thread.cpp revision 5844:5944dba4badc
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/scopeDesc.hpp"
31#include "compiler/compileBroker.hpp"
32#include "interpreter/interpreter.hpp"
33#include "interpreter/linkResolver.hpp"
34#include "interpreter/oopMapCache.hpp"
35#include "jvmtifiles/jvmtiEnv.hpp"
36#include "memory/gcLocker.inline.hpp"
37#include "memory/metaspaceShared.hpp"
38#include "memory/oopFactory.hpp"
39#include "memory/universe.inline.hpp"
40#include "oops/instanceKlass.hpp"
41#include "oops/objArrayOop.hpp"
42#include "oops/oop.inline.hpp"
43#include "oops/symbol.hpp"
44#include "prims/jvm_misc.hpp"
45#include "prims/jvmtiExport.hpp"
46#include "prims/jvmtiThreadState.hpp"
47#include "prims/privilegedStack.hpp"
48#include "runtime/arguments.hpp"
49#include "runtime/biasedLocking.hpp"
50#include "runtime/deoptimization.hpp"
51#include "runtime/fprofiler.hpp"
52#include "runtime/frame.inline.hpp"
53#include "runtime/init.hpp"
54#include "runtime/interfaceSupport.hpp"
55#include "runtime/java.hpp"
56#include "runtime/javaCalls.hpp"
57#include "runtime/jniPeriodicChecker.hpp"
58#include "runtime/memprofiler.hpp"
59#include "runtime/mutexLocker.hpp"
60#include "runtime/objectMonitor.hpp"
61#include "runtime/osThread.hpp"
62#include "runtime/safepoint.hpp"
63#include "runtime/sharedRuntime.hpp"
64#include "runtime/statSampler.hpp"
65#include "runtime/stubRoutines.hpp"
66#include "runtime/task.hpp"
67#include "runtime/thread.inline.hpp"
68#include "runtime/threadCritical.hpp"
69#include "runtime/threadLocalStorage.hpp"
70#include "runtime/vframe.hpp"
71#include "runtime/vframeArray.hpp"
72#include "runtime/vframe_hp.hpp"
73#include "runtime/vmThread.hpp"
74#include "runtime/vm_operations.hpp"
75#include "services/attachListener.hpp"
76#include "services/management.hpp"
77#include "services/memTracker.hpp"
78#include "services/threadService.hpp"
79#include "trace/tracing.hpp"
80#include "trace/traceMacros.hpp"
81#include "utilities/defaultStream.hpp"
82#include "utilities/dtrace.hpp"
83#include "utilities/events.hpp"
84#include "utilities/preserveException.hpp"
85#include "utilities/macros.hpp"
86#ifdef TARGET_OS_FAMILY_linux
87# include "os_linux.inline.hpp"
88#endif
89#ifdef TARGET_OS_FAMILY_solaris
90# include "os_solaris.inline.hpp"
91#endif
92#ifdef TARGET_OS_FAMILY_windows
93# include "os_windows.inline.hpp"
94#endif
95#ifdef TARGET_OS_FAMILY_bsd
96# include "os_bsd.inline.hpp"
97#endif
98#if INCLUDE_ALL_GCS
99#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
100#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
101#include "gc_implementation/parallelScavenge/pcTasks.hpp"
102#endif // INCLUDE_ALL_GCS
103#ifdef COMPILER1
104#include "c1/c1_Compiler.hpp"
105#endif
106#ifdef COMPILER2
107#include "opto/c2compiler.hpp"
108#include "opto/idealGraphPrinter.hpp"
109#endif
110
111#ifdef DTRACE_ENABLED
112
113// Only bother with this argument setup if dtrace is available
114
115#ifndef USDT2
116HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
117HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
118HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
119  intptr_t, intptr_t, bool);
120HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
121  intptr_t, intptr_t, bool);
122
123#define DTRACE_THREAD_PROBE(probe, javathread)                             \
124  {                                                                        \
125    ResourceMark rm(this);                                                 \
126    int len = 0;                                                           \
127    const char* name = (javathread)->get_thread_name();                    \
128    len = strlen(name);                                                    \
129    HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
130      name, len,                                                           \
131      java_lang_Thread::thread_id((javathread)->threadObj()),              \
132      (javathread)->osthread()->thread_id(),                               \
133      java_lang_Thread::is_daemon((javathread)->threadObj()));             \
134  }
135
136#else /* USDT2 */
137
138#define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
139#define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
140
141#define DTRACE_THREAD_PROBE(probe, javathread)                             \
142  {                                                                        \
143    ResourceMark rm(this);                                                 \
144    int len = 0;                                                           \
145    const char* name = (javathread)->get_thread_name();                    \
146    len = strlen(name);                                                    \
147    HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
148      (char *) name, len,                                                           \
149      java_lang_Thread::thread_id((javathread)->threadObj()),              \
150      (uintptr_t) (javathread)->osthread()->thread_id(),                               \
151      java_lang_Thread::is_daemon((javathread)->threadObj()));             \
152  }
153
154#endif /* USDT2 */
155
156#else //  ndef DTRACE_ENABLED
157
158#define DTRACE_THREAD_PROBE(probe, javathread)
159
160#endif // ndef DTRACE_ENABLED
161
162
163// Class hierarchy
164// - Thread
165//   - VMThread
166//   - WatcherThread
167//   - ConcurrentMarkSweepThread
168//   - JavaThread
169//     - CompilerThread
170
171// ======= Thread ========
172// Support for forcing alignment of thread objects for biased locking
173void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
174  if (UseBiasedLocking) {
175    const int alignment = markOopDesc::biased_lock_alignment;
176    size_t aligned_size = size + (alignment - sizeof(intptr_t));
177    void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
178                                          : AllocateHeap(aligned_size, flags, CURRENT_PC,
179                                              AllocFailStrategy::RETURN_NULL);
180    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
181    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
182           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
183           "JavaThread alignment code overflowed allocated storage");
184    if (TraceBiasedLocking) {
185      if (aligned_addr != real_malloc_addr)
186        tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
187                      real_malloc_addr, aligned_addr);
188    }
189    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
190    return aligned_addr;
191  } else {
192    return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
193                       : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
194  }
195}
196
197void Thread::operator delete(void* p) {
198  if (UseBiasedLocking) {
199    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
200    FreeHeap(real_malloc_addr, mtThread);
201  } else {
202    FreeHeap(p, mtThread);
203  }
204}
205
206
207// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
208// JavaThread
209
210
211Thread::Thread() {
212  // stack and get_thread
213  set_stack_base(NULL);
214  set_stack_size(0);
215  set_self_raw_id(0);
216  set_lgrp_id(-1);
217
218  // allocated data structures
219  set_osthread(NULL);
220  set_resource_area(new (mtThread)ResourceArea());
221  DEBUG_ONLY(_current_resource_mark = NULL;)
222  set_handle_area(new (mtThread) HandleArea(NULL));
223  set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
224  set_active_handles(NULL);
225  set_free_handle_block(NULL);
226  set_last_handle_mark(NULL);
227
228  // This initial value ==> never claimed.
229  _oops_do_parity = 0;
230
231  // the handle mark links itself to last_handle_mark
232  new HandleMark(this);
233
234  // plain initialization
235  debug_only(_owned_locks = NULL;)
236  debug_only(_allow_allocation_count = 0;)
237  NOT_PRODUCT(_allow_safepoint_count = 0;)
238  NOT_PRODUCT(_skip_gcalot = false;)
239  CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
240  _jvmti_env_iteration_count = 0;
241  set_allocated_bytes(0);
242  _vm_operation_started_count = 0;
243  _vm_operation_completed_count = 0;
244  _current_pending_monitor = NULL;
245  _current_pending_monitor_is_from_java = true;
246  _current_waiting_monitor = NULL;
247  _num_nested_signal = 0;
248  omFreeList = NULL ;
249  omFreeCount = 0 ;
250  omFreeProvision = 32 ;
251  omInUseList = NULL ;
252  omInUseCount = 0 ;
253
254#ifdef ASSERT
255  _visited_for_critical_count = false;
256#endif
257
258  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
259  _suspend_flags = 0;
260
261  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
262  _hashStateX = os::random() ;
263  _hashStateY = 842502087 ;
264  _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
265  _hashStateW = 273326509 ;
266
267  _OnTrap   = 0 ;
268  _schedctl = NULL ;
269  _Stalled  = 0 ;
270  _TypeTag  = 0x2BAD ;
271
272  // Many of the following fields are effectively final - immutable
273  // Note that nascent threads can't use the Native Monitor-Mutex
274  // construct until the _MutexEvent is initialized ...
275  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
276  // we might instead use a stack of ParkEvents that we could provision on-demand.
277  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
278  // and ::Release()
279  _ParkEvent   = ParkEvent::Allocate (this) ;
280  _SleepEvent  = ParkEvent::Allocate (this) ;
281  _MutexEvent  = ParkEvent::Allocate (this) ;
282  _MuxEvent    = ParkEvent::Allocate (this) ;
283
284#ifdef CHECK_UNHANDLED_OOPS
285  if (CheckUnhandledOops) {
286    _unhandled_oops = new UnhandledOops(this);
287  }
288#endif // CHECK_UNHANDLED_OOPS
289#ifdef ASSERT
290  if (UseBiasedLocking) {
291    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
292    assert(this == _real_malloc_address ||
293           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
294           "bug in forced alignment of thread objects");
295  }
296#endif /* ASSERT */
297}
298
299void Thread::initialize_thread_local_storage() {
300  // Note: Make sure this method only calls
301  // non-blocking operations. Otherwise, it might not work
302  // with the thread-startup/safepoint interaction.
303
304  // During Java thread startup, safepoint code should allow this
305  // method to complete because it may need to allocate memory to
306  // store information for the new thread.
307
308  // initialize structure dependent on thread local storage
309  ThreadLocalStorage::set_thread(this);
310}
311
312void Thread::record_stack_base_and_size() {
313  set_stack_base(os::current_stack_base());
314  set_stack_size(os::current_stack_size());
315  // CR 7190089: on Solaris, primordial thread's stack is adjusted
316  // in initialize_thread(). Without the adjustment, stack size is
317  // incorrect if stack is set to unlimited (ulimit -s unlimited).
318  // So far, only Solaris has real implementation of initialize_thread().
319  //
320  // set up any platform-specific state.
321  os::initialize_thread(this);
322
323#if INCLUDE_NMT
324  // record thread's native stack, stack grows downward
325  address stack_low_addr = stack_base() - stack_size();
326  MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
327      CURRENT_PC);
328#endif // INCLUDE_NMT
329}
330
331
332Thread::~Thread() {
333  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
334  ObjectSynchronizer::omFlush (this) ;
335
336  EVENT_THREAD_DESTRUCT(this);
337
338  // stack_base can be NULL if the thread is never started or exited before
339  // record_stack_base_and_size called. Although, we would like to ensure
340  // that all started threads do call record_stack_base_and_size(), there is
341  // not proper way to enforce that.
342#if INCLUDE_NMT
343  if (_stack_base != NULL) {
344    address low_stack_addr = stack_base() - stack_size();
345    MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
346#ifdef ASSERT
347    set_stack_base(NULL);
348#endif
349  }
350#endif // INCLUDE_NMT
351
352  // deallocate data structures
353  delete resource_area();
354  // since the handle marks are using the handle area, we have to deallocated the root
355  // handle mark before deallocating the thread's handle area,
356  assert(last_handle_mark() != NULL, "check we have an element");
357  delete last_handle_mark();
358  assert(last_handle_mark() == NULL, "check we have reached the end");
359
360  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
361  // We NULL out the fields for good hygiene.
362  ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
363  ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
364  ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
365  ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
366
367  delete handle_area();
368  delete metadata_handles();
369
370  // osthread() can be NULL, if creation of thread failed.
371  if (osthread() != NULL) os::free_thread(osthread());
372
373  delete _SR_lock;
374
375  // clear thread local storage if the Thread is deleting itself
376  if (this == Thread::current()) {
377    ThreadLocalStorage::set_thread(NULL);
378  } else {
379    // In the case where we're not the current thread, invalidate all the
380    // caches in case some code tries to get the current thread or the
381    // thread that was destroyed, and gets stale information.
382    ThreadLocalStorage::invalidate_all();
383  }
384  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
385}
386
387// NOTE: dummy function for assertion purpose.
388void Thread::run() {
389  ShouldNotReachHere();
390}
391
392#ifdef ASSERT
393// Private method to check for dangling thread pointer
394void check_for_dangling_thread_pointer(Thread *thread) {
395 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
396         "possibility of dangling Thread pointer");
397}
398#endif
399
400
401#ifndef PRODUCT
402// Tracing method for basic thread operations
403void Thread::trace(const char* msg, const Thread* const thread) {
404  if (!TraceThreadEvents) return;
405  ResourceMark rm;
406  ThreadCritical tc;
407  const char *name = "non-Java thread";
408  int prio = -1;
409  if (thread->is_Java_thread()
410      && !thread->is_Compiler_thread()) {
411    // The Threads_lock must be held to get information about
412    // this thread but may not be in some situations when
413    // tracing  thread events.
414    bool release_Threads_lock = false;
415    if (!Threads_lock->owned_by_self()) {
416      Threads_lock->lock();
417      release_Threads_lock = true;
418    }
419    JavaThread* jt = (JavaThread *)thread;
420    name = (char *)jt->get_thread_name();
421    oop thread_oop = jt->threadObj();
422    if (thread_oop != NULL) {
423      prio = java_lang_Thread::priority(thread_oop);
424    }
425    if (release_Threads_lock) {
426      Threads_lock->unlock();
427    }
428  }
429  tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
430}
431#endif
432
433
434ThreadPriority Thread::get_priority(const Thread* const thread) {
435  trace("get priority", thread);
436  ThreadPriority priority;
437  // Can return an error!
438  (void)os::get_priority(thread, priority);
439  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
440  return priority;
441}
442
443void Thread::set_priority(Thread* thread, ThreadPriority priority) {
444  trace("set priority", thread);
445  debug_only(check_for_dangling_thread_pointer(thread);)
446  // Can return an error!
447  (void)os::set_priority(thread, priority);
448}
449
450
451void Thread::start(Thread* thread) {
452  trace("start", thread);
453  // Start is different from resume in that its safety is guaranteed by context or
454  // being called from a Java method synchronized on the Thread object.
455  if (!DisableStartThread) {
456    if (thread->is_Java_thread()) {
457      // Initialize the thread state to RUNNABLE before starting this thread.
458      // Can not set it after the thread started because we do not know the
459      // exact thread state at that time. It could be in MONITOR_WAIT or
460      // in SLEEPING or some other state.
461      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
462                                          java_lang_Thread::RUNNABLE);
463    }
464    os::start_thread(thread);
465  }
466}
467
468// Enqueue a VM_Operation to do the job for us - sometime later
469void Thread::send_async_exception(oop java_thread, oop java_throwable) {
470  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
471  VMThread::execute(vm_stop);
472}
473
474
475//
476// Check if an external suspend request has completed (or has been
477// cancelled). Returns true if the thread is externally suspended and
478// false otherwise.
479//
480// The bits parameter returns information about the code path through
481// the routine. Useful for debugging:
482//
483// set in is_ext_suspend_completed():
484// 0x00000001 - routine was entered
485// 0x00000010 - routine return false at end
486// 0x00000100 - thread exited (return false)
487// 0x00000200 - suspend request cancelled (return false)
488// 0x00000400 - thread suspended (return true)
489// 0x00001000 - thread is in a suspend equivalent state (return true)
490// 0x00002000 - thread is native and walkable (return true)
491// 0x00004000 - thread is native_trans and walkable (needed retry)
492//
493// set in wait_for_ext_suspend_completion():
494// 0x00010000 - routine was entered
495// 0x00020000 - suspend request cancelled before loop (return false)
496// 0x00040000 - thread suspended before loop (return true)
497// 0x00080000 - suspend request cancelled in loop (return false)
498// 0x00100000 - thread suspended in loop (return true)
499// 0x00200000 - suspend not completed during retry loop (return false)
500//
501
502// Helper class for tracing suspend wait debug bits.
503//
504// 0x00000100 indicates that the target thread exited before it could
505// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
506// 0x00080000 each indicate a cancelled suspend request so they don't
507// count as wait failures either.
508#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
509
510class TraceSuspendDebugBits : public StackObj {
511 private:
512  JavaThread * jt;
513  bool         is_wait;
514  bool         called_by_wait;  // meaningful when !is_wait
515  uint32_t *   bits;
516
517 public:
518  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
519                        uint32_t *_bits) {
520    jt             = _jt;
521    is_wait        = _is_wait;
522    called_by_wait = _called_by_wait;
523    bits           = _bits;
524  }
525
526  ~TraceSuspendDebugBits() {
527    if (!is_wait) {
528#if 1
529      // By default, don't trace bits for is_ext_suspend_completed() calls.
530      // That trace is very chatty.
531      return;
532#else
533      if (!called_by_wait) {
534        // If tracing for is_ext_suspend_completed() is enabled, then only
535        // trace calls to it from wait_for_ext_suspend_completion()
536        return;
537      }
538#endif
539    }
540
541    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
542      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
543        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
544        ResourceMark rm;
545
546        tty->print_cr(
547            "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
548            jt->get_thread_name(), *bits);
549
550        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
551      }
552    }
553  }
554};
555#undef DEBUG_FALSE_BITS
556
557
558bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
559  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
560
561  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
562  bool do_trans_retry;           // flag to force the retry
563
564  *bits |= 0x00000001;
565
566  do {
567    do_trans_retry = false;
568
569    if (is_exiting()) {
570      // Thread is in the process of exiting. This is always checked
571      // first to reduce the risk of dereferencing a freed JavaThread.
572      *bits |= 0x00000100;
573      return false;
574    }
575
576    if (!is_external_suspend()) {
577      // Suspend request is cancelled. This is always checked before
578      // is_ext_suspended() to reduce the risk of a rogue resume
579      // confusing the thread that made the suspend request.
580      *bits |= 0x00000200;
581      return false;
582    }
583
584    if (is_ext_suspended()) {
585      // thread is suspended
586      *bits |= 0x00000400;
587      return true;
588    }
589
590    // Now that we no longer do hard suspends of threads running
591    // native code, the target thread can be changing thread state
592    // while we are in this routine:
593    //
594    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
595    //
596    // We save a copy of the thread state as observed at this moment
597    // and make our decision about suspend completeness based on the
598    // copy. This closes the race where the thread state is seen as
599    // _thread_in_native_trans in the if-thread_blocked check, but is
600    // seen as _thread_blocked in if-thread_in_native_trans check.
601    JavaThreadState save_state = thread_state();
602
603    if (save_state == _thread_blocked && is_suspend_equivalent()) {
604      // If the thread's state is _thread_blocked and this blocking
605      // condition is known to be equivalent to a suspend, then we can
606      // consider the thread to be externally suspended. This means that
607      // the code that sets _thread_blocked has been modified to do
608      // self-suspension if the blocking condition releases. We also
609      // used to check for CONDVAR_WAIT here, but that is now covered by
610      // the _thread_blocked with self-suspension check.
