variant of the normal
2439// check_special_condition_for_native_trans with slightly different
2440// semantics for use by critical native wrappers.  It does all the
2441// normal checks but also performs the transition back into
2442// thread_in_Java state.  This is required so that critical natives
2443// can potentially block and perform a GC if they are the last thread
2444// exiting the GC_locker.
2445void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2446  check_special_condition_for_native_trans(thread);
2447
2448  // Finish the transition
2449  thread->set_thread_state(_thread_in_Java);
2450
2451  if (thread->do_critical_native_unlock()) {
2452    ThreadInVMfromJavaNoAsyncException tiv(thread);
2453    GC_locker::unlock_critical(thread);
2454    thread->clear_critical_native_unlock();
2455  }
2456}
2457
2458// We need to guarantee the Threads_lock here, since resumes are not
2459// allowed during safepoint synchronization
2460// Can only resume from an external suspension
2461void JavaThread::java_resume() {
2462  assert_locked_or_safepoint(Threads_lock);
2463
2464  // Sanity check: thread is gone, has started exiting or the thread
2465  // was not externally suspended.
2466  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2467    return;
2468  }
2469
2470  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2471
2472  clear_external_suspend();
2473
2474  if (is_ext_suspended()) {
2475    clear_ext_suspended();
2476    SR_lock()->notify_all();
2477  }
2478}
2479
2480void JavaThread::create_stack_guard_pages() {
2481  if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2482  address low_addr = stack_base() - stack_size();
2483  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2484
2485  int allocate = os::allocate_stack_guard_pages();
2486  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2487
2488  if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2489    warning("Attempt to allocate stack guard pages failed.");
2490    return;
2491  }
2492
2493  if (os::guard_memory((char *) low_addr, len)) {
2494    _stack_guard_state = stack_guard_enabled;
2495  } else {
2496    warning("Attempt to protect stack guard pages failed.");
2497    if (os::uncommit_memory((char *) low_addr, len)) {
2498      warning("Attempt to deallocate stack guard pages failed.");
2499    }
2500  }
2501}
2502
2503void JavaThread::remove_stack_guard_pages() {
2504  assert(Thread::current() == this, "from different thread");
2505  if (_stack_guard_state == stack_guard_unused) return;
2506  address low_addr = stack_base() - stack_size();
2507  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2508
2509  if (os::allocate_stack_guard_pages()) {
2510    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2511      _stack_guard_state = stack_guard_unused;
2512    } else {
2513      warning("Attempt to deallocate stack guard pages failed.");
2514    }
2515  } else {
2516    if (_stack_guard_state == stack_guard_unused) return;
2517    if (os::unguard_memory((char *) low_addr, len)) {
2518      _stack_guard_state = stack_guard_unused;
2519    } else {
2520        warning("Attempt to unprotect stack guard pages failed.");
2521    }
2522  }
2523}
2524
2525void JavaThread::enable_stack_yellow_zone() {
2526  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2527  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2528
2529  // The base notation is from the stacks point of view, growing downward.
2530  // We need to adjust it to work correctly with guard_memory()
2531  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2532
2533  guarantee(base < stack_base(),"Error calculating stack yellow zone");
2534  guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2535
2536  if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2537    _stack_guard_state = stack_guard_enabled;
2538  } else {
2539    warning("Attempt to guard stack yellow zone failed.");
2540  }
2541  enable_register_stack_guard();
2542}
2543
2544void JavaThread::disable_stack_yellow_zone() {
2545  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2546  assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2547
2548  // Simply return if called for a thread that does not use guard pages.
2549  if (_stack_guard_state == stack_guard_unused) return;
2550
2551  // The base notation is from the stacks point of view, growing downward.
2552  // We need to adjust it to work correctly with guard_memory()
2553  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2554
2555  if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2556    _stack_guard_state = stack_guard_yellow_disabled;
2557  } else {
2558    warning("Attempt to unguard stack yellow zone failed.");
2559  }
2560  disable_register_stack_guard();
2561}
2562
2563void JavaThread::enable_stack_red_zone() {
2564  // The base notation is from the stacks point of view, growing downward.
2565  // We need to adjust it to work correctly with guard_memory()
2566  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2567  address base = stack_red_zone_base() - stack_red_zone_size();
2568
2569  guarantee(base < stack_base(),"Error calculating stack red zone");
2570  guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2571
2572  if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2573    warning("Attempt to guard stack red zone failed.");
2574  }
2575}
2576
2577void JavaThread::disable_stack_red_zone() {
2578  // The base notation is from the stacks point of view, growing downward.
2579  // We need to adjust it to work correctly with guard_memory()
2580  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2581  address base = stack_red_zone_base() - stack_red_zone_size();
2582  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2583    warning("Attempt to unguard stack red zone failed.");
2584  }
2585}
2586
2587void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2588  // ignore is there is no stack
2589  if (!has_last_Java_frame()) return;
2590  // traverse the stack frames. Starts from top frame.
2591  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2592    frame* fr = fst.current();
2593    f(fr, fst.register_map());
2594  }
2595}
2596
2597
2598#ifndef PRODUCT
2599// Deoptimization
2600// Function for testing deoptimization
2601void JavaThread::deoptimize() {
2602  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2603  StackFrameStream fst(this, UseBiasedLocking);
2604  bool deopt = false;           // Dump stack only if a deopt actually happens.
2605  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2606  // Iterate over all frames in the thread and deoptimize
2607  for(; !fst.is_done(); fst.next()) {
2608    if(fst.current()->can_be_deoptimized()) {
2609
2610      if (only_at) {
2611        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2612        // consists of comma or carriage return separated numbers so
2613        // search for the current bci in that string.
2614        address pc = fst.current()->pc();
2615        nmethod* nm =  (nmethod*) fst.current()->cb();
2616        ScopeDesc* sd = nm->scope_desc_at( pc);
2617        char buffer[8];
2618        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2619        size_t len = strlen(buffer);
2620        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2621        while (found != NULL) {
2622          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2623              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2624            // Check that the bci found is bracketed by terminators.
2625            break;
2626          }
2627          found = strstr(found + 1, buffer);
2628        }
2629        if (!found) {
2630          continue;
2631        }
2632      }
2633
2634      if (DebugDeoptimization && !deopt) {
2635        deopt = true; // One-time only print before deopt
2636        tty->print_cr("[BEFORE Deoptimization]");
2637        trace_frames();
2638        trace_stack();
2639      }
2640      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2641    }
2642  }
2643
2644  if (DebugDeoptimization && deopt) {
2645    tty->print_cr("[AFTER Deoptimization]");
2646    trace_frames();
2647  }
2648}
2649
2650
2651// Make zombies
2652void JavaThread::make_zombies() {
2653  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2654    if (fst.current()->can_be_deoptimized()) {
2655      // it is a Java nmethod
2656      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2657      nm->make_not_entrant();
2658    }
2659  }
2660}
2661#endif // PRODUCT
2662
2663
2664void JavaThread::deoptimized_wrt_marked_nmethods() {
2665  if (!has_last_Java_frame()) return;
2666  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2667  StackFrameStream fst(this, UseBiasedLocking);
2668  for(; !fst.is_done(); fst.next()) {
2669    if (fst.current()->should_be_deoptimized()) {
2670      if (LogCompilation && xtty != NULL) {
2671        nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2672        xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2673                   this->name(), nm != NULL ? nm->compile_id() : -1);
2674      }
2675
2676      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2677    }
2678  }
2679}
2680
2681
2682// GC support
2683static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2684
2685void JavaThread::gc_epilogue() {
2686  frames_do(frame_gc_epilogue);
2687}
2688
2689
2690static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2691
2692void JavaThread::gc_prologue() {
2693  frames_do(frame_gc_prologue);
2694}
2695
2696// If the caller is a NamedThread, then remember, in the current scope,
2697// the given JavaThread in its _processed_thread field.
2698class RememberProcessedThread: public StackObj {
2699  NamedThread* _cur_thr;
2700public:
2701  RememberProcessedThread(JavaThread* jthr) {
2702    Thread* thread = Thread::current();
2703    if (thread->is_Named_thread()) {
2704      _cur_thr = (NamedThread *)thread;
2705      _cur_thr->set_processed_thread(jthr);
2706    } else {
2707      _cur_thr = NULL;
2708    }
2709  }
2710
2711  ~RememberProcessedThread() {
2712    if (_cur_thr) {
2713      _cur_thr->set_processed_thread(NULL);
2714    }
2715  }
2716};
2717
2718void JavaThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
2719  // Verify that the deferred card marks have been flushed.
2720  assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2721
2722  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2723  // since there may be more than one thread using each ThreadProfiler.
2724
2725  // Traverse the GCHandles
2726  Thread::oops_do(f, cld_f, cf);
2727
2728  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2729          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2730
2731  if (has_last_Java_frame()) {
2732    // Record JavaThread to GC thread
2733    RememberProcessedThread rpt(this);
2734
2735    // Traverse the privileged stack
2736    if (_privileged_stack_top != NULL) {
2737      _privileged_stack_top->oops_do(f);
2738    }
2739
2740    // traverse the registered growable array
2741    if (_array_for_gc != NULL) {
2742      for (int index = 0; index < _array_for_gc->length(); index++) {
2743        f->do_oop(_array_for_gc->adr_at(index));
2744      }
2745    }
2746
2747    // Traverse the monitor chunks
2748    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2749      chunk->oops_do(f);
2750    }
2751
2752    // Traverse the execution stack
2753    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2754      fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2755    }
2756  }
2757
2758  // callee_target is never live across a gc point so NULL it here should
2759  // it still contain a methdOop.
