thread.cpp revision 3644:716e6ef4482a
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/scopeDesc.hpp"
31#include "compiler/compileBroker.hpp"
32#include "interpreter/interpreter.hpp"
33#include "interpreter/linkResolver.hpp"
34#include "interpreter/oopMapCache.hpp"
35#include "jvmtifiles/jvmtiEnv.hpp"
36#include "memory/gcLocker.inline.hpp"
37#include "memory/metaspaceShared.hpp"
38#include "memory/oopFactory.hpp"
39#include "memory/universe.inline.hpp"
40#include "oops/instanceKlass.hpp"
41#include "oops/objArrayOop.hpp"
42#include "oops/oop.inline.hpp"
43#include "oops/symbol.hpp"
44#include "prims/jvm_misc.hpp"
45#include "prims/jvmtiExport.hpp"
46#include "prims/jvmtiThreadState.hpp"
47#include "prims/privilegedStack.hpp"
48#include "runtime/aprofiler.hpp"
49#include "runtime/arguments.hpp"
50#include "runtime/biasedLocking.hpp"
51#include "runtime/deoptimization.hpp"
52#include "runtime/fprofiler.hpp"
53#include "runtime/frame.inline.hpp"
54#include "runtime/init.hpp"
55#include "runtime/interfaceSupport.hpp"
56#include "runtime/java.hpp"
57#include "runtime/javaCalls.hpp"
58#include "runtime/jniPeriodicChecker.hpp"
59#include "runtime/memprofiler.hpp"
60#include "runtime/mutexLocker.hpp"
61#include "runtime/objectMonitor.hpp"
62#include "runtime/osThread.hpp"
63#include "runtime/safepoint.hpp"
64#include "runtime/sharedRuntime.hpp"
65#include "runtime/statSampler.hpp"
66#include "runtime/stubRoutines.hpp"
67#include "runtime/task.hpp"
68#include "runtime/threadCritical.hpp"
69#include "runtime/threadLocalStorage.hpp"
70#include "runtime/vframe.hpp"
71#include "runtime/vframeArray.hpp"
72#include "runtime/vframe_hp.hpp"
73#include "runtime/vmThread.hpp"
74#include "runtime/vm_operations.hpp"
75#include "services/attachListener.hpp"
76#include "services/management.hpp"
77#include "services/memTracker.hpp"
78#include "services/threadService.hpp"
79#include "trace/traceEventTypes.hpp"
80#include "utilities/defaultStream.hpp"
81#include "utilities/dtrace.hpp"
82#include "utilities/events.hpp"
83#include "utilities/preserveException.hpp"
84#ifdef TARGET_OS_FAMILY_linux
85# include "os_linux.inline.hpp"
86# include "thread_linux.inline.hpp"
87#endif
88#ifdef TARGET_OS_FAMILY_solaris
89# include "os_solaris.inline.hpp"
90# include "thread_solaris.inline.hpp"
91#endif
92#ifdef TARGET_OS_FAMILY_windows
93# include "os_windows.inline.hpp"
94# include "thread_windows.inline.hpp"
95#endif
96#ifdef TARGET_OS_FAMILY_bsd
97# include "os_bsd.inline.hpp"
98# include "thread_bsd.inline.hpp"
99#endif
100#ifndef SERIALGC
101#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
102#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
103#include "gc_implementation/parallelScavenge/pcTasks.hpp"
104#endif
105#ifdef COMPILER1
106#include "c1/c1_Compiler.hpp"
107#endif
108#ifdef COMPILER2
109#include "opto/c2compiler.hpp"
110#include "opto/idealGraphPrinter.hpp"
111#endif
112
113#ifdef DTRACE_ENABLED
114
115// Only bother with this argument setup if dtrace is available
116
117#ifndef USDT2
118HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
119HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
120HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
121  intptr_t, intptr_t, bool);
122HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
123  intptr_t, intptr_t, bool);
124
125#define DTRACE_THREAD_PROBE(probe, javathread)                             \
126  {                                                                        \
127    ResourceMark rm(this);                                                 \
128    int len = 0;                                                           \
129    const char* name = (javathread)->get_thread_name();                    \
130    len = strlen(name);                                                    \
131    HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
132      name, len,                                                           \
133      java_lang_Thread::thread_id((javathread)->threadObj()),              \
134      (javathread)->osthread()->thread_id(),                               \
135      java_lang_Thread::is_daemon((javathread)->threadObj()));             \
136  }
137
138#else /* USDT2 */
139
140#define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
141#define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
142
143#define DTRACE_THREAD_PROBE(probe, javathread)                             \
144  {                                                                        \
145    ResourceMark rm(this);                                                 \
146    int len = 0;                                                           \
147    const char* name = (javathread)->get_thread_name();                    \
148    len = strlen(name);                                                    \
149    HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
150      (char *) name, len,                                                           \
151      java_lang_Thread::thread_id((javathread)->threadObj()),              \
152      (uintptr_t) (javathread)->osthread()->thread_id(),                               \
153      java_lang_Thread::is_daemon((javathread)->threadObj()));             \
154  }
155
156#endif /* USDT2 */
157
158#else //  ndef DTRACE_ENABLED
159
160#define DTRACE_THREAD_PROBE(probe, javathread)
161
162#endif // ndef DTRACE_ENABLED
163
164
165// Class hierarchy
166// - Thread
167//   - VMThread
168//   - WatcherThread
169//   - ConcurrentMarkSweepThread
170//   - JavaThread
171//     - CompilerThread
172
173// ======= Thread ========
174// Support for forcing alignment of thread objects for biased locking
175void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
176  if (UseBiasedLocking) {
177    const int alignment = markOopDesc::biased_lock_alignment;
178    size_t aligned_size = size + (alignment - sizeof(intptr_t));
179    void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
180                                          : os::malloc(aligned_size, flags, CURRENT_PC);
181    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
182    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
183           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
184           "JavaThread alignment code overflowed allocated storage");
185    if (TraceBiasedLocking) {
186      if (aligned_addr != real_malloc_addr)
187        tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
188                      real_malloc_addr, aligned_addr);
189    }
190    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
191    return aligned_addr;
192  } else {
193    return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
194                       : os::malloc(size, flags, CURRENT_PC);
195  }
196}
197
198void Thread::operator delete(void* p) {
199  if (UseBiasedLocking) {
200    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
201    FreeHeap(real_malloc_addr, mtThread);
202  } else {
203    FreeHeap(p, mtThread);
204  }
205}
206
207
208// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
209// JavaThread
210
211
212Thread::Thread() {
213  // stack and get_thread
214  set_stack_base(NULL);
215  set_stack_size(0);
216  set_self_raw_id(0);
217  set_lgrp_id(-1);
218
219  // allocated data structures
220  set_osthread(NULL);
221  set_resource_area(new (mtThread)ResourceArea());
222  set_handle_area(new (mtThread) HandleArea(NULL));
223  set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(300, true));
224  set_active_handles(NULL);
225  set_free_handle_block(NULL);
226  set_last_handle_mark(NULL);
227
228  // This initial value ==> never claimed.
229  _oops_do_parity = 0;
230
231  // the handle mark links itself to last_handle_mark
232  new HandleMark(this);
233
234  // plain initialization
235  debug_only(_owned_locks = NULL;)
236  debug_only(_allow_allocation_count = 0;)
237  NOT_PRODUCT(_allow_safepoint_count = 0;)
238  NOT_PRODUCT(_skip_gcalot = false;)
239  CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
240  _jvmti_env_iteration_count = 0;
241  set_allocated_bytes(0);
242  set_trace_buffer(NULL);
243  _vm_operation_started_count = 0;
244  _vm_operation_completed_count = 0;
245  _current_pending_monitor = NULL;
246  _current_pending_monitor_is_from_java = true;
247  _current_waiting_monitor = NULL;
248  _num_nested_signal = 0;
249  omFreeList = NULL ;
250  omFreeCount = 0 ;
251  omFreeProvision = 32 ;
252  omInUseList = NULL ;
253  omInUseCount = 0 ;
254
255#ifdef ASSERT
256  _visited_for_critical_count = false;
257#endif
258
259  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
260  _suspend_flags = 0;
261
262  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
263  _hashStateX = os::random() ;
264  _hashStateY = 842502087 ;
265  _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
266  _hashStateW = 273326509 ;
267
268  _OnTrap   = 0 ;
269  _schedctl = NULL ;
270  _Stalled  = 0 ;
271  _TypeTag  = 0x2BAD ;
272
273  // Many of the following fields are effectively final - immutable
274  // Note that nascent threads can't use the Native Monitor-Mutex
275  // construct until the _MutexEvent is initialized ...
276  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
277  // we might instead use a stack of ParkEvents that we could provision on-demand.
278  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
279  // and ::Release()
280  _ParkEvent   = ParkEvent::Allocate (this) ;
281  _SleepEvent  = ParkEvent::Allocate (this) ;
282  _MutexEvent  = ParkEvent::Allocate (this) ;
283  _MuxEvent    = ParkEvent::Allocate (this) ;
284
285#ifdef CHECK_UNHANDLED_OOPS
286  if (CheckUnhandledOops) {
287    _unhandled_oops = new UnhandledOops(this);
288  }
289#endif // CHECK_UNHANDLED_OOPS
290#ifdef ASSERT
291  if (UseBiasedLocking) {
292    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
293    assert(this == _real_malloc_address ||
294           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
295           "bug in forced alignment of thread objects");
296  }
297#endif /* ASSERT */
298}
299
300void Thread::initialize_thread_local_storage() {
301  // Note: Make sure this method only calls
302  // non-blocking operations. Otherwise, it might not work
303  // with the thread-startup/safepoint interaction.
304
305  // During Java thread startup, safepoint code should allow this
306  // method to complete because it may need to allocate memory to
307  // store information for the new thread.
308
309  // initialize structure dependent on thread local storage
310  ThreadLocalStorage::set_thread(this);
311}
312
313void Thread::record_stack_base_and_size() {
314  set_stack_base(os::current_stack_base());
315  set_stack_size(os::current_stack_size());
316  // CR 7190089: on Solaris, primordial thread's stack is adjusted
317  // in initialize_thread(). Without the adjustment, stack size is
318  // incorrect if stack is set to unlimited (ulimit -s unlimited).
319  // So far, only Solaris has real implementation of initialize_thread().
320  //
321  // set up any platform-specific state.
322  os::initialize_thread(this);
323
324   // record thread's native stack, stack grows downward
325  if (MemTracker::is_on()) {
326    address stack_low_addr = stack_base() - stack_size();
327    MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
328      CURRENT_PC);
329  }
330}
331
332
333Thread::~Thread() {
334  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
335  ObjectSynchronizer::omFlush (this) ;
336
337  // stack_base can be NULL if the thread is never started or exited before
338  // record_stack_base_and_size called. Although, we would like to ensure
339  // that all started threads do call record_stack_base_and_size(), there is
340  // not proper way to enforce that.
341  if (_stack_base != NULL) {
342    address low_stack_addr = stack_base() - stack_size();
343    MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
344  }
345
346  // deallocate data structures
347  delete resource_area();
348  // since the handle marks are using the handle area, we have to deallocated the root
349  // handle mark before deallocating the thread's handle area,
350  assert(last_handle_mark() != NULL, "check we have an element");
351  delete last_handle_mark();
352  assert(last_handle_mark() == NULL, "check we have reached the end");
353
354  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
355  // We NULL out the fields for good hygiene.
356  ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
357  ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
358  ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
359  ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
360
361  delete handle_area();
362  delete metadata_handles();
363
364  // osthread() can be NULL, if creation of thread failed.
365  if (osthread() != NULL) os::free_thread(osthread());
366
367  delete _SR_lock;
368
369  // clear thread local storage if the Thread is deleting itself
370  if (this == Thread::current()) {
371    ThreadLocalStorage::set_thread(NULL);
372  } else {
373    // In the case where we're not the current thread, invalidate all the
374    // caches in case some code tries to get the current thread or the
375    // thread that was destroyed, and gets stale information.
376    ThreadLocalStorage::invalidate_all();
377  }
378  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
379}
380
381// NOTE: dummy function for assertion purpose.
382void Thread::run() {
383  ShouldNotReachHere();
384}
385
386#ifdef ASSERT
387// Private method to check for dangling thread pointer
388void check_for_dangling_thread_pointer(Thread *thread) {
389 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
390         "possibility of dangling Thread pointer");
391}
392#endif
393
394
395#ifndef PRODUCT
396// Tracing method for basic thread operations
397void Thread::trace(const char* msg, const Thread* const thread) {
398  if (!TraceThreadEvents) return;
399  ResourceMark rm;
400  ThreadCritical tc;
401  const char *name = "non-Java thread";
402  int prio = -1;
403  if (thread->is_Java_thread()
404      && !thread->is_Compiler_thread()) {
405    // The Threads_lock must be held to get information about
406    // this thread but may not be in some situations when
407    // tracing  thread events.
408    bool release_Threads_lock = false;
409    if (!Threads_lock->owned_by_self()) {
410      Threads_lock->lock();
411      release_Threads_lock = true;
412    }
413    JavaThread* jt = (JavaThread *)thread;
414    name = (char *)jt->get_thread_name();
415    oop thread_oop = jt->threadObj();
416    if (thread_oop != NULL) {
417      prio = java_lang_Thread::priority(thread_oop);
418    }
419    if (release_Threads_lock) {
420      Threads_lock->unlock();
421    }
422  }
423  tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
424}
425#endif
426
427
428ThreadPriority Thread::get_priority(const Thread* const thread) {
429  trace("get priority", thread);
430  ThreadPriority priority;
431  // Can return an error!
432  (void)os::get_priority(thread, priority);
433  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
434  return priority;
435}
436
437void Thread::set_priority(Thread* thread, ThreadPriority priority) {
438  trace("set priority", thread);
439  debug_only(check_for_dangling_thread_pointer(thread);)
440  // Can return an error!
441  (void)os::set_priority(thread, priority);
442}
443
444
445void Thread::start(Thread* thread) {
446  trace("start", thread);
447  // Start is different from resume in that its safety is guaranteed by context or
448  // being called from a Java method synchronized on the Thread object.
449  if (!DisableStartThread) {
450    if (thread->is_Java_thread()) {
451      // Initialize the thread state to RUNNABLE before starting this thread.
452      // Can not set it after the thread started because we do not know the
453      // exact thread state at that time. It could be in MONITOR_WAIT or
454      // in SLEEPING or some other state.
455      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
456                                          java_lang_Thread::RUNNABLE);
457    }
458    os::start_thread(thread);
459  }
460}
461
462// Enqueue a VM_Operation to do the job for us - sometime later
463void Thread::send_async_exception(oop java_thread, oop java_throwable) {
464  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
465  VMThread::execute(vm_stop);
466}
467
468
469//
470// Check if an external suspend request has completed (or has been
471// cancelled). Returns true if the thread is externally suspended and
472// false otherwise.
473//
474// The bits parameter returns information about the code path through
475// the routine. Useful for debugging:
476//
477// set in is_ext_suspend_completed():
478// 0x00000001 - routine was entered
479// 0x00000010 - routine return false at end
480// 0x00000100 - thread exited (return false)
481// 0x00000200 - suspend request cancelled (return false)
482// 0x00000400 - thread suspended (return true)
483// 0x00001000 - thread is in a suspend equivalent state (return true)
484// 0x00002000 - thread is native and walkable (return true)
485// 0x00004000 - thread is native_trans and walkable (needed retry)
486//
487// set in wait_for_ext_suspend_completion():
488// 0x00010000 - routine was entered
489// 0x00020000 - suspend request cancelled before loop (return false)
490// 0x00040000 - thread suspended before loop (return true)
491// 0x00080000 - suspend request cancelled in loop (return false)
492// 0x00100000 - thread suspended in loop (return true)
493// 0x00200000 - suspend not completed during retry loop (return false)
494//
495
496// Helper class for tracing suspend wait debug bits.
497//
498// 0x00000100 indicates that the target thread exited before it could
499// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
500// 0x00080000 each indicate a cancelled suspend request so they don't
501// count as wait failures either.
502#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
503
504class TraceSuspendDebugBits : public StackObj {
505 private:
506  JavaThread * jt;
507  bool         is_wait;
508  bool         called_by_wait;  // meaningful when !is_wait
509  uint32_t *   bits;
510
511 public:
512  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
513                        uint32_t *_bits) {
514    jt             = _jt;
515    is_wait        = _is_wait;
516    called_by_wait = _called_by_wait;
517    bits           = _bits;
518  }
519
520  ~TraceSuspendDebugBits() {
521    if (!is_wait) {
522#if 1
523      // By default, don't trace bits for is_ext_suspend_completed() calls.
524      // That trace is very chatty.
525      return;
526#else
527      if (!called_by_wait) {
528        // If tracing for is_ext_suspend_completed() is enabled, then only
529        // trace calls to it from wait_for_ext_suspend_completion()
530        return;
531      }
532#endif
533    }
534
535    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
536      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
537        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
538        ResourceMark rm;
539
540        tty->print_cr(
541            "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
542            jt->get_thread_name(), *bits);
543
544        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
545      }
546    }
547  }
548};
549#undef DEBUG_FALSE_BITS
550
551
552bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
553  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
554
555  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
556  bool do_trans_retry;           // flag to force the retry
557
558  *bits |= 0x00000001;
559
560  do {
561    do_trans_retry = false;
562
563    if (is_exiting()) {
564      // Thread is in the process of exiting. This is always checked
565      // first to reduce the risk of dereferencing a freed JavaThread.
566      *bits |= 0x00000100;
567      return false;
568    }
569
570    if (!is_external_suspend()) {
571      // Suspend request is cancelled. This is always checked before
572      // is_ext_suspended() to reduce the risk of a rogue resume
573      // confusing the thread that made the suspend request.
574      *bits |= 0x00000200;
575      return false;
576    }
577
578    if (is_ext_suspended()) {
579      // thread is suspended
580      *bits |= 0x00000400;
581      return true;
582    }
583
584    // Now that we no longer do hard suspends of threads running
585    // native code, the target thread can be changing thread state
586    // while we are in this routine:
587    //
588    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
589    //
590    // We save a copy of the thread state as observed at this moment
591    // and make our decision about suspend completeness based on the
592    // copy. This closes the race where the thread state is seen as
593    // _thread_in_native_trans in the if-thread_blocked check, but is
594    // seen as _thread_blocked in if-thread_in_native_trans check.
595    JavaThreadState save_state = thread_state();
596
597    if (save_state == _thread_blocked && is_suspend_equivalent()) {
598      // If the thread's state is _thread_blocked and this blocking
599      // condition is known to be equivalent to a suspend, then we can
600      // consider the thread to be externally suspended. This means that
601      // the code that sets _thread_blocked has been modified to do
602      // self-suspension if the blocking condition releases. We also
603      // used to check for CONDVAR_WAIT here, but that is now covered by
604      // the _thread_blocked with self-suspension check.