611      //
612      // Return true since we wouldn't be here unless there was still an
613      // external suspend request.
614      *bits |= 0x00001000;
615      return true;
616    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
617      // Threads running native code will self-suspend on native==>VM/Java
618      // transitions. If its stack is walkable (should always be the case
619      // unless this function is called before the actual java_suspend()
620      // call), then the wait is done.
621      *bits |= 0x00002000;
622      return true;
623    } else if (!called_by_wait && !did_trans_retry &&
624               save_state == _thread_in_native_trans &&
625               frame_anchor()->walkable()) {
626      // The thread is transitioning from thread_in_native to another
627      // thread state. check_safepoint_and_suspend_for_native_trans()
628      // will force the thread to self-suspend. If it hasn't gotten
629      // there yet we may have caught the thread in-between the native
630      // code check above and the self-suspend. Lucky us. If we were
631      // called by wait_for_ext_suspend_completion(), then it
632      // will be doing the retries so we don't have to.
633      //
634      // Since we use the saved thread state in the if-statement above,
635      // there is a chance that the thread has already transitioned to
636      // _thread_blocked by the time we get here. In that case, we will
637      // make a single unnecessary pass through the logic below. This
638      // doesn't hurt anything since we still do the trans retry.
639
640      *bits |= 0x00004000;
641
642      // Once the thread leaves thread_in_native_trans for another
643      // thread state, we break out of this retry loop. We shouldn't
644      // need this flag to prevent us from getting back here, but
645      // sometimes paranoia is good.
646      did_trans_retry = true;
647
648      // We wait for the thread to transition to a more usable state.
649      for (int i = 1; i <= SuspendRetryCount; i++) {
650        // We used to do an "os::yield_all(i)" call here with the intention
651        // that yielding would increase on each retry. However, the parameter
652        // is ignored on Linux which means the yield didn't scale up. Waiting
653        // on the SR_lock below provides a much more predictable scale up for
654        // the delay. It also provides a simple/direct point to check for any
655        // safepoint requests from the VMThread
656
657        // temporarily drops SR_lock while doing wait with safepoint check
658        // (if we're a JavaThread - the WatcherThread can also call this)
659        // and increase delay with each retry
660        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
661
662        // check the actual thread state instead of what we saved above
663        if (thread_state() != _thread_in_native_trans) {
664          // the thread has transitioned to another thread state so
665          // try all the checks (except this one) one more time.
666          do_trans_retry = true;
667          break;
668        }
669      } // end retry loop
670
671
672    }
673  } while (do_trans_retry);
674
675  *bits |= 0x00000010;
676  return false;
677}
678
679//
680// Wait for an external suspend request to complete (or be cancelled).
681// Returns true if the thread is externally suspended and false otherwise.
682//
683bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
684       uint32_t *bits) {
685  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
686                             false /* !called_by_wait */, bits);
687
688  // local flag copies to minimize SR_lock hold time
689  bool is_suspended;
690  bool pending;
691  uint32_t reset_bits;
692
693  // set a marker so is_ext_suspend_completed() knows we are the caller
694  *bits |= 0x00010000;
695
696  // We use reset_bits to reinitialize the bits value at the top of
697  // each retry loop. This allows the caller to make use of any
698  // unused bits for their own marking purposes.
699  reset_bits = *bits;
700
701  {
702    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
703    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
704                                            delay, bits);
705    pending = is_external_suspend();
706  }
707  // must release SR_lock to allow suspension to complete
708
709  if (!pending) {
710    // A cancelled suspend request is the only false return from
711    // is_ext_suspend_completed() that keeps us from entering the
712    // retry loop.
713    *bits |= 0x00020000;
714    return false;
715  }
716
717  if (is_suspended) {
718    *bits |= 0x00040000;
719    return true;
720  }
721
722  for (int i = 1; i <= retries; i++) {
723    *bits = reset_bits;  // reinit to only track last retry
724
725    // We used to do an "os::yield_all(i)" call here with the intention
726    // that yielding would increase on each retry. However, the parameter
727    // is ignored on Linux which means the yield didn't scale up. Waiting
728    // on the SR_lock below provides a much more predictable scale up for
729    // the delay. It also provides a simple/direct point to check for any
730    // safepoint requests from the VMThread
731
732    {
733      MutexLocker ml(SR_lock());
734      // wait with safepoint check (if we're a JavaThread - the WatcherThread
735      // can also call this)  and increase delay with each retry
736      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
737
738      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
739                                              delay, bits);
740
741      // It is possible for the external suspend request to be cancelled
742      // (by a resume) before the actual suspend operation is completed.
743      // Refresh our local copy to see if we still need to wait.
744      pending = is_external_suspend();
745    }
746
747    if (!pending) {
748      // A cancelled suspend request is the only false return from
749      // is_ext_suspend_completed() that keeps us from staying in the
750      // retry loop.
751      *bits |= 0x00080000;
752      return false;
753    }
754
755    if (is_suspended) {
756      *bits |= 0x00100000;
757      return true;
758    }
759  } // end retry loop
760
761  // thread did not suspend after all our retries
762  *bits |= 0x00200000;
763  return false;
764}
765
766#ifndef PRODUCT
767void JavaThread::record_jump(address target, address instr, const char* file, int line) {
768
769  // This should not need to be atomic as the only way for simultaneous
770  // updates is via interrupts. Even then this should be rare or non-existant
771  // and we don't care that much anyway.
772
773  int index = _jmp_ring_index;
774  _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
775  _jmp_ring[index]._target = (intptr_t) target;
776  _jmp_ring[index]._instruction = (intptr_t) instr;
777  _jmp_ring[index]._file = file;
778  _jmp_ring[index]._line = line;
779}
780#endif /* PRODUCT */
781
782// Called by flat profiler
783// Callers have already called wait_for_ext_suspend_completion
784// The assertion for that is currently too complex to put here:
785bool JavaThread::profile_last_Java_frame(frame* _fr) {
786  bool gotframe = false;
787  // self suspension saves needed state.
788  if (has_last_Java_frame() && _anchor.walkable()) {
789     *_fr = pd_last_frame();
790     gotframe = true;
791  }
792  return gotframe;
793}
794
795void Thread::interrupt(Thread* thread) {
796  trace("interrupt", thread);
797  debug_only(check_for_dangling_thread_pointer(thread);)
798  os::interrupt(thread);
799}
800
801bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
802  trace("is_interrupted", thread);
803  debug_only(check_for_dangling_thread_pointer(thread);)
804  // Note:  If clear_interrupted==false, this simply fetches and
805  // returns the value of the field osthread()->interrupted().
806  return os::is_interrupted(thread, clear_interrupted);
807}
808
809
810// GC Support
811bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
812  jint thread_parity = _oops_do_parity;
813  if (thread_parity != strong_roots_parity) {
814    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
815    if (res == thread_parity) {
816      return true;
817    } else {
818      guarantee(res == strong_roots_parity, "Or else what?");
819      assert(SharedHeap::heap()->workers()->active_workers() > 0,
820         "Should only fail when parallel.");
821      return false;
822    }
823  }
824  assert(SharedHeap::heap()->workers()->active_workers() > 0,
825         "Should only fail when parallel.");
826  return false;
827}
828
829void Thread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
830  active_handles()->oops_do(f);
831  // Do oop for ThreadShadow
832  f->do_oop((oop*)&_pending_exception);
833  handle_area()->oops_do(f);
834}
835
836void Thread::nmethods_do(CodeBlobClosure* cf) {
837  // no nmethods in a generic thread...
838}
839
840void Thread::metadata_do(void f(Metadata*)) {
841  if (metadata_handles() != NULL) {
842    for (int i = 0; i< metadata_handles()->length(); i++) {
843      f(metadata_handles()->at(i));
844    }
845  }
846}
847
848void Thread::print_on(outputStream* st) const {
849  // get_priority assumes osthread initialized
850  if (osthread() != NULL) {
851    int os_prio;
852    if (os::get_native_priority(this, &os_prio) == OS_OK) {
853      st->print("os_prio=%d ", os_prio);
854    }
855    st->print("tid=" INTPTR_FORMAT " ", this);
856    osthread()->print_on(st);
857  }
858  debug_only(if (WizardMode) print_owned_locks_on(st);)
859}
860
861// Thread::print_on_error() is called by fatal error handler. Don't use
862// any lock or allocate memory.
863void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
864  if      (is_VM_thread())                  st->print("VMThread");
865  else if (is_Compiler_thread())            st->print("CompilerThread");
866  else if (is_Java_thread())                st->print("JavaThread");
867  else if (is_GC_task_thread())             st->print("GCTaskThread");
868  else if (is_Watcher_thread())             st->print("WatcherThread");
869  else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
870  else st->print("Thread");
871
872  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
873            _stack_base - _stack_size, _stack_base);
874
875  if (osthread()) {
876    st->print(" [id=%d]", osthread()->thread_id());
877  }
878}
879
880#ifdef ASSERT
881void Thread::print_owned_locks_on(outputStream* st) const {
882  Monitor *cur = _owned_locks;
883  if (cur == NULL) {
884    st->print(" (no locks) ");
885  } else {
886    st->print_cr(" Locks owned:");
887    while(cur) {
888      cur->print_on(st);
889      cur = cur->next();
890    }
891  }
892}
893
894static int ref_use_count  = 0;
895
896bool Thread::owns_locks_but_compiled_lock() const {
897  for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
898    if (cur != Compile_lock) return true;
899  }
900  return false;
901}
902
903
904#endif
905
906#ifndef PRODUCT
907
908// The flag: potential_vm_operation notifies if this particular safepoint state could potential
909// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
910// no threads which allow_vm_block's are held
911void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
912    // Check if current thread is allowed to block at a safepoint
913    if (!(_allow_safepoint_count == 0))
914      fatal("Possible safepoint reached by thread that does not allow it");
915    if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
916      fatal("LEAF method calling lock?");
917    }
918
919#ifdef ASSERT
920    if (potential_vm_operation && is_Java_thread()
921        && !Universe::is_bootstrapping()) {
922      // Make sure we do not hold any locks that the VM thread also uses.
923      // This could potentially lead to deadlocks
924      for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
925        // Threads_lock is special, since the safepoint synchronization will not start before this is
926        // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
927        // since it is used to transfer control between JavaThreads and the VMThread
928        // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
929        if ( (cur->allow_vm_block() &&
930              cur != Threads_lock &&
931              cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
932              cur != VMOperationRequest_lock &&
933              cur != VMOperationQueue_lock) ||
934              cur->rank() == Mutex::special) {
935          warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
936        }
937      }
938    }
939
940    if (GCALotAtAllSafepoints) {
941      // We could enter a safepoint here and thus have a gc
942      InterfaceSupport::check_gc_alot();
943    }
944#endif
945}
946#endif
947
948bool Thread::is_in_stack(address adr) const {
949  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
950  address end = os::current_stack_pointer();
951  // Allow non Java threads to call this without stack_base
952  if (_stack_base == NULL) return true;
953  if (stack_base() >= adr && adr >= end) return true;
954
955  return false;
956}
957
958
959bool Thread::is_in_usable_stack(address adr) const {
960  size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
961  size_t usable_stack_size = _stack_size - stack_guard_size;
962
963  return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
964}
965
966
967// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
968// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
969// used for compilation in the future. If that change is made, the need for these methods
970// should be revisited, and they should be removed if possible.
971
972bool Thread::is_lock_owned(address adr) const {
973  return on_local_stack(adr);
974}
975
976bool Thread::set_as_starting_thread() {
977 // NOTE: this must be called inside the main thread.
978  return os::create_main_thread((JavaThread*)this);
979}
980
981static void initialize_class(Symbol* class_name, TRAPS) {
982  Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
983  InstanceKlass::cast(klass)->initialize(CHECK);
984}
985
986
987// Creates the initial ThreadGroup
988static Handle create_initial_thread_group(TRAPS) {
989  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
990  instanceKlassHandle klass (THREAD, k);
991
992  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
993  {
994    JavaValue result(T_VOID);
995    JavaCalls::call_special(&result,
996                            system_instance,
997                            klass,
998                            vmSymbols::object_initializer_name(),
999                            vmSymbols::void_method_signature(),
1000                            CHECK_NH);
1001  }
1002  Universe::set_system_thread_group(system_instance());
1003
1004  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
1005  {
1006    JavaValue result(T_VOID);
1007    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1008    JavaCalls::call_special(&result,
1009                            main_instance,
1010                            klass,
1011                            vmSymbols::object_initializer_name(),
1012                            vmSymbols::threadgroup_string_void_signature(),
1013                            system_instance,
1014                            string,
1015                            CHECK_NH);
1016  }
1017  return main_instance;
1018}
1019
1020// Creates the initial Thread
1021static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
1022  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1023  instanceKlassHandle klass (THREAD, k);
1024  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1025
1026  java_lang_Thread::set_thread(thread_oop(), thread);
1027  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1028  thread->set_threadObj(thread_oop());
1029
1030  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1031
1032  JavaValue result(T_VOID);
1033  JavaCalls::call_special(&result, thread_oop,
1034                                   klass,
1035                                   vmSymbols::object_initializer_name(),
1036                                   vmSymbols::threadgroup_string_void_signature(),
1037                                   thread_group,
1038                                   string,
1039                                   CHECK_NULL);
1040  return thread_oop();
1041}
1042
1043static void call_initializeSystemClass(TRAPS) {
1044  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1045  instanceKlassHandle klass (THREAD, k);
1046
1047  JavaValue result(T_VOID);
1048  JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1049                                         vmSymbols::void_method_signature(), CHECK);
1050}
1051
1052char java_runtime_name[128] = "";
1053char java_runtime_version[128] = "";
1054
1055// extract the JRE name from sun.misc.Version.java_runtime_name
1056static const char* get_java_runtime_name(TRAPS) {
1057  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1058                                      Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1059  fieldDescriptor fd;
1060  bool found = k != NULL &&
1061               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1062                                                        vmSymbols::string_signature(), &fd);
1063  if (found) {
1064    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1065    if (name_oop == NULL)
1066      return NULL;
1067    const char* name = java_lang_String::as_utf8_string(name_oop,
1068                                                        java_runtime_name,
1069                                                        sizeof(java_runtime_name));
1070    return name;
1071  } else {
1072    return NULL;
1073  }
1074}
1075
1076// extract the JRE version from sun.misc.Version.java_runtime_version
1077static const char* get_java_runtime_version(TRAPS) {
1078  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1079                                      Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1080  fieldDescriptor fd;
1081  bool found = k != NULL &&
1082               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1083                                                        vmSymbols::string_signature(), &fd);
1084  if (found) {
1085    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1086    if (name_oop == NULL)
1087      return NULL;
1088    const char* name = java_lang_String::as_utf8_string(name_oop,
1089                                                        java_runtime_version,
1090                                                        sizeof(java_runtime_version));
1091    return name;
1092  } else {
1093    return NULL;
1094  }
1095}
1096
1097// General purpose hook into Java code, run once when the VM is initialized.
1098// The Java library method itself may be changed independently from the VM.
1099static void call_postVMInitHook(TRAPS) {
1100  Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1101  instanceKlassHandle klass (THREAD, k);
1102  if (klass.not_null()) {
1103    JavaValue result(T_VOID);
1104    JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1105                                           vmSymbols::void_method_signature(),
1106                                           CHECK);
1107  }
1108}
1109
1110static void reset_vm_info_property(TRAPS) {
1111  // the vm info string
1112  ResourceMark rm(THREAD);
1113  const char *vm_info = VM_Version::vm_info_string();
1114
1115  // java.lang.System class
1116  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1117  instanceKlassHandle klass (THREAD, k);
1118
1119  // setProperty arguments
1120  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1121  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1122
1123  // return value
1124  JavaValue r(T_OBJECT);
1125
1126  // public static String setProperty(String key, String value);
1127  JavaCalls::call_static(&r,
1128                         klass,
1129                         vmSymbols::setProperty_name(),
1130                         vmSymbols::string_string_string_signature(),
1131                         key_str,
1132                         value_str,
1133                         CHECK);
1134}
1135
1136
1137void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1138  assert(thread_group.not_null(), "thread group should be specified");
1139  assert(threadObj() == NULL, "should only create Java thread object once");
1140
1141  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1142  instanceKlassHandle klass (THREAD, k);
1143  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1144
1145  java_lang_Thread::set_thread(thread_oop(), this);
1146  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1147  set_threadObj(thread_oop());
1148
1149  JavaValue result(T_VOID);
1150  if (thread_name != NULL) {
1151    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1152    // Thread gets assigned specified name and null target
1153    JavaCalls::call_special(&result,
1154                            thread_oop,
1155                            klass,
1156                            vmSymbols::object_initializer_name(),
1157                            vmSymbols::threadgroup_string_void_signature(),
1158                            thread_group, // Argument 1
1159                            name,         // Argument 2
1160                            THREAD);
1161  } else {
1162    // Thread gets assigned name "Thread-nnn" and null target
1163    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1164    JavaCalls::call_special(&result,
1165                            thread_oop,
1166                            klass,
1167                            vmSymbols::object_initializer_name(),
1168                            vmSymbols::threadgroup_runnable_void_signature(),
1169                            thread_group, // Argument 1
1170                            Handle(),     // Argument 2
1171                            THREAD);
1172  }
1173
1174
1175  if (daemon) {
1176      java_lang_Thread::set_daemon(thread_oop());
1177  }
1178
1179  if (HAS_PENDING_EXCEPTION) {
1180    return;
1181  }
1182
1183  KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1184  Handle threadObj(this, this->threadObj());
1185
1186  JavaCalls::call_special(&result,
1187                         thread_group,
1188                         group,
1189                         vmSymbols::add_method_name(),
1190                         vmSymbols::thread_void_signature(),
1191                         threadObj,          // Arg 1
1192                         THREAD);
1193
1194
1195}
1196
1197// NamedThread --  non-JavaThread subclasses with multiple
1198// uniquely named instances should derive from this.
1199NamedThread::NamedThread() : Thread() {
1200  _name = NULL;
1201  _processed_thread = NULL;
1202}
1203
1204NamedThread::~NamedThread() {
1205  if (_name != NULL) {
1206    FREE_C_HEAP_ARRAY(char, _name, mtThread);
1207    _name = NULL;
1208  }
1209}
1210
1211void NamedThread::set_name(const char* format, ...) {
1212  guarantee(_name == NULL, "Only get to set name once.");
1213  _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1214  guarantee(_name != NULL, "alloc failure");
1215  va_list ap;
1216  va_start(ap, format);
1217  jio_vsnprintf(_name, max_name_len, format, ap);
1218  va_end(ap);
1219}
1220
1221// ======= WatcherThread ========
1222
1223// The watcher thread exists to simulate timer interrupts.  It should
1224// be replaced by an abstraction over whatever native support for
1225// timer interrupts exists on the platform.
