thread.cpp revision 3864:f34d701e952e
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/scopeDesc.hpp"
31#include "compiler/compileBroker.hpp"
32#include "interpreter/interpreter.hpp"
33#include "interpreter/linkResolver.hpp"
34#include "interpreter/oopMapCache.hpp"
35#include "jvmtifiles/jvmtiEnv.hpp"
36#include "memory/gcLocker.inline.hpp"
37#include "memory/metaspaceShared.hpp"
38#include "memory/oopFactory.hpp"
39#include "memory/universe.inline.hpp"
40#include "oops/instanceKlass.hpp"
41#include "oops/objArrayOop.hpp"
42#include "oops/oop.inline.hpp"
43#include "oops/symbol.hpp"
44#include "prims/jvm_misc.hpp"
45#include "prims/jvmtiExport.hpp"
46#include "prims/jvmtiThreadState.hpp"
47#include "prims/privilegedStack.hpp"
48#include "runtime/aprofiler.hpp"
49#include "runtime/arguments.hpp"
50#include "runtime/biasedLocking.hpp"
51#include "runtime/deoptimization.hpp"
52#include "runtime/fprofiler.hpp"
53#include "runtime/frame.inline.hpp"
54#include "runtime/init.hpp"
55#include "runtime/interfaceSupport.hpp"
56#include "runtime/java.hpp"
57#include "runtime/javaCalls.hpp"
58#include "runtime/jniPeriodicChecker.hpp"
59#include "runtime/memprofiler.hpp"
60#include "runtime/mutexLocker.hpp"
61#include "runtime/objectMonitor.hpp"
62#include "runtime/osThread.hpp"
63#include "runtime/safepoint.hpp"
64#include "runtime/sharedRuntime.hpp"
65#include "runtime/statSampler.hpp"
66#include "runtime/stubRoutines.hpp"
67#include "runtime/task.hpp"
68#include "runtime/thread.inline.hpp"
69#include "runtime/threadCritical.hpp"
70#include "runtime/threadLocalStorage.hpp"
71#include "runtime/vframe.hpp"
72#include "runtime/vframeArray.hpp"
73#include "runtime/vframe_hp.hpp"
74#include "runtime/vmThread.hpp"
75#include "runtime/vm_operations.hpp"
76#include "services/attachListener.hpp"
77#include "services/management.hpp"
78#include "services/memTracker.hpp"
79#include "services/threadService.hpp"
80#include "trace/traceEventTypes.hpp"
81#include "utilities/defaultStream.hpp"
82#include "utilities/dtrace.hpp"
83#include "utilities/events.hpp"
84#include "utilities/preserveException.hpp"
85#ifdef TARGET_OS_FAMILY_linux
86# include "os_linux.inline.hpp"
87#endif
88#ifdef TARGET_OS_FAMILY_solaris
89# include "os_solaris.inline.hpp"
90#endif
91#ifdef TARGET_OS_FAMILY_windows
92# include "os_windows.inline.hpp"
93#endif
94#ifdef TARGET_OS_FAMILY_bsd
95# include "os_bsd.inline.hpp"
96#endif
97#ifndef SERIALGC
98#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
99#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
100#include "gc_implementation/parallelScavenge/pcTasks.hpp"
101#endif
102#ifdef COMPILER1
103#include "c1/c1_Compiler.hpp"
104#endif
105#ifdef COMPILER2
106#include "opto/c2compiler.hpp"
107#include "opto/idealGraphPrinter.hpp"
108#endif
109
110#ifdef DTRACE_ENABLED
111
112// Only bother with this argument setup if dtrace is available
113
114#ifndef USDT2
115HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
116HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
117HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
118  intptr_t, intptr_t, bool);
119HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
120  intptr_t, intptr_t, bool);
121
122#define DTRACE_THREAD_PROBE(probe, javathread)                             \
123  {                                                                        \
124    ResourceMark rm(this);                                                 \
125    int len = 0;                                                           \
126    const char* name = (javathread)->get_thread_name();                    \
127    len = strlen(name);                                                    \
128    HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
129      name, len,                                                           \
130      java_lang_Thread::thread_id((javathread)->threadObj()),              \
131      (javathread)->osthread()->thread_id(),                               \
132      java_lang_Thread::is_daemon((javathread)->threadObj()));             \
133  }
134
135#else /* USDT2 */
136
137#define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
138#define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
139
140#define DTRACE_THREAD_PROBE(probe, javathread)                             \
141  {                                                                        \
142    ResourceMark rm(this);                                                 \
143    int len = 0;                                                           \
144    const char* name = (javathread)->get_thread_name();                    \
145    len = strlen(name);                                                    \
146    HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
147      (char *) name, len,                                                           \
148      java_lang_Thread::thread_id((javathread)->threadObj()),              \
149      (uintptr_t) (javathread)->osthread()->thread_id(),                               \
150      java_lang_Thread::is_daemon((javathread)->threadObj()));             \
151  }
152
153#endif /* USDT2 */
154
155#else //  ndef DTRACE_ENABLED
156
157#define DTRACE_THREAD_PROBE(probe, javathread)
158
159#endif // ndef DTRACE_ENABLED
160
161
162// Class hierarchy
163// - Thread
164//   - VMThread
165//   - WatcherThread
166//   - ConcurrentMarkSweepThread
167//   - JavaThread
168//     - CompilerThread
169
170// ======= Thread ========
171// Support for forcing alignment of thread objects for biased locking
172void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
173  if (UseBiasedLocking) {
174    const int alignment = markOopDesc::biased_lock_alignment;
175    size_t aligned_size = size + (alignment - sizeof(intptr_t));
176    void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
177                                          : AllocateHeap(aligned_size, flags, CURRENT_PC,
178                                              AllocFailStrategy::RETURN_NULL);
179    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
180    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
181           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
182           "JavaThread alignment code overflowed allocated storage");
183    if (TraceBiasedLocking) {
184      if (aligned_addr != real_malloc_addr)
185        tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
186                      real_malloc_addr, aligned_addr);
187    }
188    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
189    return aligned_addr;
190  } else {
191    return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
192                       : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
193  }
194}
195
196void Thread::operator delete(void* p) {
197  if (UseBiasedLocking) {
198    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
199    FreeHeap(real_malloc_addr, mtThread);
200  } else {
201    FreeHeap(p, mtThread);
202  }
203}
204
205
206// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
207// JavaThread
208
209
210Thread::Thread() {
211  // stack and get_thread
212  set_stack_base(NULL);
213  set_stack_size(0);
214  set_self_raw_id(0);
215  set_lgrp_id(-1);
216
217  // allocated data structures
218  set_osthread(NULL);
219  set_resource_area(new (mtThread)ResourceArea());
220  set_handle_area(new (mtThread) HandleArea(NULL));
221  set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(300, true));
222  set_active_handles(NULL);
223  set_free_handle_block(NULL);
224  set_last_handle_mark(NULL);
225
226  // This initial value ==> never claimed.
227  _oops_do_parity = 0;
228
229  // the handle mark links itself to last_handle_mark
230  new HandleMark(this);
231
232  // plain initialization
233  debug_only(_owned_locks = NULL;)
234  debug_only(_allow_allocation_count = 0;)
235  NOT_PRODUCT(_allow_safepoint_count = 0;)
236  NOT_PRODUCT(_skip_gcalot = false;)
237  CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
238  _jvmti_env_iteration_count = 0;
239  set_allocated_bytes(0);
240  set_trace_buffer(NULL);
241  _vm_operation_started_count = 0;
242  _vm_operation_completed_count = 0;
243  _current_pending_monitor = NULL;
244  _current_pending_monitor_is_from_java = true;
245  _current_waiting_monitor = NULL;
246  _num_nested_signal = 0;
247  omFreeList = NULL ;
248  omFreeCount = 0 ;
249  omFreeProvision = 32 ;
250  omInUseList = NULL ;
251  omInUseCount = 0 ;
252
253#ifdef ASSERT
254  _visited_for_critical_count = false;
255#endif
256
257  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
258  _suspend_flags = 0;
259
260  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
261  _hashStateX = os::random() ;
262  _hashStateY = 842502087 ;
263  _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
264  _hashStateW = 273326509 ;
265
266  _OnTrap   = 0 ;
267  _schedctl = NULL ;
268  _Stalled  = 0 ;
269  _TypeTag  = 0x2BAD ;
270
271  // Many of the following fields are effectively final - immutable
272  // Note that nascent threads can't use the Native Monitor-Mutex
273  // construct until the _MutexEvent is initialized ...
274  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
275  // we might instead use a stack of ParkEvents that we could provision on-demand.
276  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
277  // and ::Release()
278  _ParkEvent   = ParkEvent::Allocate (this) ;
279  _SleepEvent  = ParkEvent::Allocate (this) ;
280  _MutexEvent  = ParkEvent::Allocate (this) ;
281  _MuxEvent    = ParkEvent::Allocate (this) ;
282
283#ifdef CHECK_UNHANDLED_OOPS
284  if (CheckUnhandledOops) {
285    _unhandled_oops = new UnhandledOops(this);
286  }
287#endif // CHECK_UNHANDLED_OOPS
288#ifdef ASSERT
289  if (UseBiasedLocking) {
290    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
291    assert(this == _real_malloc_address ||
292           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
293           "bug in forced alignment of thread objects");
294  }
295#endif /* ASSERT */
296}
297
298void Thread::initialize_thread_local_storage() {
299  // Note: Make sure this method only calls
300  // non-blocking operations. Otherwise, it might not work
301  // with the thread-startup/safepoint interaction.
302
303  // During Java thread startup, safepoint code should allow this
304  // method to complete because it may need to allocate memory to
305  // store information for the new thread.
306
307  // initialize structure dependent on thread local storage
308  ThreadLocalStorage::set_thread(this);
309}
310
311void Thread::record_stack_base_and_size() {
312  set_stack_base(os::current_stack_base());
313  set_stack_size(os::current_stack_size());
314  // CR 7190089: on Solaris, primordial thread's stack is adjusted
315  // in initialize_thread(). Without the adjustment, stack size is
316  // incorrect if stack is set to unlimited (ulimit -s unlimited).
317  // So far, only Solaris has real implementation of initialize_thread().
318  //
319  // set up any platform-specific state.
320  os::initialize_thread(this);
321
322#if INCLUDE_NMT
323  // record thread's native stack, stack grows downward
324  address stack_low_addr = stack_base() - stack_size();
325  MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
326      CURRENT_PC);
327#endif // INCLUDE_NMT
328}
329
330
331Thread::~Thread() {
332  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
333  ObjectSynchronizer::omFlush (this) ;
334
335  // stack_base can be NULL if the thread is never started or exited before
336  // record_stack_base_and_size called. Although, we would like to ensure
337  // that all started threads do call record_stack_base_and_size(), there is
338  // not proper way to enforce that.
339#if INCLUDE_NMT
340  if (_stack_base != NULL) {
341    address low_stack_addr = stack_base() - stack_size();
342    MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
343#ifdef ASSERT
344    set_stack_base(NULL);
345#endif
346  }
347#endif // INCLUDE_NMT
348
349  // deallocate data structures
350  delete resource_area();
351  // since the handle marks are using the handle area, we have to deallocated the root
352  // handle mark before deallocating the thread's handle area,
353  assert(last_handle_mark() != NULL, "check we have an element");
354  delete last_handle_mark();
355  assert(last_handle_mark() == NULL, "check we have reached the end");
356
357  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
358  // We NULL out the fields for good hygiene.
359  ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
360  ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
361  ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
362  ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
363
364  delete handle_area();
365  delete metadata_handles();
366
367  // osthread() can be NULL, if creation of thread failed.
368  if (osthread() != NULL) os::free_thread(osthread());
369
370  delete _SR_lock;
371
372  // clear thread local storage if the Thread is deleting itself
373  if (this == Thread::current()) {
374    ThreadLocalStorage::set_thread(NULL);
375  } else {
376    // In the case where we're not the current thread, invalidate all the
377    // caches in case some code tries to get the current thread or the
378    // thread that was destroyed, and gets stale information.
379    ThreadLocalStorage::invalidate_all();
380  }
381  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
382}
383
384// NOTE: dummy function for assertion purpose.
385void Thread::run() {
386  ShouldNotReachHere();
387}
388
389#ifdef ASSERT
390// Private method to check for dangling thread pointer
391void check_for_dangling_thread_pointer(Thread *thread) {
392 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
393         "possibility of dangling Thread pointer");
394}
395#endif
396
397
398#ifndef PRODUCT
399// Tracing method for basic thread operations
400void Thread::trace(const char* msg, const Thread* const thread) {
401  if (!TraceThreadEvents) return;
402  ResourceMark rm;
403  ThreadCritical tc;
404  const char *name = "non-Java thread";
405  int prio = -1;
406  if (thread->is_Java_thread()
407      && !thread->is_Compiler_thread()) {
408    // The Threads_lock must be held to get information about
409    // this thread but may not be in some situations when
410    // tracing  thread events.
411    bool release_Threads_lock = false;
412    if (!Threads_lock->owned_by_self()) {
413      Threads_lock->lock();
414      release_Threads_lock = true;
415    }
416    JavaThread* jt = (JavaThread *)thread;
417    name = (char *)jt->get_thread_name();
418    oop thread_oop = jt->threadObj();
419    if (thread_oop != NULL) {
420      prio = java_lang_Thread::priority(thread_oop);
421    }
422    if (release_Threads_lock) {
423      Threads_lock->unlock();
424    }
425  }
426  tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
427}
428#endif
429
430
431ThreadPriority Thread::get_priority(const Thread* const thread) {
432  trace("get priority", thread);
433  ThreadPriority priority;
434  // Can return an error!
435  (void)os::get_priority(thread, priority);
436  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
437  return priority;
438}
439
440void Thread::set_priority(Thread* thread, ThreadPriority priority) {
441  trace("set priority", thread);
442  debug_only(check_for_dangling_thread_pointer(thread);)
443  // Can return an error!
444  (void)os::set_priority(thread, priority);
445}
446
447
448void Thread::start(Thread* thread) {
449  trace("start", thread);
450  // Start is different from resume in that its safety is guaranteed by context or
451  // being called from a Java method synchronized on the Thread object.
452  if (!DisableStartThread) {
453    if (thread->is_Java_thread()) {
454      // Initialize the thread state to RUNNABLE before starting this thread.
455      // Can not set it after the thread started because we do not know the
456      // exact thread state at that time. It could be in MONITOR_WAIT or
457      // in SLEEPING or some other state.
458      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
459                                          java_lang_Thread::RUNNABLE);
460    }
461    os::start_thread(thread);
462  }
463}
464
465// Enqueue a VM_Operation to do the job for us - sometime later
466void Thread::send_async_exception(oop java_thread, oop java_throwable) {
467  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
468  VMThread::execute(vm_stop);
469}
470
471
472//
473// Check if an external suspend request has completed (or has been
474// cancelled). Returns true if the thread is externally suspended and
475// false otherwise.
476//
477// The bits parameter returns information about the code path through
478// the routine. Useful for debugging:
479//
480// set in is_ext_suspend_completed():
481// 0x00000001 - routine was entered
482// 0x00000010 - routine return false at end
483// 0x00000100 - thread exited (return false)
484// 0x00000200 - suspend request cancelled (return false)
485// 0x00000400 - thread suspended (return true)
486// 0x00001000 - thread is in a suspend equivalent state (return true)
487// 0x00002000 - thread is native and walkable (return true)
488// 0x00004000 - thread is native_trans and walkable (needed retry)
489//
490// set in wait_for_ext_suspend_completion():
491// 0x00010000 - routine was entered
492// 0x00020000 - suspend request cancelled before loop (return false)
493// 0x00040000 - thread suspended before loop (return true)
494// 0x00080000 - suspend request cancelled in loop (return false)
495// 0x00100000 - thread suspended in loop (return true)
496// 0x00200000 - suspend not completed during retry loop (return false)
497//
498
499// Helper class for tracing suspend wait debug bits.
500//
501// 0x00000100 indicates that the target thread exited before it could
502// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
503// 0x00080000 each indicate a cancelled suspend request so they don't
504// count as wait failures either.
505#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
506
507class TraceSuspendDebugBits : public StackObj {
508 private:
509  JavaThread * jt;
510  bool         is_wait;
511  bool         called_by_wait;  // meaningful when !is_wait
512  uint32_t *   bits;
513
514 public:
515  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
516                        uint32_t *_bits) {
517    jt             = _jt;
518    is_wait        = _is_wait;
519    called_by_wait = _called_by_wait;
520    bits           = _bits;
521  }
522
523  ~TraceSuspendDebugBits() {
524    if (!is_wait) {
525#if 1
526      // By default, don't trace bits for is_ext_suspend_completed() calls.
527      // That trace is very chatty.
528      return;
529#else
530      if (!called_by_wait) {
531        // If tracing for is_ext_suspend_completed() is enabled, then only
532        // trace calls to it from wait_for_ext_suspend_completion()
533        return;
534      }
535#endif
536    }
537
538    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
539      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
540        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
541        ResourceMark rm;
542
543        tty->print_cr(
544            "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
545            jt->get_thread_name(), *bits);
546
547        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
548      }
549    }
550  }
551};
552#undef DEBUG_FALSE_BITS
553
554
555bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
556  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
557
558  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
559  bool do_trans_retry;           // flag to force the retry
560
561  *bits |= 0x00000001;
562
563  do {
564    do_trans_retry = false;
565
566    if (is_exiting()) {
567      // Thread is in the process of exiting. This is always checked
568      // first to reduce the risk of dereferencing a freed JavaThread.
569      *bits |= 0x00000100;
570      return false;
571    }
572
573    if (!is_external_suspend()) {
574      // Suspend request is cancelled. This is always checked before
575      // is_ext_suspended() to reduce the risk of a rogue resume
576      // confusing the thread that made the suspend request.
577      *bits |= 0x00000200;
578      return false;
579    }
580
581    if (is_ext_suspended()) {
582      // thread is suspended
583      *bits |= 0x00000400;
584      return true;
585    }
586
587    // Now that we no longer do hard suspends of threads running
588    // native code, the target thread can be changing thread state
589    // while we are in this routine:
590    //
591    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
592    //
593    // We save a copy of the thread state as observed at this moment
594    // and make our decision about suspend completeness based on the
595    // copy. This closes the race where the thread state is seen as
596    // _thread_in_native_trans in the if-thread_blocked check, but is
597    // seen as _thread_blocked in if-thread_in_native_trans check.
598    JavaThreadState save_state = thread_state();
599
600    if (save_state == _thread_blocked && is_suspend_equivalent()) {
601      // If the thread's state is _thread_blocked and this blocking
602      // condition is known to be equivalent to a suspend, then we can
603      // consider the thread to be externally suspended. This means that
604      // the code that sets _thread_blocked has been modified to do
605      // self-suspension if the blocking condition releases. We also
606      // used to check for CONDVAR_WAIT here, but that is now covered by
607      // the _thread_blocked with self-suspension check.
608      //
609      // Return true since we wouldn't be here unless there was still an
610      // external suspend request.
611      *bits |= 0x00001000;
612      return true;
613    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
614      // Threads running native code will self-suspend on native==>VM/Java
615      // transitions. If its stack is walkable (should always be the case
616      // unless this function is called before the actual java_suspend()
617      // call), then the wait is done.
