thread.cpp revision 4532:5a9fa2ba85f0
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/scopeDesc.hpp"
31#include "compiler/compileBroker.hpp"
32#include "interpreter/interpreter.hpp"
33#include "interpreter/linkResolver.hpp"
34#include "interpreter/oopMapCache.hpp"
35#include "jvmtifiles/jvmtiEnv.hpp"
36#include "memory/gcLocker.inline.hpp"
37#include "memory/metaspaceShared.hpp"
38#include "memory/oopFactory.hpp"
39#include "memory/universe.inline.hpp"
40#include "oops/instanceKlass.hpp"
41#include "oops/objArrayOop.hpp"
42#include "oops/oop.inline.hpp"
43#include "oops/symbol.hpp"
44#include "prims/jvm_misc.hpp"
45#include "prims/jvmtiExport.hpp"
46#include "prims/jvmtiThreadState.hpp"
47#include "prims/privilegedStack.hpp"
48#include "runtime/aprofiler.hpp"
49#include "runtime/arguments.hpp"
50#include "runtime/biasedLocking.hpp"
51#include "runtime/deoptimization.hpp"
52#include "runtime/fprofiler.hpp"
53#include "runtime/frame.inline.hpp"
54#include "runtime/init.hpp"
55#include "runtime/interfaceSupport.hpp"
56#include "runtime/java.hpp"
57#include "runtime/javaCalls.hpp"
58#include "runtime/jniPeriodicChecker.hpp"
59#include "runtime/memprofiler.hpp"
60#include "runtime/mutexLocker.hpp"
61#include "runtime/objectMonitor.hpp"
62#include "runtime/osThread.hpp"
63#include "runtime/safepoint.hpp"
64#include "runtime/sharedRuntime.hpp"
65#include "runtime/statSampler.hpp"
66#include "runtime/stubRoutines.hpp"
67#include "runtime/task.hpp"
68#include "runtime/thread.inline.hpp"
69#include "runtime/threadCritical.hpp"
70#include "runtime/threadLocalStorage.hpp"
71#include "runtime/vframe.hpp"
72#include "runtime/vframeArray.hpp"
73#include "runtime/vframe_hp.hpp"
74#include "runtime/vmThread.hpp"
75#include "runtime/vm_operations.hpp"
76#include "services/attachListener.hpp"
77#include "services/management.hpp"
78#include "services/memTracker.hpp"
79#include "services/threadService.hpp"
80#include "trace/traceEventTypes.hpp"
81#include "utilities/defaultStream.hpp"
82#include "utilities/dtrace.hpp"
83#include "utilities/events.hpp"
84#include "utilities/preserveException.hpp"
85#include "utilities/macros.hpp"
86#ifdef TARGET_OS_FAMILY_linux
87# include "os_linux.inline.hpp"
88#endif
89#ifdef TARGET_OS_FAMILY_solaris
90# include "os_solaris.inline.hpp"
91#endif
92#ifdef TARGET_OS_FAMILY_windows
93# include "os_windows.inline.hpp"
94#endif
95#ifdef TARGET_OS_FAMILY_bsd
96# include "os_bsd.inline.hpp"
97#endif
98#if INCLUDE_ALL_GCS
99#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
100#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
101#include "gc_implementation/parallelScavenge/pcTasks.hpp"
102#endif // INCLUDE_ALL_GCS
103#ifdef COMPILER1
104#include "c1/c1_Compiler.hpp"
105#endif
106#ifdef COMPILER2
107#include "opto/c2compiler.hpp"
108#include "opto/idealGraphPrinter.hpp"
109#endif
110
111#ifdef DTRACE_ENABLED
112
113// Only bother with this argument setup if dtrace is available
114
115#ifndef USDT2
116HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
117HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
118HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
119  intptr_t, intptr_t, bool);
120HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
121  intptr_t, intptr_t, bool);
122
123#define DTRACE_THREAD_PROBE(probe, javathread)                             \
124  {                                                                        \
125    ResourceMark rm(this);                                                 \
126    int len = 0;                                                           \
127    const char* name = (javathread)->get_thread_name();                    \
128    len = strlen(name);                                                    \
129    HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
130      name, len,                                                           \
131      java_lang_Thread::thread_id((javathread)->threadObj()),              \
132      (javathread)->osthread()->thread_id(),                               \
133      java_lang_Thread::is_daemon((javathread)->threadObj()));             \
134  }
135
136#else /* USDT2 */
137
138#define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
139#define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
140
141#define DTRACE_THREAD_PROBE(probe, javathread)                             \
142  {                                                                        \
143    ResourceMark rm(this);                                                 \
144    int len = 0;                                                           \
145    const char* name = (javathread)->get_thread_name();                    \
146    len = strlen(name);                                                    \
147    HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
148      (char *) name, len,                                                           \
149      java_lang_Thread::thread_id((javathread)->threadObj()),              \
150      (uintptr_t) (javathread)->osthread()->thread_id(),                               \
151      java_lang_Thread::is_daemon((javathread)->threadObj()));             \
152  }
153
154#endif /* USDT2 */
155
156#else //  ndef DTRACE_ENABLED
157
158#define DTRACE_THREAD_PROBE(probe, javathread)
159
160#endif // ndef DTRACE_ENABLED
161
162
163// Class hierarchy
164// - Thread
165//   - VMThread
166//   - WatcherThread
167//   - ConcurrentMarkSweepThread
168//   - JavaThread
169//     - CompilerThread
170
171// ======= Thread ========
172// Support for forcing alignment of thread objects for biased locking
173void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
174  if (UseBiasedLocking) {
175    const int alignment = markOopDesc::biased_lock_alignment;
176    size_t aligned_size = size + (alignment - sizeof(intptr_t));
177    void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
178                                          : AllocateHeap(aligned_size, flags, CURRENT_PC,
179                                              AllocFailStrategy::RETURN_NULL);
180    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
181    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
182           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
183           "JavaThread alignment code overflowed allocated storage");
184    if (TraceBiasedLocking) {
185      if (aligned_addr != real_malloc_addr)
186        tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
187                      real_malloc_addr, aligned_addr);
188    }
189    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
190    return aligned_addr;
191  } else {
192    return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
193                       : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
194  }
195}
196
197void Thread::operator delete(void* p) {
198  if (UseBiasedLocking) {
199    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
200    FreeHeap(real_malloc_addr, mtThread);
201  } else {
202    FreeHeap(p, mtThread);
203  }
204}
205
206
207// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
208// JavaThread
209
210
211Thread::Thread() {
212  // stack and get_thread
213  set_stack_base(NULL);
214  set_stack_size(0);
215  set_self_raw_id(0);
216  set_lgrp_id(-1);
217
218  // allocated data structures
219  set_osthread(NULL);
220  set_resource_area(new (mtThread)ResourceArea());
221  set_handle_area(new (mtThread) HandleArea(NULL));
222  set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(300, true));
223  set_active_handles(NULL);
224  set_free_handle_block(NULL);
225  set_last_handle_mark(NULL);
226
227  // This initial value ==> never claimed.
228  _oops_do_parity = 0;
229
230  // the handle mark links itself to last_handle_mark
231  new HandleMark(this);
232
233  // plain initialization
234  debug_only(_owned_locks = NULL;)
235  debug_only(_allow_allocation_count = 0;)
236  NOT_PRODUCT(_allow_safepoint_count = 0;)
237  NOT_PRODUCT(_skip_gcalot = false;)
238  CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
239  _jvmti_env_iteration_count = 0;
240  set_allocated_bytes(0);
241  set_trace_buffer(NULL);
242  _vm_operation_started_count = 0;
243  _vm_operation_completed_count = 0;
244  _current_pending_monitor = NULL;
245  _current_pending_monitor_is_from_java = true;
246  _current_waiting_monitor = NULL;
247  _num_nested_signal = 0;
248  omFreeList = NULL ;
249  omFreeCount = 0 ;
250  omFreeProvision = 32 ;
251  omInUseList = NULL ;
252  omInUseCount = 0 ;
253
254#ifdef ASSERT
255  _visited_for_critical_count = false;
256#endif
257
258  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
259  _suspend_flags = 0;
260
261  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
262  _hashStateX = os::random() ;
263  _hashStateY = 842502087 ;
264  _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
265  _hashStateW = 273326509 ;
266
267  _OnTrap   = 0 ;
268  _schedctl = NULL ;
269  _Stalled  = 0 ;
270  _TypeTag  = 0x2BAD ;
271
272  // Many of the following fields are effectively final - immutable
273  // Note that nascent threads can't use the Native Monitor-Mutex
274  // construct until the _MutexEvent is initialized ...
275  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
276  // we might instead use a stack of ParkEvents that we could provision on-demand.
277  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
278  // and ::Release()
279  _ParkEvent   = ParkEvent::Allocate (this) ;
280  _SleepEvent  = ParkEvent::Allocate (this) ;
281  _MutexEvent  = ParkEvent::Allocate (this) ;
282  _MuxEvent    = ParkEvent::Allocate (this) ;
283
284#ifdef CHECK_UNHANDLED_OOPS
285  if (CheckUnhandledOops) {
286    _unhandled_oops = new UnhandledOops(this);
287  }
288#endif // CHECK_UNHANDLED_OOPS
289#ifdef ASSERT
290  if (UseBiasedLocking) {
291    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
292    assert(this == _real_malloc_address ||
293           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
294           "bug in forced alignment of thread objects");
295  }
296#endif /* ASSERT */
297}
298
299void Thread::initialize_thread_local_storage() {
300  // Note: Make sure this method only calls
301  // non-blocking operations. Otherwise, it might not work
302  // with the thread-startup/safepoint interaction.
303
304  // During Java thread startup, safepoint code should allow this
305  // method to complete because it may need to allocate memory to
306  // store information for the new thread.
307
308  // initialize structure dependent on thread local storage
309  ThreadLocalStorage::set_thread(this);
310}
311
312void Thread::record_stack_base_and_size() {
313  set_stack_base(os::current_stack_base());
314  set_stack_size(os::current_stack_size());
315  // CR 7190089: on Solaris, primordial thread's stack is adjusted
316  // in initialize_thread(). Without the adjustment, stack size is
317  // incorrect if stack is set to unlimited (ulimit -s unlimited).
318  // So far, only Solaris has real implementation of initialize_thread().
319  //
320  // set up any platform-specific state.
321  os::initialize_thread(this);
322
323#if INCLUDE_NMT
324  // record thread's native stack, stack grows downward
325  address stack_low_addr = stack_base() - stack_size();
326  MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
327      CURRENT_PC);
328#endif // INCLUDE_NMT
329}
330
331
332Thread::~Thread() {
333  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
334  ObjectSynchronizer::omFlush (this) ;
335
336  // stack_base can be NULL if the thread is never started or exited before
337  // record_stack_base_and_size called. Although, we would like to ensure
338  // that all started threads do call record_stack_base_and_size(), there is
339  // not proper way to enforce that.
340#if INCLUDE_NMT
341  if (_stack_base != NULL) {
342    address low_stack_addr = stack_base() - stack_size();
343    MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
344#ifdef ASSERT
345    set_stack_base(NULL);
346#endif
347  }
348#endif // INCLUDE_NMT
349
350  // deallocate data structures
351  delete resource_area();
352  // since the handle marks are using the handle area, we have to deallocated the root
353  // handle mark before deallocating the thread's handle area,
354  assert(last_handle_mark() != NULL, "check we have an element");
355  delete last_handle_mark();
356  assert(last_handle_mark() == NULL, "check we have reached the end");
357
358  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
359  // We NULL out the fields for good hygiene.
360  ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
361  ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
362  ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
363  ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
364
365  delete handle_area();
366  delete metadata_handles();
367
368  // osthread() can be NULL, if creation of thread failed.
369  if (osthread() != NULL) os::free_thread(osthread());
370
371  delete _SR_lock;
372
373  // clear thread local storage if the Thread is deleting itself
374  if (this == Thread::current()) {
375    ThreadLocalStorage::set_thread(NULL);
376  } else {
377    // In the case where we're not the current thread, invalidate all the
378    // caches in case some code tries to get the current thread or the
379    // thread that was destroyed, and gets stale information.
380    ThreadLocalStorage::invalidate_all();
381  }
382  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
383}
384
385// NOTE: dummy function for assertion purpose.
386void Thread::run() {
387  ShouldNotReachHere();
388}
389
390#ifdef ASSERT
391// Private method to check for dangling thread pointer
392void check_for_dangling_thread_pointer(Thread *thread) {
393 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
394         "possibility of dangling Thread pointer");
395}
396#endif
397
398
399#ifndef PRODUCT
400// Tracing method for basic thread operations
401void Thread::trace(const char* msg, const Thread* const thread) {
402  if (!TraceThreadEvents) return;
403  ResourceMark rm;
404  ThreadCritical tc;
405  const char *name = "non-Java thread";
406  int prio = -1;
407  if (thread->is_Java_thread()
408      && !thread->is_Compiler_thread()) {
409    // The Threads_lock must be held to get information about
410    // this thread but may not be in some situations when
411    // tracing  thread events.
412    bool release_Threads_lock = false;
413    if (!Threads_lock->owned_by_self()) {
414      Threads_lock->lock();
415      release_Threads_lock = true;
416    }
417    JavaThread* jt = (JavaThread *)thread;
418    name = (char *)jt->get_thread_name();
419    oop thread_oop = jt->threadObj();
420    if (thread_oop != NULL) {
421      prio = java_lang_Thread::priority(thread_oop);
422    }
423    if (release_Threads_lock) {
424      Threads_lock->unlock();
425    }
426  }
427  tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
428}
429#endif
430
431
432ThreadPriority Thread::get_priority(const Thread* const thread) {
433  trace("get priority", thread);
434  ThreadPriority priority;
435  // Can return an error!
436  (void)os::get_priority(thread, priority);
437  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
438  return priority;
439}
440
441void Thread::set_priority(Thread* thread, ThreadPriority priority) {
442  trace("set priority", thread);
443  debug_only(check_for_dangling_thread_pointer(thread);)
444  // Can return an error!
445  (void)os::set_priority(thread, priority);
446}
447
448
449void Thread::start(Thread* thread) {
450  trace("start", thread);
451  // Start is different from resume in that its safety is guaranteed by context or
452  // being called from a Java method synchronized on the Thread object.
453  if (!DisableStartThread) {
454    if (thread->is_Java_thread()) {
455      // Initialize the thread state to RUNNABLE before starting this thread.
456      // Can not set it after the thread started because we do not know the
457      // exact thread state at that time. It could be in MONITOR_WAIT or
458      // in SLEEPING or some other state.
459      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
460                                          java_lang_Thread::RUNNABLE);
461    }
462    os::start_thread(thread);
463  }
464}
465
466// Enqueue a VM_Operation to do the job for us - sometime later
467void Thread::send_async_exception(oop java_thread, oop java_throwable) {
468  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
469  VMThread::execute(vm_stop);
470}
471
472
473//
474// Check if an external suspend request has completed (or has been
475// cancelled). Returns true if the thread is externally suspended and
476// false otherwise.
477//
478// The bits parameter returns information about the code path through
479// the routine. Useful for debugging:
480//
481// set in is_ext_suspend_completed():
482// 0x00000001 - routine was entered
483// 0x00000010 - routine return false at end
484// 0x00000100 - thread exited (return false)
485// 0x00000200 - suspend request cancelled (return false)
486// 0x00000400 - thread suspended (return true)
487// 0x00001000 - thread is in a suspend equivalent state (return true)
488// 0x00002000 - thread is native and walkable (return true)
489// 0x00004000 - thread is native_trans and walkable (needed retry)
490//
491// set in wait_for_ext_suspend_completion():
492// 0x00010000 - routine was entered
493// 0x00020000 - suspend request cancelled before loop (return false)
494// 0x00040000 - thread suspended before loop (return true)
495// 0x00080000 - suspend request cancelled in loop (return false)
496// 0x00100000 - thread suspended in loop (return true)
497// 0x00200000 - suspend not completed during retry loop (return false)
498//
499
500// Helper class for tracing suspend wait debug bits.
501//
502// 0x00000100 indicates that the target thread exited before it could
503// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
504// 0x00080000 each indicate a cancelled suspend request so they don't
505// count as wait failures either.
506#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
507
508class TraceSuspendDebugBits : public StackObj {
509 private:
510  JavaThread * jt;
511  bool         is_wait;
512  bool         called_by_wait;  // meaningful when !is_wait
513  uint32_t *   bits;
514
515 public:
516  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
517                        uint32_t *_bits) {
518    jt             = _jt;
519    is_wait        = _is_wait;
520    called_by_wait = _called_by_wait;
521    bits           = _bits;
522  }
523
524  ~TraceSuspendDebugBits() {
525    if (!is_wait) {
526#if 1
527      // By default, don't trace bits for is_ext_suspend_completed() calls.
528      // That trace is very chatty.
529      return;
530#else
531      if (!called_by_wait) {
532        // If tracing for is_ext_suspend_completed() is enabled, then only
533        // trace calls to it from wait_for_ext_suspend_completion()
534        return;
535      }
536#endif
537    }
538
539    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
540      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
541        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
542        ResourceMark rm;
543
544        tty->print_cr(
545            "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
546            jt->get_thread_name(), *bits);
547
548        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
549      }
550    }
551  }
552};
553#undef DEBUG_FALSE_BITS
554
555
556bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
557  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
558
559  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
560  bool do_trans_retry;           // flag to force the retry
561
562  *bits |= 0x00000001;
563
564  do {
565    do_trans_retry = false;
566
567    if (is_exiting()) {
568      // Thread is in the process of exiting. This is always checked
569      // first to reduce the risk of dereferencing a freed JavaThread.
570      *bits |= 0x00000100;
571      return false;
572    }
573
574    if (!is_external_suspend()) {
575      // Suspend request is cancelled. This is always checked before
576      // is_ext_suspended() to reduce the risk of a rogue resume
577      // confusing the thread that made the suspend request.
578      *bits |= 0x00000200;
579      return false;
580    }
581
582    if (is_ext_suspended()) {
583      // thread is suspended
584      *bits |= 0x00000400;
585      return true;
586    }
587
588    // Now that we no longer do hard suspends of threads running
589    // native code, the target thread can be changing thread state
590    // while we are in this routine:
591    //
592    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
593    //
594    // We save a copy of the thread state as observed at this moment
595    // and make our decision about suspend completeness based on the
596    // copy. This closes the race where the thread state is seen as
597    // _thread_in_native_trans in the if-thread_blocked check, but is
598    // seen as _thread_blocked in if-thread_in_native_trans check.
599    JavaThreadState save_state = thread_state();
600
601    if (save_state == _thread_blocked && is_suspend_equivalent()) {
602      // If the thread's state is _thread_blocked and this blocking
603      // condition is known to be equivalent to a suspend, then we can
604      // consider the thread to be externally suspended. This means that
605      // the code that sets _thread_blocked has been modified to do
606      // self-suspension if the blocking condition releases. We also
607      // used to check for CONDVAR_WAIT here, but that is now covered by
608      // the _thread_blocked with self-suspension check.
