thread.cpp revision 3719:c3e799c37717
10SN/A/*
2157SN/A * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
30SN/A * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
40SN/A *
50SN/A * This code is free software; you can redistribute it and/or modify it
60SN/A * under the terms of the GNU General Public License version 2 only, as
7157SN/A * published by the Free Software Foundation.
80SN/A *
9157SN/A * This code is distributed in the hope that it will be useful, but WITHOUT
100SN/A * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
110SN/A * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
120SN/A * version 2 for more details (a copy is included in the LICENSE file that
130SN/A * accompanied this code).
140SN/A *
150SN/A * You should have received a copy of the GNU General Public License version
160SN/A * 2 along with this work; if not, write to the Free Software Foundation,
170SN/A * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
180SN/A *
190SN/A * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
200SN/A * or visit www.oracle.com if you need additional information or have any
21157SN/A * questions.
22157SN/A *
23157SN/A */
240SN/A
250SN/A#include "precompiled.hpp"
260SN/A#include "classfile/classLoader.hpp"
270SN/A#include "classfile/javaClasses.hpp"
280SN/A#include "classfile/systemDictionary.hpp"
290SN/A#include "classfile/vmSymbols.hpp"
300SN/A#include "code/scopeDesc.hpp"
310SN/A#include "compiler/compileBroker.hpp"
320SN/A#include "interpreter/interpreter.hpp"
330SN/A#include "interpreter/linkResolver.hpp"
340SN/A#include "interpreter/oopMapCache.hpp"
350SN/A#include "jvmtifiles/jvmtiEnv.hpp"
360SN/A#include "memory/gcLocker.inline.hpp"
370SN/A#include "memory/metaspaceShared.hpp"
380SN/A#include "memory/oopFactory.hpp"
390SN/A#include "memory/universe.inline.hpp"
400SN/A#include "oops/instanceKlass.hpp"
410SN/A#include "oops/objArrayOop.hpp"
420SN/A#include "oops/oop.inline.hpp"
430SN/A#include "oops/symbol.hpp"
440SN/A#include "prims/jvm_misc.hpp"
450SN/A#include "prims/jvmtiExport.hpp"
460SN/A#include "prims/jvmtiThreadState.hpp"
470SN/A#include "prims/privilegedStack.hpp"
480SN/A#include "runtime/aprofiler.hpp"
490SN/A#include "runtime/arguments.hpp"
500SN/A#include "runtime/biasedLocking.hpp"
510SN/A#include "runtime/deoptimization.hpp"
520SN/A#include "runtime/fprofiler.hpp"
530SN/A#include "runtime/frame.inline.hpp"
540SN/A#include "runtime/init.hpp"
550SN/A#include "runtime/interfaceSupport.hpp"
560SN/A#include "runtime/java.hpp"
570SN/A#include "runtime/javaCalls.hpp"
580SN/A#include "runtime/jniPeriodicChecker.hpp"
590SN/A#include "runtime/memprofiler.hpp"
600SN/A#include "runtime/mutexLocker.hpp"
610SN/A#include "runtime/objectMonitor.hpp"
620SN/A#include "runtime/osThread.hpp"
630SN/A#include "runtime/safepoint.hpp"
640SN/A#include "runtime/sharedRuntime.hpp"
650SN/A#include "runtime/statSampler.hpp"
660SN/A#include "runtime/stubRoutines.hpp"
670SN/A#include "runtime/task.hpp"
680SN/A#include "runtime/threadCritical.hpp"
690SN/A#include "runtime/threadLocalStorage.hpp"
700SN/A#include "runtime/vframe.hpp"
710SN/A#include "runtime/vframeArray.hpp"
720SN/A#include "runtime/vframe_hp.hpp"
730SN/A#include "runtime/vmThread.hpp"
740SN/A#include "runtime/vm_operations.hpp"
750SN/A#include "services/attachListener.hpp"
760SN/A#include "services/management.hpp"
770SN/A#include "services/memTracker.hpp"
780SN/A#include "services/threadService.hpp"
790SN/A#include "trace/traceEventTypes.hpp"
800SN/A#include "utilities/defaultStream.hpp"
810SN/A#include "utilities/dtrace.hpp"
82#include "utilities/events.hpp"
83#include "utilities/preserveException.hpp"
84#ifdef TARGET_OS_FAMILY_linux
85# include "os_linux.inline.hpp"
86# include "thread_linux.inline.hpp"
87#endif
88#ifdef TARGET_OS_FAMILY_solaris
89# include "os_solaris.inline.hpp"
90# include "thread_solaris.inline.hpp"
91#endif
92#ifdef TARGET_OS_FAMILY_windows
93# include "os_windows.inline.hpp"
94# include "thread_windows.inline.hpp"
95#endif
96#ifdef TARGET_OS_FAMILY_bsd
97# include "os_bsd.inline.hpp"
98# include "thread_bsd.inline.hpp"
99#endif
100#ifndef SERIALGC
101#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
102#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
103#include "gc_implementation/parallelScavenge/pcTasks.hpp"
104#endif
105#ifdef COMPILER1
106#include "c1/c1_Compiler.hpp"
107#endif
108#ifdef COMPILER2
109#include "opto/c2compiler.hpp"
110#include "opto/idealGraphPrinter.hpp"
111#endif
112
113#ifdef DTRACE_ENABLED
114
115// Only bother with this argument setup if dtrace is available
116
117#ifndef USDT2
118HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
119HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
120HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
121  intptr_t, intptr_t, bool);
122HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
123  intptr_t, intptr_t, bool);
124
125#define DTRACE_THREAD_PROBE(probe, javathread)                             \
126  {                                                                        \
127    ResourceMark rm(this);                                                 \
128    int len = 0;                                                           \
129    const char* name = (javathread)->get_thread_name();                    \
130    len = strlen(name);                                                    \
131    HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
132      name, len,                                                           \
133      java_lang_Thread::thread_id((javathread)->threadObj()),              \
134      (javathread)->osthread()->thread_id(),                               \
135      java_lang_Thread::is_daemon((javathread)->threadObj()));             \
136  }
137
138#else /* USDT2 */
139
140#define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
141#define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
142
143#define DTRACE_THREAD_PROBE(probe, javathread)                             \
144  {                                                                        \
145    ResourceMark rm(this);                                                 \
146    int len = 0;                                                           \
147    const char* name = (javathread)->get_thread_name();                    \
148    len = strlen(name);                                                    \
149    HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
150      (char *) name, len,                                                           \
151      java_lang_Thread::thread_id((javathread)->threadObj()),              \
152      (uintptr_t) (javathread)->osthread()->thread_id(),                               \
153      java_lang_Thread::is_daemon((javathread)->threadObj()));             \
154  }
155
156#endif /* USDT2 */
157
158#else //  ndef DTRACE_ENABLED
159
160#define DTRACE_THREAD_PROBE(probe, javathread)
161
162#endif // ndef DTRACE_ENABLED
163
164
165// Class hierarchy
166// - Thread
167//   - VMThread
168//   - WatcherThread
169//   - ConcurrentMarkSweepThread
170//   - JavaThread
171//     - CompilerThread
172
173// ======= Thread ========
174// Support for forcing alignment of thread objects for biased locking
175void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
176  if (UseBiasedLocking) {
177    const int alignment = markOopDesc::biased_lock_alignment;
178    size_t aligned_size = size + (alignment - sizeof(intptr_t));
179    void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
180                                          : os::malloc(aligned_size, flags, CURRENT_PC);
181    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
182    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
183           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
184           "JavaThread alignment code overflowed allocated storage");
185    if (TraceBiasedLocking) {
186      if (aligned_addr != real_malloc_addr)
187        tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
188                      real_malloc_addr, aligned_addr);
189    }
190    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
191    return aligned_addr;
192  } else {
193    return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
194                       : os::malloc(size, flags, CURRENT_PC);
195  }
196}
197
198void Thread::operator delete(void* p) {
199  if (UseBiasedLocking) {
200    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
201    FreeHeap(real_malloc_addr, mtThread);
202  } else {
203    FreeHeap(p, mtThread);
204  }
205}
206
207
208// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
209// JavaThread
210
211
212Thread::Thread() {
213  // stack and get_thread
214  set_stack_base(NULL);
215  set_stack_size(0);
216  set_self_raw_id(0);
217  set_lgrp_id(-1);
218
219  // allocated data structures
220  set_osthread(NULL);
221  set_resource_area(new (mtThread)ResourceArea());
222  set_handle_area(new (mtThread) HandleArea(NULL));
223  set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(300, true));
224  set_active_handles(NULL);
225  set_free_handle_block(NULL);
226  set_last_handle_mark(NULL);
227
228  // This initial value ==> never claimed.
229  _oops_do_parity = 0;
230
231  // the handle mark links itself to last_handle_mark
232  new HandleMark(this);
233
234  // plain initialization
235  debug_only(_owned_locks = NULL;)
236  debug_only(_allow_allocation_count = 0;)
237  NOT_PRODUCT(_allow_safepoint_count = 0;)
238  NOT_PRODUCT(_skip_gcalot = false;)
239  CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
240  _jvmti_env_iteration_count = 0;
241  set_allocated_bytes(0);
242  set_trace_buffer(NULL);
243  _vm_operation_started_count = 0;
244  _vm_operation_completed_count = 0;
245  _current_pending_monitor = NULL;
246  _current_pending_monitor_is_from_java = true;
247  _current_waiting_monitor = NULL;
248  _num_nested_signal = 0;
249  omFreeList = NULL ;
250  omFreeCount = 0 ;
251  omFreeProvision = 32 ;
252  omInUseList = NULL ;
253  omInUseCount = 0 ;
254
255#ifdef ASSERT
256  _visited_for_critical_count = false;
257#endif
258
259  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
260  _suspend_flags = 0;
261
262  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
263  _hashStateX = os::random() ;
264  _hashStateY = 842502087 ;
265  _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
266  _hashStateW = 273326509 ;
267
268  _OnTrap   = 0 ;
269  _schedctl = NULL ;
270  _Stalled  = 0 ;
271  _TypeTag  = 0x2BAD ;
272
273  // Many of the following fields are effectively final - immutable
274  // Note that nascent threads can't use the Native Monitor-Mutex
275  // construct until the _MutexEvent is initialized ...
276  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
277  // we might instead use a stack of ParkEvents that we could provision on-demand.
278  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
279  // and ::Release()
280  _ParkEvent   = ParkEvent::Allocate (this) ;
281  _SleepEvent  = ParkEvent::Allocate (this) ;
282  _MutexEvent  = ParkEvent::Allocate (this) ;
283  _MuxEvent    = ParkEvent::Allocate (this) ;
284
285#ifdef CHECK_UNHANDLED_OOPS
286  if (CheckUnhandledOops) {
287    _unhandled_oops = new UnhandledOops(this);
288  }
289#endif // CHECK_UNHANDLED_OOPS
290#ifdef ASSERT
291  if (UseBiasedLocking) {
292    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
293    assert(this == _real_malloc_address ||
294           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
295           "bug in forced alignment of thread objects");
296  }
297#endif /* ASSERT */
298}
299
300void Thread::initialize_thread_local_storage() {
301  // Note: Make sure this method only calls
302  // non-blocking operations. Otherwise, it might not work
303  // with the thread-startup/safepoint interaction.
304
305  // During Java thread startup, safepoint code should allow this
306  // method to complete because it may need to allocate memory to
307  // store information for the new thread.
308
309  // initialize structure dependent on thread local storage
310  ThreadLocalStorage::set_thread(this);
311}
312
313void Thread::record_stack_base_and_size() {
314  set_stack_base(os::current_stack_base());
315  set_stack_size(os::current_stack_size());
316  // CR 7190089: on Solaris, primordial thread's stack is adjusted
317  // in initialize_thread(). Without the adjustment, stack size is
318  // incorrect if stack is set to unlimited (ulimit -s unlimited).
319  // So far, only Solaris has real implementation of initialize_thread().
320  //
321  // set up any platform-specific state.
322  os::initialize_thread(this);
323
324   // record thread's native stack, stack grows downward
325  if (MemTracker::is_on()) {
326    address stack_low_addr = stack_base() - stack_size();
327    MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
328      CURRENT_PC);
329  }
330}
331
332
333Thread::~Thread() {
334  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
335  ObjectSynchronizer::omFlush (this) ;
336
337  // stack_base can be NULL if the thread is never started or exited before
338  // record_stack_base_and_size called. Although, we would like to ensure
339  // that all started threads do call record_stack_base_and_size(), there is
340  // not proper way to enforce that.
341  if (_stack_base != NULL) {
342    address low_stack_addr = stack_base() - stack_size();
343    MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
344  }
345
346  // deallocate data structures
347  delete resource_area();
348  // since the handle marks are using the handle area, we have to deallocated the root
349  // handle mark before deallocating the thread's handle area,
350  assert(last_handle_mark() != NULL, "check we have an element");
351  delete last_handle_mark();
352  assert(last_handle_mark() == NULL, "check we have reached the end");
353
354  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
355  // We NULL out the fields for good hygiene.
356  ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
357  ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
358  ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
359  ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
360
361  delete handle_area();
362  delete metadata_handles();
363
364  // osthread() can be NULL, if creation of thread failed.
365  if (osthread() != NULL) os::free_thread(osthread());
366
367  delete _SR_lock;
368
369  // clear thread local storage if the Thread is deleting itself
370  if (this == Thread::current()) {
371    ThreadLocalStorage::set_thread(NULL);
372  } else {
373    // In the case where we're not the current thread, invalidate all the
374    // caches in case some code tries to get the current thread or the
375    // thread that was destroyed, and gets stale information.
376    ThreadLocalStorage::invalidate_all();
377  }
378  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
379}
380
381// NOTE: dummy function for assertion purpose.
382void Thread::run() {
383  ShouldNotReachHere();
384}
385
386#ifdef ASSERT
387// Private method to check for dangling thread pointer
388void check_for_dangling_thread_pointer(Thread *thread) {
389 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
390         "possibility of dangling Thread pointer");
391}
392#endif
393
394
395#ifndef PRODUCT
396// Tracing method for basic thread operations
397void Thread::trace(const char* msg, const Thread* const thread) {
398  if (!TraceThreadEvents) return;
399  ResourceMark rm;
400  ThreadCritical tc;
401  const char *name = "non-Java thread";
402  int prio = -1;
403  if (thread->is_Java_thread()
404      && !thread->is_Compiler_thread()) {
405    // The Threads_lock must be held to get information about
406    // this thread but may not be in some situations when
407    // tracing  thread events.
408    bool release_Threads_lock = false;
409    if (!Threads_lock->owned_by_self()) {
410      Threads_lock->lock();
411      release_Threads_lock = true;
412    }
413    JavaThread* jt = (JavaThread *)thread;
414    name = (char *)jt->get_thread_name();
415    oop thread_oop = jt->threadObj();
416    if (thread_oop != NULL) {
417      prio = java_lang_Thread::priority(thread_oop);
418    }
419    if (release_Threads_lock) {
420      Threads_lock->unlock();
421    }
422  }
423  tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
424}
425#endif
426
427
428ThreadPriority Thread::get_priority(const Thread* const thread) {
429  trace("get priority", thread);
430  ThreadPriority priority;
431  // Can return an error!
432  (void)os::get_priority(thread, priority);
433  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
434  return priority;
435}
436
437void Thread::set_priority(Thread* thread, ThreadPriority priority) {
438  trace("set priority", thread);
439  debug_only(check_for_dangling_thread_pointer(thread);)
440  // Can return an error!
441  (void)os::set_priority(thread, priority);
442}
443
444
445void Thread::start(Thread* thread) {
446  trace("start", thread);
447  // Start is different from resume in that its safety is guaranteed by context or
448  // being called from a Java method synchronized on the Thread object.
449  if (!DisableStartThread) {
450    if (thread->is_Java_thread()) {
451      // Initialize the thread state to RUNNABLE before starting this thread.
452      // Can not set it after the thread started because we do not know the
453      // exact thread state at that time. It could be in MONITOR_WAIT or
454      // in SLEEPING or some other state.
455      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
456                                          java_lang_Thread::RUNNABLE);
457    }
458    os::start_thread(thread);
459  }
460}
461
462// Enqueue a VM_Operation to do the job for us - sometime later
463void Thread::send_async_exception(oop java_thread, oop java_throwable) {
464  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
465  VMThread::execute(vm_stop);
466}
467
468
469//
470// Check if an external suspend request has completed (or has been
471// cancelled). Returns true if the thread is externally suspended and
472// false otherwise.
473//
474// The bits parameter returns information about the code path through
475// the routine. Useful for debugging:
476//
477// set in is_ext_suspend_completed():
478// 0x00000001 - routine was entered
479// 0x00000010 - routine return false at end
480// 0x00000100 - thread exited (return false)
481// 0x00000200 - suspend request cancelled (return false)
482// 0x00000400 - thread suspended (return true)
483// 0x00001000 - thread is in a suspend equivalent state (return true)
484// 0x00002000 - thread is native and walkable (return true)
485// 0x00004000 - thread is native_trans and walkable (needed retry)
486//
487// set in wait_for_ext_suspend_completion():
488// 0x00010000 - routine was entered
489// 0x00020000 - suspend request cancelled before loop (return false)
490// 0x00040000 - thread suspended before loop (return true)
491// 0x00080000 - suspend request cancelled in loop (return false)
492// 0x00100000 - thread suspended in loop (return true)
493// 0x00200000 - suspend not completed during retry loop (return false)
494//
495
496// Helper class for tracing suspend wait debug bits.
497//
498// 0x00000100 indicates that the target thread exited before it could
499// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
500// 0x00080000 each indicate a cancelled suspend request so they don't
501// count as wait failures either.
502#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
503
504class TraceSuspendDebugBits : public StackObj {
505 private:
506  JavaThread * jt;
507  bool         is_wait;
508  bool         called_by_wait;  // meaningful when !is_wait
509  uint32_t *   bits;
510
511 public:
512  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
513                        uint32_t *_bits) {
514    jt             = _jt;
515    is_wait        = _is_wait;
516    called_by_wait = _called_by_wait;
517    bits           = _bits;
518  }
519
520  ~TraceSuspendDebugBits() {
521    if (!is_wait) {
522#if 1
523      // By default, don't trace bits for is_ext_suspend_completed() calls.
524      // That trace is very chatty.
525      return;
526#else
527      if (!called_by_wait) {
528        // If tracing for is_ext_suspend_completed() is enabled, then only
529        // trace calls to it from wait_for_ext_suspend_completion()
530        return;
531      }
532#endif
533    }
534
535    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
536      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
537        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
538        ResourceMark rm;
539
540        tty->print_cr(
541            "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
542            jt->get_thread_name(), *bits);
543
544        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
545      }
546    }
547  }
548};
549#undef DEBUG_FALSE_BITS
550
551
552bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
553  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
554
555  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
556  bool do_trans_retry;           // flag to force the retry
557
558  *bits |= 0x00000001;
559
560  do {
561    do_trans_retry = false;
562
563    if (is_exiting()) {
564      // Thread is in the process of exiting. This is always checked
565      // first to reduce the risk of dereferencing a freed JavaThread.