618      *bits |= 0x00002000;
619      return true;
620    } else if (!called_by_wait && !did_trans_retry &&
621               save_state == _thread_in_native_trans &&
622               frame_anchor()->walkable()) {
623      // The thread is transitioning from thread_in_native to another
624      // thread state. check_safepoint_and_suspend_for_native_trans()
625      // will force the thread to self-suspend. If it hasn't gotten
626      // there yet we may have caught the thread in-between the native
627      // code check above and the self-suspend. Lucky us. If we were
628      // called by wait_for_ext_suspend_completion(), then it
629      // will be doing the retries so we don't have to.
630      //
631      // Since we use the saved thread state in the if-statement above,
632      // there is a chance that the thread has already transitioned to
633      // _thread_blocked by the time we get here. In that case, we will
634      // make a single unnecessary pass through the logic below. This
635      // doesn't hurt anything since we still do the trans retry.
636
637      *bits |= 0x00004000;
638
639      // Once the thread leaves thread_in_native_trans for another
640      // thread state, we break out of this retry loop. We shouldn't
641      // need this flag to prevent us from getting back here, but
642      // sometimes paranoia is good.
643      did_trans_retry = true;
644
645      // We wait for the thread to transition to a more usable state.
646      for (int i = 1; i <= SuspendRetryCount; i++) {
647        // We used to do an "os::yield_all(i)" call here with the intention
648        // that yielding would increase on each retry. However, the parameter
649        // is ignored on Linux which means the yield didn't scale up. Waiting
650        // on the SR_lock below provides a much more predictable scale up for
651        // the delay. It also provides a simple/direct point to check for any
652        // safepoint requests from the VMThread
653
654        // temporarily drops SR_lock while doing wait with safepoint check
655        // (if we're a JavaThread - the WatcherThread can also call this)
656        // and increase delay with each retry
657        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
658
659        // check the actual thread state instead of what we saved above
660        if (thread_state() != _thread_in_native_trans) {
661          // the thread has transitioned to another thread state so
662          // try all the checks (except this one) one more time.
663          do_trans_retry = true;
664          break;
665        }
666      } // end retry loop
667
668
669    }
670  } while (do_trans_retry);
671
672  *bits |= 0x00000010;
673  return false;
674}
675
676//
677// Wait for an external suspend request to complete (or be cancelled).
678// Returns true if the thread is externally suspended and false otherwise.
679//
680bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
681       uint32_t *bits) {
682  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
683                             false /* !called_by_wait */, bits);
684
685  // local flag copies to minimize SR_lock hold time
686  bool is_suspended;
687  bool pending;
688  uint32_t reset_bits;
689
690  // set a marker so is_ext_suspend_completed() knows we are the caller
691  *bits |= 0x00010000;
692
693  // We use reset_bits to reinitialize the bits value at the top of
694  // each retry loop. This allows the caller to make use of any
695  // unused bits for their own marking purposes.
696  reset_bits = *bits;
697
698  {
699    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
700    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
701                                            delay, bits);
702    pending = is_external_suspend();
703  }
704  // must release SR_lock to allow suspension to complete
705
706  if (!pending) {
707    // A cancelled suspend request is the only false return from
708    // is_ext_suspend_completed() that keeps us from entering the
709    // retry loop.
710    *bits |= 0x00020000;
711    return false;
712  }
713
714  if (is_suspended) {
715    *bits |= 0x00040000;
716    return true;
717  }
718
719  for (int i = 1; i <= retries; i++) {
720    *bits = reset_bits;  // reinit to only track last retry
721
722    // We used to do an "os::yield_all(i)" call here with the intention
723    // that yielding would increase on each retry. However, the parameter
724    // is ignored on Linux which means the yield didn't scale up. Waiting
725    // on the SR_lock below provides a much more predictable scale up for
726    // the delay. It also provides a simple/direct point to check for any
727    // safepoint requests from the VMThread
728
729    {
730      MutexLocker ml(SR_lock());
731      // wait with safepoint check (if we're a JavaThread - the WatcherThread
732      // can also call this)  and increase delay with each retry
733      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
734
735      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
736                                              delay, bits);
737
738      // It is possible for the external suspend request to be cancelled
739      // (by a resume) before the actual suspend operation is completed.
740      // Refresh our local copy to see if we still need to wait.
741      pending = is_external_suspend();
742    }
743
744    if (!pending) {
745      // A cancelled suspend request is the only false return from
746      // is_ext_suspend_completed() that keeps us from staying in the
747      // retry loop.
748      *bits |= 0x00080000;
749      return false;
750    }
751
752    if (is_suspended) {
753      *bits |= 0x00100000;
754      return true;
755    }
756  } // end retry loop
757
758  // thread did not suspend after all our retries
759  *bits |= 0x00200000;
760  return false;
761}
762
763#ifndef PRODUCT
764void JavaThread::record_jump(address target, address instr, const char* file, int line) {
765
766  // This should not need to be atomic as the only way for simultaneous
767  // updates is via interrupts. Even then this should be rare or non-existant
768  // and we don't care that much anyway.
769
770  int index = _jmp_ring_index;
771  _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
772  _jmp_ring[index]._target = (intptr_t) target;
773  _jmp_ring[index]._instruction = (intptr_t) instr;
774  _jmp_ring[index]._file = file;
775  _jmp_ring[index]._line = line;
776}
777#endif /* PRODUCT */
778
779// Called by flat profiler
780// Callers have already called wait_for_ext_suspend_completion
781// The assertion for that is currently too complex to put here:
782bool JavaThread::profile_last_Java_frame(frame* _fr) {
783  bool gotframe = false;
784  // self suspension saves needed state.
785  if (has_last_Java_frame() && _anchor.walkable()) {
786     *_fr = pd_last_frame();
787     gotframe = true;
788  }
789  return gotframe;
790}
791
792void Thread::interrupt(Thread* thread) {
793  trace("interrupt", thread);
794  debug_only(check_for_dangling_thread_pointer(thread);)
795  os::interrupt(thread);
796}
797
798bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
799  trace("is_interrupted", thread);
800  debug_only(check_for_dangling_thread_pointer(thread);)
801  // Note:  If clear_interrupted==false, this simply fetches and
802  // returns the value of the field osthread()->interrupted().
803  return os::is_interrupted(thread, clear_interrupted);
804}
805
806
807// GC Support
808bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
809  jint thread_parity = _oops_do_parity;
810  if (thread_parity != strong_roots_parity) {
811    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
812    if (res == thread_parity) {
813      return true;
814    } else {
815      guarantee(res == strong_roots_parity, "Or else what?");
816      assert(SharedHeap::heap()->workers()->active_workers() > 0,
817         "Should only fail when parallel.");
818      return false;
819    }
820  }
821  assert(SharedHeap::heap()->workers()->active_workers() > 0,
822         "Should only fail when parallel.");
823  return false;
824}
825
826void Thread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
827  active_handles()->oops_do(f);
828  // Do oop for ThreadShadow
829  f->do_oop((oop*)&_pending_exception);
830  handle_area()->oops_do(f);
831}
832
833void Thread::nmethods_do(CodeBlobClosure* cf) {
834  // no nmethods in a generic thread...
835}
836
837void Thread::metadata_do(void f(Metadata*)) {
838  if (metadata_handles() != NULL) {
839    for (int i = 0; i< metadata_handles()->length(); i++) {
840      f(metadata_handles()->at(i));
841    }
842  }
843}
844
845void Thread::print_on(outputStream* st) const {
846  // get_priority assumes osthread initialized
847  if (osthread() != NULL) {
848    int os_prio;
849    if (os::get_native_priority(this, &os_prio) == OS_OK) {
850      st->print("os_prio=%d ", os_prio);
851    }
852    st->print("tid=" INTPTR_FORMAT " ", this);
853    osthread()->print_on(st);
854  }
855  debug_only(if (WizardMode) print_owned_locks_on(st);)
856}
857
858// Thread::print_on_error() is called by fatal error handler. Don't use
859// any lock or allocate memory.
860void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
861  if      (is_VM_thread())                  st->print("VMThread");
862  else if (is_Compiler_thread())            st->print("CompilerThread");
863  else if (is_Java_thread())                st->print("JavaThread");
864  else if (is_GC_task_thread())             st->print("GCTaskThread");
865  else if (is_Watcher_thread())             st->print("WatcherThread");
866  else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
867  else st->print("Thread");
868
869  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
870            _stack_base - _stack_size, _stack_base);
871
872  if (osthread()) {
873    st->print(" [id=%d]", osthread()->thread_id());
874  }
875}
876
877#ifdef ASSERT
878void Thread::print_owned_locks_on(outputStream* st) const {
879  Monitor *cur = _owned_locks;
880  if (cur == NULL) {
881    st->print(" (no locks) ");
882  } else {
883    st->print_cr(" Locks owned:");
884    while(cur) {
885      cur->print_on(st);
886      cur = cur->next();
887    }
888  }
889}
890
891static int ref_use_count  = 0;
892
893bool Thread::owns_locks_but_compiled_lock() const {
894  for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
895    if (cur != Compile_lock) return true;
896  }
897  return false;
898}
899
900
901#endif
902
903#ifndef PRODUCT
904
905// The flag: potential_vm_operation notifies if this particular safepoint state could potential
906// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
907// no threads which allow_vm_block's are held
908void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
909    // Check if current thread is allowed to block at a safepoint
910    if (!(_allow_safepoint_count == 0))
911      fatal("Possible safepoint reached by thread that does not allow it");
912    if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
913      fatal("LEAF method calling lock?");
914    }
915
916#ifdef ASSERT
917    if (potential_vm_operation && is_Java_thread()
918        && !Universe::is_bootstrapping()) {
919      // Make sure we do not hold any locks that the VM thread also uses.
920      // This could potentially lead to deadlocks
921      for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
922        // Threads_lock is special, since the safepoint synchronization will not start before this is
923        // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
924        // since it is used to transfer control between JavaThreads and the VMThread
925        // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
926        if ( (cur->allow_vm_block() &&
927              cur != Threads_lock &&
928              cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
929              cur != VMOperationRequest_lock &&
930              cur != VMOperationQueue_lock) ||
931              cur->rank() == Mutex::special) {
932          warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
933        }
934      }
935    }
936
937    if (GCALotAtAllSafepoints) {
938      // We could enter a safepoint here and thus have a gc
939      InterfaceSupport::check_gc_alot();
940    }
941#endif
942}
943#endif
944
945bool Thread::is_in_stack(address adr) const {
946  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
947  address end = os::current_stack_pointer();
948  // Allow non Java threads to call this without stack_base
949  if (_stack_base == NULL) return true;
950  if (stack_base() >= adr && adr >= end) return true;
951
952  return false;
953}
954
955
956// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
957// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
958// used for compilation in the future. If that change is made, the need for these methods
959// should be revisited, and they should be removed if possible.
960
961bool Thread::is_lock_owned(address adr) const {
962  return on_local_stack(adr);
963}
964
965bool Thread::set_as_starting_thread() {
966 // NOTE: this must be called inside the main thread.
967  return os::create_main_thread((JavaThread*)this);
968}
969
970static void initialize_class(Symbol* class_name, TRAPS) {
971  Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
972  InstanceKlass::cast(klass)->initialize(CHECK);
973}
974
975
976// Creates the initial ThreadGroup
977static Handle create_initial_thread_group(TRAPS) {
978  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
979  instanceKlassHandle klass (THREAD, k);
980
981  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
982  {
983    JavaValue result(T_VOID);
984    JavaCalls::call_special(&result,
985                            system_instance,
986                            klass,
987                            vmSymbols::object_initializer_name(),
988                            vmSymbols::void_method_signature(),
989                            CHECK_NH);
990  }
991  Universe::set_system_thread_group(system_instance());
992
993  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
994  {
995    JavaValue result(T_VOID);
996    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
997    JavaCalls::call_special(&result,
998                            main_instance,
999                            klass,
1000                            vmSymbols::object_initializer_name(),
1001                            vmSymbols::threadgroup_string_void_signature(),
1002                            system_instance,
1003                            string,
1004                            CHECK_NH);
1005  }
1006  return main_instance;
1007}
1008
1009// Creates the initial Thread
1010static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
1011  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1012  instanceKlassHandle klass (THREAD, k);
1013  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1014
1015  java_lang_Thread::set_thread(thread_oop(), thread);
1016  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1017  thread->set_threadObj(thread_oop());
1018
1019  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1020
1021  JavaValue result(T_VOID);
1022  JavaCalls::call_special(&result, thread_oop,
1023                                   klass,
1024                                   vmSymbols::object_initializer_name(),
1025                                   vmSymbols::threadgroup_string_void_signature(),
1026                                   thread_group,
1027                                   string,
1028                                   CHECK_NULL);
1029  return thread_oop();
1030}
1031
1032static void call_initializeSystemClass(TRAPS) {
1033  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1034  instanceKlassHandle klass (THREAD, k);
1035
1036  JavaValue result(T_VOID);
1037  JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1038                                         vmSymbols::void_method_signature(), CHECK);
1039}
1040
1041char java_runtime_name[128] = "";
1042char java_runtime_version[128] = "";
1043
1044// extract the JRE name from sun.misc.Version.java_runtime_name
1045static const char* get_java_runtime_name(TRAPS) {
1046  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1047                                      Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1048  fieldDescriptor fd;
1049  bool found = k != NULL &&
1050               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1051                                                        vmSymbols::string_signature(), &fd);
1052  if (found) {
1053    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1054    if (name_oop == NULL)
1055      return NULL;
1056    const char* name = java_lang_String::as_utf8_string(name_oop,
1057                                                        java_runtime_name,
1058                                                        sizeof(java_runtime_name));
1059    return name;
1060  } else {
1061    return NULL;
1062  }
1063}
1064
1065// extract the JRE version from sun.misc.Version.java_runtime_version
1066static const char* get_java_runtime_version(TRAPS) {
1067  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1068                                      Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1069  fieldDescriptor fd;
1070  bool found = k != NULL &&
1071               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1072                                                        vmSymbols::string_signature(), &fd);
1073  if (found) {
1074    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1075    if (name_oop == NULL)
1076      return NULL;
1077    const char* name = java_lang_String::as_utf8_string(name_oop,
1078                                                        java_runtime_version,
1079                                                        sizeof(java_runtime_version));
1080    return name;
1081  } else {
1082    return NULL;
1083  }
1084}
1085
1086// General purpose hook into Java code, run once when the VM is initialized.
1087// The Java library method itself may be changed independently from the VM.
1088static void call_postVMInitHook(TRAPS) {
1089  Klass* k = SystemDictionary::PostVMInitHook_klass();
1090  instanceKlassHandle klass (THREAD, k);
1091  if (klass.not_null()) {
1092    JavaValue result(T_VOID);
1093    JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1094                                           vmSymbols::void_method_signature(),
1095                                           CHECK);
1096  }
1097}
1098
1099static void reset_vm_info_property(TRAPS) {
1100  // the vm info string
1101  ResourceMark rm(THREAD);
1102  const char *vm_info = VM_Version::vm_info_string();
1103
1104  // java.lang.System class
1105  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1106  instanceKlassHandle klass (THREAD, k);
1107
1108  // setProperty arguments
1109  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1110  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1111
1112  // return value
1113  JavaValue r(T_OBJECT);
1114
1115  // public static String setProperty(String key, String value);
1116  JavaCalls::call_static(&r,
1117                         klass,
1118                         vmSymbols::setProperty_name(),
1119                         vmSymbols::string_string_string_signature(),
1120                         key_str,
1121                         value_str,
1122                         CHECK);
1123}
1124
1125
1126void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1127  assert(thread_group.not_null(), "thread group should be specified");
1128  assert(threadObj() == NULL, "should only create Java thread object once");
1129
1130  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1131  instanceKlassHandle klass (THREAD, k);
1132  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1133
1134  java_lang_Thread::set_thread(thread_oop(), this);
1135  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1136  set_threadObj(thread_oop());
1137
1138  JavaValue result(T_VOID);
1139  if (thread_name != NULL) {
1140    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1141    // Thread gets assigned specified name and null target
1142    JavaCalls::call_special(&result,
1143                            thread_oop,
1144                            klass,
1145                            vmSymbols::object_initializer_name(),
1146                            vmSymbols::threadgroup_string_void_signature(),
1147                            thread_group, // Argument 1
1148                            name,         // Argument 2
1149                            THREAD);
1150  } else {
1151    // Thread gets assigned name "Thread-nnn" and null target
1152    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1153    JavaCalls::call_special(&result,
1154                            thread_oop,
1155                            klass,
1156                            vmSymbols::object_initializer_name(),
1157                            vmSymbols::threadgroup_runnable_void_signature(),
1158                            thread_group, // Argument 1
1159                            Handle(),     // Argument 2
1160                            THREAD);
1161  }
1162
1163
1164  if (daemon) {
1165      java_lang_Thread::set_daemon(thread_oop());
1166  }
1167
1168  if (HAS_PENDING_EXCEPTION) {
1169    return;
1170  }
1171
1172  KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1173  Handle threadObj(this, this->threadObj());
1174
1175  JavaCalls::call_special(&result,
1176                         thread_group,
1177                         group,
1178                         vmSymbols::add_method_name(),
1179                         vmSymbols::thread_void_signature(),
1180                         threadObj,          // Arg 1
1181                         THREAD);
1182
1183
1184}
1185
1186// NamedThread --  non-JavaThread subclasses with multiple
1187// uniquely named instances should derive from this.
1188NamedThread::NamedThread() : Thread() {
1189  _name = NULL;
1190  _processed_thread = NULL;
1191}
1192
1193NamedThread::~NamedThread() {
1194  if (_name != NULL) {
1195    FREE_C_HEAP_ARRAY(char, _name, mtThread);
1196    _name = NULL;
1197  }
1198}
1199
1200void NamedThread::set_name(const char* format, ...) {
1201  guarantee(_name == NULL, "Only get to set name once.");
1202  _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1203  guarantee(_name != NULL, "alloc failure");
1204  va_list ap;
1205  va_start(ap, format);
1206  jio_vsnprintf(_name, max_name_len, format, ap);
1207  va_end(ap);
1208}
1209
1210// ======= WatcherThread ========
1211
1212// The watcher thread exists to simulate timer interrupts.  It should
1213// be replaced by an abstraction over whatever native support for
1214// timer interrupts exists on the platform.
1215
1216WatcherThread* WatcherThread::_watcher_thread   = NULL;
1217bool WatcherThread::_startable = false;
1218volatile bool  WatcherThread::_should_terminate = false;
1219
1220WatcherThread::WatcherThread() : Thread() {
1221  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1222  if (os::create_thread(this, os::watcher_thread)) {
1223    _watcher_thread = this;
1224
1225    // Set the watcher thread to the highest OS priority which should not be
1226    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1227    // is created. The only normal thread using this priority is the reference
1228    // handler thread, which runs for very short intervals only.
1229    // If the VMThread's priority is not lower than the WatcherThread profiling
1230    // will be inaccurate.