1226
1227WatcherThread* WatcherThread::_watcher_thread   = NULL;
1228bool WatcherThread::_startable = false;
1229volatile bool  WatcherThread::_should_terminate = false;
1230
1231WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1232  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1233  if (os::create_thread(this, os::watcher_thread)) {
1234    _watcher_thread = this;
1235
1236    // Set the watcher thread to the highest OS priority which should not be
1237    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1238    // is created. The only normal thread using this priority is the reference
1239    // handler thread, which runs for very short intervals only.
1240    // If the VMThread's priority is not lower than the WatcherThread profiling
1241    // will be inaccurate.
1242    os::set_priority(this, MaxPriority);
1243    if (!DisableStartThread) {
1244      os::start_thread(this);
1245    }
1246  }
1247}
1248
1249int WatcherThread::sleep() const {
1250  MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1251
1252  // remaining will be zero if there are no tasks,
1253  // causing the WatcherThread to sleep until a task is
1254  // enrolled
1255  int remaining = PeriodicTask::time_to_wait();
1256  int time_slept = 0;
1257
1258  // we expect this to timeout - we only ever get unparked when
1259  // we should terminate or when a new task has been enrolled
1260  OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1261
1262  jlong time_before_loop = os::javaTimeNanos();
1263
1264  for (;;) {
1265    bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1266    jlong now = os::javaTimeNanos();
1267
1268    if (remaining == 0) {
1269        // if we didn't have any tasks we could have waited for a long time
1270        // consider the time_slept zero and reset time_before_loop
1271        time_slept = 0;
1272        time_before_loop = now;
1273    } else {
1274        // need to recalulate since we might have new tasks in _tasks
1275        time_slept = (int) ((now - time_before_loop) / 1000000);
1276    }
1277
1278    // Change to task list or spurious wakeup of some kind
1279    if (timedout || _should_terminate) {
1280        break;
1281    }
1282
1283    remaining = PeriodicTask::time_to_wait();
1284    if (remaining == 0) {
1285        // Last task was just disenrolled so loop around and wait until
1286        // another task gets enrolled
1287        continue;
1288    }
1289
1290    remaining -= time_slept;
1291    if (remaining <= 0)
1292      break;
1293  }
1294
1295  return time_slept;
1296}
1297
1298void WatcherThread::run() {
1299  assert(this == watcher_thread(), "just checking");
1300
1301  this->record_stack_base_and_size();
1302  this->initialize_thread_local_storage();
1303  this->set_active_handles(JNIHandleBlock::allocate_block());
1304  while(!_should_terminate) {
1305    assert(watcher_thread() == Thread::current(),  "thread consistency check");
1306    assert(watcher_thread() == this,  "thread consistency check");
1307
1308    // Calculate how long it'll be until the next PeriodicTask work
1309    // should be done, and sleep that amount of time.
1310    int time_waited = sleep();
1311
1312    if (is_error_reported()) {
1313      // A fatal error has happened, the error handler(VMError::report_and_die)
1314      // should abort JVM after creating an error log file. However in some
1315      // rare cases, the error handler itself might deadlock. Here we try to
1316      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1317      //
1318      // This code is in WatcherThread because WatcherThread wakes up
1319      // periodically so the fatal error handler doesn't need to do anything;
1320      // also because the WatcherThread is less likely to crash than other
1321      // threads.
1322
1323      for (;;) {
1324        if (!ShowMessageBoxOnError
1325         && (OnError == NULL || OnError[0] == '\0')
1326         && Arguments::abort_hook() == NULL) {
1327             os::sleep(this, 2 * 60 * 1000, false);
1328             fdStream err(defaultStream::output_fd());
1329             err.print_raw_cr("# [ timer expired, abort... ]");
1330             // skip atexit/vm_exit/vm_abort hooks
1331             os::die();
1332        }
1333
1334        // Wake up 5 seconds later, the fatal handler may reset OnError or
1335        // ShowMessageBoxOnError when it is ready to abort.
1336        os::sleep(this, 5 * 1000, false);
1337      }
1338    }
1339
1340    PeriodicTask::real_time_tick(time_waited);
1341  }
1342
1343  // Signal that it is terminated
1344  {
1345    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1346    _watcher_thread = NULL;
1347    Terminator_lock->notify();
1348  }
1349
1350  // Thread destructor usually does this..
1351  ThreadLocalStorage::set_thread(NULL);
1352}
1353
1354void WatcherThread::start() {
1355  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1356
1357  if (watcher_thread() == NULL && _startable) {
1358    _should_terminate = false;
1359    // Create the single instance of WatcherThread
1360    new WatcherThread();
1361  }
1362}
1363
1364void WatcherThread::make_startable() {
1365  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1366  _startable = true;
1367}
1368
1369void WatcherThread::stop() {
1370  {
1371    MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1372    _should_terminate = true;
1373    OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1374
1375    WatcherThread* watcher = watcher_thread();
1376    if (watcher != NULL)
1377      watcher->unpark();
1378  }
1379
1380  // it is ok to take late safepoints here, if needed
1381  MutexLocker mu(Terminator_lock);
1382
1383  while(watcher_thread() != NULL) {
1384    // This wait should make safepoint checks, wait without a timeout,
1385    // and wait as a suspend-equivalent condition.
1386    //
1387    // Note: If the FlatProfiler is running, then this thread is waiting
1388    // for the WatcherThread to terminate and the WatcherThread, via the
1389    // FlatProfiler task, is waiting for the external suspend request on
1390    // this thread to complete. wait_for_ext_suspend_completion() will
1391    // eventually timeout, but that takes time. Making this wait a
1392    // suspend-equivalent condition solves that timeout problem.
1393    //
1394    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1395                          Mutex::_as_suspend_equivalent_flag);
1396  }
1397}
1398
1399void WatcherThread::unpark() {
1400  MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1401  PeriodicTask_lock->notify();
1402}
1403
1404void WatcherThread::print_on(outputStream* st) const {
1405  st->print("\"%s\" ", name());
1406  Thread::print_on(st);
1407  st->cr();
1408}
1409
1410// ======= JavaThread ========
1411
1412// A JavaThread is a normal Java thread
1413
1414void JavaThread::initialize() {
1415  // Initialize fields
1416
1417  // Set the claimed par_id to -1 (ie not claiming any par_ids)
1418  set_claimed_par_id(-1);
1419
1420  set_saved_exception_pc(NULL);
1421  set_threadObj(NULL);
1422  _anchor.clear();
1423  set_entry_point(NULL);
1424  set_jni_functions(jni_functions());
1425  set_callee_target(NULL);
1426  set_vm_result(NULL);
1427  set_vm_result_2(NULL);
1428  set_vframe_array_head(NULL);
1429  set_vframe_array_last(NULL);
1430  set_deferred_locals(NULL);
1431  set_deopt_mark(NULL);
1432  set_deopt_nmethod(NULL);
1433  clear_must_deopt_id();
1434  set_monitor_chunks(NULL);
1435  set_next(NULL);
1436  set_thread_state(_thread_new);
1437#if INCLUDE_NMT
1438  set_recorder(NULL);
1439#endif
1440  _terminated = _not_terminated;
1441  _privileged_stack_top = NULL;
1442  _array_for_gc = NULL;
1443  _suspend_equivalent = false;
1444  _in_deopt_handler = 0;
1445  _doing_unsafe_access = false;
1446  _stack_guard_state = stack_guard_unused;
1447  (void)const_cast<oop&>(_exception_oop = NULL);
1448  _exception_pc  = 0;
1449  _exception_handler_pc = 0;
1450  _is_method_handle_return = 0;
1451  _jvmti_thread_state= NULL;
1452  _should_post_on_exceptions_flag = JNI_FALSE;
1453  _jvmti_get_loaded_classes_closure = NULL;
1454  _interp_only_mode    = 0;
1455  _special_runtime_exit_condition = _no_async_condition;
1456  _pending_async_exception = NULL;
1457  _thread_stat = NULL;
1458  _thread_stat = new ThreadStatistics();
1459  _blocked_on_compilation = false;
1460  _jni_active_critical = 0;
1461  _do_not_unlock_if_synchronized = false;
1462  _cached_monitor_info = NULL;
1463  _parker = Parker::Allocate(this) ;
1464
1465#ifndef PRODUCT
1466  _jmp_ring_index = 0;
1467  for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1468    record_jump(NULL, NULL, NULL, 0);
1469  }
1470#endif /* PRODUCT */
1471
1472  set_thread_profiler(NULL);
1473  if (FlatProfiler::is_active()) {
1474    // This is where we would decide to either give each thread it's own profiler
1475    // or use one global one from FlatProfiler,
1476    // or up to some count of the number of profiled threads, etc.
1477    ThreadProfiler* pp = new ThreadProfiler();
1478    pp->engage();
1479    set_thread_profiler(pp);
1480  }
1481
1482  // Setup safepoint state info for this thread
1483  ThreadSafepointState::create(this);
1484
1485  debug_only(_java_call_counter = 0);
1486
1487  // JVMTI PopFrame support
1488  _popframe_condition = popframe_inactive;
1489  _popframe_preserved_args = NULL;
1490  _popframe_preserved_args_size = 0;
1491
1492  pd_initialize();
1493}
1494
1495#if INCLUDE_ALL_GCS
1496SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1497DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1498#endif // INCLUDE_ALL_GCS
1499
1500JavaThread::JavaThread(bool is_attaching_via_jni) :
1501  Thread()
1502#if INCLUDE_ALL_GCS
1503  , _satb_mark_queue(&_satb_mark_queue_set),
1504  _dirty_card_queue(&_dirty_card_queue_set)
1505#endif // INCLUDE_ALL_GCS
1506{
1507  initialize();
1508  if (is_attaching_via_jni) {
1509    _jni_attach_state = _attaching_via_jni;
1510  } else {
1511    _jni_attach_state = _not_attaching_via_jni;
1512  }
1513  assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1514  _safepoint_visible = false;
1515}
1516
1517bool JavaThread::reguard_stack(address cur_sp) {
1518  if (_stack_guard_state != stack_guard_yellow_disabled) {
1519    return true; // Stack already guarded or guard pages not needed.
1520  }
1521
1522  if (register_stack_overflow()) {
1523    // For those architectures which have separate register and
1524    // memory stacks, we must check the register stack to see if
1525    // it has overflowed.
1526    return false;
1527  }
1528
1529  // Java code never executes within the yellow zone: the latter is only
1530  // there to provoke an exception during stack banging.  If java code
1531  // is executing there, either StackShadowPages should be larger, or
1532  // some exception code in c1, c2 or the interpreter isn't unwinding
1533  // when it should.
1534  guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1535
1536  enable_stack_yellow_zone();
1537  return true;
1538}
1539
1540bool JavaThread::reguard_stack(void) {
1541  return reguard_stack(os::current_stack_pointer());
1542}
1543
1544
1545void JavaThread::block_if_vm_exited() {
1546  if (_terminated == _vm_exited) {
1547    // _vm_exited is set at safepoint, and Threads_lock is never released
1548    // we will block here forever
1549    Threads_lock->lock_without_safepoint_check();
1550    ShouldNotReachHere();
1551  }
1552}
1553
1554
1555// Remove this ifdef when C1 is ported to the compiler interface.
1556static void compiler_thread_entry(JavaThread* thread, TRAPS);
1557
1558JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1559  Thread()
1560#if INCLUDE_ALL_GCS
1561  , _satb_mark_queue(&_satb_mark_queue_set),
1562  _dirty_card_queue(&_dirty_card_queue_set)
1563#endif // INCLUDE_ALL_GCS
1564{
1565  if (TraceThreadEvents) {
1566    tty->print_cr("creating thread %p", this);
1567  }
1568  initialize();
1569  _jni_attach_state = _not_attaching_via_jni;
1570  set_entry_point(entry_point);
1571  // Create the native thread itself.
1572  // %note runtime_23
1573  os::ThreadType thr_type = os::java_thread;
1574  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1575                                                     os::java_thread;
1576  os::create_thread(this, thr_type, stack_sz);
1577  _safepoint_visible = false;
1578  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1579  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1580  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1581  // the exception consists of creating the exception object & initializing it, initialization
1582  // will leave the VM via a JavaCall and then all locks must be unlocked).
1583  //
1584  // The thread is still suspended when we reach here. Thread must be explicit started
1585  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1586  // by calling Threads:add. The reason why this is not done here, is because the thread
1587  // object must be fully initialized (take a look at JVM_Start)
1588}
1589
1590JavaThread::~JavaThread() {
1591  if (TraceThreadEvents) {
1592      tty->print_cr("terminate thread %p", this);
1593  }
1594
1595  // By now, this thread should already be invisible to safepoint,
1596  // and its per-thread recorder also collected.
1597  assert(!is_safepoint_visible(), "wrong state");
1598#if INCLUDE_NMT
1599  assert(get_recorder() == NULL, "Already collected");
1600#endif // INCLUDE_NMT
1601
1602  // JSR166 -- return the parker to the free list
1603  Parker::Release(_parker);
1604  _parker = NULL ;
1605
1606  // Free any remaining  previous UnrollBlock
1607  vframeArray* old_array = vframe_array_last();
1608
1609  if (old_array != NULL) {
1610    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1611    old_array->set_unroll_block(NULL);
1612    delete old_info;
1613    delete old_array;
1614  }
1615
1616  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1617  if (deferred != NULL) {
1618    // This can only happen if thread is destroyed before deoptimization occurs.
1619    assert(deferred->length() != 0, "empty array!");
1620    do {
1621      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1622      deferred->remove_at(0);
1623      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1624      delete dlv;
1625    } while (deferred->length() != 0);
1626    delete deferred;
1627  }
1628
1629  // All Java related clean up happens in exit
1630  ThreadSafepointState::destroy(this);
1631  if (_thread_profiler != NULL) delete _thread_profiler;
1632  if (_thread_stat != NULL) delete _thread_stat;
1633}
1634
1635
1636// The first routine called by a new Java thread
1637void JavaThread::run() {
1638  // initialize thread-local alloc buffer related fields
1639  this->initialize_tlab();
1640
1641  // used to test validitity of stack trace backs
1642  this->record_base_of_stack_pointer();
1643
1644  // Record real stack base and size.
1645  this->record_stack_base_and_size();
1646
1647  // Initialize thread local storage; set before calling MutexLocker
1648  this->initialize_thread_local_storage();
1649
1650  this->create_stack_guard_pages();
1651
1652  this->cache_global_variables();
1653
1654  // Thread is now sufficient initialized to be handled by the safepoint code as being
1655  // in the VM. Change thread state from _thread_new to _thread_in_vm
1656  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1657
1658  assert(JavaThread::current() == this, "sanity check");
1659  assert(!Thread::current()->owns_locks(), "sanity check");
1660
1661  DTRACE_THREAD_PROBE(start, this);
1662
1663  // This operation might block. We call that after all safepoint checks for a new thread has
1664  // been completed.
1665  this->set_active_handles(JNIHandleBlock::allocate_block());
1666
1667  if (JvmtiExport::should_post_thread_life()) {
1668    JvmtiExport::post_thread_start(this);
1669  }
1670
1671  EventThreadStart event;
1672  if (event.should_commit()) {
1673     event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1674     event.commit();
1675  }
1676
1677  // We call another function to do the rest so we are sure that the stack addresses used
1678  // from there will be lower than the stack base just computed
1679  thread_main_inner();
1680
1681  // Note, thread is no longer valid at this point!
1682}
1683
1684
1685void JavaThread::thread_main_inner() {
1686  assert(JavaThread::current() == this, "sanity check");
1687  assert(this->threadObj() != NULL, "just checking");
1688
1689  // Execute thread entry point unless this thread has a pending exception
1690  // or has been stopped before starting.
1691  // Note: Due to JVM_StopThread we can have pending exceptions already!
1692  if (!this->has_pending_exception() &&
1693      !java_lang_Thread::is_stillborn(this->threadObj())) {
1694    {
1695      ResourceMark rm(this);
1696      this->set_native_thread_name(this->get_thread_name());
1697    }
1698    HandleMark hm(this);
1699    this->entry_point()(this, this);
1700  }
1701
1702  DTRACE_THREAD_PROBE(stop, this);
1703
1704  this->exit(false);
1705  delete this;
1706}
1707
1708
1709static void ensure_join(JavaThread* thread) {
1710  // We do not need to grap the Threads_lock, since we are operating on ourself.
1711  Handle threadObj(thread, thread->threadObj());
1712  assert(threadObj.not_null(), "java thread object must exist");
1713  ObjectLocker lock(threadObj, thread);
1714  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1715  thread->clear_pending_exception();
1716  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1717  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1718  // Clear the native thread instance - this makes isAlive return false and allows the join()
1719  // to complete once we've done the notify_all below
1720  java_lang_Thread::set_thread(threadObj(), NULL);
1721  lock.notify_all(thread);
1722  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1723  thread->clear_pending_exception();
1724}
1725
1726
1727// For any new cleanup additions, please check to see if they need to be applied to
1728// cleanup_failed_attach_current_thread as well.
1729void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1730  assert(this == JavaThread::current(),  "thread consistency check");
1731
1732  HandleMark hm(this);
1733  Handle uncaught_exception(this, this->pending_exception());
1734  this->clear_pending_exception();
1735  Handle threadObj(this, this->threadObj());
1736  assert(threadObj.not_null(), "Java thread object should be created");
1737
1738  if (get_thread_profiler() != NULL) {
1739    get_thread_profiler()->disengage();
1740    ResourceMark rm;
1741    get_thread_profiler()->print(get_thread_name());
1742  }
1743
1744
1745  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1746  {
1747    EXCEPTION_MARK;
1748
1749    CLEAR_PENDING_EXCEPTION;
1750  }
1751  // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1752  // has to be fixed by a runtime query method
1753  if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1754    // JSR-166: change call from from ThreadGroup.uncaughtException to
1755    // java.lang.Thread.dispatchUncaughtException
1756    if (uncaught_exception.not_null()) {
1757      Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1758      {
1759        EXCEPTION_MARK;
1760        // Check if the method Thread.dispatchUncaughtException() exists. If so
1761        // call it.  Otherwise we have an older library without the JSR-166 changes,
1762        // so call ThreadGroup.uncaughtException()
1763        KlassHandle recvrKlass(THREAD, threadObj->klass());
1764        CallInfo callinfo;
1765        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1766        LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1767                                           vmSymbols::dispatchUncaughtException_name(),
1768                                           vmSymbols::throwable_void_signature(),
1769                                           KlassHandle(), false, false, THREAD);
1770        CLEAR_PENDING_EXCEPTION;
1771        methodHandle method = callinfo.selected_method();
1772        if (method.not_null()) {
1773          JavaValue result(T_VOID);
1774          JavaCalls::call_virtual(&result,
1775                                  threadObj, thread_klass,
1776                                  vmSymbols::dispatchUncaughtException_name(),
1777                                  vmSymbols::throwable_void_signature(),
1778                                  uncaught_exception,
1779                                  THREAD);
1780        } else {
1781          KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1782          JavaValue result(T_VOID);
1783          JavaCalls::call_virtual(&result,
1784                                  group, thread_group,
1785                                  vmSymbols::uncaughtException_name(),
1786                                  vmSymbols::thread_throwable_void_signature(),
1787                                  threadObj,           // Arg 1
1788                                  uncaught_exception,  // Arg 2
1789                                  THREAD);
1790        }
1791        if (HAS_PENDING_EXCEPTION) {
1792          ResourceMark rm(this);
1793          jio_fprintf(defaultStream::error_stream(),
1794                "\nException: %s thrown from the UncaughtExceptionHandler"
1795                " in thread \"%s\"\n",
1796                pending_exception()->klass()->external_name(),
1797                get_thread_name());
1798          CLEAR_PENDING_EXCEPTION;
1799        }
1800      }
1801    }
1802
1803    // Called before the java thread exit since we want to read info
1804    // from java_lang_Thread object
1805    EventThreadEnd event;
1806    if (event.should_commit()) {
1807        event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1808        event.commit();
1809    }
1810
1811    // Call after last event on thread
1812    EVENT_THREAD_EXIT(this);
1813
1814    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1815    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1816    // is deprecated anyhow.