566      *bits |= 0x00000100;
567      return false;
568    }
569
570    if (!is_external_suspend()) {
571      // Suspend request is cancelled. This is always checked before
572      // is_ext_suspended() to reduce the risk of a rogue resume
573      // confusing the thread that made the suspend request.
574      *bits |= 0x00000200;
575      return false;
576    }
577
578    if (is_ext_suspended()) {
579      // thread is suspended
580      *bits |= 0x00000400;
581      return true;
582    }
583
584    // Now that we no longer do hard suspends of threads running
585    // native code, the target thread can be changing thread state
586    // while we are in this routine:
587    //
588    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
589    //
590    // We save a copy of the thread state as observed at this moment
591    // and make our decision about suspend completeness based on the
592    // copy. This closes the race where the thread state is seen as
593    // _thread_in_native_trans in the if-thread_blocked check, but is
594    // seen as _thread_blocked in if-thread_in_native_trans check.
595    JavaThreadState save_state = thread_state();
596
597    if (save_state == _thread_blocked && is_suspend_equivalent()) {
598      // If the thread's state is _thread_blocked and this blocking
599      // condition is known to be equivalent to a suspend, then we can
600      // consider the thread to be externally suspended. This means that
601      // the code that sets _thread_blocked has been modified to do
602      // self-suspension if the blocking condition releases. We also
603      // used to check for CONDVAR_WAIT here, but that is now covered by
604      // the _thread_blocked with self-suspension check.
605      //
606      // Return true since we wouldn't be here unless there was still an
607      // external suspend request.
608      *bits |= 0x00001000;
609      return true;
610    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
611      // Threads running native code will self-suspend on native==>VM/Java
612      // transitions. If its stack is walkable (should always be the case
613      // unless this function is called before the actual java_suspend()
614      // call), then the wait is done.
615      *bits |= 0x00002000;
616      return true;
617    } else if (!called_by_wait && !did_trans_retry &&
618               save_state == _thread_in_native_trans &&
619               frame_anchor()->walkable()) {
620      // The thread is transitioning from thread_in_native to another
621      // thread state. check_safepoint_and_suspend_for_native_trans()
622      // will force the thread to self-suspend. If it hasn't gotten
623      // there yet we may have caught the thread in-between the native
624      // code check above and the self-suspend. Lucky us. If we were
625      // called by wait_for_ext_suspend_completion(), then it
626      // will be doing the retries so we don't have to.
627      //
628      // Since we use the saved thread state in the if-statement above,
629      // there is a chance that the thread has already transitioned to
630      // _thread_blocked by the time we get here. In that case, we will
631      // make a single unnecessary pass through the logic below. This
632      // doesn't hurt anything since we still do the trans retry.
633
634      *bits |= 0x00004000;
635
636      // Once the thread leaves thread_in_native_trans for another
637      // thread state, we break out of this retry loop. We shouldn't
638      // need this flag to prevent us from getting back here, but
639      // sometimes paranoia is good.
640      did_trans_retry = true;
641
642      // We wait for the thread to transition to a more usable state.
643      for (int i = 1; i <= SuspendRetryCount; i++) {
644        // We used to do an "os::yield_all(i)" call here with the intention
645        // that yielding would increase on each retry. However, the parameter
646        // is ignored on Linux which means the yield didn't scale up. Waiting
647        // on the SR_lock below provides a much more predictable scale up for
648        // the delay. It also provides a simple/direct point to check for any
649        // safepoint requests from the VMThread
650
651        // temporarily drops SR_lock while doing wait with safepoint check
652        // (if we're a JavaThread - the WatcherThread can also call this)
653        // and increase delay with each retry
654        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
655
656        // check the actual thread state instead of what we saved above
657        if (thread_state() != _thread_in_native_trans) {
658          // the thread has transitioned to another thread state so
659          // try all the checks (except this one) one more time.
660          do_trans_retry = true;
661          break;
662        }
663      } // end retry loop
664
665
666    }
667  } while (do_trans_retry);
668
669  *bits |= 0x00000010;
670  return false;
671}
672
673//
674// Wait for an external suspend request to complete (or be cancelled).
675// Returns true if the thread is externally suspended and false otherwise.
676//
677bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
678       uint32_t *bits) {
679  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
680                             false /* !called_by_wait */, bits);
681
682  // local flag copies to minimize SR_lock hold time
683  bool is_suspended;
684  bool pending;
685  uint32_t reset_bits;
686
687  // set a marker so is_ext_suspend_completed() knows we are the caller
688  *bits |= 0x00010000;
689
690  // We use reset_bits to reinitialize the bits value at the top of
691  // each retry loop. This allows the caller to make use of any
692  // unused bits for their own marking purposes.
693  reset_bits = *bits;
694
695  {
696    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
697    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
698                                            delay, bits);
699    pending = is_external_suspend();
700  }
701  // must release SR_lock to allow suspension to complete
702
703  if (!pending) {
704    // A cancelled suspend request is the only false return from
705    // is_ext_suspend_completed() that keeps us from entering the
706    // retry loop.
707    *bits |= 0x00020000;
708    return false;
709  }
710
711  if (is_suspended) {
712    *bits |= 0x00040000;
713    return true;
714  }
715
716  for (int i = 1; i <= retries; i++) {
717    *bits = reset_bits;  // reinit to only track last retry
718
719    // We used to do an "os::yield_all(i)" call here with the intention
720    // that yielding would increase on each retry. However, the parameter
721    // is ignored on Linux which means the yield didn't scale up. Waiting
722    // on the SR_lock below provides a much more predictable scale up for
723    // the delay. It also provides a simple/direct point to check for any
724    // safepoint requests from the VMThread
725
726    {
727      MutexLocker ml(SR_lock());
728      // wait with safepoint check (if we're a JavaThread - the WatcherThread
729      // can also call this)  and increase delay with each retry
730      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
731
732      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
733                                              delay, bits);
734
735      // It is possible for the external suspend request to be cancelled
736      // (by a resume) before the actual suspend operation is completed.
737      // Refresh our local copy to see if we still need to wait.
738      pending = is_external_suspend();
739    }
740
741    if (!pending) {
742      // A cancelled suspend request is the only false return from
743      // is_ext_suspend_completed() that keeps us from staying in the
744      // retry loop.
745      *bits |= 0x00080000;
746      return false;
747    }
748
749    if (is_suspended) {
750      *bits |= 0x00100000;
751      return true;
752    }
753  } // end retry loop
754
755  // thread did not suspend after all our retries
756  *bits |= 0x00200000;
757  return false;
758}
759
760#ifndef PRODUCT
761void JavaThread::record_jump(address target, address instr, const char* file, int line) {
762
763  // This should not need to be atomic as the only way for simultaneous
764  // updates is via interrupts. Even then this should be rare or non-existant
765  // and we don't care that much anyway.
766
767  int index = _jmp_ring_index;
768  _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
769  _jmp_ring[index]._target = (intptr_t) target;
770  _jmp_ring[index]._instruction = (intptr_t) instr;
771  _jmp_ring[index]._file = file;
772  _jmp_ring[index]._line = line;
773}
774#endif /* PRODUCT */
775
776// Called by flat profiler
777// Callers have already called wait_for_ext_suspend_completion
778// The assertion for that is currently too complex to put here:
779bool JavaThread::profile_last_Java_frame(frame* _fr) {
780  bool gotframe = false;
781  // self suspension saves needed state.
782  if (has_last_Java_frame() && _anchor.walkable()) {
783     *_fr = pd_last_frame();
784     gotframe = true;
785  }
786  return gotframe;
787}
788
789void Thread::interrupt(Thread* thread) {
790  trace("interrupt", thread);
791  debug_only(check_for_dangling_thread_pointer(thread);)
792  os::interrupt(thread);
793}
794
795bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
796  trace("is_interrupted", thread);
797  debug_only(check_for_dangling_thread_pointer(thread);)
798  // Note:  If clear_interrupted==false, this simply fetches and
799  // returns the value of the field osthread()->interrupted().
800  return os::is_interrupted(thread, clear_interrupted);
801}
802
803
804// GC Support
805bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
806  jint thread_parity = _oops_do_parity;
807  if (thread_parity != strong_roots_parity) {
808    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
809    if (res == thread_parity) {
810      return true;
811    } else {
812      guarantee(res == strong_roots_parity, "Or else what?");
813      assert(SharedHeap::heap()->workers()->active_workers() > 0,
814         "Should only fail when parallel.");
815      return false;
816    }
817  }
818  assert(SharedHeap::heap()->workers()->active_workers() > 0,
819         "Should only fail when parallel.");
820  return false;
821}
822
823void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
824  active_handles()->oops_do(f);
825  // Do oop for ThreadShadow
826  f->do_oop((oop*)&_pending_exception);
827  handle_area()->oops_do(f);
828}
829
830void Thread::nmethods_do(CodeBlobClosure* cf) {
831  // no nmethods in a generic thread...
832}
833
834void Thread::metadata_do(void f(Metadata*)) {
835  if (metadata_handles() != NULL) {
836    for (int i = 0; i< metadata_handles()->length(); i++) {
837      f(metadata_handles()->at(i));
838    }
839  }
840}
841
842void Thread::print_on(outputStream* st) const {
843  // get_priority assumes osthread initialized
844  if (osthread() != NULL) {
845    int os_prio;
846    if (os::get_native_priority(this, &os_prio) == OS_OK) {
847      st->print("os_prio=%d ", os_prio);
848    }
849    st->print("tid=" INTPTR_FORMAT " ", this);
850    osthread()->print_on(st);
851  }
852  debug_only(if (WizardMode) print_owned_locks_on(st);)
853}
854
855// Thread::print_on_error() is called by fatal error handler. Don't use
856// any lock or allocate memory.
857void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
858  if      (is_VM_thread())                  st->print("VMThread");
859  else if (is_Compiler_thread())            st->print("CompilerThread");
860  else if (is_Java_thread())                st->print("JavaThread");
861  else if (is_GC_task_thread())             st->print("GCTaskThread");
862  else if (is_Watcher_thread())             st->print("WatcherThread");
863  else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
864  else st->print("Thread");
865
866  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
867            _stack_base - _stack_size, _stack_base);
868
869  if (osthread()) {
870    st->print(" [id=%d]", osthread()->thread_id());
871  }
872}
873
874#ifdef ASSERT
875void Thread::print_owned_locks_on(outputStream* st) const {
876  Monitor *cur = _owned_locks;
877  if (cur == NULL) {
878    st->print(" (no locks) ");
879  } else {
880    st->print_cr(" Locks owned:");
881    while(cur) {
882      cur->print_on(st);
883      cur = cur->next();
884    }
885  }
886}
887
888static int ref_use_count  = 0;
889
890bool Thread::owns_locks_but_compiled_lock() const {
891  for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
892    if (cur != Compile_lock) return true;
893  }
894  return false;
895}
896
897
898#endif
899
900#ifndef PRODUCT
901
902// The flag: potential_vm_operation notifies if this particular safepoint state could potential
903// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
904// no threads which allow_vm_block's are held
905void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
906    // Check if current thread is allowed to block at a safepoint
907    if (!(_allow_safepoint_count == 0))
908      fatal("Possible safepoint reached by thread that does not allow it");
909    if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
910      fatal("LEAF method calling lock?");
911    }
912
913#ifdef ASSERT
914    if (potential_vm_operation && is_Java_thread()
915        && !Universe::is_bootstrapping()) {
916      // Make sure we do not hold any locks that the VM thread also uses.
917      // This could potentially lead to deadlocks
918      for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
919        // Threads_lock is special, since the safepoint synchronization will not start before this is
920        // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
921        // since it is used to transfer control between JavaThreads and the VMThread
922        // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
923        if ( (cur->allow_vm_block() &&
924              cur != Threads_lock &&
925              cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
926              cur != VMOperationRequest_lock &&
927              cur != VMOperationQueue_lock) ||
928              cur->rank() == Mutex::special) {
929          warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
930        }
931      }
932    }
933
934    if (GCALotAtAllSafepoints) {
935      // We could enter a safepoint here and thus have a gc
936      InterfaceSupport::check_gc_alot();
937    }
938#endif
939}
940#endif
941
942bool Thread::is_in_stack(address adr) const {
943  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
944  address end = os::current_stack_pointer();
945  // Allow non Java threads to call this without stack_base
946  if (_stack_base == NULL) return true;
947  if (stack_base() >= adr && adr >= end) return true;
948
949  return false;
950}
951
952
953// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
954// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
955// used for compilation in the future. If that change is made, the need for these methods
956// should be revisited, and they should be removed if possible.
957
958bool Thread::is_lock_owned(address adr) const {
959  return on_local_stack(adr);
960}
961
962bool Thread::set_as_starting_thread() {
963 // NOTE: this must be called inside the main thread.
964  return os::create_main_thread((JavaThread*)this);
965}
966
967static void initialize_class(Symbol* class_name, TRAPS) {
968  Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
969  InstanceKlass::cast(klass)->initialize(CHECK);
970}
971
972
973// Creates the initial ThreadGroup
974static Handle create_initial_thread_group(TRAPS) {
975  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
976  instanceKlassHandle klass (THREAD, k);
977
978  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
979  {
980    JavaValue result(T_VOID);
981    JavaCalls::call_special(&result,
982                            system_instance,
983                            klass,
984                            vmSymbols::object_initializer_name(),
985                            vmSymbols::void_method_signature(),
986                            CHECK_NH);
987  }
988  Universe::set_system_thread_group(system_instance());
989
990  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
991  {
992    JavaValue result(T_VOID);
993    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
994    JavaCalls::call_special(&result,
995                            main_instance,
996                            klass,
997                            vmSymbols::object_initializer_name(),
998                            vmSymbols::threadgroup_string_void_signature(),
999                            system_instance,
1000                            string,
1001                            CHECK_NH);
1002  }
1003  return main_instance;
1004}
1005
1006// Creates the initial Thread
1007static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
1008  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1009  instanceKlassHandle klass (THREAD, k);
1010  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1011
1012  java_lang_Thread::set_thread(thread_oop(), thread);
1013  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1014  thread->set_threadObj(thread_oop());
1015
1016  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1017
1018  JavaValue result(T_VOID);
1019  JavaCalls::call_special(&result, thread_oop,
1020                                   klass,
1021                                   vmSymbols::object_initializer_name(),
1022                                   vmSymbols::threadgroup_string_void_signature(),
1023                                   thread_group,
1024                                   string,
1025                                   CHECK_NULL);
1026  return thread_oop();
1027}
1028
1029static void call_initializeSystemClass(TRAPS) {
1030  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1031  instanceKlassHandle klass (THREAD, k);
1032
1033  JavaValue result(T_VOID);
1034  JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1035                                         vmSymbols::void_method_signature(), CHECK);
1036}
1037
1038char java_runtime_name[128] = "";
1039
1040// extract the JRE name from sun.misc.Version.java_runtime_name
1041static const char* get_java_runtime_name(TRAPS) {
1042  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1043                                      Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1044  fieldDescriptor fd;
1045  bool found = k != NULL &&
1046               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1047                                                        vmSymbols::string_signature(), &fd);
1048  if (found) {
1049    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1050    if (name_oop == NULL)
1051      return NULL;
1052    const char* name = java_lang_String::as_utf8_string(name_oop,
1053                                                        java_runtime_name,
1054                                                        sizeof(java_runtime_name));
1055    return name;
1056  } else {
1057    return NULL;
1058  }
1059}
1060
1061// General purpose hook into Java code, run once when the VM is initialized.
1062// The Java library method itself may be changed independently from the VM.
1063static void call_postVMInitHook(TRAPS) {
1064  Klass* k = SystemDictionary::PostVMInitHook_klass();
1065  instanceKlassHandle klass (THREAD, k);
1066  if (klass.not_null()) {
1067    JavaValue result(T_VOID);
1068    JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1069                                           vmSymbols::void_method_signature(),
1070                                           CHECK);
1071  }
1072}
1073
1074static void reset_vm_info_property(TRAPS) {
1075  // the vm info string
1076  ResourceMark rm(THREAD);
1077  const char *vm_info = VM_Version::vm_info_string();
1078
1079  // java.lang.System class
1080  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1081  instanceKlassHandle klass (THREAD, k);
1082
1083  // setProperty arguments
1084  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1085  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1086
1087  // return value
1088  JavaValue r(T_OBJECT);
1089
1090  // public static String setProperty(String key, String value);
1091  JavaCalls::call_static(&r,
1092                         klass,
1093                         vmSymbols::setProperty_name(),
1094                         vmSymbols::string_string_string_signature(),
1095                         key_str,
1096                         value_str,
1097                         CHECK);
1098}
1099
1100
1101void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1102  assert(thread_group.not_null(), "thread group should be specified");
1103  assert(threadObj() == NULL, "should only create Java thread object once");
1104
1105  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1106  instanceKlassHandle klass (THREAD, k);
1107  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1108
1109  java_lang_Thread::set_thread(thread_oop(), this);
1110  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1111  set_threadObj(thread_oop());
1112
1113  JavaValue result(T_VOID);
1114  if (thread_name != NULL) {
1115    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1116    // Thread gets assigned specified name and null target
1117    JavaCalls::call_special(&result,
1118                            thread_oop,
1119                            klass,
1120                            vmSymbols::object_initializer_name(),
1121                            vmSymbols::threadgroup_string_void_signature(),
1122                            thread_group, // Argument 1
1123                            name,         // Argument 2
1124                            THREAD);
1125  } else {
1126    // Thread gets assigned name "Thread-nnn" and null target
1127    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1128    JavaCalls::call_special(&result,
1129                            thread_oop,
1130                            klass,
1131                            vmSymbols::object_initializer_name(),
1132                            vmSymbols::threadgroup_runnable_void_signature(),
1133                            thread_group, // Argument 1
1134                            Handle(),     // Argument 2
1135                            THREAD);
1136  }
1137
1138
1139  if (daemon) {
1140      java_lang_Thread::set_daemon(thread_oop());
1141  }
1142
1143  if (HAS_PENDING_EXCEPTION) {
1144    return;
1145  }
1146
1147  KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1148  Handle threadObj(this, this->threadObj());
1149
1150  JavaCalls::call_special(&result,
1151                         thread_group,
1152                         group,
1153                         vmSymbols::add_method_name(),
1154                         vmSymbols::thread_void_signature(),
1155                         threadObj,          // Arg 1
1156                         THREAD);
1157
1158
1159}
1160
1161// NamedThread --  non-JavaThread subclasses with multiple
1162// uniquely named instances should derive from this.
1163NamedThread::NamedThread() : Thread() {
1164  _name = NULL;
1165  _processed_thread = NULL;
1166}
1167
1168NamedThread::~NamedThread() {
1169  if (_name != NULL) {
1170    FREE_C_HEAP_ARRAY(char, _name, mtThread);
1171    _name = NULL;
1172  }
1173}
1174
1175void NamedThread::set_name(const char* format, ...) {
1176  guarantee(_name == NULL, "Only get to set name once.");
1177  _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1178  guarantee(_name != NULL, "alloc failure");
1179  va_list ap;
1180  va_start(ap, format);
1181  jio_vsnprintf(_name, max_name_len, format, ap);
1182  va_end(ap);
1183}
1184
1185// ======= WatcherThread ========
1186
1187// The watcher thread exists to simulate timer interrupts.  It should
1188// be replaced by an abstraction over whatever native support for
1189// timer interrupts exists on the platform.
