thread.cpp revision 2062:3582bf76420e
1/*
2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/scopeDesc.hpp"
31#include "compiler/compileBroker.hpp"
32#include "interpreter/interpreter.hpp"
33#include "interpreter/linkResolver.hpp"
34#include "jvmtifiles/jvmtiEnv.hpp"
35#include "memory/oopFactory.hpp"
36#include "memory/universe.inline.hpp"
37#include "oops/instanceKlass.hpp"
38#include "oops/objArrayOop.hpp"
39#include "oops/oop.inline.hpp"
40#include "oops/symbol.hpp"
41#include "prims/jvm_misc.hpp"
42#include "prims/jvmtiExport.hpp"
43#include "prims/jvmtiThreadState.hpp"
44#include "prims/privilegedStack.hpp"
45#include "runtime/aprofiler.hpp"
46#include "runtime/arguments.hpp"
47#include "runtime/biasedLocking.hpp"
48#include "runtime/deoptimization.hpp"
49#include "runtime/fprofiler.hpp"
50#include "runtime/frame.inline.hpp"
51#include "runtime/init.hpp"
52#include "runtime/interfaceSupport.hpp"
53#include "runtime/java.hpp"
54#include "runtime/javaCalls.hpp"
55#include "runtime/jniPeriodicChecker.hpp"
56#include "runtime/memprofiler.hpp"
57#include "runtime/mutexLocker.hpp"
58#include "runtime/objectMonitor.hpp"
59#include "runtime/osThread.hpp"
60#include "runtime/safepoint.hpp"
61#include "runtime/sharedRuntime.hpp"
62#include "runtime/statSampler.hpp"
63#include "runtime/stubRoutines.hpp"
64#include "runtime/task.hpp"
65#include "runtime/threadCritical.hpp"
66#include "runtime/threadLocalStorage.hpp"
67#include "runtime/vframe.hpp"
68#include "runtime/vframeArray.hpp"
69#include "runtime/vframe_hp.hpp"
70#include "runtime/vmThread.hpp"
71#include "runtime/vm_operations.hpp"
72#include "services/attachListener.hpp"
73#include "services/management.hpp"
74#include "services/threadService.hpp"
75#include "utilities/defaultStream.hpp"
76#include "utilities/dtrace.hpp"
77#include "utilities/events.hpp"
78#include "utilities/preserveException.hpp"
79#ifdef TARGET_OS_FAMILY_linux
80# include "os_linux.inline.hpp"
81# include "thread_linux.inline.hpp"
82#endif
83#ifdef TARGET_OS_FAMILY_solaris
84# include "os_solaris.inline.hpp"
85# include "thread_solaris.inline.hpp"
86#endif
87#ifdef TARGET_OS_FAMILY_windows
88# include "os_windows.inline.hpp"
89# include "thread_windows.inline.hpp"
90#endif
91#ifndef SERIALGC
92#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
93#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
94#include "gc_implementation/parallelScavenge/pcTasks.hpp"
95#endif
96#ifdef COMPILER1
97#include "c1/c1_Compiler.hpp"
98#endif
99#ifdef COMPILER2
100#include "opto/c2compiler.hpp"
101#include "opto/idealGraphPrinter.hpp"
102#endif
103
104#ifdef DTRACE_ENABLED
105
106// Only bother with this argument setup if dtrace is available
107
108HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
109HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
110HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
111  intptr_t, intptr_t, bool);
112HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
113  intptr_t, intptr_t, bool);
114
115#define DTRACE_THREAD_PROBE(probe, javathread)                             \
116  {                                                                        \
117    ResourceMark rm(this);                                                 \
118    int len = 0;                                                           \
119    const char* name = (javathread)->get_thread_name();                    \
120    len = strlen(name);                                                    \
121    HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
122      name, len,                                                           \
123      java_lang_Thread::thread_id((javathread)->threadObj()),              \
124      (javathread)->osthread()->thread_id(),                               \
125      java_lang_Thread::is_daemon((javathread)->threadObj()));             \
126  }
127
128#else //  ndef DTRACE_ENABLED
129
130#define DTRACE_THREAD_PROBE(probe, javathread)
131
132#endif // ndef DTRACE_ENABLED
133
134// Class hierarchy
135// - Thread
136//   - VMThread
137//   - WatcherThread
138//   - ConcurrentMarkSweepThread
139//   - JavaThread
140//     - CompilerThread
141
142// ======= Thread ========
143
144// Support for forcing alignment of thread objects for biased locking
145void* Thread::operator new(size_t size) {
146  if (UseBiasedLocking) {
147    const int alignment = markOopDesc::biased_lock_alignment;
148    size_t aligned_size = size + (alignment - sizeof(intptr_t));
149    void* real_malloc_addr = CHeapObj::operator new(aligned_size);
150    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
151    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
152           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
153           "JavaThread alignment code overflowed allocated storage");
154    if (TraceBiasedLocking) {
155      if (aligned_addr != real_malloc_addr)
156        tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
157                      real_malloc_addr, aligned_addr);
158    }
159    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
160    return aligned_addr;
161  } else {
162    return CHeapObj::operator new(size);
163  }
164}
165
166void Thread::operator delete(void* p) {
167  if (UseBiasedLocking) {
168    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
169    CHeapObj::operator delete(real_malloc_addr);
170  } else {
171    CHeapObj::operator delete(p);
172  }
173}
174
175
176// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
177// JavaThread
178
179
180Thread::Thread() {
181  // stack and get_thread
182  set_stack_base(NULL);
183  set_stack_size(0);
184  set_self_raw_id(0);
185  set_lgrp_id(-1);
186
187  // allocated data structures
188  set_osthread(NULL);
189  set_resource_area(new ResourceArea());
190  set_handle_area(new HandleArea(NULL));
191  set_active_handles(NULL);
192  set_free_handle_block(NULL);
193  set_last_handle_mark(NULL);
194
195  // This initial value ==> never claimed.
196  _oops_do_parity = 0;
197
198  // the handle mark links itself to last_handle_mark
199  new HandleMark(this);
200
201  // plain initialization
202  debug_only(_owned_locks = NULL;)
203  debug_only(_allow_allocation_count = 0;)
204  NOT_PRODUCT(_allow_safepoint_count = 0;)
205  NOT_PRODUCT(_skip_gcalot = false;)
206  CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
207  _jvmti_env_iteration_count = 0;
208  set_allocated_bytes(0);
209  _vm_operation_started_count = 0;
210  _vm_operation_completed_count = 0;
211  _current_pending_monitor = NULL;
212  _current_pending_monitor_is_from_java = true;
213  _current_waiting_monitor = NULL;
214  _num_nested_signal = 0;
215  omFreeList = NULL ;
216  omFreeCount = 0 ;
217  omFreeProvision = 32 ;
218  omInUseList = NULL ;
219  omInUseCount = 0 ;
220
221  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
222  _suspend_flags = 0;
223
224  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
225  _hashStateX = os::random() ;
226  _hashStateY = 842502087 ;
227  _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
228  _hashStateW = 273326509 ;
229
230  _OnTrap   = 0 ;
231  _schedctl = NULL ;
232  _Stalled  = 0 ;
233  _TypeTag  = 0x2BAD ;
234
235  // Many of the following fields are effectively final - immutable
236  // Note that nascent threads can't use the Native Monitor-Mutex
237  // construct until the _MutexEvent is initialized ...
238  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
239  // we might instead use a stack of ParkEvents that we could provision on-demand.
240  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
241  // and ::Release()
242  _ParkEvent   = ParkEvent::Allocate (this) ;
243  _SleepEvent  = ParkEvent::Allocate (this) ;
244  _MutexEvent  = ParkEvent::Allocate (this) ;
245  _MuxEvent    = ParkEvent::Allocate (this) ;
246
247#ifdef CHECK_UNHANDLED_OOPS
248  if (CheckUnhandledOops) {
249    _unhandled_oops = new UnhandledOops(this);
250  }
251#endif // CHECK_UNHANDLED_OOPS
252#ifdef ASSERT
253  if (UseBiasedLocking) {
254    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
255    assert(this == _real_malloc_address ||
256           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
257           "bug in forced alignment of thread objects");
258  }
259#endif /* ASSERT */
260}
261
262void Thread::initialize_thread_local_storage() {
263  // Note: Make sure this method only calls
264  // non-blocking operations. Otherwise, it might not work
265  // with the thread-startup/safepoint interaction.
266
267  // During Java thread startup, safepoint code should allow this
268  // method to complete because it may need to allocate memory to
269  // store information for the new thread.
270
271  // initialize structure dependent on thread local storage
272  ThreadLocalStorage::set_thread(this);
273
274  // set up any platform-specific state.
275  os::initialize_thread();
276
277}
278
279void Thread::record_stack_base_and_size() {
280  set_stack_base(os::current_stack_base());
281  set_stack_size(os::current_stack_size());
282}
283
284
285Thread::~Thread() {
286  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
287  ObjectSynchronizer::omFlush (this) ;
288
289  // deallocate data structures
290  delete resource_area();
291  // since the handle marks are using the handle area, we have to deallocated the root
292  // handle mark before deallocating the thread's handle area,
293  assert(last_handle_mark() != NULL, "check we have an element");
294  delete last_handle_mark();
295  assert(last_handle_mark() == NULL, "check we have reached the end");
296
297  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
298  // We NULL out the fields for good hygiene.
299  ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
300  ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
301  ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
302  ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
303
304  delete handle_area();
305
306  // osthread() can be NULL, if creation of thread failed.
307  if (osthread() != NULL) os::free_thread(osthread());
308
309  delete _SR_lock;
310
311  // clear thread local storage if the Thread is deleting itself
312  if (this == Thread::current()) {
313    ThreadLocalStorage::set_thread(NULL);
314  } else {
315    // In the case where we're not the current thread, invalidate all the
316    // caches in case some code tries to get the current thread or the
317    // thread that was destroyed, and gets stale information.
318    ThreadLocalStorage::invalidate_all();
319  }
320  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
321}
322
323// NOTE: dummy function for assertion purpose.
324void Thread::run() {
325  ShouldNotReachHere();
326}
327
328#ifdef ASSERT
329// Private method to check for dangling thread pointer
330void check_for_dangling_thread_pointer(Thread *thread) {
331 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
332         "possibility of dangling Thread pointer");
333}
334#endif
335
336
337#ifndef PRODUCT
338// Tracing method for basic thread operations
339void Thread::trace(const char* msg, const Thread* const thread) {
340  if (!TraceThreadEvents) return;
341  ResourceMark rm;
342  ThreadCritical tc;
343  const char *name = "non-Java thread";
344  int prio = -1;
345  if (thread->is_Java_thread()
346      && !thread->is_Compiler_thread()) {
347    // The Threads_lock must be held to get information about
348    // this thread but may not be in some situations when
349    // tracing  thread events.
350    bool release_Threads_lock = false;
351    if (!Threads_lock->owned_by_self()) {
352      Threads_lock->lock();
353      release_Threads_lock = true;
354    }
355    JavaThread* jt = (JavaThread *)thread;
356    name = (char *)jt->get_thread_name();
357    oop thread_oop = jt->threadObj();
358    if (thread_oop != NULL) {
359      prio = java_lang_Thread::priority(thread_oop);
360    }
361    if (release_Threads_lock) {
362      Threads_lock->unlock();
363    }
364  }
365  tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
366}
367#endif
368
369
370ThreadPriority Thread::get_priority(const Thread* const thread) {
371  trace("get priority", thread);
372  ThreadPriority priority;
373  // Can return an error!
374  (void)os::get_priority(thread, priority);
375  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
376  return priority;
377}
378
379void Thread::set_priority(Thread* thread, ThreadPriority priority) {
380  trace("set priority", thread);
381  debug_only(check_for_dangling_thread_pointer(thread);)
382  // Can return an error!
383  (void)os::set_priority(thread, priority);
384}
385
386
387void Thread::start(Thread* thread) {
388  trace("start", thread);
389  // Start is different from resume in that its safety is guaranteed by context or
390  // being called from a Java method synchronized on the Thread object.
391  if (!DisableStartThread) {
392    if (thread->is_Java_thread()) {
393      // Initialize the thread state to RUNNABLE before starting this thread.
394      // Can not set it after the thread started because we do not know the
395      // exact thread state at that time. It could be in MONITOR_WAIT or
396      // in SLEEPING or some other state.
397      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
398                                          java_lang_Thread::RUNNABLE);
399    }
400    os::start_thread(thread);
401  }
402}
403
404// Enqueue a VM_Operation to do the job for us - sometime later
405void Thread::send_async_exception(oop java_thread, oop java_throwable) {
406  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
407  VMThread::execute(vm_stop);
408}
409
410
411//
412// Check if an external suspend request has completed (or has been
413// cancelled). Returns true if the thread is externally suspended and
414// false otherwise.
415//
416// The bits parameter returns information about the code path through
417// the routine. Useful for debugging:
418//
419// set in is_ext_suspend_completed():
420// 0x00000001 - routine was entered
421// 0x00000010 - routine return false at end
422// 0x00000100 - thread exited (return false)
423// 0x00000200 - suspend request cancelled (return false)
424// 0x00000400 - thread suspended (return true)
425// 0x00001000 - thread is in a suspend equivalent state (return true)
426// 0x00002000 - thread is native and walkable (return true)
427// 0x00004000 - thread is native_trans and walkable (needed retry)
428//
429// set in wait_for_ext_suspend_completion():
430// 0x00010000 - routine was entered
431// 0x00020000 - suspend request cancelled before loop (return false)
432// 0x00040000 - thread suspended before loop (return true)
433// 0x00080000 - suspend request cancelled in loop (return false)
434// 0x00100000 - thread suspended in loop (return true)
435// 0x00200000 - suspend not completed during retry loop (return false)
436//
437
438// Helper class for tracing suspend wait debug bits.
439//
440// 0x00000100 indicates that the target thread exited before it could
441// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
442// 0x00080000 each indicate a cancelled suspend request so they don't
443// count as wait failures either.
444#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
445
446class TraceSuspendDebugBits : public StackObj {
447 private:
448  JavaThread * jt;
449  bool         is_wait;
450  bool         called_by_wait;  // meaningful when !is_wait
451  uint32_t *   bits;
452
453 public:
454  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
455                        uint32_t *_bits) {
456    jt             = _jt;
457    is_wait        = _is_wait;
458    called_by_wait = _called_by_wait;
459    bits           = _bits;
460  }
461
462  ~TraceSuspendDebugBits() {
463    if (!is_wait) {
464#if 1
465      // By default, don't trace bits for is_ext_suspend_completed() calls.
466      // That trace is very chatty.
467      return;
468#else
469      if (!called_by_wait) {
470        // If tracing for is_ext_suspend_completed() is enabled, then only
471        // trace calls to it from wait_for_ext_suspend_completion()
472        return;
473      }
474#endif
475    }
476
477    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
478      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
479        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
480        ResourceMark rm;
481
482        tty->print_cr(
483            "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
484            jt->get_thread_name(), *bits);
485
486        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
487      }
488    }
489  }
490};
491#undef DEBUG_FALSE_BITS
492
493
494bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
495  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
496
497  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
498  bool do_trans_retry;           // flag to force the retry
499
500  *bits |= 0x00000001;
501
502  do {
503    do_trans_retry = false;
504
505    if (is_exiting()) {
506      // Thread is in the process of exiting. This is always checked
507      // first to reduce the risk of dereferencing a freed JavaThread.
508      *bits |= 0x00000100;
509      return false;
510    }
511
512    if (!is_external_suspend()) {
513      // Suspend request is cancelled. This is always checked before
514      // is_ext_suspended() to reduce the risk of a rogue resume
515      // confusing the thread that made the suspend request.
516      *bits |= 0x00000200;
517      return false;
518    }
519
520    if (is_ext_suspended()) {
521      // thread is suspended
522      *bits |= 0x00000400;
523      return true;
524    }
525
526    // Now that we no longer do hard suspends of threads running
527    // native code, the target thread can be changing thread state
528    // while we are in this routine:
529    //
530    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
531    //
532    // We save a copy of the thread state as observed at this moment
533    // and make our decision about suspend completeness based on the
534    // copy. This closes the race where the thread state is seen as
535    // _thread_in_native_trans in the if-thread_blocked check, but is
536    // seen as _thread_blocked in if-thread_in_native_trans check.
537    JavaThreadState save_state = thread_state();
538
539    if (save_state == _thread_blocked && is_suspend_equivalent()) {
540      // If the thread's state is _thread_blocked and this blocking
541      // condition is known to be equivalent to a suspend, then we can
542      // consider the thread to be externally suspended. This means that
543      // the code that sets _thread_blocked has been modified to do
544      // self-suspension if the blocking condition releases. We also
545      // used to check for CONDVAR_WAIT here, but that is now covered by
546      // the _thread_blocked with self-suspension check.
547      //
548      // Return true since we wouldn't be here unless there was still an
549      // external suspend request.
550      *bits |= 0x00001000;
551      return true;
552    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
553      // Threads running native code will self-suspend on native==>VM/Java
554      // transitions. If its stack is walkable (should always be the case
555      // unless this function is called before the actual java_suspend()
556      // call), then the wait is done.
557      *bits |= 0x00002000;
558      return true;
559    } else if (!called_by_wait && !did_trans_retry &&
560               save_state == _thread_in_native_trans &&
561               frame_anchor()->walkable()) {
562      // The thread is transitioning from thread_in_native to another
563      // thread state. check_safepoint_and_suspend_for_native_trans()
564      // will force the thread to self-suspend. If it hasn't gotten
565      // there yet we may have caught the thread in-between the native
566      // code check above and the self-suspend. Lucky us. If we were
567      // called by wait_for_ext_suspend_completion(), then it
568      // will be doing the retries so we don't have to.