1817    if (!is_Compiler_thread()) {
1818      int count = 3;
1819      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1820        EXCEPTION_MARK;
1821        JavaValue result(T_VOID);
1822        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1823        JavaCalls::call_virtual(&result,
1824                              threadObj, thread_klass,
1825                              vmSymbols::exit_method_name(),
1826                              vmSymbols::void_method_signature(),
1827                              THREAD);
1828        CLEAR_PENDING_EXCEPTION;
1829      }
1830    }
1831    // notify JVMTI
1832    if (JvmtiExport::should_post_thread_life()) {
1833      JvmtiExport::post_thread_end(this);
1834    }
1835
1836    // We have notified the agents that we are exiting, before we go on,
1837    // we must check for a pending external suspend request and honor it
1838    // in order to not surprise the thread that made the suspend request.
1839    while (true) {
1840      {
1841        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1842        if (!is_external_suspend()) {
1843          set_terminated(_thread_exiting);
1844          ThreadService::current_thread_exiting(this);
1845          break;
1846        }
1847        // Implied else:
1848        // Things get a little tricky here. We have a pending external
1849        // suspend request, but we are holding the SR_lock so we
1850        // can't just self-suspend. So we temporarily drop the lock
1851        // and then self-suspend.
1852      }
1853
1854      ThreadBlockInVM tbivm(this);
1855      java_suspend_self();
1856
1857      // We're done with this suspend request, but we have to loop around
1858      // and check again. Eventually we will get SR_lock without a pending
1859      // external suspend request and will be able to mark ourselves as
1860      // exiting.
1861    }
1862    // no more external suspends are allowed at this point
1863  } else {
1864    // before_exit() has already posted JVMTI THREAD_END events
1865  }
1866
1867  // Notify waiters on thread object. This has to be done after exit() is called
1868  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1869  // group should have the destroyed bit set before waiters are notified).
1870  ensure_join(this);
1871  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1872
1873  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1874  // held by this thread must be released.  A detach operation must only
1875  // get here if there are no Java frames on the stack.  Therefore, any
1876  // owned monitors at this point MUST be JNI-acquired monitors which are
1877  // pre-inflated and in the monitor cache.
1878  //
1879  // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1880  if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1881    assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1882    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1883    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1884  }
1885
1886  // These things needs to be done while we are still a Java Thread. Make sure that thread
1887  // is in a consistent state, in case GC happens
1888  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1889
1890  if (active_handles() != NULL) {
1891    JNIHandleBlock* block = active_handles();
1892    set_active_handles(NULL);
1893    JNIHandleBlock::release_block(block);
1894  }
1895
1896  if (free_handle_block() != NULL) {
1897    JNIHandleBlock* block = free_handle_block();
1898    set_free_handle_block(NULL);
1899    JNIHandleBlock::release_block(block);
1900  }
1901
1902  // These have to be removed while this is still a valid thread.
1903  remove_stack_guard_pages();
1904
1905  if (UseTLAB) {
1906    tlab().make_parsable(true);  // retire TLAB
1907  }
1908
1909  if (JvmtiEnv::environments_might_exist()) {
1910    JvmtiExport::cleanup_thread(this);
1911  }
1912
1913  // We must flush any deferred card marks before removing a thread from
1914  // the list of active threads.
1915  Universe::heap()->flush_deferred_store_barrier(this);
1916  assert(deferred_card_mark().is_empty(), "Should have been flushed");
1917
1918#if INCLUDE_ALL_GCS
1919  // We must flush the G1-related buffers before removing a thread
1920  // from the list of active threads. We must do this after any deferred
1921  // card marks have been flushed (above) so that any entries that are
1922  // added to the thread's dirty card queue as a result are not lost.
1923  if (UseG1GC) {
1924    flush_barrier_queues();
1925  }
1926#endif // INCLUDE_ALL_GCS
1927
1928  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1929  Threads::remove(this);
1930}
1931
1932#if INCLUDE_ALL_GCS
1933// Flush G1-related queues.
1934void JavaThread::flush_barrier_queues() {
1935  satb_mark_queue().flush();
1936  dirty_card_queue().flush();
1937}
1938
1939void JavaThread::initialize_queues() {
1940  assert(!SafepointSynchronize::is_at_safepoint(),
1941         "we should not be at a safepoint");
1942
1943  ObjPtrQueue& satb_queue = satb_mark_queue();
1944  SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1945  // The SATB queue should have been constructed with its active
1946  // field set to false.
1947  assert(!satb_queue.is_active(), "SATB queue should not be active");
1948  assert(satb_queue.is_empty(), "SATB queue should be empty");
1949  // If we are creating the thread during a marking cycle, we should
1950  // set the active field of the SATB queue to true.
1951  if (satb_queue_set.is_active()) {
1952    satb_queue.set_active(true);
1953  }
1954
1955  DirtyCardQueue& dirty_queue = dirty_card_queue();
1956  // The dirty card queue should have been constructed with its
1957  // active field set to true.
1958  assert(dirty_queue.is_active(), "dirty card queue should be active");
1959}
1960#endif // INCLUDE_ALL_GCS
1961
1962void JavaThread::cleanup_failed_attach_current_thread() {
1963  if (get_thread_profiler() != NULL) {
1964    get_thread_profiler()->disengage();
1965    ResourceMark rm;
1966    get_thread_profiler()->print(get_thread_name());
1967  }
1968
1969  if (active_handles() != NULL) {
1970    JNIHandleBlock* block = active_handles();
1971    set_active_handles(NULL);
1972    JNIHandleBlock::release_block(block);
1973  }
1974
1975  if (free_handle_block() != NULL) {
1976    JNIHandleBlock* block = free_handle_block();
1977    set_free_handle_block(NULL);
1978    JNIHandleBlock::release_block(block);
1979  }
1980
1981  // These have to be removed while this is still a valid thread.
1982  remove_stack_guard_pages();
1983
1984  if (UseTLAB) {
1985    tlab().make_parsable(true);  // retire TLAB, if any
1986  }
1987
1988#if INCLUDE_ALL_GCS
1989  if (UseG1GC) {
1990    flush_barrier_queues();
1991  }
1992#endif // INCLUDE_ALL_GCS
1993
1994  Threads::remove(this);
1995  delete this;
1996}
1997
1998
1999
2000
2001JavaThread* JavaThread::active() {
2002  Thread* thread = ThreadLocalStorage::thread();
2003  assert(thread != NULL, "just checking");
2004  if (thread->is_Java_thread()) {
2005    return (JavaThread*) thread;
2006  } else {
2007    assert(thread->is_VM_thread(), "this must be a vm thread");
2008    VM_Operation* op = ((VMThread*) thread)->vm_operation();
2009    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2010    assert(ret->is_Java_thread(), "must be a Java thread");
2011    return ret;
2012  }
2013}
2014
2015bool JavaThread::is_lock_owned(address adr) const {
2016  if (Thread::is_lock_owned(adr)) return true;
2017
2018  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2019    if (chunk->contains(adr)) return true;
2020  }
2021
2022  return false;
2023}
2024
2025
2026void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2027  chunk->set_next(monitor_chunks());
2028  set_monitor_chunks(chunk);
2029}
2030
2031void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2032  guarantee(monitor_chunks() != NULL, "must be non empty");
2033  if (monitor_chunks() == chunk) {
2034    set_monitor_chunks(chunk->next());
2035  } else {
2036    MonitorChunk* prev = monitor_chunks();
2037    while (prev->next() != chunk) prev = prev->next();
2038    prev->set_next(chunk->next());
2039  }
2040}
2041
2042// JVM support.
2043
2044// Note: this function shouldn't block if it's called in
2045// _thread_in_native_trans state (such as from
2046// check_special_condition_for_native_trans()).
2047void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2048
2049  if (has_last_Java_frame() && has_async_condition()) {
2050    // If we are at a polling page safepoint (not a poll return)
2051    // then we must defer async exception because live registers
2052    // will be clobbered by the exception path. Poll return is
2053    // ok because the call we a returning from already collides
2054    // with exception handling registers and so there is no issue.
2055    // (The exception handling path kills call result registers but
2056    //  this is ok since the exception kills the result anyway).
2057
2058    if (is_at_poll_safepoint()) {
2059      // if the code we are returning to has deoptimized we must defer
2060      // the exception otherwise live registers get clobbered on the
2061      // exception path before deoptimization is able to retrieve them.
2062      //
2063      RegisterMap map(this, false);
2064      frame caller_fr = last_frame().sender(&map);
2065      assert(caller_fr.is_compiled_frame(), "what?");
2066      if (caller_fr.is_deoptimized_frame()) {
2067        if (TraceExceptions) {
2068          ResourceMark rm;
2069          tty->print_cr("deferred async exception at compiled safepoint");
2070        }
2071        return;
2072      }
2073    }
2074  }
2075
2076  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2077  if (condition == _no_async_condition) {
2078    // Conditions have changed since has_special_runtime_exit_condition()
2079    // was called:
2080    // - if we were here only because of an external suspend request,
2081    //   then that was taken care of above (or cancelled) so we are done
2082    // - if we were here because of another async request, then it has
2083    //   been cleared between the has_special_runtime_exit_condition()
2084    //   and now so again we are done
2085    return;
2086  }
2087
2088  // Check for pending async. exception
2089  if (_pending_async_exception != NULL) {
2090    // Only overwrite an already pending exception, if it is not a threadDeath.
2091    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2092
2093      // We cannot call Exceptions::_throw(...) here because we cannot block
2094      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2095
2096      if (TraceExceptions) {
2097        ResourceMark rm;
2098        tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2099        if (has_last_Java_frame() ) {
2100          frame f = last_frame();
2101          tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2102        }
2103        tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2104      }
2105      _pending_async_exception = NULL;
2106      clear_has_async_exception();
2107    }
2108  }
2109
2110  if (check_unsafe_error &&
2111      condition == _async_unsafe_access_error && !has_pending_exception()) {
2112    condition = _no_async_condition;  // done
2113    switch (thread_state()) {
2114    case _thread_in_vm:
2115      {
2116        JavaThread* THREAD = this;
2117        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2118      }
2119    case _thread_in_native:
2120      {
2121        ThreadInVMfromNative tiv(this);
2122        JavaThread* THREAD = this;
2123        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2124      }
2125    case _thread_in_Java:
2126      {
2127        ThreadInVMfromJava tiv(this);
2128        JavaThread* THREAD = this;
2129        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2130      }
2131    default:
2132      ShouldNotReachHere();
2133    }
2134  }
2135
2136  assert(condition == _no_async_condition || has_pending_exception() ||
2137         (!check_unsafe_error && condition == _async_unsafe_access_error),
2138         "must have handled the async condition, if no exception");
2139}
2140
2141void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2142  //
2143  // Check for pending external suspend. Internal suspend requests do
2144  // not use handle_special_runtime_exit_condition().
2145  // If JNIEnv proxies are allowed, don't self-suspend if the target
2146  // thread is not the current thread. In older versions of jdbx, jdbx
2147  // threads could call into the VM with another thread's JNIEnv so we
2148  // can be here operating on behalf of a suspended thread (4432884).
2149  bool do_self_suspend = is_external_suspend_with_lock();
2150  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2151    //
2152    // Because thread is external suspended the safepoint code will count
2153    // thread as at a safepoint. This can be odd because we can be here
2154    // as _thread_in_Java which would normally transition to _thread_blocked
2155    // at a safepoint. We would like to mark the thread as _thread_blocked
2156    // before calling java_suspend_self like all other callers of it but
2157    // we must then observe proper safepoint protocol. (We can't leave
2158    // _thread_blocked with a safepoint in progress). However we can be
2159    // here as _thread_in_native_trans so we can't use a normal transition
2160    // constructor/destructor pair because they assert on that type of
2161    // transition. We could do something like:
2162    //
2163    // JavaThreadState state = thread_state();
2164    // set_thread_state(_thread_in_vm);
2165    // {
2166    //   ThreadBlockInVM tbivm(this);
2167    //   java_suspend_self()
2168    // }
2169    // set_thread_state(_thread_in_vm_trans);
2170    // if (safepoint) block;
2171    // set_thread_state(state);
2172    //
2173    // but that is pretty messy. Instead we just go with the way the
2174    // code has worked before and note that this is the only path to
2175    // java_suspend_self that doesn't put the thread in _thread_blocked
2176    // mode.
2177
2178    frame_anchor()->make_walkable(this);
2179    java_suspend_self();
2180
2181    // We might be here for reasons in addition to the self-suspend request
2182    // so check for other async requests.
2183  }
2184
2185  if (check_asyncs) {
2186    check_and_handle_async_exceptions();
2187  }
2188}
2189
2190void JavaThread::send_thread_stop(oop java_throwable)  {
2191  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2192  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2193  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2194
2195  // Do not throw asynchronous exceptions against the compiler thread
2196  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2197  if (is_Compiler_thread()) return;
2198
2199  {
2200    // Actually throw the Throwable against the target Thread - however
2201    // only if there is no thread death exception installed already.
2202    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2203      // If the topmost frame is a runtime stub, then we are calling into
2204      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2205      // must deoptimize the caller before continuing, as the compiled  exception handler table
2206      // may not be valid
2207      if (has_last_Java_frame()) {
2208        frame f = last_frame();
2209        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2210          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2211          RegisterMap reg_map(this, UseBiasedLocking);
2212          frame compiled_frame = f.sender(&reg_map);
2213          if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2214            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2215          }
2216        }
2217      }
2218
2219      // Set async. pending exception in thread.
2220      set_pending_async_exception(java_throwable);
2221
2222      if (TraceExceptions) {
2223       ResourceMark rm;
2224       tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2225      }
2226      // for AbortVMOnException flag
2227      NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2228    }
2229  }
2230
2231
2232  // Interrupt thread so it will wake up from a potential wait()
2233  Thread::interrupt(this);
2234}
2235
2236// External suspension mechanism.
2237//
2238// Tell the VM to suspend a thread when ever it knows that it does not hold on
2239// to any VM_locks and it is at a transition
2240// Self-suspension will happen on the transition out of the vm.
2241// Catch "this" coming in from JNIEnv pointers when the thread has been freed
2242//
2243// Guarantees on return:
2244//   + Target thread will not execute any new bytecode (that's why we need to
2245//     force a safepoint)
2246//   + Target thread will not enter any new monitors
2247//
2248void JavaThread::java_suspend() {
2249  { MutexLocker mu(Threads_lock);
2250    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2251       return;
2252    }
2253  }
2254
2255  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2256    if (!is_external_suspend()) {
2257      // a racing resume has cancelled us; bail out now
2258      return;
2259    }
2260
2261    // suspend is done
2262    uint32_t debug_bits = 0;
2263    // Warning: is_ext_suspend_completed() may temporarily drop the
2264    // SR_lock to allow the thread to reach a stable thread state if
2265    // it is currently in a transient thread state.
2266    if (is_ext_suspend_completed(false /* !called_by_wait */,
2267                                 SuspendRetryDelay, &debug_bits) ) {
2268      return;
2269    }
2270  }
2271
2272  VM_ForceSafepoint vm_suspend;
2273  VMThread::execute(&vm_suspend);
2274}
2275
2276// Part II of external suspension.
2277// A JavaThread self suspends when it detects a pending external suspend
2278// request. This is usually on transitions. It is also done in places
2279// where continuing to the next transition would surprise the caller,
2280// e.g., monitor entry.
2281//
2282// Returns the number of times that the thread self-suspended.
2283//
2284// Note: DO NOT call java_suspend_self() when you just want to block current
2285//       thread. java_suspend_self() is the second stage of cooperative
2286//       suspension for external suspend requests and should only be used
2287//       to complete an external suspend request.
2288//
2289int JavaThread::java_suspend_self() {
2290  int ret = 0;
2291
2292  // we are in the process of exiting so don't suspend
2293  if (is_exiting()) {
2294     clear_external_suspend();
2295     return ret;
2296  }
2297
2298  assert(_anchor.walkable() ||
2299    (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2300    "must have walkable stack");
2301
2302  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2303
2304  assert(!this->is_ext_suspended(),
2305    "a thread trying to self-suspend should not already be suspended");
2306
2307  if (this->is_suspend_equivalent()) {
2308    // If we are self-suspending as a result of the lifting of a
2309    // suspend equivalent condition, then the suspend_equivalent
2310    // flag is not cleared until we set the ext_suspended flag so
2311    // that wait_for_ext_suspend_completion() returns consistent
2312    // results.
2313    this->clear_suspend_equivalent();
2314  }
2315
2316  // A racing resume may have cancelled us before we grabbed SR_lock
2317  // above. Or another external suspend request could be waiting for us
2318  // by the time we return from SR_lock()->wait(). The thread
2319  // that requested the suspension may already be trying to walk our
2320  // stack and if we return now, we can change the stack out from under
2321  // it. This would be a "bad thing (TM)" and cause the stack walker
2322  // to crash. We stay self-suspended until there are no more pending
2323  // external suspend requests.
2324  while (is_external_suspend()) {
2325    ret++;
2326    this->set_ext_suspended();
2327
2328    // _ext_suspended flag is cleared by java_resume()
2329    while (is_ext_suspended()) {
2330      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2331    }
2332  }
2333
2334  return ret;
2335}
2336
2337#ifdef ASSERT
2338// verify the JavaThread has not yet been published in the Threads::list, and
2339// hence doesn't need protection from concurrent access at this stage
2340void JavaThread::verify_not_published() {
2341  if (!Threads_lock->owned_by_self()) {
2342   MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2343   assert( !Threads::includes(this),
2344           "java thread shouldn't have been published yet!");
2345  }
2346  else {
2347   assert( !Threads::includes(this),
2348           "java thread shouldn't have been published yet!");
2349  }
2350}
2351#endif
2352
2353// Slow path when the native==>VM/Java barriers detect a safepoint is in
2354// progress or when _suspend_flags is non-zero.
