thread.cpp revision 3826:6cb0d32b828b
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/scopeDesc.hpp"
31#include "compiler/compileBroker.hpp"
32#include "interpreter/interpreter.hpp"
33#include "interpreter/linkResolver.hpp"
34#include "interpreter/oopMapCache.hpp"
35#include "jvmtifiles/jvmtiEnv.hpp"
36#include "memory/gcLocker.inline.hpp"
37#include "memory/metaspaceShared.hpp"
38#include "memory/oopFactory.hpp"
39#include "memory/universe.inline.hpp"
40#include "oops/instanceKlass.hpp"
41#include "oops/objArrayOop.hpp"
42#include "oops/oop.inline.hpp"
43#include "oops/symbol.hpp"
44#include "prims/jvm_misc.hpp"
45#include "prims/jvmtiExport.hpp"
46#include "prims/jvmtiThreadState.hpp"
47#include "prims/privilegedStack.hpp"
48#include "runtime/aprofiler.hpp"
49#include "runtime/arguments.hpp"
50#include "runtime/biasedLocking.hpp"
51#include "runtime/deoptimization.hpp"
52#include "runtime/fprofiler.hpp"
53#include "runtime/frame.inline.hpp"
54#include "runtime/init.hpp"
55#include "runtime/interfaceSupport.hpp"
56#include "runtime/java.hpp"
57#include "runtime/javaCalls.hpp"
58#include "runtime/jniPeriodicChecker.hpp"
59#include "runtime/memprofiler.hpp"
60#include "runtime/mutexLocker.hpp"
61#include "runtime/objectMonitor.hpp"
62#include "runtime/osThread.hpp"
63#include "runtime/safepoint.hpp"
64#include "runtime/sharedRuntime.hpp"
65#include "runtime/statSampler.hpp"
66#include "runtime/stubRoutines.hpp"
67#include "runtime/task.hpp"
68#include "runtime/threadCritical.hpp"
69#include "runtime/threadLocalStorage.hpp"
70#include "runtime/vframe.hpp"
71#include "runtime/vframeArray.hpp"
72#include "runtime/vframe_hp.hpp"
73#include "runtime/vmThread.hpp"
74#include "runtime/vm_operations.hpp"
75#include "services/attachListener.hpp"
76#include "services/management.hpp"
77#include "services/memTracker.hpp"
78#include "services/threadService.hpp"
79#include "trace/traceEventTypes.hpp"
80#include "utilities/defaultStream.hpp"
81#include "utilities/dtrace.hpp"
82#include "utilities/events.hpp"
83#include "utilities/preserveException.hpp"
84#ifdef TARGET_OS_FAMILY_linux
85# include "os_linux.inline.hpp"
86# include "thread_linux.inline.hpp"
87#endif
88#ifdef TARGET_OS_FAMILY_solaris
89# include "os_solaris.inline.hpp"
90# include "thread_solaris.inline.hpp"
91#endif
92#ifdef TARGET_OS_FAMILY_windows
93# include "os_windows.inline.hpp"
94# include "thread_windows.inline.hpp"
95#endif
96#ifdef TARGET_OS_FAMILY_bsd
97# include "os_bsd.inline.hpp"
98# include "thread_bsd.inline.hpp"
99#endif
100#ifndef SERIALGC
101#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
102#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
103#include "gc_implementation/parallelScavenge/pcTasks.hpp"
104#endif
105#ifdef COMPILER1
106#include "c1/c1_Compiler.hpp"
107#endif
108#ifdef COMPILER2
109#include "opto/c2compiler.hpp"
110#include "opto/idealGraphPrinter.hpp"
111#endif
112
113#ifdef DTRACE_ENABLED
114
115// Only bother with this argument setup if dtrace is available
116
117#ifndef USDT2
118HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
119HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
120HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
121  intptr_t, intptr_t, bool);
122HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
123  intptr_t, intptr_t, bool);
124
125#define DTRACE_THREAD_PROBE(probe, javathread)                             \
126  {                                                                        \
127    ResourceMark rm(this);                                                 \
128    int len = 0;                                                           \
129    const char* name = (javathread)->get_thread_name();                    \
130    len = strlen(name);                                                    \
131    HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
132      name, len,                                                           \
133      java_lang_Thread::thread_id((javathread)->threadObj()),              \
134      (javathread)->osthread()->thread_id(),                               \
135      java_lang_Thread::is_daemon((javathread)->threadObj()));             \
136  }
137
138#else /* USDT2 */
139
140#define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
141#define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
142
143#define DTRACE_THREAD_PROBE(probe, javathread)                             \
144  {                                                                        \
145    ResourceMark rm(this);                                                 \
146    int len = 0;                                                           \
147    const char* name = (javathread)->get_thread_name();                    \
148    len = strlen(name);                                                    \
149    HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
150      (char *) name, len,                                                           \
151      java_lang_Thread::thread_id((javathread)->threadObj()),              \
152      (uintptr_t) (javathread)->osthread()->thread_id(),                               \
153      java_lang_Thread::is_daemon((javathread)->threadObj()));             \
154  }
155
156#endif /* USDT2 */
157
158#else //  ndef DTRACE_ENABLED
159
160#define DTRACE_THREAD_PROBE(probe, javathread)
161
162#endif // ndef DTRACE_ENABLED
163
164
165// Class hierarchy
166// - Thread
167//   - VMThread
168//   - WatcherThread
169//   - ConcurrentMarkSweepThread
170//   - JavaThread
171//     - CompilerThread
172
173// ======= Thread ========
174// Support for forcing alignment of thread objects for biased locking
175void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
176  if (UseBiasedLocking) {
177    const int alignment = markOopDesc::biased_lock_alignment;
178    size_t aligned_size = size + (alignment - sizeof(intptr_t));
179    void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
180                                          : AllocateHeap(aligned_size, flags, CURRENT_PC,
181                                              AllocFailStrategy::RETURN_NULL);
182    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
183    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
184           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
185           "JavaThread alignment code overflowed allocated storage");
186    if (TraceBiasedLocking) {
187      if (aligned_addr != real_malloc_addr)
188        tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
189                      real_malloc_addr, aligned_addr);
190    }
191    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
192    return aligned_addr;
193  } else {
194    return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
195                       : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
196  }
197}
198
199void Thread::operator delete(void* p) {
200  if (UseBiasedLocking) {
201    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
202    FreeHeap(real_malloc_addr, mtThread);
203  } else {
204    FreeHeap(p, mtThread);
205  }
206}
207
208
209// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
210// JavaThread
211
212
213Thread::Thread() {
214  // stack and get_thread
215  set_stack_base(NULL);
216  set_stack_size(0);
217  set_self_raw_id(0);
218  set_lgrp_id(-1);
219
220  // allocated data structures
221  set_osthread(NULL);
222  set_resource_area(new (mtThread)ResourceArea());
223  set_handle_area(new (mtThread) HandleArea(NULL));
224  set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(300, true));
225  set_active_handles(NULL);
226  set_free_handle_block(NULL);
227  set_last_handle_mark(NULL);
228
229  // This initial value ==> never claimed.
230  _oops_do_parity = 0;
231
232  // the handle mark links itself to last_handle_mark
233  new HandleMark(this);
234
235  // plain initialization
236  debug_only(_owned_locks = NULL;)
237  debug_only(_allow_allocation_count = 0;)
238  NOT_PRODUCT(_allow_safepoint_count = 0;)
239  NOT_PRODUCT(_skip_gcalot = false;)
240  CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
241  _jvmti_env_iteration_count = 0;
242  set_allocated_bytes(0);
243  set_trace_buffer(NULL);
244  _vm_operation_started_count = 0;
245  _vm_operation_completed_count = 0;
246  _current_pending_monitor = NULL;
247  _current_pending_monitor_is_from_java = true;
248  _current_waiting_monitor = NULL;
249  _num_nested_signal = 0;
250  omFreeList = NULL ;
251  omFreeCount = 0 ;
252  omFreeProvision = 32 ;
253  omInUseList = NULL ;
254  omInUseCount = 0 ;
255
256#ifdef ASSERT
257  _visited_for_critical_count = false;
258#endif
259
260  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
261  _suspend_flags = 0;
262
263  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
264  _hashStateX = os::random() ;
265  _hashStateY = 842502087 ;
266  _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
267  _hashStateW = 273326509 ;
268
269  _OnTrap   = 0 ;
270  _schedctl = NULL ;
271  _Stalled  = 0 ;
272  _TypeTag  = 0x2BAD ;
273
274  // Many of the following fields are effectively final - immutable
275  // Note that nascent threads can't use the Native Monitor-Mutex
276  // construct until the _MutexEvent is initialized ...
277  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
278  // we might instead use a stack of ParkEvents that we could provision on-demand.
279  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
280  // and ::Release()
281  _ParkEvent   = ParkEvent::Allocate (this) ;
282  _SleepEvent  = ParkEvent::Allocate (this) ;
283  _MutexEvent  = ParkEvent::Allocate (this) ;
284  _MuxEvent    = ParkEvent::Allocate (this) ;
285
286#ifdef CHECK_UNHANDLED_OOPS
287  if (CheckUnhandledOops) {
288    _unhandled_oops = new UnhandledOops(this);
289  }
290#endif // CHECK_UNHANDLED_OOPS
291#ifdef ASSERT
292  if (UseBiasedLocking) {
293    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
294    assert(this == _real_malloc_address ||
295           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
296           "bug in forced alignment of thread objects");
297  }
298#endif /* ASSERT */
299}
300
301void Thread::initialize_thread_local_storage() {
302  // Note: Make sure this method only calls
303  // non-blocking operations. Otherwise, it might not work
304  // with the thread-startup/safepoint interaction.
305
306  // During Java thread startup, safepoint code should allow this
307  // method to complete because it may need to allocate memory to
308  // store information for the new thread.
309
310  // initialize structure dependent on thread local storage
311  ThreadLocalStorage::set_thread(this);
312}
313
314void Thread::record_stack_base_and_size() {
315  set_stack_base(os::current_stack_base());
316  set_stack_size(os::current_stack_size());
317  // CR 7190089: on Solaris, primordial thread's stack is adjusted
318  // in initialize_thread(). Without the adjustment, stack size is
319  // incorrect if stack is set to unlimited (ulimit -s unlimited).
320  // So far, only Solaris has real implementation of initialize_thread().
321  //
322  // set up any platform-specific state.
323  os::initialize_thread(this);
324
325#if INCLUDE_NMT
326  // record thread's native stack, stack grows downward
327  address stack_low_addr = stack_base() - stack_size();
328  MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
329      CURRENT_PC);
330#endif // INCLUDE_NMT
331}
332
333
334Thread::~Thread() {
335  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
336  ObjectSynchronizer::omFlush (this) ;
337
338  // stack_base can be NULL if the thread is never started or exited before
339  // record_stack_base_and_size called. Although, we would like to ensure
340  // that all started threads do call record_stack_base_and_size(), there is
341  // not proper way to enforce that.
342#if INCLUDE_NMT
343  if (_stack_base != NULL) {
344    address low_stack_addr = stack_base() - stack_size();
345    MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
346#ifdef ASSERT
347    set_stack_base(NULL);
348#endif
349  }
350#endif // INCLUDE_NMT
351
352  // deallocate data structures
353  delete resource_area();
354  // since the handle marks are using the handle area, we have to deallocated the root
355  // handle mark before deallocating the thread's handle area,
356  assert(last_handle_mark() != NULL, "check we have an element");
357  delete last_handle_mark();
358  assert(last_handle_mark() == NULL, "check we have reached the end");
359
360  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
361  // We NULL out the fields for good hygiene.
362  ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
363  ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
364  ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
365  ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
366
367  delete handle_area();
368  delete metadata_handles();
369
370  // osthread() can be NULL, if creation of thread failed.
371  if (osthread() != NULL) os::free_thread(osthread());
372
373  delete _SR_lock;
374
375  // clear thread local storage if the Thread is deleting itself
376  if (this == Thread::current()) {
377    ThreadLocalStorage::set_thread(NULL);
378  } else {
379    // In the case where we're not the current thread, invalidate all the
380    // caches in case some code tries to get the current thread or the
381    // thread that was destroyed, and gets stale information.
382    ThreadLocalStorage::invalidate_all();
383  }
384  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
385}
386
387// NOTE: dummy function for assertion purpose.
388void Thread::run() {
389  ShouldNotReachHere();
390}
391
392#ifdef ASSERT
393// Private method to check for dangling thread pointer
394void check_for_dangling_thread_pointer(Thread *thread) {
395 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
396         "possibility of dangling Thread pointer");
397}
398#endif
399
400
401#ifndef PRODUCT
402// Tracing method for basic thread operations
403void Thread::trace(const char* msg, const Thread* const thread) {
404  if (!TraceThreadEvents) return;
405  ResourceMark rm;
406  ThreadCritical tc;
407  const char *name = "non-Java thread";
408  int prio = -1;
409  if (thread->is_Java_thread()
410      && !thread->is_Compiler_thread()) {
411    // The Threads_lock must be held to get information about
412    // this thread but may not be in some situations when
413    // tracing  thread events.
414    bool release_Threads_lock = false;
415    if (!Threads_lock->owned_by_self()) {
416      Threads_lock->lock();
417      release_Threads_lock = true;
418    }
419    JavaThread* jt = (JavaThread *)thread;
420    name = (char *)jt->get_thread_name();
421    oop thread_oop = jt->threadObj();
422    if (thread_oop != NULL) {
423      prio = java_lang_Thread::priority(thread_oop);
424    }
425    if (release_Threads_lock) {
426      Threads_lock->unlock();
427    }
428  }
429  tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
430}
431#endif
432
433
434ThreadPriority Thread::get_priority(const Thread* const thread) {
435  trace("get priority", thread);
436  ThreadPriority priority;
437  // Can return an error!
438  (void)os::get_priority(thread, priority);
439  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
440  return priority;
441}
442
443void Thread::set_priority(Thread* thread, ThreadPriority priority) {
444  trace("set priority", thread);
445  debug_only(check_for_dangling_thread_pointer(thread);)
446  // Can return an error!
447  (void)os::set_priority(thread, priority);
448}
449
450
451void Thread::start(Thread* thread) {
452  trace("start", thread);
453  // Start is different from resume in that its safety is guaranteed by context or
454  // being called from a Java method synchronized on the Thread object.
455  if (!DisableStartThread) {
456    if (thread->is_Java_thread()) {
457      // Initialize the thread state to RUNNABLE before starting this thread.
458      // Can not set it after the thread started because we do not know the
459      // exact thread state at that time. It could be in MONITOR_WAIT or
460      // in SLEEPING or some other state.
461      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
462                                          java_lang_Thread::RUNNABLE);
463    }
464    os::start_thread(thread);
465  }
466}
467
468// Enqueue a VM_Operation to do the job for us - sometime later
469void Thread::send_async_exception(oop java_thread, oop java_throwable) {
470  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
471  VMThread::execute(vm_stop);
472}
473
474
475//
476// Check if an external suspend request has completed (or has been
477// cancelled). Returns true if the thread is externally suspended and
478// false otherwise.
479//
480// The bits parameter returns information about the code path through
481// the routine. Useful for debugging:
482//
483// set in is_ext_suspend_completed():
484// 0x00000001 - routine was entered
485// 0x00000010 - routine return false at end
486// 0x00000100 - thread exited (return false)
487// 0x00000200 - suspend request cancelled (return false)
488// 0x00000400 - thread suspended (return true)
489// 0x00001000 - thread is in a suspend equivalent state (return true)
490// 0x00002000 - thread is native and walkable (return true)
491// 0x00004000 - thread is native_trans and walkable (needed retry)
492//
493// set in wait_for_ext_suspend_completion():
494// 0x00010000 - routine was entered
495// 0x00020000 - suspend request cancelled before loop (return false)
496// 0x00040000 - thread suspended before loop (return true)
497// 0x00080000 - suspend request cancelled in loop (return false)
498// 0x00100000 - thread suspended in loop (return true)
499// 0x00200000 - suspend not completed during retry loop (return false)
500//
501
502// Helper class for tracing suspend wait debug bits.
503//
504// 0x00000100 indicates that the target thread exited before it could
505// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
506// 0x00080000 each indicate a cancelled suspend request so they don't
507// count as wait failures either.
508#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
509
510class TraceSuspendDebugBits : public StackObj {
511 private:
512  JavaThread * jt;
513  bool         is_wait;
514  bool         called_by_wait;  // meaningful when !is_wait
515  uint32_t *   bits;
516
517 public:
518  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
519                        uint32_t *_bits) {
520    jt             = _jt;
521    is_wait        = _is_wait;
522    called_by_wait = _called_by_wait;
523    bits           = _bits;
524  }
525
526  ~TraceSuspendDebugBits() {
527    if (!is_wait) {
528#if 1
529      // By default, don't trace bits for is_ext_suspend_completed() calls.
530      // That trace is very chatty.
531      return;
532#else
533      if (!called_by_wait) {
534        // If tracing for is_ext_suspend_completed() is enabled, then only
535        // trace calls to it from wait_for_ext_suspend_completion()
536        return;
537      }
538#endif
539    }
540
541    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
542      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
543        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
544        ResourceMark rm;
545
546        tty->print_cr(
547            "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
548            jt->get_thread_name(), *bits);
549
550        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
551      }
552    }
553  }
554};
555#undef DEBUG_FALSE_BITS
556
557
558bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
559  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
560
561  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
562  bool do_trans_retry;           // flag to force the retry
563
564  *bits |= 0x00000001;
565
566  do {
567    do_trans_retry = false;
568
569    if (is_exiting()) {
570      // Thread is in the process of exiting. This is always checked
571      // first to reduce the risk of dereferencing a freed JavaThread.
572      *bits |= 0x00000100;
573      return false;
574    }
575
576    if (!is_external_suspend()) {
577      // Suspend request is cancelled. This is always checked before
578      // is_ext_suspended() to reduce the risk of a rogue resume
579      // confusing the thread that made the suspend request.
580      *bits |= 0x00000200;
581      return false;
582    }
583
584    if (is_ext_suspended()) {
585      // thread is suspended
586      *bits |= 0x00000400;
587      return true;
588    }
589
590    // Now that we no longer do hard suspends of threads running
591    // native code, the target thread can be changing thread state
592    // while we are in this routine:
593    //
594    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
595    //
596    // We save a copy of the thread state as observed at this moment
597    // and make our decision about suspend completeness based on the
598    // copy. This closes the race where the thread state is seen as
599    // _thread_in_native_trans in the if-thread_blocked check, but is
600    // seen as _thread_blocked in if-thread_in_native_trans check.
601    JavaThreadState save_state = thread_state();
602
603    if (save_state == _thread_blocked && is_suspend_equivalent()) {
604      // If the thread's state is _thread_blocked and this blocking
605      // condition is known to be equivalent to a suspend, then we can
606      // consider the thread to be externally suspended. This means that
607      // the code that sets _thread_blocked has been modified to do
608      // self-suspension if the blocking condition releases. We also
609      // used to check for CONDVAR_WAIT here, but that is now covered by
610      // the _thread_blocked with self-suspension check.