1231    os::set_priority(this, MaxPriority);
1232    if (!DisableStartThread) {
1233      os::start_thread(this);
1234    }
1235  }
1236}
1237
1238int WatcherThread::sleep() const {
1239  MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1240
1241  // remaining will be zero if there are no tasks,
1242  // causing the WatcherThread to sleep until a task is
1243  // enrolled
1244  int remaining = PeriodicTask::time_to_wait();
1245  int time_slept = 0;
1246
1247  // we expect this to timeout - we only ever get unparked when
1248  // we should terminate or when a new task has been enrolled
1249  OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1250
1251  jlong time_before_loop = os::javaTimeNanos();
1252
1253  for (;;) {
1254    bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1255    jlong now = os::javaTimeNanos();
1256
1257    if (remaining == 0) {
1258        // if we didn't have any tasks we could have waited for a long time
1259        // consider the time_slept zero and reset time_before_loop
1260        time_slept = 0;
1261        time_before_loop = now;
1262    } else {
1263        // need to recalulate since we might have new tasks in _tasks
1264        time_slept = (int) ((now - time_before_loop) / 1000000);
1265    }
1266
1267    // Change to task list or spurious wakeup of some kind
1268    if (timedout || _should_terminate) {
1269        break;
1270    }
1271
1272    remaining = PeriodicTask::time_to_wait();
1273    if (remaining == 0) {
1274        // Last task was just disenrolled so loop around and wait until
1275        // another task gets enrolled
1276        continue;
1277    }
1278
1279    remaining -= time_slept;
1280    if (remaining <= 0)
1281      break;
1282  }
1283
1284  return time_slept;
1285}
1286
1287void WatcherThread::run() {
1288  assert(this == watcher_thread(), "just checking");
1289
1290  this->record_stack_base_and_size();
1291  this->initialize_thread_local_storage();
1292  this->set_active_handles(JNIHandleBlock::allocate_block());
1293  while(!_should_terminate) {
1294    assert(watcher_thread() == Thread::current(),  "thread consistency check");
1295    assert(watcher_thread() == this,  "thread consistency check");
1296
1297    // Calculate how long it'll be until the next PeriodicTask work
1298    // should be done, and sleep that amount of time.
1299    int time_waited = sleep();
1300
1301    if (is_error_reported()) {
1302      // A fatal error has happened, the error handler(VMError::report_and_die)
1303      // should abort JVM after creating an error log file. However in some
1304      // rare cases, the error handler itself might deadlock. Here we try to
1305      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1306      //
1307      // This code is in WatcherThread because WatcherThread wakes up
1308      // periodically so the fatal error handler doesn't need to do anything;
1309      // also because the WatcherThread is less likely to crash than other
1310      // threads.
1311
1312      for (;;) {
1313        if (!ShowMessageBoxOnError
1314         && (OnError == NULL || OnError[0] == '\0')
1315         && Arguments::abort_hook() == NULL) {
1316             os::sleep(this, 2 * 60 * 1000, false);
1317             fdStream err(defaultStream::output_fd());
1318             err.print_raw_cr("# [ timer expired, abort... ]");
1319             // skip atexit/vm_exit/vm_abort hooks
1320             os::die();
1321        }
1322
1323        // Wake up 5 seconds later, the fatal handler may reset OnError or
1324        // ShowMessageBoxOnError when it is ready to abort.
1325        os::sleep(this, 5 * 1000, false);
1326      }
1327    }
1328
1329    PeriodicTask::real_time_tick(time_waited);
1330  }
1331
1332  // Signal that it is terminated
1333  {
1334    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1335    _watcher_thread = NULL;
1336    Terminator_lock->notify();
1337  }
1338
1339  // Thread destructor usually does this..
1340  ThreadLocalStorage::set_thread(NULL);
1341}
1342
1343void WatcherThread::start() {
1344  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1345
1346  if (watcher_thread() == NULL && _startable) {
1347    _should_terminate = false;
1348    // Create the single instance of WatcherThread
1349    new WatcherThread();
1350  }
1351}
1352
1353void WatcherThread::make_startable() {
1354  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1355  _startable = true;
1356}
1357
1358void WatcherThread::stop() {
1359  {
1360    MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1361    _should_terminate = true;
1362    OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1363
1364    WatcherThread* watcher = watcher_thread();
1365    if (watcher != NULL)
1366      watcher->unpark();
1367  }
1368
1369  // it is ok to take late safepoints here, if needed
1370  MutexLocker mu(Terminator_lock);
1371
1372  while(watcher_thread() != NULL) {
1373    // This wait should make safepoint checks, wait without a timeout,
1374    // and wait as a suspend-equivalent condition.
1375    //
1376    // Note: If the FlatProfiler is running, then this thread is waiting
1377    // for the WatcherThread to terminate and the WatcherThread, via the
1378    // FlatProfiler task, is waiting for the external suspend request on
1379    // this thread to complete. wait_for_ext_suspend_completion() will
1380    // eventually timeout, but that takes time. Making this wait a
1381    // suspend-equivalent condition solves that timeout problem.
1382    //
1383    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1384                          Mutex::_as_suspend_equivalent_flag);
1385  }
1386}
1387
1388void WatcherThread::unpark() {
1389  MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1390  PeriodicTask_lock->notify();
1391}
1392
1393void WatcherThread::print_on(outputStream* st) const {
1394  st->print("\"%s\" ", name());
1395  Thread::print_on(st);
1396  st->cr();
1397}
1398
1399// ======= JavaThread ========
1400
1401// A JavaThread is a normal Java thread
1402
1403void JavaThread::initialize() {
1404  // Initialize fields
1405
1406  // Set the claimed par_id to -1 (ie not claiming any par_ids)
1407  set_claimed_par_id(-1);
1408
1409  set_saved_exception_pc(NULL);
1410  set_threadObj(NULL);
1411  _anchor.clear();
1412  set_entry_point(NULL);
1413  set_jni_functions(jni_functions());
1414  set_callee_target(NULL);
1415  set_vm_result(NULL);
1416  set_vm_result_2(NULL);
1417  set_vframe_array_head(NULL);
1418  set_vframe_array_last(NULL);
1419  set_deferred_locals(NULL);
1420  set_deopt_mark(NULL);
1421  set_deopt_nmethod(NULL);
1422  clear_must_deopt_id();
1423  set_monitor_chunks(NULL);
1424  set_next(NULL);
1425  set_thread_state(_thread_new);
1426#if INCLUDE_NMT
1427  set_recorder(NULL);
1428#endif
1429  _terminated = _not_terminated;
1430  _privileged_stack_top = NULL;
1431  _array_for_gc = NULL;
1432  _suspend_equivalent = false;
1433  _in_deopt_handler = 0;
1434  _doing_unsafe_access = false;
1435  _stack_guard_state = stack_guard_unused;
1436  _exception_oop = NULL;
1437  _exception_pc  = 0;
1438  _exception_handler_pc = 0;
1439  _is_method_handle_return = 0;
1440  _jvmti_thread_state= NULL;
1441  _should_post_on_exceptions_flag = JNI_FALSE;
1442  _jvmti_get_loaded_classes_closure = NULL;
1443  _interp_only_mode    = 0;
1444  _special_runtime_exit_condition = _no_async_condition;
1445  _pending_async_exception = NULL;
1446  _is_compiling = false;
1447  _thread_stat = NULL;
1448  _thread_stat = new ThreadStatistics();
1449  _blocked_on_compilation = false;
1450  _jni_active_critical = 0;
1451  _do_not_unlock_if_synchronized = false;
1452  _cached_monitor_info = NULL;
1453  _parker = Parker::Allocate(this) ;
1454
1455#ifndef PRODUCT
1456  _jmp_ring_index = 0;
1457  for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1458    record_jump(NULL, NULL, NULL, 0);
1459  }
1460#endif /* PRODUCT */
1461
1462  set_thread_profiler(NULL);
1463  if (FlatProfiler::is_active()) {
1464    // This is where we would decide to either give each thread it's own profiler
1465    // or use one global one from FlatProfiler,
1466    // or up to some count of the number of profiled threads, etc.
1467    ThreadProfiler* pp = new ThreadProfiler();
1468    pp->engage();
1469    set_thread_profiler(pp);
1470  }
1471
1472  // Setup safepoint state info for this thread
1473  ThreadSafepointState::create(this);
1474
1475  debug_only(_java_call_counter = 0);
1476
1477  // JVMTI PopFrame support
1478  _popframe_condition = popframe_inactive;
1479  _popframe_preserved_args = NULL;
1480  _popframe_preserved_args_size = 0;
1481
1482  pd_initialize();
1483}
1484
1485#ifndef SERIALGC
1486SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1487DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1488#endif // !SERIALGC
1489
1490JavaThread::JavaThread(bool is_attaching_via_jni) :
1491  Thread()
1492#ifndef SERIALGC
1493  , _satb_mark_queue(&_satb_mark_queue_set),
1494  _dirty_card_queue(&_dirty_card_queue_set)
1495#endif // !SERIALGC
1496{
1497  initialize();
1498  if (is_attaching_via_jni) {
1499    _jni_attach_state = _attaching_via_jni;
1500  } else {
1501    _jni_attach_state = _not_attaching_via_jni;
1502  }
1503  assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
1504  _safepoint_visible = false;
1505}
1506
1507bool JavaThread::reguard_stack(address cur_sp) {
1508  if (_stack_guard_state != stack_guard_yellow_disabled) {
1509    return true; // Stack already guarded or guard pages not needed.
1510  }
1511
1512  if (register_stack_overflow()) {
1513    // For those architectures which have separate register and
1514    // memory stacks, we must check the register stack to see if
1515    // it has overflowed.
1516    return false;
1517  }
1518
1519  // Java code never executes within the yellow zone: the latter is only
1520  // there to provoke an exception during stack banging.  If java code
1521  // is executing there, either StackShadowPages should be larger, or
1522  // some exception code in c1, c2 or the interpreter isn't unwinding
1523  // when it should.
1524  guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1525
1526  enable_stack_yellow_zone();
1527  return true;
1528}
1529
1530bool JavaThread::reguard_stack(void) {
1531  return reguard_stack(os::current_stack_pointer());
1532}
1533
1534
1535void JavaThread::block_if_vm_exited() {
1536  if (_terminated == _vm_exited) {
1537    // _vm_exited is set at safepoint, and Threads_lock is never released
1538    // we will block here forever
1539    Threads_lock->lock_without_safepoint_check();
1540    ShouldNotReachHere();
1541  }
1542}
1543
1544
1545// Remove this ifdef when C1 is ported to the compiler interface.
1546static void compiler_thread_entry(JavaThread* thread, TRAPS);
1547
1548JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1549  Thread()
1550#ifndef SERIALGC
1551  , _satb_mark_queue(&_satb_mark_queue_set),
1552  _dirty_card_queue(&_dirty_card_queue_set)
1553#endif // !SERIALGC
1554{
1555  if (TraceThreadEvents) {
1556    tty->print_cr("creating thread %p", this);
1557  }
1558  initialize();
1559  _jni_attach_state = _not_attaching_via_jni;
1560  set_entry_point(entry_point);
1561  // Create the native thread itself.
1562  // %note runtime_23
1563  os::ThreadType thr_type = os::java_thread;
1564  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1565                                                     os::java_thread;
1566  os::create_thread(this, thr_type, stack_sz);
1567  _safepoint_visible = false;
1568  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1569  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1570  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1571  // the exception consists of creating the exception object & initializing it, initialization
1572  // will leave the VM via a JavaCall and then all locks must be unlocked).
1573  //
1574  // The thread is still suspended when we reach here. Thread must be explicit started
1575  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1576  // by calling Threads:add. The reason why this is not done here, is because the thread
1577  // object must be fully initialized (take a look at JVM_Start)
1578}
1579
1580JavaThread::~JavaThread() {
1581  if (TraceThreadEvents) {
1582      tty->print_cr("terminate thread %p", this);
1583  }
1584
1585  // By now, this thread should already be invisible to safepoint,
1586  // and its per-thread recorder also collected.
1587  assert(!is_safepoint_visible(), "wrong state");
1588#if INCLUDE_NMT
1589  assert(get_recorder() == NULL, "Already collected");
1590#endif // INCLUDE_NMT
1591
1592  // JSR166 -- return the parker to the free list
1593  Parker::Release(_parker);
1594  _parker = NULL ;
1595
1596  // Free any remaining  previous UnrollBlock
1597  vframeArray* old_array = vframe_array_last();
1598
1599  if (old_array != NULL) {
1600    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1601    old_array->set_unroll_block(NULL);
1602    delete old_info;
1603    delete old_array;
1604  }
1605
1606  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1607  if (deferred != NULL) {
1608    // This can only happen if thread is destroyed before deoptimization occurs.
1609    assert(deferred->length() != 0, "empty array!");
1610    do {
1611      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1612      deferred->remove_at(0);
1613      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1614      delete dlv;
1615    } while (deferred->length() != 0);
1616    delete deferred;
1617  }
1618
1619  // All Java related clean up happens in exit
1620  ThreadSafepointState::destroy(this);
1621  if (_thread_profiler != NULL) delete _thread_profiler;
1622  if (_thread_stat != NULL) delete _thread_stat;
1623}
1624
1625
1626// The first routine called by a new Java thread
1627void JavaThread::run() {
1628  // initialize thread-local alloc buffer related fields
1629  this->initialize_tlab();
1630
1631  // used to test validitity of stack trace backs
1632  this->record_base_of_stack_pointer();
1633
1634  // Record real stack base and size.
1635  this->record_stack_base_and_size();
1636
1637  // Initialize thread local storage; set before calling MutexLocker
1638  this->initialize_thread_local_storage();
1639
1640  this->create_stack_guard_pages();
1641
1642  this->cache_global_variables();
1643
1644  // Thread is now sufficient initialized to be handled by the safepoint code as being
1645  // in the VM. Change thread state from _thread_new to _thread_in_vm
1646  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1647
1648  assert(JavaThread::current() == this, "sanity check");
1649  assert(!Thread::current()->owns_locks(), "sanity check");
1650
1651  DTRACE_THREAD_PROBE(start, this);
1652
1653  // This operation might block. We call that after all safepoint checks for a new thread has
1654  // been completed.
1655  this->set_active_handles(JNIHandleBlock::allocate_block());
1656
1657  if (JvmtiExport::should_post_thread_life()) {
1658    JvmtiExport::post_thread_start(this);
1659  }
1660
1661  EVENT_BEGIN(TraceEventThreadStart, event);
1662  EVENT_COMMIT(event,
1663     EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
1664
1665  // We call another function to do the rest so we are sure that the stack addresses used
1666  // from there will be lower than the stack base just computed
1667  thread_main_inner();
1668
1669  // Note, thread is no longer valid at this point!
1670}
1671
1672
1673void JavaThread::thread_main_inner() {
1674  assert(JavaThread::current() == this, "sanity check");
1675  assert(this->threadObj() != NULL, "just checking");
1676
1677  // Execute thread entry point unless this thread has a pending exception
1678  // or has been stopped before starting.
1679  // Note: Due to JVM_StopThread we can have pending exceptions already!
1680  if (!this->has_pending_exception() &&
1681      !java_lang_Thread::is_stillborn(this->threadObj())) {
1682    {
1683      ResourceMark rm(this);
1684      this->set_native_thread_name(this->get_thread_name());
1685    }
1686    HandleMark hm(this);
1687    this->entry_point()(this, this);
1688  }
1689
1690  DTRACE_THREAD_PROBE(stop, this);
1691
1692  this->exit(false);
1693  delete this;
1694}
1695
1696
1697static void ensure_join(JavaThread* thread) {
1698  // We do not need to grap the Threads_lock, since we are operating on ourself.
1699  Handle threadObj(thread, thread->threadObj());
1700  assert(threadObj.not_null(), "java thread object must exist");
1701  ObjectLocker lock(threadObj, thread);
1702  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1703  thread->clear_pending_exception();
1704  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1705  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1706  // Clear the native thread instance - this makes isAlive return false and allows the join()
1707  // to complete once we've done the notify_all below
1708  java_lang_Thread::set_thread(threadObj(), NULL);
1709  lock.notify_all(thread);
1710  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1711  thread->clear_pending_exception();
1712}
1713
1714
1715// For any new cleanup additions, please check to see if they need to be applied to
1716// cleanup_failed_attach_current_thread as well.
1717void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1718  assert(this == JavaThread::current(),  "thread consistency check");
1719  if (!InitializeJavaLangSystem) return;
1720
1721  HandleMark hm(this);
1722  Handle uncaught_exception(this, this->pending_exception());
1723  this->clear_pending_exception();
1724  Handle threadObj(this, this->threadObj());
1725  assert(threadObj.not_null(), "Java thread object should be created");
1726
1727  if (get_thread_profiler() != NULL) {
1728    get_thread_profiler()->disengage();
1729    ResourceMark rm;
1730    get_thread_profiler()->print(get_thread_name());
1731  }
1732
1733
1734  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1735  {
1736    EXCEPTION_MARK;
1737
1738    CLEAR_PENDING_EXCEPTION;
1739  }
1740  // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1741  // has to be fixed by a runtime query method
1742  if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1743    // JSR-166: change call from from ThreadGroup.uncaughtException to
1744    // java.lang.Thread.dispatchUncaughtException
1745    if (uncaught_exception.not_null()) {
1746      Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1747      {
1748        EXCEPTION_MARK;
1749        // Check if the method Thread.dispatchUncaughtException() exists. If so
1750        // call it.  Otherwise we have an older library without the JSR-166 changes,
1751        // so call ThreadGroup.uncaughtException()
1752        KlassHandle recvrKlass(THREAD, threadObj->klass());
1753        CallInfo callinfo;
1754        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1755        LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1756                                           vmSymbols::dispatchUncaughtException_name(),
1757                                           vmSymbols::throwable_void_signature(),
1758                                           KlassHandle(), false, false, THREAD);
1759        CLEAR_PENDING_EXCEPTION;
1760        methodHandle method = callinfo.selected_method();
1761        if (method.not_null()) {
1762          JavaValue result(T_VOID);
1763          JavaCalls::call_virtual(&result,
1764                                  threadObj, thread_klass,
1765                                  vmSymbols::dispatchUncaughtException_name(),
1766                                  vmSymbols::throwable_void_signature(),
1767                                  uncaught_exception,
1768                                  THREAD);
1769        } else {
1770          KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1771          JavaValue result(T_VOID);
1772          JavaCalls::call_virtual(&result,
1773                                  group, thread_group,
1774                                  vmSymbols::uncaughtException_name(),
1775                                  vmSymbols::thread_throwable_void_signature(),
1776                                  threadObj,           // Arg 1
1777                                  uncaught_exception,  // Arg 2
1778                                  THREAD);
1779        }
1780        if (HAS_PENDING_EXCEPTION) {
1781          ResourceMark rm(this);
1782          jio_fprintf(defaultStream::error_stream(),
1783                "\nException: %s thrown from the UncaughtExceptionHandler"
1784                " in thread \"%s\"\n",
1785                pending_exception()->klass()->external_name(),
1786                get_thread_name());
1787          CLEAR_PENDING_EXCEPTION;
1788        }
1789      }
1790    }
1791
1792    // Called before the java thread exit since we want to read info
1793    // from java_lang_Thread object
1794    EVENT_BEGIN(TraceEventThreadEnd, event);
1795    EVENT_COMMIT(event,
1796        EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
1797
1798    // Call after last event on thread
1799    EVENT_THREAD_EXIT(this);
1800
1801    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1802    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1803    // is deprecated anyhow.