1190
1191WatcherThread* WatcherThread::_watcher_thread   = NULL;
1192volatile bool  WatcherThread::_should_terminate = false;
1193
1194WatcherThread::WatcherThread() : Thread() {
1195  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1196  if (os::create_thread(this, os::watcher_thread)) {
1197    _watcher_thread = this;
1198
1199    // Set the watcher thread to the highest OS priority which should not be
1200    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1201    // is created. The only normal thread using this priority is the reference
1202    // handler thread, which runs for very short intervals only.
1203    // If the VMThread's priority is not lower than the WatcherThread profiling
1204    // will be inaccurate.
1205    os::set_priority(this, MaxPriority);
1206    if (!DisableStartThread) {
1207      os::start_thread(this);
1208    }
1209  }
1210}
1211
1212void WatcherThread::run() {
1213  assert(this == watcher_thread(), "just checking");
1214
1215  this->record_stack_base_and_size();
1216  this->initialize_thread_local_storage();
1217  this->set_active_handles(JNIHandleBlock::allocate_block());
1218  while(!_should_terminate) {
1219    assert(watcher_thread() == Thread::current(),  "thread consistency check");
1220    assert(watcher_thread() == this,  "thread consistency check");
1221
1222    // Calculate how long it'll be until the next PeriodicTask work
1223    // should be done, and sleep that amount of time.
1224    size_t time_to_wait = PeriodicTask::time_to_wait();
1225
1226    // we expect this to timeout - we only ever get unparked when
1227    // we should terminate
1228    {
1229      OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1230
1231      jlong prev_time = os::javaTimeNanos();
1232      for (;;) {
1233        int res= _SleepEvent->park(time_to_wait);
1234        if (res == OS_TIMEOUT || _should_terminate)
1235          break;
1236        // spurious wakeup of some kind
1237        jlong now = os::javaTimeNanos();
1238        time_to_wait -= (now - prev_time) / 1000000;
1239        if (time_to_wait <= 0)
1240          break;
1241        prev_time = now;
1242      }
1243    }
1244
1245    if (is_error_reported()) {
1246      // A fatal error has happened, the error handler(VMError::report_and_die)
1247      // should abort JVM after creating an error log file. However in some
1248      // rare cases, the error handler itself might deadlock. Here we try to
1249      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1250      //
1251      // This code is in WatcherThread because WatcherThread wakes up
1252      // periodically so the fatal error handler doesn't need to do anything;
1253      // also because the WatcherThread is less likely to crash than other
1254      // threads.
1255
1256      for (;;) {
1257        if (!ShowMessageBoxOnError
1258         && (OnError == NULL || OnError[0] == '\0')
1259         && Arguments::abort_hook() == NULL) {
1260             os::sleep(this, 2 * 60 * 1000, false);
1261             fdStream err(defaultStream::output_fd());
1262             err.print_raw_cr("# [ timer expired, abort... ]");
1263             // skip atexit/vm_exit/vm_abort hooks
1264             os::die();
1265        }
1266
1267        // Wake up 5 seconds later, the fatal handler may reset OnError or
1268        // ShowMessageBoxOnError when it is ready to abort.
1269        os::sleep(this, 5 * 1000, false);
1270      }
1271    }
1272
1273    PeriodicTask::real_time_tick(time_to_wait);
1274
1275    // If we have no more tasks left due to dynamic disenrollment,
1276    // shut down the thread since we don't currently support dynamic enrollment
1277    if (PeriodicTask::num_tasks() == 0) {
1278      _should_terminate = true;
1279    }
1280  }
1281
1282  // Signal that it is terminated
1283  {
1284    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1285    _watcher_thread = NULL;
1286    Terminator_lock->notify();
1287  }
1288
1289  // Thread destructor usually does this..
1290  ThreadLocalStorage::set_thread(NULL);
1291}
1292
1293void WatcherThread::start() {
1294  if (watcher_thread() == NULL) {
1295    _should_terminate = false;
1296    // Create the single instance of WatcherThread
1297    new WatcherThread();
1298  }
1299}
1300
1301void WatcherThread::stop() {
1302  // it is ok to take late safepoints here, if needed
1303  MutexLocker mu(Terminator_lock);
1304  _should_terminate = true;
1305  OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1306
1307  Thread* watcher = watcher_thread();
1308  if (watcher != NULL)
1309    watcher->_SleepEvent->unpark();
1310
1311  while(watcher_thread() != NULL) {
1312    // This wait should make safepoint checks, wait without a timeout,
1313    // and wait as a suspend-equivalent condition.
1314    //
1315    // Note: If the FlatProfiler is running, then this thread is waiting
1316    // for the WatcherThread to terminate and the WatcherThread, via the
1317    // FlatProfiler task, is waiting for the external suspend request on
1318    // this thread to complete. wait_for_ext_suspend_completion() will
1319    // eventually timeout, but that takes time. Making this wait a
1320    // suspend-equivalent condition solves that timeout problem.
1321    //
1322    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1323                          Mutex::_as_suspend_equivalent_flag);
1324  }
1325}
1326
1327void WatcherThread::print_on(outputStream* st) const {
1328  st->print("\"%s\" ", name());
1329  Thread::print_on(st);
1330  st->cr();
1331}
1332
1333// ======= JavaThread ========
1334
1335// A JavaThread is a normal Java thread
1336
1337void JavaThread::initialize() {
1338  // Initialize fields
1339
1340  // Set the claimed par_id to -1 (ie not claiming any par_ids)
1341  set_claimed_par_id(-1);
1342
1343  set_saved_exception_pc(NULL);
1344  set_threadObj(NULL);
1345  _anchor.clear();
1346  set_entry_point(NULL);
1347  set_jni_functions(jni_functions());
1348  set_callee_target(NULL);
1349  set_vm_result(NULL);
1350  set_vm_result_2(NULL);
1351  set_vframe_array_head(NULL);
1352  set_vframe_array_last(NULL);
1353  set_deferred_locals(NULL);
1354  set_deopt_mark(NULL);
1355  set_deopt_nmethod(NULL);
1356  clear_must_deopt_id();
1357  set_monitor_chunks(NULL);
1358  set_next(NULL);
1359  set_thread_state(_thread_new);
1360  set_recorder(NULL);
1361  _terminated = _not_terminated;
1362  _privileged_stack_top = NULL;
1363  _array_for_gc = NULL;
1364  _suspend_equivalent = false;
1365  _in_deopt_handler = 0;
1366  _doing_unsafe_access = false;
1367  _stack_guard_state = stack_guard_unused;
1368  _exception_oop = NULL;
1369  _exception_pc  = 0;
1370  _exception_handler_pc = 0;
1371  _is_method_handle_return = 0;
1372  _jvmti_thread_state= NULL;
1373  _should_post_on_exceptions_flag = JNI_FALSE;
1374  _jvmti_get_loaded_classes_closure = NULL;
1375  _interp_only_mode    = 0;
1376  _special_runtime_exit_condition = _no_async_condition;
1377  _pending_async_exception = NULL;
1378  _is_compiling = false;
1379  _thread_stat = NULL;
1380  _thread_stat = new ThreadStatistics();
1381  _blocked_on_compilation = false;
1382  _jni_active_critical = 0;
1383  _do_not_unlock_if_synchronized = false;
1384  _cached_monitor_info = NULL;
1385  _parker = Parker::Allocate(this) ;
1386
1387#ifndef PRODUCT
1388  _jmp_ring_index = 0;
1389  for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1390    record_jump(NULL, NULL, NULL, 0);
1391  }
1392#endif /* PRODUCT */
1393
1394  set_thread_profiler(NULL);
1395  if (FlatProfiler::is_active()) {
1396    // This is where we would decide to either give each thread it's own profiler
1397    // or use one global one from FlatProfiler,
1398    // or up to some count of the number of profiled threads, etc.
1399    ThreadProfiler* pp = new ThreadProfiler();
1400    pp->engage();
1401    set_thread_profiler(pp);
1402  }
1403
1404  // Setup safepoint state info for this thread
1405  ThreadSafepointState::create(this);
1406
1407  debug_only(_java_call_counter = 0);
1408
1409  // JVMTI PopFrame support
1410  _popframe_condition = popframe_inactive;
1411  _popframe_preserved_args = NULL;
1412  _popframe_preserved_args_size = 0;
1413
1414  pd_initialize();
1415}
1416
1417#ifndef SERIALGC
1418SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1419DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1420#endif // !SERIALGC
1421
1422JavaThread::JavaThread(bool is_attaching_via_jni) :
1423  Thread()
1424#ifndef SERIALGC
1425  , _satb_mark_queue(&_satb_mark_queue_set),
1426  _dirty_card_queue(&_dirty_card_queue_set)
1427#endif // !SERIALGC
1428{
1429  initialize();
1430  if (is_attaching_via_jni) {
1431    _jni_attach_state = _attaching_via_jni;
1432  } else {
1433    _jni_attach_state = _not_attaching_via_jni;
1434  }
1435  assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
1436  _safepoint_visible = false;
1437}
1438
1439bool JavaThread::reguard_stack(address cur_sp) {
1440  if (_stack_guard_state != stack_guard_yellow_disabled) {
1441    return true; // Stack already guarded or guard pages not needed.
1442  }
1443
1444  if (register_stack_overflow()) {
1445    // For those architectures which have separate register and
1446    // memory stacks, we must check the register stack to see if
1447    // it has overflowed.
1448    return false;
1449  }
1450
1451  // Java code never executes within the yellow zone: the latter is only
1452  // there to provoke an exception during stack banging.  If java code
1453  // is executing there, either StackShadowPages should be larger, or
1454  // some exception code in c1, c2 or the interpreter isn't unwinding
1455  // when it should.
1456  guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1457
1458  enable_stack_yellow_zone();
1459  return true;
1460}
1461
1462bool JavaThread::reguard_stack(void) {
1463  return reguard_stack(os::current_stack_pointer());
1464}
1465
1466
1467void JavaThread::block_if_vm_exited() {
1468  if (_terminated == _vm_exited) {
1469    // _vm_exited is set at safepoint, and Threads_lock is never released
1470    // we will block here forever
1471    Threads_lock->lock_without_safepoint_check();
1472    ShouldNotReachHere();
1473  }
1474}
1475
1476
1477// Remove this ifdef when C1 is ported to the compiler interface.
1478static void compiler_thread_entry(JavaThread* thread, TRAPS);
1479
1480JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1481  Thread()
1482#ifndef SERIALGC
1483  , _satb_mark_queue(&_satb_mark_queue_set),
1484  _dirty_card_queue(&_dirty_card_queue_set)
1485#endif // !SERIALGC
1486{
1487  if (TraceThreadEvents) {
1488    tty->print_cr("creating thread %p", this);
1489  }
1490  initialize();
1491  _jni_attach_state = _not_attaching_via_jni;
1492  set_entry_point(entry_point);
1493  // Create the native thread itself.
1494  // %note runtime_23
1495  os::ThreadType thr_type = os::java_thread;
1496  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1497                                                     os::java_thread;
1498  os::create_thread(this, thr_type, stack_sz);
1499  _safepoint_visible = false;
1500  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1501  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1502  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1503  // the exception consists of creating the exception object & initializing it, initialization
1504  // will leave the VM via a JavaCall and then all locks must be unlocked).
1505  //
1506  // The thread is still suspended when we reach here. Thread must be explicit started
1507  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1508  // by calling Threads:add. The reason why this is not done here, is because the thread
1509  // object must be fully initialized (take a look at JVM_Start)
1510}
1511
1512JavaThread::~JavaThread() {
1513  if (TraceThreadEvents) {
1514      tty->print_cr("terminate thread %p", this);
1515  }
1516
1517  // Info NMT that this JavaThread is exiting, its memory
1518  // recorder should be collected
1519  assert(!is_safepoint_visible(), "wrong state");
1520  MemTracker::thread_exiting(this);
1521
1522  // JSR166 -- return the parker to the free list
1523  Parker::Release(_parker);
1524  _parker = NULL ;
1525
1526  // Free any remaining  previous UnrollBlock
1527  vframeArray* old_array = vframe_array_last();
1528
1529  if (old_array != NULL) {
1530    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1531    old_array->set_unroll_block(NULL);
1532    delete old_info;
1533    delete old_array;
1534  }
1535
1536  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1537  if (deferred != NULL) {
1538    // This can only happen if thread is destroyed before deoptimization occurs.
1539    assert(deferred->length() != 0, "empty array!");
1540    do {
1541      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1542      deferred->remove_at(0);
1543      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1544      delete dlv;
1545    } while (deferred->length() != 0);
1546    delete deferred;
1547  }
1548
1549  // All Java related clean up happens in exit
1550  ThreadSafepointState::destroy(this);
1551  if (_thread_profiler != NULL) delete _thread_profiler;
1552  if (_thread_stat != NULL) delete _thread_stat;
1553}
1554
1555
1556// The first routine called by a new Java thread
1557void JavaThread::run() {
1558  // initialize thread-local alloc buffer related fields
1559  this->initialize_tlab();
1560
1561  // used to test validitity of stack trace backs
1562  this->record_base_of_stack_pointer();
1563
1564  // Record real stack base and size.
1565  this->record_stack_base_and_size();
1566
1567  // Initialize thread local storage; set before calling MutexLocker
1568  this->initialize_thread_local_storage();
1569
1570  this->create_stack_guard_pages();
1571
1572  this->cache_global_variables();
1573
1574  // Thread is now sufficient initialized to be handled by the safepoint code as being
1575  // in the VM. Change thread state from _thread_new to _thread_in_vm
1576  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1577
1578  assert(JavaThread::current() == this, "sanity check");
1579  assert(!Thread::current()->owns_locks(), "sanity check");
1580
1581  DTRACE_THREAD_PROBE(start, this);
1582
1583  // This operation might block. We call that after all safepoint checks for a new thread has
1584  // been completed.
1585  this->set_active_handles(JNIHandleBlock::allocate_block());
1586
1587  if (JvmtiExport::should_post_thread_life()) {
1588    JvmtiExport::post_thread_start(this);
1589  }
1590
1591  EVENT_BEGIN(TraceEventThreadStart, event);
1592  EVENT_COMMIT(event,
1593     EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
1594
1595  // We call another function to do the rest so we are sure that the stack addresses used
1596  // from there will be lower than the stack base just computed
1597  thread_main_inner();
1598
1599  // Note, thread is no longer valid at this point!
1600}
1601
1602
1603void JavaThread::thread_main_inner() {
1604  assert(JavaThread::current() == this, "sanity check");
1605  assert(this->threadObj() != NULL, "just checking");
1606
1607  // Execute thread entry point unless this thread has a pending exception
1608  // or has been stopped before starting.
1609  // Note: Due to JVM_StopThread we can have pending exceptions already!
1610  if (!this->has_pending_exception() &&
1611      !java_lang_Thread::is_stillborn(this->threadObj())) {
1612    {
1613      ResourceMark rm(this);
1614      this->set_native_thread_name(this->get_thread_name());
1615    }
1616    HandleMark hm(this);
1617    this->entry_point()(this, this);
1618  }
1619
1620  DTRACE_THREAD_PROBE(stop, this);
1621
1622  this->exit(false);
1623  delete this;
1624}
1625
1626
1627static void ensure_join(JavaThread* thread) {
1628  // We do not need to grap the Threads_lock, since we are operating on ourself.
1629  Handle threadObj(thread, thread->threadObj());
1630  assert(threadObj.not_null(), "java thread object must exist");
1631  ObjectLocker lock(threadObj, thread);
1632  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1633  thread->clear_pending_exception();
1634  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1635  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1636  // Clear the native thread instance - this makes isAlive return false and allows the join()
1637  // to complete once we've done the notify_all below
1638  java_lang_Thread::set_thread(threadObj(), NULL);
1639  lock.notify_all(thread);
1640  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1641  thread->clear_pending_exception();
1642}
1643
1644
1645// For any new cleanup additions, please check to see if they need to be applied to
1646// cleanup_failed_attach_current_thread as well.
1647void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1648  assert(this == JavaThread::current(),  "thread consistency check");
1649  if (!InitializeJavaLangSystem) return;
1650
1651  HandleMark hm(this);
1652  Handle uncaught_exception(this, this->pending_exception());
1653  this->clear_pending_exception();
1654  Handle threadObj(this, this->threadObj());
1655  assert(threadObj.not_null(), "Java thread object should be created");
1656
1657  if (get_thread_profiler() != NULL) {
1658    get_thread_profiler()->disengage();
1659    ResourceMark rm;
1660    get_thread_profiler()->print(get_thread_name());
1661  }
1662
1663
1664  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1665  {
1666    EXCEPTION_MARK;
1667
1668    CLEAR_PENDING_EXCEPTION;
1669  }
1670  // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1671  // has to be fixed by a runtime query method
1672  if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1673    // JSR-166: change call from from ThreadGroup.uncaughtException to
1674    // java.lang.Thread.dispatchUncaughtException
1675    if (uncaught_exception.not_null()) {
1676      Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1677      {
1678        EXCEPTION_MARK;
1679        // Check if the method Thread.dispatchUncaughtException() exists. If so
1680        // call it.  Otherwise we have an older library without the JSR-166 changes,
1681        // so call ThreadGroup.uncaughtException()
1682        KlassHandle recvrKlass(THREAD, threadObj->klass());
1683        CallInfo callinfo;
1684        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1685        LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1686                                           vmSymbols::dispatchUncaughtException_name(),
1687                                           vmSymbols::throwable_void_signature(),
1688                                           KlassHandle(), false, false, THREAD);
1689        CLEAR_PENDING_EXCEPTION;
1690        methodHandle method = callinfo.selected_method();
1691        if (method.not_null()) {
1692          JavaValue result(T_VOID);
1693          JavaCalls::call_virtual(&result,
1694                                  threadObj, thread_klass,
1695                                  vmSymbols::dispatchUncaughtException_name(),
1696                                  vmSymbols::throwable_void_signature(),
1697                                  uncaught_exception,
1698                                  THREAD);
1699        } else {
1700          KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1701          JavaValue result(T_VOID);
1702          JavaCalls::call_virtual(&result,
1703                                  group, thread_group,
1704                                  vmSymbols::uncaughtException_name(),
1705                                  vmSymbols::thread_throwable_void_signature(),
1706                                  threadObj,           // Arg 1
1707                                  uncaught_exception,  // Arg 2
1708                                  THREAD);
1709        }
1710        if (HAS_PENDING_EXCEPTION) {
1711          ResourceMark rm(this);
1712          jio_fprintf(defaultStream::error_stream(),
1713                "\nException: %s thrown from the UncaughtExceptionHandler"
1714                " in thread \"%s\"\n",
1715                Klass::cast(pending_exception()->klass())->external_name(),
1716                get_thread_name());
1717          CLEAR_PENDING_EXCEPTION;
1718        }
1719      }
1720    }
1721
1722    // Called before the java thread exit since we want to read info
1723    // from java_lang_Thread object
1724    EVENT_BEGIN(TraceEventThreadEnd, event);
1725    EVENT_COMMIT(event,
1726        EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
1727
1728    // Call after last event on thread
1729    EVENT_THREAD_EXIT(this);
1730
1731    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1732    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1733    // is deprecated anyhow.