2760
2761  set_callee_target(NULL);
2762
2763  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2764  // If we have deferred set_locals there might be oops waiting to be
2765  // written
2766  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2767  if (list != NULL) {
2768    for (int i = 0; i < list->length(); i++) {
2769      list->at(i)->oops_do(f);
2770    }
2771  }
2772
2773  // Traverse instance variables at the end since the GC may be moving things
2774  // around using this function
2775  f->do_oop((oop*) &_threadObj);
2776  f->do_oop((oop*) &_vm_result);
2777  f->do_oop((oop*) &_exception_oop);
2778  f->do_oop((oop*) &_pending_async_exception);
2779
2780  if (jvmti_thread_state() != NULL) {
2781    jvmti_thread_state()->oops_do(f);
2782  }
2783}
2784
2785void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2786  Thread::nmethods_do(cf);  // (super method is a no-op)
2787
2788  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2789          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2790
2791  if (has_last_Java_frame()) {
2792    // Traverse the execution stack
2793    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2794      fst.current()->nmethods_do(cf);
2795    }
2796  }
2797}
2798
2799void JavaThread::metadata_do(void f(Metadata*)) {
2800  Thread::metadata_do(f);
2801  if (has_last_Java_frame()) {
2802    // Traverse the execution stack to call f() on the methods in the stack
2803    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2804      fst.current()->metadata_do(f);
2805    }
2806  } else if (is_Compiler_thread()) {
2807    // need to walk ciMetadata in current compile tasks to keep alive.
2808    CompilerThread* ct = (CompilerThread*)this;
2809    if (ct->env() != NULL) {
2810      ct->env()->metadata_do(f);
2811    }
2812  }
2813}
2814
2815// Printing
2816const char* _get_thread_state_name(JavaThreadState _thread_state) {
2817  switch (_thread_state) {
2818  case _thread_uninitialized:     return "_thread_uninitialized";
2819  case _thread_new:               return "_thread_new";
2820  case _thread_new_trans:         return "_thread_new_trans";
2821  case _thread_in_native:         return "_thread_in_native";
2822  case _thread_in_native_trans:   return "_thread_in_native_trans";
2823  case _thread_in_vm:             return "_thread_in_vm";
2824  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2825  case _thread_in_Java:           return "_thread_in_Java";
2826  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2827  case _thread_blocked:           return "_thread_blocked";
2828  case _thread_blocked_trans:     return "_thread_blocked_trans";
2829  default:                        return "unknown thread state";
2830  }
2831}
2832
2833#ifndef PRODUCT
2834void JavaThread::print_thread_state_on(outputStream *st) const {
2835  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2836};
2837void JavaThread::print_thread_state() const {
2838  print_thread_state_on(tty);
2839};
2840#endif // PRODUCT
2841
2842// Called by Threads::print() for VM_PrintThreads operation
2843void JavaThread::print_on(outputStream *st) const {
2844  st->print("\"%s\" ", get_thread_name());
2845  oop thread_oop = threadObj();
2846  if (thread_oop != NULL) {
2847    st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2848    if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2849    st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2850  }
2851  Thread::print_on(st);
2852  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2853  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2854  if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2855    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2856  }
2857#ifndef PRODUCT
2858  print_thread_state_on(st);
2859  _safepoint_state->print_on(st);
2860#endif // PRODUCT
2861}
2862
2863// Called by fatal error handler. The difference between this and
2864// JavaThread::print() is that we can't grab lock or allocate memory.
2865void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2866  st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2867  oop thread_obj = threadObj();
2868  if (thread_obj != NULL) {
2869     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2870  }
2871  st->print(" [");
2872  st->print("%s", _get_thread_state_name(_thread_state));
2873  if (osthread()) {
2874    st->print(", id=%d", osthread()->thread_id());
2875  }
2876  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2877            _stack_base - _stack_size, _stack_base);
2878  st->print("]");
2879  return;
2880}
2881
2882// Verification
2883
2884static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2885
2886void JavaThread::verify() {
2887  // Verify oops in the thread.
2888  oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2889
2890  // Verify the stack frames.
2891  frames_do(frame_verify);
2892}
2893
2894// CR 6300358 (sub-CR 2137150)
2895// Most callers of this method assume that it can't return NULL but a
2896// thread may not have a name whilst it is in the process of attaching to
2897// the VM - see CR 6412693, and there are places where a JavaThread can be
2898// seen prior to having it's threadObj set (eg JNI attaching threads and
2899// if vm exit occurs during initialization). These cases can all be accounted
2900// for such that this method never returns NULL.
2901const char* JavaThread::get_thread_name() const {
2902#ifdef ASSERT
2903  // early safepoints can hit while current thread does not yet have TLS
2904  if (!SafepointSynchronize::is_at_safepoint()) {
2905    Thread *cur = Thread::current();
2906    if (!(cur->is_Java_thread() && cur == this)) {
2907      // Current JavaThreads are allowed to get their own name without
2908      // the Threads_lock.
2909      assert_locked_or_safepoint(Threads_lock);
2910    }
2911  }
2912#endif // ASSERT
2913    return get_thread_name_string();
2914}
2915
2916// Returns a non-NULL representation of this thread's name, or a suitable
2917// descriptive string if there is no set name
2918const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2919  const char* name_str;
2920  oop thread_obj = threadObj();
2921  if (thread_obj != NULL) {
2922    typeArrayOop name = java_lang_Thread::name(thread_obj);
2923    if (name != NULL) {
2924      if (buf == NULL) {
2925        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2926      }
2927      else {
2928        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2929      }
2930    }
2931    else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2932      name_str = "<no-name - thread is attaching>";
2933    }
2934    else {
2935      name_str = Thread::name();
2936    }
2937  }
2938  else {
2939    name_str = Thread::name();
2940  }
2941  assert(name_str != NULL, "unexpected NULL thread name");
2942  return name_str;
2943}
2944
2945
2946const char* JavaThread::get_threadgroup_name() const {
2947  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2948  oop thread_obj = threadObj();
2949  if (thread_obj != NULL) {
2950    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2951    if (thread_group != NULL) {
2952      typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2953      // ThreadGroup.name can be null
2954      if (name != NULL) {
2955        const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2956        return str;
2957      }
2958    }
2959  }
2960  return NULL;
2961}
2962
2963const char* JavaThread::get_parent_name() const {
2964  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2965  oop thread_obj = threadObj();
2966  if (thread_obj != NULL) {
2967    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2968    if (thread_group != NULL) {
2969      oop parent = java_lang_ThreadGroup::parent(thread_group);
2970      if (parent != NULL) {
2971        typeArrayOop name = java_lang_ThreadGroup::name(parent);
2972        // ThreadGroup.name can be null
2973        if (name != NULL) {
2974          const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2975          return str;
2976        }
2977      }
2978    }
2979  }
2980  return NULL;
2981}
2982
2983ThreadPriority JavaThread::java_priority() const {
2984  oop thr_oop = threadObj();
2985  if (thr_oop == NULL) return NormPriority; // Bootstrapping
2986  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2987  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2988  return priority;
2989}
2990
2991void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2992
2993  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2994  // Link Java Thread object <-> C++ Thread
2995
2996  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2997  // and put it into a new Handle.  The Handle "thread_oop" can then
2998  // be used to pass the C++ thread object to other methods.
2999
3000  // Set the Java level thread object (jthread) field of the
3001  // new thread (a JavaThread *) to C++ thread object using the
3002  // "thread_oop" handle.
3003
3004  // Set the thread field (a JavaThread *) of the
3005  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3006
3007  Handle thread_oop(Thread::current(),
3008                    JNIHandles::resolve_non_null(jni_thread));
3009  assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3010    "must be initialized");
3011  set_threadObj(thread_oop());
3012  java_lang_Thread::set_thread(thread_oop(), this);
3013
3014  if (prio == NoPriority) {
3015    prio = java_lang_Thread::priority(thread_oop());
3016    assert(prio != NoPriority, "A valid priority should be present");
3017  }
3018
3019  // Push the Java priority down to the native thread; needs Threads_lock
3020  Thread::set_priority(this, prio);
3021
3022  // Add the new thread to the Threads list and set it in motion.
3023  // We must have threads lock in order to call Threads::add.
3024  // It is crucial that we do not block before the thread is
3025  // added to the Threads list for if a GC happens, then the java_thread oop
3026  // will not be visited by GC.