1804    { int count = 3;
1805      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1806        EXCEPTION_MARK;
1807        JavaValue result(T_VOID);
1808        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1809        JavaCalls::call_virtual(&result,
1810                              threadObj, thread_klass,
1811                              vmSymbols::exit_method_name(),
1812                              vmSymbols::void_method_signature(),
1813                              THREAD);
1814        CLEAR_PENDING_EXCEPTION;
1815      }
1816    }
1817
1818    // notify JVMTI
1819    if (JvmtiExport::should_post_thread_life()) {
1820      JvmtiExport::post_thread_end(this);
1821    }
1822
1823    // We have notified the agents that we are exiting, before we go on,
1824    // we must check for a pending external suspend request and honor it
1825    // in order to not surprise the thread that made the suspend request.
1826    while (true) {
1827      {
1828        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1829        if (!is_external_suspend()) {
1830          set_terminated(_thread_exiting);
1831          ThreadService::current_thread_exiting(this);
1832          break;
1833        }
1834        // Implied else:
1835        // Things get a little tricky here. We have a pending external
1836        // suspend request, but we are holding the SR_lock so we
1837        // can't just self-suspend. So we temporarily drop the lock
1838        // and then self-suspend.
1839      }
1840
1841      ThreadBlockInVM tbivm(this);
1842      java_suspend_self();
1843
1844      // We're done with this suspend request, but we have to loop around
1845      // and check again. Eventually we will get SR_lock without a pending
1846      // external suspend request and will be able to mark ourselves as
1847      // exiting.
1848    }
1849    // no more external suspends are allowed at this point
1850  } else {
1851    // before_exit() has already posted JVMTI THREAD_END events
1852  }
1853
1854  // Notify waiters on thread object. This has to be done after exit() is called
1855  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1856  // group should have the destroyed bit set before waiters are notified).
1857  ensure_join(this);
1858  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1859
1860  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1861  // held by this thread must be released.  A detach operation must only
1862  // get here if there are no Java frames on the stack.  Therefore, any
1863  // owned monitors at this point MUST be JNI-acquired monitors which are
1864  // pre-inflated and in the monitor cache.
1865  //
1866  // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1867  if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1868    assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1869    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1870    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1871  }
1872
1873  // These things needs to be done while we are still a Java Thread. Make sure that thread
1874  // is in a consistent state, in case GC happens
1875  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1876
1877  if (active_handles() != NULL) {
1878    JNIHandleBlock* block = active_handles();
1879    set_active_handles(NULL);
1880    JNIHandleBlock::release_block(block);
1881  }
1882
1883  if (free_handle_block() != NULL) {
1884    JNIHandleBlock* block = free_handle_block();
1885    set_free_handle_block(NULL);
1886    JNIHandleBlock::release_block(block);
1887  }
1888
1889  // These have to be removed while this is still a valid thread.
1890  remove_stack_guard_pages();
1891
1892  if (UseTLAB) {
1893    tlab().make_parsable(true);  // retire TLAB
1894  }
1895
1896  if (JvmtiEnv::environments_might_exist()) {
1897    JvmtiExport::cleanup_thread(this);
1898  }
1899
1900#ifndef SERIALGC
1901  // We must flush G1-related buffers before removing a thread from
1902  // the list of active threads.
1903  if (UseG1GC) {
1904    flush_barrier_queues();
1905  }
1906#endif
1907
1908  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1909  Threads::remove(this);
1910}
1911
1912#ifndef SERIALGC
1913// Flush G1-related queues.
1914void JavaThread::flush_barrier_queues() {
1915  satb_mark_queue().flush();
1916  dirty_card_queue().flush();
1917}
1918
1919void JavaThread::initialize_queues() {
1920  assert(!SafepointSynchronize::is_at_safepoint(),
1921         "we should not be at a safepoint");
1922
1923  ObjPtrQueue& satb_queue = satb_mark_queue();
1924  SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1925  // The SATB queue should have been constructed with its active
1926  // field set to false.
1927  assert(!satb_queue.is_active(), "SATB queue should not be active");
1928  assert(satb_queue.is_empty(), "SATB queue should be empty");
1929  // If we are creating the thread during a marking cycle, we should
1930  // set the active field of the SATB queue to true.
1931  if (satb_queue_set.is_active()) {
1932    satb_queue.set_active(true);
1933  }
1934
1935  DirtyCardQueue& dirty_queue = dirty_card_queue();
1936  // The dirty card queue should have been constructed with its
1937  // active field set to true.
1938  assert(dirty_queue.is_active(), "dirty card queue should be active");
1939}
1940#endif // !SERIALGC
1941
1942void JavaThread::cleanup_failed_attach_current_thread() {
1943  if (get_thread_profiler() != NULL) {
1944    get_thread_profiler()->disengage();
1945    ResourceMark rm;
1946    get_thread_profiler()->print(get_thread_name());
1947  }
1948
1949  if (active_handles() != NULL) {
1950    JNIHandleBlock* block = active_handles();
1951    set_active_handles(NULL);
1952    JNIHandleBlock::release_block(block);
1953  }
1954
1955  if (free_handle_block() != NULL) {
1956    JNIHandleBlock* block = free_handle_block();
1957    set_free_handle_block(NULL);
1958    JNIHandleBlock::release_block(block);
1959  }
1960
1961  // These have to be removed while this is still a valid thread.
1962  remove_stack_guard_pages();
1963
1964  if (UseTLAB) {
1965    tlab().make_parsable(true);  // retire TLAB, if any
1966  }
1967
1968#ifndef SERIALGC
1969  if (UseG1GC) {
1970    flush_barrier_queues();
1971  }
1972#endif
1973
1974  Threads::remove(this);
1975  delete this;
1976}
1977
1978
1979
1980
1981JavaThread* JavaThread::active() {
1982  Thread* thread = ThreadLocalStorage::thread();
1983  assert(thread != NULL, "just checking");
1984  if (thread->is_Java_thread()) {
1985    return (JavaThread*) thread;
1986  } else {
1987    assert(thread->is_VM_thread(), "this must be a vm thread");
1988    VM_Operation* op = ((VMThread*) thread)->vm_operation();
1989    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1990    assert(ret->is_Java_thread(), "must be a Java thread");
1991    return ret;
1992  }
1993}
1994
1995bool JavaThread::is_lock_owned(address adr) const {
1996  if (Thread::is_lock_owned(adr)) return true;
1997
1998  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1999    if (chunk->contains(adr)) return true;
2000  }
2001
2002  return false;
2003}
2004
2005
2006void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2007  chunk->set_next(monitor_chunks());
2008  set_monitor_chunks(chunk);
2009}
2010
2011void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2012  guarantee(monitor_chunks() != NULL, "must be non empty");
2013  if (monitor_chunks() == chunk) {
2014    set_monitor_chunks(chunk->next());
2015  } else {
2016    MonitorChunk* prev = monitor_chunks();
2017    while (prev->next() != chunk) prev = prev->next();
2018    prev->set_next(chunk->next());
2019  }
2020}
2021
2022// JVM support.
2023
2024// Note: this function shouldn't block if it's called in
2025// _thread_in_native_trans state (such as from
2026// check_special_condition_for_native_trans()).
2027void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2028
2029  if (has_last_Java_frame() && has_async_condition()) {
2030    // If we are at a polling page safepoint (not a poll return)
2031    // then we must defer async exception because live registers
2032    // will be clobbered by the exception path. Poll return is
2033    // ok because the call we a returning from already collides
2034    // with exception handling registers and so there is no issue.
2035    // (The exception handling path kills call result registers but
2036    //  this is ok since the exception kills the result anyway).
2037
2038    if (is_at_poll_safepoint()) {
2039      // if the code we are returning to has deoptimized we must defer
2040      // the exception otherwise live registers get clobbered on the
2041      // exception path before deoptimization is able to retrieve them.
2042      //
2043      RegisterMap map(this, false);
2044      frame caller_fr = last_frame().sender(&map);
2045      assert(caller_fr.is_compiled_frame(), "what?");
2046      if (caller_fr.is_deoptimized_frame()) {
2047        if (TraceExceptions) {
2048          ResourceMark rm;
2049          tty->print_cr("deferred async exception at compiled safepoint");
2050        }
2051        return;
2052      }
2053    }
2054  }
2055
2056  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2057  if (condition == _no_async_condition) {
2058    // Conditions have changed since has_special_runtime_exit_condition()
2059    // was called:
2060    // - if we were here only because of an external suspend request,
2061    //   then that was taken care of above (or cancelled) so we are done
2062    // - if we were here because of another async request, then it has
2063    //   been cleared between the has_special_runtime_exit_condition()
2064    //   and now so again we are done
2065    return;
2066  }
2067
2068  // Check for pending async. exception
2069  if (_pending_async_exception != NULL) {
2070    // Only overwrite an already pending exception, if it is not a threadDeath.
2071    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2072
2073      // We cannot call Exceptions::_throw(...) here because we cannot block
2074      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2075
2076      if (TraceExceptions) {
2077        ResourceMark rm;
2078        tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2079        if (has_last_Java_frame() ) {
2080          frame f = last_frame();
2081          tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2082        }
2083        tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2084      }
2085      _pending_async_exception = NULL;
2086      clear_has_async_exception();
2087    }
2088  }
2089
2090  if (check_unsafe_error &&
2091      condition == _async_unsafe_access_error && !has_pending_exception()) {
2092    condition = _no_async_condition;  // done
2093    switch (thread_state()) {
2094    case _thread_in_vm:
2095      {
2096        JavaThread* THREAD = this;
2097        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2098      }
2099    case _thread_in_native:
2100      {
2101        ThreadInVMfromNative tiv(this);
2102        JavaThread* THREAD = this;
2103        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2104      }
2105    case _thread_in_Java:
2106      {
2107        ThreadInVMfromJava tiv(this);
2108        JavaThread* THREAD = this;
2109        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2110      }
2111    default:
2112      ShouldNotReachHere();
2113    }
2114  }
2115
2116  assert(condition == _no_async_condition || has_pending_exception() ||
2117         (!check_unsafe_error && condition == _async_unsafe_access_error),
2118         "must have handled the async condition, if no exception");
2119}
2120
2121void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2122  //
2123  // Check for pending external suspend. Internal suspend requests do
2124  // not use handle_special_runtime_exit_condition().
2125  // If JNIEnv proxies are allowed, don't self-suspend if the target
2126  // thread is not the current thread. In older versions of jdbx, jdbx
2127  // threads could call into the VM with another thread's JNIEnv so we
2128  // can be here operating on behalf of a suspended thread (4432884).
2129  bool do_self_suspend = is_external_suspend_with_lock();
2130  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2131    //
2132    // Because thread is external suspended the safepoint code will count
2133    // thread as at a safepoint. This can be odd because we can be here
2134    // as _thread_in_Java which would normally transition to _thread_blocked
2135    // at a safepoint. We would like to mark the thread as _thread_blocked
2136    // before calling java_suspend_self like all other callers of it but
2137    // we must then observe proper safepoint protocol. (We can't leave
2138    // _thread_blocked with a safepoint in progress). However we can be
2139    // here as _thread_in_native_trans so we can't use a normal transition
2140    // constructor/destructor pair because they assert on that type of
2141    // transition. We could do something like:
2142    //
2143    // JavaThreadState state = thread_state();
2144    // set_thread_state(_thread_in_vm);
2145    // {
2146    //   ThreadBlockInVM tbivm(this);
2147    //   java_suspend_self()
2148    // }
2149    // set_thread_state(_thread_in_vm_trans);
2150    // if (safepoint) block;
2151    // set_thread_state(state);
2152    //
2153    // but that is pretty messy. Instead we just go with the way the
2154    // code has worked before and note that this is the only path to
2155    // java_suspend_self that doesn't put the thread in _thread_blocked
2156    // mode.
2157
2158    frame_anchor()->make_walkable(this);
2159    java_suspend_self();
2160
2161    // We might be here for reasons in addition to the self-suspend request
2162    // so check for other async requests.
2163  }
2164
2165  if (check_asyncs) {
2166    check_and_handle_async_exceptions();
2167  }
2168}
2169
2170void JavaThread::send_thread_stop(oop java_throwable)  {
2171  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2172  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2173  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2174
2175  // Do not throw asynchronous exceptions against the compiler thread
2176  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2177  if (is_Compiler_thread()) return;
2178
2179  {
2180    // Actually throw the Throwable against the target Thread - however
2181    // only if there is no thread death exception installed already.
2182    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2183      // If the topmost frame is a runtime stub, then we are calling into
2184      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2185      // must deoptimize the caller before continuing, as the compiled  exception handler table
2186      // may not be valid
2187      if (has_last_Java_frame()) {
2188        frame f = last_frame();
2189        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2190          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2191          RegisterMap reg_map(this, UseBiasedLocking);
2192          frame compiled_frame = f.sender(&reg_map);
2193          if (compiled_frame.can_be_deoptimized()) {
2194            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2195          }
2196        }
2197      }
2198
2199      // Set async. pending exception in thread.
2200      set_pending_async_exception(java_throwable);
2201
2202      if (TraceExceptions) {
2203       ResourceMark rm;
2204       tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2205      }
2206      // for AbortVMOnException flag
2207      NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2208    }
2209  }
2210
2211
2212  // Interrupt thread so it will wake up from a potential wait()
2213  Thread::interrupt(this);
2214}
2215
2216// External suspension mechanism.
2217//
2218// Tell the VM to suspend a thread when ever it knows that it does not hold on
2219// to any VM_locks and it is at a transition
2220// Self-suspension will happen on the transition out of the vm.
2221// Catch "this" coming in from JNIEnv pointers when the thread has been freed
2222//
2223// Guarantees on return:
2224//   + Target thread will not execute any new bytecode (that's why we need to
2225//     force a safepoint)
2226//   + Target thread will not enter any new monitors
2227//
2228void JavaThread::java_suspend() {
2229  { MutexLocker mu(Threads_lock);
2230    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2231       return;
2232    }
2233  }
2234
2235  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2236    if (!is_external_suspend()) {
2237      // a racing resume has cancelled us; bail out now
2238      return;
2239    }
2240
2241    // suspend is done
2242    uint32_t debug_bits = 0;
2243    // Warning: is_ext_suspend_completed() may temporarily drop the
2244    // SR_lock to allow the thread to reach a stable thread state if
2245    // it is currently in a transient thread state.
2246    if (is_ext_suspend_completed(false /* !called_by_wait */,
2247                                 SuspendRetryDelay, &debug_bits) ) {
2248      return;
2249    }
2250  }
2251
2252  VM_ForceSafepoint vm_suspend;
2253  VMThread::execute(&vm_suspend);
2254}
2255
2256// Part II of external suspension.
2257// A JavaThread self suspends when it detects a pending external suspend
2258// request. This is usually on transitions. It is also done in places
2259// where continuing to the next transition would surprise the caller,
2260// e.g., monitor entry.
2261//
2262// Returns the number of times that the thread self-suspended.
2263//
2264// Note: DO NOT call java_suspend_self() when you just want to block current
2265//       thread. java_suspend_self() is the second stage of cooperative
2266//       suspension for external suspend requests and should only be used
2267//       to complete an external suspend request.
2268//
2269int JavaThread::java_suspend_self() {
2270  int ret = 0;
2271
2272  // we are in the process of exiting so don't suspend
2273  if (is_exiting()) {
2274     clear_external_suspend();
2275     return ret;
2276  }
2277
2278  assert(_anchor.walkable() ||
2279    (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2280    "must have walkable stack");
2281
2282  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2283
2284  assert(!this->is_ext_suspended(),
2285    "a thread trying to self-suspend should not already be suspended");
2286
2287  if (this->is_suspend_equivalent()) {
2288    // If we are self-suspending as a result of the lifting of a
2289    // suspend equivalent condition, then the suspend_equivalent
2290    // flag is not cleared until we set the ext_suspended flag so
2291    // that wait_for_ext_suspend_completion() returns consistent
2292    // results.
2293    this->clear_suspend_equivalent();
2294  }
2295
2296  // A racing resume may have cancelled us before we grabbed SR_lock
2297  // above. Or another external suspend request could be waiting for us
2298  // by the time we return from SR_lock()->wait(). The thread
2299  // that requested the suspension may already be trying to walk our
2300  // stack and if we return now, we can change the stack out from under
2301  // it. This would be a "bad thing (TM)" and cause the stack walker
2302  // to crash. We stay self-suspended until there are no more pending
2303  // external suspend requests.
2304  while (is_external_suspend()) {
2305    ret++;
2306    this->set_ext_suspended();
2307
2308    // _ext_suspended flag is cleared by java_resume()
2309    while (is_ext_suspended()) {
2310      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2311    }
2312  }
2313
2314  return ret;
2315}
2316
2317#ifdef ASSERT
2318// verify the JavaThread has not yet been published in the Threads::list, and
2319// hence doesn't need protection from concurrent access at this stage
2320void JavaThread::verify_not_published() {
2321  if (!Threads_lock->owned_by_self()) {
2322   MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2323   assert( !Threads::includes(this),
2324           "java thread shouldn't have been published yet!");
2325  }
2326  else {
2327   assert( !Threads::includes(this),
2328           "java thread shouldn't have been published yet!");
2329  }
2330}
2331#endif
2332
2333// Slow path when the native==>VM/Java barriers detect a safepoint is in
2334// progress or when _suspend_flags is non-zero.
2335// Current thread needs to self-suspend if there is a suspend request and/or
2336// block if a safepoint is in progress.
2337// Async exception ISN'T checked.
2338// Note only the ThreadInVMfromNative transition can call this function
2339// directly and when thread state is _thread_in_native_trans
2340void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2341  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2342
2343  JavaThread *curJT = JavaThread::current();
2344  bool do_self_suspend = thread->is_external_suspend();
2345
2346  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2347
2348  // If JNIEnv proxies are allowed, don't self-suspend if the target
2349  // thread is not the current thread. In older versions of jdbx, jdbx
2350  // threads could call into the VM with another thread's JNIEnv so we
2351  // can be here operating on behalf of a suspended thread (4432884).
2352  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2353    JavaThreadState state = thread->thread_state();
2354
2355    // We mark this thread_blocked state as a suspend-equivalent so
2356    // that a caller to is_ext_suspend_completed() won't be confused.
2357    // The suspend-equivalent state is cleared by java_suspend_self().
2358    thread->set_suspend_equivalent();
2359
2360    // If the safepoint code sees the _thread_in_native_trans state, it will
2361    // wait until the thread changes to other thread state. There is no
2362    // guarantee on how soon we can obtain the SR_lock and complete the
2363    // self-suspend request. It would be a bad idea to let safepoint wait for
2364    // too long. Temporarily change the state to _thread_blocked to
2365    // let the VM thread know that this thread is ready for GC. The problem
2366    // of changing thread state is that safepoint could happen just after
2367    // java_suspend_self() returns after being resumed, and VM thread will
2368    // see the _thread_blocked state. We must check for safepoint
2369    // after restoring the state and make sure we won't leave while a safepoint
2370    // is in progress.