2355// Current thread needs to self-suspend if there is a suspend request and/or
2356// block if a safepoint is in progress.
2357// Async exception ISN'T checked.
2358// Note only the ThreadInVMfromNative transition can call this function
2359// directly and when thread state is _thread_in_native_trans
2360void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2361  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2362
2363  JavaThread *curJT = JavaThread::current();
2364  bool do_self_suspend = thread->is_external_suspend();
2365
2366  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2367
2368  // If JNIEnv proxies are allowed, don't self-suspend if the target
2369  // thread is not the current thread. In older versions of jdbx, jdbx
2370  // threads could call into the VM with another thread's JNIEnv so we
2371  // can be here operating on behalf of a suspended thread (4432884).
2372  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2373    JavaThreadState state = thread->thread_state();
2374
2375    // We mark this thread_blocked state as a suspend-equivalent so
2376    // that a caller to is_ext_suspend_completed() won't be confused.
2377    // The suspend-equivalent state is cleared by java_suspend_self().
2378    thread->set_suspend_equivalent();
2379
2380    // If the safepoint code sees the _thread_in_native_trans state, it will
2381    // wait until the thread changes to other thread state. There is no
2382    // guarantee on how soon we can obtain the SR_lock and complete the
2383    // self-suspend request. It would be a bad idea to let safepoint wait for
2384    // too long. Temporarily change the state to _thread_blocked to
2385    // let the VM thread know that this thread is ready for GC. The problem
2386    // of changing thread state is that safepoint could happen just after
2387    // java_suspend_self() returns after being resumed, and VM thread will
2388    // see the _thread_blocked state. We must check for safepoint
2389    // after restoring the state and make sure we won't leave while a safepoint
2390    // is in progress.
2391    thread->set_thread_state(_thread_blocked);
2392    thread->java_suspend_self();
2393    thread->set_thread_state(state);
2394    // Make sure new state is seen by VM thread
2395    if (os::is_MP()) {
2396      if (UseMembar) {
2397        // Force a fence between the write above and read below
2398        OrderAccess::fence();
2399      } else {
2400        // Must use this rather than serialization page in particular on Windows
2401        InterfaceSupport::serialize_memory(thread);
2402      }
2403    }
2404  }
2405
2406  if (SafepointSynchronize::do_call_back()) {
2407    // If we are safepointing, then block the caller which may not be
2408    // the same as the target thread (see above).
2409    SafepointSynchronize::block(curJT);
2410  }
2411
2412  if (thread->is_deopt_suspend()) {
2413    thread->clear_deopt_suspend();
2414    RegisterMap map(thread, false);
2415    frame f = thread->last_frame();
2416    while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2417      f = f.sender(&map);
2418    }
2419    if (f.id() == thread->must_deopt_id()) {
2420      thread->clear_must_deopt_id();
2421      f.deoptimize(thread);
2422    } else {
2423      fatal("missed deoptimization!");
2424    }
2425  }
2426}
2427
2428// Slow path when the native==>VM/Java barriers detect a safepoint is in
2429// progress or when _suspend_flags is non-zero.
2430// Current thread needs to self-suspend if there is a suspend request and/or
2431// block if a safepoint is in progress.
2432// Also check for pending async exception (not including unsafe access error).
2433// Note only the native==>VM/Java barriers can call this function and when
2434// thread state is _thread_in_native_trans.
2435void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2436  check_safepoint_and_suspend_for_native_trans(thread);
2437
2438  if (thread->has_async_exception()) {
2439    // We are in _thread_in_native_trans state, don't handle unsafe
2440    // access error since that may block.
2441    thread->check_and_handle_async_exceptions(false);
2442  }
2443}
2444
2445// This is a variant of the normal
2446// check_special_condition_for_native_trans with slightly different
2447// semantics for use by critical native wrappers.  It does all the
2448// normal checks but also performs the transition back into
2449// thread_in_Java state.  This is required so that critical natives
2450// can potentially block and perform a GC if they are the last thread
2451// exiting the GC_locker.
2452void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2453  check_special_condition_for_native_trans(thread);
2454
2455  // Finish the transition
2456  thread->set_thread_state(_thread_in_Java);
2457
2458  if (thread->do_critical_native_unlock()) {
2459    ThreadInVMfromJavaNoAsyncException tiv(thread);
2460    GC_locker::unlock_critical(thread);
2461    thread->clear_critical_native_unlock();
2462  }
2463}
2464
2465// We need to guarantee the Threads_lock here, since resumes are not
2466// allowed during safepoint synchronization
2467// Can only resume from an external suspension
2468void JavaThread::java_resume() {
2469  assert_locked_or_safepoint(Threads_lock);
2470
2471  // Sanity check: thread is gone, has started exiting or the thread
2472  // was not externally suspended.
2473  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2474    return;
2475  }
2476
2477  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2478
2479  clear_external_suspend();
2480
2481  if (is_ext_suspended()) {
2482    clear_ext_suspended();
2483    SR_lock()->notify_all();
2484  }
2485}
2486
2487void JavaThread::create_stack_guard_pages() {
2488  if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2489  address low_addr = stack_base() - stack_size();
2490  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2491
2492  int allocate = os::allocate_stack_guard_pages();
2493  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2494
2495  if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2496    warning("Attempt to allocate stack guard pages failed.");
2497    return;
2498  }
2499
2500  if (os::guard_memory((char *) low_addr, len)) {
2501    _stack_guard_state = stack_guard_enabled;
2502  } else {
2503    warning("Attempt to protect stack guard pages failed.");
2504    if (os::uncommit_memory((char *) low_addr, len)) {
2505      warning("Attempt to deallocate stack guard pages failed.");
2506    }
2507  }
2508}
2509
2510void JavaThread::remove_stack_guard_pages() {
2511  assert(Thread::current() == this, "from different thread");
2512  if (_stack_guard_state == stack_guard_unused) return;
2513  address low_addr = stack_base() - stack_size();
2514  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2515
2516  if (os::allocate_stack_guard_pages()) {
2517    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2518      _stack_guard_state = stack_guard_unused;
2519    } else {
2520      warning("Attempt to deallocate stack guard pages failed.");
2521    }
2522  } else {
2523    if (_stack_guard_state == stack_guard_unused) return;
2524    if (os::unguard_memory((char *) low_addr, len)) {
2525      _stack_guard_state = stack_guard_unused;
2526    } else {
2527        warning("Attempt to unprotect stack guard pages failed.");
2528    }
2529  }
2530}
2531
2532void JavaThread::enable_stack_yellow_zone() {
2533  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2534  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2535
2536  // The base notation is from the stacks point of view, growing downward.
2537  // We need to adjust it to work correctly with guard_memory()
2538  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2539
2540  guarantee(base < stack_base(),"Error calculating stack yellow zone");
2541  guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2542
2543  if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2544    _stack_guard_state = stack_guard_enabled;
2545  } else {
2546    warning("Attempt to guard stack yellow zone failed.");
2547  }
2548  enable_register_stack_guard();
2549}
2550
2551void JavaThread::disable_stack_yellow_zone() {
2552  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2553  assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2554
2555  // Simply return if called for a thread that does not use guard pages.
2556  if (_stack_guard_state == stack_guard_unused) return;
2557
2558  // The base notation is from the stacks point of view, growing downward.
2559  // We need to adjust it to work correctly with guard_memory()
2560  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2561
2562  if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2563    _stack_guard_state = stack_guard_yellow_disabled;
2564  } else {
2565    warning("Attempt to unguard stack yellow zone failed.");
2566  }
2567  disable_register_stack_guard();
2568}
2569
2570void JavaThread::enable_stack_red_zone() {
2571  // The base notation is from the stacks point of view, growing downward.
2572  // We need to adjust it to work correctly with guard_memory()
2573  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2574  address base = stack_red_zone_base() - stack_red_zone_size();
2575
2576  guarantee(base < stack_base(),"Error calculating stack red zone");
2577  guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2578
2579  if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2580    warning("Attempt to guard stack red zone failed.");
2581  }
2582}
2583
2584void JavaThread::disable_stack_red_zone() {
2585  // The base notation is from the stacks point of view, growing downward.
2586  // We need to adjust it to work correctly with guard_memory()
2587  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2588  address base = stack_red_zone_base() - stack_red_zone_size();
2589  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2590    warning("Attempt to unguard stack red zone failed.");
2591  }
2592}
2593
2594void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2595  // ignore is there is no stack
2596  if (!has_last_Java_frame()) return;
2597  // traverse the stack frames. Starts from top frame.
2598  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2599    frame* fr = fst.current();
2600    f(fr, fst.register_map());
2601  }
2602}
2603
2604
2605#ifndef PRODUCT
2606// Deoptimization
2607// Function for testing deoptimization
2608void JavaThread::deoptimize() {
2609  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2610  StackFrameStream fst(this, UseBiasedLocking);
2611  bool deopt = false;           // Dump stack only if a deopt actually happens.
2612  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2613  // Iterate over all frames in the thread and deoptimize
2614  for(; !fst.is_done(); fst.next()) {
2615    if(fst.current()->can_be_deoptimized()) {
2616
2617      if (only_at) {
2618        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2619        // consists of comma or carriage return separated numbers so
2620        // search for the current bci in that string.
2621        address pc = fst.current()->pc();
2622        nmethod* nm =  (nmethod*) fst.current()->cb();
2623        ScopeDesc* sd = nm->scope_desc_at( pc);
2624        char buffer[8];
2625        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2626        size_t len = strlen(buffer);
2627        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2628        while (found != NULL) {
2629          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2630              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2631            // Check that the bci found is bracketed by terminators.
2632            break;
2633          }
2634          found = strstr(found + 1, buffer);
2635        }
2636        if (!found) {
2637          continue;
2638        }
2639      }
2640
2641      if (DebugDeoptimization && !deopt) {
2642        deopt = true; // One-time only print before deopt
2643        tty->print_cr("[BEFORE Deoptimization]");
2644        trace_frames();
2645        trace_stack();
2646      }
2647      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2648    }
2649  }
2650
2651  if (DebugDeoptimization && deopt) {
2652    tty->print_cr("[AFTER Deoptimization]");
2653    trace_frames();
2654  }
2655}
2656
2657
2658// Make zombies
2659void JavaThread::make_zombies() {
2660  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2661    if (fst.current()->can_be_deoptimized()) {
2662      // it is a Java nmethod
2663      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2664      nm->make_not_entrant();
2665    }
2666  }
2667}
2668#endif // PRODUCT
2669
2670
2671void JavaThread::deoptimized_wrt_marked_nmethods() {
2672  if (!has_last_Java_frame()) return;
2673  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2674  StackFrameStream fst(this, UseBiasedLocking);
2675  for(; !fst.is_done(); fst.next()) {
2676    if (fst.current()->should_be_deoptimized()) {
2677      if (LogCompilation && xtty != NULL) {
2678        nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2679        xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2680                   this->name(), nm != NULL ? nm->compile_id() : -1);
2681      }
2682
2683      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2684    }
2685  }
2686}
2687
2688
2689// GC support
2690static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2691
2692void JavaThread::gc_epilogue() {
2693  frames_do(frame_gc_epilogue);
2694}
2695
2696
2697static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2698
2699void JavaThread::gc_prologue() {
2700  frames_do(frame_gc_prologue);
2701}
2702
2703// If the caller is a NamedThread, then remember, in the current scope,
2704// the given JavaThread in its _processed_thread field.
2705class RememberProcessedThread: public StackObj {
2706  NamedThread* _cur_thr;
2707public:
2708  RememberProcessedThread(JavaThread* jthr) {
2709    Thread* thread = Thread::current();
2710    if (thread->is_Named_thread()) {
2711      _cur_thr = (NamedThread *)thread;
2712      _cur_thr->set_processed_thread(jthr);
2713    } else {
2714      _cur_thr = NULL;
2715    }
2716  }
2717
2718  ~RememberProcessedThread() {
2719    if (_cur_thr) {
2720      _cur_thr->set_processed_thread(NULL);
2721    }
2722  }
2723};
2724
2725void JavaThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
2726  // Verify that the deferred card marks have been flushed.
2727  assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2728
2729  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2730  // since there may be more than one thread using each ThreadProfiler.
2731
2732  // Traverse the GCHandles
2733  Thread::oops_do(f, cld_f, cf);
2734
2735  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2736          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2737
2738  if (has_last_Java_frame()) {
2739    // Record JavaThread to GC thread
2740    RememberProcessedThread rpt(this);
2741
2742    // Traverse the privileged stack
2743    if (_privileged_stack_top != NULL) {
2744      _privileged_stack_top->oops_do(f);
2745    }
2746
2747    // traverse the registered growable array
2748    if (_array_for_gc != NULL) {
2749      for (int index = 0; index < _array_for_gc->length(); index++) {
2750        f->do_oop(_array_for_gc->adr_at(index));
2751      }
2752    }
2753
2754    // Traverse the monitor chunks
2755    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2756      chunk->oops_do(f);
2757    }
2758
2759    // Traverse the execution stack
2760    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2761      fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2762    }
2763  }
2764
2765  // callee_target is never live across a gc point so NULL it here should
2766  // it still contain a methdOop.
2767
2768  set_callee_target(NULL);
2769
2770  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2771  // If we have deferred set_locals there might be oops waiting to be
2772  // written
2773  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2774  if (list != NULL) {
2775    for (int i = 0; i < list->length(); i++) {
2776      list->at(i)->oops_do(f);
2777    }
2778  }
2779
2780  // Traverse instance variables at the end since the GC may be moving things
2781  // around using this function
2782  f->do_oop((oop*) &_threadObj);
2783  f->do_oop((oop*) &_vm_result);
2784  f->do_oop((oop*) &_exception_oop);
2785  f->do_oop((oop*) &_pending_async_exception);
2786
2787  if (jvmti_thread_state() != NULL) {
2788    jvmti_thread_state()->oops_do(f);
2789  }
2790}
2791
2792void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2793  Thread::nmethods_do(cf);  // (super method is a no-op)
2794
2795  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2796          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2797
2798  if (has_last_Java_frame()) {
2799    // Traverse the execution stack
2800    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2801      fst.current()->nmethods_do(cf);
2802    }
2803  }
2804}
2805
2806void JavaThread::metadata_do(void f(Metadata*)) {
2807  Thread::metadata_do(f);
2808  if (has_last_Java_frame()) {
2809    // Traverse the execution stack to call f() on the methods in the stack
2810    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2811      fst.current()->metadata_do(f);
2812    }
2813  } else if (is_Compiler_thread()) {
2814    // need to walk ciMetadata in current compile tasks to keep alive.
2815    CompilerThread* ct = (CompilerThread*)this;
2816    if (ct->env() != NULL) {
2817      ct->env()->metadata_do(f);
2818    }
2819  }
2820}
2821
2822// Printing
2823const char* _get_thread_state_name(JavaThreadState _thread_state) {
2824  switch (_thread_state) {
2825  case _thread_uninitialized:     return "_thread_uninitialized";
2826  case _thread_new:               return "_thread_new";
2827  case _thread_new_trans:         return "_thread_new_trans";
2828  case _thread_in_native:         return "_thread_in_native";
2829  case _thread_in_native_trans:   return "_thread_in_native_trans";
2830  case _thread_in_vm:             return "_thread_in_vm";
2831  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2832  case _thread_in_Java:           return "_thread_in_Java";
2833  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2834  case _thread_blocked:           return "_thread_blocked";
2835  case _thread_blocked_trans:     return "_thread_blocked_trans";
2836  default:                        return "unknown thread state";
2837  }
2838}
2839
2840#ifndef PRODUCT
2841void JavaThread::print_thread_state_on(outputStream *st) const {
2842  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2843};
2844void JavaThread::print_thread_state() const {
2845  print_thread_state_on(tty);
2846};
2847#endif // PRODUCT
2848
2849// Called by Threads::print() for VM_PrintThreads operation
2850void JavaThread::print_on(outputStream *st) const {
2851  st->print("\"%s\" ", get_thread_name());
2852  oop thread_oop = threadObj();
2853  if (thread_oop != NULL) {
2854    st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2855    if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2856    st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2857  }
2858  Thread::print_on(st);
2859  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2860  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2861  if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2862    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2863  }
2864#ifndef PRODUCT
2865  print_thread_state_on(st);
2866  _safepoint_state->print_on(st);
2867#endif // PRODUCT
2868}
2869
2870// Called by fatal error handler. The difference between this and
2871// JavaThread::print() is that we can't grab lock or allocate memory.
2872void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2873  st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2874  oop thread_obj = threadObj();
2875  if (thread_obj != NULL) {
2876     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2877  }
2878  st->print(" [");
2879  st->print("%s", _get_thread_state_name(_thread_state));
2880  if (osthread()) {
2881    st->print(", id=%d", osthread()->thread_id());
2882  }
2883  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2884            _stack_base - _stack_size, _stack_base);
2885  st->print("]");
2886  return;
2887}
2888
2889// Verification
2890
2891static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2892
2893void JavaThread::verify() {
2894  // Verify oops in the thread.
2895  oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2896
2897  // Verify the stack frames.
2898  frames_do(frame_verify);
2899}
2900
2901// CR 6300358 (sub-CR 2137150)
2902// Most callers of this method assume that it can't return NULL but a
2903// thread may not have a name whilst it is in the process of attaching to
2904// the VM - see CR 6412693, and there are places where a JavaThread can be
2905// seen prior to having it's threadObj set (eg JNI attaching threads and
2906// if vm exit occurs during initialization). These cases can all be accounted
2907// for such that this method never returns NULL.
2908const char* JavaThread::get_thread_name() const {
2909#ifdef ASSERT
2910  // early safepoints can hit while current thread does not yet have TLS
2911  if (!SafepointSynchronize::is_at_safepoint()) {
2912    Thread *cur = Thread::current();
2913    if (!(cur->is_Java_thread() && cur == this)) {
2914      // Current JavaThreads are allowed to get their own name without
2915      // the Threads_lock.