605      //
606      // Return true since we wouldn't be here unless there was still an
607      // external suspend request.
608      *bits |= 0x00001000;
609      return true;
610    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
611      // Threads running native code will self-suspend on native==>VM/Java
612      // transitions. If its stack is walkable (should always be the case
613      // unless this function is called before the actual java_suspend()
614      // call), then the wait is done.
615      *bits |= 0x00002000;
616      return true;
617    } else if (!called_by_wait && !did_trans_retry &&
618               save_state == _thread_in_native_trans &&
619               frame_anchor()->walkable()) {
620      // The thread is transitioning from thread_in_native to another
621      // thread state. check_safepoint_and_suspend_for_native_trans()
622      // will force the thread to self-suspend. If it hasn't gotten
623      // there yet we may have caught the thread in-between the native
624      // code check above and the self-suspend. Lucky us. If we were
625      // called by wait_for_ext_suspend_completion(), then it
626      // will be doing the retries so we don't have to.
627      //
628      // Since we use the saved thread state in the if-statement above,
629      // there is a chance that the thread has already transitioned to
630      // _thread_blocked by the time we get here. In that case, we will
631      // make a single unnecessary pass through the logic below. This
632      // doesn't hurt anything since we still do the trans retry.
633
634      *bits |= 0x00004000;
635
636      // Once the thread leaves thread_in_native_trans for another
637      // thread state, we break out of this retry loop. We shouldn't
638      // need this flag to prevent us from getting back here, but
639      // sometimes paranoia is good.
640      did_trans_retry = true;
641
642      // We wait for the thread to transition to a more usable state.
643      for (int i = 1; i <= SuspendRetryCount; i++) {
644        // We used to do an "os::yield_all(i)" call here with the intention
645        // that yielding would increase on each retry. However, the parameter
646        // is ignored on Linux which means the yield didn't scale up. Waiting
647        // on the SR_lock below provides a much more predictable scale up for
648        // the delay. It also provides a simple/direct point to check for any
649        // safepoint requests from the VMThread
650
651        // temporarily drops SR_lock while doing wait with safepoint check
652        // (if we're a JavaThread - the WatcherThread can also call this)
653        // and increase delay with each retry
654        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
655
656        // check the actual thread state instead of what we saved above
657        if (thread_state() != _thread_in_native_trans) {
658          // the thread has transitioned to another thread state so
659          // try all the checks (except this one) one more time.
660          do_trans_retry = true;
661          break;
662        }
663      } // end retry loop
664
665
666    }
667  } while (do_trans_retry);
668
669  *bits |= 0x00000010;
670  return false;
671}
672
673//
674// Wait for an external suspend request to complete (or be cancelled).
675// Returns true if the thread is externally suspended and false otherwise.
676//
677bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
678       uint32_t *bits) {
679  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
680                             false /* !called_by_wait */, bits);
681
682  // local flag copies to minimize SR_lock hold time
683  bool is_suspended;
684  bool pending;
685  uint32_t reset_bits;
686
687  // set a marker so is_ext_suspend_completed() knows we are the caller
688  *bits |= 0x00010000;
689
690  // We use reset_bits to reinitialize the bits value at the top of
691  // each retry loop. This allows the caller to make use of any
692  // unused bits for their own marking purposes.
693  reset_bits = *bits;
694
695  {
696    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
697    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
698                                            delay, bits);
699    pending = is_external_suspend();
700  }
701  // must release SR_lock to allow suspension to complete
702
703  if (!pending) {
704    // A cancelled suspend request is the only false return from
705    // is_ext_suspend_completed() that keeps us from entering the
706    // retry loop.
707    *bits |= 0x00020000;
708    return false;
709  }
710
711  if (is_suspended) {
712    *bits |= 0x00040000;
713    return true;
714  }
715
716  for (int i = 1; i <= retries; i++) {
717    *bits = reset_bits;  // reinit to only track last retry
718
719    // We used to do an "os::yield_all(i)" call here with the intention
720    // that yielding would increase on each retry. However, the parameter
721    // is ignored on Linux which means the yield didn't scale up. Waiting
722    // on the SR_lock below provides a much more predictable scale up for
723    // the delay. It also provides a simple/direct point to check for any
724    // safepoint requests from the VMThread
725
726    {
727      MutexLocker ml(SR_lock());
728      // wait with safepoint check (if we're a JavaThread - the WatcherThread
729      // can also call this)  and increase delay with each retry
730      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
731
732      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
733                                              delay, bits);
734
735      // It is possible for the external suspend request to be cancelled
736      // (by a resume) before the actual suspend operation is completed.
737      // Refresh our local copy to see if we still need to wait.
738      pending = is_external_suspend();
739    }
740
741    if (!pending) {
742      // A cancelled suspend request is the only false return from
743      // is_ext_suspend_completed() that keeps us from staying in the
744      // retry loop.
745      *bits |= 0x00080000;
746      return false;
747    }
748
749    if (is_suspended) {
750      *bits |= 0x00100000;
751      return true;
752    }
753  } // end retry loop
754
755  // thread did not suspend after all our retries
756  *bits |= 0x00200000;
757  return false;
758}
759
760#ifndef PRODUCT
761void JavaThread::record_jump(address target, address instr, const char* file, int line) {
762
763  // This should not need to be atomic as the only way for simultaneous
764  // updates is via interrupts. Even then this should be rare or non-existant
765  // and we don't care that much anyway.
766
767  int index = _jmp_ring_index;
768  _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
769  _jmp_ring[index]._target = (intptr_t) target;
770  _jmp_ring[index]._instruction = (intptr_t) instr;
771  _jmp_ring[index]._file = file;
772  _jmp_ring[index]._line = line;
773}
774#endif /* PRODUCT */
775
776// Called by flat profiler
777// Callers have already called wait_for_ext_suspend_completion
778// The assertion for that is currently too complex to put here:
779bool JavaThread::profile_last_Java_frame(frame* _fr) {
780  bool gotframe = false;
781  // self suspension saves needed state.
782  if (has_last_Java_frame() && _anchor.walkable()) {
783     *_fr = pd_last_frame();
784     gotframe = true;
785  }
786  return gotframe;
787}
788
789void Thread::interrupt(Thread* thread) {
790  trace("interrupt", thread);
791  debug_only(check_for_dangling_thread_pointer(thread);)
792  os::interrupt(thread);
793}
794
795bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
796  trace("is_interrupted", thread);
797  debug_only(check_for_dangling_thread_pointer(thread);)
798  // Note:  If clear_interrupted==false, this simply fetches and
799  // returns the value of the field osthread()->interrupted().
800  return os::is_interrupted(thread, clear_interrupted);
801}
802
803
804// GC Support
805bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
806  jint thread_parity = _oops_do_parity;
807  if (thread_parity != strong_roots_parity) {
808    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
809    if (res == thread_parity) {
810      return true;
811    } else {
812      guarantee(res == strong_roots_parity, "Or else what?");
813      assert(SharedHeap::heap()->workers()->active_workers() > 0,
814         "Should only fail when parallel.");
815      return false;
816    }
817  }
818  assert(SharedHeap::heap()->workers()->active_workers() > 0,
819         "Should only fail when parallel.");
820  return false;
821}
822
823void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
824  active_handles()->oops_do(f);
825  // Do oop for ThreadShadow
826  f->do_oop((oop*)&_pending_exception);
827  handle_area()->oops_do(f);
828}
829
830void Thread::nmethods_do(CodeBlobClosure* cf) {
831  // no nmethods in a generic thread...
832}
833
834void Thread::metadata_do(void f(Metadata*)) {
835  if (metadata_handles() != NULL) {
836    for (int i = 0; i< metadata_handles()->length(); i++) {
837      f(metadata_handles()->at(i));
838    }
839  }
840}
841
842void Thread::print_on(outputStream* st) const {
843  // get_priority assumes osthread initialized
844  if (osthread() != NULL) {
845    st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
846    osthread()->print_on(st);
847  }
848  debug_only(if (WizardMode) print_owned_locks_on(st);)
849}
850
851// Thread::print_on_error() is called by fatal error handler. Don't use
852// any lock or allocate memory.
853void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
854  if      (is_VM_thread())                  st->print("VMThread");
855  else if (is_Compiler_thread())            st->print("CompilerThread");
856  else if (is_Java_thread())                st->print("JavaThread");
857  else if (is_GC_task_thread())             st->print("GCTaskThread");
858  else if (is_Watcher_thread())             st->print("WatcherThread");
859  else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
860  else st->print("Thread");
861
862  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
863            _stack_base - _stack_size, _stack_base);
864
865  if (osthread()) {
866    st->print(" [id=%d]", osthread()->thread_id());
867  }
868}
869
870#ifdef ASSERT
871void Thread::print_owned_locks_on(outputStream* st) const {
872  Monitor *cur = _owned_locks;
873  if (cur == NULL) {
874    st->print(" (no locks) ");
875  } else {
876    st->print_cr(" Locks owned:");
877    while(cur) {
878      cur->print_on(st);
879      cur = cur->next();
880    }
881  }
882}
883
884static int ref_use_count  = 0;
885
886bool Thread::owns_locks_but_compiled_lock() const {
887  for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
888    if (cur != Compile_lock) return true;
889  }
890  return false;
891}
892
893
894#endif
895
896#ifndef PRODUCT
897
898// The flag: potential_vm_operation notifies if this particular safepoint state could potential
899// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
900// no threads which allow_vm_block's are held
901void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
902    // Check if current thread is allowed to block at a safepoint
903    if (!(_allow_safepoint_count == 0))
904      fatal("Possible safepoint reached by thread that does not allow it");
905    if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
906      fatal("LEAF method calling lock?");
907    }
908
909#ifdef ASSERT
910    if (potential_vm_operation && is_Java_thread()
911        && !Universe::is_bootstrapping()) {
912      // Make sure we do not hold any locks that the VM thread also uses.
913      // This could potentially lead to deadlocks
914      for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
915        // Threads_lock is special, since the safepoint synchronization will not start before this is
916        // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
917        // since it is used to transfer control between JavaThreads and the VMThread
918        // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
919        if ( (cur->allow_vm_block() &&
920              cur != Threads_lock &&
921              cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
922              cur != VMOperationRequest_lock &&
923              cur != VMOperationQueue_lock) ||
924              cur->rank() == Mutex::special) {
925          warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
926        }
927      }
928    }
929
930    if (GCALotAtAllSafepoints) {
931      // We could enter a safepoint here and thus have a gc
932      InterfaceSupport::check_gc_alot();
933    }
934#endif
935}
936#endif
937
938bool Thread::is_in_stack(address adr) const {
939  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
940  address end = os::current_stack_pointer();
941  // Allow non Java threads to call this without stack_base
942  if (_stack_base == NULL) return true;
943  if (stack_base() >= adr && adr >= end) return true;
944
945  return false;
946}
947
948
949// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
950// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
951// used for compilation in the future. If that change is made, the need for these methods
952// should be revisited, and they should be removed if possible.
953
954bool Thread::is_lock_owned(address adr) const {
955  return on_local_stack(adr);
956}
957
958bool Thread::set_as_starting_thread() {
959 // NOTE: this must be called inside the main thread.
960  return os::create_main_thread((JavaThread*)this);
961}
962
963static void initialize_class(Symbol* class_name, TRAPS) {
964  Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
965  InstanceKlass::cast(klass)->initialize(CHECK);
966}
967
968
969// Creates the initial ThreadGroup
970static Handle create_initial_thread_group(TRAPS) {
971  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
972  instanceKlassHandle klass (THREAD, k);
973
974  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
975  {
976    JavaValue result(T_VOID);
977    JavaCalls::call_special(&result,
978                            system_instance,
979                            klass,
980                            vmSymbols::object_initializer_name(),
981                            vmSymbols::void_method_signature(),
982                            CHECK_NH);
983  }
984  Universe::set_system_thread_group(system_instance());
985
986  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
987  {
988    JavaValue result(T_VOID);
989    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
990    JavaCalls::call_special(&result,
991                            main_instance,
992                            klass,
993                            vmSymbols::object_initializer_name(),
994                            vmSymbols::threadgroup_string_void_signature(),
995                            system_instance,
996                            string,
997                            CHECK_NH);
998  }
999  return main_instance;
1000}
1001
1002// Creates the initial Thread
1003static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
1004  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1005  instanceKlassHandle klass (THREAD, k);
1006  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1007
1008  java_lang_Thread::set_thread(thread_oop(), thread);
1009  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1010  thread->set_threadObj(thread_oop());
1011
1012  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1013
1014  JavaValue result(T_VOID);
1015  JavaCalls::call_special(&result, thread_oop,
1016                                   klass,
1017                                   vmSymbols::object_initializer_name(),
1018                                   vmSymbols::threadgroup_string_void_signature(),
1019                                   thread_group,
1020                                   string,
1021                                   CHECK_NULL);
1022  return thread_oop();
1023}
1024
1025static void call_initializeSystemClass(TRAPS) {
1026  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1027  instanceKlassHandle klass (THREAD, k);
1028
1029  JavaValue result(T_VOID);
1030  JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1031                                         vmSymbols::void_method_signature(), CHECK);
1032}
1033
1034char java_runtime_name[128] = "";
1035
1036// extract the JRE name from sun.misc.Version.java_runtime_name
1037static const char* get_java_runtime_name(TRAPS) {
1038  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1039                                      Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1040  fieldDescriptor fd;
1041  bool found = k != NULL &&
1042               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1043                                                        vmSymbols::string_signature(), &fd);
1044  if (found) {
1045    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1046    if (name_oop == NULL)
1047      return NULL;
1048    const char* name = java_lang_String::as_utf8_string(name_oop,
1049                                                        java_runtime_name,
1050                                                        sizeof(java_runtime_name));
1051    return name;
1052  } else {
1053    return NULL;
1054  }
1055}
1056
1057// General purpose hook into Java code, run once when the VM is initialized.
1058// The Java library method itself may be changed independently from the VM.
1059static void call_postVMInitHook(TRAPS) {
1060  Klass* k = SystemDictionary::PostVMInitHook_klass();
1061  instanceKlassHandle klass (THREAD, k);
1062  if (klass.not_null()) {
1063    JavaValue result(T_VOID);
1064    JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1065                                           vmSymbols::void_method_signature(),
1066                                           CHECK);
1067  }
1068}
1069
1070static void reset_vm_info_property(TRAPS) {
1071  // the vm info string
1072  ResourceMark rm(THREAD);
1073  const char *vm_info = VM_Version::vm_info_string();
1074
1075  // java.lang.System class
1076  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1077  instanceKlassHandle klass (THREAD, k);
1078
1079  // setProperty arguments
1080  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1081  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1082
1083  // return value
1084  JavaValue r(T_OBJECT);
1085
1086  // public static String setProperty(String key, String value);
1087  JavaCalls::call_static(&r,
1088                         klass,
1089                         vmSymbols::setProperty_name(),
1090                         vmSymbols::string_string_string_signature(),
1091                         key_str,
1092                         value_str,
1093                         CHECK);
1094}
1095
1096
1097void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1098  assert(thread_group.not_null(), "thread group should be specified");
1099  assert(threadObj() == NULL, "should only create Java thread object once");
1100
1101  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1102  instanceKlassHandle klass (THREAD, k);
1103  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1104
1105  java_lang_Thread::set_thread(thread_oop(), this);
1106  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1107  set_threadObj(thread_oop());
1108
1109  JavaValue result(T_VOID);
1110  if (thread_name != NULL) {
1111    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1112    // Thread gets assigned specified name and null target
1113    JavaCalls::call_special(&result,
1114                            thread_oop,
1115                            klass,
1116                            vmSymbols::object_initializer_name(),
1117                            vmSymbols::threadgroup_string_void_signature(),
1118                            thread_group, // Argument 1
1119                            name,         // Argument 2
1120                            THREAD);
1121  } else {
1122    // Thread gets assigned name "Thread-nnn" and null target
1123    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1124    JavaCalls::call_special(&result,
1125                            thread_oop,
1126                            klass,
1127                            vmSymbols::object_initializer_name(),
1128                            vmSymbols::threadgroup_runnable_void_signature(),
1129                            thread_group, // Argument 1
1130                            Handle(),     // Argument 2
1131                            THREAD);
1132  }
1133
1134
1135  if (daemon) {
1136      java_lang_Thread::set_daemon(thread_oop());
1137  }
1138
1139  if (HAS_PENDING_EXCEPTION) {
1140    return;
1141  }
1142
1143  KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1144  Handle threadObj(this, this->threadObj());
1145
1146  JavaCalls::call_special(&result,
1147                         thread_group,
1148                         group,
1149                         vmSymbols::add_method_name(),
1150                         vmSymbols::thread_void_signature(),
1151                         threadObj,          // Arg 1
1152                         THREAD);
1153
1154
1155}
1156
1157// NamedThread --  non-JavaThread subclasses with multiple
1158// uniquely named instances should derive from this.
1159NamedThread::NamedThread() : Thread() {
1160  _name = NULL;
1161  _processed_thread = NULL;
1162}
1163
1164NamedThread::~NamedThread() {
1165  if (_name != NULL) {
1166    FREE_C_HEAP_ARRAY(char, _name, mtThread);
1167    _name = NULL;
1168  }
1169}
1170
1171void NamedThread::set_name(const char* format, ...) {
1172  guarantee(_name == NULL, "Only get to set name once.");
1173  _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1174  guarantee(_name != NULL, "alloc failure");
1175  va_list ap;
1176  va_start(ap, format);
1177  jio_vsnprintf(_name, max_name_len, format, ap);
1178  va_end(ap);
1179}
1180
1181// ======= WatcherThread ========
1182
1183// The watcher thread exists to simulate timer interrupts.  It should
1184// be replaced by an abstraction over whatever native support for
1185// timer interrupts exists on the platform.
1186
1187WatcherThread* WatcherThread::_watcher_thread   = NULL;
1188volatile bool  WatcherThread::_should_terminate = false;
1189
1190WatcherThread::WatcherThread() : Thread() {
1191  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1192  if (os::create_thread(this, os::watcher_thread)) {
1193    _watcher_thread = this;
1194
1195    // Set the watcher thread to the highest OS priority which should not be
1196    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1197    // is created. The only normal thread using this priority is the reference
1198    // handler thread, which runs for very short intervals only.
1199    // If the VMThread's priority is not lower than the WatcherThread profiling
1200    // will be inaccurate.
