thread.cpp revision 4802:f2110083203d
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/scopeDesc.hpp"
31#include "compiler/compileBroker.hpp"
32#include "interpreter/interpreter.hpp"
33#include "interpreter/linkResolver.hpp"
34#include "interpreter/oopMapCache.hpp"
35#include "jvmtifiles/jvmtiEnv.hpp"
36#include "memory/gcLocker.inline.hpp"
37#include "memory/metaspaceShared.hpp"
38#include "memory/oopFactory.hpp"
39#include "memory/universe.inline.hpp"
40#include "oops/instanceKlass.hpp"
41#include "oops/objArrayOop.hpp"
42#include "oops/oop.inline.hpp"
43#include "oops/symbol.hpp"
44#include "prims/jvm_misc.hpp"
45#include "prims/jvmtiExport.hpp"
46#include "prims/jvmtiThreadState.hpp"
47#include "prims/privilegedStack.hpp"
48#include "runtime/aprofiler.hpp"
49#include "runtime/arguments.hpp"
50#include "runtime/biasedLocking.hpp"
51#include "runtime/deoptimization.hpp"
52#include "runtime/fprofiler.hpp"
53#include "runtime/frame.inline.hpp"
54#include "runtime/init.hpp"
55#include "runtime/interfaceSupport.hpp"
56#include "runtime/java.hpp"
57#include "runtime/javaCalls.hpp"
58#include "runtime/jniPeriodicChecker.hpp"
59#include "runtime/memprofiler.hpp"
60#include "runtime/mutexLocker.hpp"
61#include "runtime/objectMonitor.hpp"
62#include "runtime/osThread.hpp"
63#include "runtime/safepoint.hpp"
64#include "runtime/sharedRuntime.hpp"
65#include "runtime/statSampler.hpp"
66#include "runtime/stubRoutines.hpp"
67#include "runtime/task.hpp"
68#include "runtime/thread.inline.hpp"
69#include "runtime/threadCritical.hpp"
70#include "runtime/threadLocalStorage.hpp"
71#include "runtime/vframe.hpp"
72#include "runtime/vframeArray.hpp"
73#include "runtime/vframe_hp.hpp"
74#include "runtime/vmThread.hpp"
75#include "runtime/vm_operations.hpp"
76#include "services/attachListener.hpp"
77#include "services/management.hpp"
78#include "services/memTracker.hpp"
79#include "services/threadService.hpp"
80#include "trace/tracing.hpp"
81#include "trace/traceMacros.hpp"
82#include "utilities/defaultStream.hpp"
83#include "utilities/dtrace.hpp"
84#include "utilities/events.hpp"
85#include "utilities/preserveException.hpp"
86#include "utilities/macros.hpp"
87#ifdef TARGET_OS_FAMILY_linux
88# include "os_linux.inline.hpp"
89#endif
90#ifdef TARGET_OS_FAMILY_solaris
91# include "os_solaris.inline.hpp"
92#endif
93#ifdef TARGET_OS_FAMILY_windows
94# include "os_windows.inline.hpp"
95#endif
96#ifdef TARGET_OS_FAMILY_bsd
97# include "os_bsd.inline.hpp"
98#endif
99#if INCLUDE_ALL_GCS
100#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
101#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
102#include "gc_implementation/parallelScavenge/pcTasks.hpp"
103#endif // INCLUDE_ALL_GCS
104#ifdef COMPILER1
105#include "c1/c1_Compiler.hpp"
106#endif
107#ifdef COMPILER2
108#include "opto/c2compiler.hpp"
109#include "opto/idealGraphPrinter.hpp"
110#endif
111
112#ifdef DTRACE_ENABLED
113
114// Only bother with this argument setup if dtrace is available
115
116#ifndef USDT2
117HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
118HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
119HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
120  intptr_t, intptr_t, bool);
121HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
122  intptr_t, intptr_t, bool);
123
124#define DTRACE_THREAD_PROBE(probe, javathread)                             \
125  {                                                                        \
126    ResourceMark rm(this);                                                 \
127    int len = 0;                                                           \
128    const char* name = (javathread)->get_thread_name();                    \
129    len = strlen(name);                                                    \
130    HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
131      name, len,                                                           \
132      java_lang_Thread::thread_id((javathread)->threadObj()),              \
133      (javathread)->osthread()->thread_id(),                               \
134      java_lang_Thread::is_daemon((javathread)->threadObj()));             \
135  }
136
137#else /* USDT2 */
138
139#define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
140#define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
141
142#define DTRACE_THREAD_PROBE(probe, javathread)                             \
143  {                                                                        \
144    ResourceMark rm(this);                                                 \
145    int len = 0;                                                           \
146    const char* name = (javathread)->get_thread_name();                    \
147    len = strlen(name);                                                    \
148    HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
149      (char *) name, len,                                                           \
150      java_lang_Thread::thread_id((javathread)->threadObj()),              \
151      (uintptr_t) (javathread)->osthread()->thread_id(),                               \
152      java_lang_Thread::is_daemon((javathread)->threadObj()));             \
153  }
154
155#endif /* USDT2 */
156
157#else //  ndef DTRACE_ENABLED
158
159#define DTRACE_THREAD_PROBE(probe, javathread)
160
161#endif // ndef DTRACE_ENABLED
162
163
164// Class hierarchy
165// - Thread
166//   - VMThread
167//   - WatcherThread
168//   - ConcurrentMarkSweepThread
169//   - JavaThread
170//     - CompilerThread
171
172// ======= Thread ========
173// Support for forcing alignment of thread objects for biased locking
174void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
175  if (UseBiasedLocking) {
176    const int alignment = markOopDesc::biased_lock_alignment;
177    size_t aligned_size = size + (alignment - sizeof(intptr_t));
178    void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
179                                          : AllocateHeap(aligned_size, flags, CURRENT_PC,
180                                              AllocFailStrategy::RETURN_NULL);
181    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
182    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
183           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
184           "JavaThread alignment code overflowed allocated storage");
185    if (TraceBiasedLocking) {
186      if (aligned_addr != real_malloc_addr)
187        tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
188                      real_malloc_addr, aligned_addr);
189    }
190    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
191    return aligned_addr;
192  } else {
193    return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
194                       : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
195  }
196}
197
198void Thread::operator delete(void* p) {
199  if (UseBiasedLocking) {
200    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
201    FreeHeap(real_malloc_addr, mtThread);
202  } else {
203    FreeHeap(p, mtThread);
204  }
205}
206
207
208// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
209// JavaThread
210
211
212Thread::Thread() {
213  // stack and get_thread
214  set_stack_base(NULL);
215  set_stack_size(0);
216  set_self_raw_id(0);
217  set_lgrp_id(-1);
218
219  // allocated data structures
220  set_osthread(NULL);
221  set_resource_area(new (mtThread)ResourceArea());
222  set_handle_area(new (mtThread) HandleArea(NULL));
223  set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(300, true));
224  set_active_handles(NULL);
225  set_free_handle_block(NULL);
226  set_last_handle_mark(NULL);
227
228  // This initial value ==> never claimed.
229  _oops_do_parity = 0;
230
231  // the handle mark links itself to last_handle_mark
232  new HandleMark(this);
233
234  // plain initialization
235  debug_only(_owned_locks = NULL;)
236  debug_only(_allow_allocation_count = 0;)
237  NOT_PRODUCT(_allow_safepoint_count = 0;)
238  NOT_PRODUCT(_skip_gcalot = false;)
239  CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
240  _jvmti_env_iteration_count = 0;
241  set_allocated_bytes(0);
242  _vm_operation_started_count = 0;
243  _vm_operation_completed_count = 0;
244  _current_pending_monitor = NULL;
245  _current_pending_monitor_is_from_java = true;
246  _current_waiting_monitor = NULL;
247  _num_nested_signal = 0;
248  omFreeList = NULL ;
249  omFreeCount = 0 ;
250  omFreeProvision = 32 ;
251  omInUseList = NULL ;
252  omInUseCount = 0 ;
253
254#ifdef ASSERT
255  _visited_for_critical_count = false;
256#endif
257
258  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
259  _suspend_flags = 0;
260
261  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
262  _hashStateX = os::random() ;
263  _hashStateY = 842502087 ;
264  _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
265  _hashStateW = 273326509 ;
266
267  _OnTrap   = 0 ;
268  _schedctl = NULL ;
269  _Stalled  = 0 ;
270  _TypeTag  = 0x2BAD ;
271
272  // Many of the following fields are effectively final - immutable
273  // Note that nascent threads can't use the Native Monitor-Mutex
274  // construct until the _MutexEvent is initialized ...
275  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
276  // we might instead use a stack of ParkEvents that we could provision on-demand.
277  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
278  // and ::Release()
279  _ParkEvent   = ParkEvent::Allocate (this) ;
280  _SleepEvent  = ParkEvent::Allocate (this) ;
281  _MutexEvent  = ParkEvent::Allocate (this) ;
282  _MuxEvent    = ParkEvent::Allocate (this) ;
283
284#ifdef CHECK_UNHANDLED_OOPS
285  if (CheckUnhandledOops) {
286    _unhandled_oops = new UnhandledOops(this);
287  }
288#endif // CHECK_UNHANDLED_OOPS
289#ifdef ASSERT
290  if (UseBiasedLocking) {
291    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
292    assert(this == _real_malloc_address ||
293           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
294           "bug in forced alignment of thread objects");
295  }
296#endif /* ASSERT */
297}
298
299void Thread::initialize_thread_local_storage() {
300  // Note: Make sure this method only calls
301  // non-blocking operations. Otherwise, it might not work
302  // with the thread-startup/safepoint interaction.
303
304  // During Java thread startup, safepoint code should allow this
305  // method to complete because it may need to allocate memory to
306  // store information for the new thread.
307
308  // initialize structure dependent on thread local storage
309  ThreadLocalStorage::set_thread(this);
310}
311
312void Thread::record_stack_base_and_size() {
313  set_stack_base(os::current_stack_base());
314  set_stack_size(os::current_stack_size());
315  // CR 7190089: on Solaris, primordial thread's stack is adjusted
316  // in initialize_thread(). Without the adjustment, stack size is
317  // incorrect if stack is set to unlimited (ulimit -s unlimited).
318  // So far, only Solaris has real implementation of initialize_thread().
319  //
320  // set up any platform-specific state.
321  os::initialize_thread(this);
322
323#if INCLUDE_NMT
324  // record thread's native stack, stack grows downward
325  address stack_low_addr = stack_base() - stack_size();
326  MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
327      CURRENT_PC);
328#endif // INCLUDE_NMT
329}
330
331
332Thread::~Thread() {
333  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
334  ObjectSynchronizer::omFlush (this) ;
335
336  // stack_base can be NULL if the thread is never started or exited before
337  // record_stack_base_and_size called. Although, we would like to ensure
338  // that all started threads do call record_stack_base_and_size(), there is
339  // not proper way to enforce that.
340#if INCLUDE_NMT
341  if (_stack_base != NULL) {
342    address low_stack_addr = stack_base() - stack_size();
343    MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
344#ifdef ASSERT
345    set_stack_base(NULL);
346#endif
347  }
348#endif // INCLUDE_NMT
349
350  // deallocate data structures
351  delete resource_area();
352  // since the handle marks are using the handle area, we have to deallocated the root
353  // handle mark before deallocating the thread's handle area,
354  assert(last_handle_mark() != NULL, "check we have an element");
355  delete last_handle_mark();
356  assert(last_handle_mark() == NULL, "check we have reached the end");
357
358  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
359  // We NULL out the fields for good hygiene.
360  ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
361  ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
362  ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
363  ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
364
365  delete handle_area();
366  delete metadata_handles();
367
368  // osthread() can be NULL, if creation of thread failed.
369  if (osthread() != NULL) os::free_thread(osthread());
370
371  delete _SR_lock;
372
373  // clear thread local storage if the Thread is deleting itself
374  if (this == Thread::current()) {
375    ThreadLocalStorage::set_thread(NULL);
376  } else {
377    // In the case where we're not the current thread, invalidate all the
378    // caches in case some code tries to get the current thread or the
379    // thread that was destroyed, and gets stale information.
380    ThreadLocalStorage::invalidate_all();
381  }
382  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
383}
384
385// NOTE: dummy function for assertion purpose.
386void Thread::run() {
387  ShouldNotReachHere();
388}
389
390#ifdef ASSERT
391// Private method to check for dangling thread pointer
392void check_for_dangling_thread_pointer(Thread *thread) {
393 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
394         "possibility of dangling Thread pointer");
395}
396#endif
397
398
399#ifndef PRODUCT
400// Tracing method for basic thread operations
401void Thread::trace(const char* msg, const Thread* const thread) {
402  if (!TraceThreadEvents) return;
403  ResourceMark rm;
404  ThreadCritical tc;
405  const char *name = "non-Java thread";
406  int prio = -1;
407  if (thread->is_Java_thread()
408      && !thread->is_Compiler_thread()) {
409    // The Threads_lock must be held to get information about
410    // this thread but may not be in some situations when
411    // tracing  thread events.
412    bool release_Threads_lock = false;
413    if (!Threads_lock->owned_by_self()) {
414      Threads_lock->lock();
415      release_Threads_lock = true;
416    }
417    JavaThread* jt = (JavaThread *)thread;
418    name = (char *)jt->get_thread_name();
419    oop thread_oop = jt->threadObj();
420    if (thread_oop != NULL) {
421      prio = java_lang_Thread::priority(thread_oop);
422    }
423    if (release_Threads_lock) {
424      Threads_lock->unlock();
425    }
426  }
427  tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
428}
429#endif
430
431
432ThreadPriority Thread::get_priority(const Thread* const thread) {
433  trace("get priority", thread);
434  ThreadPriority priority;
435  // Can return an error!
436  (void)os::get_priority(thread, priority);
437  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
438  return priority;
439}
440
441void Thread::set_priority(Thread* thread, ThreadPriority priority) {
442  trace("set priority", thread);
443  debug_only(check_for_dangling_thread_pointer(thread);)
444  // Can return an error!
445  (void)os::set_priority(thread, priority);
446}
447
448
449void Thread::start(Thread* thread) {
450  trace("start", thread);
451  // Start is different from resume in that its safety is guaranteed by context or
452  // being called from a Java method synchronized on the Thread object.
453  if (!DisableStartThread) {
454    if (thread->is_Java_thread()) {
455      // Initialize the thread state to RUNNABLE before starting this thread.
456      // Can not set it after the thread started because we do not know the
457      // exact thread state at that time. It could be in MONITOR_WAIT or
458      // in SLEEPING or some other state.
459      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
460                                          java_lang_Thread::RUNNABLE);
461    }
462    os::start_thread(thread);
463  }
464}
465
466// Enqueue a VM_Operation to do the job for us - sometime later
467void Thread::send_async_exception(oop java_thread, oop java_throwable) {
468  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
469  VMThread::execute(vm_stop);
470}
471
472
473//
474// Check if an external suspend request has completed (or has been
475// cancelled). Returns true if the thread is externally suspended and
476// false otherwise.
477//
478// The bits parameter returns information about the code path through
479// the routine. Useful for debugging:
480//
481// set in is_ext_suspend_completed():
482// 0x00000001 - routine was entered
483// 0x00000010 - routine return false at end
484// 0x00000100 - thread exited (return false)
485// 0x00000200 - suspend request cancelled (return false)
486// 0x00000400 - thread suspended (return true)
487// 0x00001000 - thread is in a suspend equivalent state (return true)
488// 0x00002000 - thread is native and walkable (return true)
489// 0x00004000 - thread is native_trans and walkable (needed retry)
490//
491// set in wait_for_ext_suspend_completion():
492// 0x00010000 - routine was entered
493// 0x00020000 - suspend request cancelled before loop (return false)
494// 0x00040000 - thread suspended before loop (return true)
495// 0x00080000 - suspend request cancelled in loop (return false)
496// 0x00100000 - thread suspended in loop (return true)
497// 0x00200000 - suspend not completed during retry loop (return false)
498//
499
500// Helper class for tracing suspend wait debug bits.
501//
502// 0x00000100 indicates that the target thread exited before it could
503// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
504// 0x00080000 each indicate a cancelled suspend request so they don't
505// count as wait failures either.
506#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
507
508class TraceSuspendDebugBits : public StackObj {
509 private:
510  JavaThread * jt;
511  bool         is_wait;
512  bool         called_by_wait;  // meaningful when !is_wait
513  uint32_t *   bits;
514
515 public:
516  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
517                        uint32_t *_bits) {
518    jt             = _jt;
519    is_wait        = _is_wait;
520    called_by_wait = _called_by_wait;
521    bits           = _bits;
522  }
523
524  ~TraceSuspendDebugBits() {
525    if (!is_wait) {
526#if 1
527      // By default, don't trace bits for is_ext_suspend_completed() calls.
528      // That trace is very chatty.
529      return;
530#else
531      if (!called_by_wait) {
532        // If tracing for is_ext_suspend_completed() is enabled, then only
533        // trace calls to it from wait_for_ext_suspend_completion()
534        return;
535      }
536#endif
537    }
538
539    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
540      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
541        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
542        ResourceMark rm;
543
544        tty->print_cr(
545            "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
546            jt->get_thread_name(), *bits);
547
548        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
549      }
550    }
551  }
552};
553#undef DEBUG_FALSE_BITS
554
555
556bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
557  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
558
559  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
560  bool do_trans_retry;           // flag to force the retry
561
562  *bits |= 0x00000001;
563
564  do {
565    do_trans_retry = false;
566
567    if (is_exiting()) {
568      // Thread is in the process of exiting. This is always checked
569      // first to reduce the risk of dereferencing a freed JavaThread.
570      *bits |= 0x00000100;
571      return false;
572    }
573
574    if (!is_external_suspend()) {
575      // Suspend request is cancelled. This is always checked before
576      // is_ext_suspended() to reduce the risk of a rogue resume
577      // confusing the thread that made the suspend request.
578      *bits |= 0x00000200;
579      return false;
580    }
581
582    if (is_ext_suspended()) {
583      // thread is suspended
584      *bits |= 0x00000400;
585      return true;
586    }
587
588    // Now that we no longer do hard suspends of threads running
589    // native code, the target thread can be changing thread state
590    // while we are in this routine:
591    //
592    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
593    //
594    // We save a copy of the thread state as observed at this moment
595    // and make our decision about suspend completeness based on the
596    // copy. This closes the race where the thread state is seen as
597    // _thread_in_native_trans in the if-thread_blocked check, but is
598    // seen as _thread_blocked in if-thread_in_native_trans check.
599    JavaThreadState save_state = thread_state();
600
601    if (save_state == _thread_blocked && is_suspend_equivalent()) {
602      // If the thread's state is _thread_blocked and this blocking
603      // condition is known to be equivalent to a suspend, then we can
604      // consider the thread to be externally suspended. This means that
605      // the code that sets _thread_blocked has been modified to do
606      // self-suspension if the blocking condition releases. We also
607      // used to check for CONDVAR_WAIT here, but that is now covered by
608      // the _thread_blocked with self-suspension check.