609      //
610      // Return true since we wouldn't be here unless there was still an
611      // external suspend request.
612      *bits |= 0x00001000;
613      return true;
614    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
615      // Threads running native code will self-suspend on native==>VM/Java
616      // transitions. If its stack is walkable (should always be the case
617      // unless this function is called before the actual java_suspend()
618      // call), then the wait is done.
619      *bits |= 0x00002000;
620      return true;
621    } else if (!called_by_wait && !did_trans_retry &&
622               save_state == _thread_in_native_trans &&
623               frame_anchor()->walkable()) {
624      // The thread is transitioning from thread_in_native to another
625      // thread state. check_safepoint_and_suspend_for_native_trans()
626      // will force the thread to self-suspend. If it hasn't gotten
627      // there yet we may have caught the thread in-between the native
628      // code check above and the self-suspend. Lucky us. If we were
629      // called by wait_for_ext_suspend_completion(), then it
630      // will be doing the retries so we don't have to.
631      //
632      // Since we use the saved thread state in the if-statement above,
633      // there is a chance that the thread has already transitioned to
634      // _thread_blocked by the time we get here. In that case, we will
635      // make a single unnecessary pass through the logic below. This
636      // doesn't hurt anything since we still do the trans retry.
637
638      *bits |= 0x00004000;
639
640      // Once the thread leaves thread_in_native_trans for another
641      // thread state, we break out of this retry loop. We shouldn't
642      // need this flag to prevent us from getting back here, but
643      // sometimes paranoia is good.
644      did_trans_retry = true;
645
646      // We wait for the thread to transition to a more usable state.
647      for (int i = 1; i <= SuspendRetryCount; i++) {
648        // We used to do an "os::yield_all(i)" call here with the intention
649        // that yielding would increase on each retry. However, the parameter
650        // is ignored on Linux which means the yield didn't scale up. Waiting
651        // on the SR_lock below provides a much more predictable scale up for
652        // the delay. It also provides a simple/direct point to check for any
653        // safepoint requests from the VMThread
654
655        // temporarily drops SR_lock while doing wait with safepoint check
656        // (if we're a JavaThread - the WatcherThread can also call this)
657        // and increase delay with each retry
658        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
659
660        // check the actual thread state instead of what we saved above
661        if (thread_state() != _thread_in_native_trans) {
662          // the thread has transitioned to another thread state so
663          // try all the checks (except this one) one more time.
664          do_trans_retry = true;
665          break;
666        }
667      } // end retry loop
668
669
670    }
671  } while (do_trans_retry);
672
673  *bits |= 0x00000010;
674  return false;
675}
676
677//
678// Wait for an external suspend request to complete (or be cancelled).
679// Returns true if the thread is externally suspended and false otherwise.
680//
681bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
682       uint32_t *bits) {
683  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
684                             false /* !called_by_wait */, bits);
685
686  // local flag copies to minimize SR_lock hold time
687  bool is_suspended;
688  bool pending;
689  uint32_t reset_bits;
690
691  // set a marker so is_ext_suspend_completed() knows we are the caller
692  *bits |= 0x00010000;
693
694  // We use reset_bits to reinitialize the bits value at the top of
695  // each retry loop. This allows the caller to make use of any
696  // unused bits for their own marking purposes.
697  reset_bits = *bits;
698
699  {
700    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
701    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
702                                            delay, bits);
703    pending = is_external_suspend();
704  }
705  // must release SR_lock to allow suspension to complete
706
707  if (!pending) {
708    // A cancelled suspend request is the only false return from
709    // is_ext_suspend_completed() that keeps us from entering the
710    // retry loop.
711    *bits |= 0x00020000;
712    return false;
713  }
714
715  if (is_suspended) {
716    *bits |= 0x00040000;
717    return true;
718  }
719
720  for (int i = 1; i <= retries; i++) {
721    *bits = reset_bits;  // reinit to only track last retry
722
723    // We used to do an "os::yield_all(i)" call here with the intention
724    // that yielding would increase on each retry. However, the parameter
725    // is ignored on Linux which means the yield didn't scale up. Waiting
726    // on the SR_lock below provides a much more predictable scale up for
727    // the delay. It also provides a simple/direct point to check for any
728    // safepoint requests from the VMThread
729
730    {
731      MutexLocker ml(SR_lock());
732      // wait with safepoint check (if we're a JavaThread - the WatcherThread
733      // can also call this)  and increase delay with each retry
734      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
735
736      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
737                                              delay, bits);
738
739      // It is possible for the external suspend request to be cancelled
740      // (by a resume) before the actual suspend operation is completed.
741      // Refresh our local copy to see if we still need to wait.
742      pending = is_external_suspend();
743    }
744
745    if (!pending) {
746      // A cancelled suspend request is the only false return from
747      // is_ext_suspend_completed() that keeps us from staying in the
748      // retry loop.
749      *bits |= 0x00080000;
750      return false;
751    }
752
753    if (is_suspended) {
754      *bits |= 0x00100000;
755      return true;
756    }
757  } // end retry loop
758
759  // thread did not suspend after all our retries
760  *bits |= 0x00200000;
761  return false;
762}
763
764#ifndef PRODUCT
765void JavaThread::record_jump(address target, address instr, const char* file, int line) {
766
767  // This should not need to be atomic as the only way for simultaneous
768  // updates is via interrupts. Even then this should be rare or non-existant
769  // and we don't care that much anyway.
770
771  int index = _jmp_ring_index;
772  _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
773  _jmp_ring[index]._target = (intptr_t) target;
774  _jmp_ring[index]._instruction = (intptr_t) instr;
775  _jmp_ring[index]._file = file;
776  _jmp_ring[index]._line = line;
777}
778#endif /* PRODUCT */
779
780// Called by flat profiler
781// Callers have already called wait_for_ext_suspend_completion
782// The assertion for that is currently too complex to put here:
783bool JavaThread::profile_last_Java_frame(frame* _fr) {
784  bool gotframe = false;
785  // self suspension saves needed state.
786  if (has_last_Java_frame() && _anchor.walkable()) {
787     *_fr = pd_last_frame();
788     gotframe = true;
789  }
790  return gotframe;
791}
792
793void Thread::interrupt(Thread* thread) {
794  trace("interrupt", thread);
795  debug_only(check_for_dangling_thread_pointer(thread);)
796  os::interrupt(thread);
797}
798
799bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
800  trace("is_interrupted", thread);
801  debug_only(check_for_dangling_thread_pointer(thread);)
802  // Note:  If clear_interrupted==false, this simply fetches and
803  // returns the value of the field osthread()->interrupted().
804  return os::is_interrupted(thread, clear_interrupted);
805}
806
807
808// GC Support
809bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
810  jint thread_parity = _oops_do_parity;
811  if (thread_parity != strong_roots_parity) {
812    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
813    if (res == thread_parity) {
814      return true;
815    } else {
816      guarantee(res == strong_roots_parity, "Or else what?");
817      assert(SharedHeap::heap()->workers()->active_workers() > 0,
818         "Should only fail when parallel.");
819      return false;
820    }
821  }
822  assert(SharedHeap::heap()->workers()->active_workers() > 0,
823         "Should only fail when parallel.");
824  return false;
825}
826
827void Thread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
828  active_handles()->oops_do(f);
829  // Do oop for ThreadShadow
830  f->do_oop((oop*)&_pending_exception);
831  handle_area()->oops_do(f);
832}
833
834void Thread::nmethods_do(CodeBlobClosure* cf) {
835  // no nmethods in a generic thread...
836}
837
838void Thread::metadata_do(void f(Metadata*)) {
839  if (metadata_handles() != NULL) {
840    for (int i = 0; i< metadata_handles()->length(); i++) {
841      f(metadata_handles()->at(i));
842    }
843  }
844}
845
846void Thread::print_on(outputStream* st) const {
847  // get_priority assumes osthread initialized
848  if (osthread() != NULL) {
849    int os_prio;
850    if (os::get_native_priority(this, &os_prio) == OS_OK) {
851      st->print("os_prio=%d ", os_prio);
852    }
853    st->print("tid=" INTPTR_FORMAT " ", this);
854    osthread()->print_on(st);
855  }
856  debug_only(if (WizardMode) print_owned_locks_on(st);)
857}
858
859// Thread::print_on_error() is called by fatal error handler. Don't use
860// any lock or allocate memory.
861void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
862  if      (is_VM_thread())                  st->print("VMThread");
863  else if (is_Compiler_thread())            st->print("CompilerThread");
864  else if (is_Java_thread())                st->print("JavaThread");
865  else if (is_GC_task_thread())             st->print("GCTaskThread");
866  else if (is_Watcher_thread())             st->print("WatcherThread");
867  else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
868  else st->print("Thread");
869
870  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
871            _stack_base - _stack_size, _stack_base);
872
873  if (osthread()) {
874    st->print(" [id=%d]", osthread()->thread_id());
875  }
876}
877
878#ifdef ASSERT
879void Thread::print_owned_locks_on(outputStream* st) const {
880  Monitor *cur = _owned_locks;
881  if (cur == NULL) {
882    st->print(" (no locks) ");
883  } else {
884    st->print_cr(" Locks owned:");
885    while(cur) {
886      cur->print_on(st);
887      cur = cur->next();
888    }
889  }
890}
891
892static int ref_use_count  = 0;
893
894bool Thread::owns_locks_but_compiled_lock() const {
895  for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
896    if (cur != Compile_lock) return true;
897  }
898  return false;
899}
900
901
902#endif
903
904#ifndef PRODUCT
905
906// The flag: potential_vm_operation notifies if this particular safepoint state could potential
907// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
908// no threads which allow_vm_block's are held
909void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
910    // Check if current thread is allowed to block at a safepoint
911    if (!(_allow_safepoint_count == 0))
912      fatal("Possible safepoint reached by thread that does not allow it");
913    if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
914      fatal("LEAF method calling lock?");
915    }
916
917#ifdef ASSERT
918    if (potential_vm_operation && is_Java_thread()
919        && !Universe::is_bootstrapping()) {
920      // Make sure we do not hold any locks that the VM thread also uses.
921      // This could potentially lead to deadlocks
922      for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
923        // Threads_lock is special, since the safepoint synchronization will not start before this is
924        // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
925        // since it is used to transfer control between JavaThreads and the VMThread
926        // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
927        if ( (cur->allow_vm_block() &&
928              cur != Threads_lock &&
929              cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
930              cur != VMOperationRequest_lock &&
931              cur != VMOperationQueue_lock) ||
932              cur->rank() == Mutex::special) {
933          warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
934        }
935      }
936    }
937
938    if (GCALotAtAllSafepoints) {
939      // We could enter a safepoint here and thus have a gc
940      InterfaceSupport::check_gc_alot();
941    }
942#endif
943}
944#endif
945
946bool Thread::is_in_stack(address adr) const {
947  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
948  address end = os::current_stack_pointer();
949  // Allow non Java threads to call this without stack_base
950  if (_stack_base == NULL) return true;
951  if (stack_base() >= adr && adr >= end) return true;
952
953  return false;
954}
955
956
957// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
958// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
959// used for compilation in the future. If that change is made, the need for these methods
960// should be revisited, and they should be removed if possible.
961
962bool Thread::is_lock_owned(address adr) const {
963  return on_local_stack(adr);
964}
965
966bool Thread::set_as_starting_thread() {
967 // NOTE: this must be called inside the main thread.
968  return os::create_main_thread((JavaThread*)this);
969}
970
971static void initialize_class(Symbol* class_name, TRAPS) {
972  Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
973  InstanceKlass::cast(klass)->initialize(CHECK);
974}
975
976
977// Creates the initial ThreadGroup
978static Handle create_initial_thread_group(TRAPS) {
979  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
980  instanceKlassHandle klass (THREAD, k);
981
982  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
983  {
984    JavaValue result(T_VOID);
985    JavaCalls::call_special(&result,
986                            system_instance,
987                            klass,
988                            vmSymbols::object_initializer_name(),
989                            vmSymbols::void_method_signature(),
990                            CHECK_NH);
991  }
992  Universe::set_system_thread_group(system_instance());
993
994  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
995  {
996    JavaValue result(T_VOID);
997    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
998    JavaCalls::call_special(&result,
999                            main_instance,
1000                            klass,
1001                            vmSymbols::object_initializer_name(),
1002                            vmSymbols::threadgroup_string_void_signature(),
1003                            system_instance,
1004                            string,
1005                            CHECK_NH);
1006  }
1007  return main_instance;
1008}
1009
1010// Creates the initial Thread
1011static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
1012  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1013  instanceKlassHandle klass (THREAD, k);
1014  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1015
1016  java_lang_Thread::set_thread(thread_oop(), thread);
1017  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1018  thread->set_threadObj(thread_oop());
1019
1020  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1021
1022  JavaValue result(T_VOID);
1023  JavaCalls::call_special(&result, thread_oop,
1024                                   klass,
1025                                   vmSymbols::object_initializer_name(),
1026                                   vmSymbols::threadgroup_string_void_signature(),
1027                                   thread_group,
1028                                   string,
1029                                   CHECK_NULL);
1030  return thread_oop();
1031}
1032
1033static void call_initializeSystemClass(TRAPS) {
1034  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1035  instanceKlassHandle klass (THREAD, k);
1036
1037  JavaValue result(T_VOID);
1038  JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1039                                         vmSymbols::void_method_signature(), CHECK);
1040}
1041
1042char java_runtime_name[128] = "";
1043char java_runtime_version[128] = "";
1044
1045// extract the JRE name from sun.misc.Version.java_runtime_name
1046static const char* get_java_runtime_name(TRAPS) {
1047  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1048                                      Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1049  fieldDescriptor fd;
1050  bool found = k != NULL &&
1051               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1052                                                        vmSymbols::string_signature(), &fd);
1053  if (found) {
1054    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1055    if (name_oop == NULL)
1056      return NULL;
1057    const char* name = java_lang_String::as_utf8_string(name_oop,
1058                                                        java_runtime_name,
1059                                                        sizeof(java_runtime_name));
1060    return name;
1061  } else {
1062    return NULL;
1063  }
1064}
1065
1066// extract the JRE version from sun.misc.Version.java_runtime_version
1067static const char* get_java_runtime_version(TRAPS) {
1068  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1069                                      Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1070  fieldDescriptor fd;
1071  bool found = k != NULL &&
1072               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1073                                                        vmSymbols::string_signature(), &fd);
1074  if (found) {
1075    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1076    if (name_oop == NULL)
1077      return NULL;
1078    const char* name = java_lang_String::as_utf8_string(name_oop,
1079                                                        java_runtime_version,
1080                                                        sizeof(java_runtime_version));
1081    return name;
1082  } else {
1083    return NULL;
1084  }
1085}
1086
1087// General purpose hook into Java code, run once when the VM is initialized.
1088// The Java library method itself may be changed independently from the VM.
1089static void call_postVMInitHook(TRAPS) {
1090  Klass* k = SystemDictionary::PostVMInitHook_klass();
1091  instanceKlassHandle klass (THREAD, k);
1092  if (klass.not_null()) {
1093    JavaValue result(T_VOID);
1094    JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1095                                           vmSymbols::void_method_signature(),
1096                                           CHECK);
1097  }
1098}
1099
1100static void reset_vm_info_property(TRAPS) {
1101  // the vm info string
1102  ResourceMark rm(THREAD);
1103  const char *vm_info = VM_Version::vm_info_string();
1104
1105  // java.lang.System class
1106  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1107  instanceKlassHandle klass (THREAD, k);
1108
1109  // setProperty arguments
1110  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1111  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1112
1113  // return value
1114  JavaValue r(T_OBJECT);
1115
1116  // public static String setProperty(String key, String value);
1117  JavaCalls::call_static(&r,
1118                         klass,
1119                         vmSymbols::setProperty_name(),
1120                         vmSymbols::string_string_string_signature(),
1121                         key_str,
1122                         value_str,
1123                         CHECK);
1124}
1125
1126
1127void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1128  assert(thread_group.not_null(), "thread group should be specified");
1129  assert(threadObj() == NULL, "should only create Java thread object once");
1130
1131  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1132  instanceKlassHandle klass (THREAD, k);
1133  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1134
1135  java_lang_Thread::set_thread(thread_oop(), this);
1136  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1137  set_threadObj(thread_oop());
1138
1139  JavaValue result(T_VOID);
1140  if (thread_name != NULL) {
1141    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1142    // Thread gets assigned specified name and null target
1143    JavaCalls::call_special(&result,
1144                            thread_oop,
1145                            klass,
1146                            vmSymbols::object_initializer_name(),
1147                            vmSymbols::threadgroup_string_void_signature(),
1148                            thread_group, // Argument 1
1149                            name,         // Argument 2
1150                            THREAD);
1151  } else {
1152    // Thread gets assigned name "Thread-nnn" and null target
1153    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1154    JavaCalls::call_special(&result,
1155                            thread_oop,
1156                            klass,
1157                            vmSymbols::object_initializer_name(),
1158                            vmSymbols::threadgroup_runnable_void_signature(),
1159                            thread_group, // Argument 1
1160                            Handle(),     // Argument 2
1161                            THREAD);
1162  }
1163
1164
1165  if (daemon) {
1166      java_lang_Thread::set_daemon(thread_oop());
1167  }
1168
1169  if (HAS_PENDING_EXCEPTION) {
1170    return;
1171  }
1172
1173  KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1174  Handle threadObj(this, this->threadObj());
1175
1176  JavaCalls::call_special(&result,
1177                         thread_group,
1178                         group,
1179                         vmSymbols::add_method_name(),
1180                         vmSymbols::thread_void_signature(),
1181                         threadObj,          // Arg 1
1182                         THREAD);
1183
1184
1185}
1186
1187// NamedThread --  non-JavaThread subclasses with multiple
1188// uniquely named instances should derive from this.
1189NamedThread::NamedThread() : Thread() {
1190  _name = NULL;
1191  _processed_thread = NULL;
1192}
1193
1194NamedThread::~NamedThread() {
1195  if (_name != NULL) {
1196    FREE_C_HEAP_ARRAY(char, _name, mtThread);
1197    _name = NULL;
1198  }
1199}
1200
1201void NamedThread::set_name(const char* format, ...) {
1202  guarantee(_name == NULL, "Only get to set name once.");
1203  _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1204  guarantee(_name != NULL, "alloc failure");
1205  va_list ap;
1206  va_start(ap, format);
1207  jio_vsnprintf(_name, max_name_len, format, ap);
1208  va_end(ap);
1209}
1210
1211// ======= WatcherThread ========
1212
1213// The watcher thread exists to simulate timer interrupts.  It should
1214// be replaced by an abstraction over whatever native support for
1215// timer interrupts exists on the platform.
1216
1217WatcherThread* WatcherThread::_watcher_thread   = NULL;
1218bool WatcherThread::_startable = false;
1219volatile bool  WatcherThread::_should_terminate = false;
1220
1221WatcherThread::WatcherThread() : Thread() {
1222  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1223  if (os::create_thread(this, os::watcher_thread)) {
1224    _watcher_thread = this;
1225
1226    // Set the watcher thread to the highest OS priority which should not be
1227    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1228    // is created. The only normal thread using this priority is the reference
1229    // handler thread, which runs for very short intervals only.