1201    os::set_priority(this, MaxPriority);
1202    if (!DisableStartThread) {
1203      os::start_thread(this);
1204    }
1205  }
1206}
1207
1208void WatcherThread::run() {
1209  assert(this == watcher_thread(), "just checking");
1210
1211  this->record_stack_base_and_size();
1212  this->initialize_thread_local_storage();
1213  this->set_active_handles(JNIHandleBlock::allocate_block());
1214  while(!_should_terminate) {
1215    assert(watcher_thread() == Thread::current(),  "thread consistency check");
1216    assert(watcher_thread() == this,  "thread consistency check");
1217
1218    // Calculate how long it'll be until the next PeriodicTask work
1219    // should be done, and sleep that amount of time.
1220    size_t time_to_wait = PeriodicTask::time_to_wait();
1221
1222    // we expect this to timeout - we only ever get unparked when
1223    // we should terminate
1224    {
1225      OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1226
1227      jlong prev_time = os::javaTimeNanos();
1228      for (;;) {
1229        int res= _SleepEvent->park(time_to_wait);
1230        if (res == OS_TIMEOUT || _should_terminate)
1231          break;
1232        // spurious wakeup of some kind
1233        jlong now = os::javaTimeNanos();
1234        time_to_wait -= (now - prev_time) / 1000000;
1235        if (time_to_wait <= 0)
1236          break;
1237        prev_time = now;
1238      }
1239    }
1240
1241    if (is_error_reported()) {
1242      // A fatal error has happened, the error handler(VMError::report_and_die)
1243      // should abort JVM after creating an error log file. However in some
1244      // rare cases, the error handler itself might deadlock. Here we try to
1245      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1246      //
1247      // This code is in WatcherThread because WatcherThread wakes up
1248      // periodically so the fatal error handler doesn't need to do anything;
1249      // also because the WatcherThread is less likely to crash than other
1250      // threads.
1251
1252      for (;;) {
1253        if (!ShowMessageBoxOnError
1254         && (OnError == NULL || OnError[0] == '\0')
1255         && Arguments::abort_hook() == NULL) {
1256             os::sleep(this, 2 * 60 * 1000, false);
1257             fdStream err(defaultStream::output_fd());
1258             err.print_raw_cr("# [ timer expired, abort... ]");
1259             // skip atexit/vm_exit/vm_abort hooks
1260             os::die();
1261        }
1262
1263        // Wake up 5 seconds later, the fatal handler may reset OnError or
1264        // ShowMessageBoxOnError when it is ready to abort.
1265        os::sleep(this, 5 * 1000, false);
1266      }
1267    }
1268
1269    PeriodicTask::real_time_tick(time_to_wait);
1270
1271    // If we have no more tasks left due to dynamic disenrollment,
1272    // shut down the thread since we don't currently support dynamic enrollment
1273    if (PeriodicTask::num_tasks() == 0) {
1274      _should_terminate = true;
1275    }
1276  }
1277
1278  // Signal that it is terminated
1279  {
1280    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1281    _watcher_thread = NULL;
1282    Terminator_lock->notify();
1283  }
1284
1285  // Thread destructor usually does this..
1286  ThreadLocalStorage::set_thread(NULL);
1287}
1288
1289void WatcherThread::start() {
1290  if (watcher_thread() == NULL) {
1291    _should_terminate = false;
1292    // Create the single instance of WatcherThread
1293    new WatcherThread();
1294  }
1295}
1296
1297void WatcherThread::stop() {
1298  // it is ok to take late safepoints here, if needed
1299  MutexLocker mu(Terminator_lock);
1300  _should_terminate = true;
1301  OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1302
1303  Thread* watcher = watcher_thread();
1304  if (watcher != NULL)
1305    watcher->_SleepEvent->unpark();
1306
1307  while(watcher_thread() != NULL) {
1308    // This wait should make safepoint checks, wait without a timeout,
1309    // and wait as a suspend-equivalent condition.
1310    //
1311    // Note: If the FlatProfiler is running, then this thread is waiting
1312    // for the WatcherThread to terminate and the WatcherThread, via the
1313    // FlatProfiler task, is waiting for the external suspend request on
1314    // this thread to complete. wait_for_ext_suspend_completion() will
1315    // eventually timeout, but that takes time. Making this wait a
1316    // suspend-equivalent condition solves that timeout problem.
1317    //
1318    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1319                          Mutex::_as_suspend_equivalent_flag);
1320  }
1321}
1322
1323void WatcherThread::print_on(outputStream* st) const {
1324  st->print("\"%s\" ", name());
1325  Thread::print_on(st);
1326  st->cr();
1327}
1328
1329// ======= JavaThread ========
1330
1331// A JavaThread is a normal Java thread
1332
1333void JavaThread::initialize() {
1334  // Initialize fields
1335
1336  // Set the claimed par_id to -1 (ie not claiming any par_ids)
1337  set_claimed_par_id(-1);
1338
1339  set_saved_exception_pc(NULL);
1340  set_threadObj(NULL);
1341  _anchor.clear();
1342  set_entry_point(NULL);
1343  set_jni_functions(jni_functions());
1344  set_callee_target(NULL);
1345  set_vm_result(NULL);
1346  set_vm_result_2(NULL);
1347  set_vframe_array_head(NULL);
1348  set_vframe_array_last(NULL);
1349  set_deferred_locals(NULL);
1350  set_deopt_mark(NULL);
1351  set_deopt_nmethod(NULL);
1352  clear_must_deopt_id();
1353  set_monitor_chunks(NULL);
1354  set_next(NULL);
1355  set_thread_state(_thread_new);
1356  set_recorder(NULL);
1357  _terminated = _not_terminated;
1358  _privileged_stack_top = NULL;
1359  _array_for_gc = NULL;
1360  _suspend_equivalent = false;
1361  _in_deopt_handler = 0;
1362  _doing_unsafe_access = false;
1363  _stack_guard_state = stack_guard_unused;
1364  _exception_oop = NULL;
1365  _exception_pc  = 0;
1366  _exception_handler_pc = 0;
1367  _is_method_handle_return = 0;
1368  _jvmti_thread_state= NULL;
1369  _should_post_on_exceptions_flag = JNI_FALSE;
1370  _jvmti_get_loaded_classes_closure = NULL;
1371  _interp_only_mode    = 0;
1372  _special_runtime_exit_condition = _no_async_condition;
1373  _pending_async_exception = NULL;
1374  _is_compiling = false;
1375  _thread_stat = NULL;
1376  _thread_stat = new ThreadStatistics();
1377  _blocked_on_compilation = false;
1378  _jni_active_critical = 0;
1379  _do_not_unlock_if_synchronized = false;
1380  _cached_monitor_info = NULL;
1381  _parker = Parker::Allocate(this) ;
1382
1383#ifndef PRODUCT
1384  _jmp_ring_index = 0;
1385  for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1386    record_jump(NULL, NULL, NULL, 0);
1387  }
1388#endif /* PRODUCT */
1389
1390  set_thread_profiler(NULL);
1391  if (FlatProfiler::is_active()) {
1392    // This is where we would decide to either give each thread it's own profiler
1393    // or use one global one from FlatProfiler,
1394    // or up to some count of the number of profiled threads, etc.
1395    ThreadProfiler* pp = new ThreadProfiler();
1396    pp->engage();
1397    set_thread_profiler(pp);
1398  }
1399
1400  // Setup safepoint state info for this thread
1401  ThreadSafepointState::create(this);
1402
1403  debug_only(_java_call_counter = 0);
1404
1405  // JVMTI PopFrame support
1406  _popframe_condition = popframe_inactive;
1407  _popframe_preserved_args = NULL;
1408  _popframe_preserved_args_size = 0;
1409
1410  pd_initialize();
1411}
1412
1413#ifndef SERIALGC
1414SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1415DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1416#endif // !SERIALGC
1417
1418JavaThread::JavaThread(bool is_attaching_via_jni) :
1419  Thread()
1420#ifndef SERIALGC
1421  , _satb_mark_queue(&_satb_mark_queue_set),
1422  _dirty_card_queue(&_dirty_card_queue_set)
1423#endif // !SERIALGC
1424{
1425  initialize();
1426  if (is_attaching_via_jni) {
1427    _jni_attach_state = _attaching_via_jni;
1428  } else {
1429    _jni_attach_state = _not_attaching_via_jni;
1430  }
1431  assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
1432  _safepoint_visible = false;
1433}
1434
1435bool JavaThread::reguard_stack(address cur_sp) {
1436  if (_stack_guard_state != stack_guard_yellow_disabled) {
1437    return true; // Stack already guarded or guard pages not needed.
1438  }
1439
1440  if (register_stack_overflow()) {
1441    // For those architectures which have separate register and
1442    // memory stacks, we must check the register stack to see if
1443    // it has overflowed.
1444    return false;
1445  }
1446
1447  // Java code never executes within the yellow zone: the latter is only
1448  // there to provoke an exception during stack banging.  If java code
1449  // is executing there, either StackShadowPages should be larger, or
1450  // some exception code in c1, c2 or the interpreter isn't unwinding
1451  // when it should.
1452  guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1453
1454  enable_stack_yellow_zone();
1455  return true;
1456}
1457
1458bool JavaThread::reguard_stack(void) {
1459  return reguard_stack(os::current_stack_pointer());
1460}
1461
1462
1463void JavaThread::block_if_vm_exited() {
1464  if (_terminated == _vm_exited) {
1465    // _vm_exited is set at safepoint, and Threads_lock is never released
1466    // we will block here forever
1467    Threads_lock->lock_without_safepoint_check();
1468    ShouldNotReachHere();
1469  }
1470}
1471
1472
1473// Remove this ifdef when C1 is ported to the compiler interface.
1474static void compiler_thread_entry(JavaThread* thread, TRAPS);
1475
1476JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1477  Thread()
1478#ifndef SERIALGC
1479  , _satb_mark_queue(&_satb_mark_queue_set),
1480  _dirty_card_queue(&_dirty_card_queue_set)
1481#endif // !SERIALGC
1482{
1483  if (TraceThreadEvents) {
1484    tty->print_cr("creating thread %p", this);
1485  }
1486  initialize();
1487  _jni_attach_state = _not_attaching_via_jni;
1488  set_entry_point(entry_point);
1489  // Create the native thread itself.
1490  // %note runtime_23
1491  os::ThreadType thr_type = os::java_thread;
1492  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1493                                                     os::java_thread;
1494  os::create_thread(this, thr_type, stack_sz);
1495  _safepoint_visible = false;
1496  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1497  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1498  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1499  // the exception consists of creating the exception object & initializing it, initialization
1500  // will leave the VM via a JavaCall and then all locks must be unlocked).
1501  //
1502  // The thread is still suspended when we reach here. Thread must be explicit started
1503  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1504  // by calling Threads:add. The reason why this is not done here, is because the thread
1505  // object must be fully initialized (take a look at JVM_Start)
1506}
1507
1508JavaThread::~JavaThread() {
1509  if (TraceThreadEvents) {
1510      tty->print_cr("terminate thread %p", this);
1511  }
1512
1513  // Info NMT that this JavaThread is exiting, its memory
1514  // recorder should be collected
1515  assert(!is_safepoint_visible(), "wrong state");
1516  MemTracker::thread_exiting(this);
1517
1518  // JSR166 -- return the parker to the free list
1519  Parker::Release(_parker);
1520  _parker = NULL ;
1521
1522  // Free any remaining  previous UnrollBlock
1523  vframeArray* old_array = vframe_array_last();
1524
1525  if (old_array != NULL) {
1526    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1527    old_array->set_unroll_block(NULL);
1528    delete old_info;
1529    delete old_array;
1530  }
1531
1532  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1533  if (deferred != NULL) {
1534    // This can only happen if thread is destroyed before deoptimization occurs.
1535    assert(deferred->length() != 0, "empty array!");
1536    do {
1537      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1538      deferred->remove_at(0);
1539      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1540      delete dlv;
1541    } while (deferred->length() != 0);
1542    delete deferred;
1543  }
1544
1545  // All Java related clean up happens in exit
1546  ThreadSafepointState::destroy(this);
1547  if (_thread_profiler != NULL) delete _thread_profiler;
1548  if (_thread_stat != NULL) delete _thread_stat;
1549}
1550
1551
1552// The first routine called by a new Java thread
1553void JavaThread::run() {
1554  // initialize thread-local alloc buffer related fields
1555  this->initialize_tlab();
1556
1557  // used to test validitity of stack trace backs
1558  this->record_base_of_stack_pointer();
1559
1560  // Record real stack base and size.
1561  this->record_stack_base_and_size();
1562
1563  // Initialize thread local storage; set before calling MutexLocker
1564  this->initialize_thread_local_storage();
1565
1566  this->create_stack_guard_pages();
1567
1568  this->cache_global_variables();
1569
1570  // Thread is now sufficient initialized to be handled by the safepoint code as being
1571  // in the VM. Change thread state from _thread_new to _thread_in_vm
1572  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1573
1574  assert(JavaThread::current() == this, "sanity check");
1575  assert(!Thread::current()->owns_locks(), "sanity check");
1576
1577  DTRACE_THREAD_PROBE(start, this);
1578
1579  // This operation might block. We call that after all safepoint checks for a new thread has
1580  // been completed.
1581  this->set_active_handles(JNIHandleBlock::allocate_block());
1582
1583  if (JvmtiExport::should_post_thread_life()) {
1584    JvmtiExport::post_thread_start(this);
1585  }
1586
1587  EVENT_BEGIN(TraceEventThreadStart, event);
1588  EVENT_COMMIT(event,
1589     EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
1590
1591  // We call another function to do the rest so we are sure that the stack addresses used
1592  // from there will be lower than the stack base just computed
1593  thread_main_inner();
1594
1595  // Note, thread is no longer valid at this point!
1596}
1597
1598
1599void JavaThread::thread_main_inner() {
1600  assert(JavaThread::current() == this, "sanity check");
1601  assert(this->threadObj() != NULL, "just checking");
1602
1603  // Execute thread entry point unless this thread has a pending exception
1604  // or has been stopped before starting.
1605  // Note: Due to JVM_StopThread we can have pending exceptions already!
1606  if (!this->has_pending_exception() &&
1607      !java_lang_Thread::is_stillborn(this->threadObj())) {
1608    {
1609      ResourceMark rm(this);
1610      this->set_native_thread_name(this->get_thread_name());
1611    }
1612    HandleMark hm(this);
1613    this->entry_point()(this, this);
1614  }
1615
1616  DTRACE_THREAD_PROBE(stop, this);
1617
1618  this->exit(false);
1619  delete this;
1620}
1621
1622
1623static void ensure_join(JavaThread* thread) {
1624  // We do not need to grap the Threads_lock, since we are operating on ourself.
1625  Handle threadObj(thread, thread->threadObj());
1626  assert(threadObj.not_null(), "java thread object must exist");
1627  ObjectLocker lock(threadObj, thread);
1628  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1629  thread->clear_pending_exception();
1630  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1631  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1632  // Clear the native thread instance - this makes isAlive return false and allows the join()
1633  // to complete once we've done the notify_all below
1634  java_lang_Thread::set_thread(threadObj(), NULL);
1635  lock.notify_all(thread);
1636  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1637  thread->clear_pending_exception();
1638}
1639
1640
1641// For any new cleanup additions, please check to see if they need to be applied to
1642// cleanup_failed_attach_current_thread as well.
1643void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1644  assert(this == JavaThread::current(),  "thread consistency check");
1645  if (!InitializeJavaLangSystem) return;
1646
1647  HandleMark hm(this);
1648  Handle uncaught_exception(this, this->pending_exception());
1649  this->clear_pending_exception();
1650  Handle threadObj(this, this->threadObj());
1651  assert(threadObj.not_null(), "Java thread object should be created");
1652
1653  if (get_thread_profiler() != NULL) {
1654    get_thread_profiler()->disengage();
1655    ResourceMark rm;
1656    get_thread_profiler()->print(get_thread_name());
1657  }
1658
1659
1660  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1661  {
1662    EXCEPTION_MARK;
1663
1664    CLEAR_PENDING_EXCEPTION;
1665  }
1666  // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1667  // has to be fixed by a runtime query method
1668  if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1669    // JSR-166: change call from from ThreadGroup.uncaughtException to
1670    // java.lang.Thread.dispatchUncaughtException
1671    if (uncaught_exception.not_null()) {
1672      Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1673      {
1674        EXCEPTION_MARK;
1675        // Check if the method Thread.dispatchUncaughtException() exists. If so
1676        // call it.  Otherwise we have an older library without the JSR-166 changes,
1677        // so call ThreadGroup.uncaughtException()
1678        KlassHandle recvrKlass(THREAD, threadObj->klass());
1679        CallInfo callinfo;
1680        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1681        LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1682                                           vmSymbols::dispatchUncaughtException_name(),
1683                                           vmSymbols::throwable_void_signature(),
1684                                           KlassHandle(), false, false, THREAD);
1685        CLEAR_PENDING_EXCEPTION;
1686        methodHandle method = callinfo.selected_method();
1687        if (method.not_null()) {
1688          JavaValue result(T_VOID);
1689          JavaCalls::call_virtual(&result,
1690                                  threadObj, thread_klass,
1691                                  vmSymbols::dispatchUncaughtException_name(),
1692                                  vmSymbols::throwable_void_signature(),
1693                                  uncaught_exception,
1694                                  THREAD);
1695        } else {
1696          KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1697          JavaValue result(T_VOID);
1698          JavaCalls::call_virtual(&result,
1699                                  group, thread_group,
1700                                  vmSymbols::uncaughtException_name(),
1701                                  vmSymbols::thread_throwable_void_signature(),
1702                                  threadObj,           // Arg 1
1703                                  uncaught_exception,  // Arg 2
1704                                  THREAD);
1705        }
1706        if (HAS_PENDING_EXCEPTION) {
1707          ResourceMark rm(this);
1708          jio_fprintf(defaultStream::error_stream(),
1709                "\nException: %s thrown from the UncaughtExceptionHandler"
1710                " in thread \"%s\"\n",
1711                Klass::cast(pending_exception()->klass())->external_name(),
1712                get_thread_name());
1713          CLEAR_PENDING_EXCEPTION;
1714        }
1715      }
1716    }
1717
1718    // Called before the java thread exit since we want to read info
1719    // from java_lang_Thread object
1720    EVENT_BEGIN(TraceEventThreadEnd, event);
1721    EVENT_COMMIT(event,
1722        EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
1723
1724    // Call after last event on thread
1725    EVENT_THREAD_EXIT(this);
1726
1727    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1728    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1729    // is deprecated anyhow.
1730    { int count = 3;
1731      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1732        EXCEPTION_MARK;
1733        JavaValue result(T_VOID);
1734        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1735        JavaCalls::call_virtual(&result,
1736                              threadObj, thread_klass,
1737                              vmSymbols::exit_method_name(),
1738                              vmSymbols::void_method_signature(),
1739                              THREAD);
1740        CLEAR_PENDING_EXCEPTION;
1741      }
1742    }
1743
1744    // notify JVMTI
1745    if (JvmtiExport::should_post_thread_life()) {
1746      JvmtiExport::post_thread_end(this);
1747    }
1748
1749    // We have notified the agents that we are exiting, before we go on,
1750    // we must check for a pending external suspend request and honor it
1751    // in order to not surprise the thread that made the suspend request.