2916      assert_locked_or_safepoint(Threads_lock);
2917    }
2918  }
2919#endif // ASSERT
2920    return get_thread_name_string();
2921}
2922
2923// Returns a non-NULL representation of this thread's name, or a suitable
2924// descriptive string if there is no set name
2925const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2926  const char* name_str;
2927  oop thread_obj = threadObj();
2928  if (thread_obj != NULL) {
2929    typeArrayOop name = java_lang_Thread::name(thread_obj);
2930    if (name != NULL) {
2931      if (buf == NULL) {
2932        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2933      }
2934      else {
2935        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2936      }
2937    }
2938    else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2939      name_str = "<no-name - thread is attaching>";
2940    }
2941    else {
2942      name_str = Thread::name();
2943    }
2944  }
2945  else {
2946    name_str = Thread::name();
2947  }
2948  assert(name_str != NULL, "unexpected NULL thread name");
2949  return name_str;
2950}
2951
2952
2953const char* JavaThread::get_threadgroup_name() const {
2954  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2955  oop thread_obj = threadObj();
2956  if (thread_obj != NULL) {
2957    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2958    if (thread_group != NULL) {
2959      typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2960      // ThreadGroup.name can be null
2961      if (name != NULL) {
2962        const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2963        return str;
2964      }
2965    }
2966  }
2967  return NULL;
2968}
2969
2970const char* JavaThread::get_parent_name() const {
2971  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2972  oop thread_obj = threadObj();
2973  if (thread_obj != NULL) {
2974    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2975    if (thread_group != NULL) {
2976      oop parent = java_lang_ThreadGroup::parent(thread_group);
2977      if (parent != NULL) {
2978        typeArrayOop name = java_lang_ThreadGroup::name(parent);
2979        // ThreadGroup.name can be null
2980        if (name != NULL) {
2981          const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2982          return str;
2983        }
2984      }
2985    }
2986  }
2987  return NULL;
2988}
2989
2990ThreadPriority JavaThread::java_priority() const {
2991  oop thr_oop = threadObj();
2992  if (thr_oop == NULL) return NormPriority; // Bootstrapping
2993  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2994  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2995  return priority;
2996}
2997
2998void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2999
3000  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3001  // Link Java Thread object <-> C++ Thread
3002
3003  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3004  // and put it into a new Handle.  The Handle "thread_oop" can then
3005  // be used to pass the C++ thread object to other methods.
3006
3007  // Set the Java level thread object (jthread) field of the
3008  // new thread (a JavaThread *) to C++ thread object using the
3009  // "thread_oop" handle.
3010
3011  // Set the thread field (a JavaThread *) of the
3012  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3013
3014  Handle thread_oop(Thread::current(),
3015                    JNIHandles::resolve_non_null(jni_thread));
3016  assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3017    "must be initialized");
3018  set_threadObj(thread_oop());
3019  java_lang_Thread::set_thread(thread_oop(), this);
3020
3021  if (prio == NoPriority) {
3022    prio = java_lang_Thread::priority(thread_oop());
3023    assert(prio != NoPriority, "A valid priority should be present");
3024  }
3025
3026  // Push the Java priority down to the native thread; needs Threads_lock
3027  Thread::set_priority(this, prio);
3028
3029  // Add the new thread to the Threads list and set it in motion.
3030  // We must have threads lock in order to call Threads::add.
3031  // It is crucial that we do not block before the thread is
3032  // added to the Threads list for if a GC happens, then the java_thread oop
3033  // will not be visited by GC.
3034  Threads::add(this);
3035}
3036
3037oop JavaThread::current_park_blocker() {
3038  // Support for JSR-166 locks
3039  oop thread_oop = threadObj();
3040  if (thread_oop != NULL &&
3041      JDK_Version::current().supports_thread_park_blocker()) {
3042    return java_lang_Thread::park_blocker(thread_oop);
3043  }
3044  return NULL;
3045}
3046
3047
3048void JavaThread::print_stack_on(outputStream* st) {
3049  if (!has_last_Java_frame()) return;
3050  ResourceMark rm;
3051  HandleMark   hm;
3052
3053  RegisterMap reg_map(this);
3054  vframe* start_vf = last_java_vframe(&reg_map);
3055  int count = 0;
3056  for (vframe* f = start_vf; f; f = f->sender() ) {
3057    if (f->is_java_frame()) {
3058      javaVFrame* jvf = javaVFrame::cast(f);
3059      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3060
3061      // Print out lock information
3062      if (JavaMonitorsInStackTrace) {
3063        jvf->print_lock_info_on(st, count);
3064      }
3065    } else {
3066      // Ignore non-Java frames
3067    }
3068
3069    // Bail-out case for too deep stacks
3070    count++;
3071    if (MaxJavaStackTraceDepth == count) return;
3072  }
3073}
3074
3075
3076// JVMTI PopFrame support
3077void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3078  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3079  if (in_bytes(size_in_bytes) != 0) {
3080    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3081    _popframe_preserved_args_size = in_bytes(size_in_bytes);
3082    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3083  }
3084}
3085
3086void* JavaThread::popframe_preserved_args() {
3087  return _popframe_preserved_args;
3088}
3089
3090ByteSize JavaThread::popframe_preserved_args_size() {
3091  return in_ByteSize(_popframe_preserved_args_size);
3092}
3093
3094WordSize JavaThread::popframe_preserved_args_size_in_words() {
3095  int sz = in_bytes(popframe_preserved_args_size());
3096  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3097  return in_WordSize(sz / wordSize);
3098}
3099
3100void JavaThread::popframe_free_preserved_args() {
3101  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3102  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3103  _popframe_preserved_args = NULL;
3104  _popframe_preserved_args_size = 0;
3105}
3106
3107#ifndef PRODUCT
3108
3109void JavaThread::trace_frames() {
3110  tty->print_cr("[Describe stack]");
3111  int frame_no = 1;
3112  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3113    tty->print("  %d. ", frame_no++);
3114    fst.current()->print_value_on(tty,this);
3115    tty->cr();
3116  }
3117}
3118
3119class PrintAndVerifyOopClosure: public OopClosure {
3120 protected:
3121  template <class T> inline void do_oop_work(T* p) {
3122    oop obj = oopDesc::load_decode_heap_oop(p);
3123    if (obj == NULL) return;
3124    tty->print(INTPTR_FORMAT ": ", p);
3125    if (obj->is_oop_or_null()) {
3126      if (obj->is_objArray()) {
3127        tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3128      } else {
3129        obj->print();
3130      }
3131    } else {
3132      tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3133    }
3134    tty->cr();
3135  }
3136 public:
3137  virtual void do_oop(oop* p) { do_oop_work(p); }
3138  virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3139};
3140
3141
3142static void oops_print(frame* f, const RegisterMap *map) {
3143  PrintAndVerifyOopClosure print;
3144  f->print_value();
3145  f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3146}
3147
3148// Print our all the locations that contain oops and whether they are
3149// valid or not.  This useful when trying to find the oldest frame
3150// where an oop has gone bad since the frame walk is from youngest to
3151// oldest.
3152void JavaThread::trace_oops() {
3153  tty->print_cr("[Trace oops]");
3154  frames_do(oops_print);
3155}
3156
3157
3158#ifdef ASSERT
3159// Print or validate the layout of stack frames
3160void JavaThread::print_frame_layout(int depth, bool validate_only) {
3161  ResourceMark rm;
3162  PRESERVE_EXCEPTION_MARK;
3163  FrameValues values;
3164  int frame_no = 0;
3165  for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3166    fst.current()->describe(values, ++frame_no);
3167    if (depth == frame_no) break;
3168  }
3169  if (validate_only) {
3170    values.validate();
3171  } else {
3172    tty->print_cr("[Describe stack layout]");
3173    values.print(this);
3174  }
3175}
3176#endif
3177
3178void JavaThread::trace_stack_from(vframe* start_vf) {
3179  ResourceMark rm;
3180  int vframe_no = 1;
3181  for (vframe* f = start_vf; f; f = f->sender() ) {
3182    if (f->is_java_frame()) {
3183      javaVFrame::cast(f)->print_activation(vframe_no++);
3184    } else {
3185      f->print();
3186    }
3187    if (vframe_no > StackPrintLimit) {
3188      tty->print_cr("...<more frames>...");
3189      return;
3190    }
3191  }
3192}
3193
3194
3195void JavaThread::trace_stack() {
3196  if (!has_last_Java_frame()) return;
3197  ResourceMark rm;
3198  HandleMark   hm;
3199  RegisterMap reg_map(this);
3200  trace_stack_from(last_java_vframe(&reg_map));
3201}
3202
3203
3204#endif // PRODUCT
3205
3206
3207javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3208  assert(reg_map != NULL, "a map must be given");
3209  frame f = last_frame();
3210  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3211    if (vf->is_java_frame()) return javaVFrame::cast(vf);
3212  }
3213  return NULL;
3214}
3215
3216
3217Klass* JavaThread::security_get_caller_class(int depth) {
3218  vframeStream vfst(this);
3219  vfst.security_get_caller_frame(depth);
3220  if (!vfst.at_end()) {
3221    return vfst.method()->method_holder();
3222  }
3223  return NULL;
3224}
3225
3226static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3227  assert(thread->is_Compiler_thread(), "must be compiler thread");
3228  CompileBroker::compiler_thread_loop();
3229}
3230
3231// Create a CompilerThread
3232CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3233: JavaThread(&compiler_thread_entry) {
3234  _env   = NULL;
3235  _log   = NULL;
3236  _task  = NULL;
3237  _queue = queue;
3238  _counters = counters;
3239  _buffer_blob = NULL;
3240  _scanned_nmethod = NULL;
3241  _compiler = NULL;
3242
3243#ifndef PRODUCT
3244  _ideal_graph_printer = NULL;
3245#endif
3246}
3247
3248void CompilerThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
3249  JavaThread::oops_do(f, cld_f, cf);
3250  if (_scanned_nmethod != NULL && cf != NULL) {
3251    // Safepoints can occur when the sweeper is scanning an nmethod so
3252    // process it here to make sure it isn't unloaded in the middle of
3253    // a scan.
3254    cf->do_code_blob(_scanned_nmethod);
3255  }
3256}
3257
3258
3259// ======= Threads ========
3260
3261// The Threads class links together all active threads, and provides
3262// operations over all threads.  It is protected by its own Mutex
3263// lock, which is also used in other contexts to protect thread
3264// operations from having the thread being operated on from exiting
3265// and going away unexpectedly (e.g., safepoint synchronization)
3266
3267JavaThread* Threads::_thread_list = NULL;
3268int         Threads::_number_of_threads = 0;
3269int         Threads::_number_of_non_daemon_threads = 0;
3270int         Threads::_return_code = 0;
3271size_t      JavaThread::_stack_size_at_create = 0;
3272#ifdef ASSERT
3273bool        Threads::_vm_complete = false;
3274#endif
3275
3276// All JavaThreads
3277#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3278
3279// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3280void Threads::threads_do(ThreadClosure* tc) {
3281  assert_locked_or_safepoint(Threads_lock);
3282  // ALL_JAVA_THREADS iterates through all JavaThreads
3283  ALL_JAVA_THREADS(p) {
3284    tc->do_thread(p);
3285  }
3286  // Someday we could have a table or list of all non-JavaThreads.
3287  // For now, just manually iterate through them.
3288  tc->do_thread(VMThread::vm_thread());
3289  Universe::heap()->gc_threads_do(tc);
3290  WatcherThread *wt = WatcherThread::watcher_thread();
3291  // Strictly speaking, the following NULL check isn't sufficient to make sure
3292  // the data for WatcherThread is still valid upon being examined. However,
3293  // considering that WatchThread terminates when the VM is on the way to
3294  // exit at safepoint, the chance of the above is extremely small. The right
3295  // way to prevent termination of WatcherThread would be to acquire
3296  // Terminator_lock, but we can't do that without violating the lock rank
3297  // checking in some cases.
3298  if (wt != NULL)
3299    tc->do_thread(wt);
3300
3301  // If CompilerThreads ever become non-JavaThreads, add them here
3302}
3303
3304jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3305
3306  extern void JDK_Version_init();
3307
3308  // Check version
3309  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3310
3311  // Initialize the output stream module
3312  ostream_init();
3313
3314  // Process java launcher properties.
3315  Arguments::process_sun_java_launcher_properties(args);
3316
3317  // Initialize the os module before using TLS
3318  os::init();
3319
3320  // Initialize system properties.
3321  Arguments::init_system_properties();
3322
3323  // So that JDK version can be used as a discrimintor when parsing arguments
3324  JDK_Version_init();
3325
3326  // Update/Initialize System properties after JDK version number is known
3327  Arguments::init_version_specific_system_properties();
3328
3329  // Parse arguments
3330  jint parse_result = Arguments::parse(args);
3331  if (parse_result != JNI_OK) return parse_result;
3332
3333  os::init_before_ergo();
3334
3335  jint ergo_result = Arguments::apply_ergo();
3336  if (ergo_result != JNI_OK) return ergo_result;
3337
3338  if (PauseAtStartup) {
3339    os::pause();
3340  }
3341
3342#ifndef USDT2
3343  HS_DTRACE_PROBE(hotspot, vm__init__begin);
3344#else /* USDT2 */
3345  HOTSPOT_VM_INIT_BEGIN();
3346#endif /* USDT2 */
3347
3348  // Record VM creation timing statistics
3349  TraceVmCreationTime create_vm_timer;
3350  create_vm_timer.start();
3351
3352  // Timing (must come after argument parsing)
3353  TraceTime timer("Create VM", TraceStartupTime);
3354
3355  // Initialize the os module after parsing the args
3356  jint os_init_2_result = os::init_2();
3357  if (os_init_2_result != JNI_OK) return os_init_2_result;
3358
3359  jint adjust_after_os_result = Arguments::adjust_after_os();
3360  if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3361
3362  // intialize TLS
3363  ThreadLocalStorage::init();
3364
3365  // Bootstrap native memory tracking, so it can start recording memory
3366  // activities before worker thread is started. This is the first phase
3367  // of bootstrapping, VM is currently running in single-thread mode.
3368  MemTracker::bootstrap_single_thread();
3369
3370  // Initialize output stream logging
3371  ostream_init_log();
3372
3373  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3374  // Must be before create_vm_init_agents()
3375  if (Arguments::init_libraries_at_startup()) {
3376    convert_vm_init_libraries_to_agents();
3377  }
3378
3379  // Launch -agentlib/-agentpath and converted -Xrun agents
3380  if (Arguments::init_agents_at_startup()) {
3381    create_vm_init_agents();
3382  }
3383
3384  // Initialize Threads state
3385  _thread_list = NULL;
3386  _number_of_threads = 0;
3387  _number_of_non_daemon_threads = 0;
3388
3389  // Initialize global data structures and create system classes in heap
3390  vm_init_globals();
3391
3392  // Attach the main thread to this os thread
3393  JavaThread* main_thread = new JavaThread();
3394  main_thread->set_thread_state(_thread_in_vm);
3395  // must do this before set_active_handles and initialize_thread_local_storage
3396  // Note: on solaris initialize_thread_local_storage() will (indirectly)
3397  // change the stack size recorded here to one based on the java thread
3398  // stacksize. This adjusted size is what is used to figure the placement
3399  // of the guard pages.
3400  main_thread->record_stack_base_and_size();
3401  main_thread->initialize_thread_local_storage();
3402
3403  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3404
3405  if (!main_thread->set_as_starting_thread()) {
3406    vm_shutdown_during_initialization(
3407      "Failed necessary internal allocation. Out of swap space");
3408    delete main_thread;
3409    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3410    return JNI_ENOMEM;
3411  }
3412
3413  // Enable guard page *after* os::create_main_thread(), otherwise it would
3414  // crash Linux VM, see notes in os_linux.cpp.
3415  main_thread->create_stack_guard_pages();
3416
3417  // Initialize Java-Level synchronization subsystem
3418  ObjectMonitor::Initialize() ;
3419
3420  // Second phase of bootstrapping, VM is about entering multi-thread mode
3421  MemTracker::bootstrap_multi_thread();
3422
3423  // Initialize global modules
3424  jint status = init_globals();
3425  if (status != JNI_OK) {
3426    delete main_thread;
3427    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3428    return status;
3429  }
3430
3431  // Should be done after the heap is fully created
3432  main_thread->cache_global_variables();
3433
3434  HandleMark hm;
3435
3436  { MutexLocker mu(Threads_lock);
3437    Threads::add(main_thread);
3438  }
3439
3440  // Any JVMTI raw monitors entered in onload will transition into
3441  // real raw monitor. VM is setup enough here for raw monitor enter.
3442  JvmtiExport::transition_pending_onload_raw_monitors();
3443
3444  // Fully start NMT
3445  MemTracker::start();
3446
3447  // Create the VMThread
3448  { TraceTime timer("Start VMThread", TraceStartupTime);
3449    VMThread::create();
3450    Thread* vmthread = VMThread::vm_thread();
3451
3452    if (!os::create_thread(vmthread, os::vm_thread))
3453      vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3454
3455    // Wait for the VM thread to become ready, and VMThread::run to initialize
3456    // Monitors can have spurious returns, must always check another state flag
3457    {
3458      MutexLocker ml(Notify_lock);
3459      os::start_thread(vmthread);
3460      while (vmthread->active_handles() == NULL) {
3461        Notify_lock->wait();
3462      }
3463    }
3464  }
3465
3466  assert (Universe::is_fully_initialized(), "not initialized");
3467  if (VerifyDuringStartup) {
3468    // Make sure we're starting with a clean slate.
3469    VM_Verify verify_op;
3470    VMThread::execute(&verify_op);
3471  }
3472
3473  EXCEPTION_MARK;
3474
3475  // At this point, the Universe is initialized, but we have not executed
3476  // any byte code.  Now is a good time (the only time) to dump out the
3477  // internal state of the JVM for sharing.
3478  if (DumpSharedSpaces) {
3479    MetaspaceShared::preload_and_dump(CHECK_0);
3480    ShouldNotReachHere();
3481  }
3482
3483  // Always call even when there are not JVMTI environments yet, since environments
3484  // may be attached late and JVMTI must track phases of VM execution
3485  JvmtiExport::enter_start_phase();
3486
3487  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3488  JvmtiExport::post_vm_start();
3489
3490  {
3491    TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3492
3493    if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3494      create_vm_init_libraries();
3495    }
3496
3497    initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3498
3499    // Initialize java_lang.System (needed before creating the thread)
3500    initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3501    initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3502    Handle thread_group = create_initial_thread_group(CHECK_0);
3503    Universe::set_main_thread_group(thread_group());
3504    initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3505    oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3506    main_thread->set_threadObj(thread_object);
3507    // Set thread status to running since main thread has
3508    // been started and running.
3509    java_lang_Thread::set_thread_status(thread_object,
3510                                        java_lang_Thread::RUNNABLE);
3511
3512    // The VM creates & returns objects of this class. Make sure it's initialized.
3513    initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3514
3515    // The VM preresolves methods to these classes. Make sure that they get initialized
3516    initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3517    initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3518    call_initializeSystemClass(CHECK_0);
3519
3520    // get the Java runtime name after java.lang.System is initialized
3521    JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3522    JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3523
3524    // an instance of OutOfMemory exception has been allocated earlier
3525    initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3526    initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3527    initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3528    initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3529    initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3530    initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3531    initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3532    initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
3533  }
3534
3535  // See        : bugid 4211085.
3536  // Background : the static initializer of java.lang.Compiler tries to read
3537  //              property"java.compiler" and read & write property "java.vm.info".
3538  //              When a security manager is installed through the command line
3539  //              option "-Djava.security.manager", the above properties are not
3540  //              readable and the static initializer for java.lang.Compiler fails
3541  //              resulting in a NoClassDefFoundError.  This can happen in any
3542  //              user code which calls methods in java.lang.Compiler.
3543  // Hack :       the hack is to pre-load and initialize this class, so that only
3544  //              system domains are on the stack when the properties are read.
3545  //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3546  //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3547  // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3548  //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3549  //              Once that is done, we should remove this hack.