611      //
612      // Return true since we wouldn't be here unless there was still an
613      // external suspend request.
614      *bits |= 0x00001000;
615      return true;
616    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
617      // Threads running native code will self-suspend on native==>VM/Java
618      // transitions. If its stack is walkable (should always be the case
619      // unless this function is called before the actual java_suspend()
620      // call), then the wait is done.
621      *bits |= 0x00002000;
622      return true;
623    } else if (!called_by_wait && !did_trans_retry &&
624               save_state == _thread_in_native_trans &&
625               frame_anchor()->walkable()) {
626      // The thread is transitioning from thread_in_native to another
627      // thread state. check_safepoint_and_suspend_for_native_trans()
628      // will force the thread to self-suspend. If it hasn't gotten
629      // there yet we may have caught the thread in-between the native
630      // code check above and the self-suspend. Lucky us. If we were
631      // called by wait_for_ext_suspend_completion(), then it
632      // will be doing the retries so we don't have to.
633      //
634      // Since we use the saved thread state in the if-statement above,
635      // there is a chance that the thread has already transitioned to
636      // _thread_blocked by the time we get here. In that case, we will
637      // make a single unnecessary pass through the logic below. This
638      // doesn't hurt anything since we still do the trans retry.
639
640      *bits |= 0x00004000;
641
642      // Once the thread leaves thread_in_native_trans for another
643      // thread state, we break out of this retry loop. We shouldn't
644      // need this flag to prevent us from getting back here, but
645      // sometimes paranoia is good.
646      did_trans_retry = true;
647
648      // We wait for the thread to transition to a more usable state.
649      for (int i = 1; i <= SuspendRetryCount; i++) {
650        // We used to do an "os::yield_all(i)" call here with the intention
651        // that yielding would increase on each retry. However, the parameter
652        // is ignored on Linux which means the yield didn't scale up. Waiting
653        // on the SR_lock below provides a much more predictable scale up for
654        // the delay. It also provides a simple/direct point to check for any
655        // safepoint requests from the VMThread
656
657        // temporarily drops SR_lock while doing wait with safepoint check
658        // (if we're a JavaThread - the WatcherThread can also call this)
659        // and increase delay with each retry
660        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
661
662        // check the actual thread state instead of what we saved above
663        if (thread_state() != _thread_in_native_trans) {
664          // the thread has transitioned to another thread state so
665          // try all the checks (except this one) one more time.
666          do_trans_retry = true;
667          break;
668        }
669      } // end retry loop
670
671
672    }
673  } while (do_trans_retry);
674
675  *bits |= 0x00000010;
676  return false;
677}
678
679//
680// Wait for an external suspend request to complete (or be cancelled).
681// Returns true if the thread is externally suspended and false otherwise.
682//
683bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
684       uint32_t *bits) {
685  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
686                             false /* !called_by_wait */, bits);
687
688  // local flag copies to minimize SR_lock hold time
689  bool is_suspended;
690  bool pending;
691  uint32_t reset_bits;
692
693  // set a marker so is_ext_suspend_completed() knows we are the caller
694  *bits |= 0x00010000;
695
696  // We use reset_bits to reinitialize the bits value at the top of
697  // each retry loop. This allows the caller to make use of any
698  // unused bits for their own marking purposes.
699  reset_bits = *bits;
700
701  {
702    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
703    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
704                                            delay, bits);
705    pending = is_external_suspend();
706  }
707  // must release SR_lock to allow suspension to complete
708
709  if (!pending) {
710    // A cancelled suspend request is the only false return from
711    // is_ext_suspend_completed() that keeps us from entering the
712    // retry loop.
713    *bits |= 0x00020000;
714    return false;
715  }
716
717  if (is_suspended) {
718    *bits |= 0x00040000;
719    return true;
720  }
721
722  for (int i = 1; i <= retries; i++) {
723    *bits = reset_bits;  // reinit to only track last retry
724
725    // We used to do an "os::yield_all(i)" call here with the intention
726    // that yielding would increase on each retry. However, the parameter
727    // is ignored on Linux which means the yield didn't scale up. Waiting
728    // on the SR_lock below provides a much more predictable scale up for
729    // the delay. It also provides a simple/direct point to check for any
730    // safepoint requests from the VMThread
731
732    {
733      MutexLocker ml(SR_lock());
734      // wait with safepoint check (if we're a JavaThread - the WatcherThread
735      // can also call this)  and increase delay with each retry
736      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
737
738      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
739                                              delay, bits);
740
741      // It is possible for the external suspend request to be cancelled
742      // (by a resume) before the actual suspend operation is completed.
743      // Refresh our local copy to see if we still need to wait.
744      pending = is_external_suspend();
745    }
746
747    if (!pending) {
748      // A cancelled suspend request is the only false return from
749      // is_ext_suspend_completed() that keeps us from staying in the
750      // retry loop.
751      *bits |= 0x00080000;
752      return false;
753    }
754
755    if (is_suspended) {
756      *bits |= 0x00100000;
757      return true;
758    }
759  } // end retry loop
760
761  // thread did not suspend after all our retries
762  *bits |= 0x00200000;
763  return false;
764}
765
766#ifndef PRODUCT
767void JavaThread::record_jump(address target, address instr, const char* file, int line) {
768
769  // This should not need to be atomic as the only way for simultaneous
770  // updates is via interrupts. Even then this should be rare or non-existant
771  // and we don't care that much anyway.
772
773  int index = _jmp_ring_index;
774  _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
775  _jmp_ring[index]._target = (intptr_t) target;
776  _jmp_ring[index]._instruction = (intptr_t) instr;
777  _jmp_ring[index]._file = file;
778  _jmp_ring[index]._line = line;
779}
780#endif /* PRODUCT */
781
782// Called by flat profiler
783// Callers have already called wait_for_ext_suspend_completion
784// The assertion for that is currently too complex to put here:
785bool JavaThread::profile_last_Java_frame(frame* _fr) {
786  bool gotframe = false;
787  // self suspension saves needed state.
788  if (has_last_Java_frame() && _anchor.walkable()) {
789     *_fr = pd_last_frame();
790     gotframe = true;
791  }
792  return gotframe;
793}
794
795void Thread::interrupt(Thread* thread) {
796  trace("interrupt", thread);
797  debug_only(check_for_dangling_thread_pointer(thread);)
798  os::interrupt(thread);
799}
800
801bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
802  trace("is_interrupted", thread);
803  debug_only(check_for_dangling_thread_pointer(thread);)
804  // Note:  If clear_interrupted==false, this simply fetches and
805  // returns the value of the field osthread()->interrupted().
806  return os::is_interrupted(thread, clear_interrupted);
807}
808
809
810// GC Support
811bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
812  jint thread_parity = _oops_do_parity;
813  if (thread_parity != strong_roots_parity) {
814    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
815    if (res == thread_parity) {
816      return true;
817    } else {
818      guarantee(res == strong_roots_parity, "Or else what?");
819      assert(SharedHeap::heap()->workers()->active_workers() > 0,
820         "Should only fail when parallel.");
821      return false;
822    }
823  }
824  assert(SharedHeap::heap()->workers()->active_workers() > 0,
825         "Should only fail when parallel.");
826  return false;
827}
828
829void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
830  active_handles()->oops_do(f);
831  // Do oop for ThreadShadow
832  f->do_oop((oop*)&_pending_exception);
833  handle_area()->oops_do(f);
834}
835
836void Thread::nmethods_do(CodeBlobClosure* cf) {
837  // no nmethods in a generic thread...
838}
839
840void Thread::metadata_do(void f(Metadata*)) {
841  if (metadata_handles() != NULL) {
842    for (int i = 0; i< metadata_handles()->length(); i++) {
843      f(metadata_handles()->at(i));
844    }
845  }
846}
847
848void Thread::print_on(outputStream* st) const {
849  // get_priority assumes osthread initialized
850  if (osthread() != NULL) {
851    int os_prio;
852    if (os::get_native_priority(this, &os_prio) == OS_OK) {
853      st->print("os_prio=%d ", os_prio);
854    }
855    st->print("tid=" INTPTR_FORMAT " ", this);
856    osthread()->print_on(st);
857  }
858  debug_only(if (WizardMode) print_owned_locks_on(st);)
859}
860
861// Thread::print_on_error() is called by fatal error handler. Don't use
862// any lock or allocate memory.
863void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
864  if      (is_VM_thread())                  st->print("VMThread");
865  else if (is_Compiler_thread())            st->print("CompilerThread");
866  else if (is_Java_thread())                st->print("JavaThread");
867  else if (is_GC_task_thread())             st->print("GCTaskThread");
868  else if (is_Watcher_thread())             st->print("WatcherThread");
869  else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
870  else st->print("Thread");
871
872  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
873            _stack_base - _stack_size, _stack_base);
874
875  if (osthread()) {
876    st->print(" [id=%d]", osthread()->thread_id());
877  }
878}
879
880#ifdef ASSERT
881void Thread::print_owned_locks_on(outputStream* st) const {
882  Monitor *cur = _owned_locks;
883  if (cur == NULL) {
884    st->print(" (no locks) ");
885  } else {
886    st->print_cr(" Locks owned:");
887    while(cur) {
888      cur->print_on(st);
889      cur = cur->next();
890    }
891  }
892}
893
894static int ref_use_count  = 0;
895
896bool Thread::owns_locks_but_compiled_lock() const {
897  for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
898    if (cur != Compile_lock) return true;
899  }
900  return false;
901}
902
903
904#endif
905
906#ifndef PRODUCT
907
908// The flag: potential_vm_operation notifies if this particular safepoint state could potential
909// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
910// no threads which allow_vm_block's are held
911void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
912    // Check if current thread is allowed to block at a safepoint
913    if (!(_allow_safepoint_count == 0))
914      fatal("Possible safepoint reached by thread that does not allow it");
915    if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
916      fatal("LEAF method calling lock?");
917    }
918
919#ifdef ASSERT
920    if (potential_vm_operation && is_Java_thread()
921        && !Universe::is_bootstrapping()) {
922      // Make sure we do not hold any locks that the VM thread also uses.
923      // This could potentially lead to deadlocks
924      for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
925        // Threads_lock is special, since the safepoint synchronization will not start before this is
926        // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
927        // since it is used to transfer control between JavaThreads and the VMThread
928        // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
929        if ( (cur->allow_vm_block() &&
930              cur != Threads_lock &&
931              cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
932              cur != VMOperationRequest_lock &&
933              cur != VMOperationQueue_lock) ||
934              cur->rank() == Mutex::special) {
935          warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
936        }
937      }
938    }
939
940    if (GCALotAtAllSafepoints) {
941      // We could enter a safepoint here and thus have a gc
942      InterfaceSupport::check_gc_alot();
943    }
944#endif
945}
946#endif
947
948bool Thread::is_in_stack(address adr) const {
949  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
950  address end = os::current_stack_pointer();
951  // Allow non Java threads to call this without stack_base
952  if (_stack_base == NULL) return true;
953  if (stack_base() >= adr && adr >= end) return true;
954
955  return false;
956}
957
958
959// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
960// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
961// used for compilation in the future. If that change is made, the need for these methods
962// should be revisited, and they should be removed if possible.
963
964bool Thread::is_lock_owned(address adr) const {
965  return on_local_stack(adr);
966}
967
968bool Thread::set_as_starting_thread() {
969 // NOTE: this must be called inside the main thread.
970  return os::create_main_thread((JavaThread*)this);
971}
972
973static void initialize_class(Symbol* class_name, TRAPS) {
974  Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
975  InstanceKlass::cast(klass)->initialize(CHECK);
976}
977
978
979// Creates the initial ThreadGroup
980static Handle create_initial_thread_group(TRAPS) {
981  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
982  instanceKlassHandle klass (THREAD, k);
983
984  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
985  {
986    JavaValue result(T_VOID);
987    JavaCalls::call_special(&result,
988                            system_instance,
989                            klass,
990                            vmSymbols::object_initializer_name(),
991                            vmSymbols::void_method_signature(),
992                            CHECK_NH);
993  }
994  Universe::set_system_thread_group(system_instance());
995
996  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
997  {
998    JavaValue result(T_VOID);
999    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1000    JavaCalls::call_special(&result,
1001                            main_instance,
1002                            klass,
1003                            vmSymbols::object_initializer_name(),
1004                            vmSymbols::threadgroup_string_void_signature(),
1005                            system_instance,
1006                            string,
1007                            CHECK_NH);
1008  }
1009  return main_instance;
1010}
1011
1012// Creates the initial Thread
1013static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
1014  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1015  instanceKlassHandle klass (THREAD, k);
1016  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1017
1018  java_lang_Thread::set_thread(thread_oop(), thread);
1019  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1020  thread->set_threadObj(thread_oop());
1021
1022  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1023
1024  JavaValue result(T_VOID);
1025  JavaCalls::call_special(&result, thread_oop,
1026                                   klass,
1027                                   vmSymbols::object_initializer_name(),
1028                                   vmSymbols::threadgroup_string_void_signature(),
1029                                   thread_group,
1030                                   string,
1031                                   CHECK_NULL);
1032  return thread_oop();
1033}
1034
1035static void call_initializeSystemClass(TRAPS) {
1036  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1037  instanceKlassHandle klass (THREAD, k);
1038
1039  JavaValue result(T_VOID);
1040  JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1041                                         vmSymbols::void_method_signature(), CHECK);
1042}
1043
1044char java_runtime_name[128] = "";
1045char java_runtime_version[128] = "";
1046
1047// extract the JRE name from sun.misc.Version.java_runtime_name
1048static const char* get_java_runtime_name(TRAPS) {
1049  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1050                                      Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1051  fieldDescriptor fd;
1052  bool found = k != NULL &&
1053               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1054                                                        vmSymbols::string_signature(), &fd);
1055  if (found) {
1056    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1057    if (name_oop == NULL)
1058      return NULL;
1059    const char* name = java_lang_String::as_utf8_string(name_oop,
1060                                                        java_runtime_name,
1061                                                        sizeof(java_runtime_name));
1062    return name;
1063  } else {
1064    return NULL;
1065  }
1066}
1067
1068// extract the JRE version from sun.misc.Version.java_runtime_version
1069static const char* get_java_runtime_version(TRAPS) {
1070  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1071                                      Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1072  fieldDescriptor fd;
1073  bool found = k != NULL &&
1074               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1075                                                        vmSymbols::string_signature(), &fd);
1076  if (found) {
1077    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1078    if (name_oop == NULL)
1079      return NULL;
1080    const char* name = java_lang_String::as_utf8_string(name_oop,
1081                                                        java_runtime_version,
1082                                                        sizeof(java_runtime_version));
1083    return name;
1084  } else {
1085    return NULL;
1086  }
1087}
1088
1089// General purpose hook into Java code, run once when the VM is initialized.
1090// The Java library method itself may be changed independently from the VM.
1091static void call_postVMInitHook(TRAPS) {
1092  Klass* k = SystemDictionary::PostVMInitHook_klass();
1093  instanceKlassHandle klass (THREAD, k);
1094  if (klass.not_null()) {
1095    JavaValue result(T_VOID);
1096    JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1097                                           vmSymbols::void_method_signature(),
1098                                           CHECK);
1099  }
1100}
1101
1102static void reset_vm_info_property(TRAPS) {
1103  // the vm info string
1104  ResourceMark rm(THREAD);
1105  const char *vm_info = VM_Version::vm_info_string();
1106
1107  // java.lang.System class
1108  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1109  instanceKlassHandle klass (THREAD, k);
1110
1111  // setProperty arguments
1112  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1113  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1114
1115  // return value
1116  JavaValue r(T_OBJECT);
1117
1118  // public static String setProperty(String key, String value);
1119  JavaCalls::call_static(&r,
1120                         klass,
1121                         vmSymbols::setProperty_name(),
1122                         vmSymbols::string_string_string_signature(),
1123                         key_str,
1124                         value_str,
1125                         CHECK);
1126}
1127
1128
1129void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1130  assert(thread_group.not_null(), "thread group should be specified");
1131  assert(threadObj() == NULL, "should only create Java thread object once");
1132
1133  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1134  instanceKlassHandle klass (THREAD, k);
1135  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1136
1137  java_lang_Thread::set_thread(thread_oop(), this);
1138  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1139  set_threadObj(thread_oop());
1140
1141  JavaValue result(T_VOID);
1142  if (thread_name != NULL) {
1143    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1144    // Thread gets assigned specified name and null target
1145    JavaCalls::call_special(&result,
1146                            thread_oop,
1147                            klass,
1148                            vmSymbols::object_initializer_name(),
1149                            vmSymbols::threadgroup_string_void_signature(),
1150                            thread_group, // Argument 1
1151                            name,         // Argument 2
1152                            THREAD);
1153  } else {
1154    // Thread gets assigned name "Thread-nnn" and null target
1155    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1156    JavaCalls::call_special(&result,
1157                            thread_oop,
1158                            klass,
1159                            vmSymbols::object_initializer_name(),
1160                            vmSymbols::threadgroup_runnable_void_signature(),
1161                            thread_group, // Argument 1
1162                            Handle(),     // Argument 2
1163                            THREAD);
1164  }
1165
1166
1167  if (daemon) {
1168      java_lang_Thread::set_daemon(thread_oop());
1169  }
1170
1171  if (HAS_PENDING_EXCEPTION) {
1172    return;
1173  }
1174
1175  KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1176  Handle threadObj(this, this->threadObj());
1177
1178  JavaCalls::call_special(&result,
1179                         thread_group,
1180                         group,
1181                         vmSymbols::add_method_name(),
1182                         vmSymbols::thread_void_signature(),
1183                         threadObj,          // Arg 1
1184                         THREAD);
1185
1186
1187}
1188
1189// NamedThread --  non-JavaThread subclasses with multiple
1190// uniquely named instances should derive from this.
1191NamedThread::NamedThread() : Thread() {
1192  _name = NULL;
1193  _processed_thread = NULL;
1194}
1195
1196NamedThread::~NamedThread() {
1197  if (_name != NULL) {
1198    FREE_C_HEAP_ARRAY(char, _name, mtThread);
1199    _name = NULL;
1200  }
1201}
1202
1203void NamedThread::set_name(const char* format, ...) {
1204  guarantee(_name == NULL, "Only get to set name once.");
1205  _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1206  guarantee(_name != NULL, "alloc failure");
1207  va_list ap;
1208  va_start(ap, format);
1209  jio_vsnprintf(_name, max_name_len, format, ap);
1210  va_end(ap);
1211}
1212
1213// ======= WatcherThread ========
1214
1215// The watcher thread exists to simulate timer interrupts.  It should
1216// be replaced by an abstraction over whatever native support for
1217// timer interrupts exists on the platform.
1218
1219WatcherThread* WatcherThread::_watcher_thread   = NULL;
1220volatile bool  WatcherThread::_should_terminate = false;
1221
1222WatcherThread::WatcherThread() : Thread() {
1223  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1224  if (os::create_thread(this, os::watcher_thread)) {
1225    _watcher_thread = this;
1226
1227    // Set the watcher thread to the highest OS priority which should not be
1228    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1229    // is created. The only normal thread using this priority is the reference
1230    // handler thread, which runs for very short intervals only.