3027  Threads::add(this);
3028}
3029
3030oop JavaThread::current_park_blocker() {
3031  // Support for JSR-166 locks
3032  oop thread_oop = threadObj();
3033  if (thread_oop != NULL &&
3034      JDK_Version::current().supports_thread_park_blocker()) {
3035    return java_lang_Thread::park_blocker(thread_oop);
3036  }
3037  return NULL;
3038}
3039
3040
3041void JavaThread::print_stack_on(outputStream* st) {
3042  if (!has_last_Java_frame()) return;
3043  ResourceMark rm;
3044  HandleMark   hm;
3045
3046  RegisterMap reg_map(this);
3047  vframe* start_vf = last_java_vframe(&reg_map);
3048  int count = 0;
3049  for (vframe* f = start_vf; f; f = f->sender() ) {
3050    if (f->is_java_frame()) {
3051      javaVFrame* jvf = javaVFrame::cast(f);
3052      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3053
3054      // Print out lock information
3055      if (JavaMonitorsInStackTrace) {
3056        jvf->print_lock_info_on(st, count);
3057      }
3058    } else {
3059      // Ignore non-Java frames
3060    }
3061
3062    // Bail-out case for too deep stacks
3063    count++;
3064    if (MaxJavaStackTraceDepth == count) return;
3065  }
3066}
3067
3068
3069// JVMTI PopFrame support
3070void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3071  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3072  if (in_bytes(size_in_bytes) != 0) {
3073    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3074    _popframe_preserved_args_size = in_bytes(size_in_bytes);
3075    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3076  }
3077}
3078
3079void* JavaThread::popframe_preserved_args() {
3080  return _popframe_preserved_args;
3081}
3082
3083ByteSize JavaThread::popframe_preserved_args_size() {
3084  return in_ByteSize(_popframe_preserved_args_size);
3085}
3086
3087WordSize JavaThread::popframe_preserved_args_size_in_words() {
3088  int sz = in_bytes(popframe_preserved_args_size());
3089  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3090  return in_WordSize(sz / wordSize);
3091}
3092
3093void JavaThread::popframe_free_preserved_args() {
3094  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3095  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3096  _popframe_preserved_args = NULL;
3097  _popframe_preserved_args_size = 0;
3098}
3099
3100#ifndef PRODUCT
3101
3102void JavaThread::trace_frames() {
3103  tty->print_cr("[Describe stack]");
3104  int frame_no = 1;
3105  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3106    tty->print("  %d. ", frame_no++);
3107    fst.current()->print_value_on(tty,this);
3108    tty->cr();
3109  }
3110}
3111
3112class PrintAndVerifyOopClosure: public OopClosure {
3113 protected:
3114  template <class T> inline void do_oop_work(T* p) {
3115    oop obj = oopDesc::load_decode_heap_oop(p);
3116    if (obj == NULL) return;
3117    tty->print(INTPTR_FORMAT ": ", p);
3118    if (obj->is_oop_or_null()) {
3119      if (obj->is_objArray()) {
3120        tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3121      } else {
3122        obj->print();
3123      }
3124    } else {
3125      tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3126    }
3127    tty->cr();
3128  }
3129 public:
3130  virtual void do_oop(oop* p) { do_oop_work(p); }
3131  virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3132};
3133
3134
3135static void oops_print(frame* f, const RegisterMap *map) {
3136  PrintAndVerifyOopClosure print;
3137  f->print_value();
3138  f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3139}
3140
3141// Print our all the locations that contain oops and whether they are
3142// valid or not.  This useful when trying to find the oldest frame
3143// where an oop has gone bad since the frame walk is from youngest to
3144// oldest.
3145void JavaThread::trace_oops() {
3146  tty->print_cr("[Trace oops]");
3147  frames_do(oops_print);
3148}
3149
3150
3151#ifdef ASSERT
3152// Print or validate the layout of stack frames
3153void JavaThread::print_frame_layout(int depth, bool validate_only) {
3154  ResourceMark rm;
3155  PRESERVE_EXCEPTION_MARK;
3156  FrameValues values;
3157  int frame_no = 0;
3158  for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3159    fst.current()->describe(values, ++frame_no);
3160    if (depth == frame_no) break;
3161  }
3162  if (validate_only) {
3163    values.validate();
3164  } else {
3165    tty->print_cr("[Describe stack layout]");
3166    values.print(this);
3167  }
3168}
3169#endif
3170
3171void JavaThread::trace_stack_from(vframe* start_vf) {
3172  ResourceMark rm;
3173  int vframe_no = 1;
3174  for (vframe* f = start_vf; f; f = f->sender() ) {
3175    if (f->is_java_frame()) {
3176      javaVFrame::cast(f)->print_activation(vframe_no++);
3177    } else {
3178      f->print();
3179    }
3180    if (vframe_no > StackPrintLimit) {
3181      tty->print_cr("...<more frames>...");
3182      return;
3183    }
3184  }
3185}
3186
3187
3188void JavaThread::trace_stack() {
3189  if (!has_last_Java_frame()) return;
3190  ResourceMark rm;
3191  HandleMark   hm;
3192  RegisterMap reg_map(this);
3193  trace_stack_from(last_java_vframe(&reg_map));
3194}
3195
3196
3197#endif // PRODUCT
3198
3199
3200javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3201  assert(reg_map != NULL, "a map must be given");
3202  frame f = last_frame();
3203  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3204    if (vf->is_java_frame()) return javaVFrame::cast(vf);
3205  }
3206  return NULL;
3207}
3208
3209
3210Klass* JavaThread::security_get_caller_class(int depth) {
3211  vframeStream vfst(this);
3212  vfst.security_get_caller_frame(depth);
3213  if (!vfst.at_end()) {
3214    return vfst.method()->method_holder();
3215  }
3216  return NULL;
3217}
3218
3219static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3220  assert(thread->is_Compiler_thread(), "must be compiler thread");
3221  CompileBroker::compiler_thread_loop();
3222}
3223
3224// Create a CompilerThread
3225CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3226: JavaThread(&compiler_thread_entry) {
3227  _env   = NULL;
3228  _log   = NULL;
3229  _task  = NULL;
3230  _queue = queue;
3231  _counters = counters;
3232  _buffer_blob = NULL;
3233  _scanned_nmethod = NULL;
3234
3235#ifndef PRODUCT
3236  _ideal_graph_printer = NULL;
3237#endif
3238}
3239
3240void CompilerThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
3241  JavaThread::oops_do(f, cld_f, cf);
3242  if (_scanned_nmethod != NULL && cf != NULL) {
3243    // Safepoints can occur when the sweeper is scanning an nmethod so
3244    // process it here to make sure it isn't unloaded in the middle of
3245    // a scan.
3246    cf->do_code_blob(_scanned_nmethod);
3247  }
3248}
3249
3250// ======= Threads ========
3251
3252// The Threads class links together all active threads, and provides
3253// operations over all threads.  It is protected by its own Mutex
3254// lock, which is also used in other contexts to protect thread
3255// operations from having the thread being operated on from exiting
3256// and going away unexpectedly (e.g., safepoint synchronization)
3257
3258JavaThread* Threads::_thread_list = NULL;
3259int         Threads::_number_of_threads = 0;
3260int         Threads::_number_of_non_daemon_threads = 0;
3261int         Threads::_return_code = 0;
3262size_t      JavaThread::_stack_size_at_create = 0;
3263#ifdef ASSERT
3264bool        Threads::_vm_complete = false;
3265#endif
3266
3267// All JavaThreads
3268#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3269
3270void os_stream();
3271
3272// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3273void Threads::threads_do(ThreadClosure* tc) {
3274  assert_locked_or_safepoint(Threads_lock);
3275  // ALL_JAVA_THREADS iterates through all JavaThreads
3276  ALL_JAVA_THREADS(p) {
3277    tc->do_thread(p);
3278  }
3279  // Someday we could have a table or list of all non-JavaThreads.
3280  // For now, just manually iterate through them.
3281  tc->do_thread(VMThread::vm_thread());
3282  Universe::heap()->gc_threads_do(tc);
3283  WatcherThread *wt = WatcherThread::watcher_thread();
3284  // Strictly speaking, the following NULL check isn't sufficient to make sure
3285  // the data for WatcherThread is still valid upon being examined. However,
3286  // considering that WatchThread terminates when the VM is on the way to
3287  // exit at safepoint, the chance of the above is extremely small. The right
3288  // way to prevent termination of WatcherThread would be to acquire
3289  // Terminator_lock, but we can't do that without violating the lock rank
3290  // checking in some cases.
3291  if (wt != NULL)
3292    tc->do_thread(wt);
3293
3294  // If CompilerThreads ever become non-JavaThreads, add them here
3295}
3296
3297jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3298
3299  extern void JDK_Version_init();
3300
3301  // Check version
3302  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3303
3304  // Initialize the output stream module
3305  ostream_init();
3306
3307  // Process java launcher properties.
3308  Arguments::process_sun_java_launcher_properties(args);
3309
3310  // Initialize the os module before using TLS
3311  os::init();
3312
3313  // Initialize system properties.