569      //
570      // Since we use the saved thread state in the if-statement above,
571      // there is a chance that the thread has already transitioned to
572      // _thread_blocked by the time we get here. In that case, we will
573      // make a single unnecessary pass through the logic below. This
574      // doesn't hurt anything since we still do the trans retry.
575
576      *bits |= 0x00004000;
577
578      // Once the thread leaves thread_in_native_trans for another
579      // thread state, we break out of this retry loop. We shouldn't
580      // need this flag to prevent us from getting back here, but
581      // sometimes paranoia is good.
582      did_trans_retry = true;
583
584      // We wait for the thread to transition to a more usable state.
585      for (int i = 1; i <= SuspendRetryCount; i++) {
586        // We used to do an "os::yield_all(i)" call here with the intention
587        // that yielding would increase on each retry. However, the parameter
588        // is ignored on Linux which means the yield didn't scale up. Waiting
589        // on the SR_lock below provides a much more predictable scale up for
590        // the delay. It also provides a simple/direct point to check for any
591        // safepoint requests from the VMThread
592
593        // temporarily drops SR_lock while doing wait with safepoint check
594        // (if we're a JavaThread - the WatcherThread can also call this)
595        // and increase delay with each retry
596        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
597
598        // check the actual thread state instead of what we saved above
599        if (thread_state() != _thread_in_native_trans) {
600          // the thread has transitioned to another thread state so
601          // try all the checks (except this one) one more time.
602          do_trans_retry = true;
603          break;
604        }
605      } // end retry loop
606
607
608    }
609  } while (do_trans_retry);
610
611  *bits |= 0x00000010;
612  return false;
613}
614
615//
616// Wait for an external suspend request to complete (or be cancelled).
617// Returns true if the thread is externally suspended and false otherwise.
618//
619bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
620       uint32_t *bits) {
621  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
622                             false /* !called_by_wait */, bits);
623
624  // local flag copies to minimize SR_lock hold time
625  bool is_suspended;
626  bool pending;
627  uint32_t reset_bits;
628
629  // set a marker so is_ext_suspend_completed() knows we are the caller
630  *bits |= 0x00010000;
631
632  // We use reset_bits to reinitialize the bits value at the top of
633  // each retry loop. This allows the caller to make use of any
634  // unused bits for their own marking purposes.
635  reset_bits = *bits;
636
637  {
638    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
639    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
640                                            delay, bits);
641    pending = is_external_suspend();
642  }
643  // must release SR_lock to allow suspension to complete
644
645  if (!pending) {
646    // A cancelled suspend request is the only false return from
647    // is_ext_suspend_completed() that keeps us from entering the
648    // retry loop.
649    *bits |= 0x00020000;
650    return false;
651  }
652
653  if (is_suspended) {
654    *bits |= 0x00040000;
655    return true;
656  }
657
658  for (int i = 1; i <= retries; i++) {
659    *bits = reset_bits;  // reinit to only track last retry
660
661    // We used to do an "os::yield_all(i)" call here with the intention
662    // that yielding would increase on each retry. However, the parameter
663    // is ignored on Linux which means the yield didn't scale up. Waiting
664    // on the SR_lock below provides a much more predictable scale up for
665    // the delay. It also provides a simple/direct point to check for any
666    // safepoint requests from the VMThread
667
668    {
669      MutexLocker ml(SR_lock());
670      // wait with safepoint check (if we're a JavaThread - the WatcherThread
671      // can also call this)  and increase delay with each retry
672      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
673
674      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
675                                              delay, bits);
676
677      // It is possible for the external suspend request to be cancelled
678      // (by a resume) before the actual suspend operation is completed.
679      // Refresh our local copy to see if we still need to wait.
680      pending = is_external_suspend();
681    }
682
683    if (!pending) {
684      // A cancelled suspend request is the only false return from
685      // is_ext_suspend_completed() that keeps us from staying in the
686      // retry loop.
687      *bits |= 0x00080000;
688      return false;
689    }
690
691    if (is_suspended) {
692      *bits |= 0x00100000;
693      return true;
694    }
695  } // end retry loop
696
697  // thread did not suspend after all our retries
698  *bits |= 0x00200000;
699  return false;
700}
701
702#ifndef PRODUCT
703void JavaThread::record_jump(address target, address instr, const char* file, int line) {
704
705  // This should not need to be atomic as the only way for simultaneous
706  // updates is via interrupts. Even then this should be rare or non-existant
707  // and we don't care that much anyway.
708
709  int index = _jmp_ring_index;
710  _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
711  _jmp_ring[index]._target = (intptr_t) target;
712  _jmp_ring[index]._instruction = (intptr_t) instr;
713  _jmp_ring[index]._file = file;
714  _jmp_ring[index]._line = line;
715}
716#endif /* PRODUCT */
717
718// Called by flat profiler
719// Callers have already called wait_for_ext_suspend_completion
720// The assertion for that is currently too complex to put here:
721bool JavaThread::profile_last_Java_frame(frame* _fr) {
722  bool gotframe = false;
723  // self suspension saves needed state.
724  if (has_last_Java_frame() && _anchor.walkable()) {
725     *_fr = pd_last_frame();
726     gotframe = true;
727  }
728  return gotframe;
729}
730
731void Thread::interrupt(Thread* thread) {
732  trace("interrupt", thread);
733  debug_only(check_for_dangling_thread_pointer(thread);)
734  os::interrupt(thread);
735}
736
737bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
738  trace("is_interrupted", thread);
739  debug_only(check_for_dangling_thread_pointer(thread);)
740  // Note:  If clear_interrupted==false, this simply fetches and
741  // returns the value of the field osthread()->interrupted().
742  return os::is_interrupted(thread, clear_interrupted);
743}
744
745
746// GC Support
747bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
748  jint thread_parity = _oops_do_parity;
749  if (thread_parity != strong_roots_parity) {
750    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
751    if (res == thread_parity) return true;
752    else {
753      guarantee(res == strong_roots_parity, "Or else what?");
754      assert(SharedHeap::heap()->n_par_threads() > 0,
755             "Should only fail when parallel.");
756      return false;
757    }
758  }
759  assert(SharedHeap::heap()->n_par_threads() > 0,
760         "Should only fail when parallel.");
761  return false;
762}
763
764void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
765  active_handles()->oops_do(f);
766  // Do oop for ThreadShadow
767  f->do_oop((oop*)&_pending_exception);
768  handle_area()->oops_do(f);
769}
770
771void Thread::nmethods_do(CodeBlobClosure* cf) {
772  // no nmethods in a generic thread...
773}
774
775void Thread::print_on(outputStream* st) const {
776  // get_priority assumes osthread initialized
777  if (osthread() != NULL) {
778    st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
779    osthread()->print_on(st);
780  }
781  debug_only(if (WizardMode) print_owned_locks_on(st);)
782}
783
784// Thread::print_on_error() is called by fatal error handler. Don't use
785// any lock or allocate memory.
786void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
787  if      (is_VM_thread())                  st->print("VMThread");
788  else if (is_Compiler_thread())            st->print("CompilerThread");
789  else if (is_Java_thread())                st->print("JavaThread");
790  else if (is_GC_task_thread())             st->print("GCTaskThread");
791  else if (is_Watcher_thread())             st->print("WatcherThread");
792  else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
793  else st->print("Thread");
794
795  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
796            _stack_base - _stack_size, _stack_base);
797
798  if (osthread()) {
799    st->print(" [id=%d]", osthread()->thread_id());
800  }
801}
802
803#ifdef ASSERT
804void Thread::print_owned_locks_on(outputStream* st) const {
805  Monitor *cur = _owned_locks;
806  if (cur == NULL) {
807    st->print(" (no locks) ");
808  } else {
809    st->print_cr(" Locks owned:");
810    while(cur) {
811      cur->print_on(st);
812      cur = cur->next();
813    }
814  }
815}
816
817static int ref_use_count  = 0;
818
819bool Thread::owns_locks_but_compiled_lock() const {
820  for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
821    if (cur != Compile_lock) return true;
822  }
823  return false;
824}
825
826
827#endif
828
829#ifndef PRODUCT
830
831// The flag: potential_vm_operation notifies if this particular safepoint state could potential
832// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
833// no threads which allow_vm_block's are held
834void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
835    // Check if current thread is allowed to block at a safepoint
836    if (!(_allow_safepoint_count == 0))
837      fatal("Possible safepoint reached by thread that does not allow it");
838    if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
839      fatal("LEAF method calling lock?");
840    }
841
842#ifdef ASSERT
843    if (potential_vm_operation && is_Java_thread()
844        && !Universe::is_bootstrapping()) {
845      // Make sure we do not hold any locks that the VM thread also uses.
846      // This could potentially lead to deadlocks
847      for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
848        // Threads_lock is special, since the safepoint synchronization will not start before this is
849        // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
850        // since it is used to transfer control between JavaThreads and the VMThread
851        // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
852        if ( (cur->allow_vm_block() &&
853              cur != Threads_lock &&
854              cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
855              cur != VMOperationRequest_lock &&
856              cur != VMOperationQueue_lock) ||
857              cur->rank() == Mutex::special) {
858          warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
859        }
860      }
861    }
862
863    if (GCALotAtAllSafepoints) {
864      // We could enter a safepoint here and thus have a gc
865      InterfaceSupport::check_gc_alot();
866    }
867#endif
868}
869#endif
870
871bool Thread::is_in_stack(address adr) const {
872  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
873  address end = os::current_stack_pointer();
874  if (stack_base() >= adr && adr >= end) return true;
875
876  return false;
877}
878
879
880// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
881// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
882// used for compilation in the future. If that change is made, the need for these methods
883// should be revisited, and they should be removed if possible.
884
885bool Thread::is_lock_owned(address adr) const {
886  return on_local_stack(adr);
887}
888
889bool Thread::set_as_starting_thread() {
890 // NOTE: this must be called inside the main thread.
891  return os::create_main_thread((JavaThread*)this);
892}
893
894static void initialize_class(Symbol* class_name, TRAPS) {
895  klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
896  instanceKlass::cast(klass)->initialize(CHECK);
897}
898
899
900// Creates the initial ThreadGroup
901static Handle create_initial_thread_group(TRAPS) {
902  klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
903  instanceKlassHandle klass (THREAD, k);
904
905  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
906  {
907    JavaValue result(T_VOID);
908    JavaCalls::call_special(&result,
909                            system_instance,
910                            klass,
911                            vmSymbols::object_initializer_name(),
912                            vmSymbols::void_method_signature(),
913                            CHECK_NH);
914  }
915  Universe::set_system_thread_group(system_instance());
916
917  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
918  {
919    JavaValue result(T_VOID);
920    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
921    JavaCalls::call_special(&result,
922                            main_instance,
923                            klass,
924                            vmSymbols::object_initializer_name(),
925                            vmSymbols::threadgroup_string_void_signature(),
926                            system_instance,
927                            string,
928                            CHECK_NH);
929  }
930  return main_instance;
931}
932
933// Creates the initial Thread
934static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
935  klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
936  instanceKlassHandle klass (THREAD, k);
937  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
938
939  java_lang_Thread::set_thread(thread_oop(), thread);
940  java_lang_Thread::set_priority(thread_oop(), NormPriority);
941  thread->set_threadObj(thread_oop());
942
943  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
944
945  JavaValue result(T_VOID);
946  JavaCalls::call_special(&result, thread_oop,
947                                   klass,
948                                   vmSymbols::object_initializer_name(),
949                                   vmSymbols::threadgroup_string_void_signature(),
950                                   thread_group,
951                                   string,
952                                   CHECK_NULL);
953  return thread_oop();
954}
955
956static void call_initializeSystemClass(TRAPS) {
957  klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
958  instanceKlassHandle klass (THREAD, k);
959
960  JavaValue result(T_VOID);
961  JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
962                                         vmSymbols::void_method_signature(), CHECK);
963}
964
965#ifdef KERNEL
966static void set_jkernel_boot_classloader_hook(TRAPS) {
967  klassOop k = SystemDictionary::sun_jkernel_DownloadManager_klass();
968  instanceKlassHandle klass (THREAD, k);
969
970  if (k == NULL) {
971    // sun.jkernel.DownloadManager may not present in the JDK; just return
972    return;
973  }
974
975  JavaValue result(T_VOID);
976  JavaCalls::call_static(&result, klass, vmSymbols::setBootClassLoaderHook_name(),
977                                         vmSymbols::void_method_signature(), CHECK);
978}
979#endif // KERNEL
980
981// General purpose hook into Java code, run once when the VM is initialized.
982// The Java library method itself may be changed independently from the VM.
983static void call_postVMInitHook(TRAPS) {
984  klassOop k = SystemDictionary::sun_misc_PostVMInitHook_klass();
985  instanceKlassHandle klass (THREAD, k);
986  if (klass.not_null()) {
987    JavaValue result(T_VOID);
988    JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
989                                           vmSymbols::void_method_signature(),
990                                           CHECK);
991  }
992}
993
994static void reset_vm_info_property(TRAPS) {
995  // the vm info string
996  ResourceMark rm(THREAD);
997  const char *vm_info = VM_Version::vm_info_string();
998
999  // java.lang.System class
1000  klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1001  instanceKlassHandle klass (THREAD, k);
1002
1003  // setProperty arguments
1004  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1005  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1006
1007  // return value
1008  JavaValue r(T_OBJECT);
1009
1010  // public static String setProperty(String key, String value);
1011  JavaCalls::call_static(&r,
1012                         klass,
1013                         vmSymbols::setProperty_name(),
1014                         vmSymbols::string_string_string_signature(),
1015                         key_str,
1016                         value_str,
1017                         CHECK);
1018}
1019
1020
1021void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1022  assert(thread_group.not_null(), "thread group should be specified");
1023  assert(threadObj() == NULL, "should only create Java thread object once");
1024
1025  klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1026  instanceKlassHandle klass (THREAD, k);
1027  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1028
1029  java_lang_Thread::set_thread(thread_oop(), this);
1030  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1031  set_threadObj(thread_oop());
1032
1033  JavaValue result(T_VOID);
1034  if (thread_name != NULL) {
1035    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1036    // Thread gets assigned specified name and null target
1037    JavaCalls::call_special(&result,
1038                            thread_oop,
1039                            klass,
1040                            vmSymbols::object_initializer_name(),
1041                            vmSymbols::threadgroup_string_void_signature(),
1042                            thread_group, // Argument 1
1043                            name,         // Argument 2
1044                            THREAD);
1045  } else {
1046    // Thread gets assigned name "Thread-nnn" and null target
1047    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1048    JavaCalls::call_special(&result,
1049                            thread_oop,
1050                            klass,
1051                            vmSymbols::object_initializer_name(),
1052                            vmSymbols::threadgroup_runnable_void_signature(),
1053                            thread_group, // Argument 1
1054                            Handle(),     // Argument 2
1055                            THREAD);
1056  }
1057
1058
1059  if (daemon) {
1060      java_lang_Thread::set_daemon(thread_oop());
1061  }
1062
1063  if (HAS_PENDING_EXCEPTION) {
1064    return;
1065  }
1066
1067  KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1068  Handle threadObj(this, this->threadObj());
1069
1070  JavaCalls::call_special(&result,
1071                         thread_group,
1072                         group,
1073                         vmSymbols::add_method_name(),
1074                         vmSymbols::thread_void_signature(),
1075                         threadObj,          // Arg 1
1076                         THREAD);
1077
1078
1079}
1080
1081// NamedThread --  non-JavaThread subclasses with multiple
1082// uniquely named instances should derive from this.
1083NamedThread::NamedThread() : Thread() {
1084  _name = NULL;
1085  _processed_thread = NULL;
1086}
1087
1088NamedThread::~NamedThread() {
1089  if (_name != NULL) {
1090    FREE_C_HEAP_ARRAY(char, _name);
1091    _name = NULL;
1092  }
1093}
1094
1095void NamedThread::set_name(const char* format, ...) {
1096  guarantee(_name == NULL, "Only get to set name once.");
1097  _name = NEW_C_HEAP_ARRAY(char, max_name_len);
1098  guarantee(_name != NULL, "alloc failure");
1099  va_list ap;
1100  va_start(ap, format);
1101  jio_vsnprintf(_name, max_name_len, format, ap);
1102  va_end(ap);
1103}
1104
1105// ======= WatcherThread ========
1106
1107// The watcher thread exists to simulate timer interrupts.  It should
1108// be replaced by an abstraction over whatever native support for
1109// timer interrupts exists on the platform.
1110
1111WatcherThread* WatcherThread::_watcher_thread   = NULL;
1112volatile bool  WatcherThread::_should_terminate = false;
1113
1114WatcherThread::WatcherThread() : Thread() {
1115  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1116  if (os::create_thread(this, os::watcher_thread)) {
1117    _watcher_thread = this;
1118
1119    // Set the watcher thread to the highest OS priority which should not be
1120    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1121    // is created. The only normal thread using this priority is the reference
1122    // handler thread, which runs for very short intervals only.
1123    // If the VMThread's priority is not lower than the WatcherThread profiling
1124    // will be inaccurate.
1125    os::set_priority(this, MaxPriority);
1126    if (!DisableStartThread) {
1127      os::start_thread(this);
1128    }
1129  }
1130}
1131
1132void WatcherThread::run() {
1133  assert(this == watcher_thread(), "just checking");
1134
1135  this->record_stack_base_and_size();
1136  this->initialize_thread_local_storage();
1137  this->set_active_handles(JNIHandleBlock::allocate_block());
1138  while(!_should_terminate) {
1139    assert(watcher_thread() == Thread::current(),  "thread consistency check");
1140    assert(watcher_thread() == this,  "thread consistency check");
1141
1142    // Calculate how long it'll be until the next PeriodicTask work
1143    // should be done, and sleep that amount of time.