1752    while (true) {
1753      {
1754        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1755        if (!is_external_suspend()) {
1756          set_terminated(_thread_exiting);
1757          ThreadService::current_thread_exiting(this);
1758          break;
1759        }
1760        // Implied else:
1761        // Things get a little tricky here. We have a pending external
1762        // suspend request, but we are holding the SR_lock so we
1763        // can't just self-suspend. So we temporarily drop the lock
1764        // and then self-suspend.
1765      }
1766
1767      ThreadBlockInVM tbivm(this);
1768      java_suspend_self();
1769
1770      // We're done with this suspend request, but we have to loop around
1771      // and check again. Eventually we will get SR_lock without a pending
1772      // external suspend request and will be able to mark ourselves as
1773      // exiting.
1774    }
1775    // no more external suspends are allowed at this point
1776  } else {
1777    // before_exit() has already posted JVMTI THREAD_END events
1778  }
1779
1780  // Notify waiters on thread object. This has to be done after exit() is called
1781  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1782  // group should have the destroyed bit set before waiters are notified).
1783  ensure_join(this);
1784  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1785
1786  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1787  // held by this thread must be released.  A detach operation must only
1788  // get here if there are no Java frames on the stack.  Therefore, any
1789  // owned monitors at this point MUST be JNI-acquired monitors which are
1790  // pre-inflated and in the monitor cache.
1791  //
1792  // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1793  if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1794    assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1795    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1796    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1797  }
1798
1799  // These things needs to be done while we are still a Java Thread. Make sure that thread
1800  // is in a consistent state, in case GC happens
1801  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1802
1803  if (active_handles() != NULL) {
1804    JNIHandleBlock* block = active_handles();
1805    set_active_handles(NULL);
1806    JNIHandleBlock::release_block(block);
1807  }
1808
1809  if (free_handle_block() != NULL) {
1810    JNIHandleBlock* block = free_handle_block();
1811    set_free_handle_block(NULL);
1812    JNIHandleBlock::release_block(block);
1813  }
1814
1815  // These have to be removed while this is still a valid thread.
1816  remove_stack_guard_pages();
1817
1818  if (UseTLAB) {
1819    tlab().make_parsable(true);  // retire TLAB
1820  }
1821
1822  if (JvmtiEnv::environments_might_exist()) {
1823    JvmtiExport::cleanup_thread(this);
1824  }
1825
1826#ifndef SERIALGC
1827  // We must flush G1-related buffers before removing a thread from
1828  // the list of active threads.
1829  if (UseG1GC) {
1830    flush_barrier_queues();
1831  }
1832#endif
1833
1834  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1835  Threads::remove(this);
1836}
1837
1838#ifndef SERIALGC
1839// Flush G1-related queues.
1840void JavaThread::flush_barrier_queues() {
1841  satb_mark_queue().flush();
1842  dirty_card_queue().flush();
1843}
1844
1845void JavaThread::initialize_queues() {
1846  assert(!SafepointSynchronize::is_at_safepoint(),
1847         "we should not be at a safepoint");
1848
1849  ObjPtrQueue& satb_queue = satb_mark_queue();
1850  SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1851  // The SATB queue should have been constructed with its active
1852  // field set to false.
1853  assert(!satb_queue.is_active(), "SATB queue should not be active");
1854  assert(satb_queue.is_empty(), "SATB queue should be empty");
1855  // If we are creating the thread during a marking cycle, we should
1856  // set the active field of the SATB queue to true.
1857  if (satb_queue_set.is_active()) {
1858    satb_queue.set_active(true);
1859  }
1860
1861  DirtyCardQueue& dirty_queue = dirty_card_queue();
1862  // The dirty card queue should have been constructed with its
1863  // active field set to true.
1864  assert(dirty_queue.is_active(), "dirty card queue should be active");
1865}
1866#endif // !SERIALGC
1867
1868void JavaThread::cleanup_failed_attach_current_thread() {
1869  if (get_thread_profiler() != NULL) {
1870    get_thread_profiler()->disengage();
1871    ResourceMark rm;
1872    get_thread_profiler()->print(get_thread_name());
1873  }
1874
1875  if (active_handles() != NULL) {
1876    JNIHandleBlock* block = active_handles();
1877    set_active_handles(NULL);
1878    JNIHandleBlock::release_block(block);
1879  }
1880
1881  if (free_handle_block() != NULL) {
1882    JNIHandleBlock* block = free_handle_block();
1883    set_free_handle_block(NULL);
1884    JNIHandleBlock::release_block(block);
1885  }
1886
1887  // These have to be removed while this is still a valid thread.
1888  remove_stack_guard_pages();
1889
1890  if (UseTLAB) {
1891    tlab().make_parsable(true);  // retire TLAB, if any
1892  }
1893
1894#ifndef SERIALGC
1895  if (UseG1GC) {
1896    flush_barrier_queues();
1897  }
1898#endif
1899
1900  Threads::remove(this);
1901  delete this;
1902}
1903
1904
1905
1906
1907JavaThread* JavaThread::active() {
1908  Thread* thread = ThreadLocalStorage::thread();
1909  assert(thread != NULL, "just checking");
1910  if (thread->is_Java_thread()) {
1911    return (JavaThread*) thread;
1912  } else {
1913    assert(thread->is_VM_thread(), "this must be a vm thread");
1914    VM_Operation* op = ((VMThread*) thread)->vm_operation();
1915    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1916    assert(ret->is_Java_thread(), "must be a Java thread");
1917    return ret;
1918  }
1919}
1920
1921bool JavaThread::is_lock_owned(address adr) const {
1922  if (Thread::is_lock_owned(adr)) return true;
1923
1924  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1925    if (chunk->contains(adr)) return true;
1926  }
1927
1928  return false;
1929}
1930
1931
1932void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1933  chunk->set_next(monitor_chunks());
1934  set_monitor_chunks(chunk);
1935}
1936
1937void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1938  guarantee(monitor_chunks() != NULL, "must be non empty");
1939  if (monitor_chunks() == chunk) {
1940    set_monitor_chunks(chunk->next());
1941  } else {
1942    MonitorChunk* prev = monitor_chunks();
1943    while (prev->next() != chunk) prev = prev->next();
1944    prev->set_next(chunk->next());
1945  }
1946}
1947
1948// JVM support.
1949
1950// Note: this function shouldn't block if it's called in
1951// _thread_in_native_trans state (such as from
1952// check_special_condition_for_native_trans()).
1953void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1954
1955  if (has_last_Java_frame() && has_async_condition()) {
1956    // If we are at a polling page safepoint (not a poll return)
1957    // then we must defer async exception because live registers
1958    // will be clobbered by the exception path. Poll return is
1959    // ok because the call we a returning from already collides
1960    // with exception handling registers and so there is no issue.
1961    // (The exception handling path kills call result registers but
1962    //  this is ok since the exception kills the result anyway).
1963
1964    if (is_at_poll_safepoint()) {
1965      // if the code we are returning to has deoptimized we must defer
1966      // the exception otherwise live registers get clobbered on the
1967      // exception path before deoptimization is able to retrieve them.
1968      //
1969      RegisterMap map(this, false);
1970      frame caller_fr = last_frame().sender(&map);
1971      assert(caller_fr.is_compiled_frame(), "what?");
1972      if (caller_fr.is_deoptimized_frame()) {
1973        if (TraceExceptions) {
1974          ResourceMark rm;
1975          tty->print_cr("deferred async exception at compiled safepoint");
1976        }
1977        return;
1978      }
1979    }
1980  }
1981
1982  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
1983  if (condition == _no_async_condition) {
1984    // Conditions have changed since has_special_runtime_exit_condition()
1985    // was called:
1986    // - if we were here only because of an external suspend request,
1987    //   then that was taken care of above (or cancelled) so we are done
1988    // - if we were here because of another async request, then it has
1989    //   been cleared between the has_special_runtime_exit_condition()
1990    //   and now so again we are done
1991    return;
1992  }
1993
1994  // Check for pending async. exception
1995  if (_pending_async_exception != NULL) {
1996    // Only overwrite an already pending exception, if it is not a threadDeath.
1997    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
1998
1999      // We cannot call Exceptions::_throw(...) here because we cannot block
2000      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2001
2002      if (TraceExceptions) {
2003        ResourceMark rm;
2004        tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2005        if (has_last_Java_frame() ) {
2006          frame f = last_frame();
2007          tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2008        }
2009        tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2010      }
2011      _pending_async_exception = NULL;
2012      clear_has_async_exception();
2013    }
2014  }
2015
2016  if (check_unsafe_error &&
2017      condition == _async_unsafe_access_error && !has_pending_exception()) {
2018    condition = _no_async_condition;  // done
2019    switch (thread_state()) {
2020    case _thread_in_vm:
2021      {
2022        JavaThread* THREAD = this;
2023        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2024      }
2025    case _thread_in_native:
2026      {
2027        ThreadInVMfromNative tiv(this);
2028        JavaThread* THREAD = this;
2029        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2030      }
2031    case _thread_in_Java:
2032      {
2033        ThreadInVMfromJava tiv(this);
2034        JavaThread* THREAD = this;
2035        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2036      }
2037    default:
2038      ShouldNotReachHere();
2039    }
2040  }
2041
2042  assert(condition == _no_async_condition || has_pending_exception() ||
2043         (!check_unsafe_error && condition == _async_unsafe_access_error),
2044         "must have handled the async condition, if no exception");
2045}
2046
2047void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2048  //
2049  // Check for pending external suspend. Internal suspend requests do
2050  // not use handle_special_runtime_exit_condition().
2051  // If JNIEnv proxies are allowed, don't self-suspend if the target
2052  // thread is not the current thread. In older versions of jdbx, jdbx
2053  // threads could call into the VM with another thread's JNIEnv so we
2054  // can be here operating on behalf of a suspended thread (4432884).
2055  bool do_self_suspend = is_external_suspend_with_lock();
2056  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2057    //
2058    // Because thread is external suspended the safepoint code will count
2059    // thread as at a safepoint. This can be odd because we can be here
2060    // as _thread_in_Java which would normally transition to _thread_blocked
2061    // at a safepoint. We would like to mark the thread as _thread_blocked
2062    // before calling java_suspend_self like all other callers of it but
2063    // we must then observe proper safepoint protocol. (We can't leave
2064    // _thread_blocked with a safepoint in progress). However we can be
2065    // here as _thread_in_native_trans so we can't use a normal transition
2066    // constructor/destructor pair because they assert on that type of
2067    // transition. We could do something like:
2068    //
2069    // JavaThreadState state = thread_state();
2070    // set_thread_state(_thread_in_vm);
2071    // {
2072    //   ThreadBlockInVM tbivm(this);
2073    //   java_suspend_self()
2074    // }
2075    // set_thread_state(_thread_in_vm_trans);
2076    // if (safepoint) block;
2077    // set_thread_state(state);
2078    //
2079    // but that is pretty messy. Instead we just go with the way the
2080    // code has worked before and note that this is the only path to
2081    // java_suspend_self that doesn't put the thread in _thread_blocked
2082    // mode.
2083
2084    frame_anchor()->make_walkable(this);
2085    java_suspend_self();
2086
2087    // We might be here for reasons in addition to the self-suspend request
2088    // so check for other async requests.
2089  }
2090
2091  if (check_asyncs) {
2092    check_and_handle_async_exceptions();
2093  }
2094}
2095
2096void JavaThread::send_thread_stop(oop java_throwable)  {
2097  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2098  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2099  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2100
2101  // Do not throw asynchronous exceptions against the compiler thread
2102  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2103  if (is_Compiler_thread()) return;
2104
2105  {
2106    // Actually throw the Throwable against the target Thread - however
2107    // only if there is no thread death exception installed already.
2108    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2109      // If the topmost frame is a runtime stub, then we are calling into
2110      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2111      // must deoptimize the caller before continuing, as the compiled  exception handler table
2112      // may not be valid
2113      if (has_last_Java_frame()) {
2114        frame f = last_frame();
2115        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2116          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2117          RegisterMap reg_map(this, UseBiasedLocking);
2118          frame compiled_frame = f.sender(&reg_map);
2119          if (compiled_frame.can_be_deoptimized()) {
2120            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2121          }
2122        }
2123      }
2124
2125      // Set async. pending exception in thread.
2126      set_pending_async_exception(java_throwable);
2127
2128      if (TraceExceptions) {
2129       ResourceMark rm;
2130       tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2131      }
2132      // for AbortVMOnException flag
2133      NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2134    }
2135  }
2136
2137
2138  // Interrupt thread so it will wake up from a potential wait()
2139  Thread::interrupt(this);
2140}
2141
2142// External suspension mechanism.
2143//
2144// Tell the VM to suspend a thread when ever it knows that it does not hold on
2145// to any VM_locks and it is at a transition
2146// Self-suspension will happen on the transition out of the vm.
2147// Catch "this" coming in from JNIEnv pointers when the thread has been freed
2148//
2149// Guarantees on return:
2150//   + Target thread will not execute any new bytecode (that's why we need to
2151//     force a safepoint)
2152//   + Target thread will not enter any new monitors
2153//
2154void JavaThread::java_suspend() {
2155  { MutexLocker mu(Threads_lock);
2156    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2157       return;
2158    }
2159  }
2160
2161  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2162    if (!is_external_suspend()) {
2163      // a racing resume has cancelled us; bail out now
2164      return;
2165    }
2166
2167    // suspend is done
2168    uint32_t debug_bits = 0;
2169    // Warning: is_ext_suspend_completed() may temporarily drop the
2170    // SR_lock to allow the thread to reach a stable thread state if
2171    // it is currently in a transient thread state.
2172    if (is_ext_suspend_completed(false /* !called_by_wait */,
2173                                 SuspendRetryDelay, &debug_bits) ) {
2174      return;
2175    }
2176  }
2177
2178  VM_ForceSafepoint vm_suspend;
2179  VMThread::execute(&vm_suspend);
2180}
2181
2182// Part II of external suspension.
2183// A JavaThread self suspends when it detects a pending external suspend
2184// request. This is usually on transitions. It is also done in places
2185// where continuing to the next transition would surprise the caller,
2186// e.g., monitor entry.
2187//
2188// Returns the number of times that the thread self-suspended.
2189//
2190// Note: DO NOT call java_suspend_self() when you just want to block current
2191//       thread. java_suspend_self() is the second stage of cooperative
2192//       suspension for external suspend requests and should only be used
2193//       to complete an external suspend request.
2194//
2195int JavaThread::java_suspend_self() {
2196  int ret = 0;
2197
2198  // we are in the process of exiting so don't suspend
2199  if (is_exiting()) {
2200     clear_external_suspend();
2201     return ret;
2202  }
2203
2204  assert(_anchor.walkable() ||
2205    (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2206    "must have walkable stack");
2207
2208  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2209
2210  assert(!this->is_ext_suspended(),
2211    "a thread trying to self-suspend should not already be suspended");
2212
2213  if (this->is_suspend_equivalent()) {
2214    // If we are self-suspending as a result of the lifting of a
2215    // suspend equivalent condition, then the suspend_equivalent
2216    // flag is not cleared until we set the ext_suspended flag so
2217    // that wait_for_ext_suspend_completion() returns consistent
2218    // results.
2219    this->clear_suspend_equivalent();
2220  }
2221
2222  // A racing resume may have cancelled us before we grabbed SR_lock
2223  // above. Or another external suspend request could be waiting for us
2224  // by the time we return from SR_lock()->wait(). The thread
2225  // that requested the suspension may already be trying to walk our
2226  // stack and if we return now, we can change the stack out from under
2227  // it. This would be a "bad thing (TM)" and cause the stack walker
2228  // to crash. We stay self-suspended until there are no more pending
2229  // external suspend requests.
2230  while (is_external_suspend()) {
2231    ret++;
2232    this->set_ext_suspended();
2233
2234    // _ext_suspended flag is cleared by java_resume()
2235    while (is_ext_suspended()) {
2236      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2237    }
2238  }
2239
2240  return ret;
2241}
2242
2243#ifdef ASSERT
2244// verify the JavaThread has not yet been published in the Threads::list, and
2245// hence doesn't need protection from concurrent access at this stage
2246void JavaThread::verify_not_published() {
2247  if (!Threads_lock->owned_by_self()) {
2248   MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2249   assert( !Threads::includes(this),
2250           "java thread shouldn't have been published yet!");
2251  }
2252  else {
2253   assert( !Threads::includes(this),
2254           "java thread shouldn't have been published yet!");
2255  }
2256}
2257#endif
2258
2259// Slow path when the native==>VM/Java barriers detect a safepoint is in
2260// progress or when _suspend_flags is non-zero.
2261// Current thread needs to self-suspend if there is a suspend request and/or
2262// block if a safepoint is in progress.
2263// Async exception ISN'T checked.
2264// Note only the ThreadInVMfromNative transition can call this function
2265// directly and when thread state is _thread_in_native_trans
2266void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2267  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2268
2269  JavaThread *curJT = JavaThread::current();
2270  bool do_self_suspend = thread->is_external_suspend();
2271
2272  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2273
2274  // If JNIEnv proxies are allowed, don't self-suspend if the target
2275  // thread is not the current thread. In older versions of jdbx, jdbx
2276  // threads could call into the VM with another thread's JNIEnv so we
2277  // can be here operating on behalf of a suspended thread (4432884).
2278  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2279    JavaThreadState state = thread->thread_state();
2280
2281    // We mark this thread_blocked state as a suspend-equivalent so
2282    // that a caller to is_ext_suspend_completed() won't be confused.
2283    // The suspend-equivalent state is cleared by java_suspend_self().
2284    thread->set_suspend_equivalent();
2285
2286    // If the safepoint code sees the _thread_in_native_trans state, it will
2287    // wait until the thread changes to other thread state. There is no
2288    // guarantee on how soon we can obtain the SR_lock and complete the
2289    // self-suspend request. It would be a bad idea to let safepoint wait for
2290    // too long. Temporarily change the state to _thread_blocked to
2291    // let the VM thread know that this thread is ready for GC. The problem
2292    // of changing thread state is that safepoint could happen just after
2293    // java_suspend_self() returns after being resumed, and VM thread will
2294    // see the _thread_blocked state. We must check for safepoint
2295    // after restoring the state and make sure we won't leave while a safepoint
2296    // is in progress.