3550  initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3551
3552  // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3553  // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3554  // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3555  // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3556  // This should also be taken out as soon as 4211383 gets fixed.
3557  reset_vm_info_property(CHECK_0);
3558
3559  quicken_jni_functions();
3560
3561  // Must be run after init_ft which initializes ft_enabled
3562  if (TRACE_INITIALIZE() != JNI_OK) {
3563    vm_exit_during_initialization("Failed to initialize tracing backend");
3564  }
3565
3566  // Set flag that basic initialization has completed. Used by exceptions and various
3567  // debug stuff, that does not work until all basic classes have been initialized.
3568  set_init_completed();
3569
3570#ifndef USDT2
3571  HS_DTRACE_PROBE(hotspot, vm__init__end);
3572#else /* USDT2 */
3573  HOTSPOT_VM_INIT_END();
3574#endif /* USDT2 */
3575
3576  // record VM initialization completion time
3577#if INCLUDE_MANAGEMENT
3578  Management::record_vm_init_completed();
3579#endif // INCLUDE_MANAGEMENT
3580
3581  // Compute system loader. Note that this has to occur after set_init_completed, since
3582  // valid exceptions may be thrown in the process.
3583  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3584  // set_init_completed has just been called, causing exceptions not to be shortcut
3585  // anymore. We call vm_exit_during_initialization directly instead.
3586  SystemDictionary::compute_java_system_loader(THREAD);
3587  if (HAS_PENDING_EXCEPTION) {
3588    vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3589  }
3590
3591#if INCLUDE_ALL_GCS
3592  // Support for ConcurrentMarkSweep. This should be cleaned up
3593  // and better encapsulated. The ugly nested if test would go away
3594  // once things are properly refactored. XXX YSR
3595  if (UseConcMarkSweepGC || UseG1GC) {
3596    if (UseConcMarkSweepGC) {
3597      ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3598    } else {
3599      ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3600    }
3601    if (HAS_PENDING_EXCEPTION) {
3602      vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3603    }
3604  }
3605#endif // INCLUDE_ALL_GCS
3606
3607  // Always call even when there are not JVMTI environments yet, since environments
3608  // may be attached late and JVMTI must track phases of VM execution
3609  JvmtiExport::enter_live_phase();
3610
3611  // Signal Dispatcher needs to be started before VMInit event is posted
3612  os::signal_init();
3613
3614  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3615  if (!DisableAttachMechanism) {
3616    AttachListener::vm_start();
3617    if (StartAttachListener || AttachListener::init_at_startup()) {
3618      AttachListener::init();
3619    }
3620  }
3621
3622  // Launch -Xrun agents
3623  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3624  // back-end can launch with -Xdebug -Xrunjdwp.
3625  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3626    create_vm_init_libraries();
3627  }
3628
3629  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3630  JvmtiExport::post_vm_initialized();
3631
3632  if (TRACE_START() != JNI_OK) {
3633    vm_exit_during_initialization("Failed to start tracing backend.");
3634  }
3635
3636  if (CleanChunkPoolAsync) {
3637    Chunk::start_chunk_pool_cleaner_task();
3638  }
3639
3640  // initialize compiler(s)
3641#if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3642  CompileBroker::compilation_init();
3643#endif
3644
3645  if (EnableInvokeDynamic) {
3646    // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3647    // It is done after compilers are initialized, because otherwise compilations of
3648    // signature polymorphic MH intrinsics can be missed
3649    // (see SystemDictionary::find_method_handle_intrinsic).
3650    initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK_0);
3651    initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK_0);
3652    initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK_0);
3653  }
3654
3655#if INCLUDE_MANAGEMENT
3656  Management::initialize(THREAD);
3657#endif // INCLUDE_MANAGEMENT
3658
3659  if (HAS_PENDING_EXCEPTION) {
3660    // management agent fails to start possibly due to
3661    // configuration problem and is responsible for printing
3662    // stack trace if appropriate. Simply exit VM.
3663    vm_exit(1);
3664  }
3665
3666  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3667  if (MemProfiling)                   MemProfiler::engage();
3668  StatSampler::engage();
3669  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3670
3671  BiasedLocking::init();
3672
3673  if (JDK_Version::current().post_vm_init_hook_enabled()) {
3674    call_postVMInitHook(THREAD);
3675    // The Java side of PostVMInitHook.run must deal with all
3676    // exceptions and provide means of diagnosis.
3677    if (HAS_PENDING_EXCEPTION) {
3678      CLEAR_PENDING_EXCEPTION;
3679    }
3680  }
3681
3682  {
3683      MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3684      // Make sure the watcher thread can be started by WatcherThread::start()
3685      // or by dynamic enrollment.
3686      WatcherThread::make_startable();
3687      // Start up the WatcherThread if there are any periodic tasks
3688      // NOTE:  All PeriodicTasks should be registered by now. If they
3689      //   aren't, late joiners might appear to start slowly (we might
3690      //   take a while to process their first tick).
3691      if (PeriodicTask::num_tasks() > 0) {
3692          WatcherThread::start();
3693      }
3694  }
3695
3696  // Give os specific code one last chance to start
3697  os::init_3();
3698
3699  create_vm_timer.end();
3700#ifdef ASSERT
3701  _vm_complete = true;
3702#endif
3703  return JNI_OK;
3704}
3705
3706// type for the Agent_OnLoad and JVM_OnLoad entry points
3707extern "C" {
3708  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3709}
3710// Find a command line agent library and return its entry point for
3711//         -agentlib:  -agentpath:   -Xrun
3712// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3713static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3714  OnLoadEntry_t on_load_entry = NULL;
3715  void *library = NULL;
3716
3717  if (!agent->valid()) {
3718    char buffer[JVM_MAXPATHLEN];
3719    char ebuf[1024];
3720    const char *name = agent->name();
3721    const char *msg = "Could not find agent library ";
3722
3723    // First check to see if agent is statically linked into executable
3724    if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3725      library = agent->os_lib();
3726    } else if (agent->is_absolute_path()) {
3727      library = os::dll_load(name, ebuf, sizeof ebuf);
3728      if (library == NULL) {
3729        const char *sub_msg = " in absolute path, with error: ";
3730        size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3731        char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3732        jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3733        // If we can't find the agent, exit.
3734        vm_exit_during_initialization(buf, NULL);
3735        FREE_C_HEAP_ARRAY(char, buf, mtThread);
3736      }
3737    } else {
3738      // Try to load the agent from the standard dll directory
3739      if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3740                             name)) {
3741        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3742      }
3743      if (library == NULL) { // Try the local directory
3744        char ns[1] = {0};
3745        if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3746          library = os::dll_load(buffer, ebuf, sizeof ebuf);
3747        }
3748        if (library == NULL) {
3749          const char *sub_msg = " on the library path, with error: ";
3750          size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3751          char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3752          jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3753          // If we can't find the agent, exit.
3754          vm_exit_during_initialization(buf, NULL);
3755          FREE_C_HEAP_ARRAY(char, buf, mtThread);
3756        }
3757      }
3758    }
3759    agent->set_os_lib(library);
3760    agent->set_valid();
3761  }
3762
3763  // Find the OnLoad function.
3764  on_load_entry =
3765    CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3766                                                          false,
3767                                                          on_load_symbols,
3768                                                          num_symbol_entries));
3769  return on_load_entry;
3770}
3771
3772// Find the JVM_OnLoad entry point
3773static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3774  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3775  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3776}
3777
3778// Find the Agent_OnLoad entry point
3779static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3780  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3781  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3782}
3783
3784// For backwards compatibility with -Xrun
3785// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3786// treated like -agentpath:
3787// Must be called before agent libraries are created
3788void Threads::convert_vm_init_libraries_to_agents() {
3789  AgentLibrary* agent;
3790  AgentLibrary* next;
3791
3792  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3793    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3794    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3795
3796    // If there is an JVM_OnLoad function it will get called later,
3797    // otherwise see if there is an Agent_OnLoad
3798    if (on_load_entry == NULL) {
3799      on_load_entry = lookup_agent_on_load(agent);
3800      if (on_load_entry != NULL) {
3801        // switch it to the agent list -- so that Agent_OnLoad will be called,
3802        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3803        Arguments::convert_library_to_agent(agent);
3804      } else {
3805        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3806      }
3807    }
3808  }
3809}
3810
3811// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3812// Invokes Agent_OnLoad
3813// Called very early -- before JavaThreads exist
3814void Threads::create_vm_init_agents() {
3815  extern struct JavaVM_ main_vm;
3816  AgentLibrary* agent;
3817
3818  JvmtiExport::enter_onload_phase();
3819
3820  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3821    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3822
3823    if (on_load_entry != NULL) {
3824      // Invoke the Agent_OnLoad function
3825      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3826      if (err != JNI_OK) {
3827        vm_exit_during_initialization("agent library failed to init", agent->name());
3828      }
3829    } else {
3830      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3831    }
3832  }
3833  JvmtiExport::enter_primordial_phase();
3834}
3835
3836extern "C" {
3837  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3838}
3839
3840void Threads::shutdown_vm_agents() {
3841  // Send any Agent_OnUnload notifications
3842  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3843  size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3844  extern struct JavaVM_ main_vm;
3845  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3846
3847    // Find the Agent_OnUnload function.
3848    Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3849      os::find_agent_function(agent,
3850      false,
3851      on_unload_symbols,
3852      num_symbol_entries));
3853
3854    // Invoke the Agent_OnUnload function
3855    if (unload_entry != NULL) {
3856      JavaThread* thread = JavaThread::current();
3857      ThreadToNativeFromVM ttn(thread);
3858      HandleMark hm(thread);
3859      (*unload_entry)(&main_vm);
3860    }
3861  }
3862}
3863
3864// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3865// Invokes JVM_OnLoad
3866void Threads::create_vm_init_libraries() {
3867  extern struct JavaVM_ main_vm;
3868  AgentLibrary* agent;
3869
3870  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3871    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3872
3873    if (on_load_entry != NULL) {
3874      // Invoke the JVM_OnLoad function
3875      JavaThread* thread = JavaThread::current();
3876      ThreadToNativeFromVM ttn(thread);
3877      HandleMark hm(thread);
3878      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3879      if (err != JNI_OK) {
3880        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3881      }
3882    } else {
3883      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3884    }
3885  }
3886}
3887
3888// Last thread running calls java.lang.Shutdown.shutdown()
3889void JavaThread::invoke_shutdown_hooks() {
3890  HandleMark hm(this);
3891
3892  // We could get here with a pending exception, if so clear it now.
3893  if (this->has_pending_exception()) {
3894    this->clear_pending_exception();
3895  }
3896
3897  EXCEPTION_MARK;
3898  Klass* k =
3899    SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3900                                      THREAD);
3901  if (k != NULL) {
3902    // SystemDictionary::resolve_or_null will return null if there was
3903    // an exception.  If we cannot load the Shutdown class, just don't
3904    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3905    // and finalizers (if runFinalizersOnExit is set) won't be run.
3906    // Note that if a shutdown hook was registered or runFinalizersOnExit
3907    // was called, the Shutdown class would have already been loaded
3908    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3909    instanceKlassHandle shutdown_klass (THREAD, k);
3910    JavaValue result(T_VOID);
3911    JavaCalls::call_static(&result,
3912                           shutdown_klass,
3913                           vmSymbols::shutdown_method_name(),
3914                           vmSymbols::void_method_signature(),
3915                           THREAD);
3916  }
3917  CLEAR_PENDING_EXCEPTION;
3918}
3919
3920// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3921// the program falls off the end of main(). Another VM exit path is through
3922// vm_exit() when the program calls System.exit() to return a value or when
3923// there is a serious error in VM. The two shutdown paths are not exactly
3924// the same, but they share Shutdown.shutdown() at Java level and before_exit()
3925// and VM_Exit op at VM level.
3926//
3927// Shutdown sequence:
3928//   + Shutdown native memory tracking if it is on
3929//   + Wait until we are the last non-daemon thread to execute
3930//     <-- every thing is still working at this moment -->
3931//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3932//        shutdown hooks, run finalizers if finalization-on-exit
3933//   + Call before_exit(), prepare for VM exit
3934//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3935//        currently the only user of this mechanism is File.deleteOnExit())
3936//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3937//        post thread end and vm death events to JVMTI,
3938//        stop signal thread
3939//   + Call JavaThread::exit(), it will:
3940//      > release JNI handle blocks, remove stack guard pages
3941//      > remove this thread from Threads list
3942//     <-- no more Java code from this thread after this point -->
3943//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3944//     the compiler threads at safepoint
3945//     <-- do not use anything that could get blocked by Safepoint -->
3946//   + Disable tracing at JNI/JVM barriers
3947//   + Set _vm_exited flag for threads that are still running native code
3948//   + Delete this thread
3949//   + Call exit_globals()
3950//      > deletes tty
3951//      > deletes PerfMemory resources
3952//   + Return to caller
3953
3954bool Threads::destroy_vm() {
3955  JavaThread* thread = JavaThread::current();
3956
3957#ifdef ASSERT
3958  _vm_complete = false;
3959#endif
3960  // Wait until we are the last non-daemon thread to execute
3961  { MutexLocker nu(Threads_lock);
3962    while (Threads::number_of_non_daemon_threads() > 1 )
3963      // This wait should make safepoint checks, wait without a timeout,
3964      // and wait as a suspend-equivalent condition.
3965      //
3966      // Note: If the FlatProfiler is running and this thread is waiting
3967      // for another non-daemon thread to finish, then the FlatProfiler
3968      // is waiting for the external suspend request on this thread to
3969      // complete. wait_for_ext_suspend_completion() will eventually
3970      // timeout, but that takes time. Making this wait a suspend-
3971      // equivalent condition solves that timeout problem.
3972      //
3973      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3974                         Mutex::_as_suspend_equivalent_flag);
3975  }
3976
3977  // Hang forever on exit if we are reporting an error.
3978  if (ShowMessageBoxOnError && is_error_reported()) {
3979    os::infinite_sleep();
3980  }
3981  os::wait_for_keypress_at_exit();
3982
3983  if (JDK_Version::is_jdk12x_version()) {
3984    // We are the last thread running, so check if finalizers should be run.
3985    // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3986    HandleMark rm(thread);
3987    Universe::run_finalizers_on_exit();
3988  } else {
3989    // run Java level shutdown hooks
3990    thread->invoke_shutdown_hooks();
3991  }
3992
3993  before_exit(thread);
3994
3995  thread->exit(true);
3996
3997  // Stop VM thread.
3998  {
3999    // 4945125 The vm thread comes to a safepoint during exit.
4000    // GC vm_operations can get caught at the safepoint, and the
4001    // heap is unparseable if they are caught. Grab the Heap_lock
4002    // to prevent this. The GC vm_operations will not be able to
4003    // queue until after the vm thread is dead.
4004    // After this point, we'll never emerge out of the safepoint before
4005    // the VM exits, so concurrent GC threads do not need to be explicitly
4006    // stopped; they remain inactive until the process exits.
4007    // Note: some concurrent G1 threads may be running during a safepoint,
4008    // but these will not be accessing the heap, just some G1-specific side
4009    // data structures that are not accessed by any other threads but them
4010    // after this point in a terminal safepoint.
4011
4012    MutexLocker ml(Heap_lock);
4013
4014    VMThread::wait_for_vm_thread_exit();
4015    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4016    VMThread::destroy();
4017  }
4018
4019  // clean up ideal graph printers
4020#if defined(COMPILER2) && !defined(PRODUCT)
4021  IdealGraphPrinter::clean_up();
4022#endif
4023
4024  // Now, all Java threads are gone except daemon threads. Daemon threads
4025  // running Java code or in VM are stopped by the Safepoint. However,
4026  // daemon threads executing native code are still running.  But they
4027  // will be stopped at native=>Java/VM barriers. Note that we can't
4028  // simply kill or suspend them, as it is inherently deadlock-prone.
4029
4030#ifndef PRODUCT
4031  // disable function tracing at JNI/JVM barriers
4032  TraceJNICalls = false;
4033  TraceJVMCalls = false;
4034  TraceRuntimeCalls = false;
4035#endif
4036
4037  VM_Exit::set_vm_exited();
4038
4039  notify_vm_shutdown();
4040
4041  delete thread;
4042
4043  // exit_globals() will delete tty
4044  exit_globals();
4045
4046  return true;
4047}
4048
4049
4050jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4051  if (version == JNI_VERSION_1_1) return JNI_TRUE;
4052  return is_supported_jni_version(version);
4053}
4054
4055
4056jboolean Threads::is_supported_jni_version(jint version) {
4057  if (version == JNI_VERSION_1_2) return JNI_TRUE;
4058  if (version == JNI_VERSION_1_4) return JNI_TRUE;
4059  if (version == JNI_VERSION_1_6) return JNI_TRUE;
4060  if (version == JNI_VERSION_1_8) return JNI_TRUE;
4061  return JNI_FALSE;
4062}
4063
4064
4065void Threads::add(JavaThread* p, bool force_daemon) {
4066  // The threads lock must be owned at this point
4067  assert_locked_or_safepoint(Threads_lock);
4068
4069  // See the comment for this method in thread.hpp for its purpose and
4070  // why it is called here.
4071  p->initialize_queues();
4072  p->set_next(_thread_list);
4073  _thread_list = p;
4074  _number_of_threads++;
4075  oop threadObj = p->threadObj();
4076  bool daemon = true;
4077  // Bootstrapping problem: threadObj can be null for initial
4078  // JavaThread (or for threads attached via JNI)
4079  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4080    _number_of_non_daemon_threads++;
4081    daemon = false;
4082  }
4083
4084  p->set_safepoint_visible(true);
4085
4086  ThreadService::add_thread(p, daemon);
4087
4088  // Possible GC point.
4089  Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4090}
4091
4092void Threads::remove(JavaThread* p) {
4093  // Extra scope needed for Thread_lock, so we can check
4094  // that we do not remove thread without safepoint code notice
4095  { MutexLocker ml(Threads_lock);
4096
4097    assert(includes(p), "p must be present");
4098
4099    JavaThread* current = _thread_list;
4100    JavaThread* prev    = NULL;
4101
4102    while (current != p) {
4103      prev    = current;
4104      current = current->next();
4105    }
4106
4107    if (prev) {
4108      prev->set_next(current->next());
4109    } else {
4110      _thread_list = p->next();
4111    }
4112    _number_of_threads--;
4113    oop threadObj = p->threadObj();
4114    bool daemon = true;
4115    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4116      _number_of_non_daemon_threads--;
4117      daemon = false;
4118
4119      // Only one thread left, do a notify on the Threads_lock so a thread waiting
4120      // on destroy_vm will wake up.
4121      if (number_of_non_daemon_threads() == 1)
4122        Threads_lock->notify_all();
4123    }
4124    ThreadService::remove_thread(p, daemon);
4125
4126    // Make sure that safepoint code disregard this thread. This is needed since
4127    // the thread might mess around with locks after this point. This can cause it
4128    // to do callbacks into the safepoint code. However, the safepoint code is not aware
4129    // of this thread since it is removed from the queue.