1231    // If the VMThread's priority is not lower than the WatcherThread profiling
1232    // will be inaccurate.
1233    os::set_priority(this, MaxPriority);
1234    if (!DisableStartThread) {
1235      os::start_thread(this);
1236    }
1237  }
1238}
1239
1240void WatcherThread::run() {
1241  assert(this == watcher_thread(), "just checking");
1242
1243  this->record_stack_base_and_size();
1244  this->initialize_thread_local_storage();
1245  this->set_active_handles(JNIHandleBlock::allocate_block());
1246  while(!_should_terminate) {
1247    assert(watcher_thread() == Thread::current(),  "thread consistency check");
1248    assert(watcher_thread() == this,  "thread consistency check");
1249
1250    // Calculate how long it'll be until the next PeriodicTask work
1251    // should be done, and sleep that amount of time.
1252    size_t time_to_wait = PeriodicTask::time_to_wait();
1253
1254    // we expect this to timeout - we only ever get unparked when
1255    // we should terminate
1256    {
1257      OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1258
1259      jlong prev_time = os::javaTimeNanos();
1260      for (;;) {
1261        int res= _SleepEvent->park(time_to_wait);
1262        if (res == OS_TIMEOUT || _should_terminate)
1263          break;
1264        // spurious wakeup of some kind
1265        jlong now = os::javaTimeNanos();
1266        time_to_wait -= (now - prev_time) / 1000000;
1267        if (time_to_wait <= 0)
1268          break;
1269        prev_time = now;
1270      }
1271    }
1272
1273    if (is_error_reported()) {
1274      // A fatal error has happened, the error handler(VMError::report_and_die)
1275      // should abort JVM after creating an error log file. However in some
1276      // rare cases, the error handler itself might deadlock. Here we try to
1277      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1278      //
1279      // This code is in WatcherThread because WatcherThread wakes up
1280      // periodically so the fatal error handler doesn't need to do anything;
1281      // also because the WatcherThread is less likely to crash than other
1282      // threads.
1283
1284      for (;;) {
1285        if (!ShowMessageBoxOnError
1286         && (OnError == NULL || OnError[0] == '\0')
1287         && Arguments::abort_hook() == NULL) {
1288             os::sleep(this, 2 * 60 * 1000, false);
1289             fdStream err(defaultStream::output_fd());
1290             err.print_raw_cr("# [ timer expired, abort... ]");
1291             // skip atexit/vm_exit/vm_abort hooks
1292             os::die();
1293        }
1294
1295        // Wake up 5 seconds later, the fatal handler may reset OnError or
1296        // ShowMessageBoxOnError when it is ready to abort.
1297        os::sleep(this, 5 * 1000, false);
1298      }
1299    }
1300
1301    PeriodicTask::real_time_tick(time_to_wait);
1302
1303    // If we have no more tasks left due to dynamic disenrollment,
1304    // shut down the thread since we don't currently support dynamic enrollment
1305    if (PeriodicTask::num_tasks() == 0) {
1306      _should_terminate = true;
1307    }
1308  }
1309
1310  // Signal that it is terminated
1311  {
1312    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1313    _watcher_thread = NULL;
1314    Terminator_lock->notify();
1315  }
1316
1317  // Thread destructor usually does this..
1318  ThreadLocalStorage::set_thread(NULL);
1319}
1320
1321void WatcherThread::start() {
1322  if (watcher_thread() == NULL) {
1323    _should_terminate = false;
1324    // Create the single instance of WatcherThread
1325    new WatcherThread();
1326  }
1327}
1328
1329void WatcherThread::stop() {
1330  // it is ok to take late safepoints here, if needed
1331  MutexLocker mu(Terminator_lock);
1332  _should_terminate = true;
1333  OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1334
1335  Thread* watcher = watcher_thread();
1336  if (watcher != NULL)
1337    watcher->_SleepEvent->unpark();
1338
1339  while(watcher_thread() != NULL) {
1340    // This wait should make safepoint checks, wait without a timeout,
1341    // and wait as a suspend-equivalent condition.
1342    //
1343    // Note: If the FlatProfiler is running, then this thread is waiting
1344    // for the WatcherThread to terminate and the WatcherThread, via the
1345    // FlatProfiler task, is waiting for the external suspend request on
1346    // this thread to complete. wait_for_ext_suspend_completion() will
1347    // eventually timeout, but that takes time. Making this wait a
1348    // suspend-equivalent condition solves that timeout problem.
1349    //
1350    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1351                          Mutex::_as_suspend_equivalent_flag);
1352  }
1353}
1354
1355void WatcherThread::print_on(outputStream* st) const {
1356  st->print("\"%s\" ", name());
1357  Thread::print_on(st);
1358  st->cr();
1359}
1360
1361// ======= JavaThread ========
1362
1363// A JavaThread is a normal Java thread
1364
1365void JavaThread::initialize() {
1366  // Initialize fields
1367
1368  // Set the claimed par_id to -1 (ie not claiming any par_ids)
1369  set_claimed_par_id(-1);
1370
1371  set_saved_exception_pc(NULL);
1372  set_threadObj(NULL);
1373  _anchor.clear();
1374  set_entry_point(NULL);
1375  set_jni_functions(jni_functions());
1376  set_callee_target(NULL);
1377  set_vm_result(NULL);
1378  set_vm_result_2(NULL);
1379  set_vframe_array_head(NULL);
1380  set_vframe_array_last(NULL);
1381  set_deferred_locals(NULL);
1382  set_deopt_mark(NULL);
1383  set_deopt_nmethod(NULL);
1384  clear_must_deopt_id();
1385  set_monitor_chunks(NULL);
1386  set_next(NULL);
1387  set_thread_state(_thread_new);
1388#if INCLUDE_NMT
1389  set_recorder(NULL);
1390#endif
1391  _terminated = _not_terminated;
1392  _privileged_stack_top = NULL;
1393  _array_for_gc = NULL;
1394  _suspend_equivalent = false;
1395  _in_deopt_handler = 0;
1396  _doing_unsafe_access = false;
1397  _stack_guard_state = stack_guard_unused;
1398  _exception_oop = NULL;
1399  _exception_pc  = 0;
1400  _exception_handler_pc = 0;
1401  _is_method_handle_return = 0;
1402  _jvmti_thread_state= NULL;
1403  _should_post_on_exceptions_flag = JNI_FALSE;
1404  _jvmti_get_loaded_classes_closure = NULL;
1405  _interp_only_mode    = 0;
1406  _special_runtime_exit_condition = _no_async_condition;
1407  _pending_async_exception = NULL;
1408  _is_compiling = false;
1409  _thread_stat = NULL;
1410  _thread_stat = new ThreadStatistics();
1411  _blocked_on_compilation = false;
1412  _jni_active_critical = 0;
1413  _do_not_unlock_if_synchronized = false;
1414  _cached_monitor_info = NULL;
1415  _parker = Parker::Allocate(this) ;
1416
1417#ifndef PRODUCT
1418  _jmp_ring_index = 0;
1419  for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1420    record_jump(NULL, NULL, NULL, 0);
1421  }
1422#endif /* PRODUCT */
1423
1424  set_thread_profiler(NULL);
1425  if (FlatProfiler::is_active()) {
1426    // This is where we would decide to either give each thread it's own profiler
1427    // or use one global one from FlatProfiler,
1428    // or up to some count of the number of profiled threads, etc.
1429    ThreadProfiler* pp = new ThreadProfiler();
1430    pp->engage();
1431    set_thread_profiler(pp);
1432  }
1433
1434  // Setup safepoint state info for this thread
1435  ThreadSafepointState::create(this);
1436
1437  debug_only(_java_call_counter = 0);
1438
1439  // JVMTI PopFrame support
1440  _popframe_condition = popframe_inactive;
1441  _popframe_preserved_args = NULL;
1442  _popframe_preserved_args_size = 0;
1443
1444  pd_initialize();
1445}
1446
1447#ifndef SERIALGC
1448SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1449DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1450#endif // !SERIALGC
1451
1452JavaThread::JavaThread(bool is_attaching_via_jni) :
1453  Thread()
1454#ifndef SERIALGC
1455  , _satb_mark_queue(&_satb_mark_queue_set),
1456  _dirty_card_queue(&_dirty_card_queue_set)
1457#endif // !SERIALGC
1458{
1459  initialize();
1460  if (is_attaching_via_jni) {
1461    _jni_attach_state = _attaching_via_jni;
1462  } else {
1463    _jni_attach_state = _not_attaching_via_jni;
1464  }
1465  assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
1466  _safepoint_visible = false;
1467}
1468
1469bool JavaThread::reguard_stack(address cur_sp) {
1470  if (_stack_guard_state != stack_guard_yellow_disabled) {
1471    return true; // Stack already guarded or guard pages not needed.
1472  }
1473
1474  if (register_stack_overflow()) {
1475    // For those architectures which have separate register and
1476    // memory stacks, we must check the register stack to see if
1477    // it has overflowed.
1478    return false;
1479  }
1480
1481  // Java code never executes within the yellow zone: the latter is only
1482  // there to provoke an exception during stack banging.  If java code
1483  // is executing there, either StackShadowPages should be larger, or
1484  // some exception code in c1, c2 or the interpreter isn't unwinding
1485  // when it should.
1486  guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1487
1488  enable_stack_yellow_zone();
1489  return true;
1490}
1491
1492bool JavaThread::reguard_stack(void) {
1493  return reguard_stack(os::current_stack_pointer());
1494}
1495
1496
1497void JavaThread::block_if_vm_exited() {
1498  if (_terminated == _vm_exited) {
1499    // _vm_exited is set at safepoint, and Threads_lock is never released
1500    // we will block here forever
1501    Threads_lock->lock_without_safepoint_check();
1502    ShouldNotReachHere();
1503  }
1504}
1505
1506
1507// Remove this ifdef when C1 is ported to the compiler interface.
1508static void compiler_thread_entry(JavaThread* thread, TRAPS);
1509
1510JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1511  Thread()
1512#ifndef SERIALGC
1513  , _satb_mark_queue(&_satb_mark_queue_set),
1514  _dirty_card_queue(&_dirty_card_queue_set)
1515#endif // !SERIALGC
1516{
1517  if (TraceThreadEvents) {
1518    tty->print_cr("creating thread %p", this);
1519  }
1520  initialize();
1521  _jni_attach_state = _not_attaching_via_jni;
1522  set_entry_point(entry_point);
1523  // Create the native thread itself.
1524  // %note runtime_23
1525  os::ThreadType thr_type = os::java_thread;
1526  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1527                                                     os::java_thread;
1528  os::create_thread(this, thr_type, stack_sz);
1529  _safepoint_visible = false;
1530  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1531  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1532  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1533  // the exception consists of creating the exception object & initializing it, initialization
1534  // will leave the VM via a JavaCall and then all locks must be unlocked).
1535  //
1536  // The thread is still suspended when we reach here. Thread must be explicit started
1537  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1538  // by calling Threads:add. The reason why this is not done here, is because the thread
1539  // object must be fully initialized (take a look at JVM_Start)
1540}
1541
1542JavaThread::~JavaThread() {
1543  if (TraceThreadEvents) {
1544      tty->print_cr("terminate thread %p", this);
1545  }
1546
1547  // By now, this thread should already be invisible to safepoint,
1548  // and its per-thread recorder also collected.
1549  assert(!is_safepoint_visible(), "wrong state");
1550#if INCLUDE_NMT
1551  assert(get_recorder() == NULL, "Already collected");
1552#endif // INCLUDE_NMT
1553
1554  // JSR166 -- return the parker to the free list
1555  Parker::Release(_parker);
1556  _parker = NULL ;
1557
1558  // Free any remaining  previous UnrollBlock
1559  vframeArray* old_array = vframe_array_last();
1560
1561  if (old_array != NULL) {
1562    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1563    old_array->set_unroll_block(NULL);
1564    delete old_info;
1565    delete old_array;
1566  }
1567
1568  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1569  if (deferred != NULL) {
1570    // This can only happen if thread is destroyed before deoptimization occurs.
1571    assert(deferred->length() != 0, "empty array!");
1572    do {
1573      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1574      deferred->remove_at(0);
1575      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1576      delete dlv;
1577    } while (deferred->length() != 0);
1578    delete deferred;
1579  }
1580
1581  // All Java related clean up happens in exit
1582  ThreadSafepointState::destroy(this);
1583  if (_thread_profiler != NULL) delete _thread_profiler;
1584  if (_thread_stat != NULL) delete _thread_stat;
1585}
1586
1587
1588// The first routine called by a new Java thread
1589void JavaThread::run() {
1590  // initialize thread-local alloc buffer related fields
1591  this->initialize_tlab();
1592
1593  // used to test validitity of stack trace backs
1594  this->record_base_of_stack_pointer();
1595
1596  // Record real stack base and size.
1597  this->record_stack_base_and_size();
1598
1599  // Initialize thread local storage; set before calling MutexLocker
1600  this->initialize_thread_local_storage();
1601
1602  this->create_stack_guard_pages();
1603
1604  this->cache_global_variables();
1605
1606  // Thread is now sufficient initialized to be handled by the safepoint code as being
1607  // in the VM. Change thread state from _thread_new to _thread_in_vm
1608  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1609
1610  assert(JavaThread::current() == this, "sanity check");
1611  assert(!Thread::current()->owns_locks(), "sanity check");
1612
1613  DTRACE_THREAD_PROBE(start, this);
1614
1615  // This operation might block. We call that after all safepoint checks for a new thread has
1616  // been completed.
1617  this->set_active_handles(JNIHandleBlock::allocate_block());
1618
1619  if (JvmtiExport::should_post_thread_life()) {
1620    JvmtiExport::post_thread_start(this);
1621  }
1622
1623  EVENT_BEGIN(TraceEventThreadStart, event);
1624  EVENT_COMMIT(event,
1625     EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
1626
1627  // We call another function to do the rest so we are sure that the stack addresses used
1628  // from there will be lower than the stack base just computed
1629  thread_main_inner();
1630
1631  // Note, thread is no longer valid at this point!
1632}
1633
1634
1635void JavaThread::thread_main_inner() {
1636  assert(JavaThread::current() == this, "sanity check");
1637  assert(this->threadObj() != NULL, "just checking");
1638
1639  // Execute thread entry point unless this thread has a pending exception
1640  // or has been stopped before starting.
1641  // Note: Due to JVM_StopThread we can have pending exceptions already!
1642  if (!this->has_pending_exception() &&
1643      !java_lang_Thread::is_stillborn(this->threadObj())) {
1644    {
1645      ResourceMark rm(this);
1646      this->set_native_thread_name(this->get_thread_name());
1647    }
1648    HandleMark hm(this);
1649    this->entry_point()(this, this);
1650  }
1651
1652  DTRACE_THREAD_PROBE(stop, this);
1653
1654  this->exit(false);
1655  delete this;
1656}
1657
1658
1659static void ensure_join(JavaThread* thread) {
1660  // We do not need to grap the Threads_lock, since we are operating on ourself.
1661  Handle threadObj(thread, thread->threadObj());
1662  assert(threadObj.not_null(), "java thread object must exist");
1663  ObjectLocker lock(threadObj, thread);
1664  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1665  thread->clear_pending_exception();
1666  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1667  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1668  // Clear the native thread instance - this makes isAlive return false and allows the join()
1669  // to complete once we've done the notify_all below
1670  java_lang_Thread::set_thread(threadObj(), NULL);
1671  lock.notify_all(thread);
1672  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1673  thread->clear_pending_exception();
1674}
1675
1676
1677// For any new cleanup additions, please check to see if they need to be applied to
1678// cleanup_failed_attach_current_thread as well.
1679void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1680  assert(this == JavaThread::current(),  "thread consistency check");
1681  if (!InitializeJavaLangSystem) return;
1682
1683  HandleMark hm(this);
1684  Handle uncaught_exception(this, this->pending_exception());
1685  this->clear_pending_exception();
1686  Handle threadObj(this, this->threadObj());
1687  assert(threadObj.not_null(), "Java thread object should be created");
1688
1689  if (get_thread_profiler() != NULL) {
1690    get_thread_profiler()->disengage();
1691    ResourceMark rm;
1692    get_thread_profiler()->print(get_thread_name());
1693  }
1694
1695
1696  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1697  {
1698    EXCEPTION_MARK;
1699
1700    CLEAR_PENDING_EXCEPTION;
1701  }
1702  // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1703  // has to be fixed by a runtime query method
1704  if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1705    // JSR-166: change call from from ThreadGroup.uncaughtException to
1706    // java.lang.Thread.dispatchUncaughtException
1707    if (uncaught_exception.not_null()) {
1708      Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1709      {
1710        EXCEPTION_MARK;
1711        // Check if the method Thread.dispatchUncaughtException() exists. If so
1712        // call it.  Otherwise we have an older library without the JSR-166 changes,
1713        // so call ThreadGroup.uncaughtException()
1714        KlassHandle recvrKlass(THREAD, threadObj->klass());
1715        CallInfo callinfo;
1716        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1717        LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1718                                           vmSymbols::dispatchUncaughtException_name(),
1719                                           vmSymbols::throwable_void_signature(),
1720                                           KlassHandle(), false, false, THREAD);
1721        CLEAR_PENDING_EXCEPTION;
1722        methodHandle method = callinfo.selected_method();
1723        if (method.not_null()) {
1724          JavaValue result(T_VOID);
1725          JavaCalls::call_virtual(&result,
1726                                  threadObj, thread_klass,
1727                                  vmSymbols::dispatchUncaughtException_name(),
1728                                  vmSymbols::throwable_void_signature(),
1729                                  uncaught_exception,
1730                                  THREAD);
1731        } else {
1732          KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1733          JavaValue result(T_VOID);
1734          JavaCalls::call_virtual(&result,
1735                                  group, thread_group,
1736                                  vmSymbols::uncaughtException_name(),
1737                                  vmSymbols::thread_throwable_void_signature(),
1738                                  threadObj,           // Arg 1
1739                                  uncaught_exception,  // Arg 2
1740                                  THREAD);
1741        }
1742        if (HAS_PENDING_EXCEPTION) {
1743          ResourceMark rm(this);
1744          jio_fprintf(defaultStream::error_stream(),
1745                "\nException: %s thrown from the UncaughtExceptionHandler"
1746                " in thread \"%s\"\n",
1747                Klass::cast(pending_exception()->klass())->external_name(),
1748                get_thread_name());
1749          CLEAR_PENDING_EXCEPTION;
1750        }
1751      }
1752    }
1753
1754    // Called before the java thread exit since we want to read info
1755    // from java_lang_Thread object
1756    EVENT_BEGIN(TraceEventThreadEnd, event);
1757    EVENT_COMMIT(event,
1758        EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
1759
1760    // Call after last event on thread
1761    EVENT_THREAD_EXIT(this);
1762
1763    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1764    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1765    // is deprecated anyhow.