2371    thread->set_thread_state(_thread_blocked);
2372    thread->java_suspend_self();
2373    thread->set_thread_state(state);
2374    // Make sure new state is seen by VM thread
2375    if (os::is_MP()) {
2376      if (UseMembar) {
2377        // Force a fence between the write above and read below
2378        OrderAccess::fence();
2379      } else {
2380        // Must use this rather than serialization page in particular on Windows
2381        InterfaceSupport::serialize_memory(thread);
2382      }
2383    }
2384  }
2385
2386  if (SafepointSynchronize::do_call_back()) {
2387    // If we are safepointing, then block the caller which may not be
2388    // the same as the target thread (see above).
2389    SafepointSynchronize::block(curJT);
2390  }
2391
2392  if (thread->is_deopt_suspend()) {
2393    thread->clear_deopt_suspend();
2394    RegisterMap map(thread, false);
2395    frame f = thread->last_frame();
2396    while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2397      f = f.sender(&map);
2398    }
2399    if (f.id() == thread->must_deopt_id()) {
2400      thread->clear_must_deopt_id();
2401      f.deoptimize(thread);
2402    } else {
2403      fatal("missed deoptimization!");
2404    }
2405  }
2406}
2407
2408// Slow path when the native==>VM/Java barriers detect a safepoint is in
2409// progress or when _suspend_flags is non-zero.
2410// Current thread needs to self-suspend if there is a suspend request and/or
2411// block if a safepoint is in progress.
2412// Also check for pending async exception (not including unsafe access error).
2413// Note only the native==>VM/Java barriers can call this function and when
2414// thread state is _thread_in_native_trans.
2415void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2416  check_safepoint_and_suspend_for_native_trans(thread);
2417
2418  if (thread->has_async_exception()) {
2419    // We are in _thread_in_native_trans state, don't handle unsafe
2420    // access error since that may block.
2421    thread->check_and_handle_async_exceptions(false);
2422  }
2423}
2424
2425// This is a variant of the normal
2426// check_special_condition_for_native_trans with slightly different
2427// semantics for use by critical native wrappers.  It does all the
2428// normal checks but also performs the transition back into
2429// thread_in_Java state.  This is required so that critical natives
2430// can potentially block and perform a GC if they are the last thread
2431// exiting the GC_locker.
2432void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2433  check_special_condition_for_native_trans(thread);
2434
2435  // Finish the transition
2436  thread->set_thread_state(_thread_in_Java);
2437
2438  if (thread->do_critical_native_unlock()) {
2439    ThreadInVMfromJavaNoAsyncException tiv(thread);
2440    GC_locker::unlock_critical(thread);
2441    thread->clear_critical_native_unlock();
2442  }
2443}
2444
2445// We need to guarantee the Threads_lock here, since resumes are not
2446// allowed during safepoint synchronization
2447// Can only resume from an external suspension
2448void JavaThread::java_resume() {
2449  assert_locked_or_safepoint(Threads_lock);
2450
2451  // Sanity check: thread is gone, has started exiting or the thread
2452  // was not externally suspended.
2453  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2454    return;
2455  }
2456
2457  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2458
2459  clear_external_suspend();
2460
2461  if (is_ext_suspended()) {
2462    clear_ext_suspended();
2463    SR_lock()->notify_all();
2464  }
2465}
2466
2467void JavaThread::create_stack_guard_pages() {
2468  if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2469  address low_addr = stack_base() - stack_size();
2470  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2471
2472  int allocate = os::allocate_stack_guard_pages();
2473  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2474
2475  if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2476    warning("Attempt to allocate stack guard pages failed.");
2477    return;
2478  }
2479
2480  if (os::guard_memory((char *) low_addr, len)) {
2481    _stack_guard_state = stack_guard_enabled;
2482  } else {
2483    warning("Attempt to protect stack guard pages failed.");
2484    if (os::uncommit_memory((char *) low_addr, len)) {
2485      warning("Attempt to deallocate stack guard pages failed.");
2486    }
2487  }
2488}
2489
2490void JavaThread::remove_stack_guard_pages() {
2491  assert(Thread::current() == this, "from different thread");
2492  if (_stack_guard_state == stack_guard_unused) return;
2493  address low_addr = stack_base() - stack_size();
2494  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2495
2496  if (os::allocate_stack_guard_pages()) {
2497    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2498      _stack_guard_state = stack_guard_unused;
2499    } else {
2500      warning("Attempt to deallocate stack guard pages failed.");
2501    }
2502  } else {
2503    if (_stack_guard_state == stack_guard_unused) return;
2504    if (os::unguard_memory((char *) low_addr, len)) {
2505      _stack_guard_state = stack_guard_unused;
2506    } else {
2507        warning("Attempt to unprotect stack guard pages failed.");
2508    }
2509  }
2510}
2511
2512void JavaThread::enable_stack_yellow_zone() {
2513  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2514  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2515
2516  // The base notation is from the stacks point of view, growing downward.
2517  // We need to adjust it to work correctly with guard_memory()
2518  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2519
2520  guarantee(base < stack_base(),"Error calculating stack yellow zone");
2521  guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2522
2523  if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2524    _stack_guard_state = stack_guard_enabled;
2525  } else {
2526    warning("Attempt to guard stack yellow zone failed.");
2527  }
2528  enable_register_stack_guard();
2529}
2530
2531void JavaThread::disable_stack_yellow_zone() {
2532  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2533  assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2534
2535  // Simply return if called for a thread that does not use guard pages.
2536  if (_stack_guard_state == stack_guard_unused) return;
2537
2538  // The base notation is from the stacks point of view, growing downward.
2539  // We need to adjust it to work correctly with guard_memory()
2540  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2541
2542  if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2543    _stack_guard_state = stack_guard_yellow_disabled;
2544  } else {
2545    warning("Attempt to unguard stack yellow zone failed.");
2546  }
2547  disable_register_stack_guard();
2548}
2549
2550void JavaThread::enable_stack_red_zone() {
2551  // The base notation is from the stacks point of view, growing downward.
2552  // We need to adjust it to work correctly with guard_memory()
2553  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2554  address base = stack_red_zone_base() - stack_red_zone_size();
2555
2556  guarantee(base < stack_base(),"Error calculating stack red zone");
2557  guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2558
2559  if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2560    warning("Attempt to guard stack red zone failed.");
2561  }
2562}
2563
2564void JavaThread::disable_stack_red_zone() {
2565  // The base notation is from the stacks point of view, growing downward.
2566  // We need to adjust it to work correctly with guard_memory()
2567  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2568  address base = stack_red_zone_base() - stack_red_zone_size();
2569  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2570    warning("Attempt to unguard stack red zone failed.");
2571  }
2572}
2573
2574void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2575  // ignore is there is no stack
2576  if (!has_last_Java_frame()) return;
2577  // traverse the stack frames. Starts from top frame.
2578  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2579    frame* fr = fst.current();
2580    f(fr, fst.register_map());
2581  }
2582}
2583
2584
2585#ifndef PRODUCT
2586// Deoptimization
2587// Function for testing deoptimization
2588void JavaThread::deoptimize() {
2589  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2590  StackFrameStream fst(this, UseBiasedLocking);
2591  bool deopt = false;           // Dump stack only if a deopt actually happens.
2592  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2593  // Iterate over all frames in the thread and deoptimize
2594  for(; !fst.is_done(); fst.next()) {
2595    if(fst.current()->can_be_deoptimized()) {
2596
2597      if (only_at) {
2598        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2599        // consists of comma or carriage return separated numbers so
2600        // search for the current bci in that string.
2601        address pc = fst.current()->pc();
2602        nmethod* nm =  (nmethod*) fst.current()->cb();
2603        ScopeDesc* sd = nm->scope_desc_at( pc);
2604        char buffer[8];
2605        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2606        size_t len = strlen(buffer);
2607        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2608        while (found != NULL) {
2609          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2610              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2611            // Check that the bci found is bracketed by terminators.
2612            break;
2613          }
2614          found = strstr(found + 1, buffer);
2615        }
2616        if (!found) {
2617          continue;
2618        }
2619      }
2620
2621      if (DebugDeoptimization && !deopt) {
2622        deopt = true; // One-time only print before deopt
2623        tty->print_cr("[BEFORE Deoptimization]");
2624        trace_frames();
2625        trace_stack();
2626      }
2627      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2628    }
2629  }
2630
2631  if (DebugDeoptimization && deopt) {
2632    tty->print_cr("[AFTER Deoptimization]");
2633    trace_frames();
2634  }
2635}
2636
2637
2638// Make zombies
2639void JavaThread::make_zombies() {
2640  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2641    if (fst.current()->can_be_deoptimized()) {
2642      // it is a Java nmethod
2643      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2644      nm->make_not_entrant();
2645    }
2646  }
2647}
2648#endif // PRODUCT
2649
2650
2651void JavaThread::deoptimized_wrt_marked_nmethods() {
2652  if (!has_last_Java_frame()) return;
2653  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2654  StackFrameStream fst(this, UseBiasedLocking);
2655  for(; !fst.is_done(); fst.next()) {
2656    if (fst.current()->should_be_deoptimized()) {
2657      if (LogCompilation && xtty != NULL) {
2658        nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2659        xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2660                   this->name(), nm != NULL ? nm->compile_id() : -1);
2661      }
2662
2663      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2664    }
2665  }
2666}
2667
2668
2669// GC support
2670static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2671
2672void JavaThread::gc_epilogue() {
2673  frames_do(frame_gc_epilogue);
2674}
2675
2676
2677static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2678
2679void JavaThread::gc_prologue() {
2680  frames_do(frame_gc_prologue);
2681}
2682
2683// If the caller is a NamedThread, then remember, in the current scope,
2684// the given JavaThread in its _processed_thread field.
2685class RememberProcessedThread: public StackObj {
2686  NamedThread* _cur_thr;
2687public:
2688  RememberProcessedThread(JavaThread* jthr) {
2689    Thread* thread = Thread::current();
2690    if (thread->is_Named_thread()) {
2691      _cur_thr = (NamedThread *)thread;
2692      _cur_thr->set_processed_thread(jthr);
2693    } else {
2694      _cur_thr = NULL;
2695    }
2696  }
2697
2698  ~RememberProcessedThread() {
2699    if (_cur_thr) {
2700      _cur_thr->set_processed_thread(NULL);
2701    }
2702  }
2703};
2704
2705void JavaThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
2706  // Verify that the deferred card marks have been flushed.
2707  assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2708
2709  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2710  // since there may be more than one thread using each ThreadProfiler.
2711
2712  // Traverse the GCHandles
2713  Thread::oops_do(f, cld_f, cf);
2714
2715  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2716          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2717
2718  if (has_last_Java_frame()) {
2719    // Record JavaThread to GC thread
2720    RememberProcessedThread rpt(this);
2721
2722    // Traverse the privileged stack
2723    if (_privileged_stack_top != NULL) {
2724      _privileged_stack_top->oops_do(f);
2725    }
2726
2727    // traverse the registered growable array
2728    if (_array_for_gc != NULL) {
2729      for (int index = 0; index < _array_for_gc->length(); index++) {
2730        f->do_oop(_array_for_gc->adr_at(index));
2731      }
2732    }
2733
2734    // Traverse the monitor chunks
2735    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2736      chunk->oops_do(f);
2737    }
2738
2739    // Traverse the execution stack
2740    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2741      fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2742    }
2743  }
2744
2745  // callee_target is never live across a gc point so NULL it here should
2746  // it still contain a methdOop.
2747
2748  set_callee_target(NULL);
2749
2750  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2751  // If we have deferred set_locals there might be oops waiting to be
2752  // written
2753  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2754  if (list != NULL) {
2755    for (int i = 0; i < list->length(); i++) {
2756      list->at(i)->oops_do(f);
2757    }
2758  }
2759
2760  // Traverse instance variables at the end since the GC may be moving things
2761  // around using this function
2762  f->do_oop((oop*) &_threadObj);
2763  f->do_oop((oop*) &_vm_result);
2764  f->do_oop((oop*) &_exception_oop);
2765  f->do_oop((oop*) &_pending_async_exception);
2766
2767  if (jvmti_thread_state() != NULL) {
2768    jvmti_thread_state()->oops_do(f);
2769  }
2770}
2771
2772void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2773  Thread::nmethods_do(cf);  // (super method is a no-op)
2774
2775  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2776          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2777
2778  if (has_last_Java_frame()) {
2779    // Traverse the execution stack
2780    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2781      fst.current()->nmethods_do(cf);
2782    }
2783  }
2784}
2785
2786void JavaThread::metadata_do(void f(Metadata*)) {
2787  Thread::metadata_do(f);
2788  if (has_last_Java_frame()) {
2789    // Traverse the execution stack to call f() on the methods in the stack
2790    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2791      fst.current()->metadata_do(f);
2792    }
2793  } else if (is_Compiler_thread()) {
2794    // need to walk ciMetadata in current compile tasks to keep alive.
2795    CompilerThread* ct = (CompilerThread*)this;
2796    if (ct->env() != NULL) {
2797      ct->env()->metadata_do(f);
2798    }
2799  }
2800}
2801
2802// Printing
2803const char* _get_thread_state_name(JavaThreadState _thread_state) {
2804  switch (_thread_state) {
2805  case _thread_uninitialized:     return "_thread_uninitialized";
2806  case _thread_new:               return "_thread_new";
2807  case _thread_new_trans:         return "_thread_new_trans";
2808  case _thread_in_native:         return "_thread_in_native";
2809  case _thread_in_native_trans:   return "_thread_in_native_trans";
2810  case _thread_in_vm:             return "_thread_in_vm";
2811  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2812  case _thread_in_Java:           return "_thread_in_Java";
2813  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2814  case _thread_blocked:           return "_thread_blocked";
2815  case _thread_blocked_trans:     return "_thread_blocked_trans";
2816  default:                        return "unknown thread state";
2817  }
2818}
2819
2820#ifndef PRODUCT
2821void JavaThread::print_thread_state_on(outputStream *st) const {
2822  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2823};
2824void JavaThread::print_thread_state() const {
2825  print_thread_state_on(tty);
2826};
2827#endif // PRODUCT
2828
2829// Called by Threads::print() for VM_PrintThreads operation
2830void JavaThread::print_on(outputStream *st) const {
2831  st->print("\"%s\" ", get_thread_name());
2832  oop thread_oop = threadObj();
2833  if (thread_oop != NULL) {
2834    st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2835    if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2836    st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2837  }
2838  Thread::print_on(st);
2839  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2840  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2841  if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2842    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2843  }
2844#ifndef PRODUCT
2845  print_thread_state_on(st);
2846  _safepoint_state->print_on(st);
2847#endif // PRODUCT
2848}
2849
2850// Called by fatal error handler. The difference between this and
2851// JavaThread::print() is that we can't grab lock or allocate memory.
2852void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2853  st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2854  oop thread_obj = threadObj();
2855  if (thread_obj != NULL) {
2856     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2857  }
2858  st->print(" [");
2859  st->print("%s", _get_thread_state_name(_thread_state));
2860  if (osthread()) {
2861    st->print(", id=%d", osthread()->thread_id());
2862  }
2863  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2864            _stack_base - _stack_size, _stack_base);
2865  st->print("]");
2866  return;
2867}
2868
2869// Verification
2870
2871static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2872
2873void JavaThread::verify() {
2874  // Verify oops in the thread.
2875  oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2876
2877  // Verify the stack frames.
2878  frames_do(frame_verify);
2879}
2880
2881// CR 6300358 (sub-CR 2137150)
2882// Most callers of this method assume that it can't return NULL but a
2883// thread may not have a name whilst it is in the process of attaching to
2884// the VM - see CR 6412693, and there are places where a JavaThread can be
2885// seen prior to having it's threadObj set (eg JNI attaching threads and
2886// if vm exit occurs during initialization). These cases can all be accounted
2887// for such that this method never returns NULL.
2888const char* JavaThread::get_thread_name() const {
2889#ifdef ASSERT
2890  // early safepoints can hit while current thread does not yet have TLS
2891  if (!SafepointSynchronize::is_at_safepoint()) {
2892    Thread *cur = Thread::current();
2893    if (!(cur->is_Java_thread() && cur == this)) {
2894      // Current JavaThreads are allowed to get their own name without
2895      // the Threads_lock.
2896      assert_locked_or_safepoint(Threads_lock);
2897    }
2898  }
2899#endif // ASSERT
2900    return get_thread_name_string();
2901}
2902
2903// Returns a non-NULL representation of this thread's name, or a suitable
2904// descriptive string if there is no set name
2905const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2906  const char* name_str;
2907  oop thread_obj = threadObj();
2908  if (thread_obj != NULL) {
2909    typeArrayOop name = java_lang_Thread::name(thread_obj);
2910    if (name != NULL) {
2911      if (buf == NULL) {
2912        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2913      }
2914      else {
2915        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2916      }
2917    }
2918    else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2919      name_str = "<no-name - thread is attaching>";
2920    }
2921    else {
2922      name_str = Thread::name();
2923    }
2924  }
2925  else {
2926    name_str = Thread::name();
2927  }
2928  assert(name_str != NULL, "unexpected NULL thread name");
2929  return name_str;
2930}
2931
2932
2933const char* JavaThread::get_threadgroup_name() const {
2934  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2935  oop thread_obj = threadObj();
2936  if (thread_obj != NULL) {
2937    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2938    if (thread_group != NULL) {
2939      typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2940      // ThreadGroup.name can be null
2941      if (name != NULL) {
2942        const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2943        return str;
2944      }
2945    }
2946  }
2947  return NULL;
2948}
2949
2950const char* JavaThread::get_parent_name() const {
2951  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2952  oop thread_obj = threadObj();
2953  if (thread_obj != NULL) {
2954    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2955    if (thread_group != NULL) {
2956      oop parent = java_lang_ThreadGroup::parent(thread_group);
2957      if (parent != NULL) {
2958        typeArrayOop name = java_lang_ThreadGroup::name(parent);
2959        // ThreadGroup.name can be null
2960        if (name != NULL) {
2961          const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2962          return str;
2963        }
2964      }
2965    }
2966  }
2967  return NULL;
2968}
2969
2970ThreadPriority JavaThread::java_priority() const {
2971  oop thr_oop = threadObj();
2972  if (thr_oop == NULL) return NormPriority; // Bootstrapping
2973  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2974  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2975  return priority;
2976}
2977
2978void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2979
2980  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2981  // Link Java Thread object <-> C++ Thread
2982
2983  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2984  // and put it into a new Handle.  The Handle "thread_oop" can then
2985  // be used to pass the C++ thread object to other methods.
2986
2987  // Set the Java level thread object (jthread) field of the
2988  // new thread (a JavaThread *) to C++ thread object using the
2989  // "thread_oop" handle.