2297    thread->set_thread_state(_thread_blocked);
2298    thread->java_suspend_self();
2299    thread->set_thread_state(state);
2300    // Make sure new state is seen by VM thread
2301    if (os::is_MP()) {
2302      if (UseMembar) {
2303        // Force a fence between the write above and read below
2304        OrderAccess::fence();
2305      } else {
2306        // Must use this rather than serialization page in particular on Windows
2307        InterfaceSupport::serialize_memory(thread);
2308      }
2309    }
2310  }
2311
2312  if (SafepointSynchronize::do_call_back()) {
2313    // If we are safepointing, then block the caller which may not be
2314    // the same as the target thread (see above).
2315    SafepointSynchronize::block(curJT);
2316  }
2317
2318  if (thread->is_deopt_suspend()) {
2319    thread->clear_deopt_suspend();
2320    RegisterMap map(thread, false);
2321    frame f = thread->last_frame();
2322    while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2323      f = f.sender(&map);
2324    }
2325    if (f.id() == thread->must_deopt_id()) {
2326      thread->clear_must_deopt_id();
2327      f.deoptimize(thread);
2328    } else {
2329      fatal("missed deoptimization!");
2330    }
2331  }
2332}
2333
2334// Slow path when the native==>VM/Java barriers detect a safepoint is in
2335// progress or when _suspend_flags is non-zero.
2336// Current thread needs to self-suspend if there is a suspend request and/or
2337// block if a safepoint is in progress.
2338// Also check for pending async exception (not including unsafe access error).
2339// Note only the native==>VM/Java barriers can call this function and when
2340// thread state is _thread_in_native_trans.
2341void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2342  check_safepoint_and_suspend_for_native_trans(thread);
2343
2344  if (thread->has_async_exception()) {
2345    // We are in _thread_in_native_trans state, don't handle unsafe
2346    // access error since that may block.
2347    thread->check_and_handle_async_exceptions(false);
2348  }
2349}
2350
2351// This is a variant of the normal
2352// check_special_condition_for_native_trans with slightly different
2353// semantics for use by critical native wrappers.  It does all the
2354// normal checks but also performs the transition back into
2355// thread_in_Java state.  This is required so that critical natives
2356// can potentially block and perform a GC if they are the last thread
2357// exiting the GC_locker.
2358void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2359  check_special_condition_for_native_trans(thread);
2360
2361  // Finish the transition
2362  thread->set_thread_state(_thread_in_Java);
2363
2364  if (thread->do_critical_native_unlock()) {
2365    ThreadInVMfromJavaNoAsyncException tiv(thread);
2366    GC_locker::unlock_critical(thread);
2367    thread->clear_critical_native_unlock();
2368  }
2369}
2370
2371// We need to guarantee the Threads_lock here, since resumes are not
2372// allowed during safepoint synchronization
2373// Can only resume from an external suspension
2374void JavaThread::java_resume() {
2375  assert_locked_or_safepoint(Threads_lock);
2376
2377  // Sanity check: thread is gone, has started exiting or the thread
2378  // was not externally suspended.
2379  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2380    return;
2381  }
2382
2383  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2384
2385  clear_external_suspend();
2386
2387  if (is_ext_suspended()) {
2388    clear_ext_suspended();
2389    SR_lock()->notify_all();
2390  }
2391}
2392
2393void JavaThread::create_stack_guard_pages() {
2394  if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2395  address low_addr = stack_base() - stack_size();
2396  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2397
2398  int allocate = os::allocate_stack_guard_pages();
2399  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2400
2401  if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2402    warning("Attempt to allocate stack guard pages failed.");
2403    return;
2404  }
2405
2406  if (os::guard_memory((char *) low_addr, len)) {
2407    _stack_guard_state = stack_guard_enabled;
2408  } else {
2409    warning("Attempt to protect stack guard pages failed.");
2410    if (os::uncommit_memory((char *) low_addr, len)) {
2411      warning("Attempt to deallocate stack guard pages failed.");
2412    }
2413  }
2414}
2415
2416void JavaThread::remove_stack_guard_pages() {
2417  if (_stack_guard_state == stack_guard_unused) return;
2418  address low_addr = stack_base() - stack_size();
2419  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2420
2421  if (os::allocate_stack_guard_pages()) {
2422    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2423      _stack_guard_state = stack_guard_unused;
2424    } else {
2425      warning("Attempt to deallocate stack guard pages failed.");
2426    }
2427  } else {
2428    if (_stack_guard_state == stack_guard_unused) return;
2429    if (os::unguard_memory((char *) low_addr, len)) {
2430      _stack_guard_state = stack_guard_unused;
2431    } else {
2432        warning("Attempt to unprotect stack guard pages failed.");
2433    }
2434  }
2435}
2436
2437void JavaThread::enable_stack_yellow_zone() {
2438  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2439  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2440
2441  // The base notation is from the stacks point of view, growing downward.
2442  // We need to adjust it to work correctly with guard_memory()
2443  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2444
2445  guarantee(base < stack_base(),"Error calculating stack yellow zone");
2446  guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2447
2448  if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2449    _stack_guard_state = stack_guard_enabled;
2450  } else {
2451    warning("Attempt to guard stack yellow zone failed.");
2452  }
2453  enable_register_stack_guard();
2454}
2455
2456void JavaThread::disable_stack_yellow_zone() {
2457  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2458  assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2459
2460  // Simply return if called for a thread that does not use guard pages.
2461  if (_stack_guard_state == stack_guard_unused) return;
2462
2463  // The base notation is from the stacks point of view, growing downward.
2464  // We need to adjust it to work correctly with guard_memory()
2465  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2466
2467  if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2468    _stack_guard_state = stack_guard_yellow_disabled;
2469  } else {
2470    warning("Attempt to unguard stack yellow zone failed.");
2471  }
2472  disable_register_stack_guard();
2473}
2474
2475void JavaThread::enable_stack_red_zone() {
2476  // The base notation is from the stacks point of view, growing downward.
2477  // We need to adjust it to work correctly with guard_memory()
2478  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2479  address base = stack_red_zone_base() - stack_red_zone_size();
2480
2481  guarantee(base < stack_base(),"Error calculating stack red zone");
2482  guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2483
2484  if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2485    warning("Attempt to guard stack red zone failed.");
2486  }
2487}
2488
2489void JavaThread::disable_stack_red_zone() {
2490  // The base notation is from the stacks point of view, growing downward.
2491  // We need to adjust it to work correctly with guard_memory()
2492  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2493  address base = stack_red_zone_base() - stack_red_zone_size();
2494  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2495    warning("Attempt to unguard stack red zone failed.");
2496  }
2497}
2498
2499void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2500  // ignore is there is no stack
2501  if (!has_last_Java_frame()) return;
2502  // traverse the stack frames. Starts from top frame.
2503  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2504    frame* fr = fst.current();
2505    f(fr, fst.register_map());
2506  }
2507}
2508
2509
2510#ifndef PRODUCT
2511// Deoptimization
2512// Function for testing deoptimization
2513void JavaThread::deoptimize() {
2514  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2515  StackFrameStream fst(this, UseBiasedLocking);
2516  bool deopt = false;           // Dump stack only if a deopt actually happens.
2517  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2518  // Iterate over all frames in the thread and deoptimize
2519  for(; !fst.is_done(); fst.next()) {
2520    if(fst.current()->can_be_deoptimized()) {
2521
2522      if (only_at) {
2523        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2524        // consists of comma or carriage return separated numbers so
2525        // search for the current bci in that string.
2526        address pc = fst.current()->pc();
2527        nmethod* nm =  (nmethod*) fst.current()->cb();
2528        ScopeDesc* sd = nm->scope_desc_at( pc);
2529        char buffer[8];
2530        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2531        size_t len = strlen(buffer);
2532        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2533        while (found != NULL) {
2534          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2535              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2536            // Check that the bci found is bracketed by terminators.
2537            break;
2538          }
2539          found = strstr(found + 1, buffer);
2540        }
2541        if (!found) {
2542          continue;
2543        }
2544      }
2545
2546      if (DebugDeoptimization && !deopt) {
2547        deopt = true; // One-time only print before deopt
2548        tty->print_cr("[BEFORE Deoptimization]");
2549        trace_frames();
2550        trace_stack();
2551      }
2552      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2553    }
2554  }
2555
2556  if (DebugDeoptimization && deopt) {
2557    tty->print_cr("[AFTER Deoptimization]");
2558    trace_frames();
2559  }
2560}
2561
2562
2563// Make zombies
2564void JavaThread::make_zombies() {
2565  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2566    if (fst.current()->can_be_deoptimized()) {
2567      // it is a Java nmethod
2568      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2569      nm->make_not_entrant();
2570    }
2571  }
2572}
2573#endif // PRODUCT
2574
2575
2576void JavaThread::deoptimized_wrt_marked_nmethods() {
2577  if (!has_last_Java_frame()) return;
2578  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2579  StackFrameStream fst(this, UseBiasedLocking);
2580  for(; !fst.is_done(); fst.next()) {
2581    if (fst.current()->should_be_deoptimized()) {
2582      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2583    }
2584  }
2585}
2586
2587
2588// GC support
2589static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2590
2591void JavaThread::gc_epilogue() {
2592  frames_do(frame_gc_epilogue);
2593}
2594
2595
2596static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2597
2598void JavaThread::gc_prologue() {
2599  frames_do(frame_gc_prologue);
2600}
2601
2602// If the caller is a NamedThread, then remember, in the current scope,
2603// the given JavaThread in its _processed_thread field.
2604class RememberProcessedThread: public StackObj {
2605  NamedThread* _cur_thr;
2606public:
2607  RememberProcessedThread(JavaThread* jthr) {
2608    Thread* thread = Thread::current();
2609    if (thread->is_Named_thread()) {
2610      _cur_thr = (NamedThread *)thread;
2611      _cur_thr->set_processed_thread(jthr);
2612    } else {
2613      _cur_thr = NULL;
2614    }
2615  }
2616
2617  ~RememberProcessedThread() {
2618    if (_cur_thr) {
2619      _cur_thr->set_processed_thread(NULL);
2620    }
2621  }
2622};
2623
2624void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2625  // Verify that the deferred card marks have been flushed.
2626  assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2627
2628  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2629  // since there may be more than one thread using each ThreadProfiler.
2630
2631  // Traverse the GCHandles
2632  Thread::oops_do(f, cf);
2633
2634  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2635          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2636
2637  if (has_last_Java_frame()) {
2638    // Record JavaThread to GC thread
2639    RememberProcessedThread rpt(this);
2640
2641    // Traverse the privileged stack
2642    if (_privileged_stack_top != NULL) {
2643      _privileged_stack_top->oops_do(f);
2644    }
2645
2646    // traverse the registered growable array
2647    if (_array_for_gc != NULL) {
2648      for (int index = 0; index < _array_for_gc->length(); index++) {
2649        f->do_oop(_array_for_gc->adr_at(index));
2650      }
2651    }
2652
2653    // Traverse the monitor chunks
2654    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2655      chunk->oops_do(f);
2656    }
2657
2658    // Traverse the execution stack
2659    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2660      fst.current()->oops_do(f, cf, fst.register_map());
2661    }
2662  }
2663
2664  // callee_target is never live across a gc point so NULL it here should
2665  // it still contain a methdOop.
2666
2667  set_callee_target(NULL);
2668
2669  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2670  // If we have deferred set_locals there might be oops waiting to be
2671  // written
2672  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2673  if (list != NULL) {
2674    for (int i = 0; i < list->length(); i++) {
2675      list->at(i)->oops_do(f);
2676    }
2677  }
2678
2679  // Traverse instance variables at the end since the GC may be moving things
2680  // around using this function
2681  f->do_oop((oop*) &_threadObj);
2682  f->do_oop((oop*) &_vm_result);
2683  f->do_oop((oop*) &_exception_oop);
2684  f->do_oop((oop*) &_pending_async_exception);
2685
2686  if (jvmti_thread_state() != NULL) {
2687    jvmti_thread_state()->oops_do(f);
2688  }
2689}
2690
2691void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2692  Thread::nmethods_do(cf);  // (super method is a no-op)
2693
2694  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2695          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2696
2697  if (has_last_Java_frame()) {
2698    // Traverse the execution stack
2699    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2700      fst.current()->nmethods_do(cf);
2701    }
2702  }
2703}
2704
2705void JavaThread::metadata_do(void f(Metadata*)) {
2706  Thread::metadata_do(f);
2707  if (has_last_Java_frame()) {
2708    // Traverse the execution stack to call f() on the methods in the stack
2709    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2710      fst.current()->metadata_do(f);
2711    }
2712  } else if (is_Compiler_thread()) {
2713    // need to walk ciMetadata in current compile tasks to keep alive.
2714    CompilerThread* ct = (CompilerThread*)this;
2715    if (ct->env() != NULL) {
2716      ct->env()->metadata_do(f);
2717    }
2718  }
2719}
2720
2721// Printing
2722const char* _get_thread_state_name(JavaThreadState _thread_state) {
2723  switch (_thread_state) {
2724  case _thread_uninitialized:     return "_thread_uninitialized";
2725  case _thread_new:               return "_thread_new";
2726  case _thread_new_trans:         return "_thread_new_trans";
2727  case _thread_in_native:         return "_thread_in_native";
2728  case _thread_in_native_trans:   return "_thread_in_native_trans";
2729  case _thread_in_vm:             return "_thread_in_vm";
2730  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2731  case _thread_in_Java:           return "_thread_in_Java";
2732  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2733  case _thread_blocked:           return "_thread_blocked";
2734  case _thread_blocked_trans:     return "_thread_blocked_trans";
2735  default:                        return "unknown thread state";
2736  }
2737}
2738
2739#ifndef PRODUCT
2740void JavaThread::print_thread_state_on(outputStream *st) const {
2741  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2742};
2743void JavaThread::print_thread_state() const {
2744  print_thread_state_on(tty);
2745};
2746#endif // PRODUCT
2747
2748// Called by Threads::print() for VM_PrintThreads operation
2749void JavaThread::print_on(outputStream *st) const {
2750  st->print("\"%s\" ", get_thread_name());
2751  oop thread_oop = threadObj();
2752  if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2753  Thread::print_on(st);
2754  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2755  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2756  if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2757    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2758  }
2759#ifndef PRODUCT
2760  print_thread_state_on(st);
2761  _safepoint_state->print_on(st);
2762#endif // PRODUCT
2763}
2764
2765// Called by fatal error handler. The difference between this and
2766// JavaThread::print() is that we can't grab lock or allocate memory.
2767void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2768  st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2769  oop thread_obj = threadObj();
2770  if (thread_obj != NULL) {
2771     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2772  }
2773  st->print(" [");
2774  st->print("%s", _get_thread_state_name(_thread_state));
2775  if (osthread()) {
2776    st->print(", id=%d", osthread()->thread_id());
2777  }
2778  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2779            _stack_base - _stack_size, _stack_base);
2780  st->print("]");
2781  return;
2782}
2783
2784// Verification
2785
2786static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2787
2788void JavaThread::verify() {
2789  // Verify oops in the thread.
2790  oops_do(&VerifyOopClosure::verify_oop, NULL);
2791
2792  // Verify the stack frames.
2793  frames_do(frame_verify);
2794}
2795
2796// CR 6300358 (sub-CR 2137150)
2797// Most callers of this method assume that it can't return NULL but a
2798// thread may not have a name whilst it is in the process of attaching to
2799// the VM - see CR 6412693, and there are places where a JavaThread can be
2800// seen prior to having it's threadObj set (eg JNI attaching threads and
2801// if vm exit occurs during initialization). These cases can all be accounted
2802// for such that this method never returns NULL.
2803const char* JavaThread::get_thread_name() const {
2804#ifdef ASSERT
2805  // early safepoints can hit while current thread does not yet have TLS
2806  if (!SafepointSynchronize::is_at_safepoint()) {
2807    Thread *cur = Thread::current();
2808    if (!(cur->is_Java_thread() && cur == this)) {
2809      // Current JavaThreads are allowed to get their own name without
2810      // the Threads_lock.
2811      assert_locked_or_safepoint(Threads_lock);
2812    }
2813  }
2814#endif // ASSERT
2815    return get_thread_name_string();
2816}
2817
2818// Returns a non-NULL representation of this thread's name, or a suitable
2819// descriptive string if there is no set name
2820const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2821  const char* name_str;
2822  oop thread_obj = threadObj();
2823  if (thread_obj != NULL) {
2824    typeArrayOop name = java_lang_Thread::name(thread_obj);
2825    if (name != NULL) {
2826      if (buf == NULL) {
2827        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2828      }
2829      else {
2830        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2831      }
2832    }
2833    else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2834      name_str = "<no-name - thread is attaching>";
2835    }
2836    else {
2837      name_str = Thread::name();
2838    }
2839  }
2840  else {
2841    name_str = Thread::name();
2842  }
2843  assert(name_str != NULL, "unexpected NULL thread name");
2844  return name_str;
2845}
2846
2847
2848const char* JavaThread::get_threadgroup_name() const {
2849  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2850  oop thread_obj = threadObj();
2851  if (thread_obj != NULL) {
2852    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2853    if (thread_group != NULL) {
2854      typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2855      // ThreadGroup.name can be null
2856      if (name != NULL) {
2857        const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2858        return str;
2859      }
2860    }
2861  }
2862  return NULL;
2863}
2864
2865const char* JavaThread::get_parent_name() const {
2866  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2867  oop thread_obj = threadObj();
2868  if (thread_obj != NULL) {
2869    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2870    if (thread_group != NULL) {
2871      oop parent = java_lang_ThreadGroup::parent(thread_group);
2872      if (parent != NULL) {
2873        typeArrayOop name = java_lang_ThreadGroup::name(parent);
2874        // ThreadGroup.name can be null
2875        if (name != NULL) {
2876          const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2877          return str;
2878        }
2879      }
2880    }
2881  }
2882  return NULL;
2883}
2884
2885ThreadPriority JavaThread::java_priority() const {
2886  oop thr_oop = threadObj();
2887  if (thr_oop == NULL) return NormPriority; // Bootstrapping
2888  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2889  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2890  return priority;
2891}
2892
2893void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2894
2895  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2896  // Link Java Thread object <-> C++ Thread
2897
2898  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2899  // and put it into a new Handle.  The Handle "thread_oop" can then
2900  // be used to pass the C++ thread object to other methods.
2901
2902  // Set the Java level thread object (jthread) field of the
2903  // new thread (a JavaThread *) to C++ thread object using the
2904  // "thread_oop" handle.
2905
2906  // Set the thread field (a JavaThread *) of the
2907  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2908
2909  Handle thread_oop(Thread::current(),
2910                    JNIHandles::resolve_non_null(jni_thread));
2911  assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2912    "must be initialized");
2913  set_threadObj(thread_oop());
2914  java_lang_Thread::set_thread(thread_oop(), this);
2915
2916  if (prio == NoPriority) {
2917    prio = java_lang_Thread::priority(thread_oop());
2918    assert(prio != NoPriority, "A valid priority should be present");
2919  }
2920
2921  // Push the Java priority down to the native thread; needs Threads_lock
2922  Thread::set_priority(this, prio);
2923
2924  // Add the new thread to the Threads list and set it in motion.