1766    { int count = 3;
1767      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1768        EXCEPTION_MARK;
1769        JavaValue result(T_VOID);
1770        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1771        JavaCalls::call_virtual(&result,
1772                              threadObj, thread_klass,
1773                              vmSymbols::exit_method_name(),
1774                              vmSymbols::void_method_signature(),
1775                              THREAD);
1776        CLEAR_PENDING_EXCEPTION;
1777      }
1778    }
1779
1780    // notify JVMTI
1781    if (JvmtiExport::should_post_thread_life()) {
1782      JvmtiExport::post_thread_end(this);
1783    }
1784
1785    // We have notified the agents that we are exiting, before we go on,
1786    // we must check for a pending external suspend request and honor it
1787    // in order to not surprise the thread that made the suspend request.
1788    while (true) {
1789      {
1790        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1791        if (!is_external_suspend()) {
1792          set_terminated(_thread_exiting);
1793          ThreadService::current_thread_exiting(this);
1794          break;
1795        }
1796        // Implied else:
1797        // Things get a little tricky here. We have a pending external
1798        // suspend request, but we are holding the SR_lock so we
1799        // can't just self-suspend. So we temporarily drop the lock
1800        // and then self-suspend.
1801      }
1802
1803      ThreadBlockInVM tbivm(this);
1804      java_suspend_self();
1805
1806      // We're done with this suspend request, but we have to loop around
1807      // and check again. Eventually we will get SR_lock without a pending
1808      // external suspend request and will be able to mark ourselves as
1809      // exiting.
1810    }
1811    // no more external suspends are allowed at this point
1812  } else {
1813    // before_exit() has already posted JVMTI THREAD_END events
1814  }
1815
1816  // Notify waiters on thread object. This has to be done after exit() is called
1817  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1818  // group should have the destroyed bit set before waiters are notified).
1819  ensure_join(this);
1820  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1821
1822  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1823  // held by this thread must be released.  A detach operation must only
1824  // get here if there are no Java frames on the stack.  Therefore, any
1825  // owned monitors at this point MUST be JNI-acquired monitors which are
1826  // pre-inflated and in the monitor cache.
1827  //
1828  // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1829  if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1830    assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1831    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1832    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1833  }
1834
1835  // These things needs to be done while we are still a Java Thread. Make sure that thread
1836  // is in a consistent state, in case GC happens
1837  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1838
1839  if (active_handles() != NULL) {
1840    JNIHandleBlock* block = active_handles();
1841    set_active_handles(NULL);
1842    JNIHandleBlock::release_block(block);
1843  }
1844
1845  if (free_handle_block() != NULL) {
1846    JNIHandleBlock* block = free_handle_block();
1847    set_free_handle_block(NULL);
1848    JNIHandleBlock::release_block(block);
1849  }
1850
1851  // These have to be removed while this is still a valid thread.
1852  remove_stack_guard_pages();
1853
1854  if (UseTLAB) {
1855    tlab().make_parsable(true);  // retire TLAB
1856  }
1857
1858  if (JvmtiEnv::environments_might_exist()) {
1859    JvmtiExport::cleanup_thread(this);
1860  }
1861
1862#ifndef SERIALGC
1863  // We must flush G1-related buffers before removing a thread from
1864  // the list of active threads.
1865  if (UseG1GC) {
1866    flush_barrier_queues();
1867  }
1868#endif
1869
1870  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1871  Threads::remove(this);
1872}
1873
1874#ifndef SERIALGC
1875// Flush G1-related queues.
1876void JavaThread::flush_barrier_queues() {
1877  satb_mark_queue().flush();
1878  dirty_card_queue().flush();
1879}
1880
1881void JavaThread::initialize_queues() {
1882  assert(!SafepointSynchronize::is_at_safepoint(),
1883         "we should not be at a safepoint");
1884
1885  ObjPtrQueue& satb_queue = satb_mark_queue();
1886  SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1887  // The SATB queue should have been constructed with its active
1888  // field set to false.
1889  assert(!satb_queue.is_active(), "SATB queue should not be active");
1890  assert(satb_queue.is_empty(), "SATB queue should be empty");
1891  // If we are creating the thread during a marking cycle, we should
1892  // set the active field of the SATB queue to true.
1893  if (satb_queue_set.is_active()) {
1894    satb_queue.set_active(true);
1895  }
1896
1897  DirtyCardQueue& dirty_queue = dirty_card_queue();
1898  // The dirty card queue should have been constructed with its
1899  // active field set to true.
1900  assert(dirty_queue.is_active(), "dirty card queue should be active");
1901}
1902#endif // !SERIALGC
1903
1904void JavaThread::cleanup_failed_attach_current_thread() {
1905  if (get_thread_profiler() != NULL) {
1906    get_thread_profiler()->disengage();
1907    ResourceMark rm;
1908    get_thread_profiler()->print(get_thread_name());
1909  }
1910
1911  if (active_handles() != NULL) {
1912    JNIHandleBlock* block = active_handles();
1913    set_active_handles(NULL);
1914    JNIHandleBlock::release_block(block);
1915  }
1916
1917  if (free_handle_block() != NULL) {
1918    JNIHandleBlock* block = free_handle_block();
1919    set_free_handle_block(NULL);
1920    JNIHandleBlock::release_block(block);
1921  }
1922
1923  // These have to be removed while this is still a valid thread.
1924  remove_stack_guard_pages();
1925
1926  if (UseTLAB) {
1927    tlab().make_parsable(true);  // retire TLAB, if any
1928  }
1929
1930#ifndef SERIALGC
1931  if (UseG1GC) {
1932    flush_barrier_queues();
1933  }
1934#endif
1935
1936  Threads::remove(this);
1937  delete this;
1938}
1939
1940
1941
1942
1943JavaThread* JavaThread::active() {
1944  Thread* thread = ThreadLocalStorage::thread();
1945  assert(thread != NULL, "just checking");
1946  if (thread->is_Java_thread()) {
1947    return (JavaThread*) thread;
1948  } else {
1949    assert(thread->is_VM_thread(), "this must be a vm thread");
1950    VM_Operation* op = ((VMThread*) thread)->vm_operation();
1951    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1952    assert(ret->is_Java_thread(), "must be a Java thread");
1953    return ret;
1954  }
1955}
1956
1957bool JavaThread::is_lock_owned(address adr) const {
1958  if (Thread::is_lock_owned(adr)) return true;
1959
1960  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1961    if (chunk->contains(adr)) return true;
1962  }
1963
1964  return false;
1965}
1966
1967
1968void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1969  chunk->set_next(monitor_chunks());
1970  set_monitor_chunks(chunk);
1971}
1972
1973void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1974  guarantee(monitor_chunks() != NULL, "must be non empty");
1975  if (monitor_chunks() == chunk) {
1976    set_monitor_chunks(chunk->next());
1977  } else {
1978    MonitorChunk* prev = monitor_chunks();
1979    while (prev->next() != chunk) prev = prev->next();
1980    prev->set_next(chunk->next());
1981  }
1982}
1983
1984// JVM support.
1985
1986// Note: this function shouldn't block if it's called in
1987// _thread_in_native_trans state (such as from
1988// check_special_condition_for_native_trans()).
1989void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1990
1991  if (has_last_Java_frame() && has_async_condition()) {
1992    // If we are at a polling page safepoint (not a poll return)
1993    // then we must defer async exception because live registers
1994    // will be clobbered by the exception path. Poll return is
1995    // ok because the call we a returning from already collides
1996    // with exception handling registers and so there is no issue.
1997    // (The exception handling path kills call result registers but
1998    //  this is ok since the exception kills the result anyway).
1999
2000    if (is_at_poll_safepoint()) {
2001      // if the code we are returning to has deoptimized we must defer
2002      // the exception otherwise live registers get clobbered on the
2003      // exception path before deoptimization is able to retrieve them.
2004      //
2005      RegisterMap map(this, false);
2006      frame caller_fr = last_frame().sender(&map);
2007      assert(caller_fr.is_compiled_frame(), "what?");
2008      if (caller_fr.is_deoptimized_frame()) {
2009        if (TraceExceptions) {
2010          ResourceMark rm;
2011          tty->print_cr("deferred async exception at compiled safepoint");
2012        }
2013        return;
2014      }
2015    }
2016  }
2017
2018  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2019  if (condition == _no_async_condition) {
2020    // Conditions have changed since has_special_runtime_exit_condition()
2021    // was called:
2022    // - if we were here only because of an external suspend request,
2023    //   then that was taken care of above (or cancelled) so we are done
2024    // - if we were here because of another async request, then it has
2025    //   been cleared between the has_special_runtime_exit_condition()
2026    //   and now so again we are done
2027    return;
2028  }
2029
2030  // Check for pending async. exception
2031  if (_pending_async_exception != NULL) {
2032    // Only overwrite an already pending exception, if it is not a threadDeath.
2033    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2034
2035      // We cannot call Exceptions::_throw(...) here because we cannot block
2036      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2037
2038      if (TraceExceptions) {
2039        ResourceMark rm;
2040        tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2041        if (has_last_Java_frame() ) {
2042          frame f = last_frame();
2043          tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2044        }
2045        tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2046      }
2047      _pending_async_exception = NULL;
2048      clear_has_async_exception();
2049    }
2050  }
2051
2052  if (check_unsafe_error &&
2053      condition == _async_unsafe_access_error && !has_pending_exception()) {
2054    condition = _no_async_condition;  // done
2055    switch (thread_state()) {
2056    case _thread_in_vm:
2057      {
2058        JavaThread* THREAD = this;
2059        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2060      }
2061    case _thread_in_native:
2062      {
2063        ThreadInVMfromNative tiv(this);
2064        JavaThread* THREAD = this;
2065        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2066      }
2067    case _thread_in_Java:
2068      {
2069        ThreadInVMfromJava tiv(this);
2070        JavaThread* THREAD = this;
2071        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2072      }
2073    default:
2074      ShouldNotReachHere();
2075    }
2076  }
2077
2078  assert(condition == _no_async_condition || has_pending_exception() ||
2079         (!check_unsafe_error && condition == _async_unsafe_access_error),
2080         "must have handled the async condition, if no exception");
2081}
2082
2083void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2084  //
2085  // Check for pending external suspend. Internal suspend requests do
2086  // not use handle_special_runtime_exit_condition().
2087  // If JNIEnv proxies are allowed, don't self-suspend if the target
2088  // thread is not the current thread. In older versions of jdbx, jdbx
2089  // threads could call into the VM with another thread's JNIEnv so we
2090  // can be here operating on behalf of a suspended thread (4432884).
2091  bool do_self_suspend = is_external_suspend_with_lock();
2092  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2093    //
2094    // Because thread is external suspended the safepoint code will count
2095    // thread as at a safepoint. This can be odd because we can be here
2096    // as _thread_in_Java which would normally transition to _thread_blocked
2097    // at a safepoint. We would like to mark the thread as _thread_blocked
2098    // before calling java_suspend_self like all other callers of it but
2099    // we must then observe proper safepoint protocol. (We can't leave
2100    // _thread_blocked with a safepoint in progress). However we can be
2101    // here as _thread_in_native_trans so we can't use a normal transition
2102    // constructor/destructor pair because they assert on that type of
2103    // transition. We could do something like:
2104    //
2105    // JavaThreadState state = thread_state();
2106    // set_thread_state(_thread_in_vm);
2107    // {
2108    //   ThreadBlockInVM tbivm(this);
2109    //   java_suspend_self()
2110    // }
2111    // set_thread_state(_thread_in_vm_trans);
2112    // if (safepoint) block;
2113    // set_thread_state(state);
2114    //
2115    // but that is pretty messy. Instead we just go with the way the
2116    // code has worked before and note that this is the only path to
2117    // java_suspend_self that doesn't put the thread in _thread_blocked
2118    // mode.
2119
2120    frame_anchor()->make_walkable(this);
2121    java_suspend_self();
2122
2123    // We might be here for reasons in addition to the self-suspend request
2124    // so check for other async requests.
2125  }
2126
2127  if (check_asyncs) {
2128    check_and_handle_async_exceptions();
2129  }
2130}
2131
2132void JavaThread::send_thread_stop(oop java_throwable)  {
2133  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2134  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2135  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2136
2137  // Do not throw asynchronous exceptions against the compiler thread
2138  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2139  if (is_Compiler_thread()) return;
2140
2141  {
2142    // Actually throw the Throwable against the target Thread - however
2143    // only if there is no thread death exception installed already.
2144    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2145      // If the topmost frame is a runtime stub, then we are calling into
2146      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2147      // must deoptimize the caller before continuing, as the compiled  exception handler table
2148      // may not be valid
2149      if (has_last_Java_frame()) {
2150        frame f = last_frame();
2151        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2152          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2153          RegisterMap reg_map(this, UseBiasedLocking);
2154          frame compiled_frame = f.sender(&reg_map);
2155          if (compiled_frame.can_be_deoptimized()) {
2156            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2157          }
2158        }
2159      }
2160
2161      // Set async. pending exception in thread.
2162      set_pending_async_exception(java_throwable);
2163
2164      if (TraceExceptions) {
2165       ResourceMark rm;
2166       tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2167      }
2168      // for AbortVMOnException flag
2169      NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2170    }
2171  }
2172
2173
2174  // Interrupt thread so it will wake up from a potential wait()
2175  Thread::interrupt(this);
2176}
2177
2178// External suspension mechanism.
2179//
2180// Tell the VM to suspend a thread when ever it knows that it does not hold on
2181// to any VM_locks and it is at a transition
2182// Self-suspension will happen on the transition out of the vm.
2183// Catch "this" coming in from JNIEnv pointers when the thread has been freed
2184//
2185// Guarantees on return:
2186//   + Target thread will not execute any new bytecode (that's why we need to
2187//     force a safepoint)
2188//   + Target thread will not enter any new monitors
2189//
2190void JavaThread::java_suspend() {
2191  { MutexLocker mu(Threads_lock);
2192    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2193       return;
2194    }
2195  }
2196
2197  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2198    if (!is_external_suspend()) {
2199      // a racing resume has cancelled us; bail out now
2200      return;
2201    }
2202
2203    // suspend is done
2204    uint32_t debug_bits = 0;
2205    // Warning: is_ext_suspend_completed() may temporarily drop the
2206    // SR_lock to allow the thread to reach a stable thread state if
2207    // it is currently in a transient thread state.
2208    if (is_ext_suspend_completed(false /* !called_by_wait */,
2209                                 SuspendRetryDelay, &debug_bits) ) {
2210      return;
2211    }
2212  }
2213
2214  VM_ForceSafepoint vm_suspend;
2215  VMThread::execute(&vm_suspend);
2216}
2217
2218// Part II of external suspension.
2219// A JavaThread self suspends when it detects a pending external suspend
2220// request. This is usually on transitions. It is also done in places
2221// where continuing to the next transition would surprise the caller,
2222// e.g., monitor entry.
2223//
2224// Returns the number of times that the thread self-suspended.
2225//
2226// Note: DO NOT call java_suspend_self() when you just want to block current
2227//       thread. java_suspend_self() is the second stage of cooperative
2228//       suspension for external suspend requests and should only be used
2229//       to complete an external suspend request.
2230//
2231int JavaThread::java_suspend_self() {
2232  int ret = 0;
2233
2234  // we are in the process of exiting so don't suspend
2235  if (is_exiting()) {
2236     clear_external_suspend();
2237     return ret;
2238  }
2239
2240  assert(_anchor.walkable() ||
2241    (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2242    "must have walkable stack");
2243
2244  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2245
2246  assert(!this->is_ext_suspended(),
2247    "a thread trying to self-suspend should not already be suspended");
2248
2249  if (this->is_suspend_equivalent()) {
2250    // If we are self-suspending as a result of the lifting of a
2251    // suspend equivalent condition, then the suspend_equivalent
2252    // flag is not cleared until we set the ext_suspended flag so
2253    // that wait_for_ext_suspend_completion() returns consistent
2254    // results.
2255    this->clear_suspend_equivalent();
2256  }
2257
2258  // A racing resume may have cancelled us before we grabbed SR_lock
2259  // above. Or another external suspend request could be waiting for us
2260  // by the time we return from SR_lock()->wait(). The thread
2261  // that requested the suspension may already be trying to walk our
2262  // stack and if we return now, we can change the stack out from under
2263  // it. This would be a "bad thing (TM)" and cause the stack walker
2264  // to crash. We stay self-suspended until there are no more pending
2265  // external suspend requests.
2266  while (is_external_suspend()) {
2267    ret++;
2268    this->set_ext_suspended();
2269
2270    // _ext_suspended flag is cleared by java_resume()
2271    while (is_ext_suspended()) {
2272      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2273    }
2274  }
2275
2276  return ret;
2277}
2278
2279#ifdef ASSERT
2280// verify the JavaThread has not yet been published in the Threads::list, and
2281// hence doesn't need protection from concurrent access at this stage
2282void JavaThread::verify_not_published() {
2283  if (!Threads_lock->owned_by_self()) {
2284   MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2285   assert( !Threads::includes(this),
2286           "java thread shouldn't have been published yet!");
2287  }
2288  else {
2289   assert( !Threads::includes(this),
2290           "java thread shouldn't have been published yet!");
2291  }
2292}
2293#endif
2294
2295// Slow path when the native==>VM/Java barriers detect a safepoint is in
2296// progress or when _suspend_flags is non-zero.
2297// Current thread needs to self-suspend if there is a suspend request and/or
2298// block if a safepoint is in progress.
2299// Async exception ISN'T checked.
2300// Note only the ThreadInVMfromNative transition can call this function
2301// directly and when thread state is _thread_in_native_trans
2302void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2303  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2304
2305  JavaThread *curJT = JavaThread::current();
2306  bool do_self_suspend = thread->is_external_suspend();
2307
2308  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2309
2310  // If JNIEnv proxies are allowed, don't self-suspend if the target
2311  // thread is not the current thread. In older versions of jdbx, jdbx
2312  // threads could call into the VM with another thread's JNIEnv so we
2313  // can be here operating on behalf of a suspended thread (4432884).
2314  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2315    JavaThreadState state = thread->thread_state();
2316
2317    // We mark this thread_blocked state as a suspend-equivalent so
2318    // that a caller to is_ext_suspend_completed() won't be confused.
2319    // The suspend-equivalent state is cleared by java_suspend_self().
2320    thread->set_suspend_equivalent();
2321
2322    // If the safepoint code sees the _thread_in_native_trans state, it will
2323    // wait until the thread changes to other thread state. There is no
2324    // guarantee on how soon we can obtain the SR_lock and complete the
2325    // self-suspend request. It would be a bad idea to let safepoint wait for
2326    // too long. Temporarily change the state to _thread_blocked to
2327    // let the VM thread know that this thread is ready for GC. The problem
2328    // of changing thread state is that safepoint could happen just after
2329    // java_suspend_self() returns after being resumed, and VM thread will
2330    // see the _thread_blocked state. We must check for safepoint
2331    // after restoring the state and make sure we won't leave while a safepoint
2332    // is in progress.