1144    size_t time_to_wait = PeriodicTask::time_to_wait();
1145
1146    // we expect this to timeout - we only ever get unparked when
1147    // we should terminate
1148    {
1149      OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1150
1151      jlong prev_time = os::javaTimeNanos();
1152      for (;;) {
1153        int res= _SleepEvent->park(time_to_wait);
1154        if (res == OS_TIMEOUT || _should_terminate)
1155          break;
1156        // spurious wakeup of some kind
1157        jlong now = os::javaTimeNanos();
1158        time_to_wait -= (now - prev_time) / 1000000;
1159        if (time_to_wait <= 0)
1160          break;
1161        prev_time = now;
1162      }
1163    }
1164
1165    if (is_error_reported()) {
1166      // A fatal error has happened, the error handler(VMError::report_and_die)
1167      // should abort JVM after creating an error log file. However in some
1168      // rare cases, the error handler itself might deadlock. Here we try to
1169      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1170      //
1171      // This code is in WatcherThread because WatcherThread wakes up
1172      // periodically so the fatal error handler doesn't need to do anything;
1173      // also because the WatcherThread is less likely to crash than other
1174      // threads.
1175
1176      for (;;) {
1177        if (!ShowMessageBoxOnError
1178         && (OnError == NULL || OnError[0] == '\0')
1179         && Arguments::abort_hook() == NULL) {
1180             os::sleep(this, 2 * 60 * 1000, false);
1181             fdStream err(defaultStream::output_fd());
1182             err.print_raw_cr("# [ timer expired, abort... ]");
1183             // skip atexit/vm_exit/vm_abort hooks
1184             os::die();
1185        }
1186
1187        // Wake up 5 seconds later, the fatal handler may reset OnError or
1188        // ShowMessageBoxOnError when it is ready to abort.
1189        os::sleep(this, 5 * 1000, false);
1190      }
1191    }
1192
1193    PeriodicTask::real_time_tick(time_to_wait);
1194
1195    // If we have no more tasks left due to dynamic disenrollment,
1196    // shut down the thread since we don't currently support dynamic enrollment
1197    if (PeriodicTask::num_tasks() == 0) {
1198      _should_terminate = true;
1199    }
1200  }
1201
1202  // Signal that it is terminated
1203  {
1204    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1205    _watcher_thread = NULL;
1206    Terminator_lock->notify();
1207  }
1208
1209  // Thread destructor usually does this..
1210  ThreadLocalStorage::set_thread(NULL);
1211}
1212
1213void WatcherThread::start() {
1214  if (watcher_thread() == NULL) {
1215    _should_terminate = false;
1216    // Create the single instance of WatcherThread
1217    new WatcherThread();
1218  }
1219}
1220
1221void WatcherThread::stop() {
1222  // it is ok to take late safepoints here, if needed
1223  MutexLocker mu(Terminator_lock);
1224  _should_terminate = true;
1225  OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1226
1227  Thread* watcher = watcher_thread();
1228  if (watcher != NULL)
1229    watcher->_SleepEvent->unpark();
1230
1231  while(watcher_thread() != NULL) {
1232    // This wait should make safepoint checks, wait without a timeout,
1233    // and wait as a suspend-equivalent condition.
1234    //
1235    // Note: If the FlatProfiler is running, then this thread is waiting
1236    // for the WatcherThread to terminate and the WatcherThread, via the
1237    // FlatProfiler task, is waiting for the external suspend request on
1238    // this thread to complete. wait_for_ext_suspend_completion() will
1239    // eventually timeout, but that takes time. Making this wait a
1240    // suspend-equivalent condition solves that timeout problem.
1241    //
1242    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1243                          Mutex::_as_suspend_equivalent_flag);
1244  }
1245}
1246
1247void WatcherThread::print_on(outputStream* st) const {
1248  st->print("\"%s\" ", name());
1249  Thread::print_on(st);
1250  st->cr();
1251}
1252
1253// ======= JavaThread ========
1254
1255// A JavaThread is a normal Java thread
1256
1257void JavaThread::initialize() {
1258  // Initialize fields
1259
1260  // Set the claimed par_id to -1 (ie not claiming any par_ids)
1261  set_claimed_par_id(-1);
1262
1263  set_saved_exception_pc(NULL);
1264  set_threadObj(NULL);
1265  _anchor.clear();
1266  set_entry_point(NULL);
1267  set_jni_functions(jni_functions());
1268  set_callee_target(NULL);
1269  set_vm_result(NULL);
1270  set_vm_result_2(NULL);
1271  set_vframe_array_head(NULL);
1272  set_vframe_array_last(NULL);
1273  set_deferred_locals(NULL);
1274  set_deopt_mark(NULL);
1275  set_deopt_nmethod(NULL);
1276  clear_must_deopt_id();
1277  set_monitor_chunks(NULL);
1278  set_next(NULL);
1279  set_thread_state(_thread_new);
1280  _terminated = _not_terminated;
1281  _privileged_stack_top = NULL;
1282  _array_for_gc = NULL;
1283  _suspend_equivalent = false;
1284  _in_deopt_handler = 0;
1285  _doing_unsafe_access = false;
1286  _stack_guard_state = stack_guard_unused;
1287  _exception_oop = NULL;
1288  _exception_pc  = 0;
1289  _exception_handler_pc = 0;
1290  _exception_stack_size = 0;
1291  _is_method_handle_return = 0;
1292  _jvmti_thread_state= NULL;
1293  _should_post_on_exceptions_flag = JNI_FALSE;
1294  _jvmti_get_loaded_classes_closure = NULL;
1295  _interp_only_mode    = 0;
1296  _special_runtime_exit_condition = _no_async_condition;
1297  _pending_async_exception = NULL;
1298  _is_compiling = false;
1299  _thread_stat = NULL;
1300  _thread_stat = new ThreadStatistics();
1301  _blocked_on_compilation = false;
1302  _jni_active_critical = 0;
1303  _do_not_unlock_if_synchronized = false;
1304  _cached_monitor_info = NULL;
1305  _parker = Parker::Allocate(this) ;
1306
1307#ifndef PRODUCT
1308  _jmp_ring_index = 0;
1309  for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1310    record_jump(NULL, NULL, NULL, 0);
1311  }
1312#endif /* PRODUCT */
1313
1314  set_thread_profiler(NULL);
1315  if (FlatProfiler::is_active()) {
1316    // This is where we would decide to either give each thread it's own profiler
1317    // or use one global one from FlatProfiler,
1318    // or up to some count of the number of profiled threads, etc.
1319    ThreadProfiler* pp = new ThreadProfiler();
1320    pp->engage();
1321    set_thread_profiler(pp);
1322  }
1323
1324  // Setup safepoint state info for this thread
1325  ThreadSafepointState::create(this);
1326
1327  debug_only(_java_call_counter = 0);
1328
1329  // JVMTI PopFrame support
1330  _popframe_condition = popframe_inactive;
1331  _popframe_preserved_args = NULL;
1332  _popframe_preserved_args_size = 0;
1333
1334  pd_initialize();
1335}
1336
1337#ifndef SERIALGC
1338SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1339DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1340#endif // !SERIALGC
1341
1342JavaThread::JavaThread(bool is_attaching) :
1343  Thread()
1344#ifndef SERIALGC
1345  , _satb_mark_queue(&_satb_mark_queue_set),
1346  _dirty_card_queue(&_dirty_card_queue_set)
1347#endif // !SERIALGC
1348{
1349  initialize();
1350  _is_attaching = is_attaching;
1351  assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
1352}
1353
1354bool JavaThread::reguard_stack(address cur_sp) {
1355  if (_stack_guard_state != stack_guard_yellow_disabled) {
1356    return true; // Stack already guarded or guard pages not needed.
1357  }
1358
1359  if (register_stack_overflow()) {
1360    // For those architectures which have separate register and
1361    // memory stacks, we must check the register stack to see if
1362    // it has overflowed.
1363    return false;
1364  }
1365
1366  // Java code never executes within the yellow zone: the latter is only
1367  // there to provoke an exception during stack banging.  If java code
1368  // is executing there, either StackShadowPages should be larger, or
1369  // some exception code in c1, c2 or the interpreter isn't unwinding
1370  // when it should.
1371  guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1372
1373  enable_stack_yellow_zone();
1374  return true;
1375}
1376
1377bool JavaThread::reguard_stack(void) {
1378  return reguard_stack(os::current_stack_pointer());
1379}
1380
1381
1382void JavaThread::block_if_vm_exited() {
1383  if (_terminated == _vm_exited) {
1384    // _vm_exited is set at safepoint, and Threads_lock is never released
1385    // we will block here forever
1386    Threads_lock->lock_without_safepoint_check();
1387    ShouldNotReachHere();
1388  }
1389}
1390
1391
1392// Remove this ifdef when C1 is ported to the compiler interface.
1393static void compiler_thread_entry(JavaThread* thread, TRAPS);
1394
1395JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1396  Thread()
1397#ifndef SERIALGC
1398  , _satb_mark_queue(&_satb_mark_queue_set),
1399  _dirty_card_queue(&_dirty_card_queue_set)
1400#endif // !SERIALGC
1401{
1402  if (TraceThreadEvents) {
1403    tty->print_cr("creating thread %p", this);
1404  }
1405  initialize();
1406  _is_attaching = false;
1407  set_entry_point(entry_point);
1408  // Create the native thread itself.
1409  // %note runtime_23
1410  os::ThreadType thr_type = os::java_thread;
1411  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1412                                                     os::java_thread;
1413  os::create_thread(this, thr_type, stack_sz);
1414
1415  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1416  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1417  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1418  // the exception consists of creating the exception object & initializing it, initialization
1419  // will leave the VM via a JavaCall and then all locks must be unlocked).
1420  //
1421  // The thread is still suspended when we reach here. Thread must be explicit started
1422  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1423  // by calling Threads:add. The reason why this is not done here, is because the thread
1424  // object must be fully initialized (take a look at JVM_Start)
1425}
1426
1427JavaThread::~JavaThread() {
1428  if (TraceThreadEvents) {
1429      tty->print_cr("terminate thread %p", this);
1430  }
1431
1432  // JSR166 -- return the parker to the free list
1433  Parker::Release(_parker);
1434  _parker = NULL ;
1435
1436  // Free any remaining  previous UnrollBlock
1437  vframeArray* old_array = vframe_array_last();
1438
1439  if (old_array != NULL) {
1440    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1441    old_array->set_unroll_block(NULL);
1442    delete old_info;
1443    delete old_array;
1444  }
1445
1446  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1447  if (deferred != NULL) {
1448    // This can only happen if thread is destroyed before deoptimization occurs.
1449    assert(deferred->length() != 0, "empty array!");
1450    do {
1451      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1452      deferred->remove_at(0);
1453      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1454      delete dlv;
1455    } while (deferred->length() != 0);
1456    delete deferred;
1457  }
1458
1459  // All Java related clean up happens in exit
1460  ThreadSafepointState::destroy(this);
1461  if (_thread_profiler != NULL) delete _thread_profiler;
1462  if (_thread_stat != NULL) delete _thread_stat;
1463}
1464
1465
1466// The first routine called by a new Java thread
1467void JavaThread::run() {
1468  // initialize thread-local alloc buffer related fields
1469  this->initialize_tlab();
1470
1471  // used to test validitity of stack trace backs
1472  this->record_base_of_stack_pointer();
1473
1474  // Record real stack base and size.
1475  this->record_stack_base_and_size();
1476
1477  // Initialize thread local storage; set before calling MutexLocker
1478  this->initialize_thread_local_storage();
1479
1480  this->create_stack_guard_pages();
1481
1482  this->cache_global_variables();
1483
1484  // Thread is now sufficient initialized to be handled by the safepoint code as being
1485  // in the VM. Change thread state from _thread_new to _thread_in_vm
1486  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1487
1488  assert(JavaThread::current() == this, "sanity check");
1489  assert(!Thread::current()->owns_locks(), "sanity check");
1490
1491  DTRACE_THREAD_PROBE(start, this);
1492
1493  // This operation might block. We call that after all safepoint checks for a new thread has
1494  // been completed.
1495  this->set_active_handles(JNIHandleBlock::allocate_block());
1496
1497  if (JvmtiExport::should_post_thread_life()) {
1498    JvmtiExport::post_thread_start(this);
1499  }
1500
1501  // We call another function to do the rest so we are sure that the stack addresses used
1502  // from there will be lower than the stack base just computed
1503  thread_main_inner();
1504
1505  // Note, thread is no longer valid at this point!
1506}
1507
1508
1509void JavaThread::thread_main_inner() {
1510  assert(JavaThread::current() == this, "sanity check");
1511  assert(this->threadObj() != NULL, "just checking");
1512
1513  // Execute thread entry point unless this thread has a pending exception
1514  // or has been stopped before starting.
1515  // Note: Due to JVM_StopThread we can have pending exceptions already!
1516  if (!this->has_pending_exception() &&
1517      !java_lang_Thread::is_stillborn(this->threadObj())) {
1518    HandleMark hm(this);
1519    this->entry_point()(this, this);
1520  }
1521
1522  DTRACE_THREAD_PROBE(stop, this);
1523
1524  this->exit(false);
1525  delete this;
1526}
1527
1528
1529static void ensure_join(JavaThread* thread) {
1530  // We do not need to grap the Threads_lock, since we are operating on ourself.
1531  Handle threadObj(thread, thread->threadObj());
1532  assert(threadObj.not_null(), "java thread object must exist");
1533  ObjectLocker lock(threadObj, thread);
1534  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1535  thread->clear_pending_exception();
1536  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1537  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1538  // Clear the native thread instance - this makes isAlive return false and allows the join()
1539  // to complete once we've done the notify_all below
1540  java_lang_Thread::set_thread(threadObj(), NULL);
1541  lock.notify_all(thread);
1542  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1543  thread->clear_pending_exception();
1544}
1545
1546
1547// For any new cleanup additions, please check to see if they need to be applied to
1548// cleanup_failed_attach_current_thread as well.
1549void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1550  assert(this == JavaThread::current(),  "thread consistency check");
1551  if (!InitializeJavaLangSystem) return;
1552
1553  HandleMark hm(this);
1554  Handle uncaught_exception(this, this->pending_exception());
1555  this->clear_pending_exception();
1556  Handle threadObj(this, this->threadObj());
1557  assert(threadObj.not_null(), "Java thread object should be created");
1558
1559  if (get_thread_profiler() != NULL) {
1560    get_thread_profiler()->disengage();
1561    ResourceMark rm;
1562    get_thread_profiler()->print(get_thread_name());
1563  }
1564
1565
1566  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1567  {
1568    EXCEPTION_MARK;
1569
1570    CLEAR_PENDING_EXCEPTION;
1571  }
1572  // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1573  // has to be fixed by a runtime query method
1574  if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1575    // JSR-166: change call from from ThreadGroup.uncaughtException to
1576    // java.lang.Thread.dispatchUncaughtException
1577    if (uncaught_exception.not_null()) {
1578      Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1579      Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
1580        (address)uncaught_exception(), (address)threadObj(), (address)group());
1581      {
1582        EXCEPTION_MARK;
1583        // Check if the method Thread.dispatchUncaughtException() exists. If so
1584        // call it.  Otherwise we have an older library without the JSR-166 changes,
1585        // so call ThreadGroup.uncaughtException()
1586        KlassHandle recvrKlass(THREAD, threadObj->klass());
1587        CallInfo callinfo;
1588        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1589        LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1590                                           vmSymbols::dispatchUncaughtException_name(),
1591                                           vmSymbols::throwable_void_signature(),
1592                                           KlassHandle(), false, false, THREAD);
1593        CLEAR_PENDING_EXCEPTION;
1594        methodHandle method = callinfo.selected_method();
1595        if (method.not_null()) {
1596          JavaValue result(T_VOID);
1597          JavaCalls::call_virtual(&result,
1598                                  threadObj, thread_klass,
1599                                  vmSymbols::dispatchUncaughtException_name(),
1600                                  vmSymbols::throwable_void_signature(),
1601                                  uncaught_exception,
1602                                  THREAD);
1603        } else {
1604          KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1605          JavaValue result(T_VOID);
1606          JavaCalls::call_virtual(&result,
1607                                  group, thread_group,
1608                                  vmSymbols::uncaughtException_name(),
1609                                  vmSymbols::thread_throwable_void_signature(),
1610                                  threadObj,           // Arg 1
1611                                  uncaught_exception,  // Arg 2
1612                                  THREAD);
1613        }
1614        CLEAR_PENDING_EXCEPTION;
1615      }
1616    }
1617
1618    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1619    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1620    // is deprecated anyhow.
1621    { int count = 3;
1622      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1623        EXCEPTION_MARK;
1624        JavaValue result(T_VOID);
1625        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1626        JavaCalls::call_virtual(&result,
1627                              threadObj, thread_klass,
1628                              vmSymbols::exit_method_name(),
1629                              vmSymbols::void_method_signature(),
1630                              THREAD);
1631        CLEAR_PENDING_EXCEPTION;
1632      }
1633    }
1634
1635    // notify JVMTI
1636    if (JvmtiExport::should_post_thread_life()) {
1637      JvmtiExport::post_thread_end(this);
1638    }
1639
1640    // We have notified the agents that we are exiting, before we go on,
1641    // we must check for a pending external suspend request and honor it
1642    // in order to not surprise the thread that made the suspend request.