2925  // We must have threads lock in order to call Threads::add.
2926  // It is crucial that we do not block before the thread is
2927  // added to the Threads list for if a GC happens, then the java_thread oop
2928  // will not be visited by GC.
2929  Threads::add(this);
2930}
2931
2932oop JavaThread::current_park_blocker() {
2933  // Support for JSR-166 locks
2934  oop thread_oop = threadObj();
2935  if (thread_oop != NULL &&
2936      JDK_Version::current().supports_thread_park_blocker()) {
2937    return java_lang_Thread::park_blocker(thread_oop);
2938  }
2939  return NULL;
2940}
2941
2942
2943void JavaThread::print_stack_on(outputStream* st) {
2944  if (!has_last_Java_frame()) return;
2945  ResourceMark rm;
2946  HandleMark   hm;
2947
2948  RegisterMap reg_map(this);
2949  vframe* start_vf = last_java_vframe(&reg_map);
2950  int count = 0;
2951  for (vframe* f = start_vf; f; f = f->sender() ) {
2952    if (f->is_java_frame()) {
2953      javaVFrame* jvf = javaVFrame::cast(f);
2954      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2955
2956      // Print out lock information
2957      if (JavaMonitorsInStackTrace) {
2958        jvf->print_lock_info_on(st, count);
2959      }
2960    } else {
2961      // Ignore non-Java frames
2962    }
2963
2964    // Bail-out case for too deep stacks
2965    count++;
2966    if (MaxJavaStackTraceDepth == count) return;
2967  }
2968}
2969
2970
2971// JVMTI PopFrame support
2972void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2973  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2974  if (in_bytes(size_in_bytes) != 0) {
2975    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
2976    _popframe_preserved_args_size = in_bytes(size_in_bytes);
2977    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2978  }
2979}
2980
2981void* JavaThread::popframe_preserved_args() {
2982  return _popframe_preserved_args;
2983}
2984
2985ByteSize JavaThread::popframe_preserved_args_size() {
2986  return in_ByteSize(_popframe_preserved_args_size);
2987}
2988
2989WordSize JavaThread::popframe_preserved_args_size_in_words() {
2990  int sz = in_bytes(popframe_preserved_args_size());
2991  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
2992  return in_WordSize(sz / wordSize);
2993}
2994
2995void JavaThread::popframe_free_preserved_args() {
2996  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
2997  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
2998  _popframe_preserved_args = NULL;
2999  _popframe_preserved_args_size = 0;
3000}
3001
3002#ifndef PRODUCT
3003
3004void JavaThread::trace_frames() {
3005  tty->print_cr("[Describe stack]");
3006  int frame_no = 1;
3007  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3008    tty->print("  %d. ", frame_no++);
3009    fst.current()->print_value_on(tty,this);
3010    tty->cr();
3011  }
3012}
3013
3014class PrintAndVerifyOopClosure: public OopClosure {
3015 protected:
3016  template <class T> inline void do_oop_work(T* p) {
3017    oop obj = oopDesc::load_decode_heap_oop(p);
3018    if (obj == NULL) return;
3019    tty->print(INTPTR_FORMAT ": ", p);
3020    if (obj->is_oop_or_null()) {
3021      if (obj->is_objArray()) {
3022        tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3023      } else {
3024        obj->print();
3025      }
3026    } else {
3027      tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3028    }
3029    tty->cr();
3030  }
3031 public:
3032  virtual void do_oop(oop* p) { do_oop_work(p); }
3033  virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3034};
3035
3036
3037static void oops_print(frame* f, const RegisterMap *map) {
3038  PrintAndVerifyOopClosure print;
3039  f->print_value();
3040  f->oops_do(&print, NULL, (RegisterMap*)map);
3041}
3042
3043// Print our all the locations that contain oops and whether they are
3044// valid or not.  This useful when trying to find the oldest frame
3045// where an oop has gone bad since the frame walk is from youngest to
3046// oldest.
3047void JavaThread::trace_oops() {
3048  tty->print_cr("[Trace oops]");
3049  frames_do(oops_print);
3050}
3051
3052
3053#ifdef ASSERT
3054// Print or validate the layout of stack frames
3055void JavaThread::print_frame_layout(int depth, bool validate_only) {
3056  ResourceMark rm;
3057  PRESERVE_EXCEPTION_MARK;
3058  FrameValues values;
3059  int frame_no = 0;
3060  for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3061    fst.current()->describe(values, ++frame_no);
3062    if (depth == frame_no) break;
3063  }
3064  if (validate_only) {
3065    values.validate();
3066  } else {
3067    tty->print_cr("[Describe stack layout]");
3068    values.print(this);
3069  }
3070}
3071#endif
3072
3073void JavaThread::trace_stack_from(vframe* start_vf) {
3074  ResourceMark rm;
3075  int vframe_no = 1;
3076  for (vframe* f = start_vf; f; f = f->sender() ) {
3077    if (f->is_java_frame()) {
3078      javaVFrame::cast(f)->print_activation(vframe_no++);
3079    } else {
3080      f->print();
3081    }
3082    if (vframe_no > StackPrintLimit) {
3083      tty->print_cr("...<more frames>...");
3084      return;
3085    }
3086  }
3087}
3088
3089
3090void JavaThread::trace_stack() {
3091  if (!has_last_Java_frame()) return;
3092  ResourceMark rm;
3093  HandleMark   hm;
3094  RegisterMap reg_map(this);
3095  trace_stack_from(last_java_vframe(&reg_map));
3096}
3097
3098
3099#endif // PRODUCT
3100
3101
3102javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3103  assert(reg_map != NULL, "a map must be given");
3104  frame f = last_frame();
3105  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3106    if (vf->is_java_frame()) return javaVFrame::cast(vf);
3107  }
3108  return NULL;
3109}
3110
3111
3112Klass* JavaThread::security_get_caller_class(int depth) {
3113  vframeStream vfst(this);
3114  vfst.security_get_caller_frame(depth);
3115  if (!vfst.at_end()) {
3116    return vfst.method()->method_holder();
3117  }
3118  return NULL;
3119}
3120
3121static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3122  assert(thread->is_Compiler_thread(), "must be compiler thread");
3123  CompileBroker::compiler_thread_loop();
3124}
3125
3126// Create a CompilerThread
3127CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3128: JavaThread(&compiler_thread_entry) {
3129  _env   = NULL;
3130  _log   = NULL;
3131  _task  = NULL;
3132  _queue = queue;
3133  _counters = counters;
3134  _buffer_blob = NULL;
3135  _scanned_nmethod = NULL;
3136
3137#ifndef PRODUCT
3138  _ideal_graph_printer = NULL;
3139#endif
3140}
3141
3142void CompilerThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3143  JavaThread::oops_do(f, cf);
3144  if (_scanned_nmethod != NULL && cf != NULL) {
3145    // Safepoints can occur when the sweeper is scanning an nmethod so
3146    // process it here to make sure it isn't unloaded in the middle of
3147    // a scan.
3148    cf->do_code_blob(_scanned_nmethod);
3149  }
3150}
3151
3152// ======= Threads ========
3153
3154// The Threads class links together all active threads, and provides
3155// operations over all threads.  It is protected by its own Mutex
3156// lock, which is also used in other contexts to protect thread
3157// operations from having the thread being operated on from exiting
3158// and going away unexpectedly (e.g., safepoint synchronization)
3159
3160JavaThread* Threads::_thread_list = NULL;
3161int         Threads::_number_of_threads = 0;
3162int         Threads::_number_of_non_daemon_threads = 0;
3163int         Threads::_return_code = 0;
3164size_t      JavaThread::_stack_size_at_create = 0;
3165#ifdef ASSERT
3166bool        Threads::_vm_complete = false;
3167#endif
3168
3169// All JavaThreads
3170#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3171
3172void os_stream();
3173
3174// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3175void Threads::threads_do(ThreadClosure* tc) {
3176  assert_locked_or_safepoint(Threads_lock);
3177  // ALL_JAVA_THREADS iterates through all JavaThreads
3178  ALL_JAVA_THREADS(p) {
3179    tc->do_thread(p);
3180  }
3181  // Someday we could have a table or list of all non-JavaThreads.
3182  // For now, just manually iterate through them.
3183  tc->do_thread(VMThread::vm_thread());
3184  Universe::heap()->gc_threads_do(tc);
3185  WatcherThread *wt = WatcherThread::watcher_thread();
3186  // Strictly speaking, the following NULL check isn't sufficient to make sure
3187  // the data for WatcherThread is still valid upon being examined. However,
3188  // considering that WatchThread terminates when the VM is on the way to
3189  // exit at safepoint, the chance of the above is extremely small. The right
3190  // way to prevent termination of WatcherThread would be to acquire
3191  // Terminator_lock, but we can't do that without violating the lock rank
3192  // checking in some cases.
3193  if (wt != NULL)
3194    tc->do_thread(wt);
3195
3196  // If CompilerThreads ever become non-JavaThreads, add them here
3197}
3198
3199jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3200
3201  extern void JDK_Version_init();
3202
3203  // Check version
3204  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3205
3206  // Initialize the output stream module
3207  ostream_init();
3208
3209  // Process java launcher properties.
3210  Arguments::process_sun_java_launcher_properties(args);
3211
3212  // Initialize the os module before using TLS
3213  os::init();
3214
3215  // Initialize system properties.
3216  Arguments::init_system_properties();
3217
3218  // So that JDK version can be used as a discrimintor when parsing arguments
3219  JDK_Version_init();
3220
3221  // Update/Initialize System properties after JDK version number is known
3222  Arguments::init_version_specific_system_properties();
3223
3224  // Parse arguments
3225  jint parse_result = Arguments::parse(args);
3226  if (parse_result != JNI_OK) return parse_result;
3227
3228  if (PauseAtStartup) {
3229    os::pause();
3230  }
3231
3232#ifndef USDT2
3233  HS_DTRACE_PROBE(hotspot, vm__init__begin);
3234#else /* USDT2 */
3235  HOTSPOT_VM_INIT_BEGIN();
3236#endif /* USDT2 */
3237
3238  // Record VM creation timing statistics
3239  TraceVmCreationTime create_vm_timer;
3240  create_vm_timer.start();
3241
3242  // Timing (must come after argument parsing)
3243  TraceTime timer("Create VM", TraceStartupTime);
3244
3245  // Initialize the os module after parsing the args
3246  jint os_init_2_result = os::init_2();
3247  if (os_init_2_result != JNI_OK) return os_init_2_result;
3248
3249  // intialize TLS
3250  ThreadLocalStorage::init();
3251
3252  // Bootstrap native memory tracking, so it can start recording memory
3253  // activities before worker thread is started. This is the first phase
3254  // of bootstrapping, VM is currently running in single-thread mode.
3255  MemTracker::bootstrap_single_thread();
3256
3257  // Initialize output stream logging
3258  ostream_init_log();
3259
3260  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3261  // Must be before create_vm_init_agents()
3262  if (Arguments::init_libraries_at_startup()) {
3263    convert_vm_init_libraries_to_agents();
3264  }
3265
3266  // Launch -agentlib/-agentpath and converted -Xrun agents
3267  if (Arguments::init_agents_at_startup()) {
3268    create_vm_init_agents();
3269  }
3270
3271  // Initialize Threads state
3272  _thread_list = NULL;
3273  _number_of_threads = 0;
3274  _number_of_non_daemon_threads = 0;
3275
3276  // Initialize global data structures and create system classes in heap
3277  vm_init_globals();
3278
3279  // Attach the main thread to this os thread
3280  JavaThread* main_thread = new JavaThread();
3281  main_thread->set_thread_state(_thread_in_vm);
3282  // must do this before set_active_handles and initialize_thread_local_storage
3283  // Note: on solaris initialize_thread_local_storage() will (indirectly)
3284  // change the stack size recorded here to one based on the java thread
3285  // stacksize. This adjusted size is what is used to figure the placement
3286  // of the guard pages.
3287  main_thread->record_stack_base_and_size();
3288  main_thread->initialize_thread_local_storage();
3289
3290  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3291
3292  if (!main_thread->set_as_starting_thread()) {
3293    vm_shutdown_during_initialization(
3294      "Failed necessary internal allocation. Out of swap space");
3295    delete main_thread;
3296    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3297    return JNI_ENOMEM;
3298  }
3299
3300  // Enable guard page *after* os::create_main_thread(), otherwise it would
3301  // crash Linux VM, see notes in os_linux.cpp.
3302  main_thread->create_stack_guard_pages();
3303
3304  // Initialize Java-Level synchronization subsystem
3305  ObjectMonitor::Initialize() ;
3306
3307  // Second phase of bootstrapping, VM is about entering multi-thread mode
3308  MemTracker::bootstrap_multi_thread();
3309
3310  // Initialize global modules
3311  jint status = init_globals();
3312  if (status != JNI_OK) {
3313    delete main_thread;
3314    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3315    return status;
3316  }
3317
3318  // Should be done after the heap is fully created
3319  main_thread->cache_global_variables();
3320
3321  HandleMark hm;
3322
3323  { MutexLocker mu(Threads_lock);
3324    Threads::add(main_thread);
3325  }
3326
3327  // Any JVMTI raw monitors entered in onload will transition into
3328  // real raw monitor. VM is setup enough here for raw monitor enter.
3329  JvmtiExport::transition_pending_onload_raw_monitors();
3330
3331  if (VerifyBeforeGC &&
3332      Universe::heap()->total_collections() >= VerifyGCStartAt) {
3333    Universe::heap()->prepare_for_verify();
3334    Universe::verify();   // make sure we're starting with a clean slate
3335  }
3336
3337  // Fully start NMT
3338  MemTracker::start();
3339
3340  // Create the VMThread
3341  { TraceTime timer("Start VMThread", TraceStartupTime);
3342    VMThread::create();
3343    Thread* vmthread = VMThread::vm_thread();
3344
3345    if (!os::create_thread(vmthread, os::vm_thread))
3346      vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3347
3348    // Wait for the VM thread to become ready, and VMThread::run to initialize
3349    // Monitors can have spurious returns, must always check another state flag
3350    {
3351      MutexLocker ml(Notify_lock);
3352      os::start_thread(vmthread);
3353      while (vmthread->active_handles() == NULL) {
3354        Notify_lock->wait();
3355      }
3356    }
3357  }
3358
3359  assert (Universe::is_fully_initialized(), "not initialized");
3360  EXCEPTION_MARK;
3361
3362  // At this point, the Universe is initialized, but we have not executed
3363  // any byte code.  Now is a good time (the only time) to dump out the
3364  // internal state of the JVM for sharing.
3365  if (DumpSharedSpaces) {
3366    MetaspaceShared::preload_and_dump(CHECK_0);
3367    ShouldNotReachHere();
3368  }
3369
3370  // Always call even when there are not JVMTI environments yet, since environments
3371  // may be attached late and JVMTI must track phases of VM execution
3372  JvmtiExport::enter_start_phase();
3373
3374  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3375  JvmtiExport::post_vm_start();
3376
3377  {
3378    TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3379
3380    if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3381      create_vm_init_libraries();
3382    }
3383
3384    if (InitializeJavaLangString) {
3385      initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3386    } else {
3387      warning("java.lang.String not initialized");
3388    }
3389
3390    if (AggressiveOpts) {
3391      {
3392        // Forcibly initialize java/util/HashMap and mutate the private
3393        // static final "frontCacheEnabled" field before we start creating instances
3394#ifdef ASSERT
3395        Klass* tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3396        assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3397#endif
3398        Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3399        KlassHandle k = KlassHandle(THREAD, k_o);
3400        guarantee(k.not_null(), "Must find java/util/HashMap");
3401        instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3402        ik->initialize(CHECK_0);
3403        fieldDescriptor fd;
3404        // Possible we might not find this field; if so, don't break
3405        if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3406          k()->java_mirror()->bool_field_put(fd.offset(), true);
3407        }
3408      }
3409
3410      if (UseStringCache) {
3411        // Forcibly initialize java/lang/StringValue and mutate the private
3412        // static final "stringCacheEnabled" field before we start creating instances
3413        Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3414        // Possible that StringValue isn't present: if so, silently don't break
3415        if (k_o != NULL) {
3416          KlassHandle k = KlassHandle(THREAD, k_o);
3417          instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3418          ik->initialize(CHECK_0);
3419          fieldDescriptor fd;
3420          // Possible we might not find this field: if so, silently don't break
3421          if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3422            k()->java_mirror()->bool_field_put(fd.offset(), true);
3423          }
3424        }
3425      }
3426    }
3427
3428    // Initialize java_lang.System (needed before creating the thread)
3429    if (InitializeJavaLangSystem) {
3430      initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3431      initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3432      Handle thread_group = create_initial_thread_group(CHECK_0);
3433      Universe::set_main_thread_group(thread_group());
3434      initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3435      oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3436      main_thread->set_threadObj(thread_object);
3437      // Set thread status to running since main thread has
3438      // been started and running.
3439      java_lang_Thread::set_thread_status(thread_object,
3440                                          java_lang_Thread::RUNNABLE);
3441
3442      // The VM preresolve methods to these classes. Make sure that get initialized
3443      initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3444      initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3445      // The VM creates & returns objects of this class. Make sure it's initialized.
3446      initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3447      call_initializeSystemClass(CHECK_0);
3448
3449      // get the Java runtime name after java.lang.System is initialized
3450      JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3451    } else {
3452      warning("java.lang.System not initialized");
3453    }
3454
3455    // an instance of OutOfMemory exception has been allocated earlier
3456    if (InitializeJavaLangExceptionsErrors) {
3457      initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3458      initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3459      initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3460      initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3461      initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3462      initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3463      initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3464      initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
3465    } else {
3466      warning("java.lang.OutOfMemoryError has not been initialized");
3467      warning("java.lang.NullPointerException has not been initialized");
3468      warning("java.lang.ClassCastException has not been initialized");
3469      warning("java.lang.ArrayStoreException has not been initialized");
3470      warning("java.lang.ArithmeticException has not been initialized");
3471      warning("java.lang.StackOverflowError has not been initialized");
3472      warning("java.lang.IllegalArgumentException has not been initialized");
3473    }
3474  }
3475
3476  // See        : bugid 4211085.
3477  // Background : the static initializer of java.lang.Compiler tries to read
3478  //              property"java.compiler" and read & write property "java.vm.info".
3479  //              When a security manager is installed through the command line
3480  //              option "-Djava.security.manager", the above properties are not
3481  //              readable and the static initializer for java.lang.Compiler fails
3482  //              resulting in a NoClassDefFoundError.  This can happen in any
3483  //              user code which calls methods in java.lang.Compiler.