1734    { int count = 3;
1735      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1736        EXCEPTION_MARK;
1737        JavaValue result(T_VOID);
1738        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1739        JavaCalls::call_virtual(&result,
1740                              threadObj, thread_klass,
1741                              vmSymbols::exit_method_name(),
1742                              vmSymbols::void_method_signature(),
1743                              THREAD);
1744        CLEAR_PENDING_EXCEPTION;
1745      }
1746    }
1747
1748    // notify JVMTI
1749    if (JvmtiExport::should_post_thread_life()) {
1750      JvmtiExport::post_thread_end(this);
1751    }
1752
1753    // We have notified the agents that we are exiting, before we go on,
1754    // we must check for a pending external suspend request and honor it
1755    // in order to not surprise the thread that made the suspend request.
1756    while (true) {
1757      {
1758        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1759        if (!is_external_suspend()) {
1760          set_terminated(_thread_exiting);
1761          ThreadService::current_thread_exiting(this);
1762          break;
1763        }
1764        // Implied else:
1765        // Things get a little tricky here. We have a pending external
1766        // suspend request, but we are holding the SR_lock so we
1767        // can't just self-suspend. So we temporarily drop the lock
1768        // and then self-suspend.
1769      }
1770
1771      ThreadBlockInVM tbivm(this);
1772      java_suspend_self();
1773
1774      // We're done with this suspend request, but we have to loop around
1775      // and check again. Eventually we will get SR_lock without a pending
1776      // external suspend request and will be able to mark ourselves as
1777      // exiting.
1778    }
1779    // no more external suspends are allowed at this point
1780  } else {
1781    // before_exit() has already posted JVMTI THREAD_END events
1782  }
1783
1784  // Notify waiters on thread object. This has to be done after exit() is called
1785  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1786  // group should have the destroyed bit set before waiters are notified).
1787  ensure_join(this);
1788  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1789
1790  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1791  // held by this thread must be released.  A detach operation must only
1792  // get here if there are no Java frames on the stack.  Therefore, any
1793  // owned monitors at this point MUST be JNI-acquired monitors which are
1794  // pre-inflated and in the monitor cache.
1795  //
1796  // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1797  if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1798    assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1799    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1800    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1801  }
1802
1803  // These things needs to be done while we are still a Java Thread. Make sure that thread
1804  // is in a consistent state, in case GC happens
1805  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1806
1807  if (active_handles() != NULL) {
1808    JNIHandleBlock* block = active_handles();
1809    set_active_handles(NULL);
1810    JNIHandleBlock::release_block(block);
1811  }
1812
1813  if (free_handle_block() != NULL) {
1814    JNIHandleBlock* block = free_handle_block();
1815    set_free_handle_block(NULL);
1816    JNIHandleBlock::release_block(block);
1817  }
1818
1819  // These have to be removed while this is still a valid thread.
1820  remove_stack_guard_pages();
1821
1822  if (UseTLAB) {
1823    tlab().make_parsable(true);  // retire TLAB
1824  }
1825
1826  if (JvmtiEnv::environments_might_exist()) {
1827    JvmtiExport::cleanup_thread(this);
1828  }
1829
1830#ifndef SERIALGC
1831  // We must flush G1-related buffers before removing a thread from
1832  // the list of active threads.
1833  if (UseG1GC) {
1834    flush_barrier_queues();
1835  }
1836#endif
1837
1838  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1839  Threads::remove(this);
1840}
1841
1842#ifndef SERIALGC
1843// Flush G1-related queues.
1844void JavaThread::flush_barrier_queues() {
1845  satb_mark_queue().flush();
1846  dirty_card_queue().flush();
1847}
1848
1849void JavaThread::initialize_queues() {
1850  assert(!SafepointSynchronize::is_at_safepoint(),
1851         "we should not be at a safepoint");
1852
1853  ObjPtrQueue& satb_queue = satb_mark_queue();
1854  SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1855  // The SATB queue should have been constructed with its active
1856  // field set to false.
1857  assert(!satb_queue.is_active(), "SATB queue should not be active");
1858  assert(satb_queue.is_empty(), "SATB queue should be empty");
1859  // If we are creating the thread during a marking cycle, we should
1860  // set the active field of the SATB queue to true.
1861  if (satb_queue_set.is_active()) {
1862    satb_queue.set_active(true);
1863  }
1864
1865  DirtyCardQueue& dirty_queue = dirty_card_queue();
1866  // The dirty card queue should have been constructed with its
1867  // active field set to true.
1868  assert(dirty_queue.is_active(), "dirty card queue should be active");
1869}
1870#endif // !SERIALGC
1871
1872void JavaThread::cleanup_failed_attach_current_thread() {
1873  if (get_thread_profiler() != NULL) {
1874    get_thread_profiler()->disengage();
1875    ResourceMark rm;
1876    get_thread_profiler()->print(get_thread_name());
1877  }
1878
1879  if (active_handles() != NULL) {
1880    JNIHandleBlock* block = active_handles();
1881    set_active_handles(NULL);
1882    JNIHandleBlock::release_block(block);
1883  }
1884
1885  if (free_handle_block() != NULL) {
1886    JNIHandleBlock* block = free_handle_block();
1887    set_free_handle_block(NULL);
1888    JNIHandleBlock::release_block(block);
1889  }
1890
1891  // These have to be removed while this is still a valid thread.
1892  remove_stack_guard_pages();
1893
1894  if (UseTLAB) {
1895    tlab().make_parsable(true);  // retire TLAB, if any
1896  }
1897
1898#ifndef SERIALGC
1899  if (UseG1GC) {
1900    flush_barrier_queues();
1901  }
1902#endif
1903
1904  Threads::remove(this);
1905  delete this;
1906}
1907
1908
1909
1910
1911JavaThread* JavaThread::active() {
1912  Thread* thread = ThreadLocalStorage::thread();
1913  assert(thread != NULL, "just checking");
1914  if (thread->is_Java_thread()) {
1915    return (JavaThread*) thread;
1916  } else {
1917    assert(thread->is_VM_thread(), "this must be a vm thread");
1918    VM_Operation* op = ((VMThread*) thread)->vm_operation();
1919    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1920    assert(ret->is_Java_thread(), "must be a Java thread");
1921    return ret;
1922  }
1923}
1924
1925bool JavaThread::is_lock_owned(address adr) const {
1926  if (Thread::is_lock_owned(adr)) return true;
1927
1928  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1929    if (chunk->contains(adr)) return true;
1930  }
1931
1932  return false;
1933}
1934
1935
1936void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1937  chunk->set_next(monitor_chunks());
1938  set_monitor_chunks(chunk);
1939}
1940
1941void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1942  guarantee(monitor_chunks() != NULL, "must be non empty");
1943  if (monitor_chunks() == chunk) {
1944    set_monitor_chunks(chunk->next());
1945  } else {
1946    MonitorChunk* prev = monitor_chunks();
1947    while (prev->next() != chunk) prev = prev->next();
1948    prev->set_next(chunk->next());
1949  }
1950}
1951
1952// JVM support.
1953
1954// Note: this function shouldn't block if it's called in
1955// _thread_in_native_trans state (such as from
1956// check_special_condition_for_native_trans()).
1957void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1958
1959  if (has_last_Java_frame() && has_async_condition()) {
1960    // If we are at a polling page safepoint (not a poll return)
1961    // then we must defer async exception because live registers
1962    // will be clobbered by the exception path. Poll return is
1963    // ok because the call we a returning from already collides
1964    // with exception handling registers and so there is no issue.
1965    // (The exception handling path kills call result registers but
1966    //  this is ok since the exception kills the result anyway).
1967
1968    if (is_at_poll_safepoint()) {
1969      // if the code we are returning to has deoptimized we must defer
1970      // the exception otherwise live registers get clobbered on the
1971      // exception path before deoptimization is able to retrieve them.
1972      //
1973      RegisterMap map(this, false);
1974      frame caller_fr = last_frame().sender(&map);
1975      assert(caller_fr.is_compiled_frame(), "what?");
1976      if (caller_fr.is_deoptimized_frame()) {
1977        if (TraceExceptions) {
1978          ResourceMark rm;
1979          tty->print_cr("deferred async exception at compiled safepoint");
1980        }
1981        return;
1982      }
1983    }
1984  }
1985
1986  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
1987  if (condition == _no_async_condition) {
1988    // Conditions have changed since has_special_runtime_exit_condition()
1989    // was called:
1990    // - if we were here only because of an external suspend request,
1991    //   then that was taken care of above (or cancelled) so we are done
1992    // - if we were here because of another async request, then it has
1993    //   been cleared between the has_special_runtime_exit_condition()
1994    //   and now so again we are done
1995    return;
1996  }
1997
1998  // Check for pending async. exception
1999  if (_pending_async_exception != NULL) {
2000    // Only overwrite an already pending exception, if it is not a threadDeath.
2001    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2002
2003      // We cannot call Exceptions::_throw(...) here because we cannot block
2004      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2005
2006      if (TraceExceptions) {
2007        ResourceMark rm;
2008        tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2009        if (has_last_Java_frame() ) {
2010          frame f = last_frame();
2011          tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2012        }
2013        tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2014      }
2015      _pending_async_exception = NULL;
2016      clear_has_async_exception();
2017    }
2018  }
2019
2020  if (check_unsafe_error &&
2021      condition == _async_unsafe_access_error && !has_pending_exception()) {
2022    condition = _no_async_condition;  // done
2023    switch (thread_state()) {
2024    case _thread_in_vm:
2025      {
2026        JavaThread* THREAD = this;
2027        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2028      }
2029    case _thread_in_native:
2030      {
2031        ThreadInVMfromNative tiv(this);
2032        JavaThread* THREAD = this;
2033        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2034      }
2035    case _thread_in_Java:
2036      {
2037        ThreadInVMfromJava tiv(this);
2038        JavaThread* THREAD = this;
2039        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2040      }
2041    default:
2042      ShouldNotReachHere();
2043    }
2044  }
2045
2046  assert(condition == _no_async_condition || has_pending_exception() ||
2047         (!check_unsafe_error && condition == _async_unsafe_access_error),
2048         "must have handled the async condition, if no exception");
2049}
2050
2051void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2052  //
2053  // Check for pending external suspend. Internal suspend requests do
2054  // not use handle_special_runtime_exit_condition().
2055  // If JNIEnv proxies are allowed, don't self-suspend if the target
2056  // thread is not the current thread. In older versions of jdbx, jdbx
2057  // threads could call into the VM with another thread's JNIEnv so we
2058  // can be here operating on behalf of a suspended thread (4432884).
2059  bool do_self_suspend = is_external_suspend_with_lock();
2060  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2061    //
2062    // Because thread is external suspended the safepoint code will count
2063    // thread as at a safepoint. This can be odd because we can be here
2064    // as _thread_in_Java which would normally transition to _thread_blocked
2065    // at a safepoint. We would like to mark the thread as _thread_blocked
2066    // before calling java_suspend_self like all other callers of it but
2067    // we must then observe proper safepoint protocol. (We can't leave
2068    // _thread_blocked with a safepoint in progress). However we can be
2069    // here as _thread_in_native_trans so we can't use a normal transition
2070    // constructor/destructor pair because they assert on that type of
2071    // transition. We could do something like:
2072    //
2073    // JavaThreadState state = thread_state();
2074    // set_thread_state(_thread_in_vm);
2075    // {
2076    //   ThreadBlockInVM tbivm(this);
2077    //   java_suspend_self()
2078    // }
2079    // set_thread_state(_thread_in_vm_trans);
2080    // if (safepoint) block;
2081    // set_thread_state(state);
2082    //
2083    // but that is pretty messy. Instead we just go with the way the
2084    // code has worked before and note that this is the only path to
2085    // java_suspend_self that doesn't put the thread in _thread_blocked
2086    // mode.
2087
2088    frame_anchor()->make_walkable(this);
2089    java_suspend_self();
2090
2091    // We might be here for reasons in addition to the self-suspend request
2092    // so check for other async requests.
2093  }
2094
2095  if (check_asyncs) {
2096    check_and_handle_async_exceptions();
2097  }
2098}
2099
2100void JavaThread::send_thread_stop(oop java_throwable)  {
2101  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2102  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2103  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2104
2105  // Do not throw asynchronous exceptions against the compiler thread
2106  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2107  if (is_Compiler_thread()) return;
2108
2109  {
2110    // Actually throw the Throwable against the target Thread - however
2111    // only if there is no thread death exception installed already.
2112    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2113      // If the topmost frame is a runtime stub, then we are calling into
2114      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2115      // must deoptimize the caller before continuing, as the compiled  exception handler table
2116      // may not be valid
2117      if (has_last_Java_frame()) {
2118        frame f = last_frame();
2119        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2120          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2121          RegisterMap reg_map(this, UseBiasedLocking);
2122          frame compiled_frame = f.sender(&reg_map);
2123          if (compiled_frame.can_be_deoptimized()) {
2124            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2125          }
2126        }
2127      }
2128
2129      // Set async. pending exception in thread.
2130      set_pending_async_exception(java_throwable);
2131
2132      if (TraceExceptions) {
2133       ResourceMark rm;
2134       tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2135      }
2136      // for AbortVMOnException flag
2137      NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2138    }
2139  }
2140
2141
2142  // Interrupt thread so it will wake up from a potential wait()
2143  Thread::interrupt(this);
2144}
2145
2146// External suspension mechanism.
2147//
2148// Tell the VM to suspend a thread when ever it knows that it does not hold on
2149// to any VM_locks and it is at a transition
2150// Self-suspension will happen on the transition out of the vm.
2151// Catch "this" coming in from JNIEnv pointers when the thread has been freed
2152//
2153// Guarantees on return:
2154//   + Target thread will not execute any new bytecode (that's why we need to
2155//     force a safepoint)
2156//   + Target thread will not enter any new monitors
2157//
2158void JavaThread::java_suspend() {
2159  { MutexLocker mu(Threads_lock);
2160    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2161       return;
2162    }
2163  }
2164
2165  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2166    if (!is_external_suspend()) {
2167      // a racing resume has cancelled us; bail out now
2168      return;
2169    }
2170
2171    // suspend is done
2172    uint32_t debug_bits = 0;
2173    // Warning: is_ext_suspend_completed() may temporarily drop the
2174    // SR_lock to allow the thread to reach a stable thread state if
2175    // it is currently in a transient thread state.
2176    if (is_ext_suspend_completed(false /* !called_by_wait */,
2177                                 SuspendRetryDelay, &debug_bits) ) {
2178      return;
2179    }
2180  }
2181
2182  VM_ForceSafepoint vm_suspend;
2183  VMThread::execute(&vm_suspend);
2184}
2185
2186// Part II of external suspension.
2187// A JavaThread self suspends when it detects a pending external suspend
2188// request. This is usually on transitions. It is also done in places
2189// where continuing to the next transition would surprise the caller,
2190// e.g., monitor entry.
2191//
2192// Returns the number of times that the thread self-suspended.
2193//
2194// Note: DO NOT call java_suspend_self() when you just want to block current
2195//       thread. java_suspend_self() is the second stage of cooperative
2196//       suspension for external suspend requests and should only be used
2197//       to complete an external suspend request.
2198//
2199int JavaThread::java_suspend_self() {
2200  int ret = 0;
2201
2202  // we are in the process of exiting so don't suspend
2203  if (is_exiting()) {
2204     clear_external_suspend();
2205     return ret;
2206  }
2207
2208  assert(_anchor.walkable() ||
2209    (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2210    "must have walkable stack");
2211
2212  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2213
2214  assert(!this->is_ext_suspended(),
2215    "a thread trying to self-suspend should not already be suspended");
2216
2217  if (this->is_suspend_equivalent()) {
2218    // If we are self-suspending as a result of the lifting of a
2219    // suspend equivalent condition, then the suspend_equivalent
2220    // flag is not cleared until we set the ext_suspended flag so
2221    // that wait_for_ext_suspend_completion() returns consistent
2222    // results.
2223    this->clear_suspend_equivalent();
2224  }
2225
2226  // A racing resume may have cancelled us before we grabbed SR_lock
2227  // above. Or another external suspend request could be waiting for us
2228  // by the time we return from SR_lock()->wait(). The thread
2229  // that requested the suspension may already be trying to walk our
2230  // stack and if we return now, we can change the stack out from under
2231  // it. This would be a "bad thing (TM)" and cause the stack walker
2232  // to crash. We stay self-suspended until there are no more pending
2233  // external suspend requests.
2234  while (is_external_suspend()) {
2235    ret++;
2236    this->set_ext_suspended();
2237
2238    // _ext_suspended flag is cleared by java_resume()
2239    while (is_ext_suspended()) {
2240      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2241    }
2242  }
2243
2244  return ret;
2245}
2246
2247#ifdef ASSERT
2248// verify the JavaThread has not yet been published in the Threads::list, and
2249// hence doesn't need protection from concurrent access at this stage
2250void JavaThread::verify_not_published() {
2251  if (!Threads_lock->owned_by_self()) {
2252   MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2253   assert( !Threads::includes(this),
2254           "java thread shouldn't have been published yet!");
2255  }
2256  else {
2257   assert( !Threads::includes(this),
2258           "java thread shouldn't have been published yet!");
2259  }
2260}
2261#endif
2262
2263// Slow path when the native==>VM/Java barriers detect a safepoint is in
2264// progress or when _suspend_flags is non-zero.
2265// Current thread needs to self-suspend if there is a suspend request and/or
2266// block if a safepoint is in progress.
2267// Async exception ISN'T checked.
2268// Note only the ThreadInVMfromNative transition can call this function
2269// directly and when thread state is _thread_in_native_trans
2270void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2271  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2272
2273  JavaThread *curJT = JavaThread::current();
2274  bool do_self_suspend = thread->is_external_suspend();
2275
2276  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2277
2278  // If JNIEnv proxies are allowed, don't self-suspend if the target
2279  // thread is not the current thread. In older versions of jdbx, jdbx
2280  // threads could call into the VM with another thread's JNIEnv so we
2281  // can be here operating on behalf of a suspended thread (4432884).
2282  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2283    JavaThreadState state = thread->thread_state();
2284
2285    // We mark this thread_blocked state as a suspend-equivalent so
2286    // that a caller to is_ext_suspend_completed() won't be confused.
2287    // The suspend-equivalent state is cleared by java_suspend_self().