1643    while (true) {
1644      {
1645        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1646        if (!is_external_suspend()) {
1647          set_terminated(_thread_exiting);
1648          ThreadService::current_thread_exiting(this);
1649          break;
1650        }
1651        // Implied else:
1652        // Things get a little tricky here. We have a pending external
1653        // suspend request, but we are holding the SR_lock so we
1654        // can't just self-suspend. So we temporarily drop the lock
1655        // and then self-suspend.
1656      }
1657
1658      ThreadBlockInVM tbivm(this);
1659      java_suspend_self();
1660
1661      // We're done with this suspend request, but we have to loop around
1662      // and check again. Eventually we will get SR_lock without a pending
1663      // external suspend request and will be able to mark ourselves as
1664      // exiting.
1665    }
1666    // no more external suspends are allowed at this point
1667  } else {
1668    // before_exit() has already posted JVMTI THREAD_END events
1669  }
1670
1671  // Notify waiters on thread object. This has to be done after exit() is called
1672  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1673  // group should have the destroyed bit set before waiters are notified).
1674  ensure_join(this);
1675  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1676
1677  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1678  // held by this thread must be released.  A detach operation must only
1679  // get here if there are no Java frames on the stack.  Therefore, any
1680  // owned monitors at this point MUST be JNI-acquired monitors which are
1681  // pre-inflated and in the monitor cache.
1682  //
1683  // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1684  if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1685    assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1686    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1687    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1688  }
1689
1690  // These things needs to be done while we are still a Java Thread. Make sure that thread
1691  // is in a consistent state, in case GC happens
1692  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1693
1694  if (active_handles() != NULL) {
1695    JNIHandleBlock* block = active_handles();
1696    set_active_handles(NULL);
1697    JNIHandleBlock::release_block(block);
1698  }
1699
1700  if (free_handle_block() != NULL) {
1701    JNIHandleBlock* block = free_handle_block();
1702    set_free_handle_block(NULL);
1703    JNIHandleBlock::release_block(block);
1704  }
1705
1706  // These have to be removed while this is still a valid thread.
1707  remove_stack_guard_pages();
1708
1709  if (UseTLAB) {
1710    tlab().make_parsable(true);  // retire TLAB
1711  }
1712
1713  if (JvmtiEnv::environments_might_exist()) {
1714    JvmtiExport::cleanup_thread(this);
1715  }
1716
1717#ifndef SERIALGC
1718  // We must flush G1-related buffers before removing a thread from
1719  // the list of active threads.
1720  if (UseG1GC) {
1721    flush_barrier_queues();
1722  }
1723#endif
1724
1725  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1726  Threads::remove(this);
1727}
1728
1729#ifndef SERIALGC
1730// Flush G1-related queues.
1731void JavaThread::flush_barrier_queues() {
1732  satb_mark_queue().flush();
1733  dirty_card_queue().flush();
1734}
1735
1736void JavaThread::initialize_queues() {
1737  assert(!SafepointSynchronize::is_at_safepoint(),
1738         "we should not be at a safepoint");
1739
1740  ObjPtrQueue& satb_queue = satb_mark_queue();
1741  SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1742  // The SATB queue should have been constructed with its active
1743  // field set to false.
1744  assert(!satb_queue.is_active(), "SATB queue should not be active");
1745  assert(satb_queue.is_empty(), "SATB queue should be empty");
1746  // If we are creating the thread during a marking cycle, we should
1747  // set the active field of the SATB queue to true.
1748  if (satb_queue_set.is_active()) {
1749    satb_queue.set_active(true);
1750  }
1751
1752  DirtyCardQueue& dirty_queue = dirty_card_queue();
1753  // The dirty card queue should have been constructed with its
1754  // active field set to true.
1755  assert(dirty_queue.is_active(), "dirty card queue should be active");
1756}
1757#endif // !SERIALGC
1758
1759void JavaThread::cleanup_failed_attach_current_thread() {
1760  if (get_thread_profiler() != NULL) {
1761    get_thread_profiler()->disengage();
1762    ResourceMark rm;
1763    get_thread_profiler()->print(get_thread_name());
1764  }
1765
1766  if (active_handles() != NULL) {
1767    JNIHandleBlock* block = active_handles();
1768    set_active_handles(NULL);
1769    JNIHandleBlock::release_block(block);
1770  }
1771
1772  if (free_handle_block() != NULL) {
1773    JNIHandleBlock* block = free_handle_block();
1774    set_free_handle_block(NULL);
1775    JNIHandleBlock::release_block(block);
1776  }
1777
1778  // These have to be removed while this is still a valid thread.
1779  remove_stack_guard_pages();
1780
1781  if (UseTLAB) {
1782    tlab().make_parsable(true);  // retire TLAB, if any
1783  }
1784
1785#ifndef SERIALGC
1786  if (UseG1GC) {
1787    flush_barrier_queues();
1788  }
1789#endif
1790
1791  Threads::remove(this);
1792  delete this;
1793}
1794
1795
1796
1797
1798JavaThread* JavaThread::active() {
1799  Thread* thread = ThreadLocalStorage::thread();
1800  assert(thread != NULL, "just checking");
1801  if (thread->is_Java_thread()) {
1802    return (JavaThread*) thread;
1803  } else {
1804    assert(thread->is_VM_thread(), "this must be a vm thread");
1805    VM_Operation* op = ((VMThread*) thread)->vm_operation();
1806    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1807    assert(ret->is_Java_thread(), "must be a Java thread");
1808    return ret;
1809  }
1810}
1811
1812bool JavaThread::is_lock_owned(address adr) const {
1813  if (Thread::is_lock_owned(adr)) return true;
1814
1815  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1816    if (chunk->contains(adr)) return true;
1817  }
1818
1819  return false;
1820}
1821
1822
1823void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1824  chunk->set_next(monitor_chunks());
1825  set_monitor_chunks(chunk);
1826}
1827
1828void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1829  guarantee(monitor_chunks() != NULL, "must be non empty");
1830  if (monitor_chunks() == chunk) {
1831    set_monitor_chunks(chunk->next());
1832  } else {
1833    MonitorChunk* prev = monitor_chunks();
1834    while (prev->next() != chunk) prev = prev->next();
1835    prev->set_next(chunk->next());
1836  }
1837}
1838
1839// JVM support.
1840
1841// Note: this function shouldn't block if it's called in
1842// _thread_in_native_trans state (such as from
1843// check_special_condition_for_native_trans()).
1844void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1845
1846  if (has_last_Java_frame() && has_async_condition()) {
1847    // If we are at a polling page safepoint (not a poll return)
1848    // then we must defer async exception because live registers
1849    // will be clobbered by the exception path. Poll return is
1850    // ok because the call we a returning from already collides
1851    // with exception handling registers and so there is no issue.
1852    // (The exception handling path kills call result registers but
1853    //  this is ok since the exception kills the result anyway).
1854
1855    if (is_at_poll_safepoint()) {
1856      // if the code we are returning to has deoptimized we must defer
1857      // the exception otherwise live registers get clobbered on the
1858      // exception path before deoptimization is able to retrieve them.
1859      //
1860      RegisterMap map(this, false);
1861      frame caller_fr = last_frame().sender(&map);
1862      assert(caller_fr.is_compiled_frame(), "what?");
1863      if (caller_fr.is_deoptimized_frame()) {
1864        if (TraceExceptions) {
1865          ResourceMark rm;
1866          tty->print_cr("deferred async exception at compiled safepoint");
1867        }
1868        return;
1869      }
1870    }
1871  }
1872
1873  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
1874  if (condition == _no_async_condition) {
1875    // Conditions have changed since has_special_runtime_exit_condition()
1876    // was called:
1877    // - if we were here only because of an external suspend request,
1878    //   then that was taken care of above (or cancelled) so we are done
1879    // - if we were here because of another async request, then it has
1880    //   been cleared between the has_special_runtime_exit_condition()
1881    //   and now so again we are done
1882    return;
1883  }
1884
1885  // Check for pending async. exception
1886  if (_pending_async_exception != NULL) {
1887    // Only overwrite an already pending exception, if it is not a threadDeath.
1888    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
1889
1890      // We cannot call Exceptions::_throw(...) here because we cannot block
1891      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
1892
1893      if (TraceExceptions) {
1894        ResourceMark rm;
1895        tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
1896        if (has_last_Java_frame() ) {
1897          frame f = last_frame();
1898          tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
1899        }
1900        tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1901      }
1902      _pending_async_exception = NULL;
1903      clear_has_async_exception();
1904    }
1905  }
1906
1907  if (check_unsafe_error &&
1908      condition == _async_unsafe_access_error && !has_pending_exception()) {
1909    condition = _no_async_condition;  // done
1910    switch (thread_state()) {
1911    case _thread_in_vm:
1912      {
1913        JavaThread* THREAD = this;
1914        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1915      }
1916    case _thread_in_native:
1917      {
1918        ThreadInVMfromNative tiv(this);
1919        JavaThread* THREAD = this;
1920        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1921      }
1922    case _thread_in_Java:
1923      {
1924        ThreadInVMfromJava tiv(this);
1925        JavaThread* THREAD = this;
1926        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
1927      }
1928    default:
1929      ShouldNotReachHere();
1930    }
1931  }
1932
1933  assert(condition == _no_async_condition || has_pending_exception() ||
1934         (!check_unsafe_error && condition == _async_unsafe_access_error),
1935         "must have handled the async condition, if no exception");
1936}
1937
1938void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
1939  //
1940  // Check for pending external suspend. Internal suspend requests do
1941  // not use handle_special_runtime_exit_condition().
1942  // If JNIEnv proxies are allowed, don't self-suspend if the target
1943  // thread is not the current thread. In older versions of jdbx, jdbx
1944  // threads could call into the VM with another thread's JNIEnv so we
1945  // can be here operating on behalf of a suspended thread (4432884).
1946  bool do_self_suspend = is_external_suspend_with_lock();
1947  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
1948    //
1949    // Because thread is external suspended the safepoint code will count
1950    // thread as at a safepoint. This can be odd because we can be here
1951    // as _thread_in_Java which would normally transition to _thread_blocked
1952    // at a safepoint. We would like to mark the thread as _thread_blocked
1953    // before calling java_suspend_self like all other callers of it but
1954    // we must then observe proper safepoint protocol. (We can't leave
1955    // _thread_blocked with a safepoint in progress). However we can be
1956    // here as _thread_in_native_trans so we can't use a normal transition
1957    // constructor/destructor pair because they assert on that type of
1958    // transition. We could do something like:
1959    //
1960    // JavaThreadState state = thread_state();
1961    // set_thread_state(_thread_in_vm);
1962    // {
1963    //   ThreadBlockInVM tbivm(this);
1964    //   java_suspend_self()
1965    // }
1966    // set_thread_state(_thread_in_vm_trans);
1967    // if (safepoint) block;
1968    // set_thread_state(state);
1969    //
1970    // but that is pretty messy. Instead we just go with the way the
1971    // code has worked before and note that this is the only path to
1972    // java_suspend_self that doesn't put the thread in _thread_blocked
1973    // mode.
1974
1975    frame_anchor()->make_walkable(this);
1976    java_suspend_self();
1977
1978    // We might be here for reasons in addition to the self-suspend request
1979    // so check for other async requests.
1980  }
1981
1982  if (check_asyncs) {
1983    check_and_handle_async_exceptions();
1984  }
1985}
1986
1987void JavaThread::send_thread_stop(oop java_throwable)  {
1988  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
1989  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
1990  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
1991
1992  // Do not throw asynchronous exceptions against the compiler thread
1993  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
1994  if (is_Compiler_thread()) return;
1995
1996  {
1997    // Actually throw the Throwable against the target Thread - however
1998    // only if there is no thread death exception installed already.
1999    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2000      // If the topmost frame is a runtime stub, then we are calling into
2001      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2002      // must deoptimize the caller before continuing, as the compiled  exception handler table
2003      // may not be valid
2004      if (has_last_Java_frame()) {
2005        frame f = last_frame();
2006        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2007          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2008          RegisterMap reg_map(this, UseBiasedLocking);
2009          frame compiled_frame = f.sender(&reg_map);
2010          if (compiled_frame.can_be_deoptimized()) {
2011            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2012          }
2013        }
2014      }
2015
2016      // Set async. pending exception in thread.
2017      set_pending_async_exception(java_throwable);
2018
2019      if (TraceExceptions) {
2020       ResourceMark rm;
2021       tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
2022      }
2023      // for AbortVMOnException flag
2024      NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
2025    }
2026  }
2027
2028
2029  // Interrupt thread so it will wake up from a potential wait()
2030  Thread::interrupt(this);
2031}
2032
2033// External suspension mechanism.
2034//
2035// Tell the VM to suspend a thread when ever it knows that it does not hold on
2036// to any VM_locks and it is at a transition
2037// Self-suspension will happen on the transition out of the vm.
2038// Catch "this" coming in from JNIEnv pointers when the thread has been freed
2039//
2040// Guarantees on return:
2041//   + Target thread will not execute any new bytecode (that's why we need to
2042//     force a safepoint)
2043//   + Target thread will not enter any new monitors
2044//
2045void JavaThread::java_suspend() {
2046  { MutexLocker mu(Threads_lock);
2047    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2048       return;
2049    }
2050  }
2051
2052  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2053    if (!is_external_suspend()) {
2054      // a racing resume has cancelled us; bail out now
2055      return;
2056    }
2057
2058    // suspend is done
2059    uint32_t debug_bits = 0;
2060    // Warning: is_ext_suspend_completed() may temporarily drop the
2061    // SR_lock to allow the thread to reach a stable thread state if
2062    // it is currently in a transient thread state.
2063    if (is_ext_suspend_completed(false /* !called_by_wait */,
2064                                 SuspendRetryDelay, &debug_bits) ) {
2065      return;
2066    }
2067  }
2068
2069  VM_ForceSafepoint vm_suspend;
2070  VMThread::execute(&vm_suspend);
2071}
2072
2073// Part II of external suspension.
2074// A JavaThread self suspends when it detects a pending external suspend
2075// request. This is usually on transitions. It is also done in places
2076// where continuing to the next transition would surprise the caller,
2077// e.g., monitor entry.
2078//
2079// Returns the number of times that the thread self-suspended.
2080//
2081// Note: DO NOT call java_suspend_self() when you just want to block current
2082//       thread. java_suspend_self() is the second stage of cooperative
2083//       suspension for external suspend requests and should only be used
2084//       to complete an external suspend request.
2085//
2086int JavaThread::java_suspend_self() {
2087  int ret = 0;
2088
2089  // we are in the process of exiting so don't suspend
2090  if (is_exiting()) {
2091     clear_external_suspend();
2092     return ret;
2093  }
2094
2095  assert(_anchor.walkable() ||
2096    (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2097    "must have walkable stack");
2098
2099  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2100
2101  assert(!this->is_ext_suspended(),
2102    "a thread trying to self-suspend should not already be suspended");
2103
2104  if (this->is_suspend_equivalent()) {
2105    // If we are self-suspending as a result of the lifting of a
2106    // suspend equivalent condition, then the suspend_equivalent
2107    // flag is not cleared until we set the ext_suspended flag so
2108    // that wait_for_ext_suspend_completion() returns consistent
2109    // results.
2110    this->clear_suspend_equivalent();
2111  }
2112
2113  // A racing resume may have cancelled us before we grabbed SR_lock
2114  // above. Or another external suspend request could be waiting for us
2115  // by the time we return from SR_lock()->wait(). The thread
2116  // that requested the suspension may already be trying to walk our
2117  // stack and if we return now, we can change the stack out from under
2118  // it. This would be a "bad thing (TM)" and cause the stack walker
2119  // to crash. We stay self-suspended until there are no more pending
2120  // external suspend requests.
2121  while (is_external_suspend()) {
2122    ret++;
2123    this->set_ext_suspended();
2124
2125    // _ext_suspended flag is cleared by java_resume()
2126    while (is_ext_suspended()) {
2127      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2128    }
2129  }
2130
2131  return ret;
2132}
2133
2134#ifdef ASSERT
2135// verify the JavaThread has not yet been published in the Threads::list, and
2136// hence doesn't need protection from concurrent access at this stage
2137void JavaThread::verify_not_published() {
2138  if (!Threads_lock->owned_by_self()) {
2139   MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2140   assert( !Threads::includes(this),
2141           "java thread shouldn't have been published yet!");
2142  }
2143  else {
2144   assert( !Threads::includes(this),
2145           "java thread shouldn't have been published yet!");
2146  }
2147}
2148#endif
2149
2150// Slow path when the native==>VM/Java barriers detect a safepoint is in
2151// progress or when _suspend_flags is non-zero.
2152// Current thread needs to self-suspend if there is a suspend request and/or
2153// block if a safepoint is in progress.
2154// Async exception ISN'T checked.
2155// Note only the ThreadInVMfromNative transition can call this function
2156// directly and when thread state is _thread_in_native_trans
2157void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2158  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2159
2160  JavaThread *curJT = JavaThread::current();
2161  bool do_self_suspend = thread->is_external_suspend();
2162
2163  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2164
2165  // If JNIEnv proxies are allowed, don't self-suspend if the target
2166  // thread is not the current thread. In older versions of jdbx, jdbx
2167  // threads could call into the VM with another thread's JNIEnv so we
2168  // can be here operating on behalf of a suspended thread (4432884).
2169  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2170    JavaThreadState state = thread->thread_state();
2171
2172    // We mark this thread_blocked state as a suspend-equivalent so
2173    // that a caller to is_ext_suspend_completed() won't be confused.
2174    // The suspend-equivalent state is cleared by java_suspend_self().