3314  Arguments::init_system_properties();
3315
3316  // So that JDK version can be used as a discrimintor when parsing arguments
3317  JDK_Version_init();
3318
3319  // Update/Initialize System properties after JDK version number is known
3320  Arguments::init_version_specific_system_properties();
3321
3322  // Parse arguments
3323  jint parse_result = Arguments::parse(args);
3324  if (parse_result != JNI_OK) return parse_result;
3325
3326  if (PauseAtStartup) {
3327    os::pause();
3328  }
3329
3330#ifndef USDT2
3331  HS_DTRACE_PROBE(hotspot, vm__init__begin);
3332#else /* USDT2 */
3333  HOTSPOT_VM_INIT_BEGIN();
3334#endif /* USDT2 */
3335
3336  // Record VM creation timing statistics
3337  TraceVmCreationTime create_vm_timer;
3338  create_vm_timer.start();
3339
3340  // Timing (must come after argument parsing)
3341  TraceTime timer("Create VM", TraceStartupTime);
3342
3343  // Initialize the os module after parsing the args
3344  jint os_init_2_result = os::init_2();
3345  if (os_init_2_result != JNI_OK) return os_init_2_result;
3346
3347  jint adjust_after_os_result = Arguments::adjust_after_os();
3348  if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3349
3350  // intialize TLS
3351  ThreadLocalStorage::init();
3352
3353  // Bootstrap native memory tracking, so it can start recording memory
3354  // activities before worker thread is started. This is the first phase
3355  // of bootstrapping, VM is currently running in single-thread mode.
3356  MemTracker::bootstrap_single_thread();
3357
3358  // Initialize output stream logging
3359  ostream_init_log();
3360
3361  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3362  // Must be before create_vm_init_agents()
3363  if (Arguments::init_libraries_at_startup()) {
3364    convert_vm_init_libraries_to_agents();
3365  }
3366
3367  // Launch -agentlib/-agentpath and converted -Xrun agents
3368  if (Arguments::init_agents_at_startup()) {
3369    create_vm_init_agents();
3370  }
3371
3372  // Initialize Threads state
3373  _thread_list = NULL;
3374  _number_of_threads = 0;
3375  _number_of_non_daemon_threads = 0;
3376
3377  // Initialize global data structures and create system classes in heap
3378  vm_init_globals();
3379
3380  // Attach the main thread to this os thread
3381  JavaThread* main_thread = new JavaThread();
3382  main_thread->set_thread_state(_thread_in_vm);
3383  // must do this before set_active_handles and initialize_thread_local_storage
3384  // Note: on solaris initialize_thread_local_storage() will (indirectly)
3385  // change the stack size recorded here to one based on the java thread
3386  // stacksize. This adjusted size is what is used to figure the placement
3387  // of the guard pages.
3388  main_thread->record_stack_base_and_size();
3389  main_thread->initialize_thread_local_storage();
3390
3391  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3392
3393  if (!main_thread->set_as_starting_thread()) {
3394    vm_shutdown_during_initialization(
3395      "Failed necessary internal allocation. Out of swap space");
3396    delete main_thread;
3397    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3398    return JNI_ENOMEM;
3399  }
3400
3401  // Enable guard page *after* os::create_main_thread(), otherwise it would
3402  // crash Linux VM, see notes in os_linux.cpp.
3403  main_thread->create_stack_guard_pages();
3404
3405  // Initialize Java-Level synchronization subsystem
3406  ObjectMonitor::Initialize() ;
3407
3408  // Second phase of bootstrapping, VM is about entering multi-thread mode
3409  MemTracker::bootstrap_multi_thread();
3410
3411  // Initialize global modules
3412  jint status = init_globals();
3413  if (status != JNI_OK) {
3414    delete main_thread;
3415    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3416    return status;
3417  }
3418
3419  // Should be done after the heap is fully created
3420  main_thread->cache_global_variables();
3421
3422  HandleMark hm;
3423
3424  { MutexLocker mu(Threads_lock);
3425    Threads::add(main_thread);
3426  }
3427
3428  // Any JVMTI raw monitors entered in onload will transition into
3429  // real raw monitor. VM is setup enough here for raw monitor enter.
3430  JvmtiExport::transition_pending_onload_raw_monitors();
3431
3432  // Fully start NMT
3433  MemTracker::start();
3434
3435  // Create the VMThread
3436  { TraceTime timer("Start VMThread", TraceStartupTime);
3437    VMThread::create();
3438    Thread* vmthread = VMThread::vm_thread();
3439
3440    if (!os::create_thread(vmthread, os::vm_thread))
3441      vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3442
3443    // Wait for the VM thread to become ready, and VMThread::run to initialize
3444    // Monitors can have spurious returns, must always check another state flag
3445    {
3446      MutexLocker ml(Notify_lock);
3447      os::start_thread(vmthread);
3448      while (vmthread->active_handles() == NULL) {
3449        Notify_lock->wait();
3450      }
3451    }
3452  }
3453
3454  assert (Universe::is_fully_initialized(), "not initialized");
3455  if (VerifyDuringStartup) {
3456    // Make sure we're starting with a clean slate.
3457    VM_Verify verify_op;
3458    VMThread::execute(&verify_op);
3459  }
3460
3461  EXCEPTION_MARK;
3462
3463  // At this point, the Universe is initialized, but we have not executed
3464  // any byte code.  Now is a good time (the only time) to dump out the
3465  // internal state of the JVM for sharing.
3466  if (DumpSharedSpaces) {
3467    MetaspaceShared::preload_and_dump(CHECK_0);
3468    ShouldNotReachHere();
3469  }
3470
3471  // Always call even when there are not JVMTI environments yet, since environments
3472  // may be attached late and JVMTI must track phases of VM execution
3473  JvmtiExport::enter_start_phase();
3474
3475  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3476  JvmtiExport::post_vm_start();
3477
3478  {
3479    TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3480
3481    if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3482      create_vm_init_libraries();
3483    }
3484
3485    initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3486
3487    if (AggressiveOpts) {
3488      {
3489        // Forcibly initialize java/util/HashMap and mutate the private
3490        // static final "frontCacheEnabled" field before we start creating instances
3491#ifdef ASSERT
3492        Klass* tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3493        assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3494#endif
3495        Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3496        KlassHandle k = KlassHandle(THREAD, k_o);
3497        guarantee(k.not_null(), "Must find java/util/HashMap");
3498        instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3499        ik->initialize(CHECK_0);
3500        fieldDescriptor fd;
3501        // Possible we might not find this field; if so, don't break
3502        if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3503          k()->java_mirror()->bool_field_put(fd.offset(), true);
3504        }
3505      }
3506
3507      if (UseStringCache) {
3508        // Forcibly initialize java/lang/StringValue and mutate the private
3509        // static final "stringCacheEnabled" field before we start creating instances
3510        Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3511        // Possible that StringValue isn't present: if so, silently don't break
3512        if (k_o != NULL) {
3513          KlassHandle k = KlassHandle(THREAD, k_o);
3514          instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3515          ik->initialize(CHECK_0);
3516          fieldDescriptor fd;
3517          // Possible we might not find this field: if so, silently don't break
3518          if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3519            k()->java_mirror()->bool_field_put(fd.offset(), true);
3520          }
3521        }
3522      }
3523    }
3524
3525    // Initialize java_lang.System (needed before creating the thread)
3526    initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3527    initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3528    Handle thread_group = create_initial_thread_group(CHECK_0);
3529    Universe::set_main_thread_group(thread_group());
3530    initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3531    oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3532    main_thread->set_threadObj(thread_object);
3533    // Set thread status to running since main thread has
3534    // been started and running.
3535    java_lang_Thread::set_thread_status(thread_object,
3536                                        java_lang_Thread::RUNNABLE);
3537
3538    // The VM creates & returns objects of this class. Make sure it's initialized.
3539    initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3540
3541    // The VM preresolves methods to these classes. Make sure that they get initialized
3542    initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3543    initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3544    call_initializeSystemClass(CHECK_0);
3545
3546    // get the Java runtime name after java.lang.System is initialized
3547    JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3548    JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3549
3550    // an instance of OutOfMemory exception has been allocated earlier
3551    initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3552    initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3553    initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3554    initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3555    initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3556    initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3557    initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3558    initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
3559  }
3560
3561  // See        : bugid 4211085.
3562  // Background : the static initializer of java.lang.Compiler tries to read
3563  //              property"java.compiler" and read & write property "java.vm.info".
3564  //              When a security manager is installed through the command line
3565  //              option "-Djava.security.manager", the above properties are not
3566  //              readable and the static initializer for java.lang.Compiler fails
3567  //              resulting in a NoClassDefFoundError.  This can happen in any
3568  //              user code which calls methods in java.lang.Compiler.
3569  // Hack :       the hack is to pre-load and initialize this class, so that only
3570  //              system domains are on the stack when the properties are read.
3571  //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3572  //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3573  // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3574  //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3575  //              Once that is done, we should remove this hack.
3576  initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3577
3578  // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3579  // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3580  // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3581  // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3582  // This should also be taken out as soon as 4211383 gets fixed.
3583  reset_vm_info_property(CHECK_0);
3584
3585  quicken_jni_functions();
3586
3587  // Must be run after init_ft which initializes ft_enabled
3588  if (TRACE_INITIALIZE() != JNI_OK) {
3589    vm_exit_during_initialization("Failed to initialize tracing backend");
3590  }
3591
3592  // Set flag that basic initialization has completed. Used by exceptions and various
3593  // debug stuff, that does not work until all basic classes have been initialized.
3594  set_init_completed();
3595
3596#ifndef USDT2
3597  HS_DTRACE_PROBE(hotspot, vm__init__end);
3598#else /* USDT2 */
3599  HOTSPOT_VM_INIT_END();
3600#endif /* USDT2 */
3601
3602  // record VM initialization completion time
3603#if INCLUDE_MANAGEMENT
3604  Management::record_vm_init_completed();
3605#endif // INCLUDE_MANAGEMENT
3606
3607  // Compute system loader. Note that this has to occur after set_init_completed, since
3608  // valid exceptions may be thrown in the process.