1230    // If the VMThread's priority is not lower than the WatcherThread profiling
1231    // will be inaccurate.
1232    os::set_priority(this, MaxPriority);
1233    if (!DisableStartThread) {
1234      os::start_thread(this);
1235    }
1236  }
1237}
1238
1239int WatcherThread::sleep() const {
1240  MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1241
1242  // remaining will be zero if there are no tasks,
1243  // causing the WatcherThread to sleep until a task is
1244  // enrolled
1245  int remaining = PeriodicTask::time_to_wait();
1246  int time_slept = 0;
1247
1248  // we expect this to timeout - we only ever get unparked when
1249  // we should terminate or when a new task has been enrolled
1250  OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1251
1252  jlong time_before_loop = os::javaTimeNanos();
1253
1254  for (;;) {
1255    bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1256    jlong now = os::javaTimeNanos();
1257
1258    if (remaining == 0) {
1259        // if we didn't have any tasks we could have waited for a long time
1260        // consider the time_slept zero and reset time_before_loop
1261        time_slept = 0;
1262        time_before_loop = now;
1263    } else {
1264        // need to recalulate since we might have new tasks in _tasks
1265        time_slept = (int) ((now - time_before_loop) / 1000000);
1266    }
1267
1268    // Change to task list or spurious wakeup of some kind
1269    if (timedout || _should_terminate) {
1270        break;
1271    }
1272
1273    remaining = PeriodicTask::time_to_wait();
1274    if (remaining == 0) {
1275        // Last task was just disenrolled so loop around and wait until
1276        // another task gets enrolled
1277        continue;
1278    }
1279
1280    remaining -= time_slept;
1281    if (remaining <= 0)
1282      break;
1283  }
1284
1285  return time_slept;
1286}
1287
1288void WatcherThread::run() {
1289  assert(this == watcher_thread(), "just checking");
1290
1291  this->record_stack_base_and_size();
1292  this->initialize_thread_local_storage();
1293  this->set_active_handles(JNIHandleBlock::allocate_block());
1294  while(!_should_terminate) {
1295    assert(watcher_thread() == Thread::current(),  "thread consistency check");
1296    assert(watcher_thread() == this,  "thread consistency check");
1297
1298    // Calculate how long it'll be until the next PeriodicTask work
1299    // should be done, and sleep that amount of time.
1300    int time_waited = sleep();
1301
1302    if (is_error_reported()) {
1303      // A fatal error has happened, the error handler(VMError::report_and_die)
1304      // should abort JVM after creating an error log file. However in some
1305      // rare cases, the error handler itself might deadlock. Here we try to
1306      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1307      //
1308      // This code is in WatcherThread because WatcherThread wakes up
1309      // periodically so the fatal error handler doesn't need to do anything;
1310      // also because the WatcherThread is less likely to crash than other
1311      // threads.
1312
1313      for (;;) {
1314        if (!ShowMessageBoxOnError
1315         && (OnError == NULL || OnError[0] == '\0')
1316         && Arguments::abort_hook() == NULL) {
1317             os::sleep(this, 2 * 60 * 1000, false);
1318             fdStream err(defaultStream::output_fd());
1319             err.print_raw_cr("# [ timer expired, abort... ]");
1320             // skip atexit/vm_exit/vm_abort hooks
1321             os::die();
1322        }
1323
1324        // Wake up 5 seconds later, the fatal handler may reset OnError or
1325        // ShowMessageBoxOnError when it is ready to abort.
1326        os::sleep(this, 5 * 1000, false);
1327      }
1328    }
1329
1330    PeriodicTask::real_time_tick(time_waited);
1331  }
1332
1333  // Signal that it is terminated
1334  {
1335    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1336    _watcher_thread = NULL;
1337    Terminator_lock->notify();
1338  }
1339
1340  // Thread destructor usually does this..
1341  ThreadLocalStorage::set_thread(NULL);
1342}
1343
1344void WatcherThread::start() {
1345  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1346
1347  if (watcher_thread() == NULL && _startable) {
1348    _should_terminate = false;
1349    // Create the single instance of WatcherThread
1350    new WatcherThread();
1351  }
1352}
1353
1354void WatcherThread::make_startable() {
1355  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1356  _startable = true;
1357}
1358
1359void WatcherThread::stop() {
1360  {
1361    MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1362    _should_terminate = true;
1363    OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1364
1365    WatcherThread* watcher = watcher_thread();
1366    if (watcher != NULL)
1367      watcher->unpark();
1368  }
1369
1370  // it is ok to take late safepoints here, if needed
1371  MutexLocker mu(Terminator_lock);
1372
1373  while(watcher_thread() != NULL) {
1374    // This wait should make safepoint checks, wait without a timeout,
1375    // and wait as a suspend-equivalent condition.
1376    //
1377    // Note: If the FlatProfiler is running, then this thread is waiting
1378    // for the WatcherThread to terminate and the WatcherThread, via the
1379    // FlatProfiler task, is waiting for the external suspend request on
1380    // this thread to complete. wait_for_ext_suspend_completion() will
1381    // eventually timeout, but that takes time. Making this wait a
1382    // suspend-equivalent condition solves that timeout problem.
1383    //
1384    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1385                          Mutex::_as_suspend_equivalent_flag);
1386  }
1387}
1388
1389void WatcherThread::unpark() {
1390  MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1391  PeriodicTask_lock->notify();
1392}
1393
1394void WatcherThread::print_on(outputStream* st) const {
1395  st->print("\"%s\" ", name());
1396  Thread::print_on(st);
1397  st->cr();
1398}
1399
1400// ======= JavaThread ========
1401
1402// A JavaThread is a normal Java thread
1403
1404void JavaThread::initialize() {
1405  // Initialize fields
1406
1407  // Set the claimed par_id to -1 (ie not claiming any par_ids)
1408  set_claimed_par_id(-1);
1409
1410  set_saved_exception_pc(NULL);
1411  set_threadObj(NULL);
1412  _anchor.clear();
1413  set_entry_point(NULL);
1414  set_jni_functions(jni_functions());
1415  set_callee_target(NULL);
1416  set_vm_result(NULL);
1417  set_vm_result_2(NULL);
1418  set_vframe_array_head(NULL);
1419  set_vframe_array_last(NULL);
1420  set_deferred_locals(NULL);
1421  set_deopt_mark(NULL);
1422  set_deopt_nmethod(NULL);
1423  clear_must_deopt_id();
1424  set_monitor_chunks(NULL);
1425  set_next(NULL);
1426  set_thread_state(_thread_new);
1427#if INCLUDE_NMT
1428  set_recorder(NULL);
1429#endif
1430  _terminated = _not_terminated;
1431  _privileged_stack_top = NULL;
1432  _array_for_gc = NULL;
1433  _suspend_equivalent = false;
1434  _in_deopt_handler = 0;
1435  _doing_unsafe_access = false;
1436  _stack_guard_state = stack_guard_unused;
1437  _exception_oop = NULL;
1438  _exception_pc  = 0;
1439  _exception_handler_pc = 0;
1440  _is_method_handle_return = 0;
1441  _jvmti_thread_state= NULL;
1442  _should_post_on_exceptions_flag = JNI_FALSE;
1443  _jvmti_get_loaded_classes_closure = NULL;
1444  _interp_only_mode    = 0;
1445  _special_runtime_exit_condition = _no_async_condition;
1446  _pending_async_exception = NULL;
1447  _is_compiling = false;
1448  _thread_stat = NULL;
1449  _thread_stat = new ThreadStatistics();
1450  _blocked_on_compilation = false;
1451  _jni_active_critical = 0;
1452  _do_not_unlock_if_synchronized = false;
1453  _cached_monitor_info = NULL;
1454  _parker = Parker::Allocate(this) ;
1455
1456#ifndef PRODUCT
1457  _jmp_ring_index = 0;
1458  for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1459    record_jump(NULL, NULL, NULL, 0);
1460  }
1461#endif /* PRODUCT */
1462
1463  set_thread_profiler(NULL);
1464  if (FlatProfiler::is_active()) {
1465    // This is where we would decide to either give each thread it's own profiler
1466    // or use one global one from FlatProfiler,
1467    // or up to some count of the number of profiled threads, etc.
1468    ThreadProfiler* pp = new ThreadProfiler();
1469    pp->engage();
1470    set_thread_profiler(pp);
1471  }
1472
1473  // Setup safepoint state info for this thread
1474  ThreadSafepointState::create(this);
1475
1476  debug_only(_java_call_counter = 0);
1477
1478  // JVMTI PopFrame support
1479  _popframe_condition = popframe_inactive;
1480  _popframe_preserved_args = NULL;
1481  _popframe_preserved_args_size = 0;
1482
1483  pd_initialize();
1484}
1485
1486#if INCLUDE_ALL_GCS
1487SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1488DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1489#endif // INCLUDE_ALL_GCS
1490
1491JavaThread::JavaThread(bool is_attaching_via_jni) :
1492  Thread()
1493#if INCLUDE_ALL_GCS
1494  , _satb_mark_queue(&_satb_mark_queue_set),
1495  _dirty_card_queue(&_dirty_card_queue_set)
1496#endif // INCLUDE_ALL_GCS
1497{
1498  initialize();
1499  if (is_attaching_via_jni) {
1500    _jni_attach_state = _attaching_via_jni;
1501  } else {
1502    _jni_attach_state = _not_attaching_via_jni;
1503  }
1504  assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1505  _safepoint_visible = false;
1506}
1507
1508bool JavaThread::reguard_stack(address cur_sp) {
1509  if (_stack_guard_state != stack_guard_yellow_disabled) {
1510    return true; // Stack already guarded or guard pages not needed.
1511  }
1512
1513  if (register_stack_overflow()) {
1514    // For those architectures which have separate register and
1515    // memory stacks, we must check the register stack to see if
1516    // it has overflowed.
1517    return false;
1518  }
1519
1520  // Java code never executes within the yellow zone: the latter is only
1521  // there to provoke an exception during stack banging.  If java code
1522  // is executing there, either StackShadowPages should be larger, or
1523  // some exception code in c1, c2 or the interpreter isn't unwinding
1524  // when it should.
1525  guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1526
1527  enable_stack_yellow_zone();
1528  return true;
1529}
1530
1531bool JavaThread::reguard_stack(void) {
1532  return reguard_stack(os::current_stack_pointer());
1533}
1534
1535
1536void JavaThread::block_if_vm_exited() {
1537  if (_terminated == _vm_exited) {
1538    // _vm_exited is set at safepoint, and Threads_lock is never released
1539    // we will block here forever
1540    Threads_lock->lock_without_safepoint_check();
1541    ShouldNotReachHere();
1542  }
1543}
1544
1545
1546// Remove this ifdef when C1 is ported to the compiler interface.
1547static void compiler_thread_entry(JavaThread* thread, TRAPS);
1548
1549JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1550  Thread()
1551#if INCLUDE_ALL_GCS
1552  , _satb_mark_queue(&_satb_mark_queue_set),
1553  _dirty_card_queue(&_dirty_card_queue_set)
1554#endif // INCLUDE_ALL_GCS
1555{
1556  if (TraceThreadEvents) {
1557    tty->print_cr("creating thread %p", this);
1558  }
1559  initialize();
1560  _jni_attach_state = _not_attaching_via_jni;
1561  set_entry_point(entry_point);
1562  // Create the native thread itself.
1563  // %note runtime_23
1564  os::ThreadType thr_type = os::java_thread;
1565  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1566                                                     os::java_thread;
1567  os::create_thread(this, thr_type, stack_sz);
1568  _safepoint_visible = false;
1569  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1570  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1571  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1572  // the exception consists of creating the exception object & initializing it, initialization
1573  // will leave the VM via a JavaCall and then all locks must be unlocked).
1574  //
1575  // The thread is still suspended when we reach here. Thread must be explicit started
1576  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1577  // by calling Threads:add. The reason why this is not done here, is because the thread
1578  // object must be fully initialized (take a look at JVM_Start)
1579}
1580
1581JavaThread::~JavaThread() {
1582  if (TraceThreadEvents) {
1583      tty->print_cr("terminate thread %p", this);
1584  }
1585
1586  // By now, this thread should already be invisible to safepoint,
1587  // and its per-thread recorder also collected.
1588  assert(!is_safepoint_visible(), "wrong state");
1589#if INCLUDE_NMT
1590  assert(get_recorder() == NULL, "Already collected");
1591#endif // INCLUDE_NMT
1592
1593  // JSR166 -- return the parker to the free list
1594  Parker::Release(_parker);
1595  _parker = NULL ;
1596
1597  // Free any remaining  previous UnrollBlock
1598  vframeArray* old_array = vframe_array_last();
1599
1600  if (old_array != NULL) {
1601    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1602    old_array->set_unroll_block(NULL);
1603    delete old_info;
1604    delete old_array;
1605  }
1606
1607  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1608  if (deferred != NULL) {
1609    // This can only happen if thread is destroyed before deoptimization occurs.
1610    assert(deferred->length() != 0, "empty array!");
1611    do {
1612      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1613      deferred->remove_at(0);
1614      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1615      delete dlv;
1616    } while (deferred->length() != 0);
1617    delete deferred;
1618  }
1619
1620  // All Java related clean up happens in exit
1621  ThreadSafepointState::destroy(this);
1622  if (_thread_profiler != NULL) delete _thread_profiler;
1623  if (_thread_stat != NULL) delete _thread_stat;
1624}
1625
1626
1627// The first routine called by a new Java thread
1628void JavaThread::run() {
1629  // initialize thread-local alloc buffer related fields
1630  this->initialize_tlab();
1631
1632  // used to test validitity of stack trace backs
1633  this->record_base_of_stack_pointer();
1634
1635  // Record real stack base and size.
1636  this->record_stack_base_and_size();
1637
1638  // Initialize thread local storage; set before calling MutexLocker
1639  this->initialize_thread_local_storage();
1640
1641  this->create_stack_guard_pages();
1642
1643  this->cache_global_variables();
1644
1645  // Thread is now sufficient initialized to be handled by the safepoint code as being
1646  // in the VM. Change thread state from _thread_new to _thread_in_vm
1647  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1648
1649  assert(JavaThread::current() == this, "sanity check");
1650  assert(!Thread::current()->owns_locks(), "sanity check");
1651
1652  DTRACE_THREAD_PROBE(start, this);
1653
1654  // This operation might block. We call that after all safepoint checks for a new thread has
1655  // been completed.
1656  this->set_active_handles(JNIHandleBlock::allocate_block());
1657
1658  if (JvmtiExport::should_post_thread_life()) {
1659    JvmtiExport::post_thread_start(this);
1660  }
1661
1662  EVENT_BEGIN(TraceEventThreadStart, event);
1663  EVENT_COMMIT(event,
1664     EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
1665
1666  // We call another function to do the rest so we are sure that the stack addresses used
1667  // from there will be lower than the stack base just computed
1668  thread_main_inner();
1669
1670  // Note, thread is no longer valid at this point!
1671}
1672
1673
1674void JavaThread::thread_main_inner() {
1675  assert(JavaThread::current() == this, "sanity check");
1676  assert(this->threadObj() != NULL, "just checking");
1677
1678  // Execute thread entry point unless this thread has a pending exception
1679  // or has been stopped before starting.
1680  // Note: Due to JVM_StopThread we can have pending exceptions already!
1681  if (!this->has_pending_exception() &&
1682      !java_lang_Thread::is_stillborn(this->threadObj())) {
1683    {
1684      ResourceMark rm(this);
1685      this->set_native_thread_name(this->get_thread_name());
1686    }
1687    HandleMark hm(this);
1688    this->entry_point()(this, this);
1689  }
1690
1691  DTRACE_THREAD_PROBE(stop, this);
1692
1693  this->exit(false);
1694  delete this;
1695}
1696
1697
1698static void ensure_join(JavaThread* thread) {
1699  // We do not need to grap the Threads_lock, since we are operating on ourself.
1700  Handle threadObj(thread, thread->threadObj());
1701  assert(threadObj.not_null(), "java thread object must exist");
1702  ObjectLocker lock(threadObj, thread);
1703  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1704  thread->clear_pending_exception();
1705  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1706  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1707  // Clear the native thread instance - this makes isAlive return false and allows the join()
1708  // to complete once we've done the notify_all below
1709  java_lang_Thread::set_thread(threadObj(), NULL);
1710  lock.notify_all(thread);
1711  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1712  thread->clear_pending_exception();
1713}
1714
1715
1716// For any new cleanup additions, please check to see if they need to be applied to
1717// cleanup_failed_attach_current_thread as well.
1718void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1719  assert(this == JavaThread::current(),  "thread consistency check");
1720
1721  HandleMark hm(this);
1722  Handle uncaught_exception(this, this->pending_exception());
1723  this->clear_pending_exception();
1724  Handle threadObj(this, this->threadObj());
1725  assert(threadObj.not_null(), "Java thread object should be created");
1726
1727  if (get_thread_profiler() != NULL) {
1728    get_thread_profiler()->disengage();
1729    ResourceMark rm;
1730    get_thread_profiler()->print(get_thread_name());
1731  }
1732
1733
1734  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1735  {
1736    EXCEPTION_MARK;
1737
1738    CLEAR_PENDING_EXCEPTION;
1739  }
1740  // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1741  // has to be fixed by a runtime query method
1742  if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1743    // JSR-166: change call from from ThreadGroup.uncaughtException to
1744    // java.lang.Thread.dispatchUncaughtException
1745    if (uncaught_exception.not_null()) {
1746      Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1747      {
1748        EXCEPTION_MARK;
1749        // Check if the method Thread.dispatchUncaughtException() exists. If so
1750        // call it.  Otherwise we have an older library without the JSR-166 changes,
1751        // so call ThreadGroup.uncaughtException()
1752        KlassHandle recvrKlass(THREAD, threadObj->klass());
1753        CallInfo callinfo;
1754        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1755        LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1756                                           vmSymbols::dispatchUncaughtException_name(),
1757                                           vmSymbols::throwable_void_signature(),
1758                                           KlassHandle(), false, false, THREAD);
1759        CLEAR_PENDING_EXCEPTION;
1760        methodHandle method = callinfo.selected_method();
1761        if (method.not_null()) {
1762          JavaValue result(T_VOID);
1763          JavaCalls::call_virtual(&result,
1764                                  threadObj, thread_klass,
1765                                  vmSymbols::dispatchUncaughtException_name(),
1766                                  vmSymbols::throwable_void_signature(),
1767                                  uncaught_exception,
1768                                  THREAD);
1769        } else {
1770          KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1771          JavaValue result(T_VOID);
1772          JavaCalls::call_virtual(&result,
1773                                  group, thread_group,
1774                                  vmSymbols::uncaughtException_name(),
1775                                  vmSymbols::thread_throwable_void_signature(),
1776                                  threadObj,           // Arg 1
1777                                  uncaught_exception,  // Arg 2
1778                                  THREAD);
1779        }
1780        if (HAS_PENDING_EXCEPTION) {
1781          ResourceMark rm(this);
1782          jio_fprintf(defaultStream::error_stream(),
1783                "\nException: %s thrown from the UncaughtExceptionHandler"
1784                " in thread \"%s\"\n",
1785                pending_exception()->klass()->external_name(),
1786                get_thread_name());
1787          CLEAR_PENDING_EXCEPTION;
1788        }
1789      }
1790    }
1791
1792    // Called before the java thread exit since we want to read info
1793    // from java_lang_Thread object
1794    EVENT_BEGIN(TraceEventThreadEnd, event);
1795    EVENT_COMMIT(event,
1796        EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
1797
1798    // Call after last event on thread
1799    EVENT_THREAD_EXIT(this);
1800
1801    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1802    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1803    // is deprecated anyhow.