609      //
610      // Return true since we wouldn't be here unless there was still an
611      // external suspend request.
612      *bits |= 0x00001000;
613      return true;
614    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
615      // Threads running native code will self-suspend on native==>VM/Java
616      // transitions. If its stack is walkable (should always be the case
617      // unless this function is called before the actual java_suspend()
618      // call), then the wait is done.
619      *bits |= 0x00002000;
620      return true;
621    } else if (!called_by_wait && !did_trans_retry &&
622               save_state == _thread_in_native_trans &&
623               frame_anchor()->walkable()) {
624      // The thread is transitioning from thread_in_native to another
625      // thread state. check_safepoint_and_suspend_for_native_trans()
626      // will force the thread to self-suspend. If it hasn't gotten
627      // there yet we may have caught the thread in-between the native
628      // code check above and the self-suspend. Lucky us. If we were
629      // called by wait_for_ext_suspend_completion(), then it
630      // will be doing the retries so we don't have to.
631      //
632      // Since we use the saved thread state in the if-statement above,
633      // there is a chance that the thread has already transitioned to
634      // _thread_blocked by the time we get here. In that case, we will
635      // make a single unnecessary pass through the logic below. This
636      // doesn't hurt anything since we still do the trans retry.
637
638      *bits |= 0x00004000;
639
640      // Once the thread leaves thread_in_native_trans for another
641      // thread state, we break out of this retry loop. We shouldn't
642      // need this flag to prevent us from getting back here, but
643      // sometimes paranoia is good.
644      did_trans_retry = true;
645
646      // We wait for the thread to transition to a more usable state.
647      for (int i = 1; i <= SuspendRetryCount; i++) {
648        // We used to do an "os::yield_all(i)" call here with the intention
649        // that yielding would increase on each retry. However, the parameter
650        // is ignored on Linux which means the yield didn't scale up. Waiting
651        // on the SR_lock below provides a much more predictable scale up for
652        // the delay. It also provides a simple/direct point to check for any
653        // safepoint requests from the VMThread
654
655        // temporarily drops SR_lock while doing wait with safepoint check
656        // (if we're a JavaThread - the WatcherThread can also call this)
657        // and increase delay with each retry
658        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
659
660        // check the actual thread state instead of what we saved above
661        if (thread_state() != _thread_in_native_trans) {
662          // the thread has transitioned to another thread state so
663          // try all the checks (except this one) one more time.
664          do_trans_retry = true;
665          break;
666        }
667      } // end retry loop
668
669
670    }
671  } while (do_trans_retry);
672
673  *bits |= 0x00000010;
674  return false;
675}
676
677//
678// Wait for an external suspend request to complete (or be cancelled).
679// Returns true if the thread is externally suspended and false otherwise.
680//
681bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
682       uint32_t *bits) {
683  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
684                             false /* !called_by_wait */, bits);
685
686  // local flag copies to minimize SR_lock hold time
687  bool is_suspended;
688  bool pending;
689  uint32_t reset_bits;
690
691  // set a marker so is_ext_suspend_completed() knows we are the caller
692  *bits |= 0x00010000;
693
694  // We use reset_bits to reinitialize the bits value at the top of
695  // each retry loop. This allows the caller to make use of any
696  // unused bits for their own marking purposes.
697  reset_bits = *bits;
698
699  {
700    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
701    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
702                                            delay, bits);
703    pending = is_external_suspend();
704  }
705  // must release SR_lock to allow suspension to complete
706
707  if (!pending) {
708    // A cancelled suspend request is the only false return from
709    // is_ext_suspend_completed() that keeps us from entering the
710    // retry loop.
711    *bits |= 0x00020000;
712    return false;
713  }
714
715  if (is_suspended) {
716    *bits |= 0x00040000;
717    return true;
718  }
719
720  for (int i = 1; i <= retries; i++) {
721    *bits = reset_bits;  // reinit to only track last retry
722
723    // We used to do an "os::yield_all(i)" call here with the intention
724    // that yielding would increase on each retry. However, the parameter
725    // is ignored on Linux which means the yield didn't scale up. Waiting
726    // on the SR_lock below provides a much more predictable scale up for
727    // the delay. It also provides a simple/direct point to check for any
728    // safepoint requests from the VMThread
729
730    {
731      MutexLocker ml(SR_lock());
732      // wait with safepoint check (if we're a JavaThread - the WatcherThread
733      // can also call this)  and increase delay with each retry
734      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
735
736      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
737                                              delay, bits);
738
739      // It is possible for the external suspend request to be cancelled
740      // (by a resume) before the actual suspend operation is completed.
741      // Refresh our local copy to see if we still need to wait.
742      pending = is_external_suspend();
743    }
744
745    if (!pending) {
746      // A cancelled suspend request is the only false return from
747      // is_ext_suspend_completed() that keeps us from staying in the
748      // retry loop.
749      *bits |= 0x00080000;
750      return false;
751    }
752
753    if (is_suspended) {
754      *bits |= 0x00100000;
755      return true;
756    }
757  } // end retry loop
758
759  // thread did not suspend after all our retries
760  *bits |= 0x00200000;
761  return false;
762}
763
764#ifndef PRODUCT
765void JavaThread::record_jump(address target, address instr, const char* file, int line) {
766
767  // This should not need to be atomic as the only way for simultaneous
768  // updates is via interrupts. Even then this should be rare or non-existant
769  // and we don't care that much anyway.
770
771  int index = _jmp_ring_index;
772  _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
773  _jmp_ring[index]._target = (intptr_t) target;
774  _jmp_ring[index]._instruction = (intptr_t) instr;
775  _jmp_ring[index]._file = file;
776  _jmp_ring[index]._line = line;
777}
778#endif /* PRODUCT */
779
780// Called by flat profiler
781// Callers have already called wait_for_ext_suspend_completion
782// The assertion for that is currently too complex to put here:
783bool JavaThread::profile_last_Java_frame(frame* _fr) {
784  bool gotframe = false;
785  // self suspension saves needed state.
786  if (has_last_Java_frame() && _anchor.walkable()) {
787     *_fr = pd_last_frame();
788     gotframe = true;
789  }
790  return gotframe;
791}
792
793void Thread::interrupt(Thread* thread) {
794  trace("interrupt", thread);
795  debug_only(check_for_dangling_thread_pointer(thread);)
796  os::interrupt(thread);
797}
798
799bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
800  trace("is_interrupted", thread);
801  debug_only(check_for_dangling_thread_pointer(thread);)
802  // Note:  If clear_interrupted==false, this simply fetches and
803  // returns the value of the field osthread()->interrupted().
804  return os::is_interrupted(thread, clear_interrupted);
805}
806
807
808// GC Support
809bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
810  jint thread_parity = _oops_do_parity;
811  if (thread_parity != strong_roots_parity) {
812    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
813    if (res == thread_parity) {
814      return true;
815    } else {
816      guarantee(res == strong_roots_parity, "Or else what?");
817      assert(SharedHeap::heap()->workers()->active_workers() > 0,
818         "Should only fail when parallel.");
819      return false;
820    }
821  }
822  assert(SharedHeap::heap()->workers()->active_workers() > 0,
823         "Should only fail when parallel.");
824  return false;
825}
826
827void Thread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
828  active_handles()->oops_do(f);
829  // Do oop for ThreadShadow
830  f->do_oop((oop*)&_pending_exception);
831  handle_area()->oops_do(f);
832}
833
834void Thread::nmethods_do(CodeBlobClosure* cf) {
835  // no nmethods in a generic thread...
836}
837
838void Thread::metadata_do(void f(Metadata*)) {
839  if (metadata_handles() != NULL) {
840    for (int i = 0; i< metadata_handles()->length(); i++) {
841      f(metadata_handles()->at(i));
842    }
843  }
844}
845
846void Thread::print_on(outputStream* st) const {
847  // get_priority assumes osthread initialized
848  if (osthread() != NULL) {
849    int os_prio;
850    if (os::get_native_priority(this, &os_prio) == OS_OK) {
851      st->print("os_prio=%d ", os_prio);
852    }
853    st->print("tid=" INTPTR_FORMAT " ", this);
854    osthread()->print_on(st);
855  }
856  debug_only(if (WizardMode) print_owned_locks_on(st);)
857}
858
859// Thread::print_on_error() is called by fatal error handler. Don't use
860// any lock or allocate memory.
861void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
862  if      (is_VM_thread())                  st->print("VMThread");
863  else if (is_Compiler_thread())            st->print("CompilerThread");
864  else if (is_Java_thread())                st->print("JavaThread");
865  else if (is_GC_task_thread())             st->print("GCTaskThread");
866  else if (is_Watcher_thread())             st->print("WatcherThread");
867  else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
868  else st->print("Thread");
869
870  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
871            _stack_base - _stack_size, _stack_base);
872
873  if (osthread()) {
874    st->print(" [id=%d]", osthread()->thread_id());
875  }
876}
877
878#ifdef ASSERT
879void Thread::print_owned_locks_on(outputStream* st) const {
880  Monitor *cur = _owned_locks;
881  if (cur == NULL) {
882    st->print(" (no locks) ");
883  } else {
884    st->print_cr(" Locks owned:");
885    while(cur) {
886      cur->print_on(st);
887      cur = cur->next();
888    }
889  }
890}
891
892static int ref_use_count  = 0;
893
894bool Thread::owns_locks_but_compiled_lock() const {
895  for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
896    if (cur != Compile_lock) return true;
897  }
898  return false;
899}
900
901
902#endif
903
904#ifndef PRODUCT
905
906// The flag: potential_vm_operation notifies if this particular safepoint state could potential
907// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
908// no threads which allow_vm_block's are held
909void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
910    // Check if current thread is allowed to block at a safepoint
911    if (!(_allow_safepoint_count == 0))
912      fatal("Possible safepoint reached by thread that does not allow it");
913    if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
914      fatal("LEAF method calling lock?");
915    }
916
917#ifdef ASSERT
918    if (potential_vm_operation && is_Java_thread()
919        && !Universe::is_bootstrapping()) {
920      // Make sure we do not hold any locks that the VM thread also uses.
921      // This could potentially lead to deadlocks
922      for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
923        // Threads_lock is special, since the safepoint synchronization will not start before this is
924        // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
925        // since it is used to transfer control between JavaThreads and the VMThread
926        // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
927        if ( (cur->allow_vm_block() &&
928              cur != Threads_lock &&
929              cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
930              cur != VMOperationRequest_lock &&
931              cur != VMOperationQueue_lock) ||
932              cur->rank() == Mutex::special) {
933          warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
934        }
935      }
936    }
937
938    if (GCALotAtAllSafepoints) {
939      // We could enter a safepoint here and thus have a gc
940      InterfaceSupport::check_gc_alot();
941    }
942#endif
943}
944#endif
945
946bool Thread::is_in_stack(address adr) const {
947  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
948  address end = os::current_stack_pointer();
949  // Allow non Java threads to call this without stack_base
950  if (_stack_base == NULL) return true;
951  if (stack_base() >= adr && adr >= end) return true;
952
953  return false;
954}
955
956
957// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
958// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
959// used for compilation in the future. If that change is made, the need for these methods
960// should be revisited, and they should be removed if possible.
961
962bool Thread::is_lock_owned(address adr) const {
963  return on_local_stack(adr);
964}
965
966bool Thread::set_as_starting_thread() {
967 // NOTE: this must be called inside the main thread.
968  return os::create_main_thread((JavaThread*)this);
969}
970
971static void initialize_class(Symbol* class_name, TRAPS) {
972  Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
973  InstanceKlass::cast(klass)->initialize(CHECK);
974}
975
976
977// Creates the initial ThreadGroup
978static Handle create_initial_thread_group(TRAPS) {
979  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
980  instanceKlassHandle klass (THREAD, k);
981
982  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
983  {
984    JavaValue result(T_VOID);
985    JavaCalls::call_special(&result,
986                            system_instance,
987                            klass,
988                            vmSymbols::object_initializer_name(),
989                            vmSymbols::void_method_signature(),
990                            CHECK_NH);
991  }
992  Universe::set_system_thread_group(system_instance());
993
994  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
995  {
996    JavaValue result(T_VOID);
997    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
998    JavaCalls::call_special(&result,
999                            main_instance,
1000                            klass,
1001                            vmSymbols::object_initializer_name(),
1002                            vmSymbols::threadgroup_string_void_signature(),
1003                            system_instance,
1004                            string,
1005                            CHECK_NH);
1006  }
1007  return main_instance;
1008}
1009
1010// Creates the initial Thread
1011static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
1012  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1013  instanceKlassHandle klass (THREAD, k);
1014  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1015
1016  java_lang_Thread::set_thread(thread_oop(), thread);
1017  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1018  thread->set_threadObj(thread_oop());
1019
1020  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1021
1022  JavaValue result(T_VOID);
1023  JavaCalls::call_special(&result, thread_oop,
1024                                   klass,
1025                                   vmSymbols::object_initializer_name(),
1026                                   vmSymbols::threadgroup_string_void_signature(),
1027                                   thread_group,
1028                                   string,
1029                                   CHECK_NULL);
1030  return thread_oop();
1031}
1032
1033static void call_initializeSystemClass(TRAPS) {
1034  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1035  instanceKlassHandle klass (THREAD, k);
1036
1037  JavaValue result(T_VOID);
1038  JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1039                                         vmSymbols::void_method_signature(), CHECK);
1040}
1041
1042char java_runtime_name[128] = "";
1043char java_runtime_version[128] = "";
1044
1045// extract the JRE name from sun.misc.Version.java_runtime_name
1046static const char* get_java_runtime_name(TRAPS) {
1047  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1048                                      Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1049  fieldDescriptor fd;
1050  bool found = k != NULL &&
1051               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1052                                                        vmSymbols::string_signature(), &fd);
1053  if (found) {
1054    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1055    if (name_oop == NULL)
1056      return NULL;
1057    const char* name = java_lang_String::as_utf8_string(name_oop,
1058                                                        java_runtime_name,
1059                                                        sizeof(java_runtime_name));
1060    return name;
1061  } else {
1062    return NULL;
1063  }
1064}
1065
1066// extract the JRE version from sun.misc.Version.java_runtime_version
1067static const char* get_java_runtime_version(TRAPS) {
1068  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1069                                      Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1070  fieldDescriptor fd;
1071  bool found = k != NULL &&
1072               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1073                                                        vmSymbols::string_signature(), &fd);
1074  if (found) {
1075    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1076    if (name_oop == NULL)
1077      return NULL;
1078    const char* name = java_lang_String::as_utf8_string(name_oop,
1079                                                        java_runtime_version,
1080                                                        sizeof(java_runtime_version));
1081    return name;
1082  } else {
1083    return NULL;
1084  }
1085}
1086
1087// General purpose hook into Java code, run once when the VM is initialized.
1088// The Java library method itself may be changed independently from the VM.
1089static void call_postVMInitHook(TRAPS) {
1090  Klass* k = SystemDictionary::PostVMInitHook_klass();
1091  instanceKlassHandle klass (THREAD, k);
1092  if (klass.not_null()) {
1093    JavaValue result(T_VOID);
1094    JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1095                                           vmSymbols::void_method_signature(),
1096                                           CHECK);
1097  }
1098}
1099
1100static void reset_vm_info_property(TRAPS) {
1101  // the vm info string
1102  ResourceMark rm(THREAD);
1103  const char *vm_info = VM_Version::vm_info_string();
1104
1105  // java.lang.System class
1106  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1107  instanceKlassHandle klass (THREAD, k);
1108
1109  // setProperty arguments
1110  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1111  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1112
1113  // return value
1114  JavaValue r(T_OBJECT);
1115
1116  // public static String setProperty(String key, String value);
1117  JavaCalls::call_static(&r,
1118                         klass,
1119                         vmSymbols::setProperty_name(),
1120                         vmSymbols::string_string_string_signature(),
1121                         key_str,
1122                         value_str,
1123                         CHECK);
1124}
1125
1126
1127void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1128  assert(thread_group.not_null(), "thread group should be specified");
1129  assert(threadObj() == NULL, "should only create Java thread object once");
1130
1131  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1132  instanceKlassHandle klass (THREAD, k);
1133  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1134
1135  java_lang_Thread::set_thread(thread_oop(), this);
1136  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1137  set_threadObj(thread_oop());
1138
1139  JavaValue result(T_VOID);
1140  if (thread_name != NULL) {
1141    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1142    // Thread gets assigned specified name and null target
1143    JavaCalls::call_special(&result,
1144                            thread_oop,
1145                            klass,
1146                            vmSymbols::object_initializer_name(),
1147                            vmSymbols::threadgroup_string_void_signature(),
1148                            thread_group, // Argument 1
1149                            name,         // Argument 2
1150                            THREAD);
1151  } else {
1152    // Thread gets assigned name "Thread-nnn" and null target
1153    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1154    JavaCalls::call_special(&result,
1155                            thread_oop,
1156                            klass,
1157                            vmSymbols::object_initializer_name(),
1158                            vmSymbols::threadgroup_runnable_void_signature(),
1159                            thread_group, // Argument 1
1160                            Handle(),     // Argument 2
1161                            THREAD);
1162  }
1163
1164
1165  if (daemon) {
1166      java_lang_Thread::set_daemon(thread_oop());
1167  }
1168
1169  if (HAS_PENDING_EXCEPTION) {
1170    return;
1171  }
1172
1173  KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1174  Handle threadObj(this, this->threadObj());
1175
1176  JavaCalls::call_special(&result,
1177                         thread_group,
1178                         group,
1179                         vmSymbols::add_method_name(),
1180                         vmSymbols::thread_void_signature(),
1181                         threadObj,          // Arg 1
1182                         THREAD);
1183
1184
1185}
1186
1187// NamedThread --  non-JavaThread subclasses with multiple
1188// uniquely named instances should derive from this.
1189NamedThread::NamedThread() : Thread() {
1190  _name = NULL;
1191  _processed_thread = NULL;
1192}
1193
1194NamedThread::~NamedThread() {
1195  if (_name != NULL) {
1196    FREE_C_HEAP_ARRAY(char, _name, mtThread);
1197    _name = NULL;
1198  }
1199}
1200
1201void NamedThread::set_name(const char* format, ...) {
1202  guarantee(_name == NULL, "Only get to set name once.");
1203  _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1204  guarantee(_name != NULL, "alloc failure");
1205  va_list ap;
1206  va_start(ap, format);
1207  jio_vsnprintf(_name, max_name_len, format, ap);
1208  va_end(ap);
1209}
1210
1211// ======= WatcherThread ========
1212
1213// The watcher thread exists to simulate timer interrupts.  It should
1214// be replaced by an abstraction over whatever native support for
1215// timer interrupts exists on the platform.
1216
1217WatcherThread* WatcherThread::_watcher_thread   = NULL;
1218bool WatcherThread::_startable = false;
1219volatile bool  WatcherThread::_should_terminate = false;
1220
1221WatcherThread::WatcherThread() : Thread() {
1222  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1223  if (os::create_thread(this, os::watcher_thread)) {
1224    _watcher_thread = this;
1225
1226    // Set the watcher thread to the highest OS priority which should not be
1227    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1228    // is created. The only normal thread using this priority is the reference
1229    // handler thread, which runs for very short intervals only.