2333    thread->set_thread_state(_thread_blocked);
2334    thread->java_suspend_self();
2335    thread->set_thread_state(state);
2336    // Make sure new state is seen by VM thread
2337    if (os::is_MP()) {
2338      if (UseMembar) {
2339        // Force a fence between the write above and read below
2340        OrderAccess::fence();
2341      } else {
2342        // Must use this rather than serialization page in particular on Windows
2343        InterfaceSupport::serialize_memory(thread);
2344      }
2345    }
2346  }
2347
2348  if (SafepointSynchronize::do_call_back()) {
2349    // If we are safepointing, then block the caller which may not be
2350    // the same as the target thread (see above).
2351    SafepointSynchronize::block(curJT);
2352  }
2353
2354  if (thread->is_deopt_suspend()) {
2355    thread->clear_deopt_suspend();
2356    RegisterMap map(thread, false);
2357    frame f = thread->last_frame();
2358    while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2359      f = f.sender(&map);
2360    }
2361    if (f.id() == thread->must_deopt_id()) {
2362      thread->clear_must_deopt_id();
2363      f.deoptimize(thread);
2364    } else {
2365      fatal("missed deoptimization!");
2366    }
2367  }
2368}
2369
2370// Slow path when the native==>VM/Java barriers detect a safepoint is in
2371// progress or when _suspend_flags is non-zero.
2372// Current thread needs to self-suspend if there is a suspend request and/or
2373// block if a safepoint is in progress.
2374// Also check for pending async exception (not including unsafe access error).
2375// Note only the native==>VM/Java barriers can call this function and when
2376// thread state is _thread_in_native_trans.
2377void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2378  check_safepoint_and_suspend_for_native_trans(thread);
2379
2380  if (thread->has_async_exception()) {
2381    // We are in _thread_in_native_trans state, don't handle unsafe
2382    // access error since that may block.
2383    thread->check_and_handle_async_exceptions(false);
2384  }
2385}
2386
2387// This is a variant of the normal
2388// check_special_condition_for_native_trans with slightly different
2389// semantics for use by critical native wrappers.  It does all the
2390// normal checks but also performs the transition back into
2391// thread_in_Java state.  This is required so that critical natives
2392// can potentially block and perform a GC if they are the last thread
2393// exiting the GC_locker.
2394void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2395  check_special_condition_for_native_trans(thread);
2396
2397  // Finish the transition
2398  thread->set_thread_state(_thread_in_Java);
2399
2400  if (thread->do_critical_native_unlock()) {
2401    ThreadInVMfromJavaNoAsyncException tiv(thread);
2402    GC_locker::unlock_critical(thread);
2403    thread->clear_critical_native_unlock();
2404  }
2405}
2406
2407// We need to guarantee the Threads_lock here, since resumes are not
2408// allowed during safepoint synchronization
2409// Can only resume from an external suspension
2410void JavaThread::java_resume() {
2411  assert_locked_or_safepoint(Threads_lock);
2412
2413  // Sanity check: thread is gone, has started exiting or the thread
2414  // was not externally suspended.
2415  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2416    return;
2417  }
2418
2419  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2420
2421  clear_external_suspend();
2422
2423  if (is_ext_suspended()) {
2424    clear_ext_suspended();
2425    SR_lock()->notify_all();
2426  }
2427}
2428
2429void JavaThread::create_stack_guard_pages() {
2430  if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2431  address low_addr = stack_base() - stack_size();
2432  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2433
2434  int allocate = os::allocate_stack_guard_pages();
2435  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2436
2437  if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2438    warning("Attempt to allocate stack guard pages failed.");
2439    return;
2440  }
2441
2442  if (os::guard_memory((char *) low_addr, len)) {
2443    _stack_guard_state = stack_guard_enabled;
2444  } else {
2445    warning("Attempt to protect stack guard pages failed.");
2446    if (os::uncommit_memory((char *) low_addr, len)) {
2447      warning("Attempt to deallocate stack guard pages failed.");
2448    }
2449  }
2450}
2451
2452void JavaThread::remove_stack_guard_pages() {
2453  assert(Thread::current() == this, "from different thread");
2454  if (_stack_guard_state == stack_guard_unused) return;
2455  address low_addr = stack_base() - stack_size();
2456  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2457
2458  if (os::allocate_stack_guard_pages()) {
2459    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2460      _stack_guard_state = stack_guard_unused;
2461    } else {
2462      warning("Attempt to deallocate stack guard pages failed.");
2463    }
2464  } else {
2465    if (_stack_guard_state == stack_guard_unused) return;
2466    if (os::unguard_memory((char *) low_addr, len)) {
2467      _stack_guard_state = stack_guard_unused;
2468    } else {
2469        warning("Attempt to unprotect stack guard pages failed.");
2470    }
2471  }
2472}
2473
2474void JavaThread::enable_stack_yellow_zone() {
2475  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2476  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2477
2478  // The base notation is from the stacks point of view, growing downward.
2479  // We need to adjust it to work correctly with guard_memory()
2480  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2481
2482  guarantee(base < stack_base(),"Error calculating stack yellow zone");
2483  guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2484
2485  if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2486    _stack_guard_state = stack_guard_enabled;
2487  } else {
2488    warning("Attempt to guard stack yellow zone failed.");
2489  }
2490  enable_register_stack_guard();
2491}
2492
2493void JavaThread::disable_stack_yellow_zone() {
2494  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2495  assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2496
2497  // Simply return if called for a thread that does not use guard pages.
2498  if (_stack_guard_state == stack_guard_unused) return;
2499
2500  // The base notation is from the stacks point of view, growing downward.
2501  // We need to adjust it to work correctly with guard_memory()
2502  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2503
2504  if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2505    _stack_guard_state = stack_guard_yellow_disabled;
2506  } else {
2507    warning("Attempt to unguard stack yellow zone failed.");
2508  }
2509  disable_register_stack_guard();
2510}
2511
2512void JavaThread::enable_stack_red_zone() {
2513  // The base notation is from the stacks point of view, growing downward.
2514  // We need to adjust it to work correctly with guard_memory()
2515  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2516  address base = stack_red_zone_base() - stack_red_zone_size();
2517
2518  guarantee(base < stack_base(),"Error calculating stack red zone");
2519  guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2520
2521  if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2522    warning("Attempt to guard stack red zone failed.");
2523  }
2524}
2525
2526void JavaThread::disable_stack_red_zone() {
2527  // The base notation is from the stacks point of view, growing downward.
2528  // We need to adjust it to work correctly with guard_memory()
2529  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2530  address base = stack_red_zone_base() - stack_red_zone_size();
2531  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2532    warning("Attempt to unguard stack red zone failed.");
2533  }
2534}
2535
2536void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2537  // ignore is there is no stack
2538  if (!has_last_Java_frame()) return;
2539  // traverse the stack frames. Starts from top frame.
2540  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2541    frame* fr = fst.current();
2542    f(fr, fst.register_map());
2543  }
2544}
2545
2546
2547#ifndef PRODUCT
2548// Deoptimization
2549// Function for testing deoptimization
2550void JavaThread::deoptimize() {
2551  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2552  StackFrameStream fst(this, UseBiasedLocking);
2553  bool deopt = false;           // Dump stack only if a deopt actually happens.
2554  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2555  // Iterate over all frames in the thread and deoptimize
2556  for(; !fst.is_done(); fst.next()) {
2557    if(fst.current()->can_be_deoptimized()) {
2558
2559      if (only_at) {
2560        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2561        // consists of comma or carriage return separated numbers so
2562        // search for the current bci in that string.
2563        address pc = fst.current()->pc();
2564        nmethod* nm =  (nmethod*) fst.current()->cb();
2565        ScopeDesc* sd = nm->scope_desc_at( pc);
2566        char buffer[8];
2567        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2568        size_t len = strlen(buffer);
2569        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2570        while (found != NULL) {
2571          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2572              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2573            // Check that the bci found is bracketed by terminators.
2574            break;
2575          }
2576          found = strstr(found + 1, buffer);
2577        }
2578        if (!found) {
2579          continue;
2580        }
2581      }
2582
2583      if (DebugDeoptimization && !deopt) {
2584        deopt = true; // One-time only print before deopt
2585        tty->print_cr("[BEFORE Deoptimization]");
2586        trace_frames();
2587        trace_stack();
2588      }
2589      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2590    }
2591  }
2592
2593  if (DebugDeoptimization && deopt) {
2594    tty->print_cr("[AFTER Deoptimization]");
2595    trace_frames();
2596  }
2597}
2598
2599
2600// Make zombies
2601void JavaThread::make_zombies() {
2602  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2603    if (fst.current()->can_be_deoptimized()) {
2604      // it is a Java nmethod
2605      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2606      nm->make_not_entrant();
2607    }
2608  }
2609}
2610#endif // PRODUCT
2611
2612
2613void JavaThread::deoptimized_wrt_marked_nmethods() {
2614  if (!has_last_Java_frame()) return;
2615  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2616  StackFrameStream fst(this, UseBiasedLocking);
2617  for(; !fst.is_done(); fst.next()) {
2618    if (fst.current()->should_be_deoptimized()) {
2619      if (LogCompilation && xtty != NULL) {
2620        nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2621        xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2622                   this->name(), nm != NULL ? nm->compile_id() : -1);
2623      }
2624
2625      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2626    }
2627  }
2628}
2629
2630
2631// GC support
2632static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2633
2634void JavaThread::gc_epilogue() {
2635  frames_do(frame_gc_epilogue);
2636}
2637
2638
2639static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2640
2641void JavaThread::gc_prologue() {
2642  frames_do(frame_gc_prologue);
2643}
2644
2645// If the caller is a NamedThread, then remember, in the current scope,
2646// the given JavaThread in its _processed_thread field.
2647class RememberProcessedThread: public StackObj {
2648  NamedThread* _cur_thr;
2649public:
2650  RememberProcessedThread(JavaThread* jthr) {
2651    Thread* thread = Thread::current();
2652    if (thread->is_Named_thread()) {
2653      _cur_thr = (NamedThread *)thread;
2654      _cur_thr->set_processed_thread(jthr);
2655    } else {
2656      _cur_thr = NULL;
2657    }
2658  }
2659
2660  ~RememberProcessedThread() {
2661    if (_cur_thr) {
2662      _cur_thr->set_processed_thread(NULL);
2663    }
2664  }
2665};
2666
2667void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2668  // Verify that the deferred card marks have been flushed.
2669  assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2670
2671  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2672  // since there may be more than one thread using each ThreadProfiler.
2673
2674  // Traverse the GCHandles
2675  Thread::oops_do(f, cf);
2676
2677  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2678          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2679
2680  if (has_last_Java_frame()) {
2681    // Record JavaThread to GC thread
2682    RememberProcessedThread rpt(this);
2683
2684    // Traverse the privileged stack
2685    if (_privileged_stack_top != NULL) {
2686      _privileged_stack_top->oops_do(f);
2687    }
2688
2689    // traverse the registered growable array
2690    if (_array_for_gc != NULL) {
2691      for (int index = 0; index < _array_for_gc->length(); index++) {
2692        f->do_oop(_array_for_gc->adr_at(index));
2693      }
2694    }
2695
2696    // Traverse the monitor chunks
2697    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2698      chunk->oops_do(f);
2699    }
2700
2701    // Traverse the execution stack
2702    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2703      fst.current()->oops_do(f, cf, fst.register_map());
2704    }
2705  }
2706
2707  // callee_target is never live across a gc point so NULL it here should
2708  // it still contain a methdOop.
2709
2710  set_callee_target(NULL);
2711
2712  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2713  // If we have deferred set_locals there might be oops waiting to be
2714  // written
2715  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2716  if (list != NULL) {
2717    for (int i = 0; i < list->length(); i++) {
2718      list->at(i)->oops_do(f);
2719    }
2720  }
2721
2722  // Traverse instance variables at the end since the GC may be moving things
2723  // around using this function
2724  f->do_oop((oop*) &_threadObj);
2725  f->do_oop((oop*) &_vm_result);
2726  f->do_oop((oop*) &_exception_oop);
2727  f->do_oop((oop*) &_pending_async_exception);
2728
2729  if (jvmti_thread_state() != NULL) {
2730    jvmti_thread_state()->oops_do(f);
2731  }
2732}
2733
2734void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2735  Thread::nmethods_do(cf);  // (super method is a no-op)
2736
2737  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2738          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2739
2740  if (has_last_Java_frame()) {
2741    // Traverse the execution stack
2742    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2743      fst.current()->nmethods_do(cf);
2744    }
2745  }
2746}
2747
2748void JavaThread::metadata_do(void f(Metadata*)) {
2749  Thread::metadata_do(f);
2750  if (has_last_Java_frame()) {
2751    // Traverse the execution stack to call f() on the methods in the stack
2752    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2753      fst.current()->metadata_do(f);
2754    }
2755  } else if (is_Compiler_thread()) {
2756    // need to walk ciMetadata in current compile tasks to keep alive.
2757    CompilerThread* ct = (CompilerThread*)this;
2758    if (ct->env() != NULL) {
2759      ct->env()->metadata_do(f);
2760    }
2761  }
2762}
2763
2764// Printing
2765const char* _get_thread_state_name(JavaThreadState _thread_state) {
2766  switch (_thread_state) {
2767  case _thread_uninitialized:     return "_thread_uninitialized";
2768  case _thread_new:               return "_thread_new";
2769  case _thread_new_trans:         return "_thread_new_trans";
2770  case _thread_in_native:         return "_thread_in_native";
2771  case _thread_in_native_trans:   return "_thread_in_native_trans";
2772  case _thread_in_vm:             return "_thread_in_vm";
2773  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2774  case _thread_in_Java:           return "_thread_in_Java";
2775  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2776  case _thread_blocked:           return "_thread_blocked";
2777  case _thread_blocked_trans:     return "_thread_blocked_trans";
2778  default:                        return "unknown thread state";
2779  }
2780}
2781
2782#ifndef PRODUCT
2783void JavaThread::print_thread_state_on(outputStream *st) const {
2784  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2785};
2786void JavaThread::print_thread_state() const {
2787  print_thread_state_on(tty);
2788};
2789#endif // PRODUCT
2790
2791// Called by Threads::print() for VM_PrintThreads operation
2792void JavaThread::print_on(outputStream *st) const {
2793  st->print("\"%s\" ", get_thread_name());
2794  oop thread_oop = threadObj();
2795  if (thread_oop != NULL) {
2796    st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2797    if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2798    st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2799  }
2800  Thread::print_on(st);
2801  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2802  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2803  if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2804    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2805  }
2806#ifndef PRODUCT
2807  print_thread_state_on(st);
2808  _safepoint_state->print_on(st);
2809#endif // PRODUCT
2810}
2811
2812// Called by fatal error handler. The difference between this and
2813// JavaThread::print() is that we can't grab lock or allocate memory.
2814void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2815  st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2816  oop thread_obj = threadObj();
2817  if (thread_obj != NULL) {
2818     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2819  }
2820  st->print(" [");
2821  st->print("%s", _get_thread_state_name(_thread_state));
2822  if (osthread()) {
2823    st->print(", id=%d", osthread()->thread_id());
2824  }
2825  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2826            _stack_base - _stack_size, _stack_base);
2827  st->print("]");
2828  return;
2829}
2830
2831// Verification
2832
2833static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2834
2835void JavaThread::verify() {
2836  // Verify oops in the thread.
2837  oops_do(&VerifyOopClosure::verify_oop, NULL);
2838
2839  // Verify the stack frames.
2840  frames_do(frame_verify);
2841}
2842
2843// CR 6300358 (sub-CR 2137150)
2844// Most callers of this method assume that it can't return NULL but a
2845// thread may not have a name whilst it is in the process of attaching to
2846// the VM - see CR 6412693, and there are places where a JavaThread can be
2847// seen prior to having it's threadObj set (eg JNI attaching threads and
2848// if vm exit occurs during initialization). These cases can all be accounted
2849// for such that this method never returns NULL.
2850const char* JavaThread::get_thread_name() const {
2851#ifdef ASSERT
2852  // early safepoints can hit while current thread does not yet have TLS
2853  if (!SafepointSynchronize::is_at_safepoint()) {
2854    Thread *cur = Thread::current();
2855    if (!(cur->is_Java_thread() && cur == this)) {
2856      // Current JavaThreads are allowed to get their own name without
2857      // the Threads_lock.
2858      assert_locked_or_safepoint(Threads_lock);
2859    }
2860  }
2861#endif // ASSERT
2862    return get_thread_name_string();
2863}
2864
2865// Returns a non-NULL representation of this thread's name, or a suitable
2866// descriptive string if there is no set name
2867const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2868  const char* name_str;
2869  oop thread_obj = threadObj();
2870  if (thread_obj != NULL) {
2871    typeArrayOop name = java_lang_Thread::name(thread_obj);
2872    if (name != NULL) {
2873      if (buf == NULL) {
2874        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2875      }
2876      else {
2877        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2878      }
2879    }
2880    else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2881      name_str = "<no-name - thread is attaching>";
2882    }
2883    else {
2884      name_str = Thread::name();
2885    }
2886  }
2887  else {
2888    name_str = Thread::name();
2889  }
2890  assert(name_str != NULL, "unexpected NULL thread name");
2891  return name_str;
2892}
2893
2894
2895const char* JavaThread::get_threadgroup_name() const {
2896  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2897  oop thread_obj = threadObj();
2898  if (thread_obj != NULL) {
2899    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2900    if (thread_group != NULL) {
2901      typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2902      // ThreadGroup.name can be null
2903      if (name != NULL) {
2904        const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2905        return str;
2906      }
2907    }
2908  }
2909  return NULL;
2910}
2911
2912const char* JavaThread::get_parent_name() const {
2913  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2914  oop thread_obj = threadObj();
2915  if (thread_obj != NULL) {
2916    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2917    if (thread_group != NULL) {
2918      oop parent = java_lang_ThreadGroup::parent(thread_group);
2919      if (parent != NULL) {
2920        typeArrayOop name = java_lang_ThreadGroup::name(parent);
2921        // ThreadGroup.name can be null
2922        if (name != NULL) {
2923          const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2924          return str;
2925        }
2926      }
2927    }
2928  }
2929  return NULL;
2930}
2931
2932ThreadPriority JavaThread::java_priority() const {
2933  oop thr_oop = threadObj();
2934  if (thr_oop == NULL) return NormPriority; // Bootstrapping
2935  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2936  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2937  return priority;
2938}
2939
2940void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2941
2942  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2943  // Link Java Thread object <-> C++ Thread
2944
2945  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2946  // and put it into a new Handle.  The Handle "thread_oop" can then
2947  // be used to pass the C++ thread object to other methods.
2948
2949  // Set the Java level thread object (jthread) field of the
2950  // new thread (a JavaThread *) to C++ thread object using the
2951  // "thread_oop" handle.