1804    { int count = 3;
1805      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1806        EXCEPTION_MARK;
1807        JavaValue result(T_VOID);
1808        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1809        JavaCalls::call_virtual(&result,
1810                              threadObj, thread_klass,
1811                              vmSymbols::exit_method_name(),
1812                              vmSymbols::void_method_signature(),
1813                              THREAD);
1814        CLEAR_PENDING_EXCEPTION;
1815      }
1816    }
1817
1818    // notify JVMTI
1819    if (JvmtiExport::should_post_thread_life()) {
1820      JvmtiExport::post_thread_end(this);
1821    }
1822
1823    // We have notified the agents that we are exiting, before we go on,
1824    // we must check for a pending external suspend request and honor it
1825    // in order to not surprise the thread that made the suspend request.
1826    while (true) {
1827      {
1828        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1829        if (!is_external_suspend()) {
1830          set_terminated(_thread_exiting);
1831          ThreadService::current_thread_exiting(this);
1832          break;
1833        }
1834        // Implied else:
1835        // Things get a little tricky here. We have a pending external
1836        // suspend request, but we are holding the SR_lock so we
1837        // can't just self-suspend. So we temporarily drop the lock
1838        // and then self-suspend.
1839      }
1840
1841      ThreadBlockInVM tbivm(this);
1842      java_suspend_self();
1843
1844      // We're done with this suspend request, but we have to loop around
1845      // and check again. Eventually we will get SR_lock without a pending
1846      // external suspend request and will be able to mark ourselves as
1847      // exiting.
1848    }
1849    // no more external suspends are allowed at this point
1850  } else {
1851    // before_exit() has already posted JVMTI THREAD_END events
1852  }
1853
1854  // Notify waiters on thread object. This has to be done after exit() is called
1855  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1856  // group should have the destroyed bit set before waiters are notified).
1857  ensure_join(this);
1858  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1859
1860  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1861  // held by this thread must be released.  A detach operation must only
1862  // get here if there are no Java frames on the stack.  Therefore, any
1863  // owned monitors at this point MUST be JNI-acquired monitors which are
1864  // pre-inflated and in the monitor cache.
1865  //
1866  // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1867  if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1868    assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1869    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1870    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1871  }
1872
1873  // These things needs to be done while we are still a Java Thread. Make sure that thread
1874  // is in a consistent state, in case GC happens
1875  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1876
1877  if (active_handles() != NULL) {
1878    JNIHandleBlock* block = active_handles();
1879    set_active_handles(NULL);
1880    JNIHandleBlock::release_block(block);
1881  }
1882
1883  if (free_handle_block() != NULL) {
1884    JNIHandleBlock* block = free_handle_block();
1885    set_free_handle_block(NULL);
1886    JNIHandleBlock::release_block(block);
1887  }
1888
1889  // These have to be removed while this is still a valid thread.
1890  remove_stack_guard_pages();
1891
1892  if (UseTLAB) {
1893    tlab().make_parsable(true);  // retire TLAB
1894  }
1895
1896  if (JvmtiEnv::environments_might_exist()) {
1897    JvmtiExport::cleanup_thread(this);
1898  }
1899
1900  // We must flush any deferred card marks before removing a thread from
1901  // the list of active threads.
1902  Universe::heap()->flush_deferred_store_barrier(this);
1903  assert(deferred_card_mark().is_empty(), "Should have been flushed");
1904
1905#if INCLUDE_ALL_GCS
1906  // We must flush the G1-related buffers before removing a thread
1907  // from the list of active threads. We must do this after any deferred
1908  // card marks have been flushed (above) so that any entries that are
1909  // added to the thread's dirty card queue as a result are not lost.
1910  if (UseG1GC) {
1911    flush_barrier_queues();
1912  }
1913#endif // INCLUDE_ALL_GCS
1914
1915  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1916  Threads::remove(this);
1917}
1918
1919#if INCLUDE_ALL_GCS
1920// Flush G1-related queues.
1921void JavaThread::flush_barrier_queues() {
1922  satb_mark_queue().flush();
1923  dirty_card_queue().flush();
1924}
1925
1926void JavaThread::initialize_queues() {
1927  assert(!SafepointSynchronize::is_at_safepoint(),
1928         "we should not be at a safepoint");
1929
1930  ObjPtrQueue& satb_queue = satb_mark_queue();
1931  SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1932  // The SATB queue should have been constructed with its active
1933  // field set to false.
1934  assert(!satb_queue.is_active(), "SATB queue should not be active");
1935  assert(satb_queue.is_empty(), "SATB queue should be empty");
1936  // If we are creating the thread during a marking cycle, we should
1937  // set the active field of the SATB queue to true.
1938  if (satb_queue_set.is_active()) {
1939    satb_queue.set_active(true);
1940  }
1941
1942  DirtyCardQueue& dirty_queue = dirty_card_queue();
1943  // The dirty card queue should have been constructed with its
1944  // active field set to true.
1945  assert(dirty_queue.is_active(), "dirty card queue should be active");
1946}
1947#endif // INCLUDE_ALL_GCS
1948
1949void JavaThread::cleanup_failed_attach_current_thread() {
1950  if (get_thread_profiler() != NULL) {
1951    get_thread_profiler()->disengage();
1952    ResourceMark rm;
1953    get_thread_profiler()->print(get_thread_name());
1954  }
1955
1956  if (active_handles() != NULL) {
1957    JNIHandleBlock* block = active_handles();
1958    set_active_handles(NULL);
1959    JNIHandleBlock::release_block(block);
1960  }
1961
1962  if (free_handle_block() != NULL) {
1963    JNIHandleBlock* block = free_handle_block();
1964    set_free_handle_block(NULL);
1965    JNIHandleBlock::release_block(block);
1966  }
1967
1968  // These have to be removed while this is still a valid thread.
1969  remove_stack_guard_pages();
1970
1971  if (UseTLAB) {
1972    tlab().make_parsable(true);  // retire TLAB, if any
1973  }
1974
1975#if INCLUDE_ALL_GCS
1976  if (UseG1GC) {
1977    flush_barrier_queues();
1978  }
1979#endif // INCLUDE_ALL_GCS
1980
1981  Threads::remove(this);
1982  delete this;
1983}
1984
1985
1986
1987
1988JavaThread* JavaThread::active() {
1989  Thread* thread = ThreadLocalStorage::thread();
1990  assert(thread != NULL, "just checking");
1991  if (thread->is_Java_thread()) {
1992    return (JavaThread*) thread;
1993  } else {
1994    assert(thread->is_VM_thread(), "this must be a vm thread");
1995    VM_Operation* op = ((VMThread*) thread)->vm_operation();
1996    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1997    assert(ret->is_Java_thread(), "must be a Java thread");
1998    return ret;
1999  }
2000}
2001
2002bool JavaThread::is_lock_owned(address adr) const {
2003  if (Thread::is_lock_owned(adr)) return true;
2004
2005  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2006    if (chunk->contains(adr)) return true;
2007  }
2008
2009  return false;
2010}
2011
2012
2013void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2014  chunk->set_next(monitor_chunks());
2015  set_monitor_chunks(chunk);
2016}
2017
2018void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2019  guarantee(monitor_chunks() != NULL, "must be non empty");
2020  if (monitor_chunks() == chunk) {
2021    set_monitor_chunks(chunk->next());
2022  } else {
2023    MonitorChunk* prev = monitor_chunks();
2024    while (prev->next() != chunk) prev = prev->next();
2025    prev->set_next(chunk->next());
2026  }
2027}
2028
2029// JVM support.
2030
2031// Note: this function shouldn't block if it's called in
2032// _thread_in_native_trans state (such as from
2033// check_special_condition_for_native_trans()).
2034void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2035
2036  if (has_last_Java_frame() && has_async_condition()) {
2037    // If we are at a polling page safepoint (not a poll return)
2038    // then we must defer async exception because live registers
2039    // will be clobbered by the exception path. Poll return is
2040    // ok because the call we a returning from already collides
2041    // with exception handling registers and so there is no issue.
2042    // (The exception handling path kills call result registers but
2043    //  this is ok since the exception kills the result anyway).
2044
2045    if (is_at_poll_safepoint()) {
2046      // if the code we are returning to has deoptimized we must defer
2047      // the exception otherwise live registers get clobbered on the
2048      // exception path before deoptimization is able to retrieve them.
2049      //
2050      RegisterMap map(this, false);
2051      frame caller_fr = last_frame().sender(&map);
2052      assert(caller_fr.is_compiled_frame(), "what?");
2053      if (caller_fr.is_deoptimized_frame()) {
2054        if (TraceExceptions) {
2055          ResourceMark rm;
2056          tty->print_cr("deferred async exception at compiled safepoint");
2057        }
2058        return;
2059      }
2060    }
2061  }
2062
2063  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2064  if (condition == _no_async_condition) {
2065    // Conditions have changed since has_special_runtime_exit_condition()
2066    // was called:
2067    // - if we were here only because of an external suspend request,
2068    //   then that was taken care of above (or cancelled) so we are done
2069    // - if we were here because of another async request, then it has
2070    //   been cleared between the has_special_runtime_exit_condition()
2071    //   and now so again we are done
2072    return;
2073  }
2074
2075  // Check for pending async. exception
2076  if (_pending_async_exception != NULL) {
2077    // Only overwrite an already pending exception, if it is not a threadDeath.
2078    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2079
2080      // We cannot call Exceptions::_throw(...) here because we cannot block
2081      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2082
2083      if (TraceExceptions) {
2084        ResourceMark rm;
2085        tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2086        if (has_last_Java_frame() ) {
2087          frame f = last_frame();
2088          tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2089        }
2090        tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2091      }
2092      _pending_async_exception = NULL;
2093      clear_has_async_exception();
2094    }
2095  }
2096
2097  if (check_unsafe_error &&
2098      condition == _async_unsafe_access_error && !has_pending_exception()) {
2099    condition = _no_async_condition;  // done
2100    switch (thread_state()) {
2101    case _thread_in_vm:
2102      {
2103        JavaThread* THREAD = this;
2104        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2105      }
2106    case _thread_in_native:
2107      {
2108        ThreadInVMfromNative tiv(this);
2109        JavaThread* THREAD = this;
2110        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2111      }
2112    case _thread_in_Java:
2113      {
2114        ThreadInVMfromJava tiv(this);
2115        JavaThread* THREAD = this;
2116        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2117      }
2118    default:
2119      ShouldNotReachHere();
2120    }
2121  }
2122
2123  assert(condition == _no_async_condition || has_pending_exception() ||
2124         (!check_unsafe_error && condition == _async_unsafe_access_error),
2125         "must have handled the async condition, if no exception");
2126}
2127
2128void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2129  //
2130  // Check for pending external suspend. Internal suspend requests do
2131  // not use handle_special_runtime_exit_condition().
2132  // If JNIEnv proxies are allowed, don't self-suspend if the target
2133  // thread is not the current thread. In older versions of jdbx, jdbx
2134  // threads could call into the VM with another thread's JNIEnv so we
2135  // can be here operating on behalf of a suspended thread (4432884).
2136  bool do_self_suspend = is_external_suspend_with_lock();
2137  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2138    //
2139    // Because thread is external suspended the safepoint code will count
2140    // thread as at a safepoint. This can be odd because we can be here
2141    // as _thread_in_Java which would normally transition to _thread_blocked
2142    // at a safepoint. We would like to mark the thread as _thread_blocked
2143    // before calling java_suspend_self like all other callers of it but
2144    // we must then observe proper safepoint protocol. (We can't leave
2145    // _thread_blocked with a safepoint in progress). However we can be
2146    // here as _thread_in_native_trans so we can't use a normal transition
2147    // constructor/destructor pair because they assert on that type of
2148    // transition. We could do something like:
2149    //
2150    // JavaThreadState state = thread_state();
2151    // set_thread_state(_thread_in_vm);
2152    // {
2153    //   ThreadBlockInVM tbivm(this);
2154    //   java_suspend_self()
2155    // }
2156    // set_thread_state(_thread_in_vm_trans);
2157    // if (safepoint) block;
2158    // set_thread_state(state);
2159    //
2160    // but that is pretty messy. Instead we just go with the way the
2161    // code has worked before and note that this is the only path to
2162    // java_suspend_self that doesn't put the thread in _thread_blocked
2163    // mode.
2164
2165    frame_anchor()->make_walkable(this);
2166    java_suspend_self();
2167
2168    // We might be here for reasons in addition to the self-suspend request
2169    // so check for other async requests.
2170  }
2171
2172  if (check_asyncs) {
2173    check_and_handle_async_exceptions();
2174  }
2175}
2176
2177void JavaThread::send_thread_stop(oop java_throwable)  {
2178  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2179  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2180  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2181
2182  // Do not throw asynchronous exceptions against the compiler thread
2183  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2184  if (is_Compiler_thread()) return;
2185
2186  {
2187    // Actually throw the Throwable against the target Thread - however
2188    // only if there is no thread death exception installed already.
2189    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2190      // If the topmost frame is a runtime stub, then we are calling into
2191      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2192      // must deoptimize the caller before continuing, as the compiled  exception handler table
2193      // may not be valid
2194      if (has_last_Java_frame()) {
2195        frame f = last_frame();
2196        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2197          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2198          RegisterMap reg_map(this, UseBiasedLocking);
2199          frame compiled_frame = f.sender(&reg_map);
2200          if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2201            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2202          }
2203        }
2204      }
2205
2206      // Set async. pending exception in thread.
2207      set_pending_async_exception(java_throwable);
2208
2209      if (TraceExceptions) {
2210       ResourceMark rm;
2211       tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2212      }
2213      // for AbortVMOnException flag
2214      NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2215    }
2216  }
2217
2218
2219  // Interrupt thread so it will wake up from a potential wait()
2220  Thread::interrupt(this);
2221}
2222
2223// External suspension mechanism.
2224//
2225// Tell the VM to suspend a thread when ever it knows that it does not hold on
2226// to any VM_locks and it is at a transition
2227// Self-suspension will happen on the transition out of the vm.
2228// Catch "this" coming in from JNIEnv pointers when the thread has been freed
2229//
2230// Guarantees on return:
2231//   + Target thread will not execute any new bytecode (that's why we need to
2232//     force a safepoint)
2233//   + Target thread will not enter any new monitors
2234//
2235void JavaThread::java_suspend() {
2236  { MutexLocker mu(Threads_lock);
2237    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2238       return;
2239    }
2240  }
2241
2242  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2243    if (!is_external_suspend()) {
2244      // a racing resume has cancelled us; bail out now
2245      return;
2246    }
2247
2248    // suspend is done
2249    uint32_t debug_bits = 0;
2250    // Warning: is_ext_suspend_completed() may temporarily drop the
2251    // SR_lock to allow the thread to reach a stable thread state if
2252    // it is currently in a transient thread state.
2253    if (is_ext_suspend_completed(false /* !called_by_wait */,
2254                                 SuspendRetryDelay, &debug_bits) ) {
2255      return;
2256    }
2257  }
2258
2259  VM_ForceSafepoint vm_suspend;
2260  VMThread::execute(&vm_suspend);
2261}
2262
2263// Part II of external suspension.
2264// A JavaThread self suspends when it detects a pending external suspend
2265// request. This is usually on transitions. It is also done in places
2266// where continuing to the next transition would surprise the caller,
2267// e.g., monitor entry.
2268//
2269// Returns the number of times that the thread self-suspended.
2270//
2271// Note: DO NOT call java_suspend_self() when you just want to block current
2272//       thread. java_suspend_self() is the second stage of cooperative
2273//       suspension for external suspend requests and should only be used
2274//       to complete an external suspend request.
2275//
2276int JavaThread::java_suspend_self() {
2277  int ret = 0;
2278
2279  // we are in the process of exiting so don't suspend
2280  if (is_exiting()) {
2281     clear_external_suspend();
2282     return ret;
2283  }
2284
2285  assert(_anchor.walkable() ||
2286    (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2287    "must have walkable stack");
2288
2289  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2290
2291  assert(!this->is_ext_suspended(),
2292    "a thread trying to self-suspend should not already be suspended");
2293
2294  if (this->is_suspend_equivalent()) {
2295    // If we are self-suspending as a result of the lifting of a
2296    // suspend equivalent condition, then the suspend_equivalent
2297    // flag is not cleared until we set the ext_suspended flag so
2298    // that wait_for_ext_suspend_completion() returns consistent
2299    // results.
2300    this->clear_suspend_equivalent();
2301  }
2302
2303  // A racing resume may have cancelled us before we grabbed SR_lock
2304  // above. Or another external suspend request could be waiting for us
2305  // by the time we return from SR_lock()->wait(). The thread
2306  // that requested the suspension may already be trying to walk our
2307  // stack and if we return now, we can change the stack out from under
2308  // it. This would be a "bad thing (TM)" and cause the stack walker
2309  // to crash. We stay self-suspended until there are no more pending
2310  // external suspend requests.
2311  while (is_external_suspend()) {
2312    ret++;
2313    this->set_ext_suspended();
2314
2315    // _ext_suspended flag is cleared by java_resume()
2316    while (is_ext_suspended()) {
2317      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2318    }
2319  }
2320
2321  return ret;
2322}
2323
2324#ifdef ASSERT
2325// verify the JavaThread has not yet been published in the Threads::list, and
2326// hence doesn't need protection from concurrent access at this stage
2327void JavaThread::verify_not_published() {
2328  if (!Threads_lock->owned_by_self()) {
2329   MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2330   assert( !Threads::includes(this),
2331           "java thread shouldn't have been published yet!");
2332  }
2333  else {
2334   assert( !Threads::includes(this),
2335           "java thread shouldn't have been published yet!");
2336  }
2337}
2338#endif
2339
2340// Slow path when the native==>VM/Java barriers detect a safepoint is in
2341// progress or when _suspend_flags is non-zero.
2342// Current thread needs to self-suspend if there is a suspend request and/or
2343// block if a safepoint is in progress.
2344// Async exception ISN'T checked.
2345// Note only the ThreadInVMfromNative transition can call this function
2346// directly and when thread state is _thread_in_native_trans
2347void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2348  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2349
2350  JavaThread *curJT = JavaThread::current();
2351  bool do_self_suspend = thread->is_external_suspend();
2352
2353  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2354
2355  // If JNIEnv proxies are allowed, don't self-suspend if the target
2356  // thread is not the current thread. In older versions of jdbx, jdbx
2357  // threads could call into the VM with another thread's JNIEnv so we
2358  // can be here operating on behalf of a suspended thread (4432884).