1230    // If the VMThread's priority is not lower than the WatcherThread profiling
1231    // will be inaccurate.
1232    os::set_priority(this, MaxPriority);
1233    if (!DisableStartThread) {
1234      os::start_thread(this);
1235    }
1236  }
1237}
1238
1239int WatcherThread::sleep() const {
1240  MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1241
1242  // remaining will be zero if there are no tasks,
1243  // causing the WatcherThread to sleep until a task is
1244  // enrolled
1245  int remaining = PeriodicTask::time_to_wait();
1246  int time_slept = 0;
1247
1248  // we expect this to timeout - we only ever get unparked when
1249  // we should terminate or when a new task has been enrolled
1250  OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1251
1252  jlong time_before_loop = os::javaTimeNanos();
1253
1254  for (;;) {
1255    bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1256    jlong now = os::javaTimeNanos();
1257
1258    if (remaining == 0) {
1259        // if we didn't have any tasks we could have waited for a long time
1260        // consider the time_slept zero and reset time_before_loop
1261        time_slept = 0;
1262        time_before_loop = now;
1263    } else {
1264        // need to recalulate since we might have new tasks in _tasks
1265        time_slept = (int) ((now - time_before_loop) / 1000000);
1266    }
1267
1268    // Change to task list or spurious wakeup of some kind
1269    if (timedout || _should_terminate) {
1270        break;
1271    }
1272
1273    remaining = PeriodicTask::time_to_wait();
1274    if (remaining == 0) {
1275        // Last task was just disenrolled so loop around and wait until
1276        // another task gets enrolled
1277        continue;
1278    }
1279
1280    remaining -= time_slept;
1281    if (remaining <= 0)
1282      break;
1283  }
1284
1285  return time_slept;
1286}
1287
1288void WatcherThread::run() {
1289  assert(this == watcher_thread(), "just checking");
1290
1291  this->record_stack_base_and_size();
1292  this->initialize_thread_local_storage();
1293  this->set_active_handles(JNIHandleBlock::allocate_block());
1294  while(!_should_terminate) {
1295    assert(watcher_thread() == Thread::current(),  "thread consistency check");
1296    assert(watcher_thread() == this,  "thread consistency check");
1297
1298    // Calculate how long it'll be until the next PeriodicTask work
1299    // should be done, and sleep that amount of time.
1300    int time_waited = sleep();
1301
1302    if (is_error_reported()) {
1303      // A fatal error has happened, the error handler(VMError::report_and_die)
1304      // should abort JVM after creating an error log file. However in some
1305      // rare cases, the error handler itself might deadlock. Here we try to
1306      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1307      //
1308      // This code is in WatcherThread because WatcherThread wakes up
1309      // periodically so the fatal error handler doesn't need to do anything;
1310      // also because the WatcherThread is less likely to crash than other
1311      // threads.
1312
1313      for (;;) {
1314        if (!ShowMessageBoxOnError
1315         && (OnError == NULL || OnError[0] == '\0')
1316         && Arguments::abort_hook() == NULL) {
1317             os::sleep(this, 2 * 60 * 1000, false);
1318             fdStream err(defaultStream::output_fd());
1319             err.print_raw_cr("# [ timer expired, abort... ]");
1320             // skip atexit/vm_exit/vm_abort hooks
1321             os::die();
1322        }
1323
1324        // Wake up 5 seconds later, the fatal handler may reset OnError or
1325        // ShowMessageBoxOnError when it is ready to abort.
1326        os::sleep(this, 5 * 1000, false);
1327      }
1328    }
1329
1330    PeriodicTask::real_time_tick(time_waited);
1331  }
1332
1333  // Signal that it is terminated
1334  {
1335    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1336    _watcher_thread = NULL;
1337    Terminator_lock->notify();
1338  }
1339
1340  // Thread destructor usually does this..
1341  ThreadLocalStorage::set_thread(NULL);
1342}
1343
1344void WatcherThread::start() {
1345  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1346
1347  if (watcher_thread() == NULL && _startable) {
1348    _should_terminate = false;
1349    // Create the single instance of WatcherThread
1350    new WatcherThread();
1351  }
1352}
1353
1354void WatcherThread::make_startable() {
1355  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1356  _startable = true;
1357}
1358
1359void WatcherThread::stop() {
1360  {
1361    MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1362    _should_terminate = true;
1363    OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1364
1365    WatcherThread* watcher = watcher_thread();
1366    if (watcher != NULL)
1367      watcher->unpark();
1368  }
1369
1370  // it is ok to take late safepoints here, if needed
1371  MutexLocker mu(Terminator_lock);
1372
1373  while(watcher_thread() != NULL) {
1374    // This wait should make safepoint checks, wait without a timeout,
1375    // and wait as a suspend-equivalent condition.
1376    //
1377    // Note: If the FlatProfiler is running, then this thread is waiting
1378    // for the WatcherThread to terminate and the WatcherThread, via the
1379    // FlatProfiler task, is waiting for the external suspend request on
1380    // this thread to complete. wait_for_ext_suspend_completion() will
1381    // eventually timeout, but that takes time. Making this wait a
1382    // suspend-equivalent condition solves that timeout problem.
1383    //
1384    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1385                          Mutex::_as_suspend_equivalent_flag);
1386  }
1387}
1388
1389void WatcherThread::unpark() {
1390  MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1391  PeriodicTask_lock->notify();
1392}
1393
1394void WatcherThread::print_on(outputStream* st) const {
1395  st->print("\"%s\" ", name());
1396  Thread::print_on(st);
1397  st->cr();
1398}
1399
1400// ======= JavaThread ========
1401
1402// A JavaThread is a normal Java thread
1403
1404void JavaThread::initialize() {
1405  // Initialize fields
1406
1407  // Set the claimed par_id to -1 (ie not claiming any par_ids)
1408  set_claimed_par_id(-1);
1409
1410  set_saved_exception_pc(NULL);
1411  set_threadObj(NULL);
1412  _anchor.clear();
1413  set_entry_point(NULL);
1414  set_jni_functions(jni_functions());
1415  set_callee_target(NULL);
1416  set_vm_result(NULL);
1417  set_vm_result_2(NULL);
1418  set_vframe_array_head(NULL);
1419  set_vframe_array_last(NULL);
1420  set_deferred_locals(NULL);
1421  set_deopt_mark(NULL);
1422  set_deopt_nmethod(NULL);
1423  clear_must_deopt_id();
1424  set_monitor_chunks(NULL);
1425  set_next(NULL);
1426  set_thread_state(_thread_new);
1427#if INCLUDE_NMT
1428  set_recorder(NULL);
1429#endif
1430  _terminated = _not_terminated;
1431  _privileged_stack_top = NULL;
1432  _array_for_gc = NULL;
1433  _suspend_equivalent = false;
1434  _in_deopt_handler = 0;
1435  _doing_unsafe_access = false;
1436  _stack_guard_state = stack_guard_unused;
1437  _exception_oop = NULL;
1438  _exception_pc  = 0;
1439  _exception_handler_pc = 0;
1440  _is_method_handle_return = 0;
1441  _jvmti_thread_state= NULL;
1442  _should_post_on_exceptions_flag = JNI_FALSE;
1443  _jvmti_get_loaded_classes_closure = NULL;
1444  _interp_only_mode    = 0;
1445  _special_runtime_exit_condition = _no_async_condition;
1446  _pending_async_exception = NULL;
1447  _is_compiling = false;
1448  _thread_stat = NULL;
1449  _thread_stat = new ThreadStatistics();
1450  _blocked_on_compilation = false;
1451  _jni_active_critical = 0;
1452  _do_not_unlock_if_synchronized = false;
1453  _cached_monitor_info = NULL;
1454  _parker = Parker::Allocate(this) ;
1455
1456#ifndef PRODUCT
1457  _jmp_ring_index = 0;
1458  for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1459    record_jump(NULL, NULL, NULL, 0);
1460  }
1461#endif /* PRODUCT */
1462
1463  set_thread_profiler(NULL);
1464  if (FlatProfiler::is_active()) {
1465    // This is where we would decide to either give each thread it's own profiler
1466    // or use one global one from FlatProfiler,
1467    // or up to some count of the number of profiled threads, etc.
1468    ThreadProfiler* pp = new ThreadProfiler();
1469    pp->engage();
1470    set_thread_profiler(pp);
1471  }
1472
1473  // Setup safepoint state info for this thread
1474  ThreadSafepointState::create(this);
1475
1476  debug_only(_java_call_counter = 0);
1477
1478  // JVMTI PopFrame support
1479  _popframe_condition = popframe_inactive;
1480  _popframe_preserved_args = NULL;
1481  _popframe_preserved_args_size = 0;
1482
1483  pd_initialize();
1484}
1485
1486#if INCLUDE_ALL_GCS
1487SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1488DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1489#endif // INCLUDE_ALL_GCS
1490
1491JavaThread::JavaThread(bool is_attaching_via_jni) :
1492  Thread()
1493#if INCLUDE_ALL_GCS
1494  , _satb_mark_queue(&_satb_mark_queue_set),
1495  _dirty_card_queue(&_dirty_card_queue_set)
1496#endif // INCLUDE_ALL_GCS
1497{
1498  initialize();
1499  if (is_attaching_via_jni) {
1500    _jni_attach_state = _attaching_via_jni;
1501  } else {
1502    _jni_attach_state = _not_attaching_via_jni;
1503  }
1504  assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1505  _safepoint_visible = false;
1506}
1507
1508bool JavaThread::reguard_stack(address cur_sp) {
1509  if (_stack_guard_state != stack_guard_yellow_disabled) {
1510    return true; // Stack already guarded or guard pages not needed.
1511  }
1512
1513  if (register_stack_overflow()) {
1514    // For those architectures which have separate register and
1515    // memory stacks, we must check the register stack to see if
1516    // it has overflowed.
1517    return false;
1518  }
1519
1520  // Java code never executes within the yellow zone: the latter is only
1521  // there to provoke an exception during stack banging.  If java code
1522  // is executing there, either StackShadowPages should be larger, or
1523  // some exception code in c1, c2 or the interpreter isn't unwinding
1524  // when it should.
1525  guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1526
1527  enable_stack_yellow_zone();
1528  return true;
1529}
1530
1531bool JavaThread::reguard_stack(void) {
1532  return reguard_stack(os::current_stack_pointer());
1533}
1534
1535
1536void JavaThread::block_if_vm_exited() {
1537  if (_terminated == _vm_exited) {
1538    // _vm_exited is set at safepoint, and Threads_lock is never released
1539    // we will block here forever
1540    Threads_lock->lock_without_safepoint_check();
1541    ShouldNotReachHere();
1542  }
1543}
1544
1545
1546// Remove this ifdef when C1 is ported to the compiler interface.
1547static void compiler_thread_entry(JavaThread* thread, TRAPS);
1548
1549JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1550  Thread()
1551#if INCLUDE_ALL_GCS
1552  , _satb_mark_queue(&_satb_mark_queue_set),
1553  _dirty_card_queue(&_dirty_card_queue_set)
1554#endif // INCLUDE_ALL_GCS
1555{
1556  if (TraceThreadEvents) {
1557    tty->print_cr("creating thread %p", this);
1558  }
1559  initialize();
1560  _jni_attach_state = _not_attaching_via_jni;
1561  set_entry_point(entry_point);
1562  // Create the native thread itself.
1563  // %note runtime_23
1564  os::ThreadType thr_type = os::java_thread;
1565  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1566                                                     os::java_thread;
1567  os::create_thread(this, thr_type, stack_sz);
1568  _safepoint_visible = false;
1569  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1570  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1571  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1572  // the exception consists of creating the exception object & initializing it, initialization
1573  // will leave the VM via a JavaCall and then all locks must be unlocked).
1574  //
1575  // The thread is still suspended when we reach here. Thread must be explicit started
1576  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1577  // by calling Threads:add. The reason why this is not done here, is because the thread
1578  // object must be fully initialized (take a look at JVM_Start)
1579}
1580
1581JavaThread::~JavaThread() {
1582  if (TraceThreadEvents) {
1583      tty->print_cr("terminate thread %p", this);
1584  }
1585
1586  // By now, this thread should already be invisible to safepoint,
1587  // and its per-thread recorder also collected.
1588  assert(!is_safepoint_visible(), "wrong state");
1589#if INCLUDE_NMT
1590  assert(get_recorder() == NULL, "Already collected");
1591#endif // INCLUDE_NMT
1592
1593  // JSR166 -- return the parker to the free list
1594  Parker::Release(_parker);
1595  _parker = NULL ;
1596
1597  // Free any remaining  previous UnrollBlock
1598  vframeArray* old_array = vframe_array_last();
1599
1600  if (old_array != NULL) {
1601    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1602    old_array->set_unroll_block(NULL);
1603    delete old_info;
1604    delete old_array;
1605  }
1606
1607  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1608  if (deferred != NULL) {
1609    // This can only happen if thread is destroyed before deoptimization occurs.
1610    assert(deferred->length() != 0, "empty array!");
1611    do {
1612      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1613      deferred->remove_at(0);
1614      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1615      delete dlv;
1616    } while (deferred->length() != 0);
1617    delete deferred;
1618  }
1619
1620  // All Java related clean up happens in exit
1621  ThreadSafepointState::destroy(this);
1622  if (_thread_profiler != NULL) delete _thread_profiler;
1623  if (_thread_stat != NULL) delete _thread_stat;
1624}
1625
1626
1627// The first routine called by a new Java thread
1628void JavaThread::run() {
1629  // initialize thread-local alloc buffer related fields
1630  this->initialize_tlab();
1631
1632  // used to test validitity of stack trace backs
1633  this->record_base_of_stack_pointer();
1634
1635  // Record real stack base and size.
1636  this->record_stack_base_and_size();
1637
1638  // Initialize thread local storage; set before calling MutexLocker
1639  this->initialize_thread_local_storage();
1640
1641  this->create_stack_guard_pages();
1642
1643  this->cache_global_variables();
1644
1645  // Thread is now sufficient initialized to be handled by the safepoint code as being
1646  // in the VM. Change thread state from _thread_new to _thread_in_vm
1647  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1648
1649  assert(JavaThread::current() == this, "sanity check");
1650  assert(!Thread::current()->owns_locks(), "sanity check");
1651
1652  DTRACE_THREAD_PROBE(start, this);
1653
1654  // This operation might block. We call that after all safepoint checks for a new thread has
1655  // been completed.
1656  this->set_active_handles(JNIHandleBlock::allocate_block());
1657
1658  if (JvmtiExport::should_post_thread_life()) {
1659    JvmtiExport::post_thread_start(this);
1660  }
1661
1662  EventThreadStart event;
1663  if (event.should_commit()) {
1664     event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1665     event.commit();
1666  }
1667
1668  // We call another function to do the rest so we are sure that the stack addresses used
1669  // from there will be lower than the stack base just computed
1670  thread_main_inner();
1671
1672  // Note, thread is no longer valid at this point!
1673}
1674
1675
1676void JavaThread::thread_main_inner() {
1677  assert(JavaThread::current() == this, "sanity check");
1678  assert(this->threadObj() != NULL, "just checking");
1679
1680  // Execute thread entry point unless this thread has a pending exception
1681  // or has been stopped before starting.
1682  // Note: Due to JVM_StopThread we can have pending exceptions already!
1683  if (!this->has_pending_exception() &&
1684      !java_lang_Thread::is_stillborn(this->threadObj())) {
1685    {
1686      ResourceMark rm(this);
1687      this->set_native_thread_name(this->get_thread_name());
1688    }
1689    HandleMark hm(this);
1690    this->entry_point()(this, this);
1691  }
1692
1693  DTRACE_THREAD_PROBE(stop, this);
1694
1695  this->exit(false);
1696  delete this;
1697}
1698
1699
1700static void ensure_join(JavaThread* thread) {
1701  // We do not need to grap the Threads_lock, since we are operating on ourself.
1702  Handle threadObj(thread, thread->threadObj());
1703  assert(threadObj.not_null(), "java thread object must exist");
1704  ObjectLocker lock(threadObj, thread);
1705  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1706  thread->clear_pending_exception();
1707  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1708  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1709  // Clear the native thread instance - this makes isAlive return false and allows the join()
1710  // to complete once we've done the notify_all below
1711  java_lang_Thread::set_thread(threadObj(), NULL);
1712  lock.notify_all(thread);
1713  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1714  thread->clear_pending_exception();
1715}
1716
1717
1718// For any new cleanup additions, please check to see if they need to be applied to
1719// cleanup_failed_attach_current_thread as well.
1720void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1721  assert(this == JavaThread::current(),  "thread consistency check");
1722
1723  HandleMark hm(this);
1724  Handle uncaught_exception(this, this->pending_exception());
1725  this->clear_pending_exception();
1726  Handle threadObj(this, this->threadObj());
1727  assert(threadObj.not_null(), "Java thread object should be created");
1728
1729  if (get_thread_profiler() != NULL) {
1730    get_thread_profiler()->disengage();
1731    ResourceMark rm;
1732    get_thread_profiler()->print(get_thread_name());
1733  }
1734
1735
1736  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1737  {
1738    EXCEPTION_MARK;
1739
1740    CLEAR_PENDING_EXCEPTION;
1741  }
1742  // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1743  // has to be fixed by a runtime query method
1744  if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1745    // JSR-166: change call from from ThreadGroup.uncaughtException to
1746    // java.lang.Thread.dispatchUncaughtException
1747    if (uncaught_exception.not_null()) {
1748      Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1749      {
1750        EXCEPTION_MARK;
1751        // Check if the method Thread.dispatchUncaughtException() exists. If so
1752        // call it.  Otherwise we have an older library without the JSR-166 changes,
1753        // so call ThreadGroup.uncaughtException()
1754        KlassHandle recvrKlass(THREAD, threadObj->klass());
1755        CallInfo callinfo;
1756        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1757        LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1758                                           vmSymbols::dispatchUncaughtException_name(),
1759                                           vmSymbols::throwable_void_signature(),
1760                                           KlassHandle(), false, false, THREAD);
1761        CLEAR_PENDING_EXCEPTION;
1762        methodHandle method = callinfo.selected_method();
1763        if (method.not_null()) {
1764          JavaValue result(T_VOID);
1765          JavaCalls::call_virtual(&result,
1766                                  threadObj, thread_klass,
1767                                  vmSymbols::dispatchUncaughtException_name(),
1768                                  vmSymbols::throwable_void_signature(),
1769                                  uncaught_exception,
1770                                  THREAD);
1771        } else {
1772          KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1773          JavaValue result(T_VOID);
1774          JavaCalls::call_virtual(&result,
1775                                  group, thread_group,
1776                                  vmSymbols::uncaughtException_name(),
1777                                  vmSymbols::thread_throwable_void_signature(),
1778                                  threadObj,           // Arg 1
1779                                  uncaught_exception,  // Arg 2
1780                                  THREAD);
1781        }
1782        if (HAS_PENDING_EXCEPTION) {
1783          ResourceMark rm(this);
1784          jio_fprintf(defaultStream::error_stream(),
1785                "\nException: %s thrown from the UncaughtExceptionHandler"
1786                " in thread \"%s\"\n",
1787                pending_exception()->klass()->external_name(),
1788                get_thread_name());
1789          CLEAR_PENDING_EXCEPTION;
1790        }
1791      }
1792    }
1793
1794    // Called before the java thread exit since we want to read info
1795    // from java_lang_Thread object
1796    EventThreadEnd event;
1797    if (event.should_commit()) {
1798        event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1799        event.commit();
1800    }
1801
1802    // Call after last event on thread
1803    EVENT_THREAD_EXIT(this);
1804
1805    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1806    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1807    // is deprecated anyhow.