3484  // Hack :       the hack is to pre-load and initialize this class, so that only
3485  //              system domains are on the stack when the properties are read.
3486  //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3487  //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3488  // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3489  //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3490  //              Once that is done, we should remove this hack.
3491  initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3492
3493  // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3494  // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3495  // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3496  // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3497  // This should also be taken out as soon as 4211383 gets fixed.
3498  reset_vm_info_property(CHECK_0);
3499
3500  quicken_jni_functions();
3501
3502  // Must be run after init_ft which initializes ft_enabled
3503  if (TRACE_INITIALIZE() != JNI_OK) {
3504    vm_exit_during_initialization("Failed to initialize tracing backend");
3505  }
3506
3507  // Set flag that basic initialization has completed. Used by exceptions and various
3508  // debug stuff, that does not work until all basic classes have been initialized.
3509  set_init_completed();
3510
3511#ifndef USDT2
3512  HS_DTRACE_PROBE(hotspot, vm__init__end);
3513#else /* USDT2 */
3514  HOTSPOT_VM_INIT_END();
3515#endif /* USDT2 */
3516
3517  // record VM initialization completion time
3518  Management::record_vm_init_completed();
3519
3520  // Compute system loader. Note that this has to occur after set_init_completed, since
3521  // valid exceptions may be thrown in the process.
3522  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3523  // set_init_completed has just been called, causing exceptions not to be shortcut
3524  // anymore. We call vm_exit_during_initialization directly instead.
3525  SystemDictionary::compute_java_system_loader(THREAD);
3526  if (HAS_PENDING_EXCEPTION) {
3527    vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3528  }
3529
3530#ifndef SERIALGC
3531  // Support for ConcurrentMarkSweep. This should be cleaned up
3532  // and better encapsulated. The ugly nested if test would go away
3533  // once things are properly refactored. XXX YSR
3534  if (UseConcMarkSweepGC || UseG1GC) {
3535    if (UseConcMarkSweepGC) {
3536      ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3537    } else {
3538      ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3539    }
3540    if (HAS_PENDING_EXCEPTION) {
3541      vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3542    }
3543  }
3544#endif // SERIALGC
3545
3546  // Always call even when there are not JVMTI environments yet, since environments
3547  // may be attached late and JVMTI must track phases of VM execution
3548  JvmtiExport::enter_live_phase();
3549
3550  // Signal Dispatcher needs to be started before VMInit event is posted
3551  os::signal_init();
3552
3553  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3554  if (!DisableAttachMechanism) {
3555    if (StartAttachListener || AttachListener::init_at_startup()) {
3556      AttachListener::init();
3557    }
3558  }
3559
3560  // Launch -Xrun agents
3561  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3562  // back-end can launch with -Xdebug -Xrunjdwp.
3563  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3564    create_vm_init_libraries();
3565  }
3566
3567  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3568  JvmtiExport::post_vm_initialized();
3569
3570  if (!TRACE_START()) {
3571    vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3572  }
3573
3574  if (CleanChunkPoolAsync) {
3575    Chunk::start_chunk_pool_cleaner_task();
3576  }
3577
3578  // initialize compiler(s)
3579  CompileBroker::compilation_init();
3580
3581  Management::initialize(THREAD);
3582  if (HAS_PENDING_EXCEPTION) {
3583    // management agent fails to start possibly due to
3584    // configuration problem and is responsible for printing
3585    // stack trace if appropriate. Simply exit VM.
3586    vm_exit(1);
3587  }
3588
3589  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3590  if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3591  if (MemProfiling)                   MemProfiler::engage();
3592  StatSampler::engage();
3593  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3594
3595  BiasedLocking::init();
3596
3597  if (JDK_Version::current().post_vm_init_hook_enabled()) {
3598    call_postVMInitHook(THREAD);
3599    // The Java side of PostVMInitHook.run must deal with all
3600    // exceptions and provide means of diagnosis.
3601    if (HAS_PENDING_EXCEPTION) {
3602      CLEAR_PENDING_EXCEPTION;
3603    }
3604  }
3605
3606  // Start up the WatcherThread if there are any periodic tasks
3607  // NOTE:  All PeriodicTasks should be registered by now. If they
3608  //   aren't, late joiners might appear to start slowly (we might
3609  //   take a while to process their first tick).
3610  if (PeriodicTask::num_tasks() > 0) {
3611    WatcherThread::start();
3612  }
3613
3614  // Give os specific code one last chance to start
3615  os::init_3();
3616
3617  create_vm_timer.end();
3618#ifdef ASSERT
3619  _vm_complete = true;
3620#endif
3621  return JNI_OK;
3622}
3623
3624// type for the Agent_OnLoad and JVM_OnLoad entry points
3625extern "C" {
3626  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3627}
3628// Find a command line agent library and return its entry point for
3629//         -agentlib:  -agentpath:   -Xrun
3630// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3631static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3632  OnLoadEntry_t on_load_entry = NULL;
3633  void *library = agent->os_lib();  // check if we have looked it up before
3634
3635  if (library == NULL) {
3636    char buffer[JVM_MAXPATHLEN];
3637    char ebuf[1024];
3638    const char *name = agent->name();
3639    const char *msg = "Could not find agent library ";
3640
3641    if (agent->is_absolute_path()) {
3642      library = os::dll_load(name, ebuf, sizeof ebuf);
3643      if (library == NULL) {
3644        const char *sub_msg = " in absolute path, with error: ";
3645        size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3646        char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3647        jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3648        // If we can't find the agent, exit.
3649        vm_exit_during_initialization(buf, NULL);
3650        FREE_C_HEAP_ARRAY(char, buf, mtThread);
3651      }
3652    } else {
3653      // Try to load the agent from the standard dll directory
3654      os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
3655      library = os::dll_load(buffer, ebuf, sizeof ebuf);
3656#ifdef KERNEL
3657      // Download instrument dll
3658      if (library == NULL && strcmp(name, "instrument") == 0) {
3659        char *props = Arguments::get_kernel_properties();
3660        char *home  = Arguments::get_java_home();
3661        const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
3662                      " sun.jkernel.DownloadManager -download client_jvm";
3663        size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
3664        char *cmd = NEW_C_HEAP_ARRAY(char, length, mtThread);
3665        jio_snprintf(cmd, length, fmt, home, props);
3666        int status = os::fork_and_exec(cmd);
3667        FreeHeap(props);
3668        if (status == -1) {
3669          warning(cmd);
3670          vm_exit_during_initialization("fork_and_exec failed: %s",
3671                                         strerror(errno));
3672        }
3673        FREE_C_HEAP_ARRAY(char, cmd, mtThread);
3674        // when this comes back the instrument.dll should be where it belongs.
3675        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3676      }
3677#endif // KERNEL
3678      if (library == NULL) { // Try the local directory
3679        char ns[1] = {0};
3680        os::dll_build_name(buffer, sizeof(buffer), ns, name);
3681        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3682        if (library == NULL) {
3683          const char *sub_msg = " on the library path, with error: ";
3684          size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3685          char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3686          jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3687          // If we can't find the agent, exit.
3688          vm_exit_during_initialization(buf, NULL);
3689          FREE_C_HEAP_ARRAY(char, buf, mtThread);
3690        }
3691      }
3692    }
3693    agent->set_os_lib(library);
3694  }
3695
3696  // Find the OnLoad function.
3697  for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3698    on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
3699    if (on_load_entry != NULL) break;
3700  }
3701  return on_load_entry;
3702}
3703
3704// Find the JVM_OnLoad entry point
3705static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3706  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3707  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3708}
3709
3710// Find the Agent_OnLoad entry point
3711static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3712  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3713  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3714}
3715
3716// For backwards compatibility with -Xrun
3717// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3718// treated like -agentpath:
3719// Must be called before agent libraries are created
3720void Threads::convert_vm_init_libraries_to_agents() {
3721  AgentLibrary* agent;
3722  AgentLibrary* next;
3723
3724  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3725    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3726    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3727
3728    // If there is an JVM_OnLoad function it will get called later,
3729    // otherwise see if there is an Agent_OnLoad
3730    if (on_load_entry == NULL) {
3731      on_load_entry = lookup_agent_on_load(agent);
3732      if (on_load_entry != NULL) {
3733        // switch it to the agent list -- so that Agent_OnLoad will be called,
3734        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3735        Arguments::convert_library_to_agent(agent);
3736      } else {
3737        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3738      }
3739    }
3740  }
3741}
3742
3743// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3744// Invokes Agent_OnLoad
3745// Called very early -- before JavaThreads exist
3746void Threads::create_vm_init_agents() {
3747  extern struct JavaVM_ main_vm;
3748  AgentLibrary* agent;
3749
3750  JvmtiExport::enter_onload_phase();
3751  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3752    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3753
3754    if (on_load_entry != NULL) {
3755      // Invoke the Agent_OnLoad function
3756      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3757      if (err != JNI_OK) {
3758        vm_exit_during_initialization("agent library failed to init", agent->name());
3759      }
3760    } else {
3761      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3762    }
3763  }
3764  JvmtiExport::enter_primordial_phase();
3765}
3766
3767extern "C" {
3768  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3769}
3770
3771void Threads::shutdown_vm_agents() {
3772  // Send any Agent_OnUnload notifications
3773  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3774  extern struct JavaVM_ main_vm;
3775  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3776
3777    // Find the Agent_OnUnload function.
3778    for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3779      Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3780               os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3781
3782      // Invoke the Agent_OnUnload function
3783      if (unload_entry != NULL) {
3784        JavaThread* thread = JavaThread::current();
3785        ThreadToNativeFromVM ttn(thread);
3786        HandleMark hm(thread);
3787        (*unload_entry)(&main_vm);
3788        break;
3789      }
3790    }
3791  }
3792}
3793
3794// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3795// Invokes JVM_OnLoad
3796void Threads::create_vm_init_libraries() {
3797  extern struct JavaVM_ main_vm;
3798  AgentLibrary* agent;
3799
3800  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3801    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3802
3803    if (on_load_entry != NULL) {
3804      // Invoke the JVM_OnLoad function
3805      JavaThread* thread = JavaThread::current();
3806      ThreadToNativeFromVM ttn(thread);
3807      HandleMark hm(thread);
3808      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3809      if (err != JNI_OK) {
3810        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3811      }
3812    } else {
3813      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3814    }
3815  }
3816}
3817
3818// Last thread running calls java.lang.Shutdown.shutdown()
3819void JavaThread::invoke_shutdown_hooks() {
3820  HandleMark hm(this);
3821
3822  // We could get here with a pending exception, if so clear it now.
3823  if (this->has_pending_exception()) {
3824    this->clear_pending_exception();
3825  }
3826
3827  EXCEPTION_MARK;
3828  Klass* k =
3829    SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3830                                      THREAD);
3831  if (k != NULL) {
3832    // SystemDictionary::resolve_or_null will return null if there was
3833    // an exception.  If we cannot load the Shutdown class, just don't
3834    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3835    // and finalizers (if runFinalizersOnExit is set) won't be run.
3836    // Note that if a shutdown hook was registered or runFinalizersOnExit
3837    // was called, the Shutdown class would have already been loaded
3838    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3839    instanceKlassHandle shutdown_klass (THREAD, k);
3840    JavaValue result(T_VOID);
3841    JavaCalls::call_static(&result,
3842                           shutdown_klass,
3843                           vmSymbols::shutdown_method_name(),
3844                           vmSymbols::void_method_signature(),
3845                           THREAD);
3846  }
3847  CLEAR_PENDING_EXCEPTION;
3848}
3849
3850// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3851// the program falls off the end of main(). Another VM exit path is through
3852// vm_exit() when the program calls System.exit() to return a value or when
3853// there is a serious error in VM. The two shutdown paths are not exactly
3854// the same, but they share Shutdown.shutdown() at Java level and before_exit()
3855// and VM_Exit op at VM level.
3856//
3857// Shutdown sequence:
3858//   + Shutdown native memory tracking if it is on
3859//   + Wait until we are the last non-daemon thread to execute
3860//     <-- every thing is still working at this moment -->
3861//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3862//        shutdown hooks, run finalizers if finalization-on-exit
3863//   + Call before_exit(), prepare for VM exit
3864//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3865//        currently the only user of this mechanism is File.deleteOnExit())
3866//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3867//        post thread end and vm death events to JVMTI,
3868//        stop signal thread
3869//   + Call JavaThread::exit(), it will:
3870//      > release JNI handle blocks, remove stack guard pages
3871//      > remove this thread from Threads list
3872//     <-- no more Java code from this thread after this point -->
3873//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3874//     the compiler threads at safepoint
3875//     <-- do not use anything that could get blocked by Safepoint -->
3876//   + Disable tracing at JNI/JVM barriers
3877//   + Set _vm_exited flag for threads that are still running native code
3878//   + Delete this thread
3879//   + Call exit_globals()
3880//      > deletes tty
3881//      > deletes PerfMemory resources
3882//   + Return to caller
3883
3884bool Threads::destroy_vm() {
3885  JavaThread* thread = JavaThread::current();
3886
3887#ifdef ASSERT
3888  _vm_complete = false;
3889#endif
3890  // Wait until we are the last non-daemon thread to execute
3891  { MutexLocker nu(Threads_lock);
3892    while (Threads::number_of_non_daemon_threads() > 1 )
3893      // This wait should make safepoint checks, wait without a timeout,
3894      // and wait as a suspend-equivalent condition.
3895      //
3896      // Note: If the FlatProfiler is running and this thread is waiting
3897      // for another non-daemon thread to finish, then the FlatProfiler
3898      // is waiting for the external suspend request on this thread to
3899      // complete. wait_for_ext_suspend_completion() will eventually
3900      // timeout, but that takes time. Making this wait a suspend-
3901      // equivalent condition solves that timeout problem.
3902      //
3903      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3904                         Mutex::_as_suspend_equivalent_flag);
3905  }
3906
3907  // Shutdown NMT before exit. Otherwise,
3908  // it will run into trouble when system destroys static variables.
3909  MemTracker::shutdown(MemTracker::NMT_normal);
3910
3911  // Hang forever on exit if we are reporting an error.
3912  if (ShowMessageBoxOnError && is_error_reported()) {
3913    os::infinite_sleep();
3914  }
3915  os::wait_for_keypress_at_exit();
3916
3917  if (JDK_Version::is_jdk12x_version()) {
3918    // We are the last thread running, so check if finalizers should be run.
3919    // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3920    HandleMark rm(thread);
3921    Universe::run_finalizers_on_exit();
3922  } else {
3923    // run Java level shutdown hooks
3924    thread->invoke_shutdown_hooks();
3925  }
3926
3927  before_exit(thread);
3928
3929  thread->exit(true);
3930
3931  // Stop VM thread.
3932  {
3933    // 4945125 The vm thread comes to a safepoint during exit.
3934    // GC vm_operations can get caught at the safepoint, and the
3935    // heap is unparseable if they are caught. Grab the Heap_lock
3936    // to prevent this. The GC vm_operations will not be able to
3937    // queue until after the vm thread is dead.
3938    // After this point, we'll never emerge out of the safepoint before
3939    // the VM exits, so concurrent GC threads do not need to be explicitly
3940    // stopped; they remain inactive until the process exits.
3941    // Note: some concurrent G1 threads may be running during a safepoint,
3942    // but these will not be accessing the heap, just some G1-specific side
3943    // data structures that are not accessed by any other threads but them
3944    // after this point in a terminal safepoint.
3945
3946    MutexLocker ml(Heap_lock);
3947
3948    VMThread::wait_for_vm_thread_exit();
3949    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3950    VMThread::destroy();
3951  }
3952
3953  // clean up ideal graph printers
3954#if defined(COMPILER2) && !defined(PRODUCT)
3955  IdealGraphPrinter::clean_up();
3956#endif
3957
3958  // Now, all Java threads are gone except daemon threads. Daemon threads
3959  // running Java code or in VM are stopped by the Safepoint. However,
3960  // daemon threads executing native code are still running.  But they
3961  // will be stopped at native=>Java/VM barriers. Note that we can't
3962  // simply kill or suspend them, as it is inherently deadlock-prone.
3963
3964#ifndef PRODUCT
3965  // disable function tracing at JNI/JVM barriers
3966  TraceJNICalls = false;
3967  TraceJVMCalls = false;
3968  TraceRuntimeCalls = false;
3969#endif
3970
3971  VM_Exit::set_vm_exited();
3972
3973  notify_vm_shutdown();
3974
3975  delete thread;
3976
3977  // exit_globals() will delete tty
3978  exit_globals();
3979
3980  return true;
3981}
3982
3983
3984jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3985  if (version == JNI_VERSION_1_1) return JNI_TRUE;
3986  return is_supported_jni_version(version);
3987}
3988
3989
3990jboolean Threads::is_supported_jni_version(jint version) {
3991  if (version == JNI_VERSION_1_2) return JNI_TRUE;
3992  if (version == JNI_VERSION_1_4) return JNI_TRUE;
3993  if (version == JNI_VERSION_1_6) return JNI_TRUE;
3994  return JNI_FALSE;
3995}
3996
3997
3998void Threads::add(JavaThread* p, bool force_daemon) {
3999  // The threads lock must be owned at this point
4000  assert_locked_or_safepoint(Threads_lock);
4001
4002  // See the comment for this method in thread.hpp for its purpose and
4003  // why it is called here.
4004  p->initialize_queues();
4005  p->set_next(_thread_list);
4006  _thread_list = p;
4007  _number_of_threads++;
4008  oop threadObj = p->threadObj();
4009  bool daemon = true;
4010  // Bootstrapping problem: threadObj can be null for initial
4011  // JavaThread (or for threads attached via JNI)
4012  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4013    _number_of_non_daemon_threads++;
4014    daemon = false;
4015  }
4016
4017  p->set_safepoint_visible(true);
4018
4019  ThreadService::add_thread(p, daemon);
4020
4021  // Possible GC point.
4022  Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4023}
4024
4025void Threads::remove(JavaThread* p) {
4026  // Extra scope needed for Thread_lock, so we can check
4027  // that we do not remove thread without safepoint code notice
4028  { MutexLocker ml(Threads_lock);
4029
4030    assert(includes(p), "p must be present");
4031
4032    JavaThread* current = _thread_list;
4033    JavaThread* prev    = NULL;
4034
4035    while (current != p) {
4036      prev    = current;
4037      current = current->next();
4038    }
4039
4040    if (prev) {
4041      prev->set_next(current->next());
4042    } else {
4043      _thread_list = p->next();
4044    }
4045    _number_of_threads--;
4046    oop threadObj = p->threadObj();
4047    bool daemon = true;
4048    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4049      _number_of_non_daemon_threads--;
4050      daemon = false;
4051
4052      // Only one thread left, do a notify on the Threads_lock so a thread waiting
4053      // on destroy_vm will wake up.