2175    thread->set_suspend_equivalent();
2176
2177    // If the safepoint code sees the _thread_in_native_trans state, it will
2178    // wait until the thread changes to other thread state. There is no
2179    // guarantee on how soon we can obtain the SR_lock and complete the
2180    // self-suspend request. It would be a bad idea to let safepoint wait for
2181    // too long. Temporarily change the state to _thread_blocked to
2182    // let the VM thread know that this thread is ready for GC. The problem
2183    // of changing thread state is that safepoint could happen just after
2184    // java_suspend_self() returns after being resumed, and VM thread will
2185    // see the _thread_blocked state. We must check for safepoint
2186    // after restoring the state and make sure we won't leave while a safepoint
2187    // is in progress.
2188    thread->set_thread_state(_thread_blocked);
2189    thread->java_suspend_self();
2190    thread->set_thread_state(state);
2191    // Make sure new state is seen by VM thread
2192    if (os::is_MP()) {
2193      if (UseMembar) {
2194        // Force a fence between the write above and read below
2195        OrderAccess::fence();
2196      } else {
2197        // Must use this rather than serialization page in particular on Windows
2198        InterfaceSupport::serialize_memory(thread);
2199      }
2200    }
2201  }
2202
2203  if (SafepointSynchronize::do_call_back()) {
2204    // If we are safepointing, then block the caller which may not be
2205    // the same as the target thread (see above).
2206    SafepointSynchronize::block(curJT);
2207  }
2208
2209  if (thread->is_deopt_suspend()) {
2210    thread->clear_deopt_suspend();
2211    RegisterMap map(thread, false);
2212    frame f = thread->last_frame();
2213    while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2214      f = f.sender(&map);
2215    }
2216    if (f.id() == thread->must_deopt_id()) {
2217      thread->clear_must_deopt_id();
2218      f.deoptimize(thread);
2219    } else {
2220      fatal("missed deoptimization!");
2221    }
2222  }
2223}
2224
2225// Slow path when the native==>VM/Java barriers detect a safepoint is in
2226// progress or when _suspend_flags is non-zero.
2227// Current thread needs to self-suspend if there is a suspend request and/or
2228// block if a safepoint is in progress.
2229// Also check for pending async exception (not including unsafe access error).
2230// Note only the native==>VM/Java barriers can call this function and when
2231// thread state is _thread_in_native_trans.
2232void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2233  check_safepoint_and_suspend_for_native_trans(thread);
2234
2235  if (thread->has_async_exception()) {
2236    // We are in _thread_in_native_trans state, don't handle unsafe
2237    // access error since that may block.
2238    thread->check_and_handle_async_exceptions(false);
2239  }
2240}
2241
2242// We need to guarantee the Threads_lock here, since resumes are not
2243// allowed during safepoint synchronization
2244// Can only resume from an external suspension
2245void JavaThread::java_resume() {
2246  assert_locked_or_safepoint(Threads_lock);
2247
2248  // Sanity check: thread is gone, has started exiting or the thread
2249  // was not externally suspended.
2250  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2251    return;
2252  }
2253
2254  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2255
2256  clear_external_suspend();
2257
2258  if (is_ext_suspended()) {
2259    clear_ext_suspended();
2260    SR_lock()->notify_all();
2261  }
2262}
2263
2264void JavaThread::create_stack_guard_pages() {
2265  if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2266  address low_addr = stack_base() - stack_size();
2267  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2268
2269  int allocate = os::allocate_stack_guard_pages();
2270  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2271
2272  if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2273    warning("Attempt to allocate stack guard pages failed.");
2274    return;
2275  }
2276
2277  if (os::guard_memory((char *) low_addr, len)) {
2278    _stack_guard_state = stack_guard_enabled;
2279  } else {
2280    warning("Attempt to protect stack guard pages failed.");
2281    if (os::uncommit_memory((char *) low_addr, len)) {
2282      warning("Attempt to deallocate stack guard pages failed.");
2283    }
2284  }
2285}
2286
2287void JavaThread::remove_stack_guard_pages() {
2288  if (_stack_guard_state == stack_guard_unused) return;
2289  address low_addr = stack_base() - stack_size();
2290  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2291
2292  if (os::allocate_stack_guard_pages()) {
2293    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2294      _stack_guard_state = stack_guard_unused;
2295    } else {
2296      warning("Attempt to deallocate stack guard pages failed.");
2297    }
2298  } else {
2299    if (_stack_guard_state == stack_guard_unused) return;
2300    if (os::unguard_memory((char *) low_addr, len)) {
2301      _stack_guard_state = stack_guard_unused;
2302    } else {
2303        warning("Attempt to unprotect stack guard pages failed.");
2304    }
2305  }
2306}
2307
2308void JavaThread::enable_stack_yellow_zone() {
2309  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2310  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2311
2312  // The base notation is from the stacks point of view, growing downward.
2313  // We need to adjust it to work correctly with guard_memory()
2314  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2315
2316  guarantee(base < stack_base(),"Error calculating stack yellow zone");
2317  guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2318
2319  if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2320    _stack_guard_state = stack_guard_enabled;
2321  } else {
2322    warning("Attempt to guard stack yellow zone failed.");
2323  }
2324  enable_register_stack_guard();
2325}
2326
2327void JavaThread::disable_stack_yellow_zone() {
2328  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2329  assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2330
2331  // Simply return if called for a thread that does not use guard pages.
2332  if (_stack_guard_state == stack_guard_unused) return;
2333
2334  // The base notation is from the stacks point of view, growing downward.
2335  // We need to adjust it to work correctly with guard_memory()
2336  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2337
2338  if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2339    _stack_guard_state = stack_guard_yellow_disabled;
2340  } else {
2341    warning("Attempt to unguard stack yellow zone failed.");
2342  }
2343  disable_register_stack_guard();
2344}
2345
2346void JavaThread::enable_stack_red_zone() {
2347  // The base notation is from the stacks point of view, growing downward.
2348  // We need to adjust it to work correctly with guard_memory()
2349  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2350  address base = stack_red_zone_base() - stack_red_zone_size();
2351
2352  guarantee(base < stack_base(),"Error calculating stack red zone");
2353  guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2354
2355  if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2356    warning("Attempt to guard stack red zone failed.");
2357  }
2358}
2359
2360void JavaThread::disable_stack_red_zone() {
2361  // The base notation is from the stacks point of view, growing downward.
2362  // We need to adjust it to work correctly with guard_memory()
2363  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2364  address base = stack_red_zone_base() - stack_red_zone_size();
2365  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2366    warning("Attempt to unguard stack red zone failed.");
2367  }
2368}
2369
2370void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2371  // ignore is there is no stack
2372  if (!has_last_Java_frame()) return;
2373  // traverse the stack frames. Starts from top frame.
2374  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2375    frame* fr = fst.current();
2376    f(fr, fst.register_map());
2377  }
2378}
2379
2380
2381#ifndef PRODUCT
2382// Deoptimization
2383// Function for testing deoptimization
2384void JavaThread::deoptimize() {
2385  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2386  StackFrameStream fst(this, UseBiasedLocking);
2387  bool deopt = false;           // Dump stack only if a deopt actually happens.
2388  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2389  // Iterate over all frames in the thread and deoptimize
2390  for(; !fst.is_done(); fst.next()) {
2391    if(fst.current()->can_be_deoptimized()) {
2392
2393      if (only_at) {
2394        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2395        // consists of comma or carriage return separated numbers so
2396        // search for the current bci in that string.
2397        address pc = fst.current()->pc();
2398        nmethod* nm =  (nmethod*) fst.current()->cb();
2399        ScopeDesc* sd = nm->scope_desc_at( pc);
2400        char buffer[8];
2401        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2402        size_t len = strlen(buffer);
2403        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2404        while (found != NULL) {
2405          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2406              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2407            // Check that the bci found is bracketed by terminators.
2408            break;
2409          }
2410          found = strstr(found + 1, buffer);
2411        }
2412        if (!found) {
2413          continue;
2414        }
2415      }
2416
2417      if (DebugDeoptimization && !deopt) {
2418        deopt = true; // One-time only print before deopt
2419        tty->print_cr("[BEFORE Deoptimization]");
2420        trace_frames();
2421        trace_stack();
2422      }
2423      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2424    }
2425  }
2426
2427  if (DebugDeoptimization && deopt) {
2428    tty->print_cr("[AFTER Deoptimization]");
2429    trace_frames();
2430  }
2431}
2432
2433
2434// Make zombies
2435void JavaThread::make_zombies() {
2436  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2437    if (fst.current()->can_be_deoptimized()) {
2438      // it is a Java nmethod
2439      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2440      nm->make_not_entrant();
2441    }
2442  }
2443}
2444#endif // PRODUCT
2445
2446
2447void JavaThread::deoptimized_wrt_marked_nmethods() {
2448  if (!has_last_Java_frame()) return;
2449  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2450  StackFrameStream fst(this, UseBiasedLocking);
2451  for(; !fst.is_done(); fst.next()) {
2452    if (fst.current()->should_be_deoptimized()) {
2453      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2454    }
2455  }
2456}
2457
2458
2459// GC support
2460static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2461
2462void JavaThread::gc_epilogue() {
2463  frames_do(frame_gc_epilogue);
2464}
2465
2466
2467static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2468
2469void JavaThread::gc_prologue() {
2470  frames_do(frame_gc_prologue);
2471}
2472
2473// If the caller is a NamedThread, then remember, in the current scope,
2474// the given JavaThread in its _processed_thread field.
2475class RememberProcessedThread: public StackObj {
2476  NamedThread* _cur_thr;
2477public:
2478  RememberProcessedThread(JavaThread* jthr) {
2479    Thread* thread = Thread::current();
2480    if (thread->is_Named_thread()) {
2481      _cur_thr = (NamedThread *)thread;
2482      _cur_thr->set_processed_thread(jthr);
2483    } else {
2484      _cur_thr = NULL;
2485    }
2486  }
2487
2488  ~RememberProcessedThread() {
2489    if (_cur_thr) {
2490      _cur_thr->set_processed_thread(NULL);
2491    }
2492  }
2493};
2494
2495void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2496  // Verify that the deferred card marks have been flushed.
2497  assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2498
2499  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2500  // since there may be more than one thread using each ThreadProfiler.
2501
2502  // Traverse the GCHandles
2503  Thread::oops_do(f, cf);
2504
2505  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2506          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2507
2508  if (has_last_Java_frame()) {
2509    // Record JavaThread to GC thread
2510    RememberProcessedThread rpt(this);
2511
2512    // Traverse the privileged stack
2513    if (_privileged_stack_top != NULL) {
2514      _privileged_stack_top->oops_do(f);
2515    }
2516
2517    // traverse the registered growable array
2518    if (_array_for_gc != NULL) {
2519      for (int index = 0; index < _array_for_gc->length(); index++) {
2520        f->do_oop(_array_for_gc->adr_at(index));
2521      }
2522    }
2523
2524    // Traverse the monitor chunks
2525    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2526      chunk->oops_do(f);
2527    }
2528
2529    // Traverse the execution stack
2530    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2531      fst.current()->oops_do(f, cf, fst.register_map());
2532    }
2533  }
2534
2535  // callee_target is never live across a gc point so NULL it here should
2536  // it still contain a methdOop.
2537
2538  set_callee_target(NULL);
2539
2540  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2541  // If we have deferred set_locals there might be oops waiting to be
2542  // written
2543  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2544  if (list != NULL) {
2545    for (int i = 0; i < list->length(); i++) {
2546      list->at(i)->oops_do(f);
2547    }
2548  }
2549
2550  // Traverse instance variables at the end since the GC may be moving things
2551  // around using this function
2552  f->do_oop((oop*) &_threadObj);
2553  f->do_oop((oop*) &_vm_result);
2554  f->do_oop((oop*) &_vm_result_2);
2555  f->do_oop((oop*) &_exception_oop);
2556  f->do_oop((oop*) &_pending_async_exception);
2557
2558  if (jvmti_thread_state() != NULL) {
2559    jvmti_thread_state()->oops_do(f);
2560  }
2561}
2562
2563void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2564  Thread::nmethods_do(cf);  // (super method is a no-op)
2565
2566  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2567          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2568
2569  if (has_last_Java_frame()) {
2570    // Traverse the execution stack
2571    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2572      fst.current()->nmethods_do(cf);
2573    }
2574  }
2575}
2576
2577// Printing
2578const char* _get_thread_state_name(JavaThreadState _thread_state) {
2579  switch (_thread_state) {
2580  case _thread_uninitialized:     return "_thread_uninitialized";
2581  case _thread_new:               return "_thread_new";
2582  case _thread_new_trans:         return "_thread_new_trans";
2583  case _thread_in_native:         return "_thread_in_native";
2584  case _thread_in_native_trans:   return "_thread_in_native_trans";
2585  case _thread_in_vm:             return "_thread_in_vm";
2586  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2587  case _thread_in_Java:           return "_thread_in_Java";
2588  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2589  case _thread_blocked:           return "_thread_blocked";
2590  case _thread_blocked_trans:     return "_thread_blocked_trans";
2591  default:                        return "unknown thread state";
2592  }
2593}
2594
2595#ifndef PRODUCT
2596void JavaThread::print_thread_state_on(outputStream *st) const {
2597  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2598};
2599void JavaThread::print_thread_state() const {
2600  print_thread_state_on(tty);
2601};
2602#endif // PRODUCT
2603
2604// Called by Threads::print() for VM_PrintThreads operation
2605void JavaThread::print_on(outputStream *st) const {
2606  st->print("\"%s\" ", get_thread_name());
2607  oop thread_oop = threadObj();
2608  if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2609  Thread::print_on(st);
2610  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2611  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2612  if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2613    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2614  }
2615#ifndef PRODUCT
2616  print_thread_state_on(st);
2617  _safepoint_state->print_on(st);
2618#endif // PRODUCT
2619}
2620
2621// Called by fatal error handler. The difference between this and
2622// JavaThread::print() is that we can't grab lock or allocate memory.
2623void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2624  st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2625  oop thread_obj = threadObj();
2626  if (thread_obj != NULL) {
2627     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2628  }
2629  st->print(" [");
2630  st->print("%s", _get_thread_state_name(_thread_state));
2631  if (osthread()) {
2632    st->print(", id=%d", osthread()->thread_id());
2633  }
2634  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2635            _stack_base - _stack_size, _stack_base);
2636  st->print("]");
2637  return;
2638}
2639
2640// Verification
2641
2642static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2643
2644void JavaThread::verify() {
2645  // Verify oops in the thread.
2646  oops_do(&VerifyOopClosure::verify_oop, NULL);
2647
2648  // Verify the stack frames.
2649  frames_do(frame_verify);
2650}
2651
2652// CR 6300358 (sub-CR 2137150)
2653// Most callers of this method assume that it can't return NULL but a
2654// thread may not have a name whilst it is in the process of attaching to
2655// the VM - see CR 6412693, and there are places where a JavaThread can be
2656// seen prior to having it's threadObj set (eg JNI attaching threads and
2657// if vm exit occurs during initialization). These cases can all be accounted
2658// for such that this method never returns NULL.
2659const char* JavaThread::get_thread_name() const {
2660#ifdef ASSERT
2661  // early safepoints can hit while current thread does not yet have TLS
2662  if (!SafepointSynchronize::is_at_safepoint()) {
2663    Thread *cur = Thread::current();
2664    if (!(cur->is_Java_thread() && cur == this)) {
2665      // Current JavaThreads are allowed to get their own name without
2666      // the Threads_lock.
2667      assert_locked_or_safepoint(Threads_lock);
2668    }
2669  }
2670#endif // ASSERT
2671    return get_thread_name_string();
2672}
2673
2674// Returns a non-NULL representation of this thread's name, or a suitable
2675// descriptive string if there is no set name
2676const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2677  const char* name_str;
2678  oop thread_obj = threadObj();
2679  if (thread_obj != NULL) {
2680    typeArrayOop name = java_lang_Thread::name(thread_obj);
2681    if (name != NULL) {
2682      if (buf == NULL) {
2683        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2684      }
2685      else {
2686        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2687      }
2688    }
2689    else if (is_attaching()) { // workaround for 6412693 - see 6404306
2690      name_str = "<no-name - thread is attaching>";
2691    }
2692    else {
2693      name_str = Thread::name();
2694    }
2695  }
2696  else {
2697    name_str = Thread::name();
2698  }
2699  assert(name_str != NULL, "unexpected NULL thread name");
2700  return name_str;
2701}
2702
2703
2704const char* JavaThread::get_threadgroup_name() const {
2705  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2706  oop thread_obj = threadObj();
2707  if (thread_obj != NULL) {
2708    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2709    if (thread_group != NULL) {
2710      typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2711      // ThreadGroup.name can be null
2712      if (name != NULL) {
2713        const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2714        return str;
2715      }
2716    }
2717  }
2718  return NULL;
2719}
2720
2721const char* JavaThread::get_parent_name() const {
2722  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2723  oop thread_obj = threadObj();
2724  if (thread_obj != NULL) {
2725    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2726    if (thread_group != NULL) {
2727      oop parent = java_lang_ThreadGroup::parent(thread_group);
2728      if (parent != NULL) {
2729        typeArrayOop name = java_lang_ThreadGroup::name(parent);
2730        // ThreadGroup.name can be null
2731        if (name != NULL) {
2732          const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2733          return str;
2734        }
2735      }
2736    }
2737  }
2738  return NULL;
2739}
2740
2741ThreadPriority JavaThread::java_priority() const {
2742  oop thr_oop = threadObj();
2743  if (thr_oop == NULL) return NormPriority; // Bootstrapping
2744  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2745  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2746  return priority;
2747}
2748
2749void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2750
2751  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2752  // Link Java Thread object <-> C++ Thread
2753
2754  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2755  // and put it into a new Handle.  The Handle "thread_oop" can then
2756  // be used to pass the C++ thread object to other methods.