2288    thread->set_suspend_equivalent();
2289
2290    // If the safepoint code sees the _thread_in_native_trans state, it will
2291    // wait until the thread changes to other thread state. There is no
2292    // guarantee on how soon we can obtain the SR_lock and complete the
2293    // self-suspend request. It would be a bad idea to let safepoint wait for
2294    // too long. Temporarily change the state to _thread_blocked to
2295    // let the VM thread know that this thread is ready for GC. The problem
2296    // of changing thread state is that safepoint could happen just after
2297    // java_suspend_self() returns after being resumed, and VM thread will
2298    // see the _thread_blocked state. We must check for safepoint
2299    // after restoring the state and make sure we won't leave while a safepoint
2300    // is in progress.
2301    thread->set_thread_state(_thread_blocked);
2302    thread->java_suspend_self();
2303    thread->set_thread_state(state);
2304    // Make sure new state is seen by VM thread
2305    if (os::is_MP()) {
2306      if (UseMembar) {
2307        // Force a fence between the write above and read below
2308        OrderAccess::fence();
2309      } else {
2310        // Must use this rather than serialization page in particular on Windows
2311        InterfaceSupport::serialize_memory(thread);
2312      }
2313    }
2314  }
2315
2316  if (SafepointSynchronize::do_call_back()) {
2317    // If we are safepointing, then block the caller which may not be
2318    // the same as the target thread (see above).
2319    SafepointSynchronize::block(curJT);
2320  }
2321
2322  if (thread->is_deopt_suspend()) {
2323    thread->clear_deopt_suspend();
2324    RegisterMap map(thread, false);
2325    frame f = thread->last_frame();
2326    while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2327      f = f.sender(&map);
2328    }
2329    if (f.id() == thread->must_deopt_id()) {
2330      thread->clear_must_deopt_id();
2331      f.deoptimize(thread);
2332    } else {
2333      fatal("missed deoptimization!");
2334    }
2335  }
2336}
2337
2338// Slow path when the native==>VM/Java barriers detect a safepoint is in
2339// progress or when _suspend_flags is non-zero.
2340// Current thread needs to self-suspend if there is a suspend request and/or
2341// block if a safepoint is in progress.
2342// Also check for pending async exception (not including unsafe access error).
2343// Note only the native==>VM/Java barriers can call this function and when
2344// thread state is _thread_in_native_trans.
2345void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2346  check_safepoint_and_suspend_for_native_trans(thread);
2347
2348  if (thread->has_async_exception()) {
2349    // We are in _thread_in_native_trans state, don't handle unsafe
2350    // access error since that may block.
2351    thread->check_and_handle_async_exceptions(false);
2352  }
2353}
2354
2355// This is a variant of the normal
2356// check_special_condition_for_native_trans with slightly different
2357// semantics for use by critical native wrappers.  It does all the
2358// normal checks but also performs the transition back into
2359// thread_in_Java state.  This is required so that critical natives
2360// can potentially block and perform a GC if they are the last thread
2361// exiting the GC_locker.
2362void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2363  check_special_condition_for_native_trans(thread);
2364
2365  // Finish the transition
2366  thread->set_thread_state(_thread_in_Java);
2367
2368  if (thread->do_critical_native_unlock()) {
2369    ThreadInVMfromJavaNoAsyncException tiv(thread);
2370    GC_locker::unlock_critical(thread);
2371    thread->clear_critical_native_unlock();
2372  }
2373}
2374
2375// We need to guarantee the Threads_lock here, since resumes are not
2376// allowed during safepoint synchronization
2377// Can only resume from an external suspension
2378void JavaThread::java_resume() {
2379  assert_locked_or_safepoint(Threads_lock);
2380
2381  // Sanity check: thread is gone, has started exiting or the thread
2382  // was not externally suspended.
2383  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2384    return;
2385  }
2386
2387  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2388
2389  clear_external_suspend();
2390
2391  if (is_ext_suspended()) {
2392    clear_ext_suspended();
2393    SR_lock()->notify_all();
2394  }
2395}
2396
2397void JavaThread::create_stack_guard_pages() {
2398  if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2399  address low_addr = stack_base() - stack_size();
2400  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2401
2402  int allocate = os::allocate_stack_guard_pages();
2403  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2404
2405  if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2406    warning("Attempt to allocate stack guard pages failed.");
2407    return;
2408  }
2409
2410  if (os::guard_memory((char *) low_addr, len)) {
2411    _stack_guard_state = stack_guard_enabled;
2412  } else {
2413    warning("Attempt to protect stack guard pages failed.");
2414    if (os::uncommit_memory((char *) low_addr, len)) {
2415      warning("Attempt to deallocate stack guard pages failed.");
2416    }
2417  }
2418}
2419
2420void JavaThread::remove_stack_guard_pages() {
2421  if (_stack_guard_state == stack_guard_unused) return;
2422  address low_addr = stack_base() - stack_size();
2423  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2424
2425  if (os::allocate_stack_guard_pages()) {
2426    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2427      _stack_guard_state = stack_guard_unused;
2428    } else {
2429      warning("Attempt to deallocate stack guard pages failed.");
2430    }
2431  } else {
2432    if (_stack_guard_state == stack_guard_unused) return;
2433    if (os::unguard_memory((char *) low_addr, len)) {
2434      _stack_guard_state = stack_guard_unused;
2435    } else {
2436        warning("Attempt to unprotect stack guard pages failed.");
2437    }
2438  }
2439}
2440
2441void JavaThread::enable_stack_yellow_zone() {
2442  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2443  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2444
2445  // The base notation is from the stacks point of view, growing downward.
2446  // We need to adjust it to work correctly with guard_memory()
2447  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2448
2449  guarantee(base < stack_base(),"Error calculating stack yellow zone");
2450  guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2451
2452  if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2453    _stack_guard_state = stack_guard_enabled;
2454  } else {
2455    warning("Attempt to guard stack yellow zone failed.");
2456  }
2457  enable_register_stack_guard();
2458}
2459
2460void JavaThread::disable_stack_yellow_zone() {
2461  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2462  assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2463
2464  // Simply return if called for a thread that does not use guard pages.
2465  if (_stack_guard_state == stack_guard_unused) return;
2466
2467  // The base notation is from the stacks point of view, growing downward.
2468  // We need to adjust it to work correctly with guard_memory()
2469  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2470
2471  if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2472    _stack_guard_state = stack_guard_yellow_disabled;
2473  } else {
2474    warning("Attempt to unguard stack yellow zone failed.");
2475  }
2476  disable_register_stack_guard();
2477}
2478
2479void JavaThread::enable_stack_red_zone() {
2480  // The base notation is from the stacks point of view, growing downward.
2481  // We need to adjust it to work correctly with guard_memory()
2482  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2483  address base = stack_red_zone_base() - stack_red_zone_size();
2484
2485  guarantee(base < stack_base(),"Error calculating stack red zone");
2486  guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2487
2488  if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2489    warning("Attempt to guard stack red zone failed.");
2490  }
2491}
2492
2493void JavaThread::disable_stack_red_zone() {
2494  // The base notation is from the stacks point of view, growing downward.
2495  // We need to adjust it to work correctly with guard_memory()
2496  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2497  address base = stack_red_zone_base() - stack_red_zone_size();
2498  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2499    warning("Attempt to unguard stack red zone failed.");
2500  }
2501}
2502
2503void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2504  // ignore is there is no stack
2505  if (!has_last_Java_frame()) return;
2506  // traverse the stack frames. Starts from top frame.
2507  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2508    frame* fr = fst.current();
2509    f(fr, fst.register_map());
2510  }
2511}
2512
2513
2514#ifndef PRODUCT
2515// Deoptimization
2516// Function for testing deoptimization
2517void JavaThread::deoptimize() {
2518  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2519  StackFrameStream fst(this, UseBiasedLocking);
2520  bool deopt = false;           // Dump stack only if a deopt actually happens.
2521  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2522  // Iterate over all frames in the thread and deoptimize
2523  for(; !fst.is_done(); fst.next()) {
2524    if(fst.current()->can_be_deoptimized()) {
2525
2526      if (only_at) {
2527        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2528        // consists of comma or carriage return separated numbers so
2529        // search for the current bci in that string.
2530        address pc = fst.current()->pc();
2531        nmethod* nm =  (nmethod*) fst.current()->cb();
2532        ScopeDesc* sd = nm->scope_desc_at( pc);
2533        char buffer[8];
2534        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2535        size_t len = strlen(buffer);
2536        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2537        while (found != NULL) {
2538          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2539              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2540            // Check that the bci found is bracketed by terminators.
2541            break;
2542          }
2543          found = strstr(found + 1, buffer);
2544        }
2545        if (!found) {
2546          continue;
2547        }
2548      }
2549
2550      if (DebugDeoptimization && !deopt) {
2551        deopt = true; // One-time only print before deopt
2552        tty->print_cr("[BEFORE Deoptimization]");
2553        trace_frames();
2554        trace_stack();
2555      }
2556      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2557    }
2558  }
2559
2560  if (DebugDeoptimization && deopt) {
2561    tty->print_cr("[AFTER Deoptimization]");
2562    trace_frames();
2563  }
2564}
2565
2566
2567// Make zombies
2568void JavaThread::make_zombies() {
2569  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2570    if (fst.current()->can_be_deoptimized()) {
2571      // it is a Java nmethod
2572      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2573      nm->make_not_entrant();
2574    }
2575  }
2576}
2577#endif // PRODUCT
2578
2579
2580void JavaThread::deoptimized_wrt_marked_nmethods() {
2581  if (!has_last_Java_frame()) return;
2582  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2583  StackFrameStream fst(this, UseBiasedLocking);
2584  for(; !fst.is_done(); fst.next()) {
2585    if (fst.current()->should_be_deoptimized()) {
2586      if (LogCompilation && xtty != NULL) {
2587        nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2588        xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2589                   this->name(), nm != NULL ? nm->compile_id() : -1);
2590      }
2591
2592      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2593    }
2594  }
2595}
2596
2597
2598// GC support
2599static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2600
2601void JavaThread::gc_epilogue() {
2602  frames_do(frame_gc_epilogue);
2603}
2604
2605
2606static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2607
2608void JavaThread::gc_prologue() {
2609  frames_do(frame_gc_prologue);
2610}
2611
2612// If the caller is a NamedThread, then remember, in the current scope,
2613// the given JavaThread in its _processed_thread field.
2614class RememberProcessedThread: public StackObj {
2615  NamedThread* _cur_thr;
2616public:
2617  RememberProcessedThread(JavaThread* jthr) {
2618    Thread* thread = Thread::current();
2619    if (thread->is_Named_thread()) {
2620      _cur_thr = (NamedThread *)thread;
2621      _cur_thr->set_processed_thread(jthr);
2622    } else {
2623      _cur_thr = NULL;
2624    }
2625  }
2626
2627  ~RememberProcessedThread() {
2628    if (_cur_thr) {
2629      _cur_thr->set_processed_thread(NULL);
2630    }
2631  }
2632};
2633
2634void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2635  // Verify that the deferred card marks have been flushed.
2636  assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2637
2638  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2639  // since there may be more than one thread using each ThreadProfiler.
2640
2641  // Traverse the GCHandles
2642  Thread::oops_do(f, cf);
2643
2644  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2645          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2646
2647  if (has_last_Java_frame()) {
2648    // Record JavaThread to GC thread
2649    RememberProcessedThread rpt(this);
2650
2651    // Traverse the privileged stack
2652    if (_privileged_stack_top != NULL) {
2653      _privileged_stack_top->oops_do(f);
2654    }
2655
2656    // traverse the registered growable array
2657    if (_array_for_gc != NULL) {
2658      for (int index = 0; index < _array_for_gc->length(); index++) {
2659        f->do_oop(_array_for_gc->adr_at(index));
2660      }
2661    }
2662
2663    // Traverse the monitor chunks
2664    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2665      chunk->oops_do(f);
2666    }
2667
2668    // Traverse the execution stack
2669    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2670      fst.current()->oops_do(f, cf, fst.register_map());
2671    }
2672  }
2673
2674  // callee_target is never live across a gc point so NULL it here should
2675  // it still contain a methdOop.
2676
2677  set_callee_target(NULL);
2678
2679  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2680  // If we have deferred set_locals there might be oops waiting to be
2681  // written
2682  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2683  if (list != NULL) {
2684    for (int i = 0; i < list->length(); i++) {
2685      list->at(i)->oops_do(f);
2686    }
2687  }
2688
2689  // Traverse instance variables at the end since the GC may be moving things
2690  // around using this function
2691  f->do_oop((oop*) &_threadObj);
2692  f->do_oop((oop*) &_vm_result);
2693  f->do_oop((oop*) &_exception_oop);
2694  f->do_oop((oop*) &_pending_async_exception);
2695
2696  if (jvmti_thread_state() != NULL) {
2697    jvmti_thread_state()->oops_do(f);
2698  }
2699}
2700
2701void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2702  Thread::nmethods_do(cf);  // (super method is a no-op)
2703
2704  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2705          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2706
2707  if (has_last_Java_frame()) {
2708    // Traverse the execution stack
2709    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2710      fst.current()->nmethods_do(cf);
2711    }
2712  }
2713}
2714
2715void JavaThread::metadata_do(void f(Metadata*)) {
2716  Thread::metadata_do(f);
2717  if (has_last_Java_frame()) {
2718    // Traverse the execution stack to call f() on the methods in the stack
2719    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2720      fst.current()->metadata_do(f);
2721    }
2722  } else if (is_Compiler_thread()) {
2723    // need to walk ciMetadata in current compile tasks to keep alive.
2724    CompilerThread* ct = (CompilerThread*)this;
2725    if (ct->env() != NULL) {
2726      ct->env()->metadata_do(f);
2727    }
2728  }
2729}
2730
2731// Printing
2732const char* _get_thread_state_name(JavaThreadState _thread_state) {
2733  switch (_thread_state) {
2734  case _thread_uninitialized:     return "_thread_uninitialized";
2735  case _thread_new:               return "_thread_new";
2736  case _thread_new_trans:         return "_thread_new_trans";
2737  case _thread_in_native:         return "_thread_in_native";
2738  case _thread_in_native_trans:   return "_thread_in_native_trans";
2739  case _thread_in_vm:             return "_thread_in_vm";
2740  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2741  case _thread_in_Java:           return "_thread_in_Java";
2742  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2743  case _thread_blocked:           return "_thread_blocked";
2744  case _thread_blocked_trans:     return "_thread_blocked_trans";
2745  default:                        return "unknown thread state";
2746  }
2747}
2748
2749#ifndef PRODUCT
2750void JavaThread::print_thread_state_on(outputStream *st) const {
2751  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2752};
2753void JavaThread::print_thread_state() const {
2754  print_thread_state_on(tty);
2755};
2756#endif // PRODUCT
2757
2758// Called by Threads::print() for VM_PrintThreads operation
2759void JavaThread::print_on(outputStream *st) const {
2760  st->print("\"%s\" ", get_thread_name());
2761  oop thread_oop = threadObj();
2762  if (thread_oop != NULL) {
2763    st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2764    if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2765    st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2766  }
2767  Thread::print_on(st);
2768  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2769  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2770  if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2771    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2772  }
2773#ifndef PRODUCT
2774  print_thread_state_on(st);
2775  _safepoint_state->print_on(st);
2776#endif // PRODUCT
2777}
2778
2779// Called by fatal error handler. The difference between this and
2780// JavaThread::print() is that we can't grab lock or allocate memory.
2781void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2782  st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2783  oop thread_obj = threadObj();
2784  if (thread_obj != NULL) {
2785     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2786  }
2787  st->print(" [");
2788  st->print("%s", _get_thread_state_name(_thread_state));
2789  if (osthread()) {
2790    st->print(", id=%d", osthread()->thread_id());
2791  }
2792  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2793            _stack_base - _stack_size, _stack_base);
2794  st->print("]");
2795  return;
2796}
2797
2798// Verification
2799
2800static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2801
2802void JavaThread::verify() {
2803  // Verify oops in the thread.
2804  oops_do(&VerifyOopClosure::verify_oop, NULL);
2805
2806  // Verify the stack frames.
2807  frames_do(frame_verify);
2808}
2809
2810// CR 6300358 (sub-CR 2137150)
2811// Most callers of this method assume that it can't return NULL but a
2812// thread may not have a name whilst it is in the process of attaching to
2813// the VM - see CR 6412693, and there are places where a JavaThread can be
2814// seen prior to having it's threadObj set (eg JNI attaching threads and
2815// if vm exit occurs during initialization). These cases can all be accounted
2816// for such that this method never returns NULL.
2817const char* JavaThread::get_thread_name() const {
2818#ifdef ASSERT
2819  // early safepoints can hit while current thread does not yet have TLS
2820  if (!SafepointSynchronize::is_at_safepoint()) {
2821    Thread *cur = Thread::current();
2822    if (!(cur->is_Java_thread() && cur == this)) {
2823      // Current JavaThreads are allowed to get their own name without
2824      // the Threads_lock.
2825      assert_locked_or_safepoint(Threads_lock);
2826    }
2827  }
2828#endif // ASSERT
2829    return get_thread_name_string();
2830}
2831
2832// Returns a non-NULL representation of this thread's name, or a suitable
2833// descriptive string if there is no set name
2834const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2835  const char* name_str;
2836  oop thread_obj = threadObj();
2837  if (thread_obj != NULL) {
2838    typeArrayOop name = java_lang_Thread::name(thread_obj);
2839    if (name != NULL) {
2840      if (buf == NULL) {
2841        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2842      }
2843      else {
2844        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2845      }
2846    }
2847    else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2848      name_str = "<no-name - thread is attaching>";
2849    }
2850    else {
2851      name_str = Thread::name();
2852    }
2853  }
2854  else {
2855    name_str = Thread::name();
2856  }
2857  assert(name_str != NULL, "unexpected NULL thread name");
2858  return name_str;
2859}
2860
2861
2862const char* JavaThread::get_threadgroup_name() const {
2863  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2864  oop thread_obj = threadObj();
2865  if (thread_obj != NULL) {
2866    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2867    if (thread_group != NULL) {
2868      typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2869      // ThreadGroup.name can be null
2870      if (name != NULL) {
2871        const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2872        return str;
2873      }
2874    }
2875  }
2876  return NULL;
2877}
2878
2879const char* JavaThread::get_parent_name() const {
2880  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2881  oop thread_obj = threadObj();
2882  if (thread_obj != NULL) {
2883    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2884    if (thread_group != NULL) {
2885      oop parent = java_lang_ThreadGroup::parent(thread_group);
2886      if (parent != NULL) {
2887        typeArrayOop name = java_lang_ThreadGroup::name(parent);
2888        // ThreadGroup.name can be null
2889        if (name != NULL) {
2890          const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2891          return str;
2892        }
2893      }
2894    }
2895  }
2896  return NULL;
2897}
2898
2899ThreadPriority JavaThread::java_priority() const {
2900  oop thr_oop = threadObj();
2901  if (thr_oop == NULL) return NormPriority; // Bootstrapping
2902  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2903  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2904  return priority;
2905}
2906
2907void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2908
2909  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2910  // Link Java Thread object <-> C++ Thread
2911
2912  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2913  // and put it into a new Handle.  The Handle "thread_oop" can then
2914  // be used to pass the C++ thread object to other methods.