2359  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2360    JavaThreadState state = thread->thread_state();
2361
2362    // We mark this thread_blocked state as a suspend-equivalent so
2363    // that a caller to is_ext_suspend_completed() won't be confused.
2364    // The suspend-equivalent state is cleared by java_suspend_self().
2365    thread->set_suspend_equivalent();
2366
2367    // If the safepoint code sees the _thread_in_native_trans state, it will
2368    // wait until the thread changes to other thread state. There is no
2369    // guarantee on how soon we can obtain the SR_lock and complete the
2370    // self-suspend request. It would be a bad idea to let safepoint wait for
2371    // too long. Temporarily change the state to _thread_blocked to
2372    // let the VM thread know that this thread is ready for GC. The problem
2373    // of changing thread state is that safepoint could happen just after
2374    // java_suspend_self() returns after being resumed, and VM thread will
2375    // see the _thread_blocked state. We must check for safepoint
2376    // after restoring the state and make sure we won't leave while a safepoint
2377    // is in progress.
2378    thread->set_thread_state(_thread_blocked);
2379    thread->java_suspend_self();
2380    thread->set_thread_state(state);
2381    // Make sure new state is seen by VM thread
2382    if (os::is_MP()) {
2383      if (UseMembar) {
2384        // Force a fence between the write above and read below
2385        OrderAccess::fence();
2386      } else {
2387        // Must use this rather than serialization page in particular on Windows
2388        InterfaceSupport::serialize_memory(thread);
2389      }
2390    }
2391  }
2392
2393  if (SafepointSynchronize::do_call_back()) {
2394    // If we are safepointing, then block the caller which may not be
2395    // the same as the target thread (see above).
2396    SafepointSynchronize::block(curJT);
2397  }
2398
2399  if (thread->is_deopt_suspend()) {
2400    thread->clear_deopt_suspend();
2401    RegisterMap map(thread, false);
2402    frame f = thread->last_frame();
2403    while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2404      f = f.sender(&map);
2405    }
2406    if (f.id() == thread->must_deopt_id()) {
2407      thread->clear_must_deopt_id();
2408      f.deoptimize(thread);
2409    } else {
2410      fatal("missed deoptimization!");
2411    }
2412  }
2413}
2414
2415// Slow path when the native==>VM/Java barriers detect a safepoint is in
2416// progress or when _suspend_flags is non-zero.
2417// Current thread needs to self-suspend if there is a suspend request and/or
2418// block if a safepoint is in progress.
2419// Also check for pending async exception (not including unsafe access error).
2420// Note only the native==>VM/Java barriers can call this function and when
2421// thread state is _thread_in_native_trans.
2422void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2423  check_safepoint_and_suspend_for_native_trans(thread);
2424
2425  if (thread->has_async_exception()) {
2426    // We are in _thread_in_native_trans state, don't handle unsafe
2427    // access error since that may block.
2428    thread->check_and_handle_async_exceptions(false);
2429  }
2430}
2431
2432// This is a variant of the normal
2433// check_special_condition_for_native_trans with slightly different
2434// semantics for use by critical native wrappers.  It does all the
2435// normal checks but also performs the transition back into
2436// thread_in_Java state.  This is required so that critical natives
2437// can potentially block and perform a GC if they are the last thread
2438// exiting the GC_locker.
2439void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2440  check_special_condition_for_native_trans(thread);
2441
2442  // Finish the transition
2443  thread->set_thread_state(_thread_in_Java);
2444
2445  if (thread->do_critical_native_unlock()) {
2446    ThreadInVMfromJavaNoAsyncException tiv(thread);
2447    GC_locker::unlock_critical(thread);
2448    thread->clear_critical_native_unlock();
2449  }
2450}
2451
2452// We need to guarantee the Threads_lock here, since resumes are not
2453// allowed during safepoint synchronization
2454// Can only resume from an external suspension
2455void JavaThread::java_resume() {
2456  assert_locked_or_safepoint(Threads_lock);
2457
2458  // Sanity check: thread is gone, has started exiting or the thread
2459  // was not externally suspended.
2460  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2461    return;
2462  }
2463
2464  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2465
2466  clear_external_suspend();
2467
2468  if (is_ext_suspended()) {
2469    clear_ext_suspended();
2470    SR_lock()->notify_all();
2471  }
2472}
2473
2474void JavaThread::create_stack_guard_pages() {
2475  if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2476  address low_addr = stack_base() - stack_size();
2477  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2478
2479  int allocate = os::allocate_stack_guard_pages();
2480  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2481
2482  if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2483    warning("Attempt to allocate stack guard pages failed.");
2484    return;
2485  }
2486
2487  if (os::guard_memory((char *) low_addr, len)) {
2488    _stack_guard_state = stack_guard_enabled;
2489  } else {
2490    warning("Attempt to protect stack guard pages failed.");
2491    if (os::uncommit_memory((char *) low_addr, len)) {
2492      warning("Attempt to deallocate stack guard pages failed.");
2493    }
2494  }
2495}
2496
2497void JavaThread::remove_stack_guard_pages() {
2498  assert(Thread::current() == this, "from different thread");
2499  if (_stack_guard_state == stack_guard_unused) return;
2500  address low_addr = stack_base() - stack_size();
2501  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2502
2503  if (os::allocate_stack_guard_pages()) {
2504    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2505      _stack_guard_state = stack_guard_unused;
2506    } else {
2507      warning("Attempt to deallocate stack guard pages failed.");
2508    }
2509  } else {
2510    if (_stack_guard_state == stack_guard_unused) return;
2511    if (os::unguard_memory((char *) low_addr, len)) {
2512      _stack_guard_state = stack_guard_unused;
2513    } else {
2514        warning("Attempt to unprotect stack guard pages failed.");
2515    }
2516  }
2517}
2518
2519void JavaThread::enable_stack_yellow_zone() {
2520  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2521  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2522
2523  // The base notation is from the stacks point of view, growing downward.
2524  // We need to adjust it to work correctly with guard_memory()
2525  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2526
2527  guarantee(base < stack_base(),"Error calculating stack yellow zone");
2528  guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2529
2530  if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2531    _stack_guard_state = stack_guard_enabled;
2532  } else {
2533    warning("Attempt to guard stack yellow zone failed.");
2534  }
2535  enable_register_stack_guard();
2536}
2537
2538void JavaThread::disable_stack_yellow_zone() {
2539  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2540  assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2541
2542  // Simply return if called for a thread that does not use guard pages.
2543  if (_stack_guard_state == stack_guard_unused) return;
2544
2545  // The base notation is from the stacks point of view, growing downward.
2546  // We need to adjust it to work correctly with guard_memory()
2547  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2548
2549  if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2550    _stack_guard_state = stack_guard_yellow_disabled;
2551  } else {
2552    warning("Attempt to unguard stack yellow zone failed.");
2553  }
2554  disable_register_stack_guard();
2555}
2556
2557void JavaThread::enable_stack_red_zone() {
2558  // The base notation is from the stacks point of view, growing downward.
2559  // We need to adjust it to work correctly with guard_memory()
2560  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2561  address base = stack_red_zone_base() - stack_red_zone_size();
2562
2563  guarantee(base < stack_base(),"Error calculating stack red zone");
2564  guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2565
2566  if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2567    warning("Attempt to guard stack red zone failed.");
2568  }
2569}
2570
2571void JavaThread::disable_stack_red_zone() {
2572  // The base notation is from the stacks point of view, growing downward.
2573  // We need to adjust it to work correctly with guard_memory()
2574  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2575  address base = stack_red_zone_base() - stack_red_zone_size();
2576  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2577    warning("Attempt to unguard stack red zone failed.");
2578  }
2579}
2580
2581void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2582  // ignore is there is no stack
2583  if (!has_last_Java_frame()) return;
2584  // traverse the stack frames. Starts from top frame.
2585  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2586    frame* fr = fst.current();
2587    f(fr, fst.register_map());
2588  }
2589}
2590
2591
2592#ifndef PRODUCT
2593// Deoptimization
2594// Function for testing deoptimization
2595void JavaThread::deoptimize() {
2596  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2597  StackFrameStream fst(this, UseBiasedLocking);
2598  bool deopt = false;           // Dump stack only if a deopt actually happens.
2599  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2600  // Iterate over all frames in the thread and deoptimize
2601  for(; !fst.is_done(); fst.next()) {
2602    if(fst.current()->can_be_deoptimized()) {
2603
2604      if (only_at) {
2605        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2606        // consists of comma or carriage return separated numbers so
2607        // search for the current bci in that string.
2608        address pc = fst.current()->pc();
2609        nmethod* nm =  (nmethod*) fst.current()->cb();
2610        ScopeDesc* sd = nm->scope_desc_at( pc);
2611        char buffer[8];
2612        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2613        size_t len = strlen(buffer);
2614        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2615        while (found != NULL) {
2616          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2617              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2618            // Check that the bci found is bracketed by terminators.
2619            break;
2620          }
2621          found = strstr(found + 1, buffer);
2622        }
2623        if (!found) {
2624          continue;
2625        }
2626      }
2627
2628      if (DebugDeoptimization && !deopt) {
2629        deopt = true; // One-time only print before deopt
2630        tty->print_cr("[BEFORE Deoptimization]");
2631        trace_frames();
2632        trace_stack();
2633      }
2634      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2635    }
2636  }
2637
2638  if (DebugDeoptimization && deopt) {
2639    tty->print_cr("[AFTER Deoptimization]");
2640    trace_frames();
2641  }
2642}
2643
2644
2645// Make zombies
2646void JavaThread::make_zombies() {
2647  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2648    if (fst.current()->can_be_deoptimized()) {
2649      // it is a Java nmethod
2650      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2651      nm->make_not_entrant();
2652    }
2653  }
2654}
2655#endif // PRODUCT
2656
2657
2658void JavaThread::deoptimized_wrt_marked_nmethods() {
2659  if (!has_last_Java_frame()) return;
2660  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2661  StackFrameStream fst(this, UseBiasedLocking);
2662  for(; !fst.is_done(); fst.next()) {
2663    if (fst.current()->should_be_deoptimized()) {
2664      if (LogCompilation && xtty != NULL) {
2665        nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2666        xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2667                   this->name(), nm != NULL ? nm->compile_id() : -1);
2668      }
2669
2670      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2671    }
2672  }
2673}
2674
2675
2676// GC support
2677static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2678
2679void JavaThread::gc_epilogue() {
2680  frames_do(frame_gc_epilogue);
2681}
2682
2683
2684static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2685
2686void JavaThread::gc_prologue() {
2687  frames_do(frame_gc_prologue);
2688}
2689
2690// If the caller is a NamedThread, then remember, in the current scope,
2691// the given JavaThread in its _processed_thread field.
2692class RememberProcessedThread: public StackObj {
2693  NamedThread* _cur_thr;
2694public:
2695  RememberProcessedThread(JavaThread* jthr) {
2696    Thread* thread = Thread::current();
2697    if (thread->is_Named_thread()) {
2698      _cur_thr = (NamedThread *)thread;
2699      _cur_thr->set_processed_thread(jthr);
2700    } else {
2701      _cur_thr = NULL;
2702    }
2703  }
2704
2705  ~RememberProcessedThread() {
2706    if (_cur_thr) {
2707      _cur_thr->set_processed_thread(NULL);
2708    }
2709  }
2710};
2711
2712void JavaThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
2713  // Verify that the deferred card marks have been flushed.
2714  assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2715
2716  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2717  // since there may be more than one thread using each ThreadProfiler.
2718
2719  // Traverse the GCHandles
2720  Thread::oops_do(f, cld_f, cf);
2721
2722  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2723          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2724
2725  if (has_last_Java_frame()) {
2726    // Record JavaThread to GC thread
2727    RememberProcessedThread rpt(this);
2728
2729    // Traverse the privileged stack
2730    if (_privileged_stack_top != NULL) {
2731      _privileged_stack_top->oops_do(f);
2732    }
2733
2734    // traverse the registered growable array
2735    if (_array_for_gc != NULL) {
2736      for (int index = 0; index < _array_for_gc->length(); index++) {
2737        f->do_oop(_array_for_gc->adr_at(index));
2738      }
2739    }
2740
2741    // Traverse the monitor chunks
2742    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2743      chunk->oops_do(f);
2744    }
2745
2746    // Traverse the execution stack
2747    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2748      fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2749    }
2750  }
2751
2752  // callee_target is never live across a gc point so NULL it here should
2753  // it still contain a methdOop.
2754
2755  set_callee_target(NULL);
2756
2757  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2758  // If we have deferred set_locals there might be oops waiting to be
2759  // written
2760  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2761  if (list != NULL) {
2762    for (int i = 0; i < list->length(); i++) {
2763      list->at(i)->oops_do(f);
2764    }
2765  }
2766
2767  // Traverse instance variables at the end since the GC may be moving things
2768  // around using this function
2769  f->do_oop((oop*) &_threadObj);
2770  f->do_oop((oop*) &_vm_result);
2771  f->do_oop((oop*) &_exception_oop);
2772  f->do_oop((oop*) &_pending_async_exception);
2773
2774  if (jvmti_thread_state() != NULL) {
2775    jvmti_thread_state()->oops_do(f);
2776  }
2777}
2778
2779void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2780  Thread::nmethods_do(cf);  // (super method is a no-op)
2781
2782  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2783          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2784
2785  if (has_last_Java_frame()) {
2786    // Traverse the execution stack
2787    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2788      fst.current()->nmethods_do(cf);
2789    }
2790  }
2791}
2792
2793void JavaThread::metadata_do(void f(Metadata*)) {
2794  Thread::metadata_do(f);
2795  if (has_last_Java_frame()) {
2796    // Traverse the execution stack to call f() on the methods in the stack
2797    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2798      fst.current()->metadata_do(f);
2799    }
2800  } else if (is_Compiler_thread()) {
2801    // need to walk ciMetadata in current compile tasks to keep alive.
2802    CompilerThread* ct = (CompilerThread*)this;
2803    if (ct->env() != NULL) {
2804      ct->env()->metadata_do(f);
2805    }
2806  }
2807}
2808
2809// Printing
2810const char* _get_thread_state_name(JavaThreadState _thread_state) {
2811  switch (_thread_state) {
2812  case _thread_uninitialized:     return "_thread_uninitialized";
2813  case _thread_new:               return "_thread_new";
2814  case _thread_new_trans:         return "_thread_new_trans";
2815  case _thread_in_native:         return "_thread_in_native";
2816  case _thread_in_native_trans:   return "_thread_in_native_trans";
2817  case _thread_in_vm:             return "_thread_in_vm";
2818  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2819  case _thread_in_Java:           return "_thread_in_Java";
2820  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2821  case _thread_blocked:           return "_thread_blocked";
2822  case _thread_blocked_trans:     return "_thread_blocked_trans";
2823  default:                        return "unknown thread state";
2824  }
2825}
2826
2827#ifndef PRODUCT
2828void JavaThread::print_thread_state_on(outputStream *st) const {
2829  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2830};
2831void JavaThread::print_thread_state() const {
2832  print_thread_state_on(tty);
2833};
2834#endif // PRODUCT
2835
2836// Called by Threads::print() for VM_PrintThreads operation
2837void JavaThread::print_on(outputStream *st) const {
2838  st->print("\"%s\" ", get_thread_name());
2839  oop thread_oop = threadObj();
2840  if (thread_oop != NULL) {
2841    st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2842    if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2843    st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2844  }
2845  Thread::print_on(st);
2846  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2847  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2848  if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2849    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2850  }
2851#ifndef PRODUCT
2852  print_thread_state_on(st);
2853  _safepoint_state->print_on(st);
2854#endif // PRODUCT
2855}
2856
2857// Called by fatal error handler. The difference between this and
2858// JavaThread::print() is that we can't grab lock or allocate memory.
2859void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2860  st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2861  oop thread_obj = threadObj();
2862  if (thread_obj != NULL) {
2863     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2864  }
2865  st->print(" [");
2866  st->print("%s", _get_thread_state_name(_thread_state));
2867  if (osthread()) {
2868    st->print(", id=%d", osthread()->thread_id());
2869  }
2870  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2871            _stack_base - _stack_size, _stack_base);
2872  st->print("]");
2873  return;
2874}
2875
2876// Verification
2877
2878static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2879
2880void JavaThread::verify() {
2881  // Verify oops in the thread.
2882  oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2883
2884  // Verify the stack frames.
2885  frames_do(frame_verify);
2886}
2887
2888// CR 6300358 (sub-CR 2137150)
2889// Most callers of this method assume that it can't return NULL but a
2890// thread may not have a name whilst it is in the process of attaching to
2891// the VM - see CR 6412693, and there are places where a JavaThread can be
2892// seen prior to having it's threadObj set (eg JNI attaching threads and
2893// if vm exit occurs during initialization). These cases can all be accounted
2894// for such that this method never returns NULL.
2895const char* JavaThread::get_thread_name() const {
2896#ifdef ASSERT
2897  // early safepoints can hit while current thread does not yet have TLS
2898  if (!SafepointSynchronize::is_at_safepoint()) {
2899    Thread *cur = Thread::current();
2900    if (!(cur->is_Java_thread() && cur == this)) {
2901      // Current JavaThreads are allowed to get their own name without
2902      // the Threads_lock.
2903      assert_locked_or_safepoint(Threads_lock);
2904    }
2905  }
2906#endif // ASSERT
2907    return get_thread_name_string();
2908}
2909
2910// Returns a non-NULL representation of this thread's name, or a suitable
2911// descriptive string if there is no set name
2912const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2913  const char* name_str;
2914  oop thread_obj = threadObj();
2915  if (thread_obj != NULL) {
2916    typeArrayOop name = java_lang_Thread::name(thread_obj);
2917    if (name != NULL) {
2918      if (buf == NULL) {
2919        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2920      }
2921      else {
2922        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2923      }
2924    }
2925    else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2926      name_str = "<no-name - thread is attaching>";
2927    }
2928    else {
2929      name_str = Thread::name();
2930    }
2931  }
2932  else {
2933    name_str = Thread::name();
2934  }
2935  assert(name_str != NULL, "unexpected NULL thread name");
2936  return name_str;
2937}
2938
2939
2940const char* JavaThread::get_threadgroup_name() const {
2941  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2942  oop thread_obj = threadObj();
2943  if (thread_obj != NULL) {
2944    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2945    if (thread_group != NULL) {
2946      typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2947      // ThreadGroup.name can be null
2948      if (name != NULL) {
2949        const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2950        return str;
2951      }
2952    }
2953  }
2954  return NULL;
2955}
2956
2957const char* JavaThread::get_parent_name() const {
2958  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2959  oop thread_obj = threadObj();
2960  if (thread_obj != NULL) {
2961    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2962    if (thread_group != NULL) {
2963      oop parent = java_lang_ThreadGroup::parent(thread_group);
2964      if (parent != NULL) {
2965        typeArrayOop name = java_lang_ThreadGroup::name(parent);
2966        // ThreadGroup.name can be null
2967        if (name != NULL) {
2968          const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2969          return str;
2970        }
2971      }
2972    }
2973  }
2974  return NULL;
2975}
2976
2977ThreadPriority JavaThread::java_priority() const {
2978  oop thr_oop = threadObj();
2979  if (thr_oop == NULL) return NormPriority; // Bootstrapping
2980  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2981  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2982  return priority;
2983}
2984
2985void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2986
2987  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2988  // Link Java Thread object <-> C++ Thread
2989
2990  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2991  // and put it into a new Handle.  The Handle "thread_oop" can then
2992  // be used to pass the C++ thread object to other methods.