2990
2991  // Set the thread field (a JavaThread *) of the
2992  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2993
2994  Handle thread_oop(Thread::current(),
2995                    JNIHandles::resolve_non_null(jni_thread));
2996  assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2997    "must be initialized");
2998  set_threadObj(thread_oop());
2999  java_lang_Thread::set_thread(thread_oop(), this);
3000
3001  if (prio == NoPriority) {
3002    prio = java_lang_Thread::priority(thread_oop());
3003    assert(prio != NoPriority, "A valid priority should be present");
3004  }
3005
3006  // Push the Java priority down to the native thread; needs Threads_lock
3007  Thread::set_priority(this, prio);
3008
3009  // Add the new thread to the Threads list and set it in motion.
3010  // We must have threads lock in order to call Threads::add.
3011  // It is crucial that we do not block before the thread is
3012  // added to the Threads list for if a GC happens, then the java_thread oop
3013  // will not be visited by GC.
3014  Threads::add(this);
3015}
3016
3017oop JavaThread::current_park_blocker() {
3018  // Support for JSR-166 locks
3019  oop thread_oop = threadObj();
3020  if (thread_oop != NULL &&
3021      JDK_Version::current().supports_thread_park_blocker()) {
3022    return java_lang_Thread::park_blocker(thread_oop);
3023  }
3024  return NULL;
3025}
3026
3027
3028void JavaThread::print_stack_on(outputStream* st) {
3029  if (!has_last_Java_frame()) return;
3030  ResourceMark rm;
3031  HandleMark   hm;
3032
3033  RegisterMap reg_map(this);
3034  vframe* start_vf = last_java_vframe(&reg_map);
3035  int count = 0;
3036  for (vframe* f = start_vf; f; f = f->sender() ) {
3037    if (f->is_java_frame()) {
3038      javaVFrame* jvf = javaVFrame::cast(f);
3039      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3040
3041      // Print out lock information
3042      if (JavaMonitorsInStackTrace) {
3043        jvf->print_lock_info_on(st, count);
3044      }
3045    } else {
3046      // Ignore non-Java frames
3047    }
3048
3049    // Bail-out case for too deep stacks
3050    count++;
3051    if (MaxJavaStackTraceDepth == count) return;
3052  }
3053}
3054
3055
3056// JVMTI PopFrame support
3057void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3058  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3059  if (in_bytes(size_in_bytes) != 0) {
3060    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3061    _popframe_preserved_args_size = in_bytes(size_in_bytes);
3062    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3063  }
3064}
3065
3066void* JavaThread::popframe_preserved_args() {
3067  return _popframe_preserved_args;
3068}
3069
3070ByteSize JavaThread::popframe_preserved_args_size() {
3071  return in_ByteSize(_popframe_preserved_args_size);
3072}
3073
3074WordSize JavaThread::popframe_preserved_args_size_in_words() {
3075  int sz = in_bytes(popframe_preserved_args_size());
3076  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3077  return in_WordSize(sz / wordSize);
3078}
3079
3080void JavaThread::popframe_free_preserved_args() {
3081  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3082  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3083  _popframe_preserved_args = NULL;
3084  _popframe_preserved_args_size = 0;
3085}
3086
3087#ifndef PRODUCT
3088
3089void JavaThread::trace_frames() {
3090  tty->print_cr("[Describe stack]");
3091  int frame_no = 1;
3092  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3093    tty->print("  %d. ", frame_no++);
3094    fst.current()->print_value_on(tty,this);
3095    tty->cr();
3096  }
3097}
3098
3099class PrintAndVerifyOopClosure: public OopClosure {
3100 protected:
3101  template <class T> inline void do_oop_work(T* p) {
3102    oop obj = oopDesc::load_decode_heap_oop(p);
3103    if (obj == NULL) return;
3104    tty->print(INTPTR_FORMAT ": ", p);
3105    if (obj->is_oop_or_null()) {
3106      if (obj->is_objArray()) {
3107        tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3108      } else {
3109        obj->print();
3110      }
3111    } else {
3112      tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3113    }
3114    tty->cr();
3115  }
3116 public:
3117  virtual void do_oop(oop* p) { do_oop_work(p); }
3118  virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3119};
3120
3121
3122static void oops_print(frame* f, const RegisterMap *map) {
3123  PrintAndVerifyOopClosure print;
3124  f->print_value();
3125  f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3126}
3127
3128// Print our all the locations that contain oops and whether they are
3129// valid or not.  This useful when trying to find the oldest frame
3130// where an oop has gone bad since the frame walk is from youngest to
3131// oldest.
3132void JavaThread::trace_oops() {
3133  tty->print_cr("[Trace oops]");
3134  frames_do(oops_print);
3135}
3136
3137
3138#ifdef ASSERT
3139// Print or validate the layout of stack frames
3140void JavaThread::print_frame_layout(int depth, bool validate_only) {
3141  ResourceMark rm;
3142  PRESERVE_EXCEPTION_MARK;
3143  FrameValues values;
3144  int frame_no = 0;
3145  for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3146    fst.current()->describe(values, ++frame_no);
3147    if (depth == frame_no) break;
3148  }
3149  if (validate_only) {
3150    values.validate();
3151  } else {
3152    tty->print_cr("[Describe stack layout]");
3153    values.print(this);
3154  }
3155}
3156#endif
3157
3158void JavaThread::trace_stack_from(vframe* start_vf) {
3159  ResourceMark rm;
3160  int vframe_no = 1;
3161  for (vframe* f = start_vf; f; f = f->sender() ) {
3162    if (f->is_java_frame()) {
3163      javaVFrame::cast(f)->print_activation(vframe_no++);
3164    } else {
3165      f->print();
3166    }
3167    if (vframe_no > StackPrintLimit) {
3168      tty->print_cr("...<more frames>...");
3169      return;
3170    }
3171  }
3172}
3173
3174
3175void JavaThread::trace_stack() {
3176  if (!has_last_Java_frame()) return;
3177  ResourceMark rm;
3178  HandleMark   hm;
3179  RegisterMap reg_map(this);
3180  trace_stack_from(last_java_vframe(&reg_map));
3181}
3182
3183
3184#endif // PRODUCT
3185
3186
3187javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3188  assert(reg_map != NULL, "a map must be given");
3189  frame f = last_frame();
3190  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3191    if (vf->is_java_frame()) return javaVFrame::cast(vf);
3192  }
3193  return NULL;
3194}
3195
3196
3197Klass* JavaThread::security_get_caller_class(int depth) {
3198  vframeStream vfst(this);
3199  vfst.security_get_caller_frame(depth);
3200  if (!vfst.at_end()) {
3201    return vfst.method()->method_holder();
3202  }
3203  return NULL;
3204}
3205
3206static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3207  assert(thread->is_Compiler_thread(), "must be compiler thread");
3208  CompileBroker::compiler_thread_loop();
3209}
3210
3211// Create a CompilerThread
3212CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3213: JavaThread(&compiler_thread_entry) {
3214  _env   = NULL;
3215  _log   = NULL;
3216  _task  = NULL;
3217  _queue = queue;
3218  _counters = counters;
3219  _buffer_blob = NULL;
3220  _scanned_nmethod = NULL;
3221
3222#ifndef PRODUCT
3223  _ideal_graph_printer = NULL;
3224#endif
3225}
3226
3227void CompilerThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
3228  JavaThread::oops_do(f, cld_f, cf);
3229  if (_scanned_nmethod != NULL && cf != NULL) {
3230    // Safepoints can occur when the sweeper is scanning an nmethod so
3231    // process it here to make sure it isn't unloaded in the middle of
3232    // a scan.
3233    cf->do_code_blob(_scanned_nmethod);
3234  }
3235}
3236
3237// ======= Threads ========
3238
3239// The Threads class links together all active threads, and provides
3240// operations over all threads.  It is protected by its own Mutex
3241// lock, which is also used in other contexts to protect thread
3242// operations from having the thread being operated on from exiting
3243// and going away unexpectedly (e.g., safepoint synchronization)
3244
3245JavaThread* Threads::_thread_list = NULL;
3246int         Threads::_number_of_threads = 0;
3247int         Threads::_number_of_non_daemon_threads = 0;
3248int         Threads::_return_code = 0;
3249size_t      JavaThread::_stack_size_at_create = 0;
3250#ifdef ASSERT
3251bool        Threads::_vm_complete = false;
3252#endif
3253
3254// All JavaThreads
3255#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3256
3257void os_stream();
3258
3259// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3260void Threads::threads_do(ThreadClosure* tc) {
3261  assert_locked_or_safepoint(Threads_lock);
3262  // ALL_JAVA_THREADS iterates through all JavaThreads
3263  ALL_JAVA_THREADS(p) {
3264    tc->do_thread(p);
3265  }
3266  // Someday we could have a table or list of all non-JavaThreads.
3267  // For now, just manually iterate through them.
3268  tc->do_thread(VMThread::vm_thread());
3269  Universe::heap()->gc_threads_do(tc);
3270  WatcherThread *wt = WatcherThread::watcher_thread();
3271  // Strictly speaking, the following NULL check isn't sufficient to make sure
3272  // the data for WatcherThread is still valid upon being examined. However,
3273  // considering that WatchThread terminates when the VM is on the way to
3274  // exit at safepoint, the chance of the above is extremely small. The right
3275  // way to prevent termination of WatcherThread would be to acquire
3276  // Terminator_lock, but we can't do that without violating the lock rank
3277  // checking in some cases.
3278  if (wt != NULL)
3279    tc->do_thread(wt);
3280
3281  // If CompilerThreads ever become non-JavaThreads, add them here
3282}
3283
3284jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3285
3286  extern void JDK_Version_init();
3287
3288  // Check version
3289  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3290
3291  // Initialize the output stream module
3292  ostream_init();
3293
3294  // Process java launcher properties.
3295  Arguments::process_sun_java_launcher_properties(args);
3296
3297  // Initialize the os module before using TLS
3298  os::init();
3299
3300  // Initialize system properties.
3301  Arguments::init_system_properties();
3302
3303  // So that JDK version can be used as a discrimintor when parsing arguments
3304  JDK_Version_init();
3305
3306  // Update/Initialize System properties after JDK version number is known
3307  Arguments::init_version_specific_system_properties();
3308
3309  // Parse arguments
3310  jint parse_result = Arguments::parse(args);
3311  if (parse_result != JNI_OK) return parse_result;
3312
3313  if (PauseAtStartup) {
3314    os::pause();
3315  }
3316
3317#ifndef USDT2
3318  HS_DTRACE_PROBE(hotspot, vm__init__begin);
3319#else /* USDT2 */
3320  HOTSPOT_VM_INIT_BEGIN();
3321#endif /* USDT2 */
3322
3323  // Record VM creation timing statistics
3324  TraceVmCreationTime create_vm_timer;
3325  create_vm_timer.start();
3326
3327  // Timing (must come after argument parsing)
3328  TraceTime timer("Create VM", TraceStartupTime);
3329
3330  // Initialize the os module after parsing the args
3331  jint os_init_2_result = os::init_2();
3332  if (os_init_2_result != JNI_OK) return os_init_2_result;
3333
3334  jint adjust_after_os_result = Arguments::adjust_after_os();
3335  if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3336
3337  // intialize TLS
3338  ThreadLocalStorage::init();
3339
3340  // Bootstrap native memory tracking, so it can start recording memory
3341  // activities before worker thread is started. This is the first phase
3342  // of bootstrapping, VM is currently running in single-thread mode.
3343  MemTracker::bootstrap_single_thread();
3344
3345  // Initialize output stream logging
3346  ostream_init_log();
3347
3348  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3349  // Must be before create_vm_init_agents()
3350  if (Arguments::init_libraries_at_startup()) {
3351    convert_vm_init_libraries_to_agents();
3352  }
3353
3354  // Launch -agentlib/-agentpath and converted -Xrun agents
3355  if (Arguments::init_agents_at_startup()) {
3356    create_vm_init_agents();
3357  }
3358
3359  // Initialize Threads state
3360  _thread_list = NULL;
3361  _number_of_threads = 0;
3362  _number_of_non_daemon_threads = 0;
3363
3364  // Initialize global data structures and create system classes in heap
3365  vm_init_globals();
3366
3367  // Attach the main thread to this os thread
3368  JavaThread* main_thread = new JavaThread();
3369  main_thread->set_thread_state(_thread_in_vm);
3370  // must do this before set_active_handles and initialize_thread_local_storage
3371  // Note: on solaris initialize_thread_local_storage() will (indirectly)
3372  // change the stack size recorded here to one based on the java thread
3373  // stacksize. This adjusted size is what is used to figure the placement
3374  // of the guard pages.
3375  main_thread->record_stack_base_and_size();
3376  main_thread->initialize_thread_local_storage();
3377
3378  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3379
3380  if (!main_thread->set_as_starting_thread()) {
3381    vm_shutdown_during_initialization(
3382      "Failed necessary internal allocation. Out of swap space");
3383    delete main_thread;
3384    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3385    return JNI_ENOMEM;
3386  }
3387
3388  // Enable guard page *after* os::create_main_thread(), otherwise it would
3389  // crash Linux VM, see notes in os_linux.cpp.
3390  main_thread->create_stack_guard_pages();
3391
3392  // Initialize Java-Level synchronization subsystem
3393  ObjectMonitor::Initialize() ;
3394
3395  // Second phase of bootstrapping, VM is about entering multi-thread mode
3396  MemTracker::bootstrap_multi_thread();
3397
3398  // Initialize global modules
3399  jint status = init_globals();
3400  if (status != JNI_OK) {
3401    delete main_thread;
3402    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3403    return status;
3404  }
3405
3406  // Should be done after the heap is fully created
3407  main_thread->cache_global_variables();
3408
3409  HandleMark hm;
3410
3411  { MutexLocker mu(Threads_lock);
3412    Threads::add(main_thread);
3413  }
3414
3415  // Any JVMTI raw monitors entered in onload will transition into
3416  // real raw monitor. VM is setup enough here for raw monitor enter.
3417  JvmtiExport::transition_pending_onload_raw_monitors();
3418
3419  if (VerifyBeforeGC &&
3420      Universe::heap()->total_collections() >= VerifyGCStartAt) {
3421    Universe::heap()->prepare_for_verify();
3422    Universe::verify();   // make sure we're starting with a clean slate
3423  }
3424
3425  // Fully start NMT
3426  MemTracker::start();
3427
3428  // Create the VMThread
3429  { TraceTime timer("Start VMThread", TraceStartupTime);
3430    VMThread::create();
3431    Thread* vmthread = VMThread::vm_thread();
3432
3433    if (!os::create_thread(vmthread, os::vm_thread))
3434      vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3435
3436    // Wait for the VM thread to become ready, and VMThread::run to initialize
3437    // Monitors can have spurious returns, must always check another state flag
3438    {
3439      MutexLocker ml(Notify_lock);
3440      os::start_thread(vmthread);
3441      while (vmthread->active_handles() == NULL) {
3442        Notify_lock->wait();
3443      }
3444    }
3445  }
3446
3447  assert (Universe::is_fully_initialized(), "not initialized");
3448  EXCEPTION_MARK;
3449
3450  // At this point, the Universe is initialized, but we have not executed
3451  // any byte code.  Now is a good time (the only time) to dump out the
3452  // internal state of the JVM for sharing.
3453  if (DumpSharedSpaces) {
3454    MetaspaceShared::preload_and_dump(CHECK_0);
3455    ShouldNotReachHere();
3456  }
3457
3458  // Always call even when there are not JVMTI environments yet, since environments
3459  // may be attached late and JVMTI must track phases of VM execution
3460  JvmtiExport::enter_start_phase();
3461
3462  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3463  JvmtiExport::post_vm_start();
3464
3465  {
3466    TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3467
3468    if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3469      create_vm_init_libraries();
3470    }
3471
3472    if (InitializeJavaLangString) {
3473      initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3474    } else {
3475      warning("java.lang.String not initialized");
3476    }
3477
3478    if (AggressiveOpts) {
3479      {
3480        // Forcibly initialize java/util/HashMap and mutate the private
3481        // static final "frontCacheEnabled" field before we start creating instances
3482#ifdef ASSERT
3483        Klass* tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3484        assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3485#endif
3486        Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3487        KlassHandle k = KlassHandle(THREAD, k_o);
3488        guarantee(k.not_null(), "Must find java/util/HashMap");
3489        instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3490        ik->initialize(CHECK_0);
3491        fieldDescriptor fd;
3492        // Possible we might not find this field; if so, don't break
3493        if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3494          k()->java_mirror()->bool_field_put(fd.offset(), true);
3495        }
3496      }
3497
3498      if (UseStringCache) {
3499        // Forcibly initialize java/lang/StringValue and mutate the private
3500        // static final "stringCacheEnabled" field before we start creating instances
3501        Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3502        // Possible that StringValue isn't present: if so, silently don't break
3503        if (k_o != NULL) {
3504          KlassHandle k = KlassHandle(THREAD, k_o);
3505          instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3506          ik->initialize(CHECK_0);
3507          fieldDescriptor fd;
3508          // Possible we might not find this field: if so, silently don't break
3509          if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3510            k()->java_mirror()->bool_field_put(fd.offset(), true);
3511          }
3512        }
3513      }
3514    }
3515
3516    // Initialize java_lang.System (needed before creating the thread)
3517    if (InitializeJavaLangSystem) {
3518      initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3519      initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3520      Handle thread_group = create_initial_thread_group(CHECK_0);
3521      Universe::set_main_thread_group(thread_group());
3522      initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3523      oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3524      main_thread->set_threadObj(thread_object);
3525      // Set thread status to running since main thread has
3526      // been started and running.
3527      java_lang_Thread::set_thread_status(thread_object,
3528                                          java_lang_Thread::RUNNABLE);
3529
3530      // The VM preresolve methods to these classes. Make sure that get initialized
3531      initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3532      initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3533      // The VM creates & returns objects of this class. Make sure it's initialized.
3534      initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3535      call_initializeSystemClass(CHECK_0);
3536
3537      // get the Java runtime name after java.lang.System is initialized
3538      JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3539      JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3540    } else {
3541      warning("java.lang.System not initialized");
3542    }
3543
3544    // an instance of OutOfMemory exception has been allocated earlier
3545    if (InitializeJavaLangExceptionsErrors) {
3546      initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3547      initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3548      initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3549      initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3550      initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3551      initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3552      initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3553      initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
3554    } else {
3555      warning("java.lang.OutOfMemoryError has not been initialized");
3556      warning("java.lang.NullPointerException has not been initialized");
3557      warning("java.lang.ClassCastException has not been initialized");
3558      warning("java.lang.ArrayStoreException has not been initialized");
3559      warning("java.lang.ArithmeticException has not been initialized");
3560      warning("java.lang.StackOverflowError has not been initialized");
3561      warning("java.lang.IllegalArgumentException has not been initialized");
3562    }
3563  }
3564
3565  // See        : bugid 4211085.
3566  // Background : the static initializer of java.lang.Compiler tries to read
3567  //              property"java.compiler" and read & write property "java.vm.info".
3568  //              When a security manager is installed through the command line
3569  //              option "-Djava.security.manager", the above properties are not
3570  //              readable and the static initializer for java.lang.Compiler fails
3571  //              resulting in a NoClassDefFoundError.  This can happen in any
3572  //              user code which calls methods in java.lang.Compiler.
3573  // Hack :       the hack is to pre-load and initialize this class, so that only
3574  //              system domains are on the stack when the properties are read.