1808    { int count = 3;
1809      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1810        EXCEPTION_MARK;
1811        JavaValue result(T_VOID);
1812        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1813        JavaCalls::call_virtual(&result,
1814                              threadObj, thread_klass,
1815                              vmSymbols::exit_method_name(),
1816                              vmSymbols::void_method_signature(),
1817                              THREAD);
1818        CLEAR_PENDING_EXCEPTION;
1819      }
1820    }
1821
1822    // notify JVMTI
1823    if (JvmtiExport::should_post_thread_life()) {
1824      JvmtiExport::post_thread_end(this);
1825    }
1826
1827    // We have notified the agents that we are exiting, before we go on,
1828    // we must check for a pending external suspend request and honor it
1829    // in order to not surprise the thread that made the suspend request.
1830    while (true) {
1831      {
1832        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1833        if (!is_external_suspend()) {
1834          set_terminated(_thread_exiting);
1835          ThreadService::current_thread_exiting(this);
1836          break;
1837        }
1838        // Implied else:
1839        // Things get a little tricky here. We have a pending external
1840        // suspend request, but we are holding the SR_lock so we
1841        // can't just self-suspend. So we temporarily drop the lock
1842        // and then self-suspend.
1843      }
1844
1845      ThreadBlockInVM tbivm(this);
1846      java_suspend_self();
1847
1848      // We're done with this suspend request, but we have to loop around
1849      // and check again. Eventually we will get SR_lock without a pending
1850      // external suspend request and will be able to mark ourselves as
1851      // exiting.
1852    }
1853    // no more external suspends are allowed at this point
1854  } else {
1855    // before_exit() has already posted JVMTI THREAD_END events
1856  }
1857
1858  // Notify waiters on thread object. This has to be done after exit() is called
1859  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1860  // group should have the destroyed bit set before waiters are notified).
1861  ensure_join(this);
1862  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1863
1864  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1865  // held by this thread must be released.  A detach operation must only
1866  // get here if there are no Java frames on the stack.  Therefore, any
1867  // owned monitors at this point MUST be JNI-acquired monitors which are
1868  // pre-inflated and in the monitor cache.
1869  //
1870  // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1871  if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1872    assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1873    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1874    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1875  }
1876
1877  // These things needs to be done while we are still a Java Thread. Make sure that thread
1878  // is in a consistent state, in case GC happens
1879  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1880
1881  if (active_handles() != NULL) {
1882    JNIHandleBlock* block = active_handles();
1883    set_active_handles(NULL);
1884    JNIHandleBlock::release_block(block);
1885  }
1886
1887  if (free_handle_block() != NULL) {
1888    JNIHandleBlock* block = free_handle_block();
1889    set_free_handle_block(NULL);
1890    JNIHandleBlock::release_block(block);
1891  }
1892
1893  // These have to be removed while this is still a valid thread.
1894  remove_stack_guard_pages();
1895
1896  if (UseTLAB) {
1897    tlab().make_parsable(true);  // retire TLAB
1898  }
1899
1900  if (JvmtiEnv::environments_might_exist()) {
1901    JvmtiExport::cleanup_thread(this);
1902  }
1903
1904  // We must flush any deferred card marks before removing a thread from
1905  // the list of active threads.
1906  Universe::heap()->flush_deferred_store_barrier(this);
1907  assert(deferred_card_mark().is_empty(), "Should have been flushed");
1908
1909#if INCLUDE_ALL_GCS
1910  // We must flush the G1-related buffers before removing a thread
1911  // from the list of active threads. We must do this after any deferred
1912  // card marks have been flushed (above) so that any entries that are
1913  // added to the thread's dirty card queue as a result are not lost.
1914  if (UseG1GC) {
1915    flush_barrier_queues();
1916  }
1917#endif // INCLUDE_ALL_GCS
1918
1919  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1920  Threads::remove(this);
1921}
1922
1923#if INCLUDE_ALL_GCS
1924// Flush G1-related queues.
1925void JavaThread::flush_barrier_queues() {
1926  satb_mark_queue().flush();
1927  dirty_card_queue().flush();
1928}
1929
1930void JavaThread::initialize_queues() {
1931  assert(!SafepointSynchronize::is_at_safepoint(),
1932         "we should not be at a safepoint");
1933
1934  ObjPtrQueue& satb_queue = satb_mark_queue();
1935  SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1936  // The SATB queue should have been constructed with its active
1937  // field set to false.
1938  assert(!satb_queue.is_active(), "SATB queue should not be active");
1939  assert(satb_queue.is_empty(), "SATB queue should be empty");
1940  // If we are creating the thread during a marking cycle, we should
1941  // set the active field of the SATB queue to true.
1942  if (satb_queue_set.is_active()) {
1943    satb_queue.set_active(true);
1944  }
1945
1946  DirtyCardQueue& dirty_queue = dirty_card_queue();
1947  // The dirty card queue should have been constructed with its
1948  // active field set to true.
1949  assert(dirty_queue.is_active(), "dirty card queue should be active");
1950}
1951#endif // INCLUDE_ALL_GCS
1952
1953void JavaThread::cleanup_failed_attach_current_thread() {
1954  if (get_thread_profiler() != NULL) {
1955    get_thread_profiler()->disengage();
1956    ResourceMark rm;
1957    get_thread_profiler()->print(get_thread_name());
1958  }
1959
1960  if (active_handles() != NULL) {
1961    JNIHandleBlock* block = active_handles();
1962    set_active_handles(NULL);
1963    JNIHandleBlock::release_block(block);
1964  }
1965
1966  if (free_handle_block() != NULL) {
1967    JNIHandleBlock* block = free_handle_block();
1968    set_free_handle_block(NULL);
1969    JNIHandleBlock::release_block(block);
1970  }
1971
1972  // These have to be removed while this is still a valid thread.
1973  remove_stack_guard_pages();
1974
1975  if (UseTLAB) {
1976    tlab().make_parsable(true);  // retire TLAB, if any
1977  }
1978
1979#if INCLUDE_ALL_GCS
1980  if (UseG1GC) {
1981    flush_barrier_queues();
1982  }
1983#endif // INCLUDE_ALL_GCS
1984
1985  Threads::remove(this);
1986  delete this;
1987}
1988
1989
1990
1991
1992JavaThread* JavaThread::active() {
1993  Thread* thread = ThreadLocalStorage::thread();
1994  assert(thread != NULL, "just checking");
1995  if (thread->is_Java_thread()) {
1996    return (JavaThread*) thread;
1997  } else {
1998    assert(thread->is_VM_thread(), "this must be a vm thread");
1999    VM_Operation* op = ((VMThread*) thread)->vm_operation();
2000    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2001    assert(ret->is_Java_thread(), "must be a Java thread");
2002    return ret;
2003  }
2004}
2005
2006bool JavaThread::is_lock_owned(address adr) const {
2007  if (Thread::is_lock_owned(adr)) return true;
2008
2009  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2010    if (chunk->contains(adr)) return true;
2011  }
2012
2013  return false;
2014}
2015
2016
2017void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2018  chunk->set_next(monitor_chunks());
2019  set_monitor_chunks(chunk);
2020}
2021
2022void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2023  guarantee(monitor_chunks() != NULL, "must be non empty");
2024  if (monitor_chunks() == chunk) {
2025    set_monitor_chunks(chunk->next());
2026  } else {
2027    MonitorChunk* prev = monitor_chunks();
2028    while (prev->next() != chunk) prev = prev->next();
2029    prev->set_next(chunk->next());
2030  }
2031}
2032
2033// JVM support.
2034
2035// Note: this function shouldn't block if it's called in
2036// _thread_in_native_trans state (such as from
2037// check_special_condition_for_native_trans()).
2038void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2039
2040  if (has_last_Java_frame() && has_async_condition()) {
2041    // If we are at a polling page safepoint (not a poll return)
2042    // then we must defer async exception because live registers
2043    // will be clobbered by the exception path. Poll return is
2044    // ok because the call we a returning from already collides
2045    // with exception handling registers and so there is no issue.
2046    // (The exception handling path kills call result registers but
2047    //  this is ok since the exception kills the result anyway).
2048
2049    if (is_at_poll_safepoint()) {
2050      // if the code we are returning to has deoptimized we must defer
2051      // the exception otherwise live registers get clobbered on the
2052      // exception path before deoptimization is able to retrieve them.
2053      //
2054      RegisterMap map(this, false);
2055      frame caller_fr = last_frame().sender(&map);
2056      assert(caller_fr.is_compiled_frame(), "what?");
2057      if (caller_fr.is_deoptimized_frame()) {
2058        if (TraceExceptions) {
2059          ResourceMark rm;
2060          tty->print_cr("deferred async exception at compiled safepoint");
2061        }
2062        return;
2063      }
2064    }
2065  }
2066
2067  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2068  if (condition == _no_async_condition) {
2069    // Conditions have changed since has_special_runtime_exit_condition()
2070    // was called:
2071    // - if we were here only because of an external suspend request,
2072    //   then that was taken care of above (or cancelled) so we are done
2073    // - if we were here because of another async request, then it has
2074    //   been cleared between the has_special_runtime_exit_condition()
2075    //   and now so again we are done
2076    return;
2077  }
2078
2079  // Check for pending async. exception
2080  if (_pending_async_exception != NULL) {
2081    // Only overwrite an already pending exception, if it is not a threadDeath.
2082    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2083
2084      // We cannot call Exceptions::_throw(...) here because we cannot block
2085      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2086
2087      if (TraceExceptions) {
2088        ResourceMark rm;
2089        tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2090        if (has_last_Java_frame() ) {
2091          frame f = last_frame();
2092          tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2093        }
2094        tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2095      }
2096      _pending_async_exception = NULL;
2097      clear_has_async_exception();
2098    }
2099  }
2100
2101  if (check_unsafe_error &&
2102      condition == _async_unsafe_access_error && !has_pending_exception()) {
2103    condition = _no_async_condition;  // done
2104    switch (thread_state()) {
2105    case _thread_in_vm:
2106      {
2107        JavaThread* THREAD = this;
2108        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2109      }
2110    case _thread_in_native:
2111      {
2112        ThreadInVMfromNative tiv(this);
2113        JavaThread* THREAD = this;
2114        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2115      }
2116    case _thread_in_Java:
2117      {
2118        ThreadInVMfromJava tiv(this);
2119        JavaThread* THREAD = this;
2120        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2121      }
2122    default:
2123      ShouldNotReachHere();
2124    }
2125  }
2126
2127  assert(condition == _no_async_condition || has_pending_exception() ||
2128         (!check_unsafe_error && condition == _async_unsafe_access_error),
2129         "must have handled the async condition, if no exception");
2130}
2131
2132void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2133  //
2134  // Check for pending external suspend. Internal suspend requests do
2135  // not use handle_special_runtime_exit_condition().
2136  // If JNIEnv proxies are allowed, don't self-suspend if the target
2137  // thread is not the current thread. In older versions of jdbx, jdbx
2138  // threads could call into the VM with another thread's JNIEnv so we
2139  // can be here operating on behalf of a suspended thread (4432884).
2140  bool do_self_suspend = is_external_suspend_with_lock();
2141  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2142    //
2143    // Because thread is external suspended the safepoint code will count
2144    // thread as at a safepoint. This can be odd because we can be here
2145    // as _thread_in_Java which would normally transition to _thread_blocked
2146    // at a safepoint. We would like to mark the thread as _thread_blocked
2147    // before calling java_suspend_self like all other callers of it but
2148    // we must then observe proper safepoint protocol. (We can't leave
2149    // _thread_blocked with a safepoint in progress). However we can be
2150    // here as _thread_in_native_trans so we can't use a normal transition
2151    // constructor/destructor pair because they assert on that type of
2152    // transition. We could do something like:
2153    //
2154    // JavaThreadState state = thread_state();
2155    // set_thread_state(_thread_in_vm);
2156    // {
2157    //   ThreadBlockInVM tbivm(this);
2158    //   java_suspend_self()
2159    // }
2160    // set_thread_state(_thread_in_vm_trans);
2161    // if (safepoint) block;
2162    // set_thread_state(state);
2163    //
2164    // but that is pretty messy. Instead we just go with the way the
2165    // code has worked before and note that this is the only path to
2166    // java_suspend_self that doesn't put the thread in _thread_blocked
2167    // mode.
2168
2169    frame_anchor()->make_walkable(this);
2170    java_suspend_self();
2171
2172    // We might be here for reasons in addition to the self-suspend request
2173    // so check for other async requests.
2174  }
2175
2176  if (check_asyncs) {
2177    check_and_handle_async_exceptions();
2178  }
2179}
2180
2181void JavaThread::send_thread_stop(oop java_throwable)  {
2182  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2183  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2184  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2185
2186  // Do not throw asynchronous exceptions against the compiler thread
2187  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2188  if (is_Compiler_thread()) return;
2189
2190  {
2191    // Actually throw the Throwable against the target Thread - however
2192    // only if there is no thread death exception installed already.
2193    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2194      // If the topmost frame is a runtime stub, then we are calling into
2195      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2196      // must deoptimize the caller before continuing, as the compiled  exception handler table
2197      // may not be valid
2198      if (has_last_Java_frame()) {
2199        frame f = last_frame();
2200        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2201          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2202          RegisterMap reg_map(this, UseBiasedLocking);
2203          frame compiled_frame = f.sender(&reg_map);
2204          if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2205            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2206          }
2207        }
2208      }
2209
2210      // Set async. pending exception in thread.
2211      set_pending_async_exception(java_throwable);
2212
2213      if (TraceExceptions) {
2214       ResourceMark rm;
2215       tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2216      }
2217      // for AbortVMOnException flag
2218      NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2219    }
2220  }
2221
2222
2223  // Interrupt thread so it will wake up from a potential wait()
2224  Thread::interrupt(this);
2225}
2226
2227// External suspension mechanism.
2228//
2229// Tell the VM to suspend a thread when ever it knows that it does not hold on
2230// to any VM_locks and it is at a transition
2231// Self-suspension will happen on the transition out of the vm.
2232// Catch "this" coming in from JNIEnv pointers when the thread has been freed
2233//
2234// Guarantees on return:
2235//   + Target thread will not execute any new bytecode (that's why we need to
2236//     force a safepoint)
2237//   + Target thread will not enter any new monitors
2238//
2239void JavaThread::java_suspend() {
2240  { MutexLocker mu(Threads_lock);
2241    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2242       return;
2243    }
2244  }
2245
2246  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2247    if (!is_external_suspend()) {
2248      // a racing resume has cancelled us; bail out now
2249      return;
2250    }
2251
2252    // suspend is done
2253    uint32_t debug_bits = 0;
2254    // Warning: is_ext_suspend_completed() may temporarily drop the
2255    // SR_lock to allow the thread to reach a stable thread state if
2256    // it is currently in a transient thread state.
2257    if (is_ext_suspend_completed(false /* !called_by_wait */,
2258                                 SuspendRetryDelay, &debug_bits) ) {
2259      return;
2260    }
2261  }
2262
2263  VM_ForceSafepoint vm_suspend;
2264  VMThread::execute(&vm_suspend);
2265}
2266
2267// Part II of external suspension.
2268// A JavaThread self suspends when it detects a pending external suspend
2269// request. This is usually on transitions. It is also done in places
2270// where continuing to the next transition would surprise the caller,
2271// e.g., monitor entry.
2272//
2273// Returns the number of times that the thread self-suspended.
2274//
2275// Note: DO NOT call java_suspend_self() when you just want to block current
2276//       thread. java_suspend_self() is the second stage of cooperative
2277//       suspension for external suspend requests and should only be used
2278//       to complete an external suspend request.
2279//
2280int JavaThread::java_suspend_self() {
2281  int ret = 0;
2282
2283  // we are in the process of exiting so don't suspend
2284  if (is_exiting()) {
2285     clear_external_suspend();
2286     return ret;
2287  }
2288
2289  assert(_anchor.walkable() ||
2290    (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2291    "must have walkable stack");
2292
2293  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2294
2295  assert(!this->is_ext_suspended(),
2296    "a thread trying to self-suspend should not already be suspended");
2297
2298  if (this->is_suspend_equivalent()) {
2299    // If we are self-suspending as a result of the lifting of a
2300    // suspend equivalent condition, then the suspend_equivalent
2301    // flag is not cleared until we set the ext_suspended flag so
2302    // that wait_for_ext_suspend_completion() returns consistent
2303    // results.
2304    this->clear_suspend_equivalent();
2305  }
2306
2307  // A racing resume may have cancelled us before we grabbed SR_lock
2308  // above. Or another external suspend request could be waiting for us
2309  // by the time we return from SR_lock()->wait(). The thread
2310  // that requested the suspension may already be trying to walk our
2311  // stack and if we return now, we can change the stack out from under
2312  // it. This would be a "bad thing (TM)" and cause the stack walker
2313  // to crash. We stay self-suspended until there are no more pending
2314  // external suspend requests.
2315  while (is_external_suspend()) {
2316    ret++;
2317    this->set_ext_suspended();
2318
2319    // _ext_suspended flag is cleared by java_resume()
2320    while (is_ext_suspended()) {
2321      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2322    }
2323  }
2324
2325  return ret;
2326}
2327
2328#ifdef ASSERT
2329// verify the JavaThread has not yet been published in the Threads::list, and
2330// hence doesn't need protection from concurrent access at this stage
2331void JavaThread::verify_not_published() {
2332  if (!Threads_lock->owned_by_self()) {
2333   MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2334   assert( !Threads::includes(this),
2335           "java thread shouldn't have been published yet!");
2336  }
2337  else {
2338   assert( !Threads::includes(this),
2339           "java thread shouldn't have been published yet!");
2340  }
2341}
2342#endif
2343
2344// Slow path when the native==>VM/Java barriers detect a safepoint is in
2345// progress or when _suspend_flags is non-zero.
2346// Current thread needs to self-suspend if there is a suspend request and/or
2347// block if a safepoint is in progress.
2348// Async exception ISN'T checked.
2349// Note only the ThreadInVMfromNative transition can call this function
2350// directly and when thread state is _thread_in_native_trans
2351void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2352  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2353
2354  JavaThread *curJT = JavaThread::current();
2355  bool do_self_suspend = thread->is_external_suspend();
2356
2357  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2358
2359  // If JNIEnv proxies are allowed, don't self-suspend if the target
2360  // thread is not the current thread. In older versions of jdbx, jdbx
2361  // threads could call into the VM with another thread's JNIEnv so we
2362  // can be here operating on behalf of a suspended thread (4432884).