4054      if (number_of_non_daemon_threads() == 1)
4055        Threads_lock->notify_all();
4056    }
4057    ThreadService::remove_thread(p, daemon);
4058
4059    // Make sure that safepoint code disregard this thread. This is needed since
4060    // the thread might mess around with locks after this point. This can cause it
4061    // to do callbacks into the safepoint code. However, the safepoint code is not aware
4062    // of this thread since it is removed from the queue.
4063    p->set_terminated_value();
4064
4065    // Now, this thread is not visible to safepoint
4066    p->set_safepoint_visible(false);
4067
4068  } // unlock Threads_lock
4069
4070  // Since Events::log uses a lock, we grab it outside the Threads_lock
4071  Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4072}
4073
4074// Threads_lock must be held when this is called (or must be called during a safepoint)
4075bool Threads::includes(JavaThread* p) {
4076  assert(Threads_lock->is_locked(), "sanity check");
4077  ALL_JAVA_THREADS(q) {
4078    if (q == p ) {
4079      return true;
4080    }
4081  }
4082  return false;
4083}
4084
4085// Operations on the Threads list for GC.  These are not explicitly locked,
4086// but the garbage collector must provide a safe context for them to run.
4087// In particular, these things should never be called when the Threads_lock
4088// is held by some other thread. (Note: the Safepoint abstraction also
4089// uses the Threads_lock to gurantee this property. It also makes sure that
4090// all threads gets blocked when exiting or starting).
4091
4092void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4093  ALL_JAVA_THREADS(p) {
4094    p->oops_do(f, cf);
4095  }
4096  VMThread::vm_thread()->oops_do(f, cf);
4097}
4098
4099void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
4100  // Introduce a mechanism allowing parallel threads to claim threads as
4101  // root groups.  Overhead should be small enough to use all the time,
4102  // even in sequential code.
4103  SharedHeap* sh = SharedHeap::heap();
4104  // Cannot yet substitute active_workers for n_par_threads
4105  // because of G1CollectedHeap::verify() use of
4106  // SharedHeap::process_strong_roots().  n_par_threads == 0 will
4107  // turn off parallelism in process_strong_roots while active_workers
4108  // is being used for parallelism elsewhere.
4109  bool is_par = sh->n_par_threads() > 0;
4110  assert(!is_par ||
4111         (SharedHeap::heap()->n_par_threads() ==
4112          SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4113  int cp = SharedHeap::heap()->strong_roots_parity();
4114  ALL_JAVA_THREADS(p) {
4115    if (p->claim_oops_do(is_par, cp)) {
4116      p->oops_do(f, cf);
4117    }
4118  }
4119  VMThread* vmt = VMThread::vm_thread();
4120  if (vmt->claim_oops_do(is_par, cp)) {
4121    vmt->oops_do(f, cf);
4122  }
4123}
4124
4125#ifndef SERIALGC
4126// Used by ParallelScavenge
4127void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4128  ALL_JAVA_THREADS(p) {
4129    q->enqueue(new ThreadRootsTask(p));
4130  }
4131  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4132}
4133
4134// Used by Parallel Old
4135void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4136  ALL_JAVA_THREADS(p) {
4137    q->enqueue(new ThreadRootsMarkingTask(p));
4138  }
4139  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4140}
4141#endif // SERIALGC
4142
4143void Threads::nmethods_do(CodeBlobClosure* cf) {
4144  ALL_JAVA_THREADS(p) {
4145    p->nmethods_do(cf);
4146  }
4147  VMThread::vm_thread()->nmethods_do(cf);
4148}
4149
4150void Threads::metadata_do(void f(Metadata*)) {
4151  ALL_JAVA_THREADS(p) {
4152    p->metadata_do(f);
4153  }
4154}
4155
4156void Threads::gc_epilogue() {
4157  ALL_JAVA_THREADS(p) {
4158    p->gc_epilogue();
4159  }
4160}
4161
4162void Threads::gc_prologue() {
4163  ALL_JAVA_THREADS(p) {
4164    p->gc_prologue();
4165  }
4166}
4167
4168void Threads::deoptimized_wrt_marked_nmethods() {
4169  ALL_JAVA_THREADS(p) {
4170    p->deoptimized_wrt_marked_nmethods();
4171  }
4172}
4173
4174
4175// Get count Java threads that are waiting to enter the specified monitor.
4176GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4177  address monitor, bool doLock) {
4178  assert(doLock || SafepointSynchronize::is_at_safepoint(),
4179    "must grab Threads_lock or be at safepoint");
4180  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4181
4182  int i = 0;
4183  {
4184    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4185    ALL_JAVA_THREADS(p) {
4186      if (p->is_Compiler_thread()) continue;
4187
4188      address pending = (address)p->current_pending_monitor();
4189      if (pending == monitor) {             // found a match
4190        if (i < count) result->append(p);   // save the first count matches
4191        i++;
4192      }
4193    }
4194  }
4195  return result;
4196}
4197
4198
4199JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4200  assert(doLock ||
4201         Threads_lock->owned_by_self() ||
4202         SafepointSynchronize::is_at_safepoint(),
4203         "must grab Threads_lock or be at safepoint");
4204
4205  // NULL owner means not locked so we can skip the search
4206  if (owner == NULL) return NULL;
4207
4208  {
4209    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4210    ALL_JAVA_THREADS(p) {
4211      // first, see if owner is the address of a Java thread
4212      if (owner == (address)p) return p;
4213    }
4214  }
4215  assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
4216  if (UseHeavyMonitors) return NULL;
4217
4218  //
4219  // If we didn't find a matching Java thread and we didn't force use of
4220  // heavyweight monitors, then the owner is the stack address of the
4221  // Lock Word in the owning Java thread's stack.
4222  //
4223  JavaThread* the_owner = NULL;
4224  {
4225    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4226    ALL_JAVA_THREADS(q) {
4227      if (q->is_lock_owned(owner)) {
4228        the_owner = q;
4229        break;
4230      }
4231    }
4232  }
4233  assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
4234  return the_owner;
4235}
4236
4237// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4238void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4239  char buf[32];
4240  st->print_cr(os::local_time_string(buf, sizeof(buf)));
4241
4242  st->print_cr("Full thread dump %s (%s %s):",
4243                Abstract_VM_Version::vm_name(),
4244                Abstract_VM_Version::vm_release(),
4245                Abstract_VM_Version::vm_info_string()
4246               );
4247  st->cr();
4248
4249#ifndef SERIALGC
4250  // Dump concurrent locks
4251  ConcurrentLocksDump concurrent_locks;
4252  if (print_concurrent_locks) {
4253    concurrent_locks.dump_at_safepoint();
4254  }
4255#endif // SERIALGC
4256
4257  ALL_JAVA_THREADS(p) {
4258    ResourceMark rm;
4259    p->print_on(st);
4260    if (print_stacks) {
4261      if (internal_format) {
4262        p->trace_stack();
4263      } else {
4264        p->print_stack_on(st);
4265      }
4266    }
4267    st->cr();
4268#ifndef SERIALGC
4269    if (print_concurrent_locks) {
4270      concurrent_locks.print_locks_on(p, st);
4271    }
4272#endif // SERIALGC
4273  }
4274
4275  VMThread::vm_thread()->print_on(st);
4276  st->cr();
4277  Universe::heap()->print_gc_threads_on(st);
4278  WatcherThread* wt = WatcherThread::watcher_thread();
4279  if (wt != NULL) wt->print_on(st);
4280  st->cr();
4281  CompileBroker::print_compiler_threads_on(st);
4282  st->flush();
4283}
4284
4285// Threads::print_on_error() is called by fatal error handler. It's possible
4286// that VM is not at safepoint and/or current thread is inside signal handler.
4287// Don't print stack trace, as the stack may not be walkable. Don't allocate
4288// memory (even in resource area), it might deadlock the error handler.
4289void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4290  bool found_current = false;
4291  st->print_cr("Java Threads: ( => current thread )");
4292  ALL_JAVA_THREADS(thread) {
4293    bool is_current = (current == thread);
4294    found_current = found_current || is_current;
4295
4296    st->print("%s", is_current ? "=>" : "  ");
4297
4298    st->print(PTR_FORMAT, thread);
4299    st->print(" ");
4300    thread->print_on_error(st, buf, buflen);
4301    st->cr();
4302  }
4303  st->cr();
4304
4305  st->print_cr("Other Threads:");
4306  if (VMThread::vm_thread()) {
4307    bool is_current = (current == VMThread::vm_thread());
4308    found_current = found_current || is_current;
4309    st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4310
4311    st->print(PTR_FORMAT, VMThread::vm_thread());
4312    st->print(" ");
4313    VMThread::vm_thread()->print_on_error(st, buf, buflen);
4314    st->cr();
4315  }
4316  WatcherThread* wt = WatcherThread::watcher_thread();
4317  if (wt != NULL) {
4318    bool is_current = (current == wt);
4319    found_current = found_current || is_current;
4320    st->print("%s", is_current ? "=>" : "  ");
4321
4322    st->print(PTR_FORMAT, wt);
4323    st->print(" ");
4324    wt->print_on_error(st, buf, buflen);
4325    st->cr();
4326  }
4327  if (!found_current) {
4328    st->cr();
4329    st->print("=>" PTR_FORMAT " (exited) ", current);
4330    current->print_on_error(st, buf, buflen);
4331    st->cr();
4332  }
4333}
4334
4335// Internal SpinLock and Mutex
4336// Based on ParkEvent
4337
4338// Ad-hoc mutual exclusion primitives: SpinLock and Mux
4339//
4340// We employ SpinLocks _only for low-contention, fixed-length
4341// short-duration critical sections where we're concerned
4342// about native mutex_t or HotSpot Mutex:: latency.
4343// The mux construct provides a spin-then-block mutual exclusion
4344// mechanism.
4345//
4346// Testing has shown that contention on the ListLock guarding gFreeList
4347// is common.  If we implement ListLock as a simple SpinLock it's common
4348// for the JVM to devolve to yielding with little progress.  This is true
4349// despite the fact that the critical sections protected by ListLock are
4350// extremely short.
4351//
4352// TODO-FIXME: ListLock should be of type SpinLock.
4353// We should make this a 1st-class type, integrated into the lock
4354// hierarchy as leaf-locks.  Critically, the SpinLock structure
4355// should have sufficient padding to avoid false-sharing and excessive
4356// cache-coherency traffic.
4357
4358
4359typedef volatile int SpinLockT ;
4360
4361void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4362  if (Atomic::cmpxchg (1, adr, 0) == 0) {
4363     return ;   // normal fast-path return
4364  }
4365
4366  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4367  TEVENT (SpinAcquire - ctx) ;
4368  int ctr = 0 ;
4369  int Yields = 0 ;
4370  for (;;) {
4371     while (*adr != 0) {
4372        ++ctr ;
4373        if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4374           if (Yields > 5) {
4375             // Consider using a simple NakedSleep() instead.
4376             // Then SpinAcquire could be called by non-JVM threads
4377             Thread::current()->_ParkEvent->park(1) ;
4378           } else {
4379             os::NakedYield() ;
4380             ++Yields ;
4381           }
4382        } else {
4383           SpinPause() ;
4384        }
4385     }
4386     if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4387  }
4388}
4389
4390void Thread::SpinRelease (volatile int * adr) {
4391  assert (*adr != 0, "invariant") ;
4392  OrderAccess::fence() ;      // guarantee at least release consistency.
4393  // Roach-motel semantics.
4394  // It's safe if subsequent LDs and STs float "up" into the critical section,
4395  // but prior LDs and STs within the critical section can't be allowed
4396  // to reorder or float past the ST that releases the lock.
4397  *adr = 0 ;
4398}
4399
4400// muxAcquire and muxRelease:
4401//
4402// *  muxAcquire and muxRelease support a single-word lock-word construct.
4403//    The LSB of the word is set IFF the lock is held.
4404//    The remainder of the word points to the head of a singly-linked list
4405//    of threads blocked on the lock.
4406//
4407// *  The current implementation of muxAcquire-muxRelease uses its own
4408//    dedicated Thread._MuxEvent instance.  If we're interested in
4409//    minimizing the peak number of extant ParkEvent instances then
4410//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4411//    as certain invariants were satisfied.  Specifically, care would need
4412//    to be taken with regards to consuming unpark() "permits".
4413//    A safe rule of thumb is that a thread would never call muxAcquire()
4414//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4415//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4416//    consume an unpark() permit intended for monitorenter, for instance.
4417//    One way around this would be to widen the restricted-range semaphore
4418//    implemented in park().  Another alternative would be to provide
4419//    multiple instances of the PlatformEvent() for each thread.  One
4420//    instance would be dedicated to muxAcquire-muxRelease, for instance.
4421//
4422// *  Usage:
4423//    -- Only as leaf locks
4424//    -- for short-term locking only as muxAcquire does not perform
4425//       thread state transitions.
4426//
4427// Alternatives:
4428// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4429//    but with parking or spin-then-park instead of pure spinning.
4430// *  Use Taura-Oyama-Yonenzawa locks.
4431// *  It's possible to construct a 1-0 lock if we encode the lockword as
4432//    (List,LockByte).  Acquire will CAS the full lockword while Release
4433//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4434//    acquiring threads use timers (ParkTimed) to detect and recover from
4435//    the stranding window.  Thread/Node structures must be aligned on 256-byte
4436//    boundaries by using placement-new.
4437// *  Augment MCS with advisory back-link fields maintained with CAS().
4438//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4439//    The validity of the backlinks must be ratified before we trust the value.
4440//    If the backlinks are invalid the exiting thread must back-track through the
4441//    the forward links, which are always trustworthy.
4442// *  Add a successor indication.  The LockWord is currently encoded as
4443//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4444//    to provide the usual futile-wakeup optimization.
4445//    See RTStt for details.
4446// *  Consider schedctl.sc_nopreempt to cover the critical section.
4447//
4448
4449
4450typedef volatile intptr_t MutexT ;      // Mux Lock-word
4451enum MuxBits { LOCKBIT = 1 } ;
4452
4453void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4454  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4455  if (w == 0) return ;
4456  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4457     return ;
4458  }
4459
4460  TEVENT (muxAcquire - Contention) ;
4461  ParkEvent * const Self = Thread::current()->_MuxEvent ;
4462  assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4463  for (;;) {
4464     int its = (os::is_MP() ? 100 : 0) + 1 ;
4465
4466     // Optional spin phase: spin-then-park strategy
4467     while (--its >= 0) {
4468       w = *Lock ;
4469       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4470          return ;
4471       }
4472     }
4473
4474     Self->reset() ;
4475     Self->OnList = intptr_t(Lock) ;
4476     // The following fence() isn't _strictly necessary as the subsequent
4477     // CAS() both serializes execution and ratifies the fetched *Lock value.
4478     OrderAccess::fence();
4479     for (;;) {
4480        w = *Lock ;
4481        if ((w & LOCKBIT) == 0) {
4482            if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4483                Self->OnList = 0 ;   // hygiene - allows stronger asserts
4484                return ;
4485            }
4486            continue ;      // Interference -- *Lock changed -- Just retry
4487        }
4488        assert (w & LOCKBIT, "invariant") ;
4489        Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4490        if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4491     }
4492
4493     while (Self->OnList != 0) {
4494        Self->park() ;
4495     }
4496  }
4497}
4498
4499void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4500  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4501  if (w == 0) return ;
4502  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4503    return ;
4504  }
4505
4506  TEVENT (muxAcquire - Contention) ;
4507  ParkEvent * ReleaseAfter = NULL ;
4508  if (ev == NULL) {
4509    ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4510  }
4511  assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4512  for (;;) {
4513    guarantee (ev->OnList == 0, "invariant") ;
4514    int its = (os::is_MP() ? 100 : 0) + 1 ;
4515
4516    // Optional spin phase: spin-then-park strategy
4517    while (--its >= 0) {
4518      w = *Lock ;
4519      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4520        if (ReleaseAfter != NULL) {
4521          ParkEvent::Release (ReleaseAfter) ;
4522        }
4523        return ;
4524      }
4525    }
4526
4527    ev->reset() ;
4528    ev->OnList = intptr_t(Lock) ;
4529    // The following fence() isn't _strictly necessary as the subsequent
4530    // CAS() both serializes execution and ratifies the fetched *Lock value.
4531    OrderAccess::fence();
4532    for (;;) {
4533      w = *Lock ;
4534      if ((w & LOCKBIT) == 0) {
4535        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4536          ev->OnList = 0 ;
4537          // We call ::Release while holding the outer lock, thus
4538          // artificially lengthening the critical section.
4539          // Consider deferring the ::Release() until the subsequent unlock(),
4540          // after we've dropped the outer lock.
4541          if (ReleaseAfter != NULL) {
4542            ParkEvent::Release (ReleaseAfter) ;
4543          }
4544          return ;
4545        }
4546        continue ;      // Interference -- *Lock changed -- Just retry
4547      }
4548      assert (w & LOCKBIT, "invariant") ;
4549      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4550      if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4551    }
4552
4553    while (ev->OnList != 0) {
4554      ev->park() ;
4555    }
4556  }
4557}
4558
4559// Release() must extract a successor from the list and then wake that thread.
4560// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4561// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4562// Release() would :
4563// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4564// (B) Extract a successor from the private list "in-hand"
4565// (C) attempt to CAS() the residual back into *Lock over null.
4566//     If there were any newly arrived threads and the CAS() would fail.
4567//     In that case Release() would detach the RATs, re-merge the list in-hand
4568//     with the RATs and repeat as needed.  Alternately, Release() might
4569//     detach and extract a successor, but then pass the residual list to the wakee.
4570//     The wakee would be responsible for reattaching and remerging before it
4571//     competed for the lock.
4572//
4573// Both "pop" and DMR are immune from ABA corruption -- there can be
4574// multiple concurrent pushers, but only one popper or detacher.
4575// This implementation pops from the head of the list.  This is unfair,
4576// but tends to provide excellent throughput as hot threads remain hot.
4577// (We wake recently run threads first).
4578
4579void Thread::muxRelease (volatile intptr_t * Lock)  {
4580  for (;;) {
4581    const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4582    assert (w & LOCKBIT, "invariant") ;
4583    if (w == LOCKBIT) return ;
4584    ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4585    assert (List != NULL, "invariant") ;
4586    assert (List->OnList == intptr_t(Lock), "invariant") ;
4587    ParkEvent * nxt = List->ListNext ;
4588
4589    // The following CAS() releases the lock and pops the head element.
4590    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4591      continue ;
4592    }
4593    List->OnList = 0 ;
4594    OrderAccess::fence() ;
4595    List->unpark () ;
4596    return ;
4597  }
4598}
4599
4600
4601void Threads::verify() {
4602  ALL_JAVA_THREADS(p) {
4603    p->verify();
4604  }
4605  VMThread* thread = VMThread::vm_thread();
4606  if (thread != NULL) thread->verify();
4607}
4608