3609  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3610  // set_init_completed has just been called, causing exceptions not to be shortcut
3611  // anymore. We call vm_exit_during_initialization directly instead.
3612  SystemDictionary::compute_java_system_loader(THREAD);
3613  if (HAS_PENDING_EXCEPTION) {
3614    vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3615  }
3616
3617#if INCLUDE_ALL_GCS
3618  // Support for ConcurrentMarkSweep. This should be cleaned up
3619  // and better encapsulated. The ugly nested if test would go away
3620  // once things are properly refactored. XXX YSR
3621  if (UseConcMarkSweepGC || UseG1GC) {
3622    if (UseConcMarkSweepGC) {
3623      ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3624    } else {
3625      ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3626    }
3627    if (HAS_PENDING_EXCEPTION) {
3628      vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3629    }
3630  }
3631#endif // INCLUDE_ALL_GCS
3632
3633  // Always call even when there are not JVMTI environments yet, since environments
3634  // may be attached late and JVMTI must track phases of VM execution
3635  JvmtiExport::enter_live_phase();
3636
3637  // Signal Dispatcher needs to be started before VMInit event is posted
3638  os::signal_init();
3639
3640  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3641  if (!DisableAttachMechanism) {
3642    if (StartAttachListener || AttachListener::init_at_startup()) {
3643      AttachListener::init();
3644    }
3645  }
3646
3647  // Launch -Xrun agents
3648  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3649  // back-end can launch with -Xdebug -Xrunjdwp.
3650  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3651    create_vm_init_libraries();
3652  }
3653
3654  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3655  JvmtiExport::post_vm_initialized();
3656
3657  if (TRACE_START() != JNI_OK) {
3658    vm_exit_during_initialization("Failed to start tracing backend.");
3659  }
3660
3661  if (CleanChunkPoolAsync) {
3662    Chunk::start_chunk_pool_cleaner_task();
3663  }
3664
3665  // initialize compiler(s)
3666#if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3667  CompileBroker::compilation_init();
3668#endif
3669
3670#if INCLUDE_MANAGEMENT
3671  Management::initialize(THREAD);
3672#endif // INCLUDE_MANAGEMENT
3673
3674  if (HAS_PENDING_EXCEPTION) {
3675    // management agent fails to start possibly due to
3676    // configuration problem and is responsible for printing
3677    // stack trace if appropriate. Simply exit VM.
3678    vm_exit(1);
3679  }
3680
3681  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3682  if (MemProfiling)                   MemProfiler::engage();
3683  StatSampler::engage();
3684  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3685
3686  BiasedLocking::init();
3687
3688  if (JDK_Version::current().post_vm_init_hook_enabled()) {
3689    call_postVMInitHook(THREAD);
3690    // The Java side of PostVMInitHook.run must deal with all
3691    // exceptions and provide means of diagnosis.
3692    if (HAS_PENDING_EXCEPTION) {
3693      CLEAR_PENDING_EXCEPTION;
3694    }
3695  }
3696
3697  {
3698      MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3699      // Make sure the watcher thread can be started by WatcherThread::start()
3700      // or by dynamic enrollment.
3701      WatcherThread::make_startable();
3702      // Start up the WatcherThread if there are any periodic tasks
3703      // NOTE:  All PeriodicTasks should be registered by now. If they
3704      //   aren't, late joiners might appear to start slowly (we might
3705      //   take a while to process their first tick).
3706      if (PeriodicTask::num_tasks() > 0) {
3707          WatcherThread::start();
3708      }
3709  }
3710
3711  // Give os specific code one last chance to start
3712  os::init_3();
3713
3714  create_vm_timer.end();
3715#ifdef ASSERT
3716  _vm_complete = true;
3717#endif
3718  return JNI_OK;
3719}
3720
3721// type for the Agent_OnLoad and JVM_OnLoad entry points
3722extern "C" {
3723  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3724}
3725// Find a command line agent library and return its entry point for
3726//         -agentlib:  -agentpath:   -Xrun
3727// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3728static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3729  OnLoadEntry_t on_load_entry = NULL;
3730  void *library = agent->os_lib();  // check if we have looked it up before
3731
3732  if (library == NULL) {
3733    char buffer[JVM_MAXPATHLEN];
3734    char ebuf[1024];
3735    const char *name = agent->name();
3736    const char *msg = "Could not find agent library ";
3737
3738    if (agent->is_absolute_path()) {
3739      library = os::dll_load(name, ebuf, sizeof ebuf);
3740      if (library == NULL) {
3741        const char *sub_msg = " in absolute path, with error: ";
3742        size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3743        char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3744        jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3745        // If we can't find the agent, exit.
3746        vm_exit_during_initialization(buf, NULL);
3747        FREE_C_HEAP_ARRAY(char, buf, mtThread);
3748      }
3749    } else {
3750      // Try to load the agent from the standard dll directory
3751      if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3752                             name)) {
3753        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3754      }
3755      if (library == NULL) { // Try the local directory
3756        char ns[1] = {0};
3757        if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3758          library = os::dll_load(buffer, ebuf, sizeof ebuf);
3759        }
3760        if (library == NULL) {
3761          const char *sub_msg = " on the library path, with error: ";
3762          size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3763          char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3764          jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3765          // If we can't find the agent, exit.
3766          vm_exit_during_initialization(buf, NULL);
3767          FREE_C_HEAP_ARRAY(char, buf, mtThread);
3768        }
3769      }
3770    }
3771    agent->set_os_lib(library);
3772  }
3773
3774  // Find the OnLoad function.
3775  for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3776    on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
3777    if (on_load_entry != NULL) break;
3778  }
3779  return on_load_entry;
3780}
3781
3782// Find the JVM_OnLoad entry point
3783static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3784  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3785  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3786}
3787
3788// Find the Agent_OnLoad entry point
3789static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3790  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3791  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3792}
3793
3794// For backwards compatibility with -Xrun
3795// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3796// treated like -agentpath:
3797// Must be called before agent libraries are created
3798void Threads::convert_vm_init_libraries_to_agents() {
3799  AgentLibrary* agent;
3800  AgentLibrary* next;
3801
3802  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3803    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3804    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3805
3806    // If there is an JVM_OnLoad function it will get called later,
3807    // otherwise see if there is an Agent_OnLoad
3808    if (on_load_entry == NULL) {
3809      on_load_entry = lookup_agent_on_load(agent);
3810      if (on_load_entry != NULL) {
3811        // switch it to the agent list -- so that Agent_OnLoad will be called,
3812        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3813        Arguments::convert_library_to_agent(agent);
3814      } else {
3815        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3816      }
3817    }
3818  }
3819}
3820
3821// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3822// Invokes Agent_OnLoad
3823// Called very early -- before JavaThreads exist
3824void Threads::create_vm_init_agents() {
3825  extern struct JavaVM_ main_vm;
3826  AgentLibrary* agent;
3827
3828  JvmtiExport::enter_onload_phase();
3829
3830  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3831    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3832
3833    if (on_load_entry != NULL) {
3834      // Invoke the Agent_OnLoad function
3835      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3836      if (err != JNI_OK) {
3837        vm_exit_during_initialization("agent library failed to init", agent->name());
3838      }
3839    } else {
3840      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3841    }
3842  }
3843  JvmtiExport::enter_primordial_phase();
3844}
3845
3846extern "C" {
3847  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3848}
3849
3850void Threads::shutdown_vm_agents() {
3851  // Send any Agent_OnUnload notifications
3852  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3853  extern struct JavaVM_ main_vm;
3854  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3855
3856    // Find the Agent_OnUnload function.
3857    for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3858      Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3859               os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3860
3861      // Invoke the Agent_OnUnload function
3862      if (unload_entry != NULL) {
3863        JavaThread* thread = JavaThread::current();
3864        ThreadToNativeFromVM ttn(thread);
3865        HandleMark hm(thread);
3866        (*unload_entry)(&main_vm);
3867        break;
3868      }
3869    }
3870  }
3871}
3872
3873// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3874// Invokes JVM_OnLoad
3875void Threads::create_vm_init_libraries() {
3876  extern struct JavaVM_ main_vm;
3877  AgentLibrary* agent;
3878
3879  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3880    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3881
3882    if (on_load_entry != NULL) {
3883      // Invoke the JVM_OnLoad function
3884      JavaThread* thread = JavaThread::current();
3885      ThreadToNativeFromVM ttn(thread);
3886      HandleMark hm(thread);
3887      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3888      if (err != JNI_OK) {
3889        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3890      }
3891    } else {
3892      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3893    }
3894  }
3895}
3896
3897// Last thread running calls java.lang.Shutdown.shutdown()
3898void JavaThread::invoke_shutdown_hooks() {
3899  HandleMark hm(this);
3900
3901  // We could get here with a pending exception, if so clear it now.
3902  if (this->has_pending_exception()) {
3903    this->clear_pending_exception();
3904  }
3905
3906  EXCEPTION_MARK;
3907  Klass* k =
3908    SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3909                                      THREAD);
3910  if (k != NULL) {
3911    // SystemDictionary::resolve_or_null will return null if there was
3912    // an exception.  If we cannot load the Shutdown class, just don't
3913    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3914    // and finalizers (if runFinalizersOnExit is set) won't be run.