3575  //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3576  //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3577  // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3578  //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3579  //              Once that is done, we should remove this hack.
3580  initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3581
3582  // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3583  // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3584  // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3585  // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3586  // This should also be taken out as soon as 4211383 gets fixed.
3587  reset_vm_info_property(CHECK_0);
3588
3589  quicken_jni_functions();
3590
3591  // Must be run after init_ft which initializes ft_enabled
3592  if (TRACE_INITIALIZE() != JNI_OK) {
3593    vm_exit_during_initialization("Failed to initialize tracing backend");
3594  }
3595
3596  // Set flag that basic initialization has completed. Used by exceptions and various
3597  // debug stuff, that does not work until all basic classes have been initialized.
3598  set_init_completed();
3599
3600#ifndef USDT2
3601  HS_DTRACE_PROBE(hotspot, vm__init__end);
3602#else /* USDT2 */
3603  HOTSPOT_VM_INIT_END();
3604#endif /* USDT2 */
3605
3606  // record VM initialization completion time
3607#if INCLUDE_MANAGEMENT
3608  Management::record_vm_init_completed();
3609#endif // INCLUDE_MANAGEMENT
3610
3611  // Compute system loader. Note that this has to occur after set_init_completed, since
3612  // valid exceptions may be thrown in the process.
3613  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3614  // set_init_completed has just been called, causing exceptions not to be shortcut
3615  // anymore. We call vm_exit_during_initialization directly instead.
3616  SystemDictionary::compute_java_system_loader(THREAD);
3617  if (HAS_PENDING_EXCEPTION) {
3618    vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3619  }
3620
3621#ifndef SERIALGC
3622  // Support for ConcurrentMarkSweep. This should be cleaned up
3623  // and better encapsulated. The ugly nested if test would go away
3624  // once things are properly refactored. XXX YSR
3625  if (UseConcMarkSweepGC || UseG1GC) {
3626    if (UseConcMarkSweepGC) {
3627      ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3628    } else {
3629      ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3630    }
3631    if (HAS_PENDING_EXCEPTION) {
3632      vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3633    }
3634  }
3635#endif // SERIALGC
3636
3637  // Always call even when there are not JVMTI environments yet, since environments
3638  // may be attached late and JVMTI must track phases of VM execution
3639  JvmtiExport::enter_live_phase();
3640
3641  // Signal Dispatcher needs to be started before VMInit event is posted
3642  os::signal_init();
3643
3644  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3645  if (!DisableAttachMechanism) {
3646    if (StartAttachListener || AttachListener::init_at_startup()) {
3647      AttachListener::init();
3648    }
3649  }
3650
3651  // Launch -Xrun agents
3652  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3653  // back-end can launch with -Xdebug -Xrunjdwp.
3654  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3655    create_vm_init_libraries();
3656  }
3657
3658  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3659  JvmtiExport::post_vm_initialized();
3660
3661  if (!TRACE_START()) {
3662    vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3663  }
3664
3665  if (CleanChunkPoolAsync) {
3666    Chunk::start_chunk_pool_cleaner_task();
3667  }
3668
3669  // initialize compiler(s)
3670#if defined(COMPILER1) || defined(COMPILER2)
3671  CompileBroker::compilation_init();
3672#endif
3673
3674#if INCLUDE_MANAGEMENT
3675  Management::initialize(THREAD);
3676#endif // INCLUDE_MANAGEMENT
3677
3678  if (HAS_PENDING_EXCEPTION) {
3679    // management agent fails to start possibly due to
3680    // configuration problem and is responsible for printing
3681    // stack trace if appropriate. Simply exit VM.
3682    vm_exit(1);
3683  }
3684
3685  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3686  if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3687  if (MemProfiling)                   MemProfiler::engage();
3688  StatSampler::engage();
3689  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3690
3691  BiasedLocking::init();
3692
3693  if (JDK_Version::current().post_vm_init_hook_enabled()) {
3694    call_postVMInitHook(THREAD);
3695    // The Java side of PostVMInitHook.run must deal with all
3696    // exceptions and provide means of diagnosis.
3697    if (HAS_PENDING_EXCEPTION) {
3698      CLEAR_PENDING_EXCEPTION;
3699    }
3700  }
3701
3702  {
3703      MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3704      // Make sure the watcher thread can be started by WatcherThread::start()
3705      // or by dynamic enrollment.
3706      WatcherThread::make_startable();
3707      // Start up the WatcherThread if there are any periodic tasks
3708      // NOTE:  All PeriodicTasks should be registered by now. If they
3709      //   aren't, late joiners might appear to start slowly (we might
3710      //   take a while to process their first tick).
3711      if (PeriodicTask::num_tasks() > 0) {
3712          WatcherThread::start();
3713      }
3714  }
3715
3716  // Give os specific code one last chance to start
3717  os::init_3();
3718
3719  create_vm_timer.end();
3720#ifdef ASSERT
3721  _vm_complete = true;
3722#endif
3723  return JNI_OK;
3724}
3725
3726// type for the Agent_OnLoad and JVM_OnLoad entry points
3727extern "C" {
3728  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3729}
3730// Find a command line agent library and return its entry point for
3731//         -agentlib:  -agentpath:   -Xrun
3732// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3733static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3734  OnLoadEntry_t on_load_entry = NULL;
3735  void *library = agent->os_lib();  // check if we have looked it up before
3736
3737  if (library == NULL) {
3738    char buffer[JVM_MAXPATHLEN];
3739    char ebuf[1024];
3740    const char *name = agent->name();
3741    const char *msg = "Could not find agent library ";
3742
3743    if (agent->is_absolute_path()) {
3744      library = os::dll_load(name, ebuf, sizeof ebuf);
3745      if (library == NULL) {
3746        const char *sub_msg = " in absolute path, with error: ";
3747        size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3748        char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3749        jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3750        // If we can't find the agent, exit.
3751        vm_exit_during_initialization(buf, NULL);
3752        FREE_C_HEAP_ARRAY(char, buf, mtThread);
3753      }
3754    } else {
3755      // Try to load the agent from the standard dll directory
3756      if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3757                             name)) {
3758        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3759      }
3760#ifdef KERNEL
3761      // Download instrument dll
3762      if (library == NULL && strcmp(name, "instrument") == 0) {
3763        char *props = Arguments::get_kernel_properties();
3764        char *home  = Arguments::get_java_home();
3765        const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
3766                      " sun.jkernel.DownloadManager -download client_jvm";
3767        size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
3768        char *cmd = NEW_C_HEAP_ARRAY(char, length, mtThread);
3769        jio_snprintf(cmd, length, fmt, home, props);
3770        int status = os::fork_and_exec(cmd);
3771        FreeHeap(props);
3772        if (status == -1) {
3773          warning(cmd);
3774          vm_exit_during_initialization("fork_and_exec failed: %s",
3775                                         strerror(errno));
3776        }
3777        FREE_C_HEAP_ARRAY(char, cmd, mtThread);
3778        // when this comes back the instrument.dll should be where it belongs.
3779        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3780      }
3781#endif // KERNEL
3782      if (library == NULL) { // Try the local directory
3783        char ns[1] = {0};
3784        if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3785          library = os::dll_load(buffer, ebuf, sizeof ebuf);
3786        }
3787        if (library == NULL) {
3788          const char *sub_msg = " on the library path, with error: ";
3789          size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3790          char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3791          jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3792          // If we can't find the agent, exit.
3793          vm_exit_during_initialization(buf, NULL);
3794          FREE_C_HEAP_ARRAY(char, buf, mtThread);
3795        }
3796      }
3797    }
3798    agent->set_os_lib(library);
3799  }
3800
3801  // Find the OnLoad function.
3802  for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3803    on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
3804    if (on_load_entry != NULL) break;
3805  }
3806  return on_load_entry;
3807}
3808
3809// Find the JVM_OnLoad entry point
3810static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3811  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3812  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3813}
3814
3815// Find the Agent_OnLoad entry point
3816static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3817  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3818  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3819}
3820
3821// For backwards compatibility with -Xrun
3822// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3823// treated like -agentpath:
3824// Must be called before agent libraries are created
3825void Threads::convert_vm_init_libraries_to_agents() {
3826  AgentLibrary* agent;
3827  AgentLibrary* next;
3828
3829  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3830    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3831    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3832
3833    // If there is an JVM_OnLoad function it will get called later,
3834    // otherwise see if there is an Agent_OnLoad
3835    if (on_load_entry == NULL) {
3836      on_load_entry = lookup_agent_on_load(agent);
3837      if (on_load_entry != NULL) {
3838        // switch it to the agent list -- so that Agent_OnLoad will be called,
3839        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3840        Arguments::convert_library_to_agent(agent);
3841      } else {
3842        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3843      }
3844    }
3845  }
3846}
3847
3848// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3849// Invokes Agent_OnLoad
3850// Called very early -- before JavaThreads exist
3851void Threads::create_vm_init_agents() {
3852  extern struct JavaVM_ main_vm;
3853  AgentLibrary* agent;
3854
3855  JvmtiExport::enter_onload_phase();
3856
3857  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3858    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3859
3860    if (on_load_entry != NULL) {
3861      // Invoke the Agent_OnLoad function
3862      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3863      if (err != JNI_OK) {
3864        vm_exit_during_initialization("agent library failed to init", agent->name());
3865      }
3866    } else {
3867      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3868    }
3869  }
3870  JvmtiExport::enter_primordial_phase();
3871}
3872
3873extern "C" {
3874  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3875}
3876
3877void Threads::shutdown_vm_agents() {
3878  // Send any Agent_OnUnload notifications
3879  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3880  extern struct JavaVM_ main_vm;
3881  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3882
3883    // Find the Agent_OnUnload function.
3884    for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3885      Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3886               os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3887
3888      // Invoke the Agent_OnUnload function
3889      if (unload_entry != NULL) {
3890        JavaThread* thread = JavaThread::current();
3891        ThreadToNativeFromVM ttn(thread);
3892        HandleMark hm(thread);
3893        (*unload_entry)(&main_vm);
3894        break;
3895      }
3896    }
3897  }
3898}
3899
3900// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3901// Invokes JVM_OnLoad
3902void Threads::create_vm_init_libraries() {
3903  extern struct JavaVM_ main_vm;
3904  AgentLibrary* agent;
3905
3906  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3907    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3908
3909    if (on_load_entry != NULL) {
3910      // Invoke the JVM_OnLoad function
3911      JavaThread* thread = JavaThread::current();
3912      ThreadToNativeFromVM ttn(thread);
3913      HandleMark hm(thread);
3914      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3915      if (err != JNI_OK) {
3916        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3917      }
3918    } else {
3919      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3920    }
3921  }
3922}
3923
3924// Last thread running calls java.lang.Shutdown.shutdown()
3925void JavaThread::invoke_shutdown_hooks() {
3926  HandleMark hm(this);
3927
3928  // We could get here with a pending exception, if so clear it now.
3929  if (this->has_pending_exception()) {
3930    this->clear_pending_exception();
3931  }
3932
3933  EXCEPTION_MARK;
3934  Klass* k =
3935    SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3936                                      THREAD);
3937  if (k != NULL) {
3938    // SystemDictionary::resolve_or_null will return null if there was
3939    // an exception.  If we cannot load the Shutdown class, just don't
3940    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3941    // and finalizers (if runFinalizersOnExit is set) won't be run.
3942    // Note that if a shutdown hook was registered or runFinalizersOnExit
3943    // was called, the Shutdown class would have already been loaded
3944    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3945    instanceKlassHandle shutdown_klass (THREAD, k);
3946    JavaValue result(T_VOID);
3947    JavaCalls::call_static(&result,
3948                           shutdown_klass,
3949                           vmSymbols::shutdown_method_name(),
3950                           vmSymbols::void_method_signature(),
3951                           THREAD);
3952  }
3953  CLEAR_PENDING_EXCEPTION;
3954}
3955
3956// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3957// the program falls off the end of main(). Another VM exit path is through
3958// vm_exit() when the program calls System.exit() to return a value or when
3959// there is a serious error in VM. The two shutdown paths are not exactly
3960// the same, but they share Shutdown.shutdown() at Java level and before_exit()
3961// and VM_Exit op at VM level.
3962//
3963// Shutdown sequence:
3964//   + Shutdown native memory tracking if it is on
3965//   + Wait until we are the last non-daemon thread to execute
3966//     <-- every thing is still working at this moment -->
3967//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3968//        shutdown hooks, run finalizers if finalization-on-exit
3969//   + Call before_exit(), prepare for VM exit
3970//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3971//        currently the only user of this mechanism is File.deleteOnExit())
3972//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3973//        post thread end and vm death events to JVMTI,
3974//        stop signal thread
3975//   + Call JavaThread::exit(), it will:
3976//      > release JNI handle blocks, remove stack guard pages
3977//      > remove this thread from Threads list
3978//     <-- no more Java code from this thread after this point -->
3979//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3980//     the compiler threads at safepoint
3981//     <-- do not use anything that could get blocked by Safepoint -->
3982//   + Disable tracing at JNI/JVM barriers
3983//   + Set _vm_exited flag for threads that are still running native code
3984//   + Delete this thread
3985//   + Call exit_globals()
3986//      > deletes tty
3987//      > deletes PerfMemory resources
3988//   + Return to caller
3989
3990bool Threads::destroy_vm() {
3991  JavaThread* thread = JavaThread::current();
3992
3993#ifdef ASSERT
3994  _vm_complete = false;
3995#endif
3996  // Wait until we are the last non-daemon thread to execute
3997  { MutexLocker nu(Threads_lock);
3998    while (Threads::number_of_non_daemon_threads() > 1 )
3999      // This wait should make safepoint checks, wait without a timeout,
4000      // and wait as a suspend-equivalent condition.
4001      //
4002      // Note: If the FlatProfiler is running and this thread is waiting
4003      // for another non-daemon thread to finish, then the FlatProfiler
4004      // is waiting for the external suspend request on this thread to
4005      // complete. wait_for_ext_suspend_completion() will eventually
4006      // timeout, but that takes time. Making this wait a suspend-
4007      // equivalent condition solves that timeout problem.
4008      //
4009      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4010                         Mutex::_as_suspend_equivalent_flag);
4011  }
4012
4013  // Shutdown NMT before exit. Otherwise,
4014  // it will run into trouble when system destroys static variables.
4015  MemTracker::shutdown(MemTracker::NMT_normal);
4016
4017  // Hang forever on exit if we are reporting an error.
4018  if (ShowMessageBoxOnError && is_error_reported()) {
4019    os::infinite_sleep();
4020  }
4021  os::wait_for_keypress_at_exit();
4022
4023  if (JDK_Version::is_jdk12x_version()) {
4024    // We are the last thread running, so check if finalizers should be run.
4025    // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
4026    HandleMark rm(thread);
4027    Universe::run_finalizers_on_exit();
4028  } else {
4029    // run Java level shutdown hooks
4030    thread->invoke_shutdown_hooks();
4031  }
4032
4033  before_exit(thread);
4034
4035  thread->exit(true);
4036
4037  // Stop VM thread.
4038  {
4039    // 4945125 The vm thread comes to a safepoint during exit.
4040    // GC vm_operations can get caught at the safepoint, and the
4041    // heap is unparseable if they are caught. Grab the Heap_lock
4042    // to prevent this. The GC vm_operations will not be able to
4043    // queue until after the vm thread is dead.
4044    // After this point, we'll never emerge out of the safepoint before
4045    // the VM exits, so concurrent GC threads do not need to be explicitly
4046    // stopped; they remain inactive until the process exits.
4047    // Note: some concurrent G1 threads may be running during a safepoint,
4048    // but these will not be accessing the heap, just some G1-specific side
4049    // data structures that are not accessed by any other threads but them
4050    // after this point in a terminal safepoint.
4051
4052    MutexLocker ml(Heap_lock);
4053
4054    VMThread::wait_for_vm_thread_exit();
4055    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4056    VMThread::destroy();
4057  }
4058
4059  // clean up ideal graph printers
4060#if defined(COMPILER2) && !defined(PRODUCT)
4061  IdealGraphPrinter::clean_up();
4062#endif
4063
4064  // Now, all Java threads are gone except daemon threads. Daemon threads
4065  // running Java code or in VM are stopped by the Safepoint. However,
4066  // daemon threads executing native code are still running.  But they
4067  // will be stopped at native=>Java/VM barriers. Note that we can't
4068  // simply kill or suspend them, as it is inherently deadlock-prone.
4069
4070#ifndef PRODUCT
4071  // disable function tracing at JNI/JVM barriers
4072  TraceJNICalls = false;
4073  TraceJVMCalls = false;
4074  TraceRuntimeCalls = false;
4075#endif
4076
4077  VM_Exit::set_vm_exited();
4078
4079  notify_vm_shutdown();
4080
4081  delete thread;
4082
4083  // exit_globals() will delete tty
4084  exit_globals();
4085
4086  return true;
4087}
4088
4089
4090jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4091  if (version == JNI_VERSION_1_1) return JNI_TRUE;
4092  return is_supported_jni_version(version);
4093}
4094
4095
4096jboolean Threads::is_supported_jni_version(jint version) {
4097  if (version == JNI_VERSION_1_2) return JNI_TRUE;
4098  if (version == JNI_VERSION_1_4) return JNI_TRUE;
4099  if (version == JNI_VERSION_1_6) return JNI_TRUE;
4100  return JNI_FALSE;
4101}
4102
4103
4104void Threads::add(JavaThread* p, bool force_daemon) {
4105  // The threads lock must be owned at this point
4106  assert_locked_or_safepoint(Threads_lock);
4107
4108  // See the comment for this method in thread.hpp for its purpose and
4109  // why it is called here.
4110  p->initialize_queues();
4111  p->set_next(_thread_list);
4112  _thread_list = p;
4113  _number_of_threads++;
4114  oop threadObj = p->threadObj();
4115  bool daemon = true;
4116  // Bootstrapping problem: threadObj can be null for initial
4117  // JavaThread (or for threads attached via JNI)
4118  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4119    _number_of_non_daemon_threads++;
4120    daemon = false;
4121  }
4122
4123  p->set_safepoint_visible(true);
4124
4125  ThreadService::add_thread(p, daemon);
4126
4127  // Possible GC point.
4128  Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4129}
4130
4131void Threads::remove(JavaThread* p) {
4132  // Extra scope needed for Thread_lock, so we can check
4133  // that we do not remove thread without safepoint code notice
4134  { MutexLocker ml(Threads_lock);
4135
4136    assert(includes(p), "p must be present");
4137
4138    JavaThread* current = _thread_list;
4139    JavaThread* prev    = NULL;
4140
4141    while (current != p) {
4142      prev    = current;
4143      current = current->next();
4144    }
4145
4146    if (prev) {
4147      prev->set_next(current->next());
4148    } else {
4149      _thread_list = p->next();
4150    }
4151    _number_of_threads--;
4152    oop threadObj = p->threadObj();
4153    bool daemon = true;
4154    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4155      _number_of_non_daemon_threads--;
4156      daemon = false;
4157
4158      // Only one thread left, do a notify on the Threads_lock so a thread waiting
4159      // on destroy_vm will wake up.