2952
2953  // Set the thread field (a JavaThread *) of the
2954  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2955
2956  Handle thread_oop(Thread::current(),
2957                    JNIHandles::resolve_non_null(jni_thread));
2958  assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2959    "must be initialized");
2960  set_threadObj(thread_oop());
2961  java_lang_Thread::set_thread(thread_oop(), this);
2962
2963  if (prio == NoPriority) {
2964    prio = java_lang_Thread::priority(thread_oop());
2965    assert(prio != NoPriority, "A valid priority should be present");
2966  }
2967
2968  // Push the Java priority down to the native thread; needs Threads_lock
2969  Thread::set_priority(this, prio);
2970
2971  // Add the new thread to the Threads list and set it in motion.
2972  // We must have threads lock in order to call Threads::add.
2973  // It is crucial that we do not block before the thread is
2974  // added to the Threads list for if a GC happens, then the java_thread oop
2975  // will not be visited by GC.
2976  Threads::add(this);
2977}
2978
2979oop JavaThread::current_park_blocker() {
2980  // Support for JSR-166 locks
2981  oop thread_oop = threadObj();
2982  if (thread_oop != NULL &&
2983      JDK_Version::current().supports_thread_park_blocker()) {
2984    return java_lang_Thread::park_blocker(thread_oop);
2985  }
2986  return NULL;
2987}
2988
2989
2990void JavaThread::print_stack_on(outputStream* st) {
2991  if (!has_last_Java_frame()) return;
2992  ResourceMark rm;
2993  HandleMark   hm;
2994
2995  RegisterMap reg_map(this);
2996  vframe* start_vf = last_java_vframe(&reg_map);
2997  int count = 0;
2998  for (vframe* f = start_vf; f; f = f->sender() ) {
2999    if (f->is_java_frame()) {
3000      javaVFrame* jvf = javaVFrame::cast(f);
3001      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3002
3003      // Print out lock information
3004      if (JavaMonitorsInStackTrace) {
3005        jvf->print_lock_info_on(st, count);
3006      }
3007    } else {
3008      // Ignore non-Java frames
3009    }
3010
3011    // Bail-out case for too deep stacks
3012    count++;
3013    if (MaxJavaStackTraceDepth == count) return;
3014  }
3015}
3016
3017
3018// JVMTI PopFrame support
3019void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3020  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3021  if (in_bytes(size_in_bytes) != 0) {
3022    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3023    _popframe_preserved_args_size = in_bytes(size_in_bytes);
3024    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3025  }
3026}
3027
3028void* JavaThread::popframe_preserved_args() {
3029  return _popframe_preserved_args;
3030}
3031
3032ByteSize JavaThread::popframe_preserved_args_size() {
3033  return in_ByteSize(_popframe_preserved_args_size);
3034}
3035
3036WordSize JavaThread::popframe_preserved_args_size_in_words() {
3037  int sz = in_bytes(popframe_preserved_args_size());
3038  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3039  return in_WordSize(sz / wordSize);
3040}
3041
3042void JavaThread::popframe_free_preserved_args() {
3043  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3044  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3045  _popframe_preserved_args = NULL;
3046  _popframe_preserved_args_size = 0;
3047}
3048
3049#ifndef PRODUCT
3050
3051void JavaThread::trace_frames() {
3052  tty->print_cr("[Describe stack]");
3053  int frame_no = 1;
3054  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3055    tty->print("  %d. ", frame_no++);
3056    fst.current()->print_value_on(tty,this);
3057    tty->cr();
3058  }
3059}
3060
3061class PrintAndVerifyOopClosure: public OopClosure {
3062 protected:
3063  template <class T> inline void do_oop_work(T* p) {
3064    oop obj = oopDesc::load_decode_heap_oop(p);
3065    if (obj == NULL) return;
3066    tty->print(INTPTR_FORMAT ": ", p);
3067    if (obj->is_oop_or_null()) {
3068      if (obj->is_objArray()) {
3069        tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3070      } else {
3071        obj->print();
3072      }
3073    } else {
3074      tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3075    }
3076    tty->cr();
3077  }
3078 public:
3079  virtual void do_oop(oop* p) { do_oop_work(p); }
3080  virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3081};
3082
3083
3084static void oops_print(frame* f, const RegisterMap *map) {
3085  PrintAndVerifyOopClosure print;
3086  f->print_value();
3087  f->oops_do(&print, NULL, (RegisterMap*)map);
3088}
3089
3090// Print our all the locations that contain oops and whether they are
3091// valid or not.  This useful when trying to find the oldest frame
3092// where an oop has gone bad since the frame walk is from youngest to
3093// oldest.
3094void JavaThread::trace_oops() {
3095  tty->print_cr("[Trace oops]");
3096  frames_do(oops_print);
3097}
3098
3099
3100#ifdef ASSERT
3101// Print or validate the layout of stack frames
3102void JavaThread::print_frame_layout(int depth, bool validate_only) {
3103  ResourceMark rm;
3104  PRESERVE_EXCEPTION_MARK;
3105  FrameValues values;
3106  int frame_no = 0;
3107  for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3108    fst.current()->describe(values, ++frame_no);
3109    if (depth == frame_no) break;
3110  }
3111  if (validate_only) {
3112    values.validate();
3113  } else {
3114    tty->print_cr("[Describe stack layout]");
3115    values.print(this);
3116  }
3117}
3118#endif
3119
3120void JavaThread::trace_stack_from(vframe* start_vf) {
3121  ResourceMark rm;
3122  int vframe_no = 1;
3123  for (vframe* f = start_vf; f; f = f->sender() ) {
3124    if (f->is_java_frame()) {
3125      javaVFrame::cast(f)->print_activation(vframe_no++);
3126    } else {
3127      f->print();
3128    }
3129    if (vframe_no > StackPrintLimit) {
3130      tty->print_cr("...<more frames>...");
3131      return;
3132    }
3133  }
3134}
3135
3136
3137void JavaThread::trace_stack() {
3138  if (!has_last_Java_frame()) return;
3139  ResourceMark rm;
3140  HandleMark   hm;
3141  RegisterMap reg_map(this);
3142  trace_stack_from(last_java_vframe(&reg_map));
3143}
3144
3145
3146#endif // PRODUCT
3147
3148
3149javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3150  assert(reg_map != NULL, "a map must be given");
3151  frame f = last_frame();
3152  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3153    if (vf->is_java_frame()) return javaVFrame::cast(vf);
3154  }
3155  return NULL;
3156}
3157
3158
3159Klass* JavaThread::security_get_caller_class(int depth) {
3160  vframeStream vfst(this);
3161  vfst.security_get_caller_frame(depth);
3162  if (!vfst.at_end()) {
3163    return vfst.method()->method_holder();
3164  }
3165  return NULL;
3166}
3167
3168static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3169  assert(thread->is_Compiler_thread(), "must be compiler thread");
3170  CompileBroker::compiler_thread_loop();
3171}
3172
3173// Create a CompilerThread
3174CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3175: JavaThread(&compiler_thread_entry) {
3176  _env   = NULL;
3177  _log   = NULL;
3178  _task  = NULL;
3179  _queue = queue;
3180  _counters = counters;
3181  _buffer_blob = NULL;
3182  _scanned_nmethod = NULL;
3183
3184#ifndef PRODUCT
3185  _ideal_graph_printer = NULL;
3186#endif
3187}
3188
3189void CompilerThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3190  JavaThread::oops_do(f, cf);
3191  if (_scanned_nmethod != NULL && cf != NULL) {
3192    // Safepoints can occur when the sweeper is scanning an nmethod so
3193    // process it here to make sure it isn't unloaded in the middle of
3194    // a scan.
3195    cf->do_code_blob(_scanned_nmethod);
3196  }
3197}
3198
3199// ======= Threads ========
3200
3201// The Threads class links together all active threads, and provides
3202// operations over all threads.  It is protected by its own Mutex
3203// lock, which is also used in other contexts to protect thread
3204// operations from having the thread being operated on from exiting
3205// and going away unexpectedly (e.g., safepoint synchronization)
3206
3207JavaThread* Threads::_thread_list = NULL;
3208int         Threads::_number_of_threads = 0;
3209int         Threads::_number_of_non_daemon_threads = 0;
3210int         Threads::_return_code = 0;
3211size_t      JavaThread::_stack_size_at_create = 0;
3212#ifdef ASSERT
3213bool        Threads::_vm_complete = false;
3214#endif
3215
3216// All JavaThreads
3217#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3218
3219void os_stream();
3220
3221// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3222void Threads::threads_do(ThreadClosure* tc) {
3223  assert_locked_or_safepoint(Threads_lock);
3224  // ALL_JAVA_THREADS iterates through all JavaThreads
3225  ALL_JAVA_THREADS(p) {
3226    tc->do_thread(p);
3227  }
3228  // Someday we could have a table or list of all non-JavaThreads.
3229  // For now, just manually iterate through them.
3230  tc->do_thread(VMThread::vm_thread());
3231  Universe::heap()->gc_threads_do(tc);
3232  WatcherThread *wt = WatcherThread::watcher_thread();
3233  // Strictly speaking, the following NULL check isn't sufficient to make sure
3234  // the data for WatcherThread is still valid upon being examined. However,
3235  // considering that WatchThread terminates when the VM is on the way to
3236  // exit at safepoint, the chance of the above is extremely small. The right
3237  // way to prevent termination of WatcherThread would be to acquire
3238  // Terminator_lock, but we can't do that without violating the lock rank
3239  // checking in some cases.
3240  if (wt != NULL)
3241    tc->do_thread(wt);
3242
3243  // If CompilerThreads ever become non-JavaThreads, add them here
3244}
3245
3246jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3247
3248  extern void JDK_Version_init();
3249
3250  // Check version
3251  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3252
3253  // Initialize the output stream module
3254  ostream_init();
3255
3256  // Process java launcher properties.
3257  Arguments::process_sun_java_launcher_properties(args);
3258
3259  // Initialize the os module before using TLS
3260  os::init();
3261
3262  // Initialize system properties.
3263  Arguments::init_system_properties();
3264
3265  // So that JDK version can be used as a discrimintor when parsing arguments
3266  JDK_Version_init();
3267
3268  // Update/Initialize System properties after JDK version number is known
3269  Arguments::init_version_specific_system_properties();
3270
3271  // Parse arguments
3272  jint parse_result = Arguments::parse(args);
3273  if (parse_result != JNI_OK) return parse_result;
3274
3275  if (PauseAtStartup) {
3276    os::pause();
3277  }
3278
3279#ifndef USDT2
3280  HS_DTRACE_PROBE(hotspot, vm__init__begin);
3281#else /* USDT2 */
3282  HOTSPOT_VM_INIT_BEGIN();
3283#endif /* USDT2 */
3284
3285  // Record VM creation timing statistics
3286  TraceVmCreationTime create_vm_timer;
3287  create_vm_timer.start();
3288
3289  // Timing (must come after argument parsing)
3290  TraceTime timer("Create VM", TraceStartupTime);
3291
3292  // Initialize the os module after parsing the args
3293  jint os_init_2_result = os::init_2();
3294  if (os_init_2_result != JNI_OK) return os_init_2_result;
3295
3296  // intialize TLS
3297  ThreadLocalStorage::init();
3298
3299  // Bootstrap native memory tracking, so it can start recording memory
3300  // activities before worker thread is started. This is the first phase
3301  // of bootstrapping, VM is currently running in single-thread mode.
3302  MemTracker::bootstrap_single_thread();
3303
3304  // Initialize output stream logging
3305  ostream_init_log();
3306
3307  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3308  // Must be before create_vm_init_agents()
3309  if (Arguments::init_libraries_at_startup()) {
3310    convert_vm_init_libraries_to_agents();
3311  }
3312
3313  // Launch -agentlib/-agentpath and converted -Xrun agents
3314  if (Arguments::init_agents_at_startup()) {
3315    create_vm_init_agents();
3316  }
3317
3318  // Initialize Threads state
3319  _thread_list = NULL;
3320  _number_of_threads = 0;
3321  _number_of_non_daemon_threads = 0;
3322
3323  // Initialize global data structures and create system classes in heap
3324  vm_init_globals();
3325
3326  // Attach the main thread to this os thread
3327  JavaThread* main_thread = new JavaThread();
3328  main_thread->set_thread_state(_thread_in_vm);
3329  // must do this before set_active_handles and initialize_thread_local_storage
3330  // Note: on solaris initialize_thread_local_storage() will (indirectly)
3331  // change the stack size recorded here to one based on the java thread
3332  // stacksize. This adjusted size is what is used to figure the placement
3333  // of the guard pages.
3334  main_thread->record_stack_base_and_size();
3335  main_thread->initialize_thread_local_storage();
3336
3337  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3338
3339  if (!main_thread->set_as_starting_thread()) {
3340    vm_shutdown_during_initialization(
3341      "Failed necessary internal allocation. Out of swap space");
3342    delete main_thread;
3343    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3344    return JNI_ENOMEM;
3345  }
3346
3347  // Enable guard page *after* os::create_main_thread(), otherwise it would
3348  // crash Linux VM, see notes in os_linux.cpp.
3349  main_thread->create_stack_guard_pages();
3350
3351  // Initialize Java-Level synchronization subsystem
3352  ObjectMonitor::Initialize() ;
3353
3354  // Second phase of bootstrapping, VM is about entering multi-thread mode
3355  MemTracker::bootstrap_multi_thread();
3356
3357  // Initialize global modules
3358  jint status = init_globals();
3359  if (status != JNI_OK) {
3360    delete main_thread;
3361    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3362    return status;
3363  }
3364
3365  // Should be done after the heap is fully created
3366  main_thread->cache_global_variables();
3367
3368  HandleMark hm;
3369
3370  { MutexLocker mu(Threads_lock);
3371    Threads::add(main_thread);
3372  }
3373
3374  // Any JVMTI raw monitors entered in onload will transition into
3375  // real raw monitor. VM is setup enough here for raw monitor enter.
3376  JvmtiExport::transition_pending_onload_raw_monitors();
3377
3378  if (VerifyBeforeGC &&
3379      Universe::heap()->total_collections() >= VerifyGCStartAt) {
3380    Universe::heap()->prepare_for_verify();
3381    Universe::verify();   // make sure we're starting with a clean slate
3382  }
3383
3384  // Fully start NMT
3385  MemTracker::start();
3386
3387  // Create the VMThread
3388  { TraceTime timer("Start VMThread", TraceStartupTime);
3389    VMThread::create();
3390    Thread* vmthread = VMThread::vm_thread();
3391
3392    if (!os::create_thread(vmthread, os::vm_thread))
3393      vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3394
3395    // Wait for the VM thread to become ready, and VMThread::run to initialize
3396    // Monitors can have spurious returns, must always check another state flag
3397    {
3398      MutexLocker ml(Notify_lock);
3399      os::start_thread(vmthread);
3400      while (vmthread->active_handles() == NULL) {
3401        Notify_lock->wait();
3402      }
3403    }
3404  }
3405
3406  assert (Universe::is_fully_initialized(), "not initialized");
3407  EXCEPTION_MARK;
3408
3409  // At this point, the Universe is initialized, but we have not executed
3410  // any byte code.  Now is a good time (the only time) to dump out the
3411  // internal state of the JVM for sharing.
3412  if (DumpSharedSpaces) {
3413    MetaspaceShared::preload_and_dump(CHECK_0);
3414    ShouldNotReachHere();
3415  }
3416
3417  // Always call even when there are not JVMTI environments yet, since environments
3418  // may be attached late and JVMTI must track phases of VM execution
3419  JvmtiExport::enter_start_phase();
3420
3421  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3422  JvmtiExport::post_vm_start();
3423
3424  {
3425    TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3426
3427    if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3428      create_vm_init_libraries();
3429    }
3430
3431    if (InitializeJavaLangString) {
3432      initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3433    } else {
3434      warning("java.lang.String not initialized");
3435    }
3436
3437    if (AggressiveOpts) {
3438      {
3439        // Forcibly initialize java/util/HashMap and mutate the private
3440        // static final "frontCacheEnabled" field before we start creating instances
3441#ifdef ASSERT
3442        Klass* tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3443        assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3444#endif
3445        Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3446        KlassHandle k = KlassHandle(THREAD, k_o);
3447        guarantee(k.not_null(), "Must find java/util/HashMap");
3448        instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3449        ik->initialize(CHECK_0);
3450        fieldDescriptor fd;
3451        // Possible we might not find this field; if so, don't break
3452        if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3453          k()->java_mirror()->bool_field_put(fd.offset(), true);
3454        }
3455      }
3456
3457      if (UseStringCache) {
3458        // Forcibly initialize java/lang/StringValue and mutate the private
3459        // static final "stringCacheEnabled" field before we start creating instances
3460        Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3461        // Possible that StringValue isn't present: if so, silently don't break
3462        if (k_o != NULL) {
3463          KlassHandle k = KlassHandle(THREAD, k_o);
3464          instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3465          ik->initialize(CHECK_0);
3466          fieldDescriptor fd;
3467          // Possible we might not find this field: if so, silently don't break
3468          if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3469            k()->java_mirror()->bool_field_put(fd.offset(), true);
3470          }
3471        }
3472      }
3473    }
3474
3475    // Initialize java_lang.System (needed before creating the thread)
3476    if (InitializeJavaLangSystem) {
3477      initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3478      initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3479      Handle thread_group = create_initial_thread_group(CHECK_0);
3480      Universe::set_main_thread_group(thread_group());
3481      initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3482      oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3483      main_thread->set_threadObj(thread_object);
3484      // Set thread status to running since main thread has
3485      // been started and running.
3486      java_lang_Thread::set_thread_status(thread_object,
3487                                          java_lang_Thread::RUNNABLE);
3488
3489      // The VM preresolve methods to these classes. Make sure that get initialized
3490      initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3491      initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3492      // The VM creates & returns objects of this class. Make sure it's initialized.
3493      initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3494      call_initializeSystemClass(CHECK_0);
3495
3496      // get the Java runtime name after java.lang.System is initialized
3497      JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3498      JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3499    } else {
3500      warning("java.lang.System not initialized");
3501    }
3502
3503    // an instance of OutOfMemory exception has been allocated earlier
3504    if (InitializeJavaLangExceptionsErrors) {
3505      initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3506      initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3507      initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3508      initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3509      initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3510      initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3511      initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3512      initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
3513    } else {
3514      warning("java.lang.OutOfMemoryError has not been initialized");
3515      warning("java.lang.NullPointerException has not been initialized");
3516      warning("java.lang.ClassCastException has not been initialized");
3517      warning("java.lang.ArrayStoreException has not been initialized");
3518      warning("java.lang.ArithmeticException has not been initialized");
3519      warning("java.lang.StackOverflowError has not been initialized");
3520      warning("java.lang.IllegalArgumentException has not been initialized");
3521    }
3522  }
3523
3524  // See        : bugid 4211085.
3525  // Background : the static initializer of java.lang.Compiler tries to read
3526  //              property"java.compiler" and read & write property "java.vm.info".
3527  //              When a security manager is installed through the command line
3528  //              option "-Djava.security.manager", the above properties are not
3529  //              readable and the static initializer for java.lang.Compiler fails
3530  //              resulting in a NoClassDefFoundError.  This can happen in any
3531  //              user code which calls methods in java.lang.Compiler.
3532  // Hack :       the hack is to pre-load and initialize this class, so that only
3533  //              system domains are on the stack when the properties are read.