3915    // Note that if a shutdown hook was registered or runFinalizersOnExit
3916    // was called, the Shutdown class would have already been loaded
3917    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3918    instanceKlassHandle shutdown_klass (THREAD, k);
3919    JavaValue result(T_VOID);
3920    JavaCalls::call_static(&result,
3921                           shutdown_klass,
3922                           vmSymbols::shutdown_method_name(),
3923                           vmSymbols::void_method_signature(),
3924                           THREAD);
3925  }
3926  CLEAR_PENDING_EXCEPTION;
3927}
3928
3929// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3930// the program falls off the end of main(). Another VM exit path is through
3931// vm_exit() when the program calls System.exit() to return a value or when
3932// there is a serious error in VM. The two shutdown paths are not exactly
3933// the same, but they share Shutdown.shutdown() at Java level and before_exit()
3934// and VM_Exit op at VM level.
3935//
3936// Shutdown sequence:
3937//   + Shutdown native memory tracking if it is on
3938//   + Wait until we are the last non-daemon thread to execute
3939//     <-- every thing is still working at this moment -->
3940//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3941//        shutdown hooks, run finalizers if finalization-on-exit
3942//   + Call before_exit(), prepare for VM exit
3943//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3944//        currently the only user of this mechanism is File.deleteOnExit())
3945//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3946//        post thread end and vm death events to JVMTI,
3947//        stop signal thread
3948//   + Call JavaThread::exit(), it will:
3949//      > release JNI handle blocks, remove stack guard pages
3950//      > remove this thread from Threads list
3951//     <-- no more Java code from this thread after this point -->
3952//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3953//     the compiler threads at safepoint
3954//     <-- do not use anything that could get blocked by Safepoint -->
3955//   + Disable tracing at JNI/JVM barriers
3956//   + Set _vm_exited flag for threads that are still running native code
3957//   + Delete this thread
3958//   + Call exit_globals()
3959//      > deletes tty
3960//      > deletes PerfMemory resources
3961//   + Return to caller
3962
3963bool Threads::destroy_vm() {
3964  JavaThread* thread = JavaThread::current();
3965
3966#ifdef ASSERT
3967  _vm_complete = false;
3968#endif
3969  // Wait until we are the last non-daemon thread to execute
3970  { MutexLocker nu(Threads_lock);
3971    while (Threads::number_of_non_daemon_threads() > 1 )
3972      // This wait should make safepoint checks, wait without a timeout,
3973      // and wait as a suspend-equivalent condition.
3974      //
3975      // Note: If the FlatProfiler is running and this thread is waiting
3976      // for another non-daemon thread to finish, then the FlatProfiler
3977      // is waiting for the external suspend request on this thread to
3978      // complete. wait_for_ext_suspend_completion() will eventually
3979      // timeout, but that takes time. Making this wait a suspend-
3980      // equivalent condition solves that timeout problem.
3981      //
3982      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3983                         Mutex::_as_suspend_equivalent_flag);
3984  }
3985
3986  // Hang forever on exit if we are reporting an error.
3987  if (ShowMessageBoxOnError && is_error_reported()) {
3988    os::infinite_sleep();
3989  }
3990  os::wait_for_keypress_at_exit();
3991
3992  if (JDK_Version::is_jdk12x_version()) {
3993    // We are the last thread running, so check if finalizers should be run.
3994    // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3995    HandleMark rm(thread);
3996    Universe::run_finalizers_on_exit();
3997  } else {
3998    // run Java level shutdown hooks
3999    thread->invoke_shutdown_hooks();
4000  }
4001
4002  before_exit(thread);
4003
4004  thread->exit(true);
4005
4006  // Stop VM thread.
4007  {
4008    // 4945125 The vm thread comes to a safepoint during exit.
4009    // GC vm_operations can get caught at the safepoint, and the
4010    // heap is unparseable if they are caught. Grab the Heap_lock
4011    // to prevent this. The GC vm_operations will not be able to
4012    // queue until after the vm thread is dead.
4013    // After this point, we'll never emerge out of the safepoint before
4014    // the VM exits, so concurrent GC threads do not need to be explicitly
4015    // stopped; they remain inactive until the process exits.
4016    // Note: some concurrent G1 threads may be running during a safepoint,
4017    // but these will not be accessing the heap, just some G1-specific side
4018    // data structures that are not accessed by any other threads but them
4019    // after this point in a terminal safepoint.
4020
4021    MutexLocker ml(Heap_lock);
4022
4023    VMThread::wait_for_vm_thread_exit();
4024    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4025    VMThread::destroy();
4026  }
4027
4028  // clean up ideal graph printers
4029#if defined(COMPILER2) && !defined(PRODUCT)
4030  IdealGraphPrinter::clean_up();
4031#endif
4032
4033  // Now, all Java threads are gone except daemon threads. Daemon threads
4034  // running Java code or in VM are stopped by the Safepoint. However,
4035  // daemon threads executing native code are still running.  But they
4036  // will be stopped at native=>Java/VM barriers. Note that we can't
4037  // simply kill or suspend them, as it is inherently deadlock-prone.
4038
4039#ifndef PRODUCT
4040  // disable function tracing at JNI/JVM barriers
4041  TraceJNICalls = false;
4042  TraceJVMCalls = false;
4043  TraceRuntimeCalls = false;
4044#endif
4045
4046  VM_Exit::set_vm_exited();
4047
4048  notify_vm_shutdown();
4049
4050  delete thread;
4051
4052  // exit_globals() will delete tty
4053  exit_globals();
4054
4055  return true;
4056}
4057
4058
4059jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4060  if (version == JNI_VERSION_1_1) return JNI_TRUE;
4061  return is_supported_jni_version(version);
4062}
4063
4064
4065jboolean Threads::is_supported_jni_version(jint version) {
4066  if (version == JNI_VERSION_1_2) return JNI_TRUE;
4067  if (version == JNI_VERSION_1_4) return JNI_TRUE;
4068  if (version == JNI_VERSION_1_6) return JNI_TRUE;
4069  if (version == JNI_VERSION_1_8) return JNI_TRUE;
4070  return JNI_FALSE;
4071}
4072
4073
4074void Threads::add(JavaThread* p, bool force_daemon) {
4075  // The threads lock must be owned at this point
4076  assert_locked_or_safepoint(Threads_lock);
4077
4078  // See the comment for this method in thread.hpp for its purpose and
4079  // why it is called here.
4080  p->initialize_queues();
4081  p->set_next(_thread_list);
4082  _thread_list = p;
4083  _number_of_threads++;
4084  oop threadObj = p->threadObj();
4085  bool daemon = true;
4086  // Bootstrapping problem: threadObj can be null for initial
4087  // JavaThread (or for threads attached via JNI)
4088  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4089    _number_of_non_daemon_threads++;
4090    daemon = false;
4091  }
4092
4093  p->set_safepoint_visible(true);
4094
4095  ThreadService::add_thread(p, daemon);
4096
4097  // Possible GC point.
4098  Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4099}
4100
4101void Threads::remove(JavaThread* p) {
4102  // Extra scope needed for Thread_lock, so we can check
4103  // that we do not remove thread without safepoint code notice
4104  { MutexLocker ml(Threads_lock);
4105
4106    assert(includes(p), "p must be present");
4107
4108    JavaThread* current = _thread_list;
4109    JavaThread* prev    = NULL;
4110
4111    while (current != p) {
4112      prev    = current;
4113      current = current->next();
4114    }
4115
4116    if (prev) {
4117      prev->set_next(current->next());
4118    } else {
4119      _thread_list = p->next();
4120    }
4121    _number_of_threads--;
4122    oop threadObj = p->threadObj();
4123    bool daemon = true;
4124    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4125      _number_of_non_daemon_threads--;
4126      daemon = false;
4127
4128      // Only one thread left, do a notify on the Threads_lock so a thread waiting
4129      // on destroy_vm will wake up.
4130      if (number_of_non_daemon_threads() == 1)
4131        Threads_lock->notify_all();
4132    }
4133    ThreadService::remove_thread(p, daemon);
4134
4135    // Make sure that safepoint code disregard this thread. This is needed since
4136    // the thread might mess around with locks after this point. This can cause it
4137    // to do callbacks into the safepoint code. However, the safepoint code is not aware
4138    // of this thread since it is removed from the queue.
4139    p->set_terminated_value();
4140
4141    // Now, this thread is not visible to safepoint
4142    p->set_safepoint_visible(false);
4143    // once the thread becomes safepoint invisible, we can not use its per-thread
4144    // recorder. And Threads::do_threads() no longer walks this thread, so we have
4145    // to release its per-thread recorder here.
4146    MemTracker::thread_exiting(p);
4147  } // unlock Threads_lock
4148
4149  // Since Events::log uses a lock, we grab it outside the Threads_lock
4150  Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4151}
4152
4153// Threads_lock must be held when this is called (or must be called during a safepoint)
4154bool Threads::includes(JavaThread* p) {
4155  assert(Threads_lock->is_locked(), "sanity check");
4156  ALL_JAVA_THREADS(q) {
4157    if (q == p ) {
4158      return true;
4159    }
4160  }
4161  return false;
4162}
4163
4164// Operations on the Threads list for GC.  These are not explicitly locked,
4165// but the garbage collector must provide a safe context for them to run.