2915
2916  // Set the Java level thread object (jthread) field of the
2917  // new thread (a JavaThread *) to C++ thread object using the
2918  // "thread_oop" handle.
2919
2920  // Set the thread field (a JavaThread *) of the
2921  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2922
2923  Handle thread_oop(Thread::current(),
2924                    JNIHandles::resolve_non_null(jni_thread));
2925  assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2926    "must be initialized");
2927  set_threadObj(thread_oop());
2928  java_lang_Thread::set_thread(thread_oop(), this);
2929
2930  if (prio == NoPriority) {
2931    prio = java_lang_Thread::priority(thread_oop());
2932    assert(prio != NoPriority, "A valid priority should be present");
2933  }
2934
2935  // Push the Java priority down to the native thread; needs Threads_lock
2936  Thread::set_priority(this, prio);
2937
2938  // Add the new thread to the Threads list and set it in motion.
2939  // We must have threads lock in order to call Threads::add.
2940  // It is crucial that we do not block before the thread is
2941  // added to the Threads list for if a GC happens, then the java_thread oop
2942  // will not be visited by GC.
2943  Threads::add(this);
2944}
2945
2946oop JavaThread::current_park_blocker() {
2947  // Support for JSR-166 locks
2948  oop thread_oop = threadObj();
2949  if (thread_oop != NULL &&
2950      JDK_Version::current().supports_thread_park_blocker()) {
2951    return java_lang_Thread::park_blocker(thread_oop);
2952  }
2953  return NULL;
2954}
2955
2956
2957void JavaThread::print_stack_on(outputStream* st) {
2958  if (!has_last_Java_frame()) return;
2959  ResourceMark rm;
2960  HandleMark   hm;
2961
2962  RegisterMap reg_map(this);
2963  vframe* start_vf = last_java_vframe(&reg_map);
2964  int count = 0;
2965  for (vframe* f = start_vf; f; f = f->sender() ) {
2966    if (f->is_java_frame()) {
2967      javaVFrame* jvf = javaVFrame::cast(f);
2968      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2969
2970      // Print out lock information
2971      if (JavaMonitorsInStackTrace) {
2972        jvf->print_lock_info_on(st, count);
2973      }
2974    } else {
2975      // Ignore non-Java frames
2976    }
2977
2978    // Bail-out case for too deep stacks
2979    count++;
2980    if (MaxJavaStackTraceDepth == count) return;
2981  }
2982}
2983
2984
2985// JVMTI PopFrame support
2986void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2987  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2988  if (in_bytes(size_in_bytes) != 0) {
2989    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
2990    _popframe_preserved_args_size = in_bytes(size_in_bytes);
2991    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2992  }
2993}
2994
2995void* JavaThread::popframe_preserved_args() {
2996  return _popframe_preserved_args;
2997}
2998
2999ByteSize JavaThread::popframe_preserved_args_size() {
3000  return in_ByteSize(_popframe_preserved_args_size);
3001}
3002
3003WordSize JavaThread::popframe_preserved_args_size_in_words() {
3004  int sz = in_bytes(popframe_preserved_args_size());
3005  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3006  return in_WordSize(sz / wordSize);
3007}
3008
3009void JavaThread::popframe_free_preserved_args() {
3010  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3011  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3012  _popframe_preserved_args = NULL;
3013  _popframe_preserved_args_size = 0;
3014}
3015
3016#ifndef PRODUCT
3017
3018void JavaThread::trace_frames() {
3019  tty->print_cr("[Describe stack]");
3020  int frame_no = 1;
3021  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3022    tty->print("  %d. ", frame_no++);
3023    fst.current()->print_value_on(tty,this);
3024    tty->cr();
3025  }
3026}
3027
3028class PrintAndVerifyOopClosure: public OopClosure {
3029 protected:
3030  template <class T> inline void do_oop_work(T* p) {
3031    oop obj = oopDesc::load_decode_heap_oop(p);
3032    if (obj == NULL) return;
3033    tty->print(INTPTR_FORMAT ": ", p);
3034    if (obj->is_oop_or_null()) {
3035      if (obj->is_objArray()) {
3036        tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3037      } else {
3038        obj->print();
3039      }
3040    } else {
3041      tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3042    }
3043    tty->cr();
3044  }
3045 public:
3046  virtual void do_oop(oop* p) { do_oop_work(p); }
3047  virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3048};
3049
3050
3051static void oops_print(frame* f, const RegisterMap *map) {
3052  PrintAndVerifyOopClosure print;
3053  f->print_value();
3054  f->oops_do(&print, NULL, (RegisterMap*)map);
3055}
3056
3057// Print our all the locations that contain oops and whether they are
3058// valid or not.  This useful when trying to find the oldest frame
3059// where an oop has gone bad since the frame walk is from youngest to
3060// oldest.
3061void JavaThread::trace_oops() {
3062  tty->print_cr("[Trace oops]");
3063  frames_do(oops_print);
3064}
3065
3066
3067#ifdef ASSERT
3068// Print or validate the layout of stack frames
3069void JavaThread::print_frame_layout(int depth, bool validate_only) {
3070  ResourceMark rm;
3071  PRESERVE_EXCEPTION_MARK;
3072  FrameValues values;
3073  int frame_no = 0;
3074  for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3075    fst.current()->describe(values, ++frame_no);
3076    if (depth == frame_no) break;
3077  }
3078  if (validate_only) {
3079    values.validate();
3080  } else {
3081    tty->print_cr("[Describe stack layout]");
3082    values.print(this);
3083  }
3084}
3085#endif
3086
3087void JavaThread::trace_stack_from(vframe* start_vf) {
3088  ResourceMark rm;
3089  int vframe_no = 1;
3090  for (vframe* f = start_vf; f; f = f->sender() ) {
3091    if (f->is_java_frame()) {
3092      javaVFrame::cast(f)->print_activation(vframe_no++);
3093    } else {
3094      f->print();
3095    }
3096    if (vframe_no > StackPrintLimit) {
3097      tty->print_cr("...<more frames>...");
3098      return;
3099    }
3100  }
3101}
3102
3103
3104void JavaThread::trace_stack() {
3105  if (!has_last_Java_frame()) return;
3106  ResourceMark rm;
3107  HandleMark   hm;
3108  RegisterMap reg_map(this);
3109  trace_stack_from(last_java_vframe(&reg_map));
3110}
3111
3112
3113#endif // PRODUCT
3114
3115
3116javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3117  assert(reg_map != NULL, "a map must be given");
3118  frame f = last_frame();
3119  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3120    if (vf->is_java_frame()) return javaVFrame::cast(vf);
3121  }
3122  return NULL;
3123}
3124
3125
3126Klass* JavaThread::security_get_caller_class(int depth) {
3127  vframeStream vfst(this);
3128  vfst.security_get_caller_frame(depth);
3129  if (!vfst.at_end()) {
3130    return vfst.method()->method_holder();
3131  }
3132  return NULL;
3133}
3134
3135static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3136  assert(thread->is_Compiler_thread(), "must be compiler thread");
3137  CompileBroker::compiler_thread_loop();
3138}
3139
3140// Create a CompilerThread
3141CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3142: JavaThread(&compiler_thread_entry) {
3143  _env   = NULL;
3144  _log   = NULL;
3145  _task  = NULL;
3146  _queue = queue;
3147  _counters = counters;
3148  _buffer_blob = NULL;
3149  _scanned_nmethod = NULL;
3150
3151#ifndef PRODUCT
3152  _ideal_graph_printer = NULL;
3153#endif
3154}
3155
3156void CompilerThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3157  JavaThread::oops_do(f, cf);
3158  if (_scanned_nmethod != NULL && cf != NULL) {
3159    // Safepoints can occur when the sweeper is scanning an nmethod so
3160    // process it here to make sure it isn't unloaded in the middle of
3161    // a scan.
3162    cf->do_code_blob(_scanned_nmethod);
3163  }
3164}
3165
3166// ======= Threads ========
3167
3168// The Threads class links together all active threads, and provides
3169// operations over all threads.  It is protected by its own Mutex
3170// lock, which is also used in other contexts to protect thread
3171// operations from having the thread being operated on from exiting
3172// and going away unexpectedly (e.g., safepoint synchronization)
3173
3174JavaThread* Threads::_thread_list = NULL;
3175int         Threads::_number_of_threads = 0;
3176int         Threads::_number_of_non_daemon_threads = 0;
3177int         Threads::_return_code = 0;
3178size_t      JavaThread::_stack_size_at_create = 0;
3179#ifdef ASSERT
3180bool        Threads::_vm_complete = false;
3181#endif
3182
3183// All JavaThreads
3184#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3185
3186void os_stream();
3187
3188// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3189void Threads::threads_do(ThreadClosure* tc) {
3190  assert_locked_or_safepoint(Threads_lock);
3191  // ALL_JAVA_THREADS iterates through all JavaThreads
3192  ALL_JAVA_THREADS(p) {
3193    tc->do_thread(p);
3194  }
3195  // Someday we could have a table or list of all non-JavaThreads.
3196  // For now, just manually iterate through them.
3197  tc->do_thread(VMThread::vm_thread());
3198  Universe::heap()->gc_threads_do(tc);
3199  WatcherThread *wt = WatcherThread::watcher_thread();
3200  // Strictly speaking, the following NULL check isn't sufficient to make sure
3201  // the data for WatcherThread is still valid upon being examined. However,
3202  // considering that WatchThread terminates when the VM is on the way to
3203  // exit at safepoint, the chance of the above is extremely small. The right
3204  // way to prevent termination of WatcherThread would be to acquire
3205  // Terminator_lock, but we can't do that without violating the lock rank
3206  // checking in some cases.
3207  if (wt != NULL)
3208    tc->do_thread(wt);
3209
3210  // If CompilerThreads ever become non-JavaThreads, add them here
3211}
3212
3213jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3214
3215  extern void JDK_Version_init();
3216
3217  // Check version
3218  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3219
3220  // Initialize the output stream module
3221  ostream_init();
3222
3223  // Process java launcher properties.
3224  Arguments::process_sun_java_launcher_properties(args);
3225
3226  // Initialize the os module before using TLS
3227  os::init();
3228
3229  // Initialize system properties.
3230  Arguments::init_system_properties();
3231
3232  // So that JDK version can be used as a discrimintor when parsing arguments
3233  JDK_Version_init();
3234
3235  // Update/Initialize System properties after JDK version number is known
3236  Arguments::init_version_specific_system_properties();
3237
3238  // Parse arguments
3239  jint parse_result = Arguments::parse(args);
3240  if (parse_result != JNI_OK) return parse_result;
3241
3242  if (PauseAtStartup) {
3243    os::pause();
3244  }
3245
3246#ifndef USDT2
3247  HS_DTRACE_PROBE(hotspot, vm__init__begin);
3248#else /* USDT2 */
3249  HOTSPOT_VM_INIT_BEGIN();
3250#endif /* USDT2 */
3251
3252  // Record VM creation timing statistics
3253  TraceVmCreationTime create_vm_timer;
3254  create_vm_timer.start();
3255
3256  // Timing (must come after argument parsing)
3257  TraceTime timer("Create VM", TraceStartupTime);
3258
3259  // Initialize the os module after parsing the args
3260  jint os_init_2_result = os::init_2();
3261  if (os_init_2_result != JNI_OK) return os_init_2_result;
3262
3263  // intialize TLS
3264  ThreadLocalStorage::init();
3265
3266  // Bootstrap native memory tracking, so it can start recording memory
3267  // activities before worker thread is started. This is the first phase
3268  // of bootstrapping, VM is currently running in single-thread mode.
3269  MemTracker::bootstrap_single_thread();
3270
3271  // Initialize output stream logging
3272  ostream_init_log();
3273
3274  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3275  // Must be before create_vm_init_agents()
3276  if (Arguments::init_libraries_at_startup()) {
3277    convert_vm_init_libraries_to_agents();
3278  }
3279
3280  // Launch -agentlib/-agentpath and converted -Xrun agents
3281  if (Arguments::init_agents_at_startup()) {
3282    create_vm_init_agents();
3283  }
3284
3285  // Initialize Threads state
3286  _thread_list = NULL;
3287  _number_of_threads = 0;
3288  _number_of_non_daemon_threads = 0;
3289
3290  // Initialize global data structures and create system classes in heap
3291  vm_init_globals();
3292
3293  // Attach the main thread to this os thread
3294  JavaThread* main_thread = new JavaThread();
3295  main_thread->set_thread_state(_thread_in_vm);
3296  // must do this before set_active_handles and initialize_thread_local_storage
3297  // Note: on solaris initialize_thread_local_storage() will (indirectly)
3298  // change the stack size recorded here to one based on the java thread
3299  // stacksize. This adjusted size is what is used to figure the placement
3300  // of the guard pages.
3301  main_thread->record_stack_base_and_size();
3302  main_thread->initialize_thread_local_storage();
3303
3304  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3305
3306  if (!main_thread->set_as_starting_thread()) {
3307    vm_shutdown_during_initialization(
3308      "Failed necessary internal allocation. Out of swap space");
3309    delete main_thread;
3310    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3311    return JNI_ENOMEM;
3312  }
3313
3314  // Enable guard page *after* os::create_main_thread(), otherwise it would
3315  // crash Linux VM, see notes in os_linux.cpp.
3316  main_thread->create_stack_guard_pages();
3317
3318  // Initialize Java-Level synchronization subsystem
3319  ObjectMonitor::Initialize() ;
3320
3321  // Second phase of bootstrapping, VM is about entering multi-thread mode
3322  MemTracker::bootstrap_multi_thread();
3323
3324  // Initialize global modules
3325  jint status = init_globals();
3326  if (status != JNI_OK) {
3327    delete main_thread;
3328    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3329    return status;
3330  }
3331
3332  // Should be done after the heap is fully created
3333  main_thread->cache_global_variables();
3334
3335  HandleMark hm;
3336
3337  { MutexLocker mu(Threads_lock);
3338    Threads::add(main_thread);
3339  }
3340
3341  // Any JVMTI raw monitors entered in onload will transition into
3342  // real raw monitor. VM is setup enough here for raw monitor enter.
3343  JvmtiExport::transition_pending_onload_raw_monitors();
3344
3345  if (VerifyBeforeGC &&
3346      Universe::heap()->total_collections() >= VerifyGCStartAt) {
3347    Universe::heap()->prepare_for_verify();
3348    Universe::verify();   // make sure we're starting with a clean slate
3349  }
3350
3351  // Fully start NMT
3352  MemTracker::start();
3353
3354  // Create the VMThread
3355  { TraceTime timer("Start VMThread", TraceStartupTime);
3356    VMThread::create();
3357    Thread* vmthread = VMThread::vm_thread();
3358
3359    if (!os::create_thread(vmthread, os::vm_thread))
3360      vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3361
3362    // Wait for the VM thread to become ready, and VMThread::run to initialize
3363    // Monitors can have spurious returns, must always check another state flag
3364    {
3365      MutexLocker ml(Notify_lock);
3366      os::start_thread(vmthread);
3367      while (vmthread->active_handles() == NULL) {
3368        Notify_lock->wait();
3369      }
3370    }
3371  }
3372
3373  assert (Universe::is_fully_initialized(), "not initialized");
3374  EXCEPTION_MARK;
3375
3376  // At this point, the Universe is initialized, but we have not executed
3377  // any byte code.  Now is a good time (the only time) to dump out the
3378  // internal state of the JVM for sharing.
3379  if (DumpSharedSpaces) {
3380    MetaspaceShared::preload_and_dump(CHECK_0);
3381    ShouldNotReachHere();
3382  }
3383
3384  // Always call even when there are not JVMTI environments yet, since environments
3385  // may be attached late and JVMTI must track phases of VM execution
3386  JvmtiExport::enter_start_phase();
3387
3388  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3389  JvmtiExport::post_vm_start();
3390
3391  {
3392    TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3393
3394    if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3395      create_vm_init_libraries();
3396    }
3397
3398    if (InitializeJavaLangString) {
3399      initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3400    } else {
3401      warning("java.lang.String not initialized");
3402    }
3403
3404    if (AggressiveOpts) {
3405      {
3406        // Forcibly initialize java/util/HashMap and mutate the private
3407        // static final "frontCacheEnabled" field before we start creating instances
3408#ifdef ASSERT
3409        Klass* tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3410        assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3411#endif
3412        Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3413        KlassHandle k = KlassHandle(THREAD, k_o);
3414        guarantee(k.not_null(), "Must find java/util/HashMap");
3415        instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3416        ik->initialize(CHECK_0);
3417        fieldDescriptor fd;
3418        // Possible we might not find this field; if so, don't break
3419        if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3420          k()->java_mirror()->bool_field_put(fd.offset(), true);
3421        }
3422      }
3423
3424      if (UseStringCache) {
3425        // Forcibly initialize java/lang/StringValue and mutate the private
3426        // static final "stringCacheEnabled" field before we start creating instances
3427        Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3428        // Possible that StringValue isn't present: if so, silently don't break
3429        if (k_o != NULL) {
3430          KlassHandle k = KlassHandle(THREAD, k_o);
3431          instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3432          ik->initialize(CHECK_0);
3433          fieldDescriptor fd;
3434          // Possible we might not find this field: if so, silently don't break
3435          if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3436            k()->java_mirror()->bool_field_put(fd.offset(), true);
3437          }
3438        }
3439      }
3440    }
3441
3442    // Initialize java_lang.System (needed before creating the thread)
3443    if (InitializeJavaLangSystem) {
3444      initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3445      initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3446      Handle thread_group = create_initial_thread_group(CHECK_0);
3447      Universe::set_main_thread_group(thread_group());
3448      initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3449      oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3450      main_thread->set_threadObj(thread_object);
3451      // Set thread status to running since main thread has
3452      // been started and running.
3453      java_lang_Thread::set_thread_status(thread_object,
3454                                          java_lang_Thread::RUNNABLE);
3455
3456      // The VM preresolve methods to these classes. Make sure that get initialized
3457      initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3458      initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3459      // The VM creates & returns objects of this class. Make sure it's initialized.
3460      initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3461      call_initializeSystemClass(CHECK_0);
3462
3463      // get the Java runtime name after java.lang.System is initialized
3464      JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3465    } else {
3466      warning("java.lang.System not initialized");
3467    }
3468
3469    // an instance of OutOfMemory exception has been allocated earlier
3470    if (InitializeJavaLangExceptionsErrors) {
3471      initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3472      initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3473      initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3474      initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3475      initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3476      initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3477      initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3478      initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
3479    } else {
3480      warning("java.lang.OutOfMemoryError has not been initialized");
3481      warning("java.lang.NullPointerException has not been initialized");
3482      warning("java.lang.ClassCastException has not been initialized");
3483      warning("java.lang.ArrayStoreException has not been initialized");
3484      warning("java.lang.ArithmeticException has not been initialized");
3485      warning("java.lang.StackOverflowError has not been initialized");
3486      warning("java.lang.IllegalArgumentException has not been initialized");
3487    }
3488  }
3489
3490  // See        : bugid 4211085.