2993
2994  // Set the Java level thread object (jthread) field of the
2995  // new thread (a JavaThread *) to C++ thread object using the
2996  // "thread_oop" handle.
2997
2998  // Set the thread field (a JavaThread *) of the
2999  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3000
3001  Handle thread_oop(Thread::current(),
3002                    JNIHandles::resolve_non_null(jni_thread));
3003  assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3004    "must be initialized");
3005  set_threadObj(thread_oop());
3006  java_lang_Thread::set_thread(thread_oop(), this);
3007
3008  if (prio == NoPriority) {
3009    prio = java_lang_Thread::priority(thread_oop());
3010    assert(prio != NoPriority, "A valid priority should be present");
3011  }
3012
3013  // Push the Java priority down to the native thread; needs Threads_lock
3014  Thread::set_priority(this, prio);
3015
3016  // Add the new thread to the Threads list and set it in motion.
3017  // We must have threads lock in order to call Threads::add.
3018  // It is crucial that we do not block before the thread is
3019  // added to the Threads list for if a GC happens, then the java_thread oop
3020  // will not be visited by GC.
3021  Threads::add(this);
3022}
3023
3024oop JavaThread::current_park_blocker() {
3025  // Support for JSR-166 locks
3026  oop thread_oop = threadObj();
3027  if (thread_oop != NULL &&
3028      JDK_Version::current().supports_thread_park_blocker()) {
3029    return java_lang_Thread::park_blocker(thread_oop);
3030  }
3031  return NULL;
3032}
3033
3034
3035void JavaThread::print_stack_on(outputStream* st) {
3036  if (!has_last_Java_frame()) return;
3037  ResourceMark rm;
3038  HandleMark   hm;
3039
3040  RegisterMap reg_map(this);
3041  vframe* start_vf = last_java_vframe(&reg_map);
3042  int count = 0;
3043  for (vframe* f = start_vf; f; f = f->sender() ) {
3044    if (f->is_java_frame()) {
3045      javaVFrame* jvf = javaVFrame::cast(f);
3046      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3047
3048      // Print out lock information
3049      if (JavaMonitorsInStackTrace) {
3050        jvf->print_lock_info_on(st, count);
3051      }
3052    } else {
3053      // Ignore non-Java frames
3054    }
3055
3056    // Bail-out case for too deep stacks
3057    count++;
3058    if (MaxJavaStackTraceDepth == count) return;
3059  }
3060}
3061
3062
3063// JVMTI PopFrame support
3064void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3065  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3066  if (in_bytes(size_in_bytes) != 0) {
3067    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3068    _popframe_preserved_args_size = in_bytes(size_in_bytes);
3069    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3070  }
3071}
3072
3073void* JavaThread::popframe_preserved_args() {
3074  return _popframe_preserved_args;
3075}
3076
3077ByteSize JavaThread::popframe_preserved_args_size() {
3078  return in_ByteSize(_popframe_preserved_args_size);
3079}
3080
3081WordSize JavaThread::popframe_preserved_args_size_in_words() {
3082  int sz = in_bytes(popframe_preserved_args_size());
3083  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3084  return in_WordSize(sz / wordSize);
3085}
3086
3087void JavaThread::popframe_free_preserved_args() {
3088  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3089  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3090  _popframe_preserved_args = NULL;
3091  _popframe_preserved_args_size = 0;
3092}
3093
3094#ifndef PRODUCT
3095
3096void JavaThread::trace_frames() {
3097  tty->print_cr("[Describe stack]");
3098  int frame_no = 1;
3099  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3100    tty->print("  %d. ", frame_no++);
3101    fst.current()->print_value_on(tty,this);
3102    tty->cr();
3103  }
3104}
3105
3106class PrintAndVerifyOopClosure: public OopClosure {
3107 protected:
3108  template <class T> inline void do_oop_work(T* p) {
3109    oop obj = oopDesc::load_decode_heap_oop(p);
3110    if (obj == NULL) return;
3111    tty->print(INTPTR_FORMAT ": ", p);
3112    if (obj->is_oop_or_null()) {
3113      if (obj->is_objArray()) {
3114        tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3115      } else {
3116        obj->print();
3117      }
3118    } else {
3119      tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3120    }
3121    tty->cr();
3122  }
3123 public:
3124  virtual void do_oop(oop* p) { do_oop_work(p); }
3125  virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3126};
3127
3128
3129static void oops_print(frame* f, const RegisterMap *map) {
3130  PrintAndVerifyOopClosure print;
3131  f->print_value();
3132  f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3133}
3134
3135// Print our all the locations that contain oops and whether they are
3136// valid or not.  This useful when trying to find the oldest frame
3137// where an oop has gone bad since the frame walk is from youngest to
3138// oldest.
3139void JavaThread::trace_oops() {
3140  tty->print_cr("[Trace oops]");
3141  frames_do(oops_print);
3142}
3143
3144
3145#ifdef ASSERT
3146// Print or validate the layout of stack frames
3147void JavaThread::print_frame_layout(int depth, bool validate_only) {
3148  ResourceMark rm;
3149  PRESERVE_EXCEPTION_MARK;
3150  FrameValues values;
3151  int frame_no = 0;
3152  for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3153    fst.current()->describe(values, ++frame_no);
3154    if (depth == frame_no) break;
3155  }
3156  if (validate_only) {
3157    values.validate();
3158  } else {
3159    tty->print_cr("[Describe stack layout]");
3160    values.print(this);
3161  }
3162}
3163#endif
3164
3165void JavaThread::trace_stack_from(vframe* start_vf) {
3166  ResourceMark rm;
3167  int vframe_no = 1;
3168  for (vframe* f = start_vf; f; f = f->sender() ) {
3169    if (f->is_java_frame()) {
3170      javaVFrame::cast(f)->print_activation(vframe_no++);
3171    } else {
3172      f->print();
3173    }
3174    if (vframe_no > StackPrintLimit) {
3175      tty->print_cr("...<more frames>...");
3176      return;
3177    }
3178  }
3179}
3180
3181
3182void JavaThread::trace_stack() {
3183  if (!has_last_Java_frame()) return;
3184  ResourceMark rm;
3185  HandleMark   hm;
3186  RegisterMap reg_map(this);
3187  trace_stack_from(last_java_vframe(&reg_map));
3188}
3189
3190
3191#endif // PRODUCT
3192
3193
3194javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3195  assert(reg_map != NULL, "a map must be given");
3196  frame f = last_frame();
3197  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3198    if (vf->is_java_frame()) return javaVFrame::cast(vf);
3199  }
3200  return NULL;
3201}
3202
3203
3204Klass* JavaThread::security_get_caller_class(int depth) {
3205  vframeStream vfst(this);
3206  vfst.security_get_caller_frame(depth);
3207  if (!vfst.at_end()) {
3208    return vfst.method()->method_holder();
3209  }
3210  return NULL;
3211}
3212
3213static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3214  assert(thread->is_Compiler_thread(), "must be compiler thread");
3215  CompileBroker::compiler_thread_loop();
3216}
3217
3218// Create a CompilerThread
3219CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3220: JavaThread(&compiler_thread_entry) {
3221  _env   = NULL;
3222  _log   = NULL;
3223  _task  = NULL;
3224  _queue = queue;
3225  _counters = counters;
3226  _buffer_blob = NULL;
3227  _scanned_nmethod = NULL;
3228
3229#ifndef PRODUCT
3230  _ideal_graph_printer = NULL;
3231#endif
3232}
3233
3234void CompilerThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
3235  JavaThread::oops_do(f, cld_f, cf);
3236  if (_scanned_nmethod != NULL && cf != NULL) {
3237    // Safepoints can occur when the sweeper is scanning an nmethod so
3238    // process it here to make sure it isn't unloaded in the middle of
3239    // a scan.
3240    cf->do_code_blob(_scanned_nmethod);
3241  }
3242}
3243
3244// ======= Threads ========
3245
3246// The Threads class links together all active threads, and provides
3247// operations over all threads.  It is protected by its own Mutex
3248// lock, which is also used in other contexts to protect thread
3249// operations from having the thread being operated on from exiting
3250// and going away unexpectedly (e.g., safepoint synchronization)
3251
3252JavaThread* Threads::_thread_list = NULL;
3253int         Threads::_number_of_threads = 0;
3254int         Threads::_number_of_non_daemon_threads = 0;
3255int         Threads::_return_code = 0;
3256size_t      JavaThread::_stack_size_at_create = 0;
3257#ifdef ASSERT
3258bool        Threads::_vm_complete = false;
3259#endif
3260
3261// All JavaThreads
3262#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3263
3264void os_stream();
3265
3266// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3267void Threads::threads_do(ThreadClosure* tc) {
3268  assert_locked_or_safepoint(Threads_lock);
3269  // ALL_JAVA_THREADS iterates through all JavaThreads
3270  ALL_JAVA_THREADS(p) {
3271    tc->do_thread(p);
3272  }
3273  // Someday we could have a table or list of all non-JavaThreads.
3274  // For now, just manually iterate through them.
3275  tc->do_thread(VMThread::vm_thread());
3276  Universe::heap()->gc_threads_do(tc);
3277  WatcherThread *wt = WatcherThread::watcher_thread();
3278  // Strictly speaking, the following NULL check isn't sufficient to make sure
3279  // the data for WatcherThread is still valid upon being examined. However,
3280  // considering that WatchThread terminates when the VM is on the way to
3281  // exit at safepoint, the chance of the above is extremely small. The right
3282  // way to prevent termination of WatcherThread would be to acquire
3283  // Terminator_lock, but we can't do that without violating the lock rank
3284  // checking in some cases.
3285  if (wt != NULL)
3286    tc->do_thread(wt);
3287
3288  // If CompilerThreads ever become non-JavaThreads, add them here
3289}
3290
3291jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3292
3293  extern void JDK_Version_init();
3294
3295  // Check version
3296  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3297
3298  // Initialize the output stream module
3299  ostream_init();
3300
3301  // Process java launcher properties.
3302  Arguments::process_sun_java_launcher_properties(args);
3303
3304  // Initialize the os module before using TLS
3305  os::init();
3306
3307  // Initialize system properties.
3308  Arguments::init_system_properties();
3309
3310  // So that JDK version can be used as a discrimintor when parsing arguments
3311  JDK_Version_init();
3312
3313  // Update/Initialize System properties after JDK version number is known
3314  Arguments::init_version_specific_system_properties();
3315
3316  // Parse arguments
3317  jint parse_result = Arguments::parse(args);
3318  if (parse_result != JNI_OK) return parse_result;
3319
3320  if (PauseAtStartup) {
3321    os::pause();
3322  }
3323
3324#ifndef USDT2
3325  HS_DTRACE_PROBE(hotspot, vm__init__begin);
3326#else /* USDT2 */
3327  HOTSPOT_VM_INIT_BEGIN();
3328#endif /* USDT2 */
3329
3330  // Record VM creation timing statistics
3331  TraceVmCreationTime create_vm_timer;
3332  create_vm_timer.start();
3333
3334  // Timing (must come after argument parsing)
3335  TraceTime timer("Create VM", TraceStartupTime);
3336
3337  // Initialize the os module after parsing the args
3338  jint os_init_2_result = os::init_2();
3339  if (os_init_2_result != JNI_OK) return os_init_2_result;
3340
3341  jint adjust_after_os_result = Arguments::adjust_after_os();
3342  if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3343
3344  // intialize TLS
3345  ThreadLocalStorage::init();
3346
3347  // Bootstrap native memory tracking, so it can start recording memory
3348  // activities before worker thread is started. This is the first phase
3349  // of bootstrapping, VM is currently running in single-thread mode.
3350  MemTracker::bootstrap_single_thread();
3351
3352  // Initialize output stream logging
3353  ostream_init_log();
3354
3355  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3356  // Must be before create_vm_init_agents()
3357  if (Arguments::init_libraries_at_startup()) {
3358    convert_vm_init_libraries_to_agents();
3359  }
3360
3361  // Launch -agentlib/-agentpath and converted -Xrun agents
3362  if (Arguments::init_agents_at_startup()) {
3363    create_vm_init_agents();
3364  }
3365
3366  // Initialize Threads state
3367  _thread_list = NULL;
3368  _number_of_threads = 0;
3369  _number_of_non_daemon_threads = 0;
3370
3371  // Initialize global data structures and create system classes in heap
3372  vm_init_globals();
3373
3374  // Attach the main thread to this os thread
3375  JavaThread* main_thread = new JavaThread();
3376  main_thread->set_thread_state(_thread_in_vm);
3377  // must do this before set_active_handles and initialize_thread_local_storage
3378  // Note: on solaris initialize_thread_local_storage() will (indirectly)
3379  // change the stack size recorded here to one based on the java thread
3380  // stacksize. This adjusted size is what is used to figure the placement
3381  // of the guard pages.
3382  main_thread->record_stack_base_and_size();
3383  main_thread->initialize_thread_local_storage();
3384
3385  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3386
3387  if (!main_thread->set_as_starting_thread()) {
3388    vm_shutdown_during_initialization(
3389      "Failed necessary internal allocation. Out of swap space");
3390    delete main_thread;
3391    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3392    return JNI_ENOMEM;
3393  }
3394
3395  // Enable guard page *after* os::create_main_thread(), otherwise it would
3396  // crash Linux VM, see notes in os_linux.cpp.
3397  main_thread->create_stack_guard_pages();
3398
3399  // Initialize Java-Level synchronization subsystem
3400  ObjectMonitor::Initialize() ;
3401
3402  // Second phase of bootstrapping, VM is about entering multi-thread mode
3403  MemTracker::bootstrap_multi_thread();
3404
3405  // Initialize global modules
3406  jint status = init_globals();
3407  if (status != JNI_OK) {
3408    delete main_thread;
3409    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3410    return status;
3411  }
3412
3413  // Should be done after the heap is fully created
3414  main_thread->cache_global_variables();
3415
3416  HandleMark hm;
3417
3418  { MutexLocker mu(Threads_lock);
3419    Threads::add(main_thread);
3420  }
3421
3422  // Any JVMTI raw monitors entered in onload will transition into
3423  // real raw monitor. VM is setup enough here for raw monitor enter.
3424  JvmtiExport::transition_pending_onload_raw_monitors();
3425
3426  // Fully start NMT
3427  MemTracker::start();
3428
3429  // Create the VMThread
3430  { TraceTime timer("Start VMThread", TraceStartupTime);
3431    VMThread::create();
3432    Thread* vmthread = VMThread::vm_thread();
3433
3434    if (!os::create_thread(vmthread, os::vm_thread))
3435      vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3436
3437    // Wait for the VM thread to become ready, and VMThread::run to initialize
3438    // Monitors can have spurious returns, must always check another state flag
3439    {
3440      MutexLocker ml(Notify_lock);
3441      os::start_thread(vmthread);
3442      while (vmthread->active_handles() == NULL) {
3443        Notify_lock->wait();
3444      }
3445    }
3446  }
3447
3448  assert (Universe::is_fully_initialized(), "not initialized");
3449  if (VerifyDuringStartup) {
3450    VM_Verify verify_op(false /* silent */);   // make sure we're starting with a clean slate
3451    VMThread::execute(&verify_op);
3452  }
3453
3454  EXCEPTION_MARK;
3455
3456  // At this point, the Universe is initialized, but we have not executed
3457  // any byte code.  Now is a good time (the only time) to dump out the
3458  // internal state of the JVM for sharing.
3459  if (DumpSharedSpaces) {
3460    MetaspaceShared::preload_and_dump(CHECK_0);
3461    ShouldNotReachHere();
3462  }
3463
3464  // Always call even when there are not JVMTI environments yet, since environments
3465  // may be attached late and JVMTI must track phases of VM execution
3466  JvmtiExport::enter_start_phase();
3467
3468  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3469  JvmtiExport::post_vm_start();
3470
3471  {
3472    TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3473
3474    if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3475      create_vm_init_libraries();
3476    }
3477
3478    initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3479
3480    if (AggressiveOpts) {
3481      {
3482        // Forcibly initialize java/util/HashMap and mutate the private
3483        // static final "frontCacheEnabled" field before we start creating instances
3484#ifdef ASSERT
3485        Klass* tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3486        assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3487#endif
3488        Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3489        KlassHandle k = KlassHandle(THREAD, k_o);
3490        guarantee(k.not_null(), "Must find java/util/HashMap");
3491        instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3492        ik->initialize(CHECK_0);
3493        fieldDescriptor fd;
3494        // Possible we might not find this field; if so, don't break
3495        if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3496          k()->java_mirror()->bool_field_put(fd.offset(), true);
3497        }
3498      }
3499
3500      if (UseStringCache) {
3501        // Forcibly initialize java/lang/StringValue and mutate the private
3502        // static final "stringCacheEnabled" field before we start creating instances
3503        Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3504        // Possible that StringValue isn't present: if so, silently don't break
3505        if (k_o != NULL) {
3506          KlassHandle k = KlassHandle(THREAD, k_o);
3507          instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3508          ik->initialize(CHECK_0);
3509          fieldDescriptor fd;
3510          // Possible we might not find this field: if so, silently don't break
3511          if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3512            k()->java_mirror()->bool_field_put(fd.offset(), true);
3513          }
3514        }
3515      }
3516    }
3517
3518    // Initialize java_lang.System (needed before creating the thread)
3519    initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3520    initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3521    Handle thread_group = create_initial_thread_group(CHECK_0);
3522    Universe::set_main_thread_group(thread_group());
3523    initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3524    oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3525    main_thread->set_threadObj(thread_object);
3526    // Set thread status to running since main thread has
3527    // been started and running.
3528    java_lang_Thread::set_thread_status(thread_object,
3529                                        java_lang_Thread::RUNNABLE);
3530
3531    // The VM creates & returns objects of this class. Make sure it's initialized.
3532    initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3533
3534    // The VM preresolves methods to these classes. Make sure that they get initialized
3535    initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3536    initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3537    call_initializeSystemClass(CHECK_0);
3538
3539    // get the Java runtime name after java.lang.System is initialized
3540    JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3541    JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3542
3543    // an instance of OutOfMemory exception has been allocated earlier
3544    initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3545    initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3546    initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3547    initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3548    initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3549    initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3550    initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3551    initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
3552  }
3553
3554  // See        : bugid 4211085.