4166// In particular, these things should never be called when the Threads_lock
4167// is held by some other thread. (Note: the Safepoint abstraction also
4168// uses the Threads_lock to gurantee this property. It also makes sure that
4169// all threads gets blocked when exiting or starting).
4170
4171void Threads::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
4172  ALL_JAVA_THREADS(p) {
4173    p->oops_do(f, cld_f, cf);
4174  }
4175  VMThread::vm_thread()->oops_do(f, cld_f, cf);
4176}
4177
4178void Threads::possibly_parallel_oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
4179  // Introduce a mechanism allowing parallel threads to claim threads as
4180  // root groups.  Overhead should be small enough to use all the time,
4181  // even in sequential code.
4182  SharedHeap* sh = SharedHeap::heap();
4183  // Cannot yet substitute active_workers for n_par_threads
4184  // because of G1CollectedHeap::verify() use of
4185  // SharedHeap::process_strong_roots().  n_par_threads == 0 will
4186  // turn off parallelism in process_strong_roots while active_workers
4187  // is being used for parallelism elsewhere.
4188  bool is_par = sh->n_par_threads() > 0;
4189  assert(!is_par ||
4190         (SharedHeap::heap()->n_par_threads() ==
4191          SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4192  int cp = SharedHeap::heap()->strong_roots_parity();
4193  ALL_JAVA_THREADS(p) {
4194    if (p->claim_oops_do(is_par, cp)) {
4195      p->oops_do(f, cld_f, cf);
4196    }
4197  }
4198  VMThread* vmt = VMThread::vm_thread();
4199  if (vmt->claim_oops_do(is_par, cp)) {
4200    vmt->oops_do(f, cld_f, cf);
4201  }
4202}
4203
4204#if INCLUDE_ALL_GCS
4205// Used by ParallelScavenge
4206void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4207  ALL_JAVA_THREADS(p) {
4208    q->enqueue(new ThreadRootsTask(p));
4209  }
4210  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4211}
4212
4213// Used by Parallel Old
4214void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4215  ALL_JAVA_THREADS(p) {
4216    q->enqueue(new ThreadRootsMarkingTask(p));
4217  }
4218  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4219}
4220#endif // INCLUDE_ALL_GCS
4221
4222void Threads::nmethods_do(CodeBlobClosure* cf) {
4223  ALL_JAVA_THREADS(p) {
4224    p->nmethods_do(cf);
4225  }
4226  VMThread::vm_thread()->nmethods_do(cf);
4227}
4228
4229void Threads::metadata_do(void f(Metadata*)) {
4230  ALL_JAVA_THREADS(p) {
4231    p->metadata_do(f);
4232  }
4233}
4234
4235void Threads::gc_epilogue() {
4236  ALL_JAVA_THREADS(p) {
4237    p->gc_epilogue();
4238  }
4239}
4240
4241void Threads::gc_prologue() {
4242  ALL_JAVA_THREADS(p) {
4243    p->gc_prologue();
4244  }
4245}
4246
4247void Threads::deoptimized_wrt_marked_nmethods() {
4248  ALL_JAVA_THREADS(p) {
4249    p->deoptimized_wrt_marked_nmethods();
4250  }
4251}
4252
4253
4254// Get count Java threads that are waiting to enter the specified monitor.
4255GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4256  address monitor, bool doLock) {
4257  assert(doLock || SafepointSynchronize::is_at_safepoint(),
4258    "must grab Threads_lock or be at safepoint");
4259  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4260
4261  int i = 0;
4262  {
4263    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4264    ALL_JAVA_THREADS(p) {
4265      if (p->is_Compiler_thread()) continue;
4266
4267      address pending = (address)p->current_pending_monitor();
4268      if (pending == monitor) {             // found a match
4269        if (i < count) result->append(p);   // save the first count matches
4270        i++;
4271      }
4272    }
4273  }
4274  return result;
4275}
4276
4277
4278JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4279  assert(doLock ||
4280         Threads_lock->owned_by_self() ||
4281         SafepointSynchronize::is_at_safepoint(),
4282         "must grab Threads_lock or be at safepoint");
4283
4284  // NULL owner means not locked so we can skip the search
4285  if (owner == NULL) return NULL;
4286
4287  {
4288    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4289    ALL_JAVA_THREADS(p) {
4290      // first, see if owner is the address of a Java thread
4291      if (owner == (address)p) return p;
4292    }
4293  }
4294  // Cannot assert on lack of success here since this function may be
4295  // used by code that is trying to report useful problem information
4296  // like deadlock detection.
4297  if (UseHeavyMonitors) return NULL;
4298
4299  //
4300  // If we didn't find a matching Java thread and we didn't force use of
4301  // heavyweight monitors, then the owner is the stack address of the
4302  // Lock Word in the owning Java thread's stack.
4303  //
4304  JavaThread* the_owner = NULL;
4305  {
4306    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4307    ALL_JAVA_THREADS(q) {
4308      if (q->is_lock_owned(owner)) {
4309        the_owner = q;
4310        break;
4311      }
4312    }
4313  }
4314  // cannot assert on lack of success here; see above comment
4315  return the_owner;
4316}
4317
4318// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4319void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4320  char buf[32];
4321  st->print_cr(os::local_time_string(buf, sizeof(buf)));
4322
4323  st->print_cr("Full thread dump %s (%s %s):",
4324                Abstract_VM_Version::vm_name(),
4325                Abstract_VM_Version::vm_release(),
4326                Abstract_VM_Version::vm_info_string()
4327               );
4328  st->cr();
4329
4330#if INCLUDE_ALL_GCS
4331  // Dump concurrent locks
4332  ConcurrentLocksDump concurrent_locks;
4333  if (print_concurrent_locks) {
4334    concurrent_locks.dump_at_safepoint();
4335  }
4336#endif // INCLUDE_ALL_GCS
4337
4338  ALL_JAVA_THREADS(p) {
4339    ResourceMark rm;
4340    p->print_on(st);
4341    if (print_stacks) {
4342      if (internal_format) {
4343        p->trace_stack();
4344      } else {
4345        p->print_stack_on(st);
4346      }
4347    }
4348    st->cr();
4349#if INCLUDE_ALL_GCS
4350    if (print_concurrent_locks) {
4351      concurrent_locks.print_locks_on(p, st);
4352    }
4353#endif // INCLUDE_ALL_GCS
4354  }
4355
4356  VMThread::vm_thread()->print_on(st);
4357  st->cr();
4358  Universe::heap()->print_gc_threads_on(st);
4359  WatcherThread* wt = WatcherThread::watcher_thread();
4360  if (wt != NULL) {
4361    wt->print_on(st);
4362    st->cr();
4363  }
4364  CompileBroker::print_compiler_threads_on(st);
4365  st->flush();
4366}
4367
4368// Threads::print_on_error() is called by fatal error handler. It's possible
4369// that VM is not at safepoint and/or current thread is inside signal handler.
4370// Don't print stack trace, as the stack may not be walkable. Don't allocate
4371// memory (even in resource area), it might deadlock the error handler.
4372void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4373  bool found_current = false;
4374  st->print_cr("Java Threads: ( => current thread )");
4375  ALL_JAVA_THREADS(thread) {
4376    bool is_current = (current == thread);
4377    found_current = found_current || is_current;
4378
4379    st->print("%s", is_current ? "=>" : "  ");
4380
4381    st->print(PTR_FORMAT, thread);
4382    st->print(" ");
4383    thread->print_on_error(st, buf, buflen);
4384    st->cr();
4385  }
4386  st->cr();
4387
4388  st->print_cr("Other Threads:");
4389  if (VMThread::vm_thread()) {
4390    bool is_current = (current == VMThread::vm_thread());
4391    found_current = found_current || is_current;
4392    st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4393
4394    st->print(PTR_FORMAT, VMThread::vm_thread());
4395    st->print(" ");
4396    VMThread::vm_thread()->print_on_error(st, buf, buflen);
4397    st->cr();
4398  }
4399  WatcherThread* wt = WatcherThread::watcher_thread();
4400  if (wt != NULL) {
4401    bool is_current = (current == wt);
4402    found_current = found_current || is_current;
4403    st->print("%s", is_current ? "=>" : "  ");
4404
4405    st->print(PTR_FORMAT, wt);
4406    st->print(" ");
4407    wt->print_on_error(st, buf, buflen);
4408    st->cr();
4409  }
4410  if (!found_current) {
4411    st->cr();
4412    st->print("=>" PTR_FORMAT " (exited) ", current);
4413    current->print_on_error(st, buf, buflen);
4414    st->cr();
4415  }
4416}
4417
4418// Internal SpinLock and Mutex
4419// Based on ParkEvent
4420
4421// Ad-hoc mutual exclusion primitives: SpinLock and Mux
4422//
4423// We employ SpinLocks _only for low-contention, fixed-length
4424// short-duration critical sections where we're concerned
4425// about native mutex_t or HotSpot Mutex:: latency.
4426// The mux construct provides a spin-then-block mutual exclusion
4427// mechanism.