3491  // Background : the static initializer of java.lang.Compiler tries to read
3492  //              property"java.compiler" and read & write property "java.vm.info".
3493  //              When a security manager is installed through the command line
3494  //              option "-Djava.security.manager", the above properties are not
3495  //              readable and the static initializer for java.lang.Compiler fails
3496  //              resulting in a NoClassDefFoundError.  This can happen in any
3497  //              user code which calls methods in java.lang.Compiler.
3498  // Hack :       the hack is to pre-load and initialize this class, so that only
3499  //              system domains are on the stack when the properties are read.
3500  //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3501  //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3502  // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3503  //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3504  //              Once that is done, we should remove this hack.
3505  initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3506
3507  // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3508  // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3509  // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3510  // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3511  // This should also be taken out as soon as 4211383 gets fixed.
3512  reset_vm_info_property(CHECK_0);
3513
3514  quicken_jni_functions();
3515
3516  // Must be run after init_ft which initializes ft_enabled
3517  if (TRACE_INITIALIZE() != JNI_OK) {
3518    vm_exit_during_initialization("Failed to initialize tracing backend");
3519  }
3520
3521  // Set flag that basic initialization has completed. Used by exceptions and various
3522  // debug stuff, that does not work until all basic classes have been initialized.
3523  set_init_completed();
3524
3525#ifndef USDT2
3526  HS_DTRACE_PROBE(hotspot, vm__init__end);
3527#else /* USDT2 */
3528  HOTSPOT_VM_INIT_END();
3529#endif /* USDT2 */
3530
3531  // record VM initialization completion time
3532  Management::record_vm_init_completed();
3533
3534  // Compute system loader. Note that this has to occur after set_init_completed, since
3535  // valid exceptions may be thrown in the process.
3536  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3537  // set_init_completed has just been called, causing exceptions not to be shortcut
3538  // anymore. We call vm_exit_during_initialization directly instead.
3539  SystemDictionary::compute_java_system_loader(THREAD);
3540  if (HAS_PENDING_EXCEPTION) {
3541    vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3542  }
3543
3544#ifndef SERIALGC
3545  // Support for ConcurrentMarkSweep. This should be cleaned up
3546  // and better encapsulated. The ugly nested if test would go away
3547  // once things are properly refactored. XXX YSR
3548  if (UseConcMarkSweepGC || UseG1GC) {
3549    if (UseConcMarkSweepGC) {
3550      ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3551    } else {
3552      ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3553    }
3554    if (HAS_PENDING_EXCEPTION) {
3555      vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3556    }
3557  }
3558#endif // SERIALGC
3559
3560  // Always call even when there are not JVMTI environments yet, since environments
3561  // may be attached late and JVMTI must track phases of VM execution
3562  JvmtiExport::enter_live_phase();
3563
3564  // Signal Dispatcher needs to be started before VMInit event is posted
3565  os::signal_init();
3566
3567  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3568  if (!DisableAttachMechanism) {
3569    if (StartAttachListener || AttachListener::init_at_startup()) {
3570      AttachListener::init();
3571    }
3572  }
3573
3574  // Launch -Xrun agents
3575  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3576  // back-end can launch with -Xdebug -Xrunjdwp.
3577  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3578    create_vm_init_libraries();
3579  }
3580
3581  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3582  JvmtiExport::post_vm_initialized();
3583
3584  if (!TRACE_START()) {
3585    vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3586  }
3587
3588  if (CleanChunkPoolAsync) {
3589    Chunk::start_chunk_pool_cleaner_task();
3590  }
3591
3592  // initialize compiler(s)
3593  CompileBroker::compilation_init();
3594
3595  Management::initialize(THREAD);
3596  if (HAS_PENDING_EXCEPTION) {
3597    // management agent fails to start possibly due to
3598    // configuration problem and is responsible for printing
3599    // stack trace if appropriate. Simply exit VM.
3600    vm_exit(1);
3601  }
3602
3603  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3604  if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3605  if (MemProfiling)                   MemProfiler::engage();
3606  StatSampler::engage();
3607  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3608
3609  BiasedLocking::init();
3610
3611  if (JDK_Version::current().post_vm_init_hook_enabled()) {
3612    call_postVMInitHook(THREAD);
3613    // The Java side of PostVMInitHook.run must deal with all
3614    // exceptions and provide means of diagnosis.
3615    if (HAS_PENDING_EXCEPTION) {
3616      CLEAR_PENDING_EXCEPTION;
3617    }
3618  }
3619
3620  // Start up the WatcherThread if there are any periodic tasks
3621  // NOTE:  All PeriodicTasks should be registered by now. If they
3622  //   aren't, late joiners might appear to start slowly (we might
3623  //   take a while to process their first tick).
3624  if (PeriodicTask::num_tasks() > 0) {
3625    WatcherThread::start();
3626  }
3627
3628  // Give os specific code one last chance to start
3629  os::init_3();
3630
3631  create_vm_timer.end();
3632#ifdef ASSERT
3633  _vm_complete = true;
3634#endif
3635  return JNI_OK;
3636}
3637
3638// type for the Agent_OnLoad and JVM_OnLoad entry points
3639extern "C" {
3640  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3641}
3642// Find a command line agent library and return its entry point for
3643//         -agentlib:  -agentpath:   -Xrun
3644// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3645static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3646  OnLoadEntry_t on_load_entry = NULL;
3647  void *library = agent->os_lib();  // check if we have looked it up before
3648
3649  if (library == NULL) {
3650    char buffer[JVM_MAXPATHLEN];
3651    char ebuf[1024];
3652    const char *name = agent->name();
3653    const char *msg = "Could not find agent library ";
3654
3655    if (agent->is_absolute_path()) {
3656      library = os::dll_load(name, ebuf, sizeof ebuf);
3657      if (library == NULL) {
3658        const char *sub_msg = " in absolute path, with error: ";
3659        size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3660        char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3661        jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3662        // If we can't find the agent, exit.
3663        vm_exit_during_initialization(buf, NULL);
3664        FREE_C_HEAP_ARRAY(char, buf, mtThread);
3665      }
3666    } else {
3667      // Try to load the agent from the standard dll directory
3668      os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
3669      library = os::dll_load(buffer, ebuf, sizeof ebuf);
3670#ifdef KERNEL
3671      // Download instrument dll
3672      if (library == NULL && strcmp(name, "instrument") == 0) {
3673        char *props = Arguments::get_kernel_properties();
3674        char *home  = Arguments::get_java_home();
3675        const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
3676                      " sun.jkernel.DownloadManager -download client_jvm";
3677        size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
3678        char *cmd = NEW_C_HEAP_ARRAY(char, length, mtThread);
3679        jio_snprintf(cmd, length, fmt, home, props);
3680        int status = os::fork_and_exec(cmd);
3681        FreeHeap(props);
3682        if (status == -1) {
3683          warning(cmd);
3684          vm_exit_during_initialization("fork_and_exec failed: %s",
3685                                         strerror(errno));
3686        }
3687        FREE_C_HEAP_ARRAY(char, cmd, mtThread);
3688        // when this comes back the instrument.dll should be where it belongs.
3689        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3690      }
3691#endif // KERNEL
3692      if (library == NULL) { // Try the local directory
3693        char ns[1] = {0};
3694        os::dll_build_name(buffer, sizeof(buffer), ns, name);
3695        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3696        if (library == NULL) {
3697          const char *sub_msg = " on the library path, with error: ";
3698          size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3699          char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3700          jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3701          // If we can't find the agent, exit.
3702          vm_exit_during_initialization(buf, NULL);
3703          FREE_C_HEAP_ARRAY(char, buf, mtThread);
3704        }
3705      }
3706    }
3707    agent->set_os_lib(library);
3708  }
3709
3710  // Find the OnLoad function.
3711  for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3712    on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
3713    if (on_load_entry != NULL) break;
3714  }
3715  return on_load_entry;
3716}
3717
3718// Find the JVM_OnLoad entry point
3719static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3720  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3721  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3722}
3723
3724// Find the Agent_OnLoad entry point
3725static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3726  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3727  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3728}
3729
3730// For backwards compatibility with -Xrun
3731// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3732// treated like -agentpath:
3733// Must be called before agent libraries are created
3734void Threads::convert_vm_init_libraries_to_agents() {
3735  AgentLibrary* agent;
3736  AgentLibrary* next;
3737
3738  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3739    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3740    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3741
3742    // If there is an JVM_OnLoad function it will get called later,
3743    // otherwise see if there is an Agent_OnLoad
3744    if (on_load_entry == NULL) {
3745      on_load_entry = lookup_agent_on_load(agent);
3746      if (on_load_entry != NULL) {
3747        // switch it to the agent list -- so that Agent_OnLoad will be called,
3748        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3749        Arguments::convert_library_to_agent(agent);
3750      } else {
3751        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3752      }
3753    }
3754  }
3755}
3756
3757// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3758// Invokes Agent_OnLoad
3759// Called very early -- before JavaThreads exist
3760void Threads::create_vm_init_agents() {
3761  extern struct JavaVM_ main_vm;
3762  AgentLibrary* agent;
3763
3764  JvmtiExport::enter_onload_phase();
3765  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3766    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3767
3768    if (on_load_entry != NULL) {
3769      // Invoke the Agent_OnLoad function
3770      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3771      if (err != JNI_OK) {
3772        vm_exit_during_initialization("agent library failed to init", agent->name());
3773      }
3774    } else {
3775      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3776    }
3777  }
3778  JvmtiExport::enter_primordial_phase();
3779}
3780
3781extern "C" {
3782  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3783}
3784
3785void Threads::shutdown_vm_agents() {
3786  // Send any Agent_OnUnload notifications
3787  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3788  extern struct JavaVM_ main_vm;
3789  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3790
3791    // Find the Agent_OnUnload function.
3792    for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3793      Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3794               os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3795
3796      // Invoke the Agent_OnUnload function
3797      if (unload_entry != NULL) {
3798        JavaThread* thread = JavaThread::current();
3799        ThreadToNativeFromVM ttn(thread);
3800        HandleMark hm(thread);
3801        (*unload_entry)(&main_vm);
3802        break;
3803      }
3804    }
3805  }
3806}
3807
3808// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3809// Invokes JVM_OnLoad
3810void Threads::create_vm_init_libraries() {
3811  extern struct JavaVM_ main_vm;
3812  AgentLibrary* agent;
3813
3814  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3815    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3816
3817    if (on_load_entry != NULL) {
3818      // Invoke the JVM_OnLoad function
3819      JavaThread* thread = JavaThread::current();
3820      ThreadToNativeFromVM ttn(thread);
3821      HandleMark hm(thread);
3822      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3823      if (err != JNI_OK) {
3824        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3825      }
3826    } else {
3827      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3828    }
3829  }
3830}
3831
3832// Last thread running calls java.lang.Shutdown.shutdown()
3833void JavaThread::invoke_shutdown_hooks() {
3834  HandleMark hm(this);
3835
3836  // We could get here with a pending exception, if so clear it now.
3837  if (this->has_pending_exception()) {
3838    this->clear_pending_exception();
3839  }
3840
3841  EXCEPTION_MARK;
3842  Klass* k =
3843    SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3844                                      THREAD);
3845  if (k != NULL) {
3846    // SystemDictionary::resolve_or_null will return null if there was
3847    // an exception.  If we cannot load the Shutdown class, just don't
3848    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3849    // and finalizers (if runFinalizersOnExit is set) won't be run.
3850    // Note that if a shutdown hook was registered or runFinalizersOnExit
3851    // was called, the Shutdown class would have already been loaded
3852    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3853    instanceKlassHandle shutdown_klass (THREAD, k);
3854    JavaValue result(T_VOID);
3855    JavaCalls::call_static(&result,
3856                           shutdown_klass,
3857                           vmSymbols::shutdown_method_name(),
3858                           vmSymbols::void_method_signature(),
3859                           THREAD);
3860  }
3861  CLEAR_PENDING_EXCEPTION;
3862}
3863
3864// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3865// the program falls off the end of main(). Another VM exit path is through
3866// vm_exit() when the program calls System.exit() to return a value or when
3867// there is a serious error in VM. The two shutdown paths are not exactly
3868// the same, but they share Shutdown.shutdown() at Java level and before_exit()
3869// and VM_Exit op at VM level.
3870//
3871// Shutdown sequence:
3872//   + Shutdown native memory tracking if it is on
3873//   + Wait until we are the last non-daemon thread to execute
3874//     <-- every thing is still working at this moment -->
3875//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3876//        shutdown hooks, run finalizers if finalization-on-exit
3877//   + Call before_exit(), prepare for VM exit
3878//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3879//        currently the only user of this mechanism is File.deleteOnExit())
3880//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3881//        post thread end and vm death events to JVMTI,
3882//        stop signal thread
3883//   + Call JavaThread::exit(), it will:
3884//      > release JNI handle blocks, remove stack guard pages
3885//      > remove this thread from Threads list
3886//     <-- no more Java code from this thread after this point -->
3887//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3888//     the compiler threads at safepoint
3889//     <-- do not use anything that could get blocked by Safepoint -->
3890//   + Disable tracing at JNI/JVM barriers
3891//   + Set _vm_exited flag for threads that are still running native code
3892//   + Delete this thread
3893//   + Call exit_globals()
3894//      > deletes tty
3895//      > deletes PerfMemory resources
3896//   + Return to caller
3897
3898bool Threads::destroy_vm() {
3899  JavaThread* thread = JavaThread::current();
3900
3901#ifdef ASSERT
3902  _vm_complete = false;
3903#endif
3904  // Wait until we are the last non-daemon thread to execute
3905  { MutexLocker nu(Threads_lock);
3906    while (Threads::number_of_non_daemon_threads() > 1 )
3907      // This wait should make safepoint checks, wait without a timeout,
3908      // and wait as a suspend-equivalent condition.
3909      //
3910      // Note: If the FlatProfiler is running and this thread is waiting
3911      // for another non-daemon thread to finish, then the FlatProfiler
3912      // is waiting for the external suspend request on this thread to
3913      // complete. wait_for_ext_suspend_completion() will eventually
3914      // timeout, but that takes time. Making this wait a suspend-
3915      // equivalent condition solves that timeout problem.
3916      //
3917      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3918                         Mutex::_as_suspend_equivalent_flag);
3919  }
3920
3921  // Shutdown NMT before exit. Otherwise,
3922  // it will run into trouble when system destroys static variables.
3923  MemTracker::shutdown(MemTracker::NMT_normal);
3924
3925  // Hang forever on exit if we are reporting an error.
3926  if (ShowMessageBoxOnError && is_error_reported()) {
3927    os::infinite_sleep();
3928  }
3929  os::wait_for_keypress_at_exit();
3930
3931  if (JDK_Version::is_jdk12x_version()) {
3932    // We are the last thread running, so check if finalizers should be run.
3933    // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3934    HandleMark rm(thread);
3935    Universe::run_finalizers_on_exit();
3936  } else {
3937    // run Java level shutdown hooks
3938    thread->invoke_shutdown_hooks();
3939  }
3940
3941  before_exit(thread);
3942
3943  thread->exit(true);
3944
3945  // Stop VM thread.
3946  {
3947    // 4945125 The vm thread comes to a safepoint during exit.
3948    // GC vm_operations can get caught at the safepoint, and the
3949    // heap is unparseable if they are caught. Grab the Heap_lock
3950    // to prevent this. The GC vm_operations will not be able to
3951    // queue until after the vm thread is dead.
3952    // After this point, we'll never emerge out of the safepoint before
3953    // the VM exits, so concurrent GC threads do not need to be explicitly
3954    // stopped; they remain inactive until the process exits.
3955    // Note: some concurrent G1 threads may be running during a safepoint,
3956    // but these will not be accessing the heap, just some G1-specific side
3957    // data structures that are not accessed by any other threads but them
3958    // after this point in a terminal safepoint.
3959
3960    MutexLocker ml(Heap_lock);
3961
3962    VMThread::wait_for_vm_thread_exit();
3963    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3964    VMThread::destroy();
3965  }
3966
3967  // clean up ideal graph printers
3968#if defined(COMPILER2) && !defined(PRODUCT)
3969  IdealGraphPrinter::clean_up();
3970#endif
3971
3972  // Now, all Java threads are gone except daemon threads. Daemon threads
3973  // running Java code or in VM are stopped by the Safepoint. However,
3974  // daemon threads executing native code are still running.  But they
3975  // will be stopped at native=>Java/VM barriers. Note that we can't
3976  // simply kill or suspend them, as it is inherently deadlock-prone.
3977
3978#ifndef PRODUCT
3979  // disable function tracing at JNI/JVM barriers
3980  TraceJNICalls = false;
3981  TraceJVMCalls = false;
3982  TraceRuntimeCalls = false;
3983#endif
3984
3985  VM_Exit::set_vm_exited();
3986
3987  notify_vm_shutdown();
3988
3989  delete thread;
3990
3991  // exit_globals() will delete tty
3992  exit_globals();
3993
3994  return true;
3995}
3996
3997
3998jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3999  if (version == JNI_VERSION_1_1) return JNI_TRUE;
4000  return is_supported_jni_version(version);
4001}
4002
4003
4004jboolean Threads::is_supported_jni_version(jint version) {
4005  if (version == JNI_VERSION_1_2) return JNI_TRUE;
4006  if (version == JNI_VERSION_1_4) return JNI_TRUE;
4007  if (version == JNI_VERSION_1_6) return JNI_TRUE;
4008  return JNI_FALSE;
4009}
4010
4011
4012void Threads::add(JavaThread* p, bool force_daemon) {
4013  // The threads lock must be owned at this point
4014  assert_locked_or_safepoint(Threads_lock);
4015
4016  // See the comment for this method in thread.hpp for its purpose and
4017  // why it is called here.
4018  p->initialize_queues();
4019  p->set_next(_thread_list);
4020  _thread_list = p;
4021  _number_of_threads++;
4022  oop threadObj = p->threadObj();
4023  bool daemon = true;
4024  // Bootstrapping problem: threadObj can be null for initial
4025  // JavaThread (or for threads attached via JNI)
4026  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4027    _number_of_non_daemon_threads++;
4028    daemon = false;
4029  }
4030
4031  p->set_safepoint_visible(true);
4032
4033  ThreadService::add_thread(p, daemon);
4034
4035  // Possible GC point.
4036  Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4037}
4038
4039void Threads::remove(JavaThread* p) {
4040  // Extra scope needed for Thread_lock, so we can check
4041  // that we do not remove thread without safepoint code notice
4042  { MutexLocker ml(Threads_lock);
4043
4044    assert(includes(p), "p must be present");
4045
4046    JavaThread* current = _thread_list;
4047    JavaThread* prev    = NULL;
4048
4049    while (current != p) {
4050      prev    = current;
4051      current = current->next();
4052    }
4053
4054    if (prev) {
4055      prev->set_next(current->next());
4056    } else {
4057      _thread_list = p->next();
4058    }
4059    _number_of_threads--;
4060    oop threadObj = p->threadObj();
4061    bool daemon = true;
4062    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4063      _number_of_non_daemon_threads--;
4064      daemon = false;
4065
4066      // Only one thread left, do a notify on the Threads_lock so a thread waiting
4067      // on destroy_vm will wake up.