4130    p->set_terminated_value();
4131
4132    // Now, this thread is not visible to safepoint
4133    p->set_safepoint_visible(false);
4134    // once the thread becomes safepoint invisible, we can not use its per-thread
4135    // recorder. And Threads::do_threads() no longer walks this thread, so we have
4136    // to release its per-thread recorder here.
4137    MemTracker::thread_exiting(p);
4138  } // unlock Threads_lock
4139
4140  // Since Events::log uses a lock, we grab it outside the Threads_lock
4141  Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4142}
4143
4144// Threads_lock must be held when this is called (or must be called during a safepoint)
4145bool Threads::includes(JavaThread* p) {
4146  assert(Threads_lock->is_locked(), "sanity check");
4147  ALL_JAVA_THREADS(q) {
4148    if (q == p ) {
4149      return true;
4150    }
4151  }
4152  return false;
4153}
4154
4155// Operations on the Threads list for GC.  These are not explicitly locked,
4156// but the garbage collector must provide a safe context for them to run.
4157// In particular, these things should never be called when the Threads_lock
4158// is held by some other thread. (Note: the Safepoint abstraction also
4159// uses the Threads_lock to gurantee this property. It also makes sure that
4160// all threads gets blocked when exiting or starting).
4161
4162void Threads::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
4163  ALL_JAVA_THREADS(p) {
4164    p->oops_do(f, cld_f, cf);
4165  }
4166  VMThread::vm_thread()->oops_do(f, cld_f, cf);
4167}
4168
4169void Threads::possibly_parallel_oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
4170  // Introduce a mechanism allowing parallel threads to claim threads as
4171  // root groups.  Overhead should be small enough to use all the time,
4172  // even in sequential code.
4173  SharedHeap* sh = SharedHeap::heap();
4174  // Cannot yet substitute active_workers for n_par_threads
4175  // because of G1CollectedHeap::verify() use of
4176  // SharedHeap::process_strong_roots().  n_par_threads == 0 will
4177  // turn off parallelism in process_strong_roots while active_workers
4178  // is being used for parallelism elsewhere.
4179  bool is_par = sh->n_par_threads() > 0;
4180  assert(!is_par ||
4181         (SharedHeap::heap()->n_par_threads() ==
4182          SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4183  int cp = SharedHeap::heap()->strong_roots_parity();
4184  ALL_JAVA_THREADS(p) {
4185    if (p->claim_oops_do(is_par, cp)) {
4186      p->oops_do(f, cld_f, cf);
4187    }
4188  }
4189  VMThread* vmt = VMThread::vm_thread();
4190  if (vmt->claim_oops_do(is_par, cp)) {
4191    vmt->oops_do(f, cld_f, cf);
4192  }
4193}
4194
4195#if INCLUDE_ALL_GCS
4196// Used by ParallelScavenge
4197void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4198  ALL_JAVA_THREADS(p) {
4199    q->enqueue(new ThreadRootsTask(p));
4200  }
4201  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4202}
4203
4204// Used by Parallel Old
4205void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4206  ALL_JAVA_THREADS(p) {
4207    q->enqueue(new ThreadRootsMarkingTask(p));
4208  }
4209  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4210}
4211#endif // INCLUDE_ALL_GCS
4212
4213void Threads::nmethods_do(CodeBlobClosure* cf) {
4214  ALL_JAVA_THREADS(p) {
4215    p->nmethods_do(cf);
4216  }
4217  VMThread::vm_thread()->nmethods_do(cf);
4218}
4219
4220void Threads::metadata_do(void f(Metadata*)) {
4221  ALL_JAVA_THREADS(p) {
4222    p->metadata_do(f);
4223  }
4224}
4225
4226void Threads::gc_epilogue() {
4227  ALL_JAVA_THREADS(p) {
4228    p->gc_epilogue();
4229  }
4230}
4231
4232void Threads::gc_prologue() {
4233  ALL_JAVA_THREADS(p) {
4234    p->gc_prologue();
4235  }
4236}
4237
4238void Threads::deoptimized_wrt_marked_nmethods() {
4239  ALL_JAVA_THREADS(p) {
4240    p->deoptimized_wrt_marked_nmethods();
4241  }
4242}
4243
4244
4245// Get count Java threads that are waiting to enter the specified monitor.
4246GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4247  address monitor, bool doLock) {
4248  assert(doLock || SafepointSynchronize::is_at_safepoint(),
4249    "must grab Threads_lock or be at safepoint");
4250  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4251
4252  int i = 0;
4253  {
4254    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4255    ALL_JAVA_THREADS(p) {
4256      if (p->is_Compiler_thread()) continue;
4257
4258      address pending = (address)p->current_pending_monitor();
4259      if (pending == monitor) {             // found a match
4260        if (i < count) result->append(p);   // save the first count matches
4261        i++;
4262      }
4263    }
4264  }
4265  return result;
4266}
4267
4268
4269JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4270  assert(doLock ||
4271         Threads_lock->owned_by_self() ||
4272         SafepointSynchronize::is_at_safepoint(),
4273         "must grab Threads_lock or be at safepoint");
4274
4275  // NULL owner means not locked so we can skip the search
4276  if (owner == NULL) return NULL;
4277
4278  {
4279    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4280    ALL_JAVA_THREADS(p) {
4281      // first, see if owner is the address of a Java thread
4282      if (owner == (address)p) return p;
4283    }
4284  }
4285  // Cannot assert on lack of success here since this function may be
4286  // used by code that is trying to report useful problem information
4287  // like deadlock detection.
4288  if (UseHeavyMonitors) return NULL;
4289
4290  //
4291  // If we didn't find a matching Java thread and we didn't force use of
4292  // heavyweight monitors, then the owner is the stack address of the
4293  // Lock Word in the owning Java thread's stack.
4294  //
4295  JavaThread* the_owner = NULL;
4296  {
4297    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4298    ALL_JAVA_THREADS(q) {
4299      if (q->is_lock_owned(owner)) {
4300        the_owner = q;
4301        break;
4302      }
4303    }
4304  }
4305  // cannot assert on lack of success here; see above comment
4306  return the_owner;
4307}
4308
4309// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4310void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4311  char buf[32];
4312  st->print_cr(os::local_time_string(buf, sizeof(buf)));
4313
4314  st->print_cr("Full thread dump %s (%s %s):",
4315                Abstract_VM_Version::vm_name(),
4316                Abstract_VM_Version::vm_release(),
4317                Abstract_VM_Version::vm_info_string()
4318               );
4319  st->cr();
4320
4321#if INCLUDE_ALL_GCS
4322  // Dump concurrent locks
4323  ConcurrentLocksDump concurrent_locks;
4324  if (print_concurrent_locks) {
4325    concurrent_locks.dump_at_safepoint();
4326  }
4327#endif // INCLUDE_ALL_GCS
4328
4329  ALL_JAVA_THREADS(p) {
4330    ResourceMark rm;
4331    p->print_on(st);
4332    if (print_stacks) {
4333      if (internal_format) {
4334        p->trace_stack();
4335      } else {
4336        p->print_stack_on(st);
4337      }
4338    }
4339    st->cr();
4340#if INCLUDE_ALL_GCS
4341    if (print_concurrent_locks) {
4342      concurrent_locks.print_locks_on(p, st);
4343    }
4344#endif // INCLUDE_ALL_GCS
4345  }
4346
4347  VMThread::vm_thread()->print_on(st);
4348  st->cr();
4349  Universe::heap()->print_gc_threads_on(st);
4350  WatcherThread* wt = WatcherThread::watcher_thread();
4351  if (wt != NULL) {
4352    wt->print_on(st);
4353    st->cr();
4354  }
4355  CompileBroker::print_compiler_threads_on(st);
4356  st->flush();
4357}
4358
4359// Threads::print_on_error() is called by fatal error handler. It's possible
4360// that VM is not at safepoint and/or current thread is inside signal handler.
4361// Don't print stack trace, as the stack may not be walkable. Don't allocate
4362// memory (even in resource area), it might deadlock the error handler.
4363void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4364  bool found_current = false;
4365  st->print_cr("Java Threads: ( => current thread )");
4366  ALL_JAVA_THREADS(thread) {
4367    bool is_current = (current == thread);
4368    found_current = found_current || is_current;
4369
4370    st->print("%s", is_current ? "=>" : "  ");
4371
4372    st->print(PTR_FORMAT, thread);
4373    st->print(" ");
4374    thread->print_on_error(st, buf, buflen);
4375    st->cr();
4376  }
4377  st->cr();
4378
4379  st->print_cr("Other Threads:");
4380  if (VMThread::vm_thread()) {
4381    bool is_current = (current == VMThread::vm_thread());
4382    found_current = found_current || is_current;
4383    st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4384
4385    st->print(PTR_FORMAT, VMThread::vm_thread());
4386    st->print(" ");
4387    VMThread::vm_thread()->print_on_error(st, buf, buflen);
4388    st->cr();
4389  }
4390  WatcherThread* wt = WatcherThread::watcher_thread();
4391  if (wt != NULL) {
4392    bool is_current = (current == wt);
4393    found_current = found_current || is_current;
4394    st->print("%s", is_current ? "=>" : "  ");
4395
4396    st->print(PTR_FORMAT, wt);
4397    st->print(" ");
4398    wt->print_on_error(st, buf, buflen);
4399    st->cr();
4400  }
4401  if (!found_current) {
4402    st->cr();
4403    st->print("=>" PTR_FORMAT " (exited) ", current);
4404    current->print_on_error(st, buf, buflen);
4405    st->cr();
4406  }
4407}
4408
4409// Internal SpinLock and Mutex
4410// Based on ParkEvent
4411
4412// Ad-hoc mutual exclusion primitives: SpinLock and Mux
4413//
4414// We employ SpinLocks _only for low-contention, fixed-length
4415// short-duration critical sections where we're concerned
4416// about native mutex_t or HotSpot Mutex:: latency.
4417// The mux construct provides a spin-then-block mutual exclusion
4418// mechanism.
4419//
4420// Testing has shown that contention on the ListLock guarding gFreeList
4421// is common.  If we implement ListLock as a simple SpinLock it's common
4422// for the JVM to devolve to yielding with little progress.  This is true
4423// despite the fact that the critical sections protected by ListLock are
4424// extremely short.
4425//
4426// TODO-FIXME: ListLock should be of type SpinLock.
4427// We should make this a 1st-class type, integrated into the lock
4428// hierarchy as leaf-locks.  Critically, the SpinLock structure
4429// should have sufficient padding to avoid false-sharing and excessive
4430// cache-coherency traffic.
4431
4432
4433typedef volatile int SpinLockT ;
4434
4435void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4436  if (Atomic::cmpxchg (1, adr, 0) == 0) {
4437     return ;   // normal fast-path return
4438  }
4439
4440  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4441  TEVENT (SpinAcquire - ctx) ;
4442  int ctr = 0 ;
4443  int Yields = 0 ;
4444  for (;;) {
4445     while (*adr != 0) {
4446        ++ctr ;
4447        if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4448           if (Yields > 5) {
4449             os::naked_short_sleep(1);
4450           } else {
4451             os::NakedYield() ;
4452             ++Yields ;
4453           }
4454        } else {
4455           SpinPause() ;
4456        }
4457     }
4458     if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4459  }
4460}
4461
4462void Thread::SpinRelease (volatile int * adr) {
4463  assert (*adr != 0, "invariant") ;
4464  OrderAccess::fence() ;      // guarantee at least release consistency.
4465  // Roach-motel semantics.
4466  // It's safe if subsequent LDs and STs float "up" into the critical section,
4467  // but prior LDs and STs within the critical section can't be allowed
4468  // to reorder or float past the ST that releases the lock.
4469  *adr = 0 ;
4470}
4471
4472// muxAcquire and muxRelease:
4473//
4474// *  muxAcquire and muxRelease support a single-word lock-word construct.
4475//    The LSB of the word is set IFF the lock is held.
4476//    The remainder of the word points to the head of a singly-linked list
4477//    of threads blocked on the lock.
4478//
4479// *  The current implementation of muxAcquire-muxRelease uses its own
4480//    dedicated Thread._MuxEvent instance.  If we're interested in
4481//    minimizing the peak number of extant ParkEvent instances then
4482//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4483//    as certain invariants were satisfied.  Specifically, care would need
4484//    to be taken with regards to consuming unpark() "permits".
4485//    A safe rule of thumb is that a thread would never call muxAcquire()
4486//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4487//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4488//    consume an unpark() permit intended for monitorenter, for instance.
4489//    One way around this would be to widen the restricted-range semaphore
4490//    implemented in park().  Another alternative would be to provide
4491//    multiple instances of the PlatformEvent() for each thread.  One
4492//    instance would be dedicated to muxAcquire-muxRelease, for instance.
4493//
4494// *  Usage:
4495//    -- Only as leaf locks
4496//    -- for short-term locking only as muxAcquire does not perform
4497//       thread state transitions.
4498//
4499// Alternatives:
4500// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4501//    but with parking or spin-then-park instead of pure spinning.
4502// *  Use Taura-Oyama-Yonenzawa locks.
4503// *  It's possible to construct a 1-0 lock if we encode the lockword as
4504//    (List,LockByte).  Acquire will CAS the full lockword while Release
4505//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4506//    acquiring threads use timers (ParkTimed) to detect and recover from
4507//    the stranding window.  Thread/Node structures must be aligned on 256-byte
4508//    boundaries by using placement-new.
4509// *  Augment MCS with advisory back-link fields maintained with CAS().
4510//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4511//    The validity of the backlinks must be ratified before we trust the value.
4512//    If the backlinks are invalid the exiting thread must back-track through the
4513//    the forward links, which are always trustworthy.
4514// *  Add a successor indication.  The LockWord is currently encoded as
4515//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4516//    to provide the usual futile-wakeup optimization.
4517//    See RTStt for details.
4518// *  Consider schedctl.sc_nopreempt to cover the critical section.
4519//
4520
4521
4522typedef volatile intptr_t MutexT ;      // Mux Lock-word
4523enum MuxBits { LOCKBIT = 1 } ;
4524
4525void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4526  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4527  if (w == 0) return ;
4528  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4529     return ;
4530  }
4531
4532  TEVENT (muxAcquire - Contention) ;
4533  ParkEvent * const Self = Thread::current()->_MuxEvent ;
4534  assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4535  for (;;) {
4536     int its = (os::is_MP() ? 100 : 0) + 1 ;
4537
4538     // Optional spin phase: spin-then-park strategy
4539     while (--its >= 0) {
4540       w = *Lock ;
4541       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4542          return ;
4543       }
4544     }
4545
4546     Self->reset() ;
4547     Self->OnList = intptr_t(Lock) ;
4548     // The following fence() isn't _strictly necessary as the subsequent
4549     // CAS() both serializes execution and ratifies the fetched *Lock value.
4550     OrderAccess::fence();
4551     for (;;) {
4552        w = *Lock ;
4553        if ((w & LOCKBIT) == 0) {
4554            if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4555                Self->OnList = 0 ;   // hygiene - allows stronger asserts
4556                return ;
4557            }
4558            continue ;      // Interference -- *Lock changed -- Just retry
4559        }
4560        assert (w & LOCKBIT, "invariant") ;
4561        Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4562        if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4563     }
4564
4565     while (Self->OnList != 0) {
4566        Self->park() ;
4567     }
4568  }
4569}
4570
4571void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4572  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4573  if (w == 0) return ;
4574  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4575    return ;
4576  }
4577
4578  TEVENT (muxAcquire - Contention) ;
4579  ParkEvent * ReleaseAfter = NULL ;
4580  if (ev == NULL) {
4581    ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4582  }
4583  assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4584  for (;;) {
4585    guarantee (ev->OnList == 0, "invariant") ;
4586    int its = (os::is_MP() ? 100 : 0) + 1 ;
4587
4588    // Optional spin phase: spin-then-park strategy
4589    while (--its >= 0) {
4590      w = *Lock ;
4591      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4592        if (ReleaseAfter != NULL) {
4593          ParkEvent::Release (ReleaseAfter) ;
4594        }
4595        return ;
4596      }
4597    }
4598
4599    ev->reset() ;
4600    ev->OnList = intptr_t(Lock) ;
4601    // The following fence() isn't _strictly necessary as the subsequent
4602    // CAS() both serializes execution and ratifies the fetched *Lock value.
4603    OrderAccess::fence();
4604    for (;;) {
4605      w = *Lock ;
4606      if ((w & LOCKBIT) == 0) {
4607        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4608          ev->OnList = 0 ;
4609          // We call ::Release while holding the outer lock, thus
4610          // artificially lengthening the critical section.
4611          // Consider deferring the ::Release() until the subsequent unlock(),
4612          // after we've dropped the outer lock.
4613          if (ReleaseAfter != NULL) {
4614            ParkEvent::Release (ReleaseAfter) ;
4615          }
4616          return ;
4617        }
4618        continue ;      // Interference -- *Lock changed -- Just retry
4619      }
4620      assert (w & LOCKBIT, "invariant") ;
4621      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4622      if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4623    }
4624
4625    while (ev->OnList != 0) {
4626      ev->park() ;
4627    }
4628  }
4629}
4630
4631// Release() must extract a successor from the list and then wake that thread.
4632// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4633// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4634// Release() would :
4635// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4636// (B) Extract a successor from the private list "in-hand"
4637// (C) attempt to CAS() the residual back into *Lock over null.
4638//     If there were any newly arrived threads and the CAS() would fail.
4639//     In that case Release() would detach the RATs, re-merge the list in-hand
4640//     with the RATs and repeat as needed.  Alternately, Release() might
4641//     detach and extract a successor, but then pass the residual list to the wakee.
4642//     The wakee would be responsible for reattaching and remerging before it
4643//     competed for the lock.
4644//
4645// Both "pop" and DMR are immune from ABA corruption -- there can be
4646// multiple concurrent pushers, but only one popper or detacher.
4647// This implementation pops from the head of the list.  This is unfair,
4648// but tends to provide excellent throughput as hot threads remain hot.
4649// (We wake recently run threads first).
4650
4651void Thread::muxRelease (volatile intptr_t * Lock)  {
4652  for (;;) {
4653    const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4654    assert (w & LOCKBIT, "invariant") ;
4655    if (w == LOCKBIT) return ;
4656    ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4657    assert (List != NULL, "invariant") ;
4658    assert (List->OnList == intptr_t(Lock), "invariant") ;
4659    ParkEvent * nxt = List->ListNext ;
4660
4661    // The following CAS() releases the lock and pops the head element.
4662    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4663      continue ;
4664    }
4665    List->OnList = 0 ;
4666    OrderAccess::fence() ;
4667    List->unpark () ;
4668    return ;
4669  }
4670}
4671
4672
4673void Threads::verify() {
4674  ALL_JAVA_THREADS(p) {
4675    p->verify();
4676  }
4677  VMThread* thread = VMThread::vm_thread();
4678  if (thread != NULL) thread->verify();
4679}
4680