2757
2758  // Set the Java level thread object (jthread) field of the
2759  // new thread (a JavaThread *) to C++ thread object using the
2760  // "thread_oop" handle.
2761
2762  // Set the thread field (a JavaThread *) of the
2763  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2764
2765  Handle thread_oop(Thread::current(),
2766                    JNIHandles::resolve_non_null(jni_thread));
2767  assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
2768    "must be initialized");
2769  set_threadObj(thread_oop());
2770  java_lang_Thread::set_thread(thread_oop(), this);
2771
2772  if (prio == NoPriority) {
2773    prio = java_lang_Thread::priority(thread_oop());
2774    assert(prio != NoPriority, "A valid priority should be present");
2775  }
2776
2777  // Push the Java priority down to the native thread; needs Threads_lock
2778  Thread::set_priority(this, prio);
2779
2780  // Add the new thread to the Threads list and set it in motion.
2781  // We must have threads lock in order to call Threads::add.
2782  // It is crucial that we do not block before the thread is
2783  // added to the Threads list for if a GC happens, then the java_thread oop
2784  // will not be visited by GC.
2785  Threads::add(this);
2786}
2787
2788oop JavaThread::current_park_blocker() {
2789  // Support for JSR-166 locks
2790  oop thread_oop = threadObj();
2791  if (thread_oop != NULL &&
2792      JDK_Version::current().supports_thread_park_blocker()) {
2793    return java_lang_Thread::park_blocker(thread_oop);
2794  }
2795  return NULL;
2796}
2797
2798
2799void JavaThread::print_stack_on(outputStream* st) {
2800  if (!has_last_Java_frame()) return;
2801  ResourceMark rm;
2802  HandleMark   hm;
2803
2804  RegisterMap reg_map(this);
2805  vframe* start_vf = last_java_vframe(&reg_map);
2806  int count = 0;
2807  for (vframe* f = start_vf; f; f = f->sender() ) {
2808    if (f->is_java_frame()) {
2809      javaVFrame* jvf = javaVFrame::cast(f);
2810      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2811
2812      // Print out lock information
2813      if (JavaMonitorsInStackTrace) {
2814        jvf->print_lock_info_on(st, count);
2815      }
2816    } else {
2817      // Ignore non-Java frames
2818    }
2819
2820    // Bail-out case for too deep stacks
2821    count++;
2822    if (MaxJavaStackTraceDepth == count) return;
2823  }
2824}
2825
2826
2827// JVMTI PopFrame support
2828void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2829  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2830  if (in_bytes(size_in_bytes) != 0) {
2831    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
2832    _popframe_preserved_args_size = in_bytes(size_in_bytes);
2833    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2834  }
2835}
2836
2837void* JavaThread::popframe_preserved_args() {
2838  return _popframe_preserved_args;
2839}
2840
2841ByteSize JavaThread::popframe_preserved_args_size() {
2842  return in_ByteSize(_popframe_preserved_args_size);
2843}
2844
2845WordSize JavaThread::popframe_preserved_args_size_in_words() {
2846  int sz = in_bytes(popframe_preserved_args_size());
2847  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
2848  return in_WordSize(sz / wordSize);
2849}
2850
2851void JavaThread::popframe_free_preserved_args() {
2852  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
2853  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
2854  _popframe_preserved_args = NULL;
2855  _popframe_preserved_args_size = 0;
2856}
2857
2858#ifndef PRODUCT
2859
2860void JavaThread::trace_frames() {
2861  tty->print_cr("[Describe stack]");
2862  int frame_no = 1;
2863  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2864    tty->print("  %d. ", frame_no++);
2865    fst.current()->print_value_on(tty,this);
2866    tty->cr();
2867  }
2868}
2869
2870
2871void JavaThread::trace_stack_from(vframe* start_vf) {
2872  ResourceMark rm;
2873  int vframe_no = 1;
2874  for (vframe* f = start_vf; f; f = f->sender() ) {
2875    if (f->is_java_frame()) {
2876      javaVFrame::cast(f)->print_activation(vframe_no++);
2877    } else {
2878      f->print();
2879    }
2880    if (vframe_no > StackPrintLimit) {
2881      tty->print_cr("...<more frames>...");
2882      return;
2883    }
2884  }
2885}
2886
2887
2888void JavaThread::trace_stack() {
2889  if (!has_last_Java_frame()) return;
2890  ResourceMark rm;
2891  HandleMark   hm;
2892  RegisterMap reg_map(this);
2893  trace_stack_from(last_java_vframe(&reg_map));
2894}
2895
2896
2897#endif // PRODUCT
2898
2899
2900javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
2901  assert(reg_map != NULL, "a map must be given");
2902  frame f = last_frame();
2903  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
2904    if (vf->is_java_frame()) return javaVFrame::cast(vf);
2905  }
2906  return NULL;
2907}
2908
2909
2910klassOop JavaThread::security_get_caller_class(int depth) {
2911  vframeStream vfst(this);
2912  vfst.security_get_caller_frame(depth);
2913  if (!vfst.at_end()) {
2914    return vfst.method()->method_holder();
2915  }
2916  return NULL;
2917}
2918
2919static void compiler_thread_entry(JavaThread* thread, TRAPS) {
2920  assert(thread->is_Compiler_thread(), "must be compiler thread");
2921  CompileBroker::compiler_thread_loop();
2922}
2923
2924// Create a CompilerThread
2925CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
2926: JavaThread(&compiler_thread_entry) {
2927  _env   = NULL;
2928  _log   = NULL;
2929  _task  = NULL;
2930  _queue = queue;
2931  _counters = counters;
2932  _buffer_blob = NULL;
2933
2934#ifndef PRODUCT
2935  _ideal_graph_printer = NULL;
2936#endif
2937}
2938
2939
2940// ======= Threads ========
2941
2942// The Threads class links together all active threads, and provides
2943// operations over all threads.  It is protected by its own Mutex
2944// lock, which is also used in other contexts to protect thread
2945// operations from having the thread being operated on from exiting
2946// and going away unexpectedly (e.g., safepoint synchronization)
2947
2948JavaThread* Threads::_thread_list = NULL;
2949int         Threads::_number_of_threads = 0;
2950int         Threads::_number_of_non_daemon_threads = 0;
2951int         Threads::_return_code = 0;
2952size_t      JavaThread::_stack_size_at_create = 0;
2953
2954// All JavaThreads
2955#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
2956
2957void os_stream();
2958
2959// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
2960void Threads::threads_do(ThreadClosure* tc) {
2961  assert_locked_or_safepoint(Threads_lock);
2962  // ALL_JAVA_THREADS iterates through all JavaThreads
2963  ALL_JAVA_THREADS(p) {
2964    tc->do_thread(p);
2965  }
2966  // Someday we could have a table or list of all non-JavaThreads.
2967  // For now, just manually iterate through them.
2968  tc->do_thread(VMThread::vm_thread());
2969  Universe::heap()->gc_threads_do(tc);
2970  WatcherThread *wt = WatcherThread::watcher_thread();
2971  // Strictly speaking, the following NULL check isn't sufficient to make sure
2972  // the data for WatcherThread is still valid upon being examined. However,
2973  // considering that WatchThread terminates when the VM is on the way to
2974  // exit at safepoint, the chance of the above is extremely small. The right
2975  // way to prevent termination of WatcherThread would be to acquire
2976  // Terminator_lock, but we can't do that without violating the lock rank
2977  // checking in some cases.
2978  if (wt != NULL)
2979    tc->do_thread(wt);
2980
2981  // If CompilerThreads ever become non-JavaThreads, add them here
2982}
2983
2984jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
2985
2986  extern void JDK_Version_init();
2987
2988  // Check version
2989  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
2990
2991  // Initialize the output stream module
2992  ostream_init();
2993
2994  // Process java launcher properties.
2995  Arguments::process_sun_java_launcher_properties(args);
2996
2997  // Initialize the os module before using TLS
2998  os::init();
2999
3000  // Initialize system properties.
3001  Arguments::init_system_properties();
3002
3003  // So that JDK version can be used as a discrimintor when parsing arguments
3004  JDK_Version_init();
3005
3006  // Update/Initialize System properties after JDK version number is known
3007  Arguments::init_version_specific_system_properties();
3008
3009  // Parse arguments
3010  jint parse_result = Arguments::parse(args);
3011  if (parse_result != JNI_OK) return parse_result;
3012
3013  if (PauseAtStartup) {
3014    os::pause();
3015  }
3016
3017  HS_DTRACE_PROBE(hotspot, vm__init__begin);
3018
3019  // Record VM creation timing statistics
3020  TraceVmCreationTime create_vm_timer;
3021  create_vm_timer.start();
3022
3023  // Timing (must come after argument parsing)
3024  TraceTime timer("Create VM", TraceStartupTime);
3025
3026  // Initialize the os module after parsing the args
3027  jint os_init_2_result = os::init_2();
3028  if (os_init_2_result != JNI_OK) return os_init_2_result;
3029
3030  // Initialize output stream logging
3031  ostream_init_log();
3032
3033  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3034  // Must be before create_vm_init_agents()
3035  if (Arguments::init_libraries_at_startup()) {
3036    convert_vm_init_libraries_to_agents();
3037  }
3038
3039  // Launch -agentlib/-agentpath and converted -Xrun agents
3040  if (Arguments::init_agents_at_startup()) {
3041    create_vm_init_agents();
3042  }
3043
3044  // Initialize Threads state
3045  _thread_list = NULL;
3046  _number_of_threads = 0;
3047  _number_of_non_daemon_threads = 0;
3048
3049  // Initialize TLS
3050  ThreadLocalStorage::init();
3051
3052  // Initialize global data structures and create system classes in heap
3053  vm_init_globals();
3054
3055  // Attach the main thread to this os thread
3056  JavaThread* main_thread = new JavaThread();
3057  main_thread->set_thread_state(_thread_in_vm);
3058  // must do this before set_active_handles and initialize_thread_local_storage
3059  // Note: on solaris initialize_thread_local_storage() will (indirectly)
3060  // change the stack size recorded here to one based on the java thread
3061  // stacksize. This adjusted size is what is used to figure the placement
3062  // of the guard pages.
3063  main_thread->record_stack_base_and_size();
3064  main_thread->initialize_thread_local_storage();
3065
3066  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3067
3068  if (!main_thread->set_as_starting_thread()) {
3069    vm_shutdown_during_initialization(
3070      "Failed necessary internal allocation. Out of swap space");
3071    delete main_thread;
3072    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3073    return JNI_ENOMEM;
3074  }
3075
3076  // Enable guard page *after* os::create_main_thread(), otherwise it would
3077  // crash Linux VM, see notes in os_linux.cpp.
3078  main_thread->create_stack_guard_pages();
3079
3080  // Initialize Java-Level synchronization subsystem
3081  ObjectMonitor::Initialize() ;
3082
3083  // Initialize global modules
3084  jint status = init_globals();
3085  if (status != JNI_OK) {
3086    delete main_thread;
3087    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3088    return status;
3089  }
3090
3091  // Should be done after the heap is fully created
3092  main_thread->cache_global_variables();
3093
3094  HandleMark hm;
3095
3096  { MutexLocker mu(Threads_lock);
3097    Threads::add(main_thread);
3098  }
3099
3100  // Any JVMTI raw monitors entered in onload will transition into
3101  // real raw monitor. VM is setup enough here for raw monitor enter.
3102  JvmtiExport::transition_pending_onload_raw_monitors();
3103
3104  if (VerifyBeforeGC &&
3105      Universe::heap()->total_collections() >= VerifyGCStartAt) {
3106    Universe::heap()->prepare_for_verify();
3107    Universe::verify();   // make sure we're starting with a clean slate
3108  }
3109
3110  // Create the VMThread
3111  { TraceTime timer("Start VMThread", TraceStartupTime);
3112    VMThread::create();
3113    Thread* vmthread = VMThread::vm_thread();
3114
3115    if (!os::create_thread(vmthread, os::vm_thread))
3116      vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3117
3118    // Wait for the VM thread to become ready, and VMThread::run to initialize
3119    // Monitors can have spurious returns, must always check another state flag
3120    {
3121      MutexLocker ml(Notify_lock);
3122      os::start_thread(vmthread);
3123      while (vmthread->active_handles() == NULL) {
3124        Notify_lock->wait();
3125      }
3126    }
3127  }
3128
3129  assert (Universe::is_fully_initialized(), "not initialized");
3130  EXCEPTION_MARK;
3131
3132  // At this point, the Universe is initialized, but we have not executed
3133  // any byte code.  Now is a good time (the only time) to dump out the
3134  // internal state of the JVM for sharing.
3135
3136  if (DumpSharedSpaces) {
3137    Universe::heap()->preload_and_dump(CHECK_0);
3138    ShouldNotReachHere();
3139  }
3140
3141  // Always call even when there are not JVMTI environments yet, since environments
3142  // may be attached late and JVMTI must track phases of VM execution
3143  JvmtiExport::enter_start_phase();
3144
3145  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3146  JvmtiExport::post_vm_start();
3147
3148  {
3149    TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3150
3151    if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3152      create_vm_init_libraries();
3153    }
3154
3155    if (InitializeJavaLangString) {
3156      initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3157    } else {
3158      warning("java.lang.String not initialized");
3159    }
3160
3161    if (AggressiveOpts) {
3162      {
3163        // Forcibly initialize java/util/HashMap and mutate the private
3164        // static final "frontCacheEnabled" field before we start creating instances
3165#ifdef ASSERT
3166        klassOop tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3167        assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3168#endif
3169        klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3170        KlassHandle k = KlassHandle(THREAD, k_o);
3171        guarantee(k.not_null(), "Must find java/util/HashMap");
3172        instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3173        ik->initialize(CHECK_0);
3174        fieldDescriptor fd;
3175        // Possible we might not find this field; if so, don't break
3176        if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3177          k()->bool_field_put(fd.offset(), true);
3178        }
3179      }
3180
3181      if (UseStringCache) {
3182        // Forcibly initialize java/lang/StringValue and mutate the private
3183        // static final "stringCacheEnabled" field before we start creating instances
3184        klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3185        // Possible that StringValue isn't present: if so, silently don't break
3186        if (k_o != NULL) {
3187          KlassHandle k = KlassHandle(THREAD, k_o);
3188          instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3189          ik->initialize(CHECK_0);
3190          fieldDescriptor fd;
3191          // Possible we might not find this field: if so, silently don't break
3192          if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3193            k()->bool_field_put(fd.offset(), true);
3194          }
3195        }
3196      }
3197    }
3198
3199    // Initialize java_lang.System (needed before creating the thread)
3200    if (InitializeJavaLangSystem) {
3201      initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3202      initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3203      Handle thread_group = create_initial_thread_group(CHECK_0);
3204      Universe::set_main_thread_group(thread_group());
3205      initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3206      oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3207      main_thread->set_threadObj(thread_object);
3208      // Set thread status to running since main thread has
3209      // been started and running.
3210      java_lang_Thread::set_thread_status(thread_object,
3211                                          java_lang_Thread::RUNNABLE);
3212
3213      // The VM preresolve methods to these classes. Make sure that get initialized
3214      initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3215      initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3216      // The VM creates & returns objects of this class. Make sure it's initialized.
3217      initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3218      call_initializeSystemClass(CHECK_0);
3219    } else {
3220      warning("java.lang.System not initialized");
3221    }
3222
3223    // an instance of OutOfMemory exception has been allocated earlier
3224    if (InitializeJavaLangExceptionsErrors) {
3225      initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3226      initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3227      initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3228      initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3229      initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3230      initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3231      initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3232    } else {
3233      warning("java.lang.OutOfMemoryError has not been initialized");
3234      warning("java.lang.NullPointerException has not been initialized");
3235      warning("java.lang.ClassCastException has not been initialized");
3236      warning("java.lang.ArrayStoreException has not been initialized");
3237      warning("java.lang.ArithmeticException has not been initialized");
3238      warning("java.lang.StackOverflowError has not been initialized");
3239    }
3240    }
3241
3242  // See        : bugid 4211085.
3243  // Background : the static initializer of java.lang.Compiler tries to read
3244  //              property"java.compiler" and read & write property "java.vm.info".
3245  //              When a security manager is installed through the command line
3246  //              option "-Djava.security.manager", the above properties are not
3247  //              readable and the static initializer for java.lang.Compiler fails
3248  //              resulting in a NoClassDefFoundError.  This can happen in any
3249  //              user code which calls methods in java.lang.Compiler.
3250  // Hack :       the hack is to pre-load and initialize this class, so that only
3251  //              system domains are on the stack when the properties are read.
3252  //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3253  //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3254  // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3255  //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3256  //              Once that is done, we should remove this hack.
3257  initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3258
3259  // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3260  // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3261  // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3262  // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3263  // This should also be taken out as soon as 4211383 gets fixed.
3264  reset_vm_info_property(CHECK_0);
3265
3266  quicken_jni_functions();
3267
3268  // Set flag that basic initialization has completed. Used by exceptions and various
3269  // debug stuff, that does not work until all basic classes have been initialized.
3270  set_init_completed();
3271
3272  HS_DTRACE_PROBE(hotspot, vm__init__end);
3273
3274  // record VM initialization completion time
3275  Management::record_vm_init_completed();
3276
3277  // Compute system loader. Note that this has to occur after set_init_completed, since
3278  // valid exceptions may be thrown in the process.