4068      if (number_of_non_daemon_threads() == 1)
4069        Threads_lock->notify_all();
4070    }
4071    ThreadService::remove_thread(p, daemon);
4072
4073    // Make sure that safepoint code disregard this thread. This is needed since
4074    // the thread might mess around with locks after this point. This can cause it
4075    // to do callbacks into the safepoint code. However, the safepoint code is not aware
4076    // of this thread since it is removed from the queue.
4077    p->set_terminated_value();
4078
4079    // Now, this thread is not visible to safepoint
4080    p->set_safepoint_visible(false);
4081
4082  } // unlock Threads_lock
4083
4084  // Since Events::log uses a lock, we grab it outside the Threads_lock
4085  Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4086}
4087
4088// Threads_lock must be held when this is called (or must be called during a safepoint)
4089bool Threads::includes(JavaThread* p) {
4090  assert(Threads_lock->is_locked(), "sanity check");
4091  ALL_JAVA_THREADS(q) {
4092    if (q == p ) {
4093      return true;
4094    }
4095  }
4096  return false;
4097}
4098
4099// Operations on the Threads list for GC.  These are not explicitly locked,
4100// but the garbage collector must provide a safe context for them to run.
4101// In particular, these things should never be called when the Threads_lock
4102// is held by some other thread. (Note: the Safepoint abstraction also
4103// uses the Threads_lock to gurantee this property. It also makes sure that
4104// all threads gets blocked when exiting or starting).
4105
4106void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4107  ALL_JAVA_THREADS(p) {
4108    p->oops_do(f, cf);
4109  }
4110  VMThread::vm_thread()->oops_do(f, cf);
4111}
4112
4113void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
4114  // Introduce a mechanism allowing parallel threads to claim threads as
4115  // root groups.  Overhead should be small enough to use all the time,
4116  // even in sequential code.
4117  SharedHeap* sh = SharedHeap::heap();
4118  // Cannot yet substitute active_workers for n_par_threads
4119  // because of G1CollectedHeap::verify() use of
4120  // SharedHeap::process_strong_roots().  n_par_threads == 0 will
4121  // turn off parallelism in process_strong_roots while active_workers
4122  // is being used for parallelism elsewhere.
4123  bool is_par = sh->n_par_threads() > 0;
4124  assert(!is_par ||
4125         (SharedHeap::heap()->n_par_threads() ==
4126          SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4127  int cp = SharedHeap::heap()->strong_roots_parity();
4128  ALL_JAVA_THREADS(p) {
4129    if (p->claim_oops_do(is_par, cp)) {
4130      p->oops_do(f, cf);
4131    }
4132  }
4133  VMThread* vmt = VMThread::vm_thread();
4134  if (vmt->claim_oops_do(is_par, cp)) {
4135    vmt->oops_do(f, cf);
4136  }
4137}
4138
4139#ifndef SERIALGC
4140// Used by ParallelScavenge
4141void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4142  ALL_JAVA_THREADS(p) {
4143    q->enqueue(new ThreadRootsTask(p));
4144  }
4145  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4146}
4147
4148// Used by Parallel Old
4149void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4150  ALL_JAVA_THREADS(p) {
4151    q->enqueue(new ThreadRootsMarkingTask(p));
4152  }
4153  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4154}
4155#endif // SERIALGC
4156
4157void Threads::nmethods_do(CodeBlobClosure* cf) {
4158  ALL_JAVA_THREADS(p) {
4159    p->nmethods_do(cf);
4160  }
4161  VMThread::vm_thread()->nmethods_do(cf);
4162}
4163
4164void Threads::metadata_do(void f(Metadata*)) {
4165  ALL_JAVA_THREADS(p) {
4166    p->metadata_do(f);
4167  }
4168}
4169
4170void Threads::gc_epilogue() {
4171  ALL_JAVA_THREADS(p) {
4172    p->gc_epilogue();
4173  }
4174}
4175
4176void Threads::gc_prologue() {
4177  ALL_JAVA_THREADS(p) {
4178    p->gc_prologue();
4179  }
4180}
4181
4182void Threads::deoptimized_wrt_marked_nmethods() {
4183  ALL_JAVA_THREADS(p) {
4184    p->deoptimized_wrt_marked_nmethods();
4185  }
4186}
4187
4188
4189// Get count Java threads that are waiting to enter the specified monitor.
4190GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4191  address monitor, bool doLock) {
4192  assert(doLock || SafepointSynchronize::is_at_safepoint(),
4193    "must grab Threads_lock or be at safepoint");
4194  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4195
4196  int i = 0;
4197  {
4198    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4199    ALL_JAVA_THREADS(p) {
4200      if (p->is_Compiler_thread()) continue;
4201
4202      address pending = (address)p->current_pending_monitor();
4203      if (pending == monitor) {             // found a match
4204        if (i < count) result->append(p);   // save the first count matches
4205        i++;
4206      }
4207    }
4208  }
4209  return result;
4210}
4211
4212
4213JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4214  assert(doLock ||
4215         Threads_lock->owned_by_self() ||
4216         SafepointSynchronize::is_at_safepoint(),
4217         "must grab Threads_lock or be at safepoint");
4218
4219  // NULL owner means not locked so we can skip the search
4220  if (owner == NULL) return NULL;
4221
4222  {
4223    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4224    ALL_JAVA_THREADS(p) {
4225      // first, see if owner is the address of a Java thread
4226      if (owner == (address)p) return p;
4227    }
4228  }
4229  assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
4230  if (UseHeavyMonitors) return NULL;
4231
4232  //
4233  // If we didn't find a matching Java thread and we didn't force use of
4234  // heavyweight monitors, then the owner is the stack address of the
4235  // Lock Word in the owning Java thread's stack.
4236  //
4237  JavaThread* the_owner = NULL;
4238  {
4239    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4240    ALL_JAVA_THREADS(q) {
4241      if (q->is_lock_owned(owner)) {
4242        the_owner = q;
4243        break;
4244      }
4245    }
4246  }
4247  assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
4248  return the_owner;
4249}
4250
4251// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4252void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4253  char buf[32];
4254  st->print_cr(os::local_time_string(buf, sizeof(buf)));
4255
4256  st->print_cr("Full thread dump %s (%s %s):",
4257                Abstract_VM_Version::vm_name(),
4258                Abstract_VM_Version::vm_release(),
4259                Abstract_VM_Version::vm_info_string()
4260               );
4261  st->cr();
4262
4263#ifndef SERIALGC
4264  // Dump concurrent locks
4265  ConcurrentLocksDump concurrent_locks;
4266  if (print_concurrent_locks) {
4267    concurrent_locks.dump_at_safepoint();
4268  }
4269#endif // SERIALGC
4270
4271  ALL_JAVA_THREADS(p) {
4272    ResourceMark rm;
4273    p->print_on(st);
4274    if (print_stacks) {
4275      if (internal_format) {
4276        p->trace_stack();
4277      } else {
4278        p->print_stack_on(st);
4279      }
4280    }
4281    st->cr();
4282#ifndef SERIALGC
4283    if (print_concurrent_locks) {
4284      concurrent_locks.print_locks_on(p, st);
4285    }
4286#endif // SERIALGC
4287  }
4288
4289  VMThread::vm_thread()->print_on(st);
4290  st->cr();
4291  Universe::heap()->print_gc_threads_on(st);
4292  WatcherThread* wt = WatcherThread::watcher_thread();
4293  if (wt != NULL) {
4294    wt->print_on(st);
4295    st->cr();
4296  }
4297  CompileBroker::print_compiler_threads_on(st);
4298  st->flush();
4299}
4300
4301// Threads::print_on_error() is called by fatal error handler. It's possible
4302// that VM is not at safepoint and/or current thread is inside signal handler.
4303// Don't print stack trace, as the stack may not be walkable. Don't allocate
4304// memory (even in resource area), it might deadlock the error handler.
4305void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4306  bool found_current = false;
4307  st->print_cr("Java Threads: ( => current thread )");
4308  ALL_JAVA_THREADS(thread) {
4309    bool is_current = (current == thread);
4310    found_current = found_current || is_current;
4311
4312    st->print("%s", is_current ? "=>" : "  ");
4313
4314    st->print(PTR_FORMAT, thread);
4315    st->print(" ");
4316    thread->print_on_error(st, buf, buflen);
4317    st->cr();
4318  }
4319  st->cr();
4320
4321  st->print_cr("Other Threads:");
4322  if (VMThread::vm_thread()) {
4323    bool is_current = (current == VMThread::vm_thread());
4324    found_current = found_current || is_current;
4325    st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4326
4327    st->print(PTR_FORMAT, VMThread::vm_thread());
4328    st->print(" ");
4329    VMThread::vm_thread()->print_on_error(st, buf, buflen);
4330    st->cr();
4331  }
4332  WatcherThread* wt = WatcherThread::watcher_thread();
4333  if (wt != NULL) {
4334    bool is_current = (current == wt);
4335    found_current = found_current || is_current;
4336    st->print("%s", is_current ? "=>" : "  ");
4337
4338    st->print(PTR_FORMAT, wt);
4339    st->print(" ");
4340    wt->print_on_error(st, buf, buflen);
4341    st->cr();
4342  }
4343  if (!found_current) {
4344    st->cr();
4345    st->print("=>" PTR_FORMAT " (exited) ", current);
4346    current->print_on_error(st, buf, buflen);
4347    st->cr();
4348  }
4349}
4350
4351// Internal SpinLock and Mutex
4352// Based on ParkEvent
4353
4354// Ad-hoc mutual exclusion primitives: SpinLock and Mux
4355//
4356// We employ SpinLocks _only for low-contention, fixed-length
4357// short-duration critical sections where we're concerned
4358// about native mutex_t or HotSpot Mutex:: latency.
4359// The mux construct provides a spin-then-block mutual exclusion
4360// mechanism.
4361//
4362// Testing has shown that contention on the ListLock guarding gFreeList
4363// is common.  If we implement ListLock as a simple SpinLock it's common
4364// for the JVM to devolve to yielding with little progress.  This is true
4365// despite the fact that the critical sections protected by ListLock are
4366// extremely short.
4367//
4368// TODO-FIXME: ListLock should be of type SpinLock.
4369// We should make this a 1st-class type, integrated into the lock
4370// hierarchy as leaf-locks.  Critically, the SpinLock structure
4371// should have sufficient padding to avoid false-sharing and excessive
4372// cache-coherency traffic.
4373
4374
4375typedef volatile int SpinLockT ;
4376
4377void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4378  if (Atomic::cmpxchg (1, adr, 0) == 0) {
4379     return ;   // normal fast-path return
4380  }
4381
4382  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4383  TEVENT (SpinAcquire - ctx) ;
4384  int ctr = 0 ;
4385  int Yields = 0 ;
4386  for (;;) {
4387     while (*adr != 0) {
4388        ++ctr ;
4389        if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4390           if (Yields > 5) {
4391             // Consider using a simple NakedSleep() instead.
4392             // Then SpinAcquire could be called by non-JVM threads
4393             Thread::current()->_ParkEvent->park(1) ;
4394           } else {
4395             os::NakedYield() ;
4396             ++Yields ;
4397           }
4398        } else {
4399           SpinPause() ;
4400        }
4401     }
4402     if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4403  }
4404}
4405
4406void Thread::SpinRelease (volatile int * adr) {
4407  assert (*adr != 0, "invariant") ;
4408  OrderAccess::fence() ;      // guarantee at least release consistency.
4409  // Roach-motel semantics.
4410  // It's safe if subsequent LDs and STs float "up" into the critical section,
4411  // but prior LDs and STs within the critical section can't be allowed
4412  // to reorder or float past the ST that releases the lock.
4413  *adr = 0 ;
4414}
4415
4416// muxAcquire and muxRelease:
4417//
4418// *  muxAcquire and muxRelease support a single-word lock-word construct.
4419//    The LSB of the word is set IFF the lock is held.
4420//    The remainder of the word points to the head of a singly-linked list
4421//    of threads blocked on the lock.
4422//
4423// *  The current implementation of muxAcquire-muxRelease uses its own
4424//    dedicated Thread._MuxEvent instance.  If we're interested in
4425//    minimizing the peak number of extant ParkEvent instances then
4426//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4427//    as certain invariants were satisfied.  Specifically, care would need
4428//    to be taken with regards to consuming unpark() "permits".
4429//    A safe rule of thumb is that a thread would never call muxAcquire()
4430//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4431//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4432//    consume an unpark() permit intended for monitorenter, for instance.
4433//    One way around this would be to widen the restricted-range semaphore
4434//    implemented in park().  Another alternative would be to provide
4435//    multiple instances of the PlatformEvent() for each thread.  One
4436//    instance would be dedicated to muxAcquire-muxRelease, for instance.
4437//
4438// *  Usage:
4439//    -- Only as leaf locks
4440//    -- for short-term locking only as muxAcquire does not perform
4441//       thread state transitions.
4442//
4443// Alternatives:
4444// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4445//    but with parking or spin-then-park instead of pure spinning.
4446// *  Use Taura-Oyama-Yonenzawa locks.
4447// *  It's possible to construct a 1-0 lock if we encode the lockword as
4448//    (List,LockByte).  Acquire will CAS the full lockword while Release
4449//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4450//    acquiring threads use timers (ParkTimed) to detect and recover from
4451//    the stranding window.  Thread/Node structures must be aligned on 256-byte
4452//    boundaries by using placement-new.
4453// *  Augment MCS with advisory back-link fields maintained with CAS().
4454//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4455//    The validity of the backlinks must be ratified before we trust the value.
4456//    If the backlinks are invalid the exiting thread must back-track through the
4457//    the forward links, which are always trustworthy.
4458// *  Add a successor indication.  The LockWord is currently encoded as
4459//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4460//    to provide the usual futile-wakeup optimization.
4461//    See RTStt for details.
4462// *  Consider schedctl.sc_nopreempt to cover the critical section.
4463//
4464
4465
4466typedef volatile intptr_t MutexT ;      // Mux Lock-word
4467enum MuxBits { LOCKBIT = 1 } ;
4468
4469void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4470  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4471  if (w == 0) return ;
4472  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4473     return ;
4474  }
4475
4476  TEVENT (muxAcquire - Contention) ;
4477  ParkEvent * const Self = Thread::current()->_MuxEvent ;
4478  assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4479  for (;;) {
4480     int its = (os::is_MP() ? 100 : 0) + 1 ;
4481
4482     // Optional spin phase: spin-then-park strategy
4483     while (--its >= 0) {
4484       w = *Lock ;
4485       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4486          return ;
4487       }
4488     }
4489
4490     Self->reset() ;
4491     Self->OnList = intptr_t(Lock) ;
4492     // The following fence() isn't _strictly necessary as the subsequent
4493     // CAS() both serializes execution and ratifies the fetched *Lock value.
4494     OrderAccess::fence();
4495     for (;;) {
4496        w = *Lock ;
4497        if ((w & LOCKBIT) == 0) {
4498            if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4499                Self->OnList = 0 ;   // hygiene - allows stronger asserts
4500                return ;
4501            }
4502            continue ;      // Interference -- *Lock changed -- Just retry
4503        }
4504        assert (w & LOCKBIT, "invariant") ;
4505        Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4506        if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4507     }
4508
4509     while (Self->OnList != 0) {
4510        Self->park() ;
4511     }
4512  }
4513}
4514
4515void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4516  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4517  if (w == 0) return ;
4518  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4519    return ;
4520  }
4521
4522  TEVENT (muxAcquire - Contention) ;
4523  ParkEvent * ReleaseAfter = NULL ;
4524  if (ev == NULL) {
4525    ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4526  }
4527  assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4528  for (;;) {
4529    guarantee (ev->OnList == 0, "invariant") ;
4530    int its = (os::is_MP() ? 100 : 0) + 1 ;
4531
4532    // Optional spin phase: spin-then-park strategy
4533    while (--its >= 0) {
4534      w = *Lock ;
4535      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4536        if (ReleaseAfter != NULL) {
4537          ParkEvent::Release (ReleaseAfter) ;
4538        }
4539        return ;
4540      }
4541    }
4542
4543    ev->reset() ;
4544    ev->OnList = intptr_t(Lock) ;
4545    // The following fence() isn't _strictly necessary as the subsequent
4546    // CAS() both serializes execution and ratifies the fetched *Lock value.
4547    OrderAccess::fence();
4548    for (;;) {
4549      w = *Lock ;
4550      if ((w & LOCKBIT) == 0) {
4551        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4552          ev->OnList = 0 ;
4553          // We call ::Release while holding the outer lock, thus
4554          // artificially lengthening the critical section.
4555          // Consider deferring the ::Release() until the subsequent unlock(),
4556          // after we've dropped the outer lock.
4557          if (ReleaseAfter != NULL) {
4558            ParkEvent::Release (ReleaseAfter) ;
4559          }
4560          return ;
4561        }
4562        continue ;      // Interference -- *Lock changed -- Just retry
4563      }
4564      assert (w & LOCKBIT, "invariant") ;
4565      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4566      if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4567    }
4568
4569    while (ev->OnList != 0) {
4570      ev->park() ;
4571    }
4572  }
4573}
4574
4575// Release() must extract a successor from the list and then wake that thread.
4576// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4577// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4578// Release() would :
4579// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4580// (B) Extract a successor from the private list "in-hand"
4581// (C) attempt to CAS() the residual back into *Lock over null.
4582//     If there were any newly arrived threads and the CAS() would fail.
4583//     In that case Release() would detach the RATs, re-merge the list in-hand
4584//     with the RATs and repeat as needed.  Alternately, Release() might
4585//     detach and extract a successor, but then pass the residual list to the wakee.
4586//     The wakee would be responsible for reattaching and remerging before it
4587//     competed for the lock.
4588//
4589// Both "pop" and DMR are immune from ABA corruption -- there can be
4590// multiple concurrent pushers, but only one popper or detacher.
4591// This implementation pops from the head of the list.  This is unfair,
4592// but tends to provide excellent throughput as hot threads remain hot.
4593// (We wake recently run threads first).
4594
4595void Thread::muxRelease (volatile intptr_t * Lock)  {
4596  for (;;) {
4597    const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4598    assert (w & LOCKBIT, "invariant") ;
4599    if (w == LOCKBIT) return ;
4600    ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4601    assert (List != NULL, "invariant") ;
4602    assert (List->OnList == intptr_t(Lock), "invariant") ;
4603    ParkEvent * nxt = List->ListNext ;
4604
4605    // The following CAS() releases the lock and pops the head element.
4606    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4607      continue ;
4608    }
4609    List->OnList = 0 ;
4610    OrderAccess::fence() ;
4611    List->unpark () ;
4612    return ;
4613  }
4614}
4615
4616
4617void Threads::verify() {
4618  ALL_JAVA_THREADS(p) {
4619    p->verify();
4620  }
4621  VMThread* thread = VMThread::vm_thread();
4622  if (thread != NULL) thread->verify();
4623}
4624