4428//
4429// Testing has shown that contention on the ListLock guarding gFreeList
4430// is common.  If we implement ListLock as a simple SpinLock it's common
4431// for the JVM to devolve to yielding with little progress.  This is true
4432// despite the fact that the critical sections protected by ListLock are
4433// extremely short.
4434//
4435// TODO-FIXME: ListLock should be of type SpinLock.
4436// We should make this a 1st-class type, integrated into the lock
4437// hierarchy as leaf-locks.  Critically, the SpinLock structure
4438// should have sufficient padding to avoid false-sharing and excessive
4439// cache-coherency traffic.
4440
4441
4442typedef volatile int SpinLockT ;
4443
4444void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4445  if (Atomic::cmpxchg (1, adr, 0) == 0) {
4446     return ;   // normal fast-path return
4447  }
4448
4449  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4450  TEVENT (SpinAcquire - ctx) ;
4451  int ctr = 0 ;
4452  int Yields = 0 ;
4453  for (;;) {
4454     while (*adr != 0) {
4455        ++ctr ;
4456        if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4457           if (Yields > 5) {
4458             // Consider using a simple NakedSleep() instead.
4459             // Then SpinAcquire could be called by non-JVM threads
4460             Thread::current()->_ParkEvent->park(1) ;
4461           } else {
4462             os::NakedYield() ;
4463             ++Yields ;
4464           }
4465        } else {
4466           SpinPause() ;
4467        }
4468     }
4469     if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4470  }
4471}
4472
4473void Thread::SpinRelease (volatile int * adr) {
4474  assert (*adr != 0, "invariant") ;
4475  OrderAccess::fence() ;      // guarantee at least release consistency.
4476  // Roach-motel semantics.
4477  // It's safe if subsequent LDs and STs float "up" into the critical section,
4478  // but prior LDs and STs within the critical section can't be allowed
4479  // to reorder or float past the ST that releases the lock.
4480  *adr = 0 ;
4481}
4482
4483// muxAcquire and muxRelease:
4484//
4485// *  muxAcquire and muxRelease support a single-word lock-word construct.
4486//    The LSB of the word is set IFF the lock is held.
4487//    The remainder of the word points to the head of a singly-linked list
4488//    of threads blocked on the lock.
4489//
4490// *  The current implementation of muxAcquire-muxRelease uses its own
4491//    dedicated Thread._MuxEvent instance.  If we're interested in
4492//    minimizing the peak number of extant ParkEvent instances then
4493//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4494//    as certain invariants were satisfied.  Specifically, care would need
4495//    to be taken with regards to consuming unpark() "permits".
4496//    A safe rule of thumb is that a thread would never call muxAcquire()
4497//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4498//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4499//    consume an unpark() permit intended for monitorenter, for instance.
4500//    One way around this would be to widen the restricted-range semaphore
4501//    implemented in park().  Another alternative would be to provide
4502//    multiple instances of the PlatformEvent() for each thread.  One
4503//    instance would be dedicated to muxAcquire-muxRelease, for instance.
4504//
4505// *  Usage:
4506//    -- Only as leaf locks
4507//    -- for short-term locking only as muxAcquire does not perform
4508//       thread state transitions.
4509//
4510// Alternatives:
4511// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4512//    but with parking or spin-then-park instead of pure spinning.
4513// *  Use Taura-Oyama-Yonenzawa locks.
4514// *  It's possible to construct a 1-0 lock if we encode the lockword as
4515//    (List,LockByte).  Acquire will CAS the full lockword while Release
4516//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4517//    acquiring threads use timers (ParkTimed) to detect and recover from
4518//    the stranding window.  Thread/Node structures must be aligned on 256-byte
4519//    boundaries by using placement-new.
4520// *  Augment MCS with advisory back-link fields maintained with CAS().
4521//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4522//    The validity of the backlinks must be ratified before we trust the value.
4523//    If the backlinks are invalid the exiting thread must back-track through the
4524//    the forward links, which are always trustworthy.
4525// *  Add a successor indication.  The LockWord is currently encoded as
4526//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4527//    to provide the usual futile-wakeup optimization.
4528//    See RTStt for details.
4529// *  Consider schedctl.sc_nopreempt to cover the critical section.
4530//
4531
4532
4533typedef volatile intptr_t MutexT ;      // Mux Lock-word
4534enum MuxBits { LOCKBIT = 1 } ;
4535
4536void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4537  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4538  if (w == 0) return ;
4539  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4540     return ;
4541  }
4542
4543  TEVENT (muxAcquire - Contention) ;
4544  ParkEvent * const Self = Thread::current()->_MuxEvent ;
4545  assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4546  for (;;) {
4547     int its = (os::is_MP() ? 100 : 0) + 1 ;
4548
4549     // Optional spin phase: spin-then-park strategy
4550     while (--its >= 0) {
4551       w = *Lock ;
4552       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4553          return ;
4554       }
4555     }
4556
4557     Self->reset() ;
4558     Self->OnList = intptr_t(Lock) ;
4559     // The following fence() isn't _strictly necessary as the subsequent
4560     // CAS() both serializes execution and ratifies the fetched *Lock value.
4561     OrderAccess::fence();
4562     for (;;) {
4563        w = *Lock ;
4564        if ((w & LOCKBIT) == 0) {
4565            if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4566                Self->OnList = 0 ;   // hygiene - allows stronger asserts
4567                return ;
4568            }
4569            continue ;      // Interference -- *Lock changed -- Just retry
4570        }
4571        assert (w & LOCKBIT, "invariant") ;
4572        Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4573        if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4574     }
4575
4576     while (Self->OnList != 0) {
4577        Self->park() ;
4578     }
4579  }
4580}
4581
4582void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4583  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4584  if (w == 0) return ;
4585  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4586    return ;
4587  }
4588
4589  TEVENT (muxAcquire - Contention) ;
4590  ParkEvent * ReleaseAfter = NULL ;
4591  if (ev == NULL) {
4592    ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4593  }
4594  assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4595  for (;;) {
4596    guarantee (ev->OnList == 0, "invariant") ;
4597    int its = (os::is_MP() ? 100 : 0) + 1 ;
4598
4599    // Optional spin phase: spin-then-park strategy
4600    while (--its >= 0) {
4601      w = *Lock ;
4602      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4603        if (ReleaseAfter != NULL) {
4604          ParkEvent::Release (ReleaseAfter) ;
4605        }
4606        return ;
4607      }
4608    }
4609
4610    ev->reset() ;
4611    ev->OnList = intptr_t(Lock) ;
4612    // The following fence() isn't _strictly necessary as the subsequent
4613    // CAS() both serializes execution and ratifies the fetched *Lock value.
4614    OrderAccess::fence();
4615    for (;;) {
4616      w = *Lock ;
4617      if ((w & LOCKBIT) == 0) {
4618        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4619          ev->OnList = 0 ;
4620          // We call ::Release while holding the outer lock, thus
4621          // artificially lengthening the critical section.
4622          // Consider deferring the ::Release() until the subsequent unlock(),
4623          // after we've dropped the outer lock.
4624          if (ReleaseAfter != NULL) {
4625            ParkEvent::Release (ReleaseAfter) ;
4626          }
4627          return ;
4628        }
4629        continue ;      // Interference -- *Lock changed -- Just retry
4630      }
4631      assert (w & LOCKBIT, "invariant") ;
4632      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4633      if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4634    }
4635
4636    while (ev->OnList != 0) {
4637      ev->park() ;
4638    }
4639  }
4640}
4641
4642// Release() must extract a successor from the list and then wake that thread.
4643// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4644// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4645// Release() would :
4646// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4647// (B) Extract a successor from the private list "in-hand"
4648// (C) attempt to CAS() the residual back into *Lock over null.
4649//     If there were any newly arrived threads and the CAS() would fail.
4650//     In that case Release() would detach the RATs, re-merge the list in-hand
4651//     with the RATs and repeat as needed.  Alternately, Release() might
4652//     detach and extract a successor, but then pass the residual list to the wakee.
4653//     The wakee would be responsible for reattaching and remerging before it
4654//     competed for the lock.
4655//
4656// Both "pop" and DMR are immune from ABA corruption -- there can be
4657// multiple concurrent pushers, but only one popper or detacher.
4658// This implementation pops from the head of the list.  This is unfair,
4659// but tends to provide excellent throughput as hot threads remain hot.
4660// (We wake recently run threads first).
4661
4662void Thread::muxRelease (volatile intptr_t * Lock)  {
4663  for (;;) {
4664    const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4665    assert (w & LOCKBIT, "invariant") ;
4666    if (w == LOCKBIT) return ;
4667    ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4668    assert (List != NULL, "invariant") ;
4669    assert (List->OnList == intptr_t(Lock), "invariant") ;
4670    ParkEvent * nxt = List->ListNext ;
4671
4672    // The following CAS() releases the lock and pops the head element.
4673    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4674      continue ;
4675    }
4676    List->OnList = 0 ;
4677    OrderAccess::fence() ;
4678    List->unpark () ;
4679    return ;
4680  }
4681}
4682
4683
4684void Threads::verify() {
4685  ALL_JAVA_THREADS(p) {
4686    p->verify();
4687  }
4688  VMThread* thread = VMThread::vm_thread();
4689  if (thread != NULL) thread->verify();
4690}
4691