3279  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3280  // set_init_completed has just been called, causing exceptions not to be shortcut
3281  // anymore. We call vm_exit_during_initialization directly instead.
3282  SystemDictionary::compute_java_system_loader(THREAD);
3283  if (HAS_PENDING_EXCEPTION) {
3284    vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3285  }
3286
3287#ifdef KERNEL
3288  if (JDK_Version::is_gte_jdk17x_version()) {
3289    set_jkernel_boot_classloader_hook(THREAD);
3290  }
3291#endif // KERNEL
3292
3293#ifndef SERIALGC
3294  // Support for ConcurrentMarkSweep. This should be cleaned up
3295  // and better encapsulated. The ugly nested if test would go away
3296  // once things are properly refactored. XXX YSR
3297  if (UseConcMarkSweepGC || UseG1GC) {
3298    if (UseConcMarkSweepGC) {
3299      ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3300    } else {
3301      ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3302    }
3303    if (HAS_PENDING_EXCEPTION) {
3304      vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3305    }
3306  }
3307#endif // SERIALGC
3308
3309  // Always call even when there are not JVMTI environments yet, since environments
3310  // may be attached late and JVMTI must track phases of VM execution
3311  JvmtiExport::enter_live_phase();
3312
3313  // Signal Dispatcher needs to be started before VMInit event is posted
3314  os::signal_init();
3315
3316  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3317  if (!DisableAttachMechanism) {
3318    if (StartAttachListener || AttachListener::init_at_startup()) {
3319      AttachListener::init();
3320    }
3321  }
3322
3323  // Launch -Xrun agents
3324  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3325  // back-end can launch with -Xdebug -Xrunjdwp.
3326  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3327    create_vm_init_libraries();
3328  }
3329
3330  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3331  JvmtiExport::post_vm_initialized();
3332
3333  Chunk::start_chunk_pool_cleaner_task();
3334
3335  // initialize compiler(s)
3336  CompileBroker::compilation_init();
3337
3338  Management::initialize(THREAD);
3339  if (HAS_PENDING_EXCEPTION) {
3340    // management agent fails to start possibly due to
3341    // configuration problem and is responsible for printing
3342    // stack trace if appropriate. Simply exit VM.
3343    vm_exit(1);
3344  }
3345
3346  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3347  if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3348  if (MemProfiling)                   MemProfiler::engage();
3349  StatSampler::engage();
3350  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3351
3352  BiasedLocking::init();
3353
3354  if (JDK_Version::current().post_vm_init_hook_enabled()) {
3355    call_postVMInitHook(THREAD);
3356    // The Java side of PostVMInitHook.run must deal with all
3357    // exceptions and provide means of diagnosis.
3358    if (HAS_PENDING_EXCEPTION) {
3359      CLEAR_PENDING_EXCEPTION;
3360    }
3361  }
3362
3363  // Start up the WatcherThread if there are any periodic tasks
3364  // NOTE:  All PeriodicTasks should be registered by now. If they
3365  //   aren't, late joiners might appear to start slowly (we might
3366  //   take a while to process their first tick).
3367  if (PeriodicTask::num_tasks() > 0) {
3368    WatcherThread::start();
3369  }
3370
3371  // Give os specific code one last chance to start
3372  os::init_3();
3373
3374  create_vm_timer.end();
3375  return JNI_OK;
3376}
3377
3378// type for the Agent_OnLoad and JVM_OnLoad entry points
3379extern "C" {
3380  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3381}
3382// Find a command line agent library and return its entry point for
3383//         -agentlib:  -agentpath:   -Xrun
3384// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3385static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3386  OnLoadEntry_t on_load_entry = NULL;
3387  void *library = agent->os_lib();  // check if we have looked it up before
3388
3389  if (library == NULL) {
3390    char buffer[JVM_MAXPATHLEN];
3391    char ebuf[1024];
3392    const char *name = agent->name();
3393    const char *msg = "Could not find agent library ";
3394
3395    if (agent->is_absolute_path()) {
3396      library = os::dll_load(name, ebuf, sizeof ebuf);
3397      if (library == NULL) {
3398        const char *sub_msg = " in absolute path, with error: ";
3399        size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3400        char *buf = NEW_C_HEAP_ARRAY(char, len);
3401        jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3402        // If we can't find the agent, exit.
3403        vm_exit_during_initialization(buf, NULL);
3404        FREE_C_HEAP_ARRAY(char, buf);
3405      }
3406    } else {
3407      // Try to load the agent from the standard dll directory
3408      os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
3409      library = os::dll_load(buffer, ebuf, sizeof ebuf);
3410#ifdef KERNEL
3411      // Download instrument dll
3412      if (library == NULL && strcmp(name, "instrument") == 0) {
3413        char *props = Arguments::get_kernel_properties();
3414        char *home  = Arguments::get_java_home();
3415        const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
3416                      " sun.jkernel.DownloadManager -download client_jvm";
3417        size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
3418        char *cmd = NEW_C_HEAP_ARRAY(char, length);
3419        jio_snprintf(cmd, length, fmt, home, props);
3420        int status = os::fork_and_exec(cmd);
3421        FreeHeap(props);
3422        if (status == -1) {
3423          warning(cmd);
3424          vm_exit_during_initialization("fork_and_exec failed: %s",
3425                                         strerror(errno));
3426        }
3427        FREE_C_HEAP_ARRAY(char, cmd);
3428        // when this comes back the instrument.dll should be where it belongs.
3429        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3430      }
3431#endif // KERNEL
3432      if (library == NULL) { // Try the local directory
3433        char ns[1] = {0};
3434        os::dll_build_name(buffer, sizeof(buffer), ns, name);
3435        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3436        if (library == NULL) {
3437          const char *sub_msg = " on the library path, with error: ";
3438          size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3439          char *buf = NEW_C_HEAP_ARRAY(char, len);
3440          jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3441          // If we can't find the agent, exit.
3442          vm_exit_during_initialization(buf, NULL);
3443          FREE_C_HEAP_ARRAY(char, buf);
3444        }
3445      }
3446    }
3447    agent->set_os_lib(library);
3448  }
3449
3450  // Find the OnLoad function.
3451  for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3452    on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
3453    if (on_load_entry != NULL) break;
3454  }
3455  return on_load_entry;
3456}
3457
3458// Find the JVM_OnLoad entry point
3459static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3460  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3461  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3462}
3463
3464// Find the Agent_OnLoad entry point
3465static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3466  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3467  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3468}
3469
3470// For backwards compatibility with -Xrun
3471// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3472// treated like -agentpath:
3473// Must be called before agent libraries are created
3474void Threads::convert_vm_init_libraries_to_agents() {
3475  AgentLibrary* agent;
3476  AgentLibrary* next;
3477
3478  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3479    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3480    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3481
3482    // If there is an JVM_OnLoad function it will get called later,
3483    // otherwise see if there is an Agent_OnLoad
3484    if (on_load_entry == NULL) {
3485      on_load_entry = lookup_agent_on_load(agent);
3486      if (on_load_entry != NULL) {
3487        // switch it to the agent list -- so that Agent_OnLoad will be called,
3488        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3489        Arguments::convert_library_to_agent(agent);
3490      } else {
3491        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3492      }
3493    }
3494  }
3495}
3496
3497// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3498// Invokes Agent_OnLoad
3499// Called very early -- before JavaThreads exist
3500void Threads::create_vm_init_agents() {
3501  extern struct JavaVM_ main_vm;
3502  AgentLibrary* agent;
3503
3504  JvmtiExport::enter_onload_phase();
3505  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3506    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3507
3508    if (on_load_entry != NULL) {
3509      // Invoke the Agent_OnLoad function
3510      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3511      if (err != JNI_OK) {
3512        vm_exit_during_initialization("agent library failed to init", agent->name());
3513      }
3514    } else {
3515      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3516    }
3517  }
3518  JvmtiExport::enter_primordial_phase();
3519}
3520
3521extern "C" {
3522  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3523}
3524
3525void Threads::shutdown_vm_agents() {
3526  // Send any Agent_OnUnload notifications
3527  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3528  extern struct JavaVM_ main_vm;
3529  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3530
3531    // Find the Agent_OnUnload function.
3532    for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3533      Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3534               os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3535
3536      // Invoke the Agent_OnUnload function
3537      if (unload_entry != NULL) {
3538        JavaThread* thread = JavaThread::current();
3539        ThreadToNativeFromVM ttn(thread);
3540        HandleMark hm(thread);
3541        (*unload_entry)(&main_vm);
3542        break;
3543      }
3544    }
3545  }
3546}
3547
3548// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3549// Invokes JVM_OnLoad
3550void Threads::create_vm_init_libraries() {
3551  extern struct JavaVM_ main_vm;
3552  AgentLibrary* agent;
3553
3554  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3555    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3556
3557    if (on_load_entry != NULL) {
3558      // Invoke the JVM_OnLoad function
3559      JavaThread* thread = JavaThread::current();
3560      ThreadToNativeFromVM ttn(thread);
3561      HandleMark hm(thread);
3562      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3563      if (err != JNI_OK) {
3564        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3565      }
3566    } else {
3567      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3568    }
3569  }
3570}
3571
3572// Last thread running calls java.lang.Shutdown.shutdown()
3573void JavaThread::invoke_shutdown_hooks() {
3574  HandleMark hm(this);
3575
3576  // We could get here with a pending exception, if so clear it now.
3577  if (this->has_pending_exception()) {
3578    this->clear_pending_exception();
3579  }
3580
3581  EXCEPTION_MARK;
3582  klassOop k =
3583    SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3584                                      THREAD);
3585  if (k != NULL) {
3586    // SystemDictionary::resolve_or_null will return null if there was
3587    // an exception.  If we cannot load the Shutdown class, just don't
3588    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3589    // and finalizers (if runFinalizersOnExit is set) won't be run.
3590    // Note that if a shutdown hook was registered or runFinalizersOnExit
3591    // was called, the Shutdown class would have already been loaded
3592    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3593    instanceKlassHandle shutdown_klass (THREAD, k);
3594    JavaValue result(T_VOID);
3595    JavaCalls::call_static(&result,
3596                           shutdown_klass,
3597                           vmSymbols::shutdown_method_name(),
3598                           vmSymbols::void_method_signature(),
3599                           THREAD);
3600  }
3601  CLEAR_PENDING_EXCEPTION;
3602}
3603
3604// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3605// the program falls off the end of main(). Another VM exit path is through
3606// vm_exit() when the program calls System.exit() to return a value or when
3607// there is a serious error in VM. The two shutdown paths are not exactly
3608// the same, but they share Shutdown.shutdown() at Java level and before_exit()
3609// and VM_Exit op at VM level.
3610//
3611// Shutdown sequence:
3612//   + Wait until we are the last non-daemon thread to execute
3613//     <-- every thing is still working at this moment -->
3614//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3615//        shutdown hooks, run finalizers if finalization-on-exit
3616//   + Call before_exit(), prepare for VM exit
3617//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3618//        currently the only user of this mechanism is File.deleteOnExit())
3619//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3620//        post thread end and vm death events to JVMTI,
3621//        stop signal thread
3622//   + Call JavaThread::exit(), it will:
3623//      > release JNI handle blocks, remove stack guard pages
3624//      > remove this thread from Threads list
3625//     <-- no more Java code from this thread after this point -->
3626//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3627//     the compiler threads at safepoint
3628//     <-- do not use anything that could get blocked by Safepoint -->
3629//   + Disable tracing at JNI/JVM barriers
3630//   + Set _vm_exited flag for threads that are still running native code
3631//   + Delete this thread
3632//   + Call exit_globals()
3633//      > deletes tty
3634//      > deletes PerfMemory resources
3635//   + Return to caller
3636
3637bool Threads::destroy_vm() {
3638  JavaThread* thread = JavaThread::current();
3639
3640  // Wait until we are the last non-daemon thread to execute
3641  { MutexLocker nu(Threads_lock);
3642    while (Threads::number_of_non_daemon_threads() > 1 )
3643      // This wait should make safepoint checks, wait without a timeout,
3644      // and wait as a suspend-equivalent condition.
3645      //
3646      // Note: If the FlatProfiler is running and this thread is waiting
3647      // for another non-daemon thread to finish, then the FlatProfiler
3648      // is waiting for the external suspend request on this thread to
3649      // complete. wait_for_ext_suspend_completion() will eventually
3650      // timeout, but that takes time. Making this wait a suspend-
3651      // equivalent condition solves that timeout problem.
3652      //
3653      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3654                         Mutex::_as_suspend_equivalent_flag);
3655  }
3656
3657  // Hang forever on exit if we are reporting an error.
3658  if (ShowMessageBoxOnError && is_error_reported()) {
3659    os::infinite_sleep();
3660  }
3661
3662  if (JDK_Version::is_jdk12x_version()) {
3663    // We are the last thread running, so check if finalizers should be run.
3664    // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3665    HandleMark rm(thread);
3666    Universe::run_finalizers_on_exit();
3667  } else {
3668    // run Java level shutdown hooks
3669    thread->invoke_shutdown_hooks();
3670  }
3671
3672  before_exit(thread);
3673
3674  thread->exit(true);
3675
3676  // Stop VM thread.
3677  {
3678    // 4945125 The vm thread comes to a safepoint during exit.
3679    // GC vm_operations can get caught at the safepoint, and the
3680    // heap is unparseable if they are caught. Grab the Heap_lock
3681    // to prevent this. The GC vm_operations will not be able to
3682    // queue until after the vm thread is dead.
3683    MutexLocker ml(Heap_lock);
3684
3685    VMThread::wait_for_vm_thread_exit();
3686    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3687    VMThread::destroy();
3688  }
3689
3690  // clean up ideal graph printers
3691#if defined(COMPILER2) && !defined(PRODUCT)
3692  IdealGraphPrinter::clean_up();
3693#endif
3694
3695  // Now, all Java threads are gone except daemon threads. Daemon threads
3696  // running Java code or in VM are stopped by the Safepoint. However,
3697  // daemon threads executing native code are still running.  But they
3698  // will be stopped at native=>Java/VM barriers. Note that we can't
3699  // simply kill or suspend them, as it is inherently deadlock-prone.
3700
3701#ifndef PRODUCT
3702  // disable function tracing at JNI/JVM barriers
3703  TraceJNICalls = false;
3704  TraceJVMCalls = false;
3705  TraceRuntimeCalls = false;
3706#endif
3707
3708  VM_Exit::set_vm_exited();
3709
3710  notify_vm_shutdown();
3711
3712  delete thread;
3713
3714  // exit_globals() will delete tty
3715  exit_globals();
3716
3717  return true;
3718}
3719
3720
3721jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3722  if (version == JNI_VERSION_1_1) return JNI_TRUE;
3723  return is_supported_jni_version(version);
3724}
3725
3726
3727jboolean Threads::is_supported_jni_version(jint version) {
3728  if (version == JNI_VERSION_1_2) return JNI_TRUE;
3729  if (version == JNI_VERSION_1_4) return JNI_TRUE;
3730  if (version == JNI_VERSION_1_6) return JNI_TRUE;
3731  return JNI_FALSE;
3732}
3733
3734
3735void Threads::add(JavaThread* p, bool force_daemon) {
3736  // The threads lock must be owned at this point
3737  assert_locked_or_safepoint(Threads_lock);
3738
3739  // See the comment for this method in thread.hpp for its purpose and
3740  // why it is called here.
3741  p->initialize_queues();
3742  p->set_next(_thread_list);
3743  _thread_list = p;
3744  _number_of_threads++;
3745  oop threadObj = p->threadObj();
3746  bool daemon = true;
3747  // Bootstrapping problem: threadObj can be null for initial
3748  // JavaThread (or for threads attached via JNI)
3749  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3750    _number_of_non_daemon_threads++;
3751    daemon = false;
3752  }
3753
3754  ThreadService::add_thread(p, daemon);
3755
3756  // Possible GC point.
3757  Events::log("Thread added: " INTPTR_FORMAT, p);
3758}
3759
3760void Threads::remove(JavaThread* p) {
3761  // Extra scope needed for Thread_lock, so we can check
3762  // that we do not remove thread without safepoint code notice
3763  { MutexLocker ml(Threads_lock);
3764
3765    assert(includes(p), "p must be present");
3766
3767    JavaThread* current = _thread_list;
3768    JavaThread* prev    = NULL;
3769
3770    while (current != p) {
3771      prev    = current;
3772      current = current->next();
3773    }
3774
3775    if (prev) {
3776      prev->set_next(current->next());
3777    } else {
3778      _thread_list = p->next();
3779    }
3780    _number_of_threads--;
3781    oop threadObj = p->threadObj();
3782    bool daemon = true;
3783    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
3784      _number_of_non_daemon_threads--;
3785      daemon = false;
3786
3787      // Only one thread left, do a notify on the Threads_lock so a thread waiting
3788      // on destroy_vm will wake up.
3789      if (number_of_non_daemon_threads() == 1)
3790        Threads_lock->notify_all();
3791    }
3792    ThreadService::remove_thread(p, daemon);
3793
3794    // Make sure that safepoint code disregard this thread. This is needed since
3795    // the thread might mess around with locks after this point. This can cause it
3796    // to do callbacks into the safepoint code. However, the safepoint code is not aware
3797    // of this thread since it is removed from the queue.
3798    p->set_terminated_value();
3799  } // unlock Threads_lock
3800
3801  // Since Events::log uses a lock, we grab it outside the Threads_lock
3802  Events::log("Thread exited: " INTPTR_FORMAT, p);
3803}
3804
3805// Threads_lock must be held when this is called (or must be called during a safepoint)
3806bool Threads::includes(JavaThread* p) {
3807  assert(Threads_lock->is_locked(), "sanity check");
3808  ALL_JAVA_THREADS(q) {
3809    if (q == p ) {
3810      return true;
3811    }
3812  }
3813  return false;
3814}
3815
3816// Operations on the Threads list for GC.  These are not explicitly locked,
3817// but the garbage collector must provide a safe context for them to run.