2363  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2364    JavaThreadState state = thread->thread_state();
2365
2366    // We mark this thread_blocked state as a suspend-equivalent so
2367    // that a caller to is_ext_suspend_completed() won't be confused.
2368    // The suspend-equivalent state is cleared by java_suspend_self().
2369    thread->set_suspend_equivalent();
2370
2371    // If the safepoint code sees the _thread_in_native_trans state, it will
2372    // wait until the thread changes to other thread state. There is no
2373    // guarantee on how soon we can obtain the SR_lock and complete the
2374    // self-suspend request. It would be a bad idea to let safepoint wait for
2375    // too long. Temporarily change the state to _thread_blocked to
2376    // let the VM thread know that this thread is ready for GC. The problem
2377    // of changing thread state is that safepoint could happen just after
2378    // java_suspend_self() returns after being resumed, and VM thread will
2379    // see the _thread_blocked state. We must check for safepoint
2380    // after restoring the state and make sure we won't leave while a safepoint
2381    // is in progress.
2382    thread->set_thread_state(_thread_blocked);
2383    thread->java_suspend_self();
2384    thread->set_thread_state(state);
2385    // Make sure new state is seen by VM thread
2386    if (os::is_MP()) {
2387      if (UseMembar) {
2388        // Force a fence between the write above and read below
2389        OrderAccess::fence();
2390      } else {
2391        // Must use this rather than serialization page in particular on Windows
2392        InterfaceSupport::serialize_memory(thread);
2393      }
2394    }
2395  }
2396
2397  if (SafepointSynchronize::do_call_back()) {
2398    // If we are safepointing, then block the caller which may not be
2399    // the same as the target thread (see above).
2400    SafepointSynchronize::block(curJT);
2401  }
2402
2403  if (thread->is_deopt_suspend()) {
2404    thread->clear_deopt_suspend();
2405    RegisterMap map(thread, false);
2406    frame f = thread->last_frame();
2407    while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2408      f = f.sender(&map);
2409    }
2410    if (f.id() == thread->must_deopt_id()) {
2411      thread->clear_must_deopt_id();
2412      f.deoptimize(thread);
2413    } else {
2414      fatal("missed deoptimization!");
2415    }
2416  }
2417}
2418
2419// Slow path when the native==>VM/Java barriers detect a safepoint is in
2420// progress or when _suspend_flags is non-zero.
2421// Current thread needs to self-suspend if there is a suspend request and/or
2422// block if a safepoint is in progress.
2423// Also check for pending async exception (not including unsafe access error).
2424// Note only the native==>VM/Java barriers can call this function and when
2425// thread state is _thread_in_native_trans.
2426void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2427  check_safepoint_and_suspend_for_native_trans(thread);
2428
2429  if (thread->has_async_exception()) {
2430    // We are in _thread_in_native_trans state, don't handle unsafe
2431    // access error since that may block.
2432    thread->check_and_handle_async_exceptions(false);
2433  }
2434}
2435
2436// This is a variant of the normal
2437// check_special_condition_for_native_trans with slightly different
2438// semantics for use by critical native wrappers.  It does all the
2439// normal checks but also performs the transition back into
2440// thread_in_Java state.  This is required so that critical natives
2441// can potentially block and perform a GC if they are the last thread
2442// exiting the GC_locker.
2443void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2444  check_special_condition_for_native_trans(thread);
2445
2446  // Finish the transition
2447  thread->set_thread_state(_thread_in_Java);
2448
2449  if (thread->do_critical_native_unlock()) {
2450    ThreadInVMfromJavaNoAsyncException tiv(thread);
2451    GC_locker::unlock_critical(thread);
2452    thread->clear_critical_native_unlock();
2453  }
2454}
2455
2456// We need to guarantee the Threads_lock here, since resumes are not
2457// allowed during safepoint synchronization
2458// Can only resume from an external suspension
2459void JavaThread::java_resume() {
2460  assert_locked_or_safepoint(Threads_lock);
2461
2462  // Sanity check: thread is gone, has started exiting or the thread
2463  // was not externally suspended.
2464  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2465    return;
2466  }
2467
2468  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2469
2470  clear_external_suspend();
2471
2472  if (is_ext_suspended()) {
2473    clear_ext_suspended();
2474    SR_lock()->notify_all();
2475  }
2476}
2477
2478void JavaThread::create_stack_guard_pages() {
2479  if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2480  address low_addr = stack_base() - stack_size();
2481  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2482
2483  int allocate = os::allocate_stack_guard_pages();
2484  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2485
2486  if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2487    warning("Attempt to allocate stack guard pages failed.");
2488    return;
2489  }
2490
2491  if (os::guard_memory((char *) low_addr, len)) {
2492    _stack_guard_state = stack_guard_enabled;
2493  } else {
2494    warning("Attempt to protect stack guard pages failed.");
2495    if (os::uncommit_memory((char *) low_addr, len)) {
2496      warning("Attempt to deallocate stack guard pages failed.");
2497    }
2498  }
2499}
2500
2501void JavaThread::remove_stack_guard_pages() {
2502  assert(Thread::current() == this, "from different thread");
2503  if (_stack_guard_state == stack_guard_unused) return;
2504  address low_addr = stack_base() - stack_size();
2505  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2506
2507  if (os::allocate_stack_guard_pages()) {
2508    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2509      _stack_guard_state = stack_guard_unused;
2510    } else {
2511      warning("Attempt to deallocate stack guard pages failed.");
2512    }
2513  } else {
2514    if (_stack_guard_state == stack_guard_unused) return;
2515    if (os::unguard_memory((char *) low_addr, len)) {
2516      _stack_guard_state = stack_guard_unused;
2517    } else {
2518        warning("Attempt to unprotect stack guard pages failed.");
2519    }
2520  }
2521}
2522
2523void JavaThread::enable_stack_yellow_zone() {
2524  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2525  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2526
2527  // The base notation is from the stacks point of view, growing downward.
2528  // We need to adjust it to work correctly with guard_memory()
2529  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2530
2531  guarantee(base < stack_base(),"Error calculating stack yellow zone");
2532  guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2533
2534  if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2535    _stack_guard_state = stack_guard_enabled;
2536  } else {
2537    warning("Attempt to guard stack yellow zone failed.");
2538  }
2539  enable_register_stack_guard();
2540}
2541
2542void JavaThread::disable_stack_yellow_zone() {
2543  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2544  assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2545
2546  // Simply return if called for a thread that does not use guard pages.
2547  if (_stack_guard_state == stack_guard_unused) return;
2548
2549  // The base notation is from the stacks point of view, growing downward.
2550  // We need to adjust it to work correctly with guard_memory()
2551  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2552
2553  if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2554    _stack_guard_state = stack_guard_yellow_disabled;
2555  } else {
2556    warning("Attempt to unguard stack yellow zone failed.");
2557  }
2558  disable_register_stack_guard();
2559}
2560
2561void JavaThread::enable_stack_red_zone() {
2562  // The base notation is from the stacks point of view, growing downward.
2563  // We need to adjust it to work correctly with guard_memory()
2564  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2565  address base = stack_red_zone_base() - stack_red_zone_size();
2566
2567  guarantee(base < stack_base(),"Error calculating stack red zone");
2568  guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2569
2570  if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2571    warning("Attempt to guard stack red zone failed.");
2572  }
2573}
2574
2575void JavaThread::disable_stack_red_zone() {
2576  // The base notation is from the stacks point of view, growing downward.
2577  // We need to adjust it to work correctly with guard_memory()
2578  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2579  address base = stack_red_zone_base() - stack_red_zone_size();
2580  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2581    warning("Attempt to unguard stack red zone failed.");
2582  }
2583}
2584
2585void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2586  // ignore is there is no stack
2587  if (!has_last_Java_frame()) return;
2588  // traverse the stack frames. Starts from top frame.
2589  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2590    frame* fr = fst.current();
2591    f(fr, fst.register_map());
2592  }
2593}
2594
2595
2596#ifndef PRODUCT
2597// Deoptimization
2598// Function for testing deoptimization
2599void JavaThread::deoptimize() {
2600  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2601  StackFrameStream fst(this, UseBiasedLocking);
2602  bool deopt = false;           // Dump stack only if a deopt actually happens.
2603  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2604  // Iterate over all frames in the thread and deoptimize
2605  for(; !fst.is_done(); fst.next()) {
2606    if(fst.current()->can_be_deoptimized()) {
2607
2608      if (only_at) {
2609        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2610        // consists of comma or carriage return separated numbers so
2611        // search for the current bci in that string.
2612        address pc = fst.current()->pc();
2613        nmethod* nm =  (nmethod*) fst.current()->cb();
2614        ScopeDesc* sd = nm->scope_desc_at( pc);
2615        char buffer[8];
2616        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2617        size_t len = strlen(buffer);
2618        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2619        while (found != NULL) {
2620          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2621              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2622            // Check that the bci found is bracketed by terminators.
2623            break;
2624          }
2625          found = strstr(found + 1, buffer);
2626        }
2627        if (!found) {
2628          continue;
2629        }
2630      }
2631
2632      if (DebugDeoptimization && !deopt) {
2633        deopt = true; // One-time only print before deopt
2634        tty->print_cr("[BEFORE Deoptimization]");
2635        trace_frames();
2636        trace_stack();
2637      }
2638      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2639    }
2640  }
2641
2642  if (DebugDeoptimization && deopt) {
2643    tty->print_cr("[AFTER Deoptimization]");
2644    trace_frames();
2645  }
2646}
2647
2648
2649// Make zombies
2650void JavaThread::make_zombies() {
2651  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2652    if (fst.current()->can_be_deoptimized()) {
2653      // it is a Java nmethod
2654      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2655      nm->make_not_entrant();
2656    }
2657  }
2658}
2659#endif // PRODUCT
2660
2661
2662void JavaThread::deoptimized_wrt_marked_nmethods() {
2663  if (!has_last_Java_frame()) return;
2664  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2665  StackFrameStream fst(this, UseBiasedLocking);
2666  for(; !fst.is_done(); fst.next()) {
2667    if (fst.current()->should_be_deoptimized()) {
2668      if (LogCompilation && xtty != NULL) {
2669        nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2670        xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2671                   this->name(), nm != NULL ? nm->compile_id() : -1);
2672      }
2673
2674      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2675    }
2676  }
2677}
2678
2679
2680// GC support
2681static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2682
2683void JavaThread::gc_epilogue() {
2684  frames_do(frame_gc_epilogue);
2685}
2686
2687
2688static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2689
2690void JavaThread::gc_prologue() {
2691  frames_do(frame_gc_prologue);
2692}
2693
2694// If the caller is a NamedThread, then remember, in the current scope,
2695// the given JavaThread in its _processed_thread field.
2696class RememberProcessedThread: public StackObj {
2697  NamedThread* _cur_thr;
2698public:
2699  RememberProcessedThread(JavaThread* jthr) {
2700    Thread* thread = Thread::current();
2701    if (thread->is_Named_thread()) {
2702      _cur_thr = (NamedThread *)thread;
2703      _cur_thr->set_processed_thread(jthr);
2704    } else {
2705      _cur_thr = NULL;
2706    }
2707  }
2708
2709  ~RememberProcessedThread() {
2710    if (_cur_thr) {
2711      _cur_thr->set_processed_thread(NULL);
2712    }
2713  }
2714};
2715
2716void JavaThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
2717  // Verify that the deferred card marks have been flushed.
2718  assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2719
2720  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2721  // since there may be more than one thread using each ThreadProfiler.
2722
2723  // Traverse the GCHandles
2724  Thread::oops_do(f, cld_f, cf);
2725
2726  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2727          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2728
2729  if (has_last_Java_frame()) {
2730    // Record JavaThread to GC thread
2731    RememberProcessedThread rpt(this);
2732
2733    // Traverse the privileged stack
2734    if (_privileged_stack_top != NULL) {
2735      _privileged_stack_top->oops_do(f);
2736    }
2737
2738    // traverse the registered growable array
2739    if (_array_for_gc != NULL) {
2740      for (int index = 0; index < _array_for_gc->length(); index++) {
2741        f->do_oop(_array_for_gc->adr_at(index));
2742      }
2743    }
2744
2745    // Traverse the monitor chunks
2746    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2747      chunk->oops_do(f);
2748    }
2749
2750    // Traverse the execution stack
2751    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2752      fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2753    }
2754  }
2755
2756  // callee_target is never live across a gc point so NULL it here should
2757  // it still contain a methdOop.
2758
2759  set_callee_target(NULL);
2760
2761  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2762  // If we have deferred set_locals there might be oops waiting to be
2763  // written
2764  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2765  if (list != NULL) {
2766    for (int i = 0; i < list->length(); i++) {
2767      list->at(i)->oops_do(f);
2768    }
2769  }
2770
2771  // Traverse instance variables at the end since the GC may be moving things
2772  // around using this function
2773  f->do_oop((oop*) &_threadObj);
2774  f->do_oop((oop*) &_vm_result);
2775  f->do_oop((oop*) &_exception_oop);
2776  f->do_oop((oop*) &_pending_async_exception);
2777
2778  if (jvmti_thread_state() != NULL) {
2779    jvmti_thread_state()->oops_do(f);
2780  }
2781}
2782
2783void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2784  Thread::nmethods_do(cf);  // (super method is a no-op)
2785
2786  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2787          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2788
2789  if (has_last_Java_frame()) {
2790    // Traverse the execution stack
2791    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2792      fst.current()->nmethods_do(cf);
2793    }
2794  }
2795}
2796
2797void JavaThread::metadata_do(void f(Metadata*)) {
2798  Thread::metadata_do(f);
2799  if (has_last_Java_frame()) {
2800    // Traverse the execution stack to call f() on the methods in the stack
2801    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2802      fst.current()->metadata_do(f);
2803    }
2804  } else if (is_Compiler_thread()) {
2805    // need to walk ciMetadata in current compile tasks to keep alive.
2806    CompilerThread* ct = (CompilerThread*)this;
2807    if (ct->env() != NULL) {
2808      ct->env()->metadata_do(f);
2809    }
2810  }
2811}
2812
2813// Printing
2814const char* _get_thread_state_name(JavaThreadState _thread_state) {
2815  switch (_thread_state) {
2816  case _thread_uninitialized:     return "_thread_uninitialized";
2817  case _thread_new:               return "_thread_new";
2818  case _thread_new_trans:         return "_thread_new_trans";
2819  case _thread_in_native:         return "_thread_in_native";
2820  case _thread_in_native_trans:   return "_thread_in_native_trans";
2821  case _thread_in_vm:             return "_thread_in_vm";
2822  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2823  case _thread_in_Java:           return "_thread_in_Java";
2824  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2825  case _thread_blocked:           return "_thread_blocked";
2826  case _thread_blocked_trans:     return "_thread_blocked_trans";
2827  default:                        return "unknown thread state";
2828  }
2829}
2830
2831#ifndef PRODUCT
2832void JavaThread::print_thread_state_on(outputStream *st) const {
2833  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2834};
2835void JavaThread::print_thread_state() const {
2836  print_thread_state_on(tty);
2837};
2838#endif // PRODUCT
2839
2840// Called by Threads::print() for VM_PrintThreads operation
2841void JavaThread::print_on(outputStream *st) const {
2842  st->print("\"%s\" ", get_thread_name());
2843  oop thread_oop = threadObj();
2844  if (thread_oop != NULL) {
2845    st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2846    if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2847    st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2848  }
2849  Thread::print_on(st);
2850  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2851  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2852  if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2853    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2854  }
2855#ifndef PRODUCT
2856  print_thread_state_on(st);
2857  _safepoint_state->print_on(st);
2858#endif // PRODUCT
2859}
2860
2861// Called by fatal error handler. The difference between this and
2862// JavaThread::print() is that we can't grab lock or allocate memory.
2863void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2864  st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2865  oop thread_obj = threadObj();
2866  if (thread_obj != NULL) {
2867     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2868  }
2869  st->print(" [");
2870  st->print("%s", _get_thread_state_name(_thread_state));
2871  if (osthread()) {
2872    st->print(", id=%d", osthread()->thread_id());
2873  }
2874  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2875            _stack_base - _stack_size, _stack_base);
2876  st->print("]");
2877  return;
2878}
2879
2880// Verification
2881
2882static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2883
2884void JavaThread::verify() {
2885  // Verify oops in the thread.
2886  oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2887
2888  // Verify the stack frames.
2889  frames_do(frame_verify);
2890}
2891
2892// CR 6300358 (sub-CR 2137150)
2893// Most callers of this method assume that it can't return NULL but a
2894// thread may not have a name whilst it is in the process of attaching to
2895// the VM - see CR 6412693, and there are places where a JavaThread can be
2896// seen prior to having it's threadObj set (eg JNI attaching threads and
2897// if vm exit occurs during initialization). These cases can all be accounted
2898// for such that this method never returns NULL.
2899const char* JavaThread::get_thread_name() const {
2900#ifdef ASSERT
2901  // early safepoints can hit while current thread does not yet have TLS
2902  if (!SafepointSynchronize::is_at_safepoint()) {
2903    Thread *cur = Thread::current();
2904    if (!(cur->is_Java_thread() && cur == this)) {
2905      // Current JavaThreads are allowed to get their own name without
2906      // the Threads_lock.
2907      assert_locked_or_safepoint(Threads_lock);
2908    }
2909  }
2910#endif // ASSERT
2911    return get_thread_name_string();
2912}
2913
2914// Returns a non-NULL representation of this thread's name, or a suitable
2915// descriptive string if there is no set name
2916const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2917  const char* name_str;
2918  oop thread_obj = threadObj();
2919  if (thread_obj != NULL) {
2920    typeArrayOop name = java_lang_Thread::name(thread_obj);
2921    if (name != NULL) {
2922      if (buf == NULL) {
2923        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2924      }
2925      else {
2926        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2927      }
2928    }
2929    else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2930      name_str = "<no-name - thread is attaching>";
2931    }
2932    else {
2933      name_str = Thread::name();
2934    }
2935  }
2936  else {
2937    name_str = Thread::name();
2938  }
2939  assert(name_str != NULL, "unexpected NULL thread name");
2940  return name_str;
2941}
2942
2943
2944const char* JavaThread::get_threadgroup_name() const {
2945  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2946  oop thread_obj = threadObj();
2947  if (thread_obj != NULL) {
2948    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2949    if (thread_group != NULL) {
2950      typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2951      // ThreadGroup.name can be null
2952      if (name != NULL) {
2953        const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2954        return str;
2955      }
2956    }
2957  }
2958  return NULL;
2959}
2960
2961const char* JavaThread::get_parent_name() const {
2962  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2963  oop thread_obj = threadObj();
2964  if (thread_obj != NULL) {
2965    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2966    if (thread_group != NULL) {
2967      oop parent = java_lang_ThreadGroup::parent(thread_group);
2968      if (parent != NULL) {
2969        typeArrayOop name = java_lang_ThreadGroup::name(parent);
2970        // ThreadGroup.name can be null
2971        if (name != NULL) {
2972          const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2973          return str;
2974        }
2975      }
2976    }
2977  }
2978  return NULL;
2979}
2980
2981ThreadPriority JavaThread::java_priority() const {
2982  oop thr_oop = threadObj();
2983  if (thr_oop == NULL) return NormPriority; // Bootstrapping
2984  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2985  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2986  return priority;
2987}
2988
2989void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2990
2991  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2992  // Link Java Thread object <-> C++ Thread
2993
2994  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2995  // and put it into a new Handle.  The Handle "thread_oop" can then
2996  // be used to pass the C++ thread object to other methods.