3534  //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3535  //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3536  // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3537  //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3538  //              Once that is done, we should remove this hack.
3539  initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3540
3541  // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3542  // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3543  // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3544  // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3545  // This should also be taken out as soon as 4211383 gets fixed.
3546  reset_vm_info_property(CHECK_0);
3547
3548  quicken_jni_functions();
3549
3550  // Must be run after init_ft which initializes ft_enabled
3551  if (TRACE_INITIALIZE() != JNI_OK) {
3552    vm_exit_during_initialization("Failed to initialize tracing backend");
3553  }
3554
3555  // Set flag that basic initialization has completed. Used by exceptions and various
3556  // debug stuff, that does not work until all basic classes have been initialized.
3557  set_init_completed();
3558
3559#ifndef USDT2
3560  HS_DTRACE_PROBE(hotspot, vm__init__end);
3561#else /* USDT2 */
3562  HOTSPOT_VM_INIT_END();
3563#endif /* USDT2 */
3564
3565  // record VM initialization completion time
3566#if INCLUDE_MANAGEMENT
3567  Management::record_vm_init_completed();
3568#endif // INCLUDE_MANAGEMENT
3569
3570  // Compute system loader. Note that this has to occur after set_init_completed, since
3571  // valid exceptions may be thrown in the process.
3572  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3573  // set_init_completed has just been called, causing exceptions not to be shortcut
3574  // anymore. We call vm_exit_during_initialization directly instead.
3575  SystemDictionary::compute_java_system_loader(THREAD);
3576  if (HAS_PENDING_EXCEPTION) {
3577    vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3578  }
3579
3580#ifndef SERIALGC
3581  // Support for ConcurrentMarkSweep. This should be cleaned up
3582  // and better encapsulated. The ugly nested if test would go away
3583  // once things are properly refactored. XXX YSR
3584  if (UseConcMarkSweepGC || UseG1GC) {
3585    if (UseConcMarkSweepGC) {
3586      ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3587    } else {
3588      ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3589    }
3590    if (HAS_PENDING_EXCEPTION) {
3591      vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3592    }
3593  }
3594#endif // SERIALGC
3595
3596  // Always call even when there are not JVMTI environments yet, since environments
3597  // may be attached late and JVMTI must track phases of VM execution
3598  JvmtiExport::enter_live_phase();
3599
3600  // Signal Dispatcher needs to be started before VMInit event is posted
3601  os::signal_init();
3602
3603  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3604  if (!DisableAttachMechanism) {
3605    if (StartAttachListener || AttachListener::init_at_startup()) {
3606      AttachListener::init();
3607    }
3608  }
3609
3610  // Launch -Xrun agents
3611  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3612  // back-end can launch with -Xdebug -Xrunjdwp.
3613  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3614    create_vm_init_libraries();
3615  }
3616
3617  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3618  JvmtiExport::post_vm_initialized();
3619
3620  if (!TRACE_START()) {
3621    vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3622  }
3623
3624  if (CleanChunkPoolAsync) {
3625    Chunk::start_chunk_pool_cleaner_task();
3626  }
3627
3628  // initialize compiler(s)
3629#if defined(COMPILER1) || defined(COMPILER2)
3630  CompileBroker::compilation_init();
3631#endif
3632
3633#if INCLUDE_MANAGEMENT
3634  Management::initialize(THREAD);
3635#endif // INCLUDE_MANAGEMENT
3636
3637  if (HAS_PENDING_EXCEPTION) {
3638    // management agent fails to start possibly due to
3639    // configuration problem and is responsible for printing
3640    // stack trace if appropriate. Simply exit VM.
3641    vm_exit(1);
3642  }
3643
3644  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3645  if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3646  if (MemProfiling)                   MemProfiler::engage();
3647  StatSampler::engage();
3648  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3649
3650  BiasedLocking::init();
3651
3652  if (JDK_Version::current().post_vm_init_hook_enabled()) {
3653    call_postVMInitHook(THREAD);
3654    // The Java side of PostVMInitHook.run must deal with all
3655    // exceptions and provide means of diagnosis.
3656    if (HAS_PENDING_EXCEPTION) {
3657      CLEAR_PENDING_EXCEPTION;
3658    }
3659  }
3660
3661  // Start up the WatcherThread if there are any periodic tasks
3662  // NOTE:  All PeriodicTasks should be registered by now. If they
3663  //   aren't, late joiners might appear to start slowly (we might
3664  //   take a while to process their first tick).
3665  if (PeriodicTask::num_tasks() > 0) {
3666    WatcherThread::start();
3667  }
3668
3669  // Give os specific code one last chance to start
3670  os::init_3();
3671
3672  create_vm_timer.end();
3673#ifdef ASSERT
3674  _vm_complete = true;
3675#endif
3676  return JNI_OK;
3677}
3678
3679// type for the Agent_OnLoad and JVM_OnLoad entry points
3680extern "C" {
3681  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3682}
3683// Find a command line agent library and return its entry point for
3684//         -agentlib:  -agentpath:   -Xrun
3685// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3686static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3687  OnLoadEntry_t on_load_entry = NULL;
3688  void *library = agent->os_lib();  // check if we have looked it up before
3689
3690  if (library == NULL) {
3691    char buffer[JVM_MAXPATHLEN];
3692    char ebuf[1024];
3693    const char *name = agent->name();
3694    const char *msg = "Could not find agent library ";
3695
3696    if (agent->is_absolute_path()) {
3697      library = os::dll_load(name, ebuf, sizeof ebuf);
3698      if (library == NULL) {
3699        const char *sub_msg = " in absolute path, with error: ";
3700        size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3701        char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3702        jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3703        // If we can't find the agent, exit.
3704        vm_exit_during_initialization(buf, NULL);
3705        FREE_C_HEAP_ARRAY(char, buf, mtThread);
3706      }
3707    } else {
3708      // Try to load the agent from the standard dll directory
3709      if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3710                             name)) {
3711        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3712      }
3713#ifdef KERNEL
3714      // Download instrument dll
3715      if (library == NULL && strcmp(name, "instrument") == 0) {
3716        char *props = Arguments::get_kernel_properties();
3717        char *home  = Arguments::get_java_home();
3718        const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
3719                      " sun.jkernel.DownloadManager -download client_jvm";
3720        size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
3721        char *cmd = NEW_C_HEAP_ARRAY(char, length, mtThread);
3722        jio_snprintf(cmd, length, fmt, home, props);
3723        int status = os::fork_and_exec(cmd);
3724        FreeHeap(props);
3725        if (status == -1) {
3726          warning(cmd);
3727          vm_exit_during_initialization("fork_and_exec failed: %s",
3728                                         strerror(errno));
3729        }
3730        FREE_C_HEAP_ARRAY(char, cmd, mtThread);
3731        // when this comes back the instrument.dll should be where it belongs.
3732        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3733      }
3734#endif // KERNEL
3735      if (library == NULL) { // Try the local directory
3736        char ns[1] = {0};
3737        if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3738          library = os::dll_load(buffer, ebuf, sizeof ebuf);
3739        }
3740        if (library == NULL) {
3741          const char *sub_msg = " on the library path, with error: ";
3742          size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3743          char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3744          jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3745          // If we can't find the agent, exit.
3746          vm_exit_during_initialization(buf, NULL);
3747          FREE_C_HEAP_ARRAY(char, buf, mtThread);
3748        }
3749      }
3750    }
3751    agent->set_os_lib(library);
3752  }
3753
3754  // Find the OnLoad function.
3755  for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3756    on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
3757    if (on_load_entry != NULL) break;
3758  }
3759  return on_load_entry;
3760}
3761
3762// Find the JVM_OnLoad entry point
3763static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3764  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3765  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3766}
3767
3768// Find the Agent_OnLoad entry point
3769static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3770  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3771  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3772}
3773
3774// For backwards compatibility with -Xrun
3775// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3776// treated like -agentpath:
3777// Must be called before agent libraries are created
3778void Threads::convert_vm_init_libraries_to_agents() {
3779  AgentLibrary* agent;
3780  AgentLibrary* next;
3781
3782  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3783    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3784    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3785
3786    // If there is an JVM_OnLoad function it will get called later,
3787    // otherwise see if there is an Agent_OnLoad
3788    if (on_load_entry == NULL) {
3789      on_load_entry = lookup_agent_on_load(agent);
3790      if (on_load_entry != NULL) {
3791        // switch it to the agent list -- so that Agent_OnLoad will be called,
3792        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3793        Arguments::convert_library_to_agent(agent);
3794      } else {
3795        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3796      }
3797    }
3798  }
3799}
3800
3801// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3802// Invokes Agent_OnLoad
3803// Called very early -- before JavaThreads exist
3804void Threads::create_vm_init_agents() {
3805  extern struct JavaVM_ main_vm;
3806  AgentLibrary* agent;
3807
3808  JvmtiExport::enter_onload_phase();
3809
3810  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3811    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3812
3813    if (on_load_entry != NULL) {
3814      // Invoke the Agent_OnLoad function
3815      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3816      if (err != JNI_OK) {
3817        vm_exit_during_initialization("agent library failed to init", agent->name());
3818      }
3819    } else {
3820      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3821    }
3822  }
3823  JvmtiExport::enter_primordial_phase();
3824}
3825
3826extern "C" {
3827  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3828}
3829
3830void Threads::shutdown_vm_agents() {
3831  // Send any Agent_OnUnload notifications
3832  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3833  extern struct JavaVM_ main_vm;
3834  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3835
3836    // Find the Agent_OnUnload function.
3837    for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3838      Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3839               os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3840
3841      // Invoke the Agent_OnUnload function
3842      if (unload_entry != NULL) {
3843        JavaThread* thread = JavaThread::current();
3844        ThreadToNativeFromVM ttn(thread);
3845        HandleMark hm(thread);
3846        (*unload_entry)(&main_vm);
3847        break;
3848      }
3849    }
3850  }
3851}
3852
3853// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3854// Invokes JVM_OnLoad
3855void Threads::create_vm_init_libraries() {
3856  extern struct JavaVM_ main_vm;
3857  AgentLibrary* agent;
3858
3859  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3860    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3861
3862    if (on_load_entry != NULL) {
3863      // Invoke the JVM_OnLoad function
3864      JavaThread* thread = JavaThread::current();
3865      ThreadToNativeFromVM ttn(thread);
3866      HandleMark hm(thread);
3867      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3868      if (err != JNI_OK) {
3869        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3870      }
3871    } else {
3872      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3873    }
3874  }
3875}
3876
3877// Last thread running calls java.lang.Shutdown.shutdown()
3878void JavaThread::invoke_shutdown_hooks() {
3879  HandleMark hm(this);
3880
3881  // We could get here with a pending exception, if so clear it now.
3882  if (this->has_pending_exception()) {
3883    this->clear_pending_exception();
3884  }
3885
3886  EXCEPTION_MARK;
3887  Klass* k =
3888    SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3889                                      THREAD);
3890  if (k != NULL) {
3891    // SystemDictionary::resolve_or_null will return null if there was
3892    // an exception.  If we cannot load the Shutdown class, just don't
3893    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3894    // and finalizers (if runFinalizersOnExit is set) won't be run.
3895    // Note that if a shutdown hook was registered or runFinalizersOnExit
3896    // was called, the Shutdown class would have already been loaded
3897    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3898    instanceKlassHandle shutdown_klass (THREAD, k);
3899    JavaValue result(T_VOID);
3900    JavaCalls::call_static(&result,
3901                           shutdown_klass,
3902                           vmSymbols::shutdown_method_name(),
3903                           vmSymbols::void_method_signature(),
3904                           THREAD);
3905  }
3906  CLEAR_PENDING_EXCEPTION;
3907}
3908
3909// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3910// the program falls off the end of main(). Another VM exit path is through
3911// vm_exit() when the program calls System.exit() to return a value or when
3912// there is a serious error in VM. The two shutdown paths are not exactly
3913// the same, but they share Shutdown.shutdown() at Java level and before_exit()
3914// and VM_Exit op at VM level.
3915//
3916// Shutdown sequence:
3917//   + Shutdown native memory tracking if it is on
3918//   + Wait until we are the last non-daemon thread to execute
3919//     <-- every thing is still working at this moment -->
3920//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3921//        shutdown hooks, run finalizers if finalization-on-exit
3922//   + Call before_exit(), prepare for VM exit
3923//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3924//        currently the only user of this mechanism is File.deleteOnExit())
3925//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3926//        post thread end and vm death events to JVMTI,
3927//        stop signal thread
3928//   + Call JavaThread::exit(), it will:
3929//      > release JNI handle blocks, remove stack guard pages
3930//      > remove this thread from Threads list
3931//     <-- no more Java code from this thread after this point -->
3932//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3933//     the compiler threads at safepoint
3934//     <-- do not use anything that could get blocked by Safepoint -->
3935//   + Disable tracing at JNI/JVM barriers
3936//   + Set _vm_exited flag for threads that are still running native code
3937//   + Delete this thread
3938//   + Call exit_globals()
3939//      > deletes tty
3940//      > deletes PerfMemory resources
3941//   + Return to caller
3942
3943bool Threads::destroy_vm() {
3944  JavaThread* thread = JavaThread::current();
3945
3946#ifdef ASSERT
3947  _vm_complete = false;
3948#endif
3949  // Wait until we are the last non-daemon thread to execute
3950  { MutexLocker nu(Threads_lock);
3951    while (Threads::number_of_non_daemon_threads() > 1 )
3952      // This wait should make safepoint checks, wait without a timeout,
3953      // and wait as a suspend-equivalent condition.
3954      //
3955      // Note: If the FlatProfiler is running and this thread is waiting
3956      // for another non-daemon thread to finish, then the FlatProfiler
3957      // is waiting for the external suspend request on this thread to
3958      // complete. wait_for_ext_suspend_completion() will eventually
3959      // timeout, but that takes time. Making this wait a suspend-
3960      // equivalent condition solves that timeout problem.
3961      //
3962      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3963                         Mutex::_as_suspend_equivalent_flag);
3964  }
3965
3966  // Shutdown NMT before exit. Otherwise,
3967  // it will run into trouble when system destroys static variables.
3968  MemTracker::shutdown(MemTracker::NMT_normal);
3969
3970  // Hang forever on exit if we are reporting an error.
3971  if (ShowMessageBoxOnError && is_error_reported()) {
3972    os::infinite_sleep();
3973  }
3974  os::wait_for_keypress_at_exit();
3975
3976  if (JDK_Version::is_jdk12x_version()) {
3977    // We are the last thread running, so check if finalizers should be run.
3978    // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3979    HandleMark rm(thread);
3980    Universe::run_finalizers_on_exit();
3981  } else {
3982    // run Java level shutdown hooks
3983    thread->invoke_shutdown_hooks();
3984  }
3985
3986  before_exit(thread);
3987
3988  thread->exit(true);
3989
3990  // Stop VM thread.
3991  {
3992    // 4945125 The vm thread comes to a safepoint during exit.
3993    // GC vm_operations can get caught at the safepoint, and the
3994    // heap is unparseable if they are caught. Grab the Heap_lock
3995    // to prevent this. The GC vm_operations will not be able to
3996    // queue until after the vm thread is dead.
3997    // After this point, we'll never emerge out of the safepoint before
3998    // the VM exits, so concurrent GC threads do not need to be explicitly
3999    // stopped; they remain inactive until the process exits.
4000    // Note: some concurrent G1 threads may be running during a safepoint,
4001    // but these will not be accessing the heap, just some G1-specific side
4002    // data structures that are not accessed by any other threads but them
4003    // after this point in a terminal safepoint.
4004
4005    MutexLocker ml(Heap_lock);
4006
4007    VMThread::wait_for_vm_thread_exit();
4008    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4009    VMThread::destroy();
4010  }
4011
4012  // clean up ideal graph printers
4013#if defined(COMPILER2) && !defined(PRODUCT)
4014  IdealGraphPrinter::clean_up();
4015#endif
4016
4017  // Now, all Java threads are gone except daemon threads. Daemon threads
4018  // running Java code or in VM are stopped by the Safepoint. However,
4019  // daemon threads executing native code are still running.  But they
4020  // will be stopped at native=>Java/VM barriers. Note that we can't
4021  // simply kill or suspend them, as it is inherently deadlock-prone.
4022
4023#ifndef PRODUCT
4024  // disable function tracing at JNI/JVM barriers
4025  TraceJNICalls = false;
4026  TraceJVMCalls = false;
4027  TraceRuntimeCalls = false;
4028#endif
4029
4030  VM_Exit::set_vm_exited();
4031
4032  notify_vm_shutdown();
4033
4034  delete thread;
4035
4036  // exit_globals() will delete tty
4037  exit_globals();
4038
4039  return true;
4040}
4041
4042
4043jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4044  if (version == JNI_VERSION_1_1) return JNI_TRUE;
4045  return is_supported_jni_version(version);
4046}
4047
4048
4049jboolean Threads::is_supported_jni_version(jint version) {
4050  if (version == JNI_VERSION_1_2) return JNI_TRUE;
4051  if (version == JNI_VERSION_1_4) return JNI_TRUE;
4052  if (version == JNI_VERSION_1_6) return JNI_TRUE;
4053  return JNI_FALSE;
4054}
4055
4056
4057void Threads::add(JavaThread* p, bool force_daemon) {
4058  // The threads lock must be owned at this point
4059  assert_locked_or_safepoint(Threads_lock);
4060
4061  // See the comment for this method in thread.hpp for its purpose and
4062  // why it is called here.
4063  p->initialize_queues();
4064  p->set_next(_thread_list);
4065  _thread_list = p;
4066  _number_of_threads++;
4067  oop threadObj = p->threadObj();
4068  bool daemon = true;
4069  // Bootstrapping problem: threadObj can be null for initial
4070  // JavaThread (or for threads attached via JNI)
4071  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4072    _number_of_non_daemon_threads++;
4073    daemon = false;
4074  }
4075
4076  p->set_safepoint_visible(true);
4077
4078  ThreadService::add_thread(p, daemon);
4079
4080  // Possible GC point.
4081  Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4082}
4083
4084void Threads::remove(JavaThread* p) {
4085  // Extra scope needed for Thread_lock, so we can check
4086  // that we do not remove thread without safepoint code notice
4087  { MutexLocker ml(Threads_lock);
4088
4089    assert(includes(p), "p must be present");
4090
4091    JavaThread* current = _thread_list;
4092    JavaThread* prev    = NULL;
4093
4094    while (current != p) {
4095      prev    = current;
4096      current = current->next();
4097    }
4098
4099    if (prev) {
4100      prev->set_next(current->next());
4101    } else {
4102      _thread_list = p->next();
4103    }
4104    _number_of_threads--;
4105    oop threadObj = p->threadObj();
4106    bool daemon = true;
4107    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4108      _number_of_non_daemon_threads--;
4109      daemon = false;
4110
4111      // Only one thread left, do a notify on the Threads_lock so a thread waiting
4112      // on destroy_vm will wake up.