3818// In particular, these things should never be called when the Threads_lock
3819// is held by some other thread. (Note: the Safepoint abstraction also
3820// uses the Threads_lock to gurantee this property. It also makes sure that
3821// all threads gets blocked when exiting or starting).
3822
3823void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3824  ALL_JAVA_THREADS(p) {
3825    p->oops_do(f, cf);
3826  }
3827  VMThread::vm_thread()->oops_do(f, cf);
3828}
3829
3830void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
3831  // Introduce a mechanism allowing parallel threads to claim threads as
3832  // root groups.  Overhead should be small enough to use all the time,
3833  // even in sequential code.
3834  SharedHeap* sh = SharedHeap::heap();
3835  bool is_par = (sh->n_par_threads() > 0);
3836  int cp = SharedHeap::heap()->strong_roots_parity();
3837  ALL_JAVA_THREADS(p) {
3838    if (p->claim_oops_do(is_par, cp)) {
3839      p->oops_do(f, cf);
3840    }
3841  }
3842  VMThread* vmt = VMThread::vm_thread();
3843  if (vmt->claim_oops_do(is_par, cp))
3844    vmt->oops_do(f, cf);
3845}
3846
3847#ifndef SERIALGC
3848// Used by ParallelScavenge
3849void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
3850  ALL_JAVA_THREADS(p) {
3851    q->enqueue(new ThreadRootsTask(p));
3852  }
3853  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
3854}
3855
3856// Used by Parallel Old
3857void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
3858  ALL_JAVA_THREADS(p) {
3859    q->enqueue(new ThreadRootsMarkingTask(p));
3860  }
3861  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
3862}
3863#endif // SERIALGC
3864
3865void Threads::nmethods_do(CodeBlobClosure* cf) {
3866  ALL_JAVA_THREADS(p) {
3867    p->nmethods_do(cf);
3868  }
3869  VMThread::vm_thread()->nmethods_do(cf);
3870}
3871
3872void Threads::gc_epilogue() {
3873  ALL_JAVA_THREADS(p) {
3874    p->gc_epilogue();
3875  }
3876}
3877
3878void Threads::gc_prologue() {
3879  ALL_JAVA_THREADS(p) {
3880    p->gc_prologue();
3881  }
3882}
3883
3884void Threads::deoptimized_wrt_marked_nmethods() {
3885  ALL_JAVA_THREADS(p) {
3886    p->deoptimized_wrt_marked_nmethods();
3887  }
3888}
3889
3890
3891// Get count Java threads that are waiting to enter the specified monitor.
3892GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
3893  address monitor, bool doLock) {
3894  assert(doLock || SafepointSynchronize::is_at_safepoint(),
3895    "must grab Threads_lock or be at safepoint");
3896  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
3897
3898  int i = 0;
3899  {
3900    MutexLockerEx ml(doLock ? Threads_lock : NULL);
3901    ALL_JAVA_THREADS(p) {
3902      if (p->is_Compiler_thread()) continue;
3903
3904      address pending = (address)p->current_pending_monitor();
3905      if (pending == monitor) {             // found a match
3906        if (i < count) result->append(p);   // save the first count matches
3907        i++;
3908      }
3909    }
3910  }
3911  return result;
3912}
3913
3914
3915JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
3916  assert(doLock ||
3917         Threads_lock->owned_by_self() ||
3918         SafepointSynchronize::is_at_safepoint(),
3919         "must grab Threads_lock or be at safepoint");
3920
3921  // NULL owner means not locked so we can skip the search
3922  if (owner == NULL) return NULL;
3923
3924  {
3925    MutexLockerEx ml(doLock ? Threads_lock : NULL);
3926    ALL_JAVA_THREADS(p) {
3927      // first, see if owner is the address of a Java thread
3928      if (owner == (address)p) return p;
3929    }
3930  }
3931  assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
3932  if (UseHeavyMonitors) return NULL;
3933
3934  //
3935  // If we didn't find a matching Java thread and we didn't force use of
3936  // heavyweight monitors, then the owner is the stack address of the
3937  // Lock Word in the owning Java thread's stack.
3938  //
3939  JavaThread* the_owner = NULL;
3940  {
3941    MutexLockerEx ml(doLock ? Threads_lock : NULL);
3942    ALL_JAVA_THREADS(q) {
3943      if (q->is_lock_owned(owner)) {
3944        the_owner = q;
3945        break;
3946      }
3947    }
3948  }
3949  assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
3950  return the_owner;
3951}
3952
3953// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
3954void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
3955  char buf[32];
3956  st->print_cr(os::local_time_string(buf, sizeof(buf)));
3957
3958  st->print_cr("Full thread dump %s (%s %s):",
3959                Abstract_VM_Version::vm_name(),
3960                Abstract_VM_Version::vm_release(),
3961                Abstract_VM_Version::vm_info_string()
3962               );
3963  st->cr();
3964
3965#ifndef SERIALGC
3966  // Dump concurrent locks
3967  ConcurrentLocksDump concurrent_locks;
3968  if (print_concurrent_locks) {
3969    concurrent_locks.dump_at_safepoint();
3970  }
3971#endif // SERIALGC
3972
3973  ALL_JAVA_THREADS(p) {
3974    ResourceMark rm;
3975    p->print_on(st);
3976    if (print_stacks) {
3977      if (internal_format) {
3978        p->trace_stack();
3979      } else {
3980        p->print_stack_on(st);
3981      }
3982    }
3983    st->cr();
3984#ifndef SERIALGC
3985    if (print_concurrent_locks) {
3986      concurrent_locks.print_locks_on(p, st);
3987    }
3988#endif // SERIALGC
3989  }
3990
3991  VMThread::vm_thread()->print_on(st);
3992  st->cr();
3993  Universe::heap()->print_gc_threads_on(st);
3994  WatcherThread* wt = WatcherThread::watcher_thread();
3995  if (wt != NULL) wt->print_on(st);
3996  st->cr();
3997  CompileBroker::print_compiler_threads_on(st);
3998  st->flush();
3999}
4000
4001// Threads::print_on_error() is called by fatal error handler. It's possible
4002// that VM is not at safepoint and/or current thread is inside signal handler.
4003// Don't print stack trace, as the stack may not be walkable. Don't allocate
4004// memory (even in resource area), it might deadlock the error handler.
4005void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4006  bool found_current = false;
4007  st->print_cr("Java Threads: ( => current thread )");
4008  ALL_JAVA_THREADS(thread) {
4009    bool is_current = (current == thread);
4010    found_current = found_current || is_current;
4011
4012    st->print("%s", is_current ? "=>" : "  ");
4013
4014    st->print(PTR_FORMAT, thread);
4015    st->print(" ");
4016    thread->print_on_error(st, buf, buflen);
4017    st->cr();
4018  }
4019  st->cr();
4020
4021  st->print_cr("Other Threads:");
4022  if (VMThread::vm_thread()) {
4023    bool is_current = (current == VMThread::vm_thread());
4024    found_current = found_current || is_current;
4025    st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4026
4027    st->print(PTR_FORMAT, VMThread::vm_thread());
4028    st->print(" ");
4029    VMThread::vm_thread()->print_on_error(st, buf, buflen);
4030    st->cr();
4031  }
4032  WatcherThread* wt = WatcherThread::watcher_thread();
4033  if (wt != NULL) {
4034    bool is_current = (current == wt);
4035    found_current = found_current || is_current;
4036    st->print("%s", is_current ? "=>" : "  ");
4037
4038    st->print(PTR_FORMAT, wt);
4039    st->print(" ");
4040    wt->print_on_error(st, buf, buflen);
4041    st->cr();
4042  }
4043  if (!found_current) {
4044    st->cr();
4045    st->print("=>" PTR_FORMAT " (exited) ", current);
4046    current->print_on_error(st, buf, buflen);
4047    st->cr();
4048  }
4049}
4050
4051// Internal SpinLock and Mutex
4052// Based on ParkEvent
4053
4054// Ad-hoc mutual exclusion primitives: SpinLock and Mux
4055//
4056// We employ SpinLocks _only for low-contention, fixed-length
4057// short-duration critical sections where we're concerned
4058// about native mutex_t or HotSpot Mutex:: latency.
4059// The mux construct provides a spin-then-block mutual exclusion
4060// mechanism.
4061//
4062// Testing has shown that contention on the ListLock guarding gFreeList
4063// is common.  If we implement ListLock as a simple SpinLock it's common
4064// for the JVM to devolve to yielding with little progress.  This is true
4065// despite the fact that the critical sections protected by ListLock are
4066// extremely short.
4067//
4068// TODO-FIXME: ListLock should be of type SpinLock.
4069// We should make this a 1st-class type, integrated into the lock
4070// hierarchy as leaf-locks.  Critically, the SpinLock structure
4071// should have sufficient padding to avoid false-sharing and excessive
4072// cache-coherency traffic.
4073
4074
4075typedef volatile int SpinLockT ;
4076
4077void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4078  if (Atomic::cmpxchg (1, adr, 0) == 0) {
4079     return ;   // normal fast-path return
4080  }
4081
4082  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4083  TEVENT (SpinAcquire - ctx) ;
4084  int ctr = 0 ;
4085  int Yields = 0 ;
4086  for (;;) {
4087     while (*adr != 0) {
4088        ++ctr ;
4089        if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4090           if (Yields > 5) {
4091             // Consider using a simple NakedSleep() instead.
4092             // Then SpinAcquire could be called by non-JVM threads
4093             Thread::current()->_ParkEvent->park(1) ;
4094           } else {
4095             os::NakedYield() ;
4096             ++Yields ;
4097           }
4098        } else {
4099           SpinPause() ;
4100        }
4101     }
4102     if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4103  }
4104}
4105
4106void Thread::SpinRelease (volatile int * adr) {
4107  assert (*adr != 0, "invariant") ;
4108  OrderAccess::fence() ;      // guarantee at least release consistency.
4109  // Roach-motel semantics.
4110  // It's safe if subsequent LDs and STs float "up" into the critical section,
4111  // but prior LDs and STs within the critical section can't be allowed
4112  // to reorder or float past the ST that releases the lock.
4113  *adr = 0 ;
4114}
4115
4116// muxAcquire and muxRelease:
4117//
4118// *  muxAcquire and muxRelease support a single-word lock-word construct.
4119//    The LSB of the word is set IFF the lock is held.
4120//    The remainder of the word points to the head of a singly-linked list
4121//    of threads blocked on the lock.
4122//
4123// *  The current implementation of muxAcquire-muxRelease uses its own
4124//    dedicated Thread._MuxEvent instance.  If we're interested in
4125//    minimizing the peak number of extant ParkEvent instances then
4126//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4127//    as certain invariants were satisfied.  Specifically, care would need
4128//    to be taken with regards to consuming unpark() "permits".
4129//    A safe rule of thumb is that a thread would never call muxAcquire()
4130//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4131//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4132//    consume an unpark() permit intended for monitorenter, for instance.
4133//    One way around this would be to widen the restricted-range semaphore
4134//    implemented in park().  Another alternative would be to provide
4135//    multiple instances of the PlatformEvent() for each thread.  One
4136//    instance would be dedicated to muxAcquire-muxRelease, for instance.
4137//
4138// *  Usage:
4139//    -- Only as leaf locks
4140//    -- for short-term locking only as muxAcquire does not perform
4141//       thread state transitions.
4142//
4143// Alternatives:
4144// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4145//    but with parking or spin-then-park instead of pure spinning.
4146// *  Use Taura-Oyama-Yonenzawa locks.
4147// *  It's possible to construct a 1-0 lock if we encode the lockword as
4148//    (List,LockByte).  Acquire will CAS the full lockword while Release
4149//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4150//    acquiring threads use timers (ParkTimed) to detect and recover from
4151//    the stranding window.  Thread/Node structures must be aligned on 256-byte
4152//    boundaries by using placement-new.
4153// *  Augment MCS with advisory back-link fields maintained with CAS().
4154//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4155//    The validity of the backlinks must be ratified before we trust the value.
4156//    If the backlinks are invalid the exiting thread must back-track through the
4157//    the forward links, which are always trustworthy.
4158// *  Add a successor indication.  The LockWord is currently encoded as
4159//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4160//    to provide the usual futile-wakeup optimization.
4161//    See RTStt for details.
4162// *  Consider schedctl.sc_nopreempt to cover the critical section.
4163//
4164
4165
4166typedef volatile intptr_t MutexT ;      // Mux Lock-word
4167enum MuxBits { LOCKBIT = 1 } ;
4168
4169void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4170  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4171  if (w == 0) return ;
4172  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4173     return ;
4174  }
4175
4176  TEVENT (muxAcquire - Contention) ;
4177  ParkEvent * const Self = Thread::current()->_MuxEvent ;
4178  assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4179  for (;;) {
4180     int its = (os::is_MP() ? 100 : 0) + 1 ;
4181
4182     // Optional spin phase: spin-then-park strategy
4183     while (--its >= 0) {
4184       w = *Lock ;
4185       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4186          return ;
4187       }
4188     }
4189
4190     Self->reset() ;
4191     Self->OnList = intptr_t(Lock) ;
4192     // The following fence() isn't _strictly necessary as the subsequent
4193     // CAS() both serializes execution and ratifies the fetched *Lock value.
4194     OrderAccess::fence();
4195     for (;;) {
4196        w = *Lock ;
4197        if ((w & LOCKBIT) == 0) {
4198            if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4199                Self->OnList = 0 ;   // hygiene - allows stronger asserts
4200                return ;
4201            }
4202            continue ;      // Interference -- *Lock changed -- Just retry
4203        }
4204        assert (w & LOCKBIT, "invariant") ;
4205        Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4206        if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4207     }
4208
4209     while (Self->OnList != 0) {
4210        Self->park() ;
4211     }
4212  }
4213}
4214
4215void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4216  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4217  if (w == 0) return ;
4218  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4219    return ;
4220  }
4221
4222  TEVENT (muxAcquire - Contention) ;
4223  ParkEvent * ReleaseAfter = NULL ;
4224  if (ev == NULL) {
4225    ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4226  }
4227  assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4228  for (;;) {
4229    guarantee (ev->OnList == 0, "invariant") ;
4230    int its = (os::is_MP() ? 100 : 0) + 1 ;
4231
4232    // Optional spin phase: spin-then-park strategy
4233    while (--its >= 0) {
4234      w = *Lock ;
4235      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4236        if (ReleaseAfter != NULL) {
4237          ParkEvent::Release (ReleaseAfter) ;
4238        }
4239        return ;
4240      }
4241    }
4242
4243    ev->reset() ;
4244    ev->OnList = intptr_t(Lock) ;
4245    // The following fence() isn't _strictly necessary as the subsequent
4246    // CAS() both serializes execution and ratifies the fetched *Lock value.
4247    OrderAccess::fence();
4248    for (;;) {
4249      w = *Lock ;
4250      if ((w & LOCKBIT) == 0) {
4251        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4252          ev->OnList = 0 ;
4253          // We call ::Release while holding the outer lock, thus
4254          // artificially lengthening the critical section.
4255          // Consider deferring the ::Release() until the subsequent unlock(),
4256          // after we've dropped the outer lock.
4257          if (ReleaseAfter != NULL) {
4258            ParkEvent::Release (ReleaseAfter) ;
4259          }
4260          return ;
4261        }
4262        continue ;      // Interference -- *Lock changed -- Just retry
4263      }
4264      assert (w & LOCKBIT, "invariant") ;
4265      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4266      if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4267    }
4268
4269    while (ev->OnList != 0) {
4270      ev->park() ;
4271    }
4272  }
4273}
4274
4275// Release() must extract a successor from the list and then wake that thread.
4276// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4277// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4278// Release() would :
4279// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4280// (B) Extract a successor from the private list "in-hand"
4281// (C) attempt to CAS() the residual back into *Lock over null.
4282//     If there were any newly arrived threads and the CAS() would fail.
4283//     In that case Release() would detach the RATs, re-merge the list in-hand
4284//     with the RATs and repeat as needed.  Alternately, Release() might
4285//     detach and extract a successor, but then pass the residual list to the wakee.
4286//     The wakee would be responsible for reattaching and remerging before it
4287//     competed for the lock.
4288//
4289// Both "pop" and DMR are immune from ABA corruption -- there can be
4290// multiple concurrent pushers, but only one popper or detacher.
4291// This implementation pops from the head of the list.  This is unfair,
4292// but tends to provide excellent throughput as hot threads remain hot.
4293// (We wake recently run threads first).
4294
4295void Thread::muxRelease (volatile intptr_t * Lock)  {
4296  for (;;) {
4297    const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4298    assert (w & LOCKBIT, "invariant") ;
4299    if (w == LOCKBIT) return ;
4300    ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4301    assert (List != NULL, "invariant") ;
4302    assert (List->OnList == intptr_t(Lock), "invariant") ;
4303    ParkEvent * nxt = List->ListNext ;
4304
4305    // The following CAS() releases the lock and pops the head element.
4306    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4307      continue ;
4308    }
4309    List->OnList = 0 ;
4310    OrderAccess::fence() ;
4311    List->unpark () ;
4312    return ;
4313  }
4314}
4315
4316
4317void Threads::verify() {
4318  ALL_JAVA_THREADS(p) {
4319    p->verify();
4320  }
4321  VMThread* thread = VMThread::vm_thread();
4322  if (thread != NULL) thread->verify();
4323}
4324