2997
2998  // Set the Java level thread object (jthread) field of the
2999  // new thread (a JavaThread *) to C++ thread object using the
3000  // "thread_oop" handle.
3001
3002  // Set the thread field (a JavaThread *) of the
3003  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3004
3005  Handle thread_oop(Thread::current(),
3006                    JNIHandles::resolve_non_null(jni_thread));
3007  assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3008    "must be initialized");
3009  set_threadObj(thread_oop());
3010  java_lang_Thread::set_thread(thread_oop(), this);
3011
3012  if (prio == NoPriority) {
3013    prio = java_lang_Thread::priority(thread_oop());
3014    assert(prio != NoPriority, "A valid priority should be present");
3015  }
3016
3017  // Push the Java priority down to the native thread; needs Threads_lock
3018  Thread::set_priority(this, prio);
3019
3020  // Add the new thread to the Threads list and set it in motion.
3021  // We must have threads lock in order to call Threads::add.
3022  // It is crucial that we do not block before the thread is
3023  // added to the Threads list for if a GC happens, then the java_thread oop
3024  // will not be visited by GC.
3025  Threads::add(this);
3026}
3027
3028oop JavaThread::current_park_blocker() {
3029  // Support for JSR-166 locks
3030  oop thread_oop = threadObj();
3031  if (thread_oop != NULL &&
3032      JDK_Version::current().supports_thread_park_blocker()) {
3033    return java_lang_Thread::park_blocker(thread_oop);
3034  }
3035  return NULL;
3036}
3037
3038
3039void JavaThread::print_stack_on(outputStream* st) {
3040  if (!has_last_Java_frame()) return;
3041  ResourceMark rm;
3042  HandleMark   hm;
3043
3044  RegisterMap reg_map(this);
3045  vframe* start_vf = last_java_vframe(&reg_map);
3046  int count = 0;
3047  for (vframe* f = start_vf; f; f = f->sender() ) {
3048    if (f->is_java_frame()) {
3049      javaVFrame* jvf = javaVFrame::cast(f);
3050      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3051
3052      // Print out lock information
3053      if (JavaMonitorsInStackTrace) {
3054        jvf->print_lock_info_on(st, count);
3055      }
3056    } else {
3057      // Ignore non-Java frames
3058    }
3059
3060    // Bail-out case for too deep stacks
3061    count++;
3062    if (MaxJavaStackTraceDepth == count) return;
3063  }
3064}
3065
3066
3067// JVMTI PopFrame support
3068void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3069  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3070  if (in_bytes(size_in_bytes) != 0) {
3071    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3072    _popframe_preserved_args_size = in_bytes(size_in_bytes);
3073    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3074  }
3075}
3076
3077void* JavaThread::popframe_preserved_args() {
3078  return _popframe_preserved_args;
3079}
3080
3081ByteSize JavaThread::popframe_preserved_args_size() {
3082  return in_ByteSize(_popframe_preserved_args_size);
3083}
3084
3085WordSize JavaThread::popframe_preserved_args_size_in_words() {
3086  int sz = in_bytes(popframe_preserved_args_size());
3087  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3088  return in_WordSize(sz / wordSize);
3089}
3090
3091void JavaThread::popframe_free_preserved_args() {
3092  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3093  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3094  _popframe_preserved_args = NULL;
3095  _popframe_preserved_args_size = 0;
3096}
3097
3098#ifndef PRODUCT
3099
3100void JavaThread::trace_frames() {
3101  tty->print_cr("[Describe stack]");
3102  int frame_no = 1;
3103  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3104    tty->print("  %d. ", frame_no++);
3105    fst.current()->print_value_on(tty,this);
3106    tty->cr();
3107  }
3108}
3109
3110class PrintAndVerifyOopClosure: public OopClosure {
3111 protected:
3112  template <class T> inline void do_oop_work(T* p) {
3113    oop obj = oopDesc::load_decode_heap_oop(p);
3114    if (obj == NULL) return;
3115    tty->print(INTPTR_FORMAT ": ", p);
3116    if (obj->is_oop_or_null()) {
3117      if (obj->is_objArray()) {
3118        tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3119      } else {
3120        obj->print();
3121      }
3122    } else {
3123      tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3124    }
3125    tty->cr();
3126  }
3127 public:
3128  virtual void do_oop(oop* p) { do_oop_work(p); }
3129  virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3130};
3131
3132
3133static void oops_print(frame* f, const RegisterMap *map) {
3134  PrintAndVerifyOopClosure print;
3135  f->print_value();
3136  f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3137}
3138
3139// Print our all the locations that contain oops and whether they are
3140// valid or not.  This useful when trying to find the oldest frame
3141// where an oop has gone bad since the frame walk is from youngest to
3142// oldest.
3143void JavaThread::trace_oops() {
3144  tty->print_cr("[Trace oops]");
3145  frames_do(oops_print);
3146}
3147
3148
3149#ifdef ASSERT
3150// Print or validate the layout of stack frames
3151void JavaThread::print_frame_layout(int depth, bool validate_only) {
3152  ResourceMark rm;
3153  PRESERVE_EXCEPTION_MARK;
3154  FrameValues values;
3155  int frame_no = 0;
3156  for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3157    fst.current()->describe(values, ++frame_no);
3158    if (depth == frame_no) break;
3159  }
3160  if (validate_only) {
3161    values.validate();
3162  } else {
3163    tty->print_cr("[Describe stack layout]");
3164    values.print(this);
3165  }
3166}
3167#endif
3168
3169void JavaThread::trace_stack_from(vframe* start_vf) {
3170  ResourceMark rm;
3171  int vframe_no = 1;
3172  for (vframe* f = start_vf; f; f = f->sender() ) {
3173    if (f->is_java_frame()) {
3174      javaVFrame::cast(f)->print_activation(vframe_no++);
3175    } else {
3176      f->print();
3177    }
3178    if (vframe_no > StackPrintLimit) {
3179      tty->print_cr("...<more frames>...");
3180      return;
3181    }
3182  }
3183}
3184
3185
3186void JavaThread::trace_stack() {
3187  if (!has_last_Java_frame()) return;
3188  ResourceMark rm;
3189  HandleMark   hm;
3190  RegisterMap reg_map(this);
3191  trace_stack_from(last_java_vframe(&reg_map));
3192}
3193
3194
3195#endif // PRODUCT
3196
3197
3198javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3199  assert(reg_map != NULL, "a map must be given");
3200  frame f = last_frame();
3201  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3202    if (vf->is_java_frame()) return javaVFrame::cast(vf);
3203  }
3204  return NULL;
3205}
3206
3207
3208Klass* JavaThread::security_get_caller_class(int depth) {
3209  vframeStream vfst(this);
3210  vfst.security_get_caller_frame(depth);
3211  if (!vfst.at_end()) {
3212    return vfst.method()->method_holder();
3213  }
3214  return NULL;
3215}
3216
3217static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3218  assert(thread->is_Compiler_thread(), "must be compiler thread");
3219  CompileBroker::compiler_thread_loop();
3220}
3221
3222// Create a CompilerThread
3223CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3224: JavaThread(&compiler_thread_entry) {
3225  _env   = NULL;
3226  _log   = NULL;
3227  _task  = NULL;
3228  _queue = queue;
3229  _counters = counters;
3230  _buffer_blob = NULL;
3231  _scanned_nmethod = NULL;
3232
3233#ifndef PRODUCT
3234  _ideal_graph_printer = NULL;
3235#endif
3236}
3237
3238void CompilerThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
3239  JavaThread::oops_do(f, cld_f, cf);
3240  if (_scanned_nmethod != NULL && cf != NULL) {
3241    // Safepoints can occur when the sweeper is scanning an nmethod so
3242    // process it here to make sure it isn't unloaded in the middle of
3243    // a scan.
3244    cf->do_code_blob(_scanned_nmethod);
3245  }
3246}
3247
3248// ======= Threads ========
3249
3250// The Threads class links together all active threads, and provides
3251// operations over all threads.  It is protected by its own Mutex
3252// lock, which is also used in other contexts to protect thread
3253// operations from having the thread being operated on from exiting
3254// and going away unexpectedly (e.g., safepoint synchronization)
3255
3256JavaThread* Threads::_thread_list = NULL;
3257int         Threads::_number_of_threads = 0;
3258int         Threads::_number_of_non_daemon_threads = 0;
3259int         Threads::_return_code = 0;
3260size_t      JavaThread::_stack_size_at_create = 0;
3261#ifdef ASSERT
3262bool        Threads::_vm_complete = false;
3263#endif
3264
3265// All JavaThreads
3266#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3267
3268void os_stream();
3269
3270// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3271void Threads::threads_do(ThreadClosure* tc) {
3272  assert_locked_or_safepoint(Threads_lock);
3273  // ALL_JAVA_THREADS iterates through all JavaThreads
3274  ALL_JAVA_THREADS(p) {
3275    tc->do_thread(p);
3276  }
3277  // Someday we could have a table or list of all non-JavaThreads.
3278  // For now, just manually iterate through them.
3279  tc->do_thread(VMThread::vm_thread());
3280  Universe::heap()->gc_threads_do(tc);
3281  WatcherThread *wt = WatcherThread::watcher_thread();
3282  // Strictly speaking, the following NULL check isn't sufficient to make sure
3283  // the data for WatcherThread is still valid upon being examined. However,
3284  // considering that WatchThread terminates when the VM is on the way to
3285  // exit at safepoint, the chance of the above is extremely small. The right
3286  // way to prevent termination of WatcherThread would be to acquire
3287  // Terminator_lock, but we can't do that without violating the lock rank
3288  // checking in some cases.
3289  if (wt != NULL)
3290    tc->do_thread(wt);
3291
3292  // If CompilerThreads ever become non-JavaThreads, add them here
3293}
3294
3295jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3296
3297  extern void JDK_Version_init();
3298
3299  // Check version
3300  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3301
3302  // Initialize the output stream module
3303  ostream_init();
3304
3305  // Process java launcher properties.
3306  Arguments::process_sun_java_launcher_properties(args);
3307
3308  // Initialize the os module before using TLS
3309  os::init();
3310
3311  // Initialize system properties.
3312  Arguments::init_system_properties();
3313
3314  // So that JDK version can be used as a discrimintor when parsing arguments
3315  JDK_Version_init();
3316
3317  // Update/Initialize System properties after JDK version number is known
3318  Arguments::init_version_specific_system_properties();
3319
3320  // Parse arguments
3321  jint parse_result = Arguments::parse(args);
3322  if (parse_result != JNI_OK) return parse_result;
3323
3324  if (PauseAtStartup) {
3325    os::pause();
3326  }
3327
3328#ifndef USDT2
3329  HS_DTRACE_PROBE(hotspot, vm__init__begin);
3330#else /* USDT2 */
3331  HOTSPOT_VM_INIT_BEGIN();
3332#endif /* USDT2 */
3333
3334  // Record VM creation timing statistics
3335  TraceVmCreationTime create_vm_timer;
3336  create_vm_timer.start();
3337
3338  // Timing (must come after argument parsing)
3339  TraceTime timer("Create VM", TraceStartupTime);
3340
3341  // Initialize the os module after parsing the args
3342  jint os_init_2_result = os::init_2();
3343  if (os_init_2_result != JNI_OK) return os_init_2_result;
3344
3345  jint adjust_after_os_result = Arguments::adjust_after_os();
3346  if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3347
3348  // intialize TLS
3349  ThreadLocalStorage::init();
3350
3351  // Bootstrap native memory tracking, so it can start recording memory
3352  // activities before worker thread is started. This is the first phase
3353  // of bootstrapping, VM is currently running in single-thread mode.
3354  MemTracker::bootstrap_single_thread();
3355
3356  // Initialize output stream logging
3357  ostream_init_log();
3358
3359  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3360  // Must be before create_vm_init_agents()
3361  if (Arguments::init_libraries_at_startup()) {
3362    convert_vm_init_libraries_to_agents();
3363  }
3364
3365  // Launch -agentlib/-agentpath and converted -Xrun agents
3366  if (Arguments::init_agents_at_startup()) {
3367    create_vm_init_agents();
3368  }
3369
3370  // Initialize Threads state
3371  _thread_list = NULL;
3372  _number_of_threads = 0;
3373  _number_of_non_daemon_threads = 0;
3374
3375  // Initialize global data structures and create system classes in heap
3376  vm_init_globals();
3377
3378  // Attach the main thread to this os thread
3379  JavaThread* main_thread = new JavaThread();
3380  main_thread->set_thread_state(_thread_in_vm);
3381  // must do this before set_active_handles and initialize_thread_local_storage
3382  // Note: on solaris initialize_thread_local_storage() will (indirectly)
3383  // change the stack size recorded here to one based on the java thread
3384  // stacksize. This adjusted size is what is used to figure the placement
3385  // of the guard pages.
3386  main_thread->record_stack_base_and_size();
3387  main_thread->initialize_thread_local_storage();
3388
3389  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3390
3391  if (!main_thread->set_as_starting_thread()) {
3392    vm_shutdown_during_initialization(
3393      "Failed necessary internal allocation. Out of swap space");
3394    delete main_thread;
3395    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3396    return JNI_ENOMEM;
3397  }
3398
3399  // Enable guard page *after* os::create_main_thread(), otherwise it would
3400  // crash Linux VM, see notes in os_linux.cpp.
3401  main_thread->create_stack_guard_pages();
3402
3403  // Initialize Java-Level synchronization subsystem
3404  ObjectMonitor::Initialize() ;
3405
3406  // Second phase of bootstrapping, VM is about entering multi-thread mode
3407  MemTracker::bootstrap_multi_thread();
3408
3409  // Initialize global modules
3410  jint status = init_globals();
3411  if (status != JNI_OK) {
3412    delete main_thread;
3413    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3414    return status;
3415  }
3416
3417  // Should be done after the heap is fully created
3418  main_thread->cache_global_variables();
3419
3420  HandleMark hm;
3421
3422  { MutexLocker mu(Threads_lock);
3423    Threads::add(main_thread);
3424  }
3425
3426  // Any JVMTI raw monitors entered in onload will transition into
3427  // real raw monitor. VM is setup enough here for raw monitor enter.
3428  JvmtiExport::transition_pending_onload_raw_monitors();
3429
3430  // Fully start NMT
3431  MemTracker::start();
3432
3433  // Create the VMThread
3434  { TraceTime timer("Start VMThread", TraceStartupTime);
3435    VMThread::create();
3436    Thread* vmthread = VMThread::vm_thread();
3437
3438    if (!os::create_thread(vmthread, os::vm_thread))
3439      vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3440
3441    // Wait for the VM thread to become ready, and VMThread::run to initialize
3442    // Monitors can have spurious returns, must always check another state flag
3443    {
3444      MutexLocker ml(Notify_lock);
3445      os::start_thread(vmthread);
3446      while (vmthread->active_handles() == NULL) {
3447        Notify_lock->wait();
3448      }
3449    }
3450  }
3451
3452  assert (Universe::is_fully_initialized(), "not initialized");
3453  if (VerifyDuringStartup) {
3454    // Make sure we're starting with a clean slate.
3455    VM_Verify verify_op;
3456    VMThread::execute(&verify_op);
3457  }
3458
3459  EXCEPTION_MARK;
3460
3461  // At this point, the Universe is initialized, but we have not executed
3462  // any byte code.  Now is a good time (the only time) to dump out the
3463  // internal state of the JVM for sharing.
3464  if (DumpSharedSpaces) {
3465    MetaspaceShared::preload_and_dump(CHECK_0);
3466    ShouldNotReachHere();
3467  }
3468
3469  // Always call even when there are not JVMTI environments yet, since environments
3470  // may be attached late and JVMTI must track phases of VM execution
3471  JvmtiExport::enter_start_phase();
3472
3473  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3474  JvmtiExport::post_vm_start();
3475
3476  {
3477    TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3478
3479    if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3480      create_vm_init_libraries();
3481    }
3482
3483    initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3484
3485    if (AggressiveOpts) {
3486      {
3487        // Forcibly initialize java/util/HashMap and mutate the private
3488        // static final "frontCacheEnabled" field before we start creating instances
3489#ifdef ASSERT
3490        Klass* tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3491        assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3492#endif
3493        Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3494        KlassHandle k = KlassHandle(THREAD, k_o);
3495        guarantee(k.not_null(), "Must find java/util/HashMap");
3496        instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3497        ik->initialize(CHECK_0);
3498        fieldDescriptor fd;
3499        // Possible we might not find this field; if so, don't break
3500        if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3501          k()->java_mirror()->bool_field_put(fd.offset(), true);
3502        }
3503      }
3504
3505      if (UseStringCache) {
3506        // Forcibly initialize java/lang/StringValue and mutate the private
3507        // static final "stringCacheEnabled" field before we start creating instances
3508        Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3509        // Possible that StringValue isn't present: if so, silently don't break
3510        if (k_o != NULL) {
3511          KlassHandle k = KlassHandle(THREAD, k_o);
3512          instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3513          ik->initialize(CHECK_0);
3514          fieldDescriptor fd;
3515          // Possible we might not find this field: if so, silently don't break
3516          if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3517            k()->java_mirror()->bool_field_put(fd.offset(), true);
3518          }
3519        }
3520      }
3521    }
3522
3523    // Initialize java_lang.System (needed before creating the thread)
3524    initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3525    initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3526    Handle thread_group = create_initial_thread_group(CHECK_0);
3527    Universe::set_main_thread_group(thread_group());
3528    initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3529    oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3530    main_thread->set_threadObj(thread_object);
3531    // Set thread status to running since main thread has
3532    // been started and running.
3533    java_lang_Thread::set_thread_status(thread_object,
3534                                        java_lang_Thread::RUNNABLE);
3535
3536    // The VM creates & returns objects of this class. Make sure it's initialized.
3537    initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3538
3539    // The VM preresolves methods to these classes. Make sure that they get initialized
3540    initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3541    initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3542    call_initializeSystemClass(CHECK_0);
3543
3544    // get the Java runtime name after java.lang.System is initialized
3545    JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3546    JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3547
3548    // an instance of OutOfMemory exception has been allocated earlier
3549    initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3550    initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3551    initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3552    initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3553    initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3554    initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3555    initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3556    initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
3557  }
3558
3559  // See        : bugid 4211085.