3555  // Background : the static initializer of java.lang.Compiler tries to read
3556  //              property"java.compiler" and read & write property "java.vm.info".
3557  //              When a security manager is installed through the command line
3558  //              option "-Djava.security.manager", the above properties are not
3559  //              readable and the static initializer for java.lang.Compiler fails
3560  //              resulting in a NoClassDefFoundError.  This can happen in any
3561  //              user code which calls methods in java.lang.Compiler.
3562  // Hack :       the hack is to pre-load and initialize this class, so that only
3563  //              system domains are on the stack when the properties are read.
3564  //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3565  //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3566  // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3567  //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3568  //              Once that is done, we should remove this hack.
3569  initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3570
3571  // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3572  // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3573  // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3574  // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3575  // This should also be taken out as soon as 4211383 gets fixed.
3576  reset_vm_info_property(CHECK_0);
3577
3578  quicken_jni_functions();
3579
3580  // Must be run after init_ft which initializes ft_enabled
3581  if (TRACE_INITIALIZE() != JNI_OK) {
3582    vm_exit_during_initialization("Failed to initialize tracing backend");
3583  }
3584
3585  // Set flag that basic initialization has completed. Used by exceptions and various
3586  // debug stuff, that does not work until all basic classes have been initialized.
3587  set_init_completed();
3588
3589#ifndef USDT2
3590  HS_DTRACE_PROBE(hotspot, vm__init__end);
3591#else /* USDT2 */
3592  HOTSPOT_VM_INIT_END();
3593#endif /* USDT2 */
3594
3595  // record VM initialization completion time
3596#if INCLUDE_MANAGEMENT
3597  Management::record_vm_init_completed();
3598#endif // INCLUDE_MANAGEMENT
3599
3600  // Compute system loader. Note that this has to occur after set_init_completed, since
3601  // valid exceptions may be thrown in the process.
3602  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3603  // set_init_completed has just been called, causing exceptions not to be shortcut
3604  // anymore. We call vm_exit_during_initialization directly instead.
3605  SystemDictionary::compute_java_system_loader(THREAD);
3606  if (HAS_PENDING_EXCEPTION) {
3607    vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3608  }
3609
3610#if INCLUDE_ALL_GCS
3611  // Support for ConcurrentMarkSweep. This should be cleaned up
3612  // and better encapsulated. The ugly nested if test would go away
3613  // once things are properly refactored. XXX YSR
3614  if (UseConcMarkSweepGC || UseG1GC) {
3615    if (UseConcMarkSweepGC) {
3616      ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3617    } else {
3618      ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3619    }
3620    if (HAS_PENDING_EXCEPTION) {
3621      vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3622    }
3623  }
3624#endif // INCLUDE_ALL_GCS
3625
3626  // Always call even when there are not JVMTI environments yet, since environments
3627  // may be attached late and JVMTI must track phases of VM execution
3628  JvmtiExport::enter_live_phase();
3629
3630  // Signal Dispatcher needs to be started before VMInit event is posted
3631  os::signal_init();
3632
3633  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3634  if (!DisableAttachMechanism) {
3635    if (StartAttachListener || AttachListener::init_at_startup()) {
3636      AttachListener::init();
3637    }
3638  }
3639
3640  // Launch -Xrun agents
3641  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3642  // back-end can launch with -Xdebug -Xrunjdwp.
3643  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3644    create_vm_init_libraries();
3645  }
3646
3647  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3648  JvmtiExport::post_vm_initialized();
3649
3650  if (!TRACE_START()) {
3651    vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3652  }
3653
3654  if (CleanChunkPoolAsync) {
3655    Chunk::start_chunk_pool_cleaner_task();
3656  }
3657
3658  // initialize compiler(s)
3659#if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3660  CompileBroker::compilation_init();
3661#endif
3662
3663#if INCLUDE_MANAGEMENT
3664  Management::initialize(THREAD);
3665#endif // INCLUDE_MANAGEMENT
3666
3667  if (HAS_PENDING_EXCEPTION) {
3668    // management agent fails to start possibly due to
3669    // configuration problem and is responsible for printing
3670    // stack trace if appropriate. Simply exit VM.
3671    vm_exit(1);
3672  }
3673
3674  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3675  if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3676  if (MemProfiling)                   MemProfiler::engage();
3677  StatSampler::engage();
3678  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3679
3680  BiasedLocking::init();
3681
3682  if (JDK_Version::current().post_vm_init_hook_enabled()) {
3683    call_postVMInitHook(THREAD);
3684    // The Java side of PostVMInitHook.run must deal with all
3685    // exceptions and provide means of diagnosis.
3686    if (HAS_PENDING_EXCEPTION) {
3687      CLEAR_PENDING_EXCEPTION;
3688    }
3689  }
3690
3691  {
3692      MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3693      // Make sure the watcher thread can be started by WatcherThread::start()
3694      // or by dynamic enrollment.
3695      WatcherThread::make_startable();
3696      // Start up the WatcherThread if there are any periodic tasks
3697      // NOTE:  All PeriodicTasks should be registered by now. If they
3698      //   aren't, late joiners might appear to start slowly (we might
3699      //   take a while to process their first tick).
3700      if (PeriodicTask::num_tasks() > 0) {
3701          WatcherThread::start();
3702      }
3703  }
3704
3705  // Give os specific code one last chance to start
3706  os::init_3();
3707
3708  create_vm_timer.end();
3709#ifdef ASSERT
3710  _vm_complete = true;
3711#endif
3712  return JNI_OK;
3713}
3714
3715// type for the Agent_OnLoad and JVM_OnLoad entry points
3716extern "C" {
3717  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3718}
3719// Find a command line agent library and return its entry point for
3720//         -agentlib:  -agentpath:   -Xrun
3721// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3722static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3723  OnLoadEntry_t on_load_entry = NULL;
3724  void *library = agent->os_lib();  // check if we have looked it up before
3725
3726  if (library == NULL) {
3727    char buffer[JVM_MAXPATHLEN];
3728    char ebuf[1024];
3729    const char *name = agent->name();
3730    const char *msg = "Could not find agent library ";
3731
3732    if (agent->is_absolute_path()) {
3733      library = os::dll_load(name, ebuf, sizeof ebuf);
3734      if (library == NULL) {
3735        const char *sub_msg = " in absolute path, with error: ";
3736        size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3737        char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3738        jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3739        // If we can't find the agent, exit.
3740        vm_exit_during_initialization(buf, NULL);
3741        FREE_C_HEAP_ARRAY(char, buf, mtThread);
3742      }
3743    } else {
3744      // Try to load the agent from the standard dll directory
3745      if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3746                             name)) {
3747        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3748      }
3749      if (library == NULL) { // Try the local directory
3750        char ns[1] = {0};
3751        if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3752          library = os::dll_load(buffer, ebuf, sizeof ebuf);
3753        }
3754        if (library == NULL) {
3755          const char *sub_msg = " on the library path, with error: ";
3756          size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3757          char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3758          jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3759          // If we can't find the agent, exit.
3760          vm_exit_during_initialization(buf, NULL);
3761          FREE_C_HEAP_ARRAY(char, buf, mtThread);
3762        }
3763      }
3764    }
3765    agent->set_os_lib(library);
3766  }
3767
3768  // Find the OnLoad function.
3769  for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3770    on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
3771    if (on_load_entry != NULL) break;
3772  }
3773  return on_load_entry;
3774}
3775
3776// Find the JVM_OnLoad entry point
3777static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3778  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3779  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3780}
3781
3782// Find the Agent_OnLoad entry point
3783static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3784  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3785  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3786}
3787
3788// For backwards compatibility with -Xrun
3789// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3790// treated like -agentpath:
3791// Must be called before agent libraries are created
3792void Threads::convert_vm_init_libraries_to_agents() {
3793  AgentLibrary* agent;
3794  AgentLibrary* next;
3795
3796  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3797    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3798    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3799
3800    // If there is an JVM_OnLoad function it will get called later,
3801    // otherwise see if there is an Agent_OnLoad
3802    if (on_load_entry == NULL) {
3803      on_load_entry = lookup_agent_on_load(agent);
3804      if (on_load_entry != NULL) {
3805        // switch it to the agent list -- so that Agent_OnLoad will be called,
3806        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3807        Arguments::convert_library_to_agent(agent);
3808      } else {
3809        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3810      }
3811    }
3812  }
3813}
3814
3815// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3816// Invokes Agent_OnLoad
3817// Called very early -- before JavaThreads exist
3818void Threads::create_vm_init_agents() {
3819  extern struct JavaVM_ main_vm;
3820  AgentLibrary* agent;
3821
3822  JvmtiExport::enter_onload_phase();
3823
3824  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3825    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3826
3827    if (on_load_entry != NULL) {
3828      // Invoke the Agent_OnLoad function
3829      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3830      if (err != JNI_OK) {
3831        vm_exit_during_initialization("agent library failed to init", agent->name());
3832      }
3833    } else {
3834      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3835    }
3836  }
3837  JvmtiExport::enter_primordial_phase();
3838}
3839
3840extern "C" {
3841  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3842}
3843
3844void Threads::shutdown_vm_agents() {
3845  // Send any Agent_OnUnload notifications
3846  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3847  extern struct JavaVM_ main_vm;
3848  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3849
3850    // Find the Agent_OnUnload function.
3851    for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3852      Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3853               os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3854
3855      // Invoke the Agent_OnUnload function
3856      if (unload_entry != NULL) {
3857        JavaThread* thread = JavaThread::current();
3858        ThreadToNativeFromVM ttn(thread);
3859        HandleMark hm(thread);
3860        (*unload_entry)(&main_vm);
3861        break;
3862      }
3863    }
3864  }
3865}
3866
3867// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3868// Invokes JVM_OnLoad
3869void Threads::create_vm_init_libraries() {
3870  extern struct JavaVM_ main_vm;
3871  AgentLibrary* agent;
3872
3873  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3874    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3875
3876    if (on_load_entry != NULL) {
3877      // Invoke the JVM_OnLoad function
3878      JavaThread* thread = JavaThread::current();
3879      ThreadToNativeFromVM ttn(thread);
3880      HandleMark hm(thread);
3881      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3882      if (err != JNI_OK) {
3883        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3884      }
3885    } else {
3886      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3887    }
3888  }
3889}
3890
3891// Last thread running calls java.lang.Shutdown.shutdown()
3892void JavaThread::invoke_shutdown_hooks() {
3893  HandleMark hm(this);
3894
3895  // We could get here with a pending exception, if so clear it now.
3896  if (this->has_pending_exception()) {
3897    this->clear_pending_exception();
3898  }
3899
3900  EXCEPTION_MARK;
3901  Klass* k =
3902    SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3903                                      THREAD);
3904  if (k != NULL) {
3905    // SystemDictionary::resolve_or_null will return null if there was
3906    // an exception.  If we cannot load the Shutdown class, just don't
3907    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3908    // and finalizers (if runFinalizersOnExit is set) won't be run.
3909    // Note that if a shutdown hook was registered or runFinalizersOnExit
3910    // was called, the Shutdown class would have already been loaded
3911    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3912    instanceKlassHandle shutdown_klass (THREAD, k);
3913    JavaValue result(T_VOID);
3914    JavaCalls::call_static(&result,
3915                           shutdown_klass,
3916                           vmSymbols::shutdown_method_name(),
3917                           vmSymbols::void_method_signature(),
3918                           THREAD);
3919  }
3920  CLEAR_PENDING_EXCEPTION;
3921}
3922
3923// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3924// the program falls off the end of main(). Another VM exit path is through
3925// vm_exit() when the program calls System.exit() to return a value or when
3926// there is a serious error in VM. The two shutdown paths are not exactly
3927// the same, but they share Shutdown.shutdown() at Java level and before_exit()
3928// and VM_Exit op at VM level.
3929//
3930// Shutdown sequence:
3931//   + Shutdown native memory tracking if it is on
3932//   + Wait until we are the last non-daemon thread to execute
3933//     <-- every thing is still working at this moment -->
3934//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3935//        shutdown hooks, run finalizers if finalization-on-exit
3936//   + Call before_exit(), prepare for VM exit
3937//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3938//        currently the only user of this mechanism is File.deleteOnExit())
3939//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3940//        post thread end and vm death events to JVMTI,
3941//        stop signal thread
3942//   + Call JavaThread::exit(), it will:
3943//      > release JNI handle blocks, remove stack guard pages
3944//      > remove this thread from Threads list
3945//     <-- no more Java code from this thread after this point -->
3946//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3947//     the compiler threads at safepoint
3948//     <-- do not use anything that could get blocked by Safepoint -->
3949//   + Disable tracing at JNI/JVM barriers
3950//   + Set _vm_exited flag for threads that are still running native code
3951//   + Delete this thread
3952//   + Call exit_globals()
3953//      > deletes tty
3954//      > deletes PerfMemory resources
3955//   + Return to caller
3956
3957bool Threads::destroy_vm() {
3958  JavaThread* thread = JavaThread::current();
3959
3960#ifdef ASSERT
3961  _vm_complete = false;
3962#endif
3963  // Wait until we are the last non-daemon thread to execute
3964  { MutexLocker nu(Threads_lock);
3965    while (Threads::number_of_non_daemon_threads() > 1 )
3966      // This wait should make safepoint checks, wait without a timeout,
3967      // and wait as a suspend-equivalent condition.
3968      //
3969      // Note: If the FlatProfiler is running and this thread is waiting
3970      // for another non-daemon thread to finish, then the FlatProfiler
3971      // is waiting for the external suspend request on this thread to
3972      // complete. wait_for_ext_suspend_completion() will eventually
3973      // timeout, but that takes time. Making this wait a suspend-
3974      // equivalent condition solves that timeout problem.
3975      //
3976      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3977                         Mutex::_as_suspend_equivalent_flag);
3978  }
3979
3980  // Hang forever on exit if we are reporting an error.
3981  if (ShowMessageBoxOnError && is_error_reported()) {
3982    os::infinite_sleep();
3983  }
3984  os::wait_for_keypress_at_exit();
3985
3986  if (JDK_Version::is_jdk12x_version()) {
3987    // We are the last thread running, so check if finalizers should be run.
3988    // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3989    HandleMark rm(thread);
3990    Universe::run_finalizers_on_exit();
3991  } else {
3992    // run Java level shutdown hooks
3993    thread->invoke_shutdown_hooks();
3994  }
3995
3996  before_exit(thread);
3997
3998  thread->exit(true);
3999
4000  // Stop VM thread.
4001  {
4002    // 4945125 The vm thread comes to a safepoint during exit.
4003    // GC vm_operations can get caught at the safepoint, and the
4004    // heap is unparseable if they are caught. Grab the Heap_lock
4005    // to prevent this. The GC vm_operations will not be able to
4006    // queue until after the vm thread is dead.
4007    // After this point, we'll never emerge out of the safepoint before
4008    // the VM exits, so concurrent GC threads do not need to be explicitly
4009    // stopped; they remain inactive until the process exits.
4010    // Note: some concurrent G1 threads may be running during a safepoint,
4011    // but these will not be accessing the heap, just some G1-specific side
4012    // data structures that are not accessed by any other threads but them
4013    // after this point in a terminal safepoint.
4014
4015    MutexLocker ml(Heap_lock);
4016
4017    VMThread::wait_for_vm_thread_exit();
4018    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4019    VMThread::destroy();
4020  }
4021
4022  // clean up ideal graph printers
4023#if defined(COMPILER2) && !defined(PRODUCT)
4024  IdealGraphPrinter::clean_up();
4025#endif
4026
4027  // Now, all Java threads are gone except daemon threads. Daemon threads
4028  // running Java code or in VM are stopped by the Safepoint. However,
4029  // daemon threads executing native code are still running.  But they
4030  // will be stopped at native=>Java/VM barriers. Note that we can't
4031  // simply kill or suspend them, as it is inherently deadlock-prone.
4032
4033#ifndef PRODUCT
4034  // disable function tracing at JNI/JVM barriers
4035  TraceJNICalls = false;
4036  TraceJVMCalls = false;
4037  TraceRuntimeCalls = false;
4038#endif
4039
4040  VM_Exit::set_vm_exited();
4041
4042  notify_vm_shutdown();
4043
4044  delete thread;
4045
4046  // exit_globals() will delete tty
4047  exit_globals();
4048
4049  return true;
4050}
4051
4052
4053jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4054  if (version == JNI_VERSION_1_1) return JNI_TRUE;
4055  return is_supported_jni_version(version);
4056}
4057
4058
4059jboolean Threads::is_supported_jni_version(jint version) {
4060  if (version == JNI_VERSION_1_2) return JNI_TRUE;
4061  if (version == JNI_VERSION_1_4) return JNI_TRUE;
4062  if (version == JNI_VERSION_1_6) return JNI_TRUE;
4063  if (version == JNI_VERSION_1_8) return JNI_TRUE;
4064  return JNI_FALSE;
4065}
4066
4067
4068void Threads::add(JavaThread* p, bool force_daemon) {
4069  // The threads lock must be owned at this point
4070  assert_locked_or_safepoint(Threads_lock);
4071
4072  // See the comment for this method in thread.hpp for its purpose and
4073  // why it is called here.
4074  p->initialize_queues();
4075  p->set_next(_thread_list);
4076  _thread_list = p;
4077  _number_of_threads++;
4078  oop threadObj = p->threadObj();
4079  bool daemon = true;
4080  // Bootstrapping problem: threadObj can be null for initial
4081  // JavaThread (or for threads attached via JNI)
4082  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4083    _number_of_non_daemon_threads++;
4084    daemon = false;
4085  }
4086
4087  p->set_safepoint_visible(true);
4088
4089  ThreadService::add_thread(p, daemon);
4090
4091  // Possible GC point.
4092  Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4093}
4094
4095void Threads::remove(JavaThread* p) {
4096  // Extra scope needed for Thread_lock, so we can check
4097  // that we do not remove thread without safepoint code notice
4098  { MutexLocker ml(Threads_lock);
4099
4100    assert(includes(p), "p must be present");
4101
4102    JavaThread* current = _thread_list;
4103    JavaThread* prev    = NULL;
4104
4105    while (current != p) {
4106      prev    = current;
4107      current = current->next();
4108    }
4109
4110    if (prev) {
4111      prev->set_next(current->next());
4112    } else {
4113      _thread_list = p->next();
4114    }
4115    _number_of_threads--;
4116    oop threadObj = p->threadObj();
4117    bool daemon = true;
4118    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4119      _number_of_non_daemon_threads--;
4120      daemon = false;
4121
4122      // Only one thread left, do a notify on the Threads_lock so a thread waiting
4123      // on destroy_vm will wake up.
4124      if (number_of_non_daemon_threads() == 1)
4125        Threads_lock->notify_all();
4126    }
4127    ThreadService::remove_thread(p, daemon);
4128
4129    // Make sure that safepoint code disregard this thread. This is needed since
4130    // the thread might mess around with locks after this point. This can cause it
4131    // to do callbacks into the safepoint code. However, the safepoint code is not aware
4132    // of this thread since it is removed from the queue.