4160      if (number_of_non_daemon_threads() == 1)
4161        Threads_lock->notify_all();
4162    }
4163    ThreadService::remove_thread(p, daemon);
4164
4165    // Make sure that safepoint code disregard this thread. This is needed since
4166    // the thread might mess around with locks after this point. This can cause it
4167    // to do callbacks into the safepoint code. However, the safepoint code is not aware
4168    // of this thread since it is removed from the queue.
4169    p->set_terminated_value();
4170
4171    // Now, this thread is not visible to safepoint
4172    p->set_safepoint_visible(false);
4173    // once the thread becomes safepoint invisible, we can not use its per-thread
4174    // recorder. And Threads::do_threads() no longer walks this thread, so we have
4175    // to release its per-thread recorder here.
4176    MemTracker::thread_exiting(p);
4177  } // unlock Threads_lock
4178
4179  // Since Events::log uses a lock, we grab it outside the Threads_lock
4180  Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4181}
4182
4183// Threads_lock must be held when this is called (or must be called during a safepoint)
4184bool Threads::includes(JavaThread* p) {
4185  assert(Threads_lock->is_locked(), "sanity check");
4186  ALL_JAVA_THREADS(q) {
4187    if (q == p ) {
4188      return true;
4189    }
4190  }
4191  return false;
4192}
4193
4194// Operations on the Threads list for GC.  These are not explicitly locked,
4195// but the garbage collector must provide a safe context for them to run.
4196// In particular, these things should never be called when the Threads_lock
4197// is held by some other thread. (Note: the Safepoint abstraction also
4198// uses the Threads_lock to gurantee this property. It also makes sure that
4199// all threads gets blocked when exiting or starting).
4200
4201void Threads::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
4202  ALL_JAVA_THREADS(p) {
4203    p->oops_do(f, cld_f, cf);
4204  }
4205  VMThread::vm_thread()->oops_do(f, cld_f, cf);
4206}
4207
4208void Threads::possibly_parallel_oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
4209  // Introduce a mechanism allowing parallel threads to claim threads as
4210  // root groups.  Overhead should be small enough to use all the time,
4211  // even in sequential code.
4212  SharedHeap* sh = SharedHeap::heap();
4213  // Cannot yet substitute active_workers for n_par_threads
4214  // because of G1CollectedHeap::verify() use of
4215  // SharedHeap::process_strong_roots().  n_par_threads == 0 will
4216  // turn off parallelism in process_strong_roots while active_workers
4217  // is being used for parallelism elsewhere.
4218  bool is_par = sh->n_par_threads() > 0;
4219  assert(!is_par ||
4220         (SharedHeap::heap()->n_par_threads() ==
4221          SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4222  int cp = SharedHeap::heap()->strong_roots_parity();
4223  ALL_JAVA_THREADS(p) {
4224    if (p->claim_oops_do(is_par, cp)) {
4225      p->oops_do(f, cld_f, cf);
4226    }
4227  }
4228  VMThread* vmt = VMThread::vm_thread();
4229  if (vmt->claim_oops_do(is_par, cp)) {
4230    vmt->oops_do(f, cld_f, cf);
4231  }
4232}
4233
4234#ifndef SERIALGC
4235// Used by ParallelScavenge
4236void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4237  ALL_JAVA_THREADS(p) {
4238    q->enqueue(new ThreadRootsTask(p));
4239  }
4240  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4241}
4242
4243// Used by Parallel Old
4244void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4245  ALL_JAVA_THREADS(p) {
4246    q->enqueue(new ThreadRootsMarkingTask(p));
4247  }
4248  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4249}
4250#endif // SERIALGC
4251
4252void Threads::nmethods_do(CodeBlobClosure* cf) {
4253  ALL_JAVA_THREADS(p) {
4254    p->nmethods_do(cf);
4255  }
4256  VMThread::vm_thread()->nmethods_do(cf);
4257}
4258
4259void Threads::metadata_do(void f(Metadata*)) {
4260  ALL_JAVA_THREADS(p) {
4261    p->metadata_do(f);
4262  }
4263}
4264
4265void Threads::gc_epilogue() {
4266  ALL_JAVA_THREADS(p) {
4267    p->gc_epilogue();
4268  }
4269}
4270
4271void Threads::gc_prologue() {
4272  ALL_JAVA_THREADS(p) {
4273    p->gc_prologue();
4274  }
4275}
4276
4277void Threads::deoptimized_wrt_marked_nmethods() {
4278  ALL_JAVA_THREADS(p) {
4279    p->deoptimized_wrt_marked_nmethods();
4280  }
4281}
4282
4283
4284// Get count Java threads that are waiting to enter the specified monitor.
4285GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4286  address monitor, bool doLock) {
4287  assert(doLock || SafepointSynchronize::is_at_safepoint(),
4288    "must grab Threads_lock or be at safepoint");
4289  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4290
4291  int i = 0;
4292  {
4293    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4294    ALL_JAVA_THREADS(p) {
4295      if (p->is_Compiler_thread()) continue;
4296
4297      address pending = (address)p->current_pending_monitor();
4298      if (pending == monitor) {             // found a match
4299        if (i < count) result->append(p);   // save the first count matches
4300        i++;
4301      }
4302    }
4303  }
4304  return result;
4305}
4306
4307
4308JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4309  assert(doLock ||
4310         Threads_lock->owned_by_self() ||
4311         SafepointSynchronize::is_at_safepoint(),
4312         "must grab Threads_lock or be at safepoint");
4313
4314  // NULL owner means not locked so we can skip the search
4315  if (owner == NULL) return NULL;
4316
4317  {
4318    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4319    ALL_JAVA_THREADS(p) {
4320      // first, see if owner is the address of a Java thread
4321      if (owner == (address)p) return p;
4322    }
4323  }
4324  assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
4325  if (UseHeavyMonitors) return NULL;
4326
4327  //
4328  // If we didn't find a matching Java thread and we didn't force use of
4329  // heavyweight monitors, then the owner is the stack address of the
4330  // Lock Word in the owning Java thread's stack.
4331  //
4332  JavaThread* the_owner = NULL;
4333  {
4334    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4335    ALL_JAVA_THREADS(q) {
4336      if (q->is_lock_owned(owner)) {
4337        the_owner = q;
4338        break;
4339      }
4340    }
4341  }
4342  assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
4343  return the_owner;
4344}
4345
4346// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4347void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4348  char buf[32];
4349  st->print_cr(os::local_time_string(buf, sizeof(buf)));
4350
4351  st->print_cr("Full thread dump %s (%s %s):",
4352                Abstract_VM_Version::vm_name(),
4353                Abstract_VM_Version::vm_release(),
4354                Abstract_VM_Version::vm_info_string()
4355               );
4356  st->cr();
4357
4358#ifndef SERIALGC
4359  // Dump concurrent locks
4360  ConcurrentLocksDump concurrent_locks;
4361  if (print_concurrent_locks) {
4362    concurrent_locks.dump_at_safepoint();
4363  }
4364#endif // SERIALGC
4365
4366  ALL_JAVA_THREADS(p) {
4367    ResourceMark rm;
4368    p->print_on(st);
4369    if (print_stacks) {
4370      if (internal_format) {
4371        p->trace_stack();
4372      } else {
4373        p->print_stack_on(st);
4374      }
4375    }
4376    st->cr();
4377#ifndef SERIALGC
4378    if (print_concurrent_locks) {
4379      concurrent_locks.print_locks_on(p, st);
4380    }
4381#endif // SERIALGC
4382  }
4383
4384  VMThread::vm_thread()->print_on(st);
4385  st->cr();
4386  Universe::heap()->print_gc_threads_on(st);
4387  WatcherThread* wt = WatcherThread::watcher_thread();
4388  if (wt != NULL) {
4389    wt->print_on(st);
4390    st->cr();
4391  }
4392  CompileBroker::print_compiler_threads_on(st);
4393  st->flush();
4394}
4395
4396// Threads::print_on_error() is called by fatal error handler. It's possible
4397// that VM is not at safepoint and/or current thread is inside signal handler.
4398// Don't print stack trace, as the stack may not be walkable. Don't allocate
4399// memory (even in resource area), it might deadlock the error handler.
4400void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4401  bool found_current = false;
4402  st->print_cr("Java Threads: ( => current thread )");
4403  ALL_JAVA_THREADS(thread) {
4404    bool is_current = (current == thread);
4405    found_current = found_current || is_current;
4406
4407    st->print("%s", is_current ? "=>" : "  ");
4408
4409    st->print(PTR_FORMAT, thread);
4410    st->print(" ");
4411    thread->print_on_error(st, buf, buflen);
4412    st->cr();
4413  }
4414  st->cr();
4415
4416  st->print_cr("Other Threads:");
4417  if (VMThread::vm_thread()) {
4418    bool is_current = (current == VMThread::vm_thread());
4419    found_current = found_current || is_current;
4420    st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4421
4422    st->print(PTR_FORMAT, VMThread::vm_thread());
4423    st->print(" ");
4424    VMThread::vm_thread()->print_on_error(st, buf, buflen);
4425    st->cr();
4426  }
4427  WatcherThread* wt = WatcherThread::watcher_thread();
4428  if (wt != NULL) {
4429    bool is_current = (current == wt);
4430    found_current = found_current || is_current;
4431    st->print("%s", is_current ? "=>" : "  ");
4432
4433    st->print(PTR_FORMAT, wt);
4434    st->print(" ");
4435    wt->print_on_error(st, buf, buflen);
4436    st->cr();
4437  }
4438  if (!found_current) {
4439    st->cr();
4440    st->print("=>" PTR_FORMAT " (exited) ", current);
4441    current->print_on_error(st, buf, buflen);
4442    st->cr();
4443  }
4444}
4445
4446// Internal SpinLock and Mutex
4447// Based on ParkEvent
4448
4449// Ad-hoc mutual exclusion primitives: SpinLock and Mux
4450//
4451// We employ SpinLocks _only for low-contention, fixed-length
4452// short-duration critical sections where we're concerned
4453// about native mutex_t or HotSpot Mutex:: latency.
4454// The mux construct provides a spin-then-block mutual exclusion
4455// mechanism.
4456//
4457// Testing has shown that contention on the ListLock guarding gFreeList
4458// is common.  If we implement ListLock as a simple SpinLock it's common
4459// for the JVM to devolve to yielding with little progress.  This is true
4460// despite the fact that the critical sections protected by ListLock are
4461// extremely short.
4462//
4463// TODO-FIXME: ListLock should be of type SpinLock.
4464// We should make this a 1st-class type, integrated into the lock
4465// hierarchy as leaf-locks.  Critically, the SpinLock structure
4466// should have sufficient padding to avoid false-sharing and excessive
4467// cache-coherency traffic.
4468
4469
4470typedef volatile int SpinLockT ;
4471
4472void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4473  if (Atomic::cmpxchg (1, adr, 0) == 0) {
4474     return ;   // normal fast-path return
4475  }
4476
4477  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4478  TEVENT (SpinAcquire - ctx) ;
4479  int ctr = 0 ;
4480  int Yields = 0 ;
4481  for (;;) {
4482     while (*adr != 0) {
4483        ++ctr ;
4484        if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4485           if (Yields > 5) {
4486             // Consider using a simple NakedSleep() instead.
4487             // Then SpinAcquire could be called by non-JVM threads
4488             Thread::current()->_ParkEvent->park(1) ;
4489           } else {
4490             os::NakedYield() ;
4491             ++Yields ;
4492           }
4493        } else {
4494           SpinPause() ;
4495        }
4496     }
4497     if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4498  }
4499}
4500
4501void Thread::SpinRelease (volatile int * adr) {
4502  assert (*adr != 0, "invariant") ;
4503  OrderAccess::fence() ;      // guarantee at least release consistency.
4504  // Roach-motel semantics.
4505  // It's safe if subsequent LDs and STs float "up" into the critical section,
4506  // but prior LDs and STs within the critical section can't be allowed
4507  // to reorder or float past the ST that releases the lock.
4508  *adr = 0 ;
4509}
4510
4511// muxAcquire and muxRelease:
4512//
4513// *  muxAcquire and muxRelease support a single-word lock-word construct.
4514//    The LSB of the word is set IFF the lock is held.
4515//    The remainder of the word points to the head of a singly-linked list
4516//    of threads blocked on the lock.
4517//
4518// *  The current implementation of muxAcquire-muxRelease uses its own
4519//    dedicated Thread._MuxEvent instance.  If we're interested in
4520//    minimizing the peak number of extant ParkEvent instances then
4521//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4522//    as certain invariants were satisfied.  Specifically, care would need
4523//    to be taken with regards to consuming unpark() "permits".
4524//    A safe rule of thumb is that a thread would never call muxAcquire()
4525//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4526//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4527//    consume an unpark() permit intended for monitorenter, for instance.
4528//    One way around this would be to widen the restricted-range semaphore
4529//    implemented in park().  Another alternative would be to provide
4530//    multiple instances of the PlatformEvent() for each thread.  One
4531//    instance would be dedicated to muxAcquire-muxRelease, for instance.
4532//
4533// *  Usage:
4534//    -- Only as leaf locks
4535//    -- for short-term locking only as muxAcquire does not perform
4536//       thread state transitions.
4537//
4538// Alternatives:
4539// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4540//    but with parking or spin-then-park instead of pure spinning.
4541// *  Use Taura-Oyama-Yonenzawa locks.
4542// *  It's possible to construct a 1-0 lock if we encode the lockword as
4543//    (List,LockByte).  Acquire will CAS the full lockword while Release
4544//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4545//    acquiring threads use timers (ParkTimed) to detect and recover from
4546//    the stranding window.  Thread/Node structures must be aligned on 256-byte
4547//    boundaries by using placement-new.
4548// *  Augment MCS with advisory back-link fields maintained with CAS().
4549//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4550//    The validity of the backlinks must be ratified before we trust the value.
4551//    If the backlinks are invalid the exiting thread must back-track through the
4552//    the forward links, which are always trustworthy.
4553// *  Add a successor indication.  The LockWord is currently encoded as
4554//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4555//    to provide the usual futile-wakeup optimization.
4556//    See RTStt for details.
4557// *  Consider schedctl.sc_nopreempt to cover the critical section.
4558//
4559
4560
4561typedef volatile intptr_t MutexT ;      // Mux Lock-word
4562enum MuxBits { LOCKBIT = 1 } ;
4563
4564void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4565  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4566  if (w == 0) return ;
4567  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4568     return ;
4569  }
4570
4571  TEVENT (muxAcquire - Contention) ;
4572  ParkEvent * const Self = Thread::current()->_MuxEvent ;
4573  assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4574  for (;;) {
4575     int its = (os::is_MP() ? 100 : 0) + 1 ;
4576
4577     // Optional spin phase: spin-then-park strategy
4578     while (--its >= 0) {
4579       w = *Lock ;
4580       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4581          return ;
4582       }
4583     }
4584
4585     Self->reset() ;
4586     Self->OnList = intptr_t(Lock) ;
4587     // The following fence() isn't _strictly necessary as the subsequent
4588     // CAS() both serializes execution and ratifies the fetched *Lock value.
4589     OrderAccess::fence();
4590     for (;;) {
4591        w = *Lock ;
4592        if ((w & LOCKBIT) == 0) {
4593            if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4594                Self->OnList = 0 ;   // hygiene - allows stronger asserts
4595                return ;
4596            }
4597            continue ;      // Interference -- *Lock changed -- Just retry
4598        }
4599        assert (w & LOCKBIT, "invariant") ;
4600        Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4601        if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4602     }
4603
4604     while (Self->OnList != 0) {
4605        Self->park() ;
4606     }
4607  }
4608}
4609
4610void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4611  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4612  if (w == 0) return ;
4613  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4614    return ;
4615  }
4616
4617  TEVENT (muxAcquire - Contention) ;
4618  ParkEvent * ReleaseAfter = NULL ;
4619  if (ev == NULL) {
4620    ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4621  }
4622  assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4623  for (;;) {
4624    guarantee (ev->OnList == 0, "invariant") ;
4625    int its = (os::is_MP() ? 100 : 0) + 1 ;
4626
4627    // Optional spin phase: spin-then-park strategy
4628    while (--its >= 0) {
4629      w = *Lock ;
4630      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4631        if (ReleaseAfter != NULL) {
4632          ParkEvent::Release (ReleaseAfter) ;
4633        }
4634        return ;
4635      }
4636    }
4637
4638    ev->reset() ;
4639    ev->OnList = intptr_t(Lock) ;
4640    // The following fence() isn't _strictly necessary as the subsequent
4641    // CAS() both serializes execution and ratifies the fetched *Lock value.
4642    OrderAccess::fence();
4643    for (;;) {
4644      w = *Lock ;
4645      if ((w & LOCKBIT) == 0) {
4646        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4647          ev->OnList = 0 ;
4648          // We call ::Release while holding the outer lock, thus
4649          // artificially lengthening the critical section.
4650          // Consider deferring the ::Release() until the subsequent unlock(),
4651          // after we've dropped the outer lock.
4652          if (ReleaseAfter != NULL) {
4653            ParkEvent::Release (ReleaseAfter) ;
4654          }
4655          return ;
4656        }
4657        continue ;      // Interference -- *Lock changed -- Just retry
4658      }
4659      assert (w & LOCKBIT, "invariant") ;
4660      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4661      if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4662    }
4663
4664    while (ev->OnList != 0) {
4665      ev->park() ;
4666    }
4667  }
4668}
4669
4670// Release() must extract a successor from the list and then wake that thread.
4671// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4672// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4673// Release() would :
4674// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4675// (B) Extract a successor from the private list "in-hand"
4676// (C) attempt to CAS() the residual back into *Lock over null.
4677//     If there were any newly arrived threads and the CAS() would fail.
4678//     In that case Release() would detach the RATs, re-merge the list in-hand
4679//     with the RATs and repeat as needed.  Alternately, Release() might
4680//     detach and extract a successor, but then pass the residual list to the wakee.
4681//     The wakee would be responsible for reattaching and remerging before it
4682//     competed for the lock.
4683//
4684// Both "pop" and DMR are immune from ABA corruption -- there can be
4685// multiple concurrent pushers, but only one popper or detacher.
4686// This implementation pops from the head of the list.  This is unfair,
4687// but tends to provide excellent throughput as hot threads remain hot.
4688// (We wake recently run threads first).
4689
4690void Thread::muxRelease (volatile intptr_t * Lock)  {
4691  for (;;) {
4692    const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4693    assert (w & LOCKBIT, "invariant") ;
4694    if (w == LOCKBIT) return ;
4695    ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4696    assert (List != NULL, "invariant") ;
4697    assert (List->OnList == intptr_t(Lock), "invariant") ;
4698    ParkEvent * nxt = List->ListNext ;
4699
4700    // The following CAS() releases the lock and pops the head element.
4701    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4702      continue ;
4703    }
4704    List->OnList = 0 ;
4705    OrderAccess::fence() ;
4706    List->unpark () ;
4707    return ;
4708  }
4709}
4710
4711
4712void Threads::verify() {
4713  ALL_JAVA_THREADS(p) {
4714    p->verify();
4715  }
4716  VMThread* thread = VMThread::vm_thread();
4717  if (thread != NULL) thread->verify();
4718}
4719