3560  // Background : the static initializer of java.lang.Compiler tries to read
3561  //              property"java.compiler" and read & write property "java.vm.info".
3562  //              When a security manager is installed through the command line
3563  //              option "-Djava.security.manager", the above properties are not
3564  //              readable and the static initializer for java.lang.Compiler fails
3565  //              resulting in a NoClassDefFoundError.  This can happen in any
3566  //              user code which calls methods in java.lang.Compiler.
3567  // Hack :       the hack is to pre-load and initialize this class, so that only
3568  //              system domains are on the stack when the properties are read.
3569  //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3570  //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3571  // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3572  //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3573  //              Once that is done, we should remove this hack.
3574  initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3575
3576  // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3577  // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3578  // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3579  // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3580  // This should also be taken out as soon as 4211383 gets fixed.
3581  reset_vm_info_property(CHECK_0);
3582
3583  quicken_jni_functions();
3584
3585  // Must be run after init_ft which initializes ft_enabled
3586  if (TRACE_INITIALIZE() != JNI_OK) {
3587    vm_exit_during_initialization("Failed to initialize tracing backend");
3588  }
3589
3590  // Set flag that basic initialization has completed. Used by exceptions and various
3591  // debug stuff, that does not work until all basic classes have been initialized.
3592  set_init_completed();
3593
3594#ifndef USDT2
3595  HS_DTRACE_PROBE(hotspot, vm__init__end);
3596#else /* USDT2 */
3597  HOTSPOT_VM_INIT_END();
3598#endif /* USDT2 */
3599
3600  // record VM initialization completion time
3601#if INCLUDE_MANAGEMENT
3602  Management::record_vm_init_completed();
3603#endif // INCLUDE_MANAGEMENT
3604
3605  // Compute system loader. Note that this has to occur after set_init_completed, since
3606  // valid exceptions may be thrown in the process.
3607  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3608  // set_init_completed has just been called, causing exceptions not to be shortcut
3609  // anymore. We call vm_exit_during_initialization directly instead.
3610  SystemDictionary::compute_java_system_loader(THREAD);
3611  if (HAS_PENDING_EXCEPTION) {
3612    vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3613  }
3614
3615#if INCLUDE_ALL_GCS
3616  // Support for ConcurrentMarkSweep. This should be cleaned up
3617  // and better encapsulated. The ugly nested if test would go away
3618  // once things are properly refactored. XXX YSR
3619  if (UseConcMarkSweepGC || UseG1GC) {
3620    if (UseConcMarkSweepGC) {
3621      ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3622    } else {
3623      ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3624    }
3625    if (HAS_PENDING_EXCEPTION) {
3626      vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3627    }
3628  }
3629#endif // INCLUDE_ALL_GCS
3630
3631  // Always call even when there are not JVMTI environments yet, since environments
3632  // may be attached late and JVMTI must track phases of VM execution
3633  JvmtiExport::enter_live_phase();
3634
3635  // Signal Dispatcher needs to be started before VMInit event is posted
3636  os::signal_init();
3637
3638  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3639  if (!DisableAttachMechanism) {
3640    if (StartAttachListener || AttachListener::init_at_startup()) {
3641      AttachListener::init();
3642    }
3643  }
3644
3645  // Launch -Xrun agents
3646  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3647  // back-end can launch with -Xdebug -Xrunjdwp.
3648  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3649    create_vm_init_libraries();
3650  }
3651
3652  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3653  JvmtiExport::post_vm_initialized();
3654
3655  if (TRACE_START() != JNI_OK) {
3656    vm_exit_during_initialization("Failed to start tracing backend.");
3657  }
3658
3659  if (CleanChunkPoolAsync) {
3660    Chunk::start_chunk_pool_cleaner_task();
3661  }
3662
3663  // initialize compiler(s)
3664#if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3665  CompileBroker::compilation_init();
3666#endif
3667
3668#if INCLUDE_MANAGEMENT
3669  Management::initialize(THREAD);
3670#endif // INCLUDE_MANAGEMENT
3671
3672  if (HAS_PENDING_EXCEPTION) {
3673    // management agent fails to start possibly due to
3674    // configuration problem and is responsible for printing
3675    // stack trace if appropriate. Simply exit VM.
3676    vm_exit(1);
3677  }
3678
3679  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3680  if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3681  if (MemProfiling)                   MemProfiler::engage();
3682  StatSampler::engage();
3683  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3684
3685  BiasedLocking::init();
3686
3687  if (JDK_Version::current().post_vm_init_hook_enabled()) {
3688    call_postVMInitHook(THREAD);
3689    // The Java side of PostVMInitHook.run must deal with all
3690    // exceptions and provide means of diagnosis.
3691    if (HAS_PENDING_EXCEPTION) {
3692      CLEAR_PENDING_EXCEPTION;
3693    }
3694  }
3695
3696  {
3697      MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3698      // Make sure the watcher thread can be started by WatcherThread::start()
3699      // or by dynamic enrollment.
3700      WatcherThread::make_startable();
3701      // Start up the WatcherThread if there are any periodic tasks
3702      // NOTE:  All PeriodicTasks should be registered by now. If they
3703      //   aren't, late joiners might appear to start slowly (we might
3704      //   take a while to process their first tick).
3705      if (PeriodicTask::num_tasks() > 0) {
3706          WatcherThread::start();
3707      }
3708  }
3709
3710  // Give os specific code one last chance to start
3711  os::init_3();
3712
3713  create_vm_timer.end();
3714#ifdef ASSERT
3715  _vm_complete = true;
3716#endif
3717  return JNI_OK;
3718}
3719
3720// type for the Agent_OnLoad and JVM_OnLoad entry points
3721extern "C" {
3722  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3723}
3724// Find a command line agent library and return its entry point for
3725//         -agentlib:  -agentpath:   -Xrun
3726// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3727static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3728  OnLoadEntry_t on_load_entry = NULL;
3729  void *library = agent->os_lib();  // check if we have looked it up before
3730
3731  if (library == NULL) {
3732    char buffer[JVM_MAXPATHLEN];
3733    char ebuf[1024];
3734    const char *name = agent->name();
3735    const char *msg = "Could not find agent library ";
3736
3737    if (agent->is_absolute_path()) {
3738      library = os::dll_load(name, ebuf, sizeof ebuf);
3739      if (library == NULL) {
3740        const char *sub_msg = " in absolute path, with error: ";
3741        size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3742        char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3743        jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3744        // If we can't find the agent, exit.
3745        vm_exit_during_initialization(buf, NULL);
3746        FREE_C_HEAP_ARRAY(char, buf, mtThread);
3747      }
3748    } else {
3749      // Try to load the agent from the standard dll directory
3750      if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3751                             name)) {
3752        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3753      }
3754      if (library == NULL) { // Try the local directory
3755        char ns[1] = {0};
3756        if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3757          library = os::dll_load(buffer, ebuf, sizeof ebuf);
3758        }
3759        if (library == NULL) {
3760          const char *sub_msg = " on the library path, with error: ";
3761          size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3762          char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3763          jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3764          // If we can't find the agent, exit.
3765          vm_exit_during_initialization(buf, NULL);
3766          FREE_C_HEAP_ARRAY(char, buf, mtThread);
3767        }
3768      }
3769    }
3770    agent->set_os_lib(library);
3771  }
3772
3773  // Find the OnLoad function.
3774  for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3775    on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
3776    if (on_load_entry != NULL) break;
3777  }
3778  return on_load_entry;
3779}
3780
3781// Find the JVM_OnLoad entry point
3782static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3783  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3784  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3785}
3786
3787// Find the Agent_OnLoad entry point
3788static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3789  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3790  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3791}
3792
3793// For backwards compatibility with -Xrun
3794// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3795// treated like -agentpath:
3796// Must be called before agent libraries are created
3797void Threads::convert_vm_init_libraries_to_agents() {
3798  AgentLibrary* agent;
3799  AgentLibrary* next;
3800
3801  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3802    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3803    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3804
3805    // If there is an JVM_OnLoad function it will get called later,
3806    // otherwise see if there is an Agent_OnLoad
3807    if (on_load_entry == NULL) {
3808      on_load_entry = lookup_agent_on_load(agent);
3809      if (on_load_entry != NULL) {
3810        // switch it to the agent list -- so that Agent_OnLoad will be called,
3811        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3812        Arguments::convert_library_to_agent(agent);
3813      } else {
3814        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3815      }
3816    }
3817  }
3818}
3819
3820// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3821// Invokes Agent_OnLoad
3822// Called very early -- before JavaThreads exist
3823void Threads::create_vm_init_agents() {
3824  extern struct JavaVM_ main_vm;
3825  AgentLibrary* agent;
3826
3827  JvmtiExport::enter_onload_phase();
3828
3829  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3830    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3831
3832    if (on_load_entry != NULL) {
3833      // Invoke the Agent_OnLoad function
3834      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3835      if (err != JNI_OK) {
3836        vm_exit_during_initialization("agent library failed to init", agent->name());
3837      }
3838    } else {
3839      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3840    }
3841  }
3842  JvmtiExport::enter_primordial_phase();
3843}
3844
3845extern "C" {
3846  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3847}
3848
3849void Threads::shutdown_vm_agents() {
3850  // Send any Agent_OnUnload notifications
3851  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3852  extern struct JavaVM_ main_vm;
3853  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3854
3855    // Find the Agent_OnUnload function.
3856    for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3857      Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3858               os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3859
3860      // Invoke the Agent_OnUnload function
3861      if (unload_entry != NULL) {
3862        JavaThread* thread = JavaThread::current();
3863        ThreadToNativeFromVM ttn(thread);
3864        HandleMark hm(thread);
3865        (*unload_entry)(&main_vm);
3866        break;
3867      }
3868    }
3869  }
3870}
3871
3872// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3873// Invokes JVM_OnLoad
3874void Threads::create_vm_init_libraries() {
3875  extern struct JavaVM_ main_vm;
3876  AgentLibrary* agent;
3877
3878  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3879    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3880
3881    if (on_load_entry != NULL) {
3882      // Invoke the JVM_OnLoad function
3883      JavaThread* thread = JavaThread::current();
3884      ThreadToNativeFromVM ttn(thread);
3885      HandleMark hm(thread);
3886      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3887      if (err != JNI_OK) {
3888        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3889      }
3890    } else {
3891      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3892    }
3893  }
3894}
3895
3896// Last thread running calls java.lang.Shutdown.shutdown()
3897void JavaThread::invoke_shutdown_hooks() {
3898  HandleMark hm(this);
3899
3900  // We could get here with a pending exception, if so clear it now.
3901  if (this->has_pending_exception()) {
3902    this->clear_pending_exception();
3903  }
3904
3905  EXCEPTION_MARK;
3906  Klass* k =
3907    SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3908                                      THREAD);
3909  if (k != NULL) {
3910    // SystemDictionary::resolve_or_null will return null if there was
3911    // an exception.  If we cannot load the Shutdown class, just don't
3912    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3913    // and finalizers (if runFinalizersOnExit is set) won't be run.
3914    // Note that if a shutdown hook was registered or runFinalizersOnExit
3915    // was called, the Shutdown class would have already been loaded
3916    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3917    instanceKlassHandle shutdown_klass (THREAD, k);
3918    JavaValue result(T_VOID);
3919    JavaCalls::call_static(&result,
3920                           shutdown_klass,
3921                           vmSymbols::shutdown_method_name(),
3922                           vmSymbols::void_method_signature(),
3923                           THREAD);
3924  }
3925  CLEAR_PENDING_EXCEPTION;
3926}
3927
3928// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3929// the program falls off the end of main(). Another VM exit path is through
3930// vm_exit() when the program calls System.exit() to return a value or when
3931// there is a serious error in VM. The two shutdown paths are not exactly
3932// the same, but they share Shutdown.shutdown() at Java level and before_exit()
3933// and VM_Exit op at VM level.
3934//
3935// Shutdown sequence:
3936//   + Shutdown native memory tracking if it is on
3937//   + Wait until we are the last non-daemon thread to execute
3938//     <-- every thing is still working at this moment -->
3939//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3940//        shutdown hooks, run finalizers if finalization-on-exit
3941//   + Call before_exit(), prepare for VM exit
3942//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3943//        currently the only user of this mechanism is File.deleteOnExit())
3944//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3945//        post thread end and vm death events to JVMTI,
3946//        stop signal thread
3947//   + Call JavaThread::exit(), it will:
3948//      > release JNI handle blocks, remove stack guard pages
3949//      > remove this thread from Threads list
3950//     <-- no more Java code from this thread after this point -->
3951//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3952//     the compiler threads at safepoint
3953//     <-- do not use anything that could get blocked by Safepoint -->
3954//   + Disable tracing at JNI/JVM barriers
3955//   + Set _vm_exited flag for threads that are still running native code
3956//   + Delete this thread
3957//   + Call exit_globals()
3958//      > deletes tty
3959//      > deletes PerfMemory resources
3960//   + Return to caller
3961
3962bool Threads::destroy_vm() {
3963  JavaThread* thread = JavaThread::current();
3964
3965#ifdef ASSERT
3966  _vm_complete = false;
3967#endif
3968  // Wait until we are the last non-daemon thread to execute
3969  { MutexLocker nu(Threads_lock);
3970    while (Threads::number_of_non_daemon_threads() > 1 )
3971      // This wait should make safepoint checks, wait without a timeout,
3972      // and wait as a suspend-equivalent condition.
3973      //
3974      // Note: If the FlatProfiler is running and this thread is waiting
3975      // for another non-daemon thread to finish, then the FlatProfiler
3976      // is waiting for the external suspend request on this thread to
3977      // complete. wait_for_ext_suspend_completion() will eventually
3978      // timeout, but that takes time. Making this wait a suspend-
3979      // equivalent condition solves that timeout problem.
3980      //
3981      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3982                         Mutex::_as_suspend_equivalent_flag);
3983  }
3984
3985  // Hang forever on exit if we are reporting an error.
3986  if (ShowMessageBoxOnError && is_error_reported()) {
3987    os::infinite_sleep();
3988  }
3989  os::wait_for_keypress_at_exit();
3990
3991  if (JDK_Version::is_jdk12x_version()) {
3992    // We are the last thread running, so check if finalizers should be run.
3993    // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3994    HandleMark rm(thread);
3995    Universe::run_finalizers_on_exit();
3996  } else {
3997    // run Java level shutdown hooks
3998    thread->invoke_shutdown_hooks();
3999  }
4000
4001  before_exit(thread);
4002
4003  thread->exit(true);
4004
4005  // Stop VM thread.
4006  {
4007    // 4945125 The vm thread comes to a safepoint during exit.
4008    // GC vm_operations can get caught at the safepoint, and the
4009    // heap is unparseable if they are caught. Grab the Heap_lock
4010    // to prevent this. The GC vm_operations will not be able to
4011    // queue until after the vm thread is dead.
4012    // After this point, we'll never emerge out of the safepoint before
4013    // the VM exits, so concurrent GC threads do not need to be explicitly
4014    // stopped; they remain inactive until the process exits.
4015    // Note: some concurrent G1 threads may be running during a safepoint,
4016    // but these will not be accessing the heap, just some G1-specific side
4017    // data structures that are not accessed by any other threads but them
4018    // after this point in a terminal safepoint.
4019
4020    MutexLocker ml(Heap_lock);
4021
4022    VMThread::wait_for_vm_thread_exit();
4023    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4024    VMThread::destroy();
4025  }
4026
4027  // clean up ideal graph printers
4028#if defined(COMPILER2) && !defined(PRODUCT)
4029  IdealGraphPrinter::clean_up();
4030#endif
4031
4032  // Now, all Java threads are gone except daemon threads. Daemon threads
4033  // running Java code or in VM are stopped by the Safepoint. However,
4034  // daemon threads executing native code are still running.  But they
4035  // will be stopped at native=>Java/VM barriers. Note that we can't
4036  // simply kill or suspend them, as it is inherently deadlock-prone.
4037
4038#ifndef PRODUCT
4039  // disable function tracing at JNI/JVM barriers
4040  TraceJNICalls = false;
4041  TraceJVMCalls = false;
4042  TraceRuntimeCalls = false;
4043#endif
4044
4045  VM_Exit::set_vm_exited();
4046
4047  notify_vm_shutdown();
4048
4049  delete thread;
4050
4051  // exit_globals() will delete tty
4052  exit_globals();
4053
4054  return true;
4055}
4056
4057
4058jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4059  if (version == JNI_VERSION_1_1) return JNI_TRUE;
4060  return is_supported_jni_version(version);
4061}
4062
4063
4064jboolean Threads::is_supported_jni_version(jint version) {
4065  if (version == JNI_VERSION_1_2) return JNI_TRUE;
4066  if (version == JNI_VERSION_1_4) return JNI_TRUE;
4067  if (version == JNI_VERSION_1_6) return JNI_TRUE;
4068  if (version == JNI_VERSION_1_8) return JNI_TRUE;
4069  return JNI_FALSE;
4070}
4071
4072
4073void Threads::add(JavaThread* p, bool force_daemon) {
4074  // The threads lock must be owned at this point
4075  assert_locked_or_safepoint(Threads_lock);
4076
4077  // See the comment for this method in thread.hpp for its purpose and
4078  // why it is called here.
4079  p->initialize_queues();
4080  p->set_next(_thread_list);
4081  _thread_list = p;
4082  _number_of_threads++;
4083  oop threadObj = p->threadObj();
4084  bool daemon = true;
4085  // Bootstrapping problem: threadObj can be null for initial
4086  // JavaThread (or for threads attached via JNI)
4087  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4088    _number_of_non_daemon_threads++;
4089    daemon = false;
4090  }
4091
4092  p->set_safepoint_visible(true);
4093
4094  ThreadService::add_thread(p, daemon);
4095
4096  // Possible GC point.
4097  Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4098}
4099
4100void Threads::remove(JavaThread* p) {
4101  // Extra scope needed for Thread_lock, so we can check
4102  // that we do not remove thread without safepoint code notice
4103  { MutexLocker ml(Threads_lock);
4104
4105    assert(includes(p), "p must be present");
4106
4107    JavaThread* current = _thread_list;
4108    JavaThread* prev    = NULL;
4109
4110    while (current != p) {
4111      prev    = current;
4112      current = current->next();
4113    }
4114
4115    if (prev) {
4116      prev->set_next(current->next());
4117    } else {
4118      _thread_list = p->next();
4119    }
4120    _number_of_threads--;
4121    oop threadObj = p->threadObj();
4122    bool daemon = true;
4123    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4124      _number_of_non_daemon_threads--;
4125      daemon = false;
4126
4127      // Only one thread left, do a notify on the Threads_lock so a thread waiting
4128      // on destroy_vm will wake up.
4129      if (number_of_non_daemon_threads() == 1)
4130        Threads_lock->notify_all();
4131    }
4132    ThreadService::remove_thread(p, daemon);
4133
4134    // Make sure that safepoint code disregard this thread. This is needed since
4135    // the thread might mess around with locks after this point. This can cause it
4136    // to do callbacks into the safepoint code. However, the safepoint code is not aware
4137    // of this thread since it is removed from the queue.