4133    p->set_terminated_value();
4134
4135    // Now, this thread is not visible to safepoint
4136    p->set_safepoint_visible(false);
4137    // once the thread becomes safepoint invisible, we can not use its per-thread
4138    // recorder. And Threads::do_threads() no longer walks this thread, so we have
4139    // to release its per-thread recorder here.
4140    MemTracker::thread_exiting(p);
4141  } // unlock Threads_lock
4142
4143  // Since Events::log uses a lock, we grab it outside the Threads_lock
4144  Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4145}
4146
4147// Threads_lock must be held when this is called (or must be called during a safepoint)
4148bool Threads::includes(JavaThread* p) {
4149  assert(Threads_lock->is_locked(), "sanity check");
4150  ALL_JAVA_THREADS(q) {
4151    if (q == p ) {
4152      return true;
4153    }
4154  }
4155  return false;
4156}
4157
4158// Operations on the Threads list for GC.  These are not explicitly locked,
4159// but the garbage collector must provide a safe context for them to run.
4160// In particular, these things should never be called when the Threads_lock
4161// is held by some other thread. (Note: the Safepoint abstraction also
4162// uses the Threads_lock to gurantee this property. It also makes sure that
4163// all threads gets blocked when exiting or starting).
4164
4165void Threads::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
4166  ALL_JAVA_THREADS(p) {
4167    p->oops_do(f, cld_f, cf);
4168  }
4169  VMThread::vm_thread()->oops_do(f, cld_f, cf);
4170}
4171
4172void Threads::possibly_parallel_oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
4173  // Introduce a mechanism allowing parallel threads to claim threads as
4174  // root groups.  Overhead should be small enough to use all the time,
4175  // even in sequential code.
4176  SharedHeap* sh = SharedHeap::heap();
4177  // Cannot yet substitute active_workers for n_par_threads
4178  // because of G1CollectedHeap::verify() use of
4179  // SharedHeap::process_strong_roots().  n_par_threads == 0 will
4180  // turn off parallelism in process_strong_roots while active_workers
4181  // is being used for parallelism elsewhere.
4182  bool is_par = sh->n_par_threads() > 0;
4183  assert(!is_par ||
4184         (SharedHeap::heap()->n_par_threads() ==
4185          SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4186  int cp = SharedHeap::heap()->strong_roots_parity();
4187  ALL_JAVA_THREADS(p) {
4188    if (p->claim_oops_do(is_par, cp)) {
4189      p->oops_do(f, cld_f, cf);
4190    }
4191  }
4192  VMThread* vmt = VMThread::vm_thread();
4193  if (vmt->claim_oops_do(is_par, cp)) {
4194    vmt->oops_do(f, cld_f, cf);
4195  }
4196}
4197
4198#if INCLUDE_ALL_GCS
4199// Used by ParallelScavenge
4200void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4201  ALL_JAVA_THREADS(p) {
4202    q->enqueue(new ThreadRootsTask(p));
4203  }
4204  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4205}
4206
4207// Used by Parallel Old
4208void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4209  ALL_JAVA_THREADS(p) {
4210    q->enqueue(new ThreadRootsMarkingTask(p));
4211  }
4212  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4213}
4214#endif // INCLUDE_ALL_GCS
4215
4216void Threads::nmethods_do(CodeBlobClosure* cf) {
4217  ALL_JAVA_THREADS(p) {
4218    p->nmethods_do(cf);
4219  }
4220  VMThread::vm_thread()->nmethods_do(cf);
4221}
4222
4223void Threads::metadata_do(void f(Metadata*)) {
4224  ALL_JAVA_THREADS(p) {
4225    p->metadata_do(f);
4226  }
4227}
4228
4229void Threads::gc_epilogue() {
4230  ALL_JAVA_THREADS(p) {
4231    p->gc_epilogue();
4232  }
4233}
4234
4235void Threads::gc_prologue() {
4236  ALL_JAVA_THREADS(p) {
4237    p->gc_prologue();
4238  }
4239}
4240
4241void Threads::deoptimized_wrt_marked_nmethods() {
4242  ALL_JAVA_THREADS(p) {
4243    p->deoptimized_wrt_marked_nmethods();
4244  }
4245}
4246
4247
4248// Get count Java threads that are waiting to enter the specified monitor.
4249GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4250  address monitor, bool doLock) {
4251  assert(doLock || SafepointSynchronize::is_at_safepoint(),
4252    "must grab Threads_lock or be at safepoint");
4253  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4254
4255  int i = 0;
4256  {
4257    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4258    ALL_JAVA_THREADS(p) {
4259      if (p->is_Compiler_thread()) continue;
4260
4261      address pending = (address)p->current_pending_monitor();
4262      if (pending == monitor) {             // found a match
4263        if (i < count) result->append(p);   // save the first count matches
4264        i++;
4265      }
4266    }
4267  }
4268  return result;
4269}
4270
4271
4272JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4273  assert(doLock ||
4274         Threads_lock->owned_by_self() ||
4275         SafepointSynchronize::is_at_safepoint(),
4276         "must grab Threads_lock or be at safepoint");
4277
4278  // NULL owner means not locked so we can skip the search
4279  if (owner == NULL) return NULL;
4280
4281  {
4282    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4283    ALL_JAVA_THREADS(p) {
4284      // first, see if owner is the address of a Java thread
4285      if (owner == (address)p) return p;
4286    }
4287  }
4288  // Cannot assert on lack of success here since this function may be
4289  // used by code that is trying to report useful problem information
4290  // like deadlock detection.
4291  if (UseHeavyMonitors) return NULL;
4292
4293  //
4294  // If we didn't find a matching Java thread and we didn't force use of
4295  // heavyweight monitors, then the owner is the stack address of the
4296  // Lock Word in the owning Java thread's stack.
4297  //
4298  JavaThread* the_owner = NULL;
4299  {
4300    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4301    ALL_JAVA_THREADS(q) {
4302      if (q->is_lock_owned(owner)) {
4303        the_owner = q;
4304        break;
4305      }
4306    }
4307  }
4308  // cannot assert on lack of success here; see above comment
4309  return the_owner;
4310}
4311
4312// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4313void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4314  char buf[32];
4315  st->print_cr(os::local_time_string(buf, sizeof(buf)));
4316
4317  st->print_cr("Full thread dump %s (%s %s):",
4318                Abstract_VM_Version::vm_name(),
4319                Abstract_VM_Version::vm_release(),
4320                Abstract_VM_Version::vm_info_string()
4321               );
4322  st->cr();
4323
4324#if INCLUDE_ALL_GCS
4325  // Dump concurrent locks
4326  ConcurrentLocksDump concurrent_locks;
4327  if (print_concurrent_locks) {
4328    concurrent_locks.dump_at_safepoint();
4329  }
4330#endif // INCLUDE_ALL_GCS
4331
4332  ALL_JAVA_THREADS(p) {
4333    ResourceMark rm;
4334    p->print_on(st);
4335    if (print_stacks) {
4336      if (internal_format) {
4337        p->trace_stack();
4338      } else {
4339        p->print_stack_on(st);
4340      }
4341    }
4342    st->cr();
4343#if INCLUDE_ALL_GCS
4344    if (print_concurrent_locks) {
4345      concurrent_locks.print_locks_on(p, st);
4346    }
4347#endif // INCLUDE_ALL_GCS
4348  }
4349
4350  VMThread::vm_thread()->print_on(st);
4351  st->cr();
4352  Universe::heap()->print_gc_threads_on(st);
4353  WatcherThread* wt = WatcherThread::watcher_thread();
4354  if (wt != NULL) {
4355    wt->print_on(st);
4356    st->cr();
4357  }
4358  CompileBroker::print_compiler_threads_on(st);
4359  st->flush();
4360}
4361
4362// Threads::print_on_error() is called by fatal error handler. It's possible
4363// that VM is not at safepoint and/or current thread is inside signal handler.
4364// Don't print stack trace, as the stack may not be walkable. Don't allocate
4365// memory (even in resource area), it might deadlock the error handler.
4366void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4367  bool found_current = false;
4368  st->print_cr("Java Threads: ( => current thread )");
4369  ALL_JAVA_THREADS(thread) {
4370    bool is_current = (current == thread);
4371    found_current = found_current || is_current;
4372
4373    st->print("%s", is_current ? "=>" : "  ");
4374
4375    st->print(PTR_FORMAT, thread);
4376    st->print(" ");
4377    thread->print_on_error(st, buf, buflen);
4378    st->cr();
4379  }
4380  st->cr();
4381
4382  st->print_cr("Other Threads:");
4383  if (VMThread::vm_thread()) {
4384    bool is_current = (current == VMThread::vm_thread());
4385    found_current = found_current || is_current;
4386    st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4387
4388    st->print(PTR_FORMAT, VMThread::vm_thread());
4389    st->print(" ");
4390    VMThread::vm_thread()->print_on_error(st, buf, buflen);
4391    st->cr();
4392  }
4393  WatcherThread* wt = WatcherThread::watcher_thread();
4394  if (wt != NULL) {
4395    bool is_current = (current == wt);
4396    found_current = found_current || is_current;
4397    st->print("%s", is_current ? "=>" : "  ");
4398
4399    st->print(PTR_FORMAT, wt);
4400    st->print(" ");
4401    wt->print_on_error(st, buf, buflen);
4402    st->cr();
4403  }
4404  if (!found_current) {
4405    st->cr();
4406    st->print("=>" PTR_FORMAT " (exited) ", current);
4407    current->print_on_error(st, buf, buflen);
4408    st->cr();
4409  }
4410}
4411
4412// Internal SpinLock and Mutex
4413// Based on ParkEvent
4414
4415// Ad-hoc mutual exclusion primitives: SpinLock and Mux
4416//
4417// We employ SpinLocks _only for low-contention, fixed-length
4418// short-duration critical sections where we're concerned
4419// about native mutex_t or HotSpot Mutex:: latency.
4420// The mux construct provides a spin-then-block mutual exclusion
4421// mechanism.
4422//
4423// Testing has shown that contention on the ListLock guarding gFreeList
4424// is common.  If we implement ListLock as a simple SpinLock it's common
4425// for the JVM to devolve to yielding with little progress.  This is true
4426// despite the fact that the critical sections protected by ListLock are
4427// extremely short.
4428//
4429// TODO-FIXME: ListLock should be of type SpinLock.
4430// We should make this a 1st-class type, integrated into the lock
4431// hierarchy as leaf-locks.  Critically, the SpinLock structure
4432// should have sufficient padding to avoid false-sharing and excessive
4433// cache-coherency traffic.
4434
4435
4436typedef volatile int SpinLockT ;
4437
4438void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4439  if (Atomic::cmpxchg (1, adr, 0) == 0) {
4440     return ;   // normal fast-path return
4441  }
4442
4443  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4444  TEVENT (SpinAcquire - ctx) ;
4445  int ctr = 0 ;
4446  int Yields = 0 ;
4447  for (;;) {
4448     while (*adr != 0) {
4449        ++ctr ;
4450        if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4451           if (Yields > 5) {
4452             // Consider using a simple NakedSleep() instead.
4453             // Then SpinAcquire could be called by non-JVM threads
4454             Thread::current()->_ParkEvent->park(1) ;
4455           } else {
4456             os::NakedYield() ;
4457             ++Yields ;
4458           }
4459        } else {
4460           SpinPause() ;
4461        }
4462     }
4463     if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4464  }
4465}
4466
4467void Thread::SpinRelease (volatile int * adr) {
4468  assert (*adr != 0, "invariant") ;
4469  OrderAccess::fence() ;      // guarantee at least release consistency.
4470  // Roach-motel semantics.
4471  // It's safe if subsequent LDs and STs float "up" into the critical section,
4472  // but prior LDs and STs within the critical section can't be allowed
4473  // to reorder or float past the ST that releases the lock.
4474  *adr = 0 ;
4475}
4476
4477// muxAcquire and muxRelease:
4478//
4479// *  muxAcquire and muxRelease support a single-word lock-word construct.
4480//    The LSB of the word is set IFF the lock is held.
4481//    The remainder of the word points to the head of a singly-linked list
4482//    of threads blocked on the lock.
4483//
4484// *  The current implementation of muxAcquire-muxRelease uses its own
4485//    dedicated Thread._MuxEvent instance.  If we're interested in
4486//    minimizing the peak number of extant ParkEvent instances then
4487//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4488//    as certain invariants were satisfied.  Specifically, care would need
4489//    to be taken with regards to consuming unpark() "permits".
4490//    A safe rule of thumb is that a thread would never call muxAcquire()
4491//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4492//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4493//    consume an unpark() permit intended for monitorenter, for instance.
4494//    One way around this would be to widen the restricted-range semaphore
4495//    implemented in park().  Another alternative would be to provide
4496//    multiple instances of the PlatformEvent() for each thread.  One
4497//    instance would be dedicated to muxAcquire-muxRelease, for instance.
4498//
4499// *  Usage:
4500//    -- Only as leaf locks
4501//    -- for short-term locking only as muxAcquire does not perform
4502//       thread state transitions.
4503//
4504// Alternatives:
4505// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4506//    but with parking or spin-then-park instead of pure spinning.
4507// *  Use Taura-Oyama-Yonenzawa locks.
4508// *  It's possible to construct a 1-0 lock if we encode the lockword as
4509//    (List,LockByte).  Acquire will CAS the full lockword while Release
4510//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4511//    acquiring threads use timers (ParkTimed) to detect and recover from
4512//    the stranding window.  Thread/Node structures must be aligned on 256-byte
4513//    boundaries by using placement-new.
4514// *  Augment MCS with advisory back-link fields maintained with CAS().
4515//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4516//    The validity of the backlinks must be ratified before we trust the value.
4517//    If the backlinks are invalid the exiting thread must back-track through the
4518//    the forward links, which are always trustworthy.
4519// *  Add a successor indication.  The LockWord is currently encoded as
4520//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4521//    to provide the usual futile-wakeup optimization.
4522//    See RTStt for details.
4523// *  Consider schedctl.sc_nopreempt to cover the critical section.
4524//
4525
4526
4527typedef volatile intptr_t MutexT ;      // Mux Lock-word
4528enum MuxBits { LOCKBIT = 1 } ;
4529
4530void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4531  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4532  if (w == 0) return ;
4533  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4534     return ;
4535  }
4536
4537  TEVENT (muxAcquire - Contention) ;
4538  ParkEvent * const Self = Thread::current()->_MuxEvent ;
4539  assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4540  for (;;) {
4541     int its = (os::is_MP() ? 100 : 0) + 1 ;
4542
4543     // Optional spin phase: spin-then-park strategy
4544     while (--its >= 0) {
4545       w = *Lock ;
4546       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4547          return ;
4548       }
4549     }
4550
4551     Self->reset() ;
4552     Self->OnList = intptr_t(Lock) ;
4553     // The following fence() isn't _strictly necessary as the subsequent
4554     // CAS() both serializes execution and ratifies the fetched *Lock value.
4555     OrderAccess::fence();
4556     for (;;) {
4557        w = *Lock ;
4558        if ((w & LOCKBIT) == 0) {
4559            if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4560                Self->OnList = 0 ;   // hygiene - allows stronger asserts
4561                return ;
4562            }
4563            continue ;      // Interference -- *Lock changed -- Just retry
4564        }
4565        assert (w & LOCKBIT, "invariant") ;
4566        Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4567        if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4568     }
4569
4570     while (Self->OnList != 0) {
4571        Self->park() ;
4572     }
4573  }
4574}
4575
4576void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4577  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4578  if (w == 0) return ;
4579  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4580    return ;
4581  }
4582
4583  TEVENT (muxAcquire - Contention) ;
4584  ParkEvent * ReleaseAfter = NULL ;
4585  if (ev == NULL) {
4586    ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4587  }
4588  assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4589  for (;;) {
4590    guarantee (ev->OnList == 0, "invariant") ;
4591    int its = (os::is_MP() ? 100 : 0) + 1 ;
4592
4593    // Optional spin phase: spin-then-park strategy
4594    while (--its >= 0) {
4595      w = *Lock ;
4596      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4597        if (ReleaseAfter != NULL) {
4598          ParkEvent::Release (ReleaseAfter) ;
4599        }
4600        return ;
4601      }
4602    }
4603
4604    ev->reset() ;
4605    ev->OnList = intptr_t(Lock) ;
4606    // The following fence() isn't _strictly necessary as the subsequent
4607    // CAS() both serializes execution and ratifies the fetched *Lock value.
4608    OrderAccess::fence();
4609    for (;;) {
4610      w = *Lock ;
4611      if ((w & LOCKBIT) == 0) {
4612        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4613          ev->OnList = 0 ;
4614          // We call ::Release while holding the outer lock, thus
4615          // artificially lengthening the critical section.
4616          // Consider deferring the ::Release() until the subsequent unlock(),
4617          // after we've dropped the outer lock.
4618          if (ReleaseAfter != NULL) {
4619            ParkEvent::Release (ReleaseAfter) ;
4620          }
4621          return ;
4622        }
4623        continue ;      // Interference -- *Lock changed -- Just retry
4624      }
4625      assert (w & LOCKBIT, "invariant") ;
4626      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4627      if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4628    }
4629
4630    while (ev->OnList != 0) {
4631      ev->park() ;
4632    }
4633  }
4634}
4635
4636// Release() must extract a successor from the list and then wake that thread.
4637// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4638// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4639// Release() would :
4640// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4641// (B) Extract a successor from the private list "in-hand"
4642// (C) attempt to CAS() the residual back into *Lock over null.
4643//     If there were any newly arrived threads and the CAS() would fail.
4644//     In that case Release() would detach the RATs, re-merge the list in-hand
4645//     with the RATs and repeat as needed.  Alternately, Release() might
4646//     detach and extract a successor, but then pass the residual list to the wakee.
4647//     The wakee would be responsible for reattaching and remerging before it
4648//     competed for the lock.
4649//
4650// Both "pop" and DMR are immune from ABA corruption -- there can be
4651// multiple concurrent pushers, but only one popper or detacher.
4652// This implementation pops from the head of the list.  This is unfair,
4653// but tends to provide excellent throughput as hot threads remain hot.
4654// (We wake recently run threads first).
4655
4656void Thread::muxRelease (volatile intptr_t * Lock)  {
4657  for (;;) {
4658    const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4659    assert (w & LOCKBIT, "invariant") ;
4660    if (w == LOCKBIT) return ;
4661    ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4662    assert (List != NULL, "invariant") ;
4663    assert (List->OnList == intptr_t(Lock), "invariant") ;
4664    ParkEvent * nxt = List->ListNext ;
4665
4666    // The following CAS() releases the lock and pops the head element.
4667    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4668      continue ;
4669    }
4670    List->OnList = 0 ;
4671    OrderAccess::fence() ;
4672    List->unpark () ;
4673    return ;
4674  }
4675}
4676
4677
4678void Threads::verify() {
4679  ALL_JAVA_THREADS(p) {
4680    p->verify();
4681  }
4682  VMThread* thread = VMThread::vm_thread();
4683  if (thread != NULL) thread->verify();
4684}
4685