4113      if (number_of_non_daemon_threads() == 1)
4114        Threads_lock->notify_all();
4115    }
4116    ThreadService::remove_thread(p, daemon);
4117
4118    // Make sure that safepoint code disregard this thread. This is needed since
4119    // the thread might mess around with locks after this point. This can cause it
4120    // to do callbacks into the safepoint code. However, the safepoint code is not aware
4121    // of this thread since it is removed from the queue.
4122    p->set_terminated_value();
4123
4124    // Now, this thread is not visible to safepoint
4125    p->set_safepoint_visible(false);
4126    // once the thread becomes safepoint invisible, we can not use its per-thread
4127    // recorder. And Threads::do_threads() no longer walks this thread, so we have
4128    // to release its per-thread recorder here.
4129    MemTracker::thread_exiting(p);
4130  } // unlock Threads_lock
4131
4132  // Since Events::log uses a lock, we grab it outside the Threads_lock
4133  Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4134}
4135
4136// Threads_lock must be held when this is called (or must be called during a safepoint)
4137bool Threads::includes(JavaThread* p) {
4138  assert(Threads_lock->is_locked(), "sanity check");
4139  ALL_JAVA_THREADS(q) {
4140    if (q == p ) {
4141      return true;
4142    }
4143  }
4144  return false;
4145}
4146
4147// Operations on the Threads list for GC.  These are not explicitly locked,
4148// but the garbage collector must provide a safe context for them to run.
4149// In particular, these things should never be called when the Threads_lock
4150// is held by some other thread. (Note: the Safepoint abstraction also
4151// uses the Threads_lock to gurantee this property. It also makes sure that
4152// all threads gets blocked when exiting or starting).
4153
4154void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4155  ALL_JAVA_THREADS(p) {
4156    p->oops_do(f, cf);
4157  }
4158  VMThread::vm_thread()->oops_do(f, cf);
4159}
4160
4161void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
4162  // Introduce a mechanism allowing parallel threads to claim threads as
4163  // root groups.  Overhead should be small enough to use all the time,
4164  // even in sequential code.
4165  SharedHeap* sh = SharedHeap::heap();
4166  // Cannot yet substitute active_workers for n_par_threads
4167  // because of G1CollectedHeap::verify() use of
4168  // SharedHeap::process_strong_roots().  n_par_threads == 0 will
4169  // turn off parallelism in process_strong_roots while active_workers
4170  // is being used for parallelism elsewhere.
4171  bool is_par = sh->n_par_threads() > 0;
4172  assert(!is_par ||
4173         (SharedHeap::heap()->n_par_threads() ==
4174          SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4175  int cp = SharedHeap::heap()->strong_roots_parity();
4176  ALL_JAVA_THREADS(p) {
4177    if (p->claim_oops_do(is_par, cp)) {
4178      p->oops_do(f, cf);
4179    }
4180  }
4181  VMThread* vmt = VMThread::vm_thread();
4182  if (vmt->claim_oops_do(is_par, cp)) {
4183    vmt->oops_do(f, cf);
4184  }
4185}
4186
4187#ifndef SERIALGC
4188// Used by ParallelScavenge
4189void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4190  ALL_JAVA_THREADS(p) {
4191    q->enqueue(new ThreadRootsTask(p));
4192  }
4193  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4194}
4195
4196// Used by Parallel Old
4197void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4198  ALL_JAVA_THREADS(p) {
4199    q->enqueue(new ThreadRootsMarkingTask(p));
4200  }
4201  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4202}
4203#endif // SERIALGC
4204
4205void Threads::nmethods_do(CodeBlobClosure* cf) {
4206  ALL_JAVA_THREADS(p) {
4207    p->nmethods_do(cf);
4208  }
4209  VMThread::vm_thread()->nmethods_do(cf);
4210}
4211
4212void Threads::metadata_do(void f(Metadata*)) {
4213  ALL_JAVA_THREADS(p) {
4214    p->metadata_do(f);
4215  }
4216}
4217
4218void Threads::gc_epilogue() {
4219  ALL_JAVA_THREADS(p) {
4220    p->gc_epilogue();
4221  }
4222}
4223
4224void Threads::gc_prologue() {
4225  ALL_JAVA_THREADS(p) {
4226    p->gc_prologue();
4227  }
4228}
4229
4230void Threads::deoptimized_wrt_marked_nmethods() {
4231  ALL_JAVA_THREADS(p) {
4232    p->deoptimized_wrt_marked_nmethods();
4233  }
4234}
4235
4236
4237// Get count Java threads that are waiting to enter the specified monitor.
4238GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4239  address monitor, bool doLock) {
4240  assert(doLock || SafepointSynchronize::is_at_safepoint(),
4241    "must grab Threads_lock or be at safepoint");
4242  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4243
4244  int i = 0;
4245  {
4246    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4247    ALL_JAVA_THREADS(p) {
4248      if (p->is_Compiler_thread()) continue;
4249
4250      address pending = (address)p->current_pending_monitor();
4251      if (pending == monitor) {             // found a match
4252        if (i < count) result->append(p);   // save the first count matches
4253        i++;
4254      }
4255    }
4256  }
4257  return result;
4258}
4259
4260
4261JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4262  assert(doLock ||
4263         Threads_lock->owned_by_self() ||
4264         SafepointSynchronize::is_at_safepoint(),
4265         "must grab Threads_lock or be at safepoint");
4266
4267  // NULL owner means not locked so we can skip the search
4268  if (owner == NULL) return NULL;
4269
4270  {
4271    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4272    ALL_JAVA_THREADS(p) {
4273      // first, see if owner is the address of a Java thread
4274      if (owner == (address)p) return p;
4275    }
4276  }
4277  assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
4278  if (UseHeavyMonitors) return NULL;
4279
4280  //
4281  // If we didn't find a matching Java thread and we didn't force use of
4282  // heavyweight monitors, then the owner is the stack address of the
4283  // Lock Word in the owning Java thread's stack.
4284  //
4285  JavaThread* the_owner = NULL;
4286  {
4287    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4288    ALL_JAVA_THREADS(q) {
4289      if (q->is_lock_owned(owner)) {
4290        the_owner = q;
4291        break;
4292      }
4293    }
4294  }
4295  assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
4296  return the_owner;
4297}
4298
4299// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4300void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4301  char buf[32];
4302  st->print_cr(os::local_time_string(buf, sizeof(buf)));
4303
4304  st->print_cr("Full thread dump %s (%s %s):",
4305                Abstract_VM_Version::vm_name(),
4306                Abstract_VM_Version::vm_release(),
4307                Abstract_VM_Version::vm_info_string()
4308               );
4309  st->cr();
4310
4311#ifndef SERIALGC
4312  // Dump concurrent locks
4313  ConcurrentLocksDump concurrent_locks;
4314  if (print_concurrent_locks) {
4315    concurrent_locks.dump_at_safepoint();
4316  }
4317#endif // SERIALGC
4318
4319  ALL_JAVA_THREADS(p) {
4320    ResourceMark rm;
4321    p->print_on(st);
4322    if (print_stacks) {
4323      if (internal_format) {
4324        p->trace_stack();
4325      } else {
4326        p->print_stack_on(st);
4327      }
4328    }
4329    st->cr();
4330#ifndef SERIALGC
4331    if (print_concurrent_locks) {
4332      concurrent_locks.print_locks_on(p, st);
4333    }
4334#endif // SERIALGC
4335  }
4336
4337  VMThread::vm_thread()->print_on(st);
4338  st->cr();
4339  Universe::heap()->print_gc_threads_on(st);
4340  WatcherThread* wt = WatcherThread::watcher_thread();
4341  if (wt != NULL) {
4342    wt->print_on(st);
4343    st->cr();
4344  }
4345  CompileBroker::print_compiler_threads_on(st);
4346  st->flush();
4347}
4348
4349// Threads::print_on_error() is called by fatal error handler. It's possible
4350// that VM is not at safepoint and/or current thread is inside signal handler.
4351// Don't print stack trace, as the stack may not be walkable. Don't allocate
4352// memory (even in resource area), it might deadlock the error handler.
4353void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4354  bool found_current = false;
4355  st->print_cr("Java Threads: ( => current thread )");
4356  ALL_JAVA_THREADS(thread) {
4357    bool is_current = (current == thread);
4358    found_current = found_current || is_current;
4359
4360    st->print("%s", is_current ? "=>" : "  ");
4361
4362    st->print(PTR_FORMAT, thread);
4363    st->print(" ");
4364    thread->print_on_error(st, buf, buflen);
4365    st->cr();
4366  }
4367  st->cr();
4368
4369  st->print_cr("Other Threads:");
4370  if (VMThread::vm_thread()) {
4371    bool is_current = (current == VMThread::vm_thread());
4372    found_current = found_current || is_current;
4373    st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4374
4375    st->print(PTR_FORMAT, VMThread::vm_thread());
4376    st->print(" ");
4377    VMThread::vm_thread()->print_on_error(st, buf, buflen);
4378    st->cr();
4379  }
4380  WatcherThread* wt = WatcherThread::watcher_thread();
4381  if (wt != NULL) {
4382    bool is_current = (current == wt);
4383    found_current = found_current || is_current;
4384    st->print("%s", is_current ? "=>" : "  ");
4385
4386    st->print(PTR_FORMAT, wt);
4387    st->print(" ");
4388    wt->print_on_error(st, buf, buflen);
4389    st->cr();
4390  }
4391  if (!found_current) {
4392    st->cr();
4393    st->print("=>" PTR_FORMAT " (exited) ", current);
4394    current->print_on_error(st, buf, buflen);
4395    st->cr();
4396  }
4397}
4398
4399// Internal SpinLock and Mutex
4400// Based on ParkEvent
4401
4402// Ad-hoc mutual exclusion primitives: SpinLock and Mux
4403//
4404// We employ SpinLocks _only for low-contention, fixed-length
4405// short-duration critical sections where we're concerned
4406// about native mutex_t or HotSpot Mutex:: latency.
4407// The mux construct provides a spin-then-block mutual exclusion
4408// mechanism.
4409//
4410// Testing has shown that contention on the ListLock guarding gFreeList
4411// is common.  If we implement ListLock as a simple SpinLock it's common
4412// for the JVM to devolve to yielding with little progress.  This is true
4413// despite the fact that the critical sections protected by ListLock are
4414// extremely short.
4415//
4416// TODO-FIXME: ListLock should be of type SpinLock.
4417// We should make this a 1st-class type, integrated into the lock
4418// hierarchy as leaf-locks.  Critically, the SpinLock structure
4419// should have sufficient padding to avoid false-sharing and excessive
4420// cache-coherency traffic.
4421
4422
4423typedef volatile int SpinLockT ;
4424
4425void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4426  if (Atomic::cmpxchg (1, adr, 0) == 0) {
4427     return ;   // normal fast-path return
4428  }
4429
4430  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4431  TEVENT (SpinAcquire - ctx) ;
4432  int ctr = 0 ;
4433  int Yields = 0 ;
4434  for (;;) {
4435     while (*adr != 0) {
4436        ++ctr ;
4437        if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4438           if (Yields > 5) {
4439             // Consider using a simple NakedSleep() instead.
4440             // Then SpinAcquire could be called by non-JVM threads
4441             Thread::current()->_ParkEvent->park(1) ;
4442           } else {
4443             os::NakedYield() ;
4444             ++Yields ;
4445           }
4446        } else {
4447           SpinPause() ;
4448        }
4449     }
4450     if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4451  }
4452}
4453
4454void Thread::SpinRelease (volatile int * adr) {
4455  assert (*adr != 0, "invariant") ;
4456  OrderAccess::fence() ;      // guarantee at least release consistency.
4457  // Roach-motel semantics.
4458  // It's safe if subsequent LDs and STs float "up" into the critical section,
4459  // but prior LDs and STs within the critical section can't be allowed
4460  // to reorder or float past the ST that releases the lock.
4461  *adr = 0 ;
4462}
4463
4464// muxAcquire and muxRelease:
4465//
4466// *  muxAcquire and muxRelease support a single-word lock-word construct.
4467//    The LSB of the word is set IFF the lock is held.
4468//    The remainder of the word points to the head of a singly-linked list
4469//    of threads blocked on the lock.
4470//
4471// *  The current implementation of muxAcquire-muxRelease uses its own
4472//    dedicated Thread._MuxEvent instance.  If we're interested in
4473//    minimizing the peak number of extant ParkEvent instances then
4474//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4475//    as certain invariants were satisfied.  Specifically, care would need
4476//    to be taken with regards to consuming unpark() "permits".
4477//    A safe rule of thumb is that a thread would never call muxAcquire()
4478//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4479//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4480//    consume an unpark() permit intended for monitorenter, for instance.
4481//    One way around this would be to widen the restricted-range semaphore
4482//    implemented in park().  Another alternative would be to provide
4483//    multiple instances of the PlatformEvent() for each thread.  One
4484//    instance would be dedicated to muxAcquire-muxRelease, for instance.
4485//
4486// *  Usage:
4487//    -- Only as leaf locks
4488//    -- for short-term locking only as muxAcquire does not perform
4489//       thread state transitions.
4490//
4491// Alternatives:
4492// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4493//    but with parking or spin-then-park instead of pure spinning.
4494// *  Use Taura-Oyama-Yonenzawa locks.
4495// *  It's possible to construct a 1-0 lock if we encode the lockword as
4496//    (List,LockByte).  Acquire will CAS the full lockword while Release
4497//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4498//    acquiring threads use timers (ParkTimed) to detect and recover from
4499//    the stranding window.  Thread/Node structures must be aligned on 256-byte
4500//    boundaries by using placement-new.
4501// *  Augment MCS with advisory back-link fields maintained with CAS().
4502//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4503//    The validity of the backlinks must be ratified before we trust the value.
4504//    If the backlinks are invalid the exiting thread must back-track through the
4505//    the forward links, which are always trustworthy.
4506// *  Add a successor indication.  The LockWord is currently encoded as
4507//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4508//    to provide the usual futile-wakeup optimization.
4509//    See RTStt for details.
4510// *  Consider schedctl.sc_nopreempt to cover the critical section.
4511//
4512
4513
4514typedef volatile intptr_t MutexT ;      // Mux Lock-word
4515enum MuxBits { LOCKBIT = 1 } ;
4516
4517void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4518  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4519  if (w == 0) return ;
4520  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4521     return ;
4522  }
4523
4524  TEVENT (muxAcquire - Contention) ;
4525  ParkEvent * const Self = Thread::current()->_MuxEvent ;
4526  assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4527  for (;;) {
4528     int its = (os::is_MP() ? 100 : 0) + 1 ;
4529
4530     // Optional spin phase: spin-then-park strategy
4531     while (--its >= 0) {
4532       w = *Lock ;
4533       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4534          return ;
4535       }
4536     }
4537
4538     Self->reset() ;
4539     Self->OnList = intptr_t(Lock) ;
4540     // The following fence() isn't _strictly necessary as the subsequent
4541     // CAS() both serializes execution and ratifies the fetched *Lock value.
4542     OrderAccess::fence();
4543     for (;;) {
4544        w = *Lock ;
4545        if ((w & LOCKBIT) == 0) {
4546            if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4547                Self->OnList = 0 ;   // hygiene - allows stronger asserts
4548                return ;
4549            }
4550            continue ;      // Interference -- *Lock changed -- Just retry
4551        }
4552        assert (w & LOCKBIT, "invariant") ;
4553        Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4554        if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4555     }
4556
4557     while (Self->OnList != 0) {
4558        Self->park() ;
4559     }
4560  }
4561}
4562
4563void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4564  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4565  if (w == 0) return ;
4566  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4567    return ;
4568  }
4569
4570  TEVENT (muxAcquire - Contention) ;
4571  ParkEvent * ReleaseAfter = NULL ;
4572  if (ev == NULL) {
4573    ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4574  }
4575  assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4576  for (;;) {
4577    guarantee (ev->OnList == 0, "invariant") ;
4578    int its = (os::is_MP() ? 100 : 0) + 1 ;
4579
4580    // Optional spin phase: spin-then-park strategy
4581    while (--its >= 0) {
4582      w = *Lock ;
4583      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4584        if (ReleaseAfter != NULL) {
4585          ParkEvent::Release (ReleaseAfter) ;
4586        }
4587        return ;
4588      }
4589    }
4590
4591    ev->reset() ;
4592    ev->OnList = intptr_t(Lock) ;
4593    // The following fence() isn't _strictly necessary as the subsequent
4594    // CAS() both serializes execution and ratifies the fetched *Lock value.
4595    OrderAccess::fence();
4596    for (;;) {
4597      w = *Lock ;
4598      if ((w & LOCKBIT) == 0) {
4599        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4600          ev->OnList = 0 ;
4601          // We call ::Release while holding the outer lock, thus
4602          // artificially lengthening the critical section.
4603          // Consider deferring the ::Release() until the subsequent unlock(),
4604          // after we've dropped the outer lock.
4605          if (ReleaseAfter != NULL) {
4606            ParkEvent::Release (ReleaseAfter) ;
4607          }
4608          return ;
4609        }
4610        continue ;      // Interference -- *Lock changed -- Just retry
4611      }
4612      assert (w & LOCKBIT, "invariant") ;
4613      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4614      if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4615    }
4616
4617    while (ev->OnList != 0) {
4618      ev->park() ;
4619    }
4620  }
4621}
4622
4623// Release() must extract a successor from the list and then wake that thread.
4624// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4625// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4626// Release() would :
4627// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4628// (B) Extract a successor from the private list "in-hand"
4629// (C) attempt to CAS() the residual back into *Lock over null.
4630//     If there were any newly arrived threads and the CAS() would fail.
4631//     In that case Release() would detach the RATs, re-merge the list in-hand
4632//     with the RATs and repeat as needed.  Alternately, Release() might
4633//     detach and extract a successor, but then pass the residual list to the wakee.
4634//     The wakee would be responsible for reattaching and remerging before it
4635//     competed for the lock.
4636//
4637// Both "pop" and DMR are immune from ABA corruption -- there can be
4638// multiple concurrent pushers, but only one popper or detacher.
4639// This implementation pops from the head of the list.  This is unfair,
4640// but tends to provide excellent throughput as hot threads remain hot.
4641// (We wake recently run threads first).
4642
4643void Thread::muxRelease (volatile intptr_t * Lock)  {
4644  for (;;) {
4645    const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4646    assert (w & LOCKBIT, "invariant") ;
4647    if (w == LOCKBIT) return ;
4648    ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4649    assert (List != NULL, "invariant") ;
4650    assert (List->OnList == intptr_t(Lock), "invariant") ;
4651    ParkEvent * nxt = List->ListNext ;
4652
4653    // The following CAS() releases the lock and pops the head element.
4654    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4655      continue ;
4656    }
4657    List->OnList = 0 ;
4658    OrderAccess::fence() ;
4659    List->unpark () ;
4660    return ;
4661  }
4662}
4663
4664
4665void Threads::verify() {
4666  ALL_JAVA_THREADS(p) {
4667    p->verify();
4668  }
4669  VMThread* thread = VMThread::vm_thread();
4670  if (thread != NULL) thread->verify();
4671}
4672