4138    p->set_terminated_value();
4139
4140    // Now, this thread is not visible to safepoint
4141    p->set_safepoint_visible(false);
4142    // once the thread becomes safepoint invisible, we can not use its per-thread
4143    // recorder. And Threads::do_threads() no longer walks this thread, so we have
4144    // to release its per-thread recorder here.
4145    MemTracker::thread_exiting(p);
4146  } // unlock Threads_lock
4147
4148  // Since Events::log uses a lock, we grab it outside the Threads_lock
4149  Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4150}
4151
4152// Threads_lock must be held when this is called (or must be called during a safepoint)
4153bool Threads::includes(JavaThread* p) {
4154  assert(Threads_lock->is_locked(), "sanity check");
4155  ALL_JAVA_THREADS(q) {
4156    if (q == p ) {
4157      return true;
4158    }
4159  }
4160  return false;
4161}
4162
4163// Operations on the Threads list for GC.  These are not explicitly locked,
4164// but the garbage collector must provide a safe context for them to run.
4165// In particular, these things should never be called when the Threads_lock
4166// is held by some other thread. (Note: the Safepoint abstraction also
4167// uses the Threads_lock to gurantee this property. It also makes sure that
4168// all threads gets blocked when exiting or starting).
4169
4170void Threads::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
4171  ALL_JAVA_THREADS(p) {
4172    p->oops_do(f, cld_f, cf);
4173  }
4174  VMThread::vm_thread()->oops_do(f, cld_f, cf);
4175}
4176
4177void Threads::possibly_parallel_oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
4178  // Introduce a mechanism allowing parallel threads to claim threads as
4179  // root groups.  Overhead should be small enough to use all the time,
4180  // even in sequential code.
4181  SharedHeap* sh = SharedHeap::heap();
4182  // Cannot yet substitute active_workers for n_par_threads
4183  // because of G1CollectedHeap::verify() use of
4184  // SharedHeap::process_strong_roots().  n_par_threads == 0 will
4185  // turn off parallelism in process_strong_roots while active_workers
4186  // is being used for parallelism elsewhere.
4187  bool is_par = sh->n_par_threads() > 0;
4188  assert(!is_par ||
4189         (SharedHeap::heap()->n_par_threads() ==
4190          SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4191  int cp = SharedHeap::heap()->strong_roots_parity();
4192  ALL_JAVA_THREADS(p) {
4193    if (p->claim_oops_do(is_par, cp)) {
4194      p->oops_do(f, cld_f, cf);
4195    }
4196  }
4197  VMThread* vmt = VMThread::vm_thread();
4198  if (vmt->claim_oops_do(is_par, cp)) {
4199    vmt->oops_do(f, cld_f, cf);
4200  }
4201}
4202
4203#if INCLUDE_ALL_GCS
4204// Used by ParallelScavenge
4205void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4206  ALL_JAVA_THREADS(p) {
4207    q->enqueue(new ThreadRootsTask(p));
4208  }
4209  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4210}
4211
4212// Used by Parallel Old
4213void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4214  ALL_JAVA_THREADS(p) {
4215    q->enqueue(new ThreadRootsMarkingTask(p));
4216  }
4217  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4218}
4219#endif // INCLUDE_ALL_GCS
4220
4221void Threads::nmethods_do(CodeBlobClosure* cf) {
4222  ALL_JAVA_THREADS(p) {
4223    p->nmethods_do(cf);
4224  }
4225  VMThread::vm_thread()->nmethods_do(cf);
4226}
4227
4228void Threads::metadata_do(void f(Metadata*)) {
4229  ALL_JAVA_THREADS(p) {
4230    p->metadata_do(f);
4231  }
4232}
4233
4234void Threads::gc_epilogue() {
4235  ALL_JAVA_THREADS(p) {
4236    p->gc_epilogue();
4237  }
4238}
4239
4240void Threads::gc_prologue() {
4241  ALL_JAVA_THREADS(p) {
4242    p->gc_prologue();
4243  }
4244}
4245
4246void Threads::deoptimized_wrt_marked_nmethods() {
4247  ALL_JAVA_THREADS(p) {
4248    p->deoptimized_wrt_marked_nmethods();
4249  }
4250}
4251
4252
4253// Get count Java threads that are waiting to enter the specified monitor.
4254GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4255  address monitor, bool doLock) {
4256  assert(doLock || SafepointSynchronize::is_at_safepoint(),
4257    "must grab Threads_lock or be at safepoint");
4258  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4259
4260  int i = 0;
4261  {
4262    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4263    ALL_JAVA_THREADS(p) {
4264      if (p->is_Compiler_thread()) continue;
4265
4266      address pending = (address)p->current_pending_monitor();
4267      if (pending == monitor) {             // found a match
4268        if (i < count) result->append(p);   // save the first count matches
4269        i++;
4270      }
4271    }
4272  }
4273  return result;
4274}
4275
4276
4277JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4278  assert(doLock ||
4279         Threads_lock->owned_by_self() ||
4280         SafepointSynchronize::is_at_safepoint(),
4281         "must grab Threads_lock or be at safepoint");
4282
4283  // NULL owner means not locked so we can skip the search
4284  if (owner == NULL) return NULL;
4285
4286  {
4287    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4288    ALL_JAVA_THREADS(p) {
4289      // first, see if owner is the address of a Java thread
4290      if (owner == (address)p) return p;
4291    }
4292  }
4293  // Cannot assert on lack of success here since this function may be
4294  // used by code that is trying to report useful problem information
4295  // like deadlock detection.
4296  if (UseHeavyMonitors) return NULL;
4297
4298  //
4299  // If we didn't find a matching Java thread and we didn't force use of
4300  // heavyweight monitors, then the owner is the stack address of the
4301  // Lock Word in the owning Java thread's stack.
4302  //
4303  JavaThread* the_owner = NULL;
4304  {
4305    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4306    ALL_JAVA_THREADS(q) {
4307      if (q->is_lock_owned(owner)) {
4308        the_owner = q;
4309        break;
4310      }
4311    }
4312  }
4313  // cannot assert on lack of success here; see above comment
4314  return the_owner;
4315}
4316
4317// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4318void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4319  char buf[32];
4320  st->print_cr(os::local_time_string(buf, sizeof(buf)));
4321
4322  st->print_cr("Full thread dump %s (%s %s):",
4323                Abstract_VM_Version::vm_name(),
4324                Abstract_VM_Version::vm_release(),
4325                Abstract_VM_Version::vm_info_string()
4326               );
4327  st->cr();
4328
4329#if INCLUDE_ALL_GCS
4330  // Dump concurrent locks
4331  ConcurrentLocksDump concurrent_locks;
4332  if (print_concurrent_locks) {
4333    concurrent_locks.dump_at_safepoint();
4334  }
4335#endif // INCLUDE_ALL_GCS
4336
4337  ALL_JAVA_THREADS(p) {
4338    ResourceMark rm;
4339    p->print_on(st);
4340    if (print_stacks) {
4341      if (internal_format) {
4342        p->trace_stack();
4343      } else {
4344        p->print_stack_on(st);
4345      }
4346    }
4347    st->cr();
4348#if INCLUDE_ALL_GCS
4349    if (print_concurrent_locks) {
4350      concurrent_locks.print_locks_on(p, st);
4351    }
4352#endif // INCLUDE_ALL_GCS
4353  }
4354
4355  VMThread::vm_thread()->print_on(st);
4356  st->cr();
4357  Universe::heap()->print_gc_threads_on(st);
4358  WatcherThread* wt = WatcherThread::watcher_thread();
4359  if (wt != NULL) {
4360    wt->print_on(st);
4361    st->cr();
4362  }
4363  CompileBroker::print_compiler_threads_on(st);
4364  st->flush();
4365}
4366
4367// Threads::print_on_error() is called by fatal error handler. It's possible
4368// that VM is not at safepoint and/or current thread is inside signal handler.
4369// Don't print stack trace, as the stack may not be walkable. Don't allocate
4370// memory (even in resource area), it might deadlock the error handler.
4371void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4372  bool found_current = false;
4373  st->print_cr("Java Threads: ( => current thread )");
4374  ALL_JAVA_THREADS(thread) {
4375    bool is_current = (current == thread);
4376    found_current = found_current || is_current;
4377
4378    st->print("%s", is_current ? "=>" : "  ");
4379
4380    st->print(PTR_FORMAT, thread);
4381    st->print(" ");
4382    thread->print_on_error(st, buf, buflen);
4383    st->cr();
4384  }
4385  st->cr();
4386
4387  st->print_cr("Other Threads:");
4388  if (VMThread::vm_thread()) {
4389    bool is_current = (current == VMThread::vm_thread());
4390    found_current = found_current || is_current;
4391    st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4392
4393    st->print(PTR_FORMAT, VMThread::vm_thread());
4394    st->print(" ");
4395    VMThread::vm_thread()->print_on_error(st, buf, buflen);
4396    st->cr();
4397  }
4398  WatcherThread* wt = WatcherThread::watcher_thread();
4399  if (wt != NULL) {
4400    bool is_current = (current == wt);
4401    found_current = found_current || is_current;
4402    st->print("%s", is_current ? "=>" : "  ");
4403
4404    st->print(PTR_FORMAT, wt);
4405    st->print(" ");
4406    wt->print_on_error(st, buf, buflen);
4407    st->cr();
4408  }
4409  if (!found_current) {
4410    st->cr();
4411    st->print("=>" PTR_FORMAT " (exited) ", current);
4412    current->print_on_error(st, buf, buflen);
4413    st->cr();
4414  }
4415}
4416
4417// Internal SpinLock and Mutex
4418// Based on ParkEvent
4419
4420// Ad-hoc mutual exclusion primitives: SpinLock and Mux
4421//
4422// We employ SpinLocks _only for low-contention, fixed-length
4423// short-duration critical sections where we're concerned
4424// about native mutex_t or HotSpot Mutex:: latency.
4425// The mux construct provides a spin-then-block mutual exclusion
4426// mechanism.
4427//
4428// Testing has shown that contention on the ListLock guarding gFreeList
4429// is common.  If we implement ListLock as a simple SpinLock it's common
4430// for the JVM to devolve to yielding with little progress.  This is true
4431// despite the fact that the critical sections protected by ListLock are
4432// extremely short.
4433//
4434// TODO-FIXME: ListLock should be of type SpinLock.
4435// We should make this a 1st-class type, integrated into the lock
4436// hierarchy as leaf-locks.  Critically, the SpinLock structure
4437// should have sufficient padding to avoid false-sharing and excessive
4438// cache-coherency traffic.
4439
4440
4441typedef volatile int SpinLockT ;
4442
4443void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4444  if (Atomic::cmpxchg (1, adr, 0) == 0) {
4445     return ;   // normal fast-path return
4446  }
4447
4448  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4449  TEVENT (SpinAcquire - ctx) ;
4450  int ctr = 0 ;
4451  int Yields = 0 ;
4452  for (;;) {
4453     while (*adr != 0) {
4454        ++ctr ;
4455        if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4456           if (Yields > 5) {
4457             // Consider using a simple NakedSleep() instead.
4458             // Then SpinAcquire could be called by non-JVM threads
4459             Thread::current()->_ParkEvent->park(1) ;
4460           } else {
4461             os::NakedYield() ;
4462             ++Yields ;
4463           }
4464        } else {
4465           SpinPause() ;
4466        }
4467     }
4468     if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4469  }
4470}
4471
4472void Thread::SpinRelease (volatile int * adr) {
4473  assert (*adr != 0, "invariant") ;
4474  OrderAccess::fence() ;      // guarantee at least release consistency.
4475  // Roach-motel semantics.
4476  // It's safe if subsequent LDs and STs float "up" into the critical section,
4477  // but prior LDs and STs within the critical section can't be allowed
4478  // to reorder or float past the ST that releases the lock.
4479  *adr = 0 ;
4480}
4481
4482// muxAcquire and muxRelease:
4483//
4484// *  muxAcquire and muxRelease support a single-word lock-word construct.
4485//    The LSB of the word is set IFF the lock is held.
4486//    The remainder of the word points to the head of a singly-linked list
4487//    of threads blocked on the lock.
4488//
4489// *  The current implementation of muxAcquire-muxRelease uses its own
4490//    dedicated Thread._MuxEvent instance.  If we're interested in
4491//    minimizing the peak number of extant ParkEvent instances then
4492//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4493//    as certain invariants were satisfied.  Specifically, care would need
4494//    to be taken with regards to consuming unpark() "permits".
4495//    A safe rule of thumb is that a thread would never call muxAcquire()
4496//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4497//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4498//    consume an unpark() permit intended for monitorenter, for instance.
4499//    One way around this would be to widen the restricted-range semaphore
4500//    implemented in park().  Another alternative would be to provide
4501//    multiple instances of the PlatformEvent() for each thread.  One
4502//    instance would be dedicated to muxAcquire-muxRelease, for instance.
4503//
4504// *  Usage:
4505//    -- Only as leaf locks
4506//    -- for short-term locking only as muxAcquire does not perform
4507//       thread state transitions.
4508//
4509// Alternatives:
4510// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4511//    but with parking or spin-then-park instead of pure spinning.
4512// *  Use Taura-Oyama-Yonenzawa locks.
4513// *  It's possible to construct a 1-0 lock if we encode the lockword as
4514//    (List,LockByte).  Acquire will CAS the full lockword while Release
4515//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4516//    acquiring threads use timers (ParkTimed) to detect and recover from
4517//    the stranding window.  Thread/Node structures must be aligned on 256-byte
4518//    boundaries by using placement-new.
4519// *  Augment MCS with advisory back-link fields maintained with CAS().
4520//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4521//    The validity of the backlinks must be ratified before we trust the value.
4522//    If the backlinks are invalid the exiting thread must back-track through the
4523//    the forward links, which are always trustworthy.
4524// *  Add a successor indication.  The LockWord is currently encoded as
4525//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4526//    to provide the usual futile-wakeup optimization.
4527//    See RTStt for details.
4528// *  Consider schedctl.sc_nopreempt to cover the critical section.
4529//
4530
4531
4532typedef volatile intptr_t MutexT ;      // Mux Lock-word
4533enum MuxBits { LOCKBIT = 1 } ;
4534
4535void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4536  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4537  if (w == 0) return ;
4538  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4539     return ;
4540  }
4541
4542  TEVENT (muxAcquire - Contention) ;
4543  ParkEvent * const Self = Thread::current()->_MuxEvent ;
4544  assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4545  for (;;) {
4546     int its = (os::is_MP() ? 100 : 0) + 1 ;
4547
4548     // Optional spin phase: spin-then-park strategy
4549     while (--its >= 0) {
4550       w = *Lock ;
4551       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4552          return ;
4553       }
4554     }
4555
4556     Self->reset() ;
4557     Self->OnList = intptr_t(Lock) ;
4558     // The following fence() isn't _strictly necessary as the subsequent
4559     // CAS() both serializes execution and ratifies the fetched *Lock value.
4560     OrderAccess::fence();
4561     for (;;) {
4562        w = *Lock ;
4563        if ((w & LOCKBIT) == 0) {
4564            if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4565                Self->OnList = 0 ;   // hygiene - allows stronger asserts
4566                return ;
4567            }
4568            continue ;      // Interference -- *Lock changed -- Just retry
4569        }
4570        assert (w & LOCKBIT, "invariant") ;
4571        Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4572        if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4573     }
4574
4575     while (Self->OnList != 0) {
4576        Self->park() ;
4577     }
4578  }
4579}
4580
4581void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4582  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4583  if (w == 0) return ;
4584  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4585    return ;
4586  }
4587
4588  TEVENT (muxAcquire - Contention) ;
4589  ParkEvent * ReleaseAfter = NULL ;
4590  if (ev == NULL) {
4591    ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4592  }
4593  assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4594  for (;;) {
4595    guarantee (ev->OnList == 0, "invariant") ;
4596    int its = (os::is_MP() ? 100 : 0) + 1 ;
4597
4598    // Optional spin phase: spin-then-park strategy
4599    while (--its >= 0) {
4600      w = *Lock ;
4601      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4602        if (ReleaseAfter != NULL) {
4603          ParkEvent::Release (ReleaseAfter) ;
4604        }
4605        return ;
4606      }
4607    }
4608
4609    ev->reset() ;
4610    ev->OnList = intptr_t(Lock) ;
4611    // The following fence() isn't _strictly necessary as the subsequent
4612    // CAS() both serializes execution and ratifies the fetched *Lock value.
4613    OrderAccess::fence();
4614    for (;;) {
4615      w = *Lock ;
4616      if ((w & LOCKBIT) == 0) {
4617        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4618          ev->OnList = 0 ;
4619          // We call ::Release while holding the outer lock, thus
4620          // artificially lengthening the critical section.
4621          // Consider deferring the ::Release() until the subsequent unlock(),
4622          // after we've dropped the outer lock.
4623          if (ReleaseAfter != NULL) {
4624            ParkEvent::Release (ReleaseAfter) ;
4625          }
4626          return ;
4627        }
4628        continue ;      // Interference -- *Lock changed -- Just retry
4629      }
4630      assert (w & LOCKBIT, "invariant") ;
4631      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4632      if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4633    }
4634
4635    while (ev->OnList != 0) {
4636      ev->park() ;
4637    }
4638  }
4639}
4640
4641// Release() must extract a successor from the list and then wake that thread.
4642// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4643// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4644// Release() would :
4645// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4646// (B) Extract a successor from the private list "in-hand"
4647// (C) attempt to CAS() the residual back into *Lock over null.
4648//     If there were any newly arrived threads and the CAS() would fail.
4649//     In that case Release() would detach the RATs, re-merge the list in-hand
4650//     with the RATs and repeat as needed.  Alternately, Release() might
4651//     detach and extract a successor, but then pass the residual list to the wakee.
4652//     The wakee would be responsible for reattaching and remerging before it
4653//     competed for the lock.
4654//
4655// Both "pop" and DMR are immune from ABA corruption -- there can be
4656// multiple concurrent pushers, but only one popper or detacher.
4657// This implementation pops from the head of the list.  This is unfair,
4658// but tends to provide excellent throughput as hot threads remain hot.
4659// (We wake recently run threads first).
4660
4661void Thread::muxRelease (volatile intptr_t * Lock)  {
4662  for (;;) {
4663    const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4664    assert (w & LOCKBIT, "invariant") ;
4665    if (w == LOCKBIT) return ;
4666    ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4667    assert (List != NULL, "invariant") ;
4668    assert (List->OnList == intptr_t(Lock), "invariant") ;
4669    ParkEvent * nxt = List->ListNext ;
4670
4671    // The following CAS() releases the lock and pops the head element.
4672    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4673      continue ;
4674    }
4675    List->OnList = 0 ;
4676    OrderAccess::fence() ;
4677    List->unpark () ;
4678    return ;
4679  }
4680}
4681
4682
4683void Threads::verify() {
4684  ALL_JAVA_THREADS(p) {
4685    p->verify();
4686  }
4687  VMThread* thread = VMThread::vm_thread();
4688  if (thread != NULL) thread->verify();
4689}
4690