thread.cpp revision 196:d1605aabd0a1
1/*
2 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25# include "incls/_precompiled.incl"
26# include "incls/_thread.cpp.incl"
27
28#ifdef DTRACE_ENABLED
29
30// Only bother with this argument setup if dtrace is available
31
32HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
33HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
34HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
35  intptr_t, intptr_t, bool);
36HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
37  intptr_t, intptr_t, bool);
38
39#define DTRACE_THREAD_PROBE(probe, javathread)                             \
40  {                                                                        \
41    ResourceMark rm(this);                                                 \
42    int len = 0;                                                           \
43    const char* name = (javathread)->get_thread_name();                    \
44    len = strlen(name);                                                    \
45    HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
46      name, len,                                                           \
47      java_lang_Thread::thread_id((javathread)->threadObj()),              \
48      (javathread)->osthread()->thread_id(),                               \
49      java_lang_Thread::is_daemon((javathread)->threadObj()));             \
50  }
51
52#else //  ndef DTRACE_ENABLED
53
54#define DTRACE_THREAD_PROBE(probe, javathread)
55
56#endif // ndef DTRACE_ENABLED
57
58// Class hierarchy
59// - Thread
60//   - VMThread
61//   - WatcherThread
62//   - ConcurrentMarkSweepThread
63//   - JavaThread
64//     - CompilerThread
65
66// ======= Thread ========
67
68// Support for forcing alignment of thread objects for biased locking
69void* Thread::operator new(size_t size) {
70  if (UseBiasedLocking) {
71    const int alignment = markOopDesc::biased_lock_alignment;
72    size_t aligned_size = size + (alignment - sizeof(intptr_t));
73    void* real_malloc_addr = CHeapObj::operator new(aligned_size);
74    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
75    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
76           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
77           "JavaThread alignment code overflowed allocated storage");
78    if (TraceBiasedLocking) {
79      if (aligned_addr != real_malloc_addr)
80        tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
81                      real_malloc_addr, aligned_addr);
82    }
83    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
84    return aligned_addr;
85  } else {
86    return CHeapObj::operator new(size);
87  }
88}
89
90void Thread::operator delete(void* p) {
91  if (UseBiasedLocking) {
92    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
93    CHeapObj::operator delete(real_malloc_addr);
94  } else {
95    CHeapObj::operator delete(p);
96  }
97}
98
99
100// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
101// JavaThread
102
103
104Thread::Thread() {
105  // stack
106  _stack_base   = NULL;
107  _stack_size   = 0;
108  _self_raw_id  = 0;
109  _lgrp_id      = -1;
110  _osthread     = NULL;
111
112  // allocated data structures
113  set_resource_area(new ResourceArea());
114  set_handle_area(new HandleArea(NULL));
115  set_active_handles(NULL);
116  set_free_handle_block(NULL);
117  set_last_handle_mark(NULL);
118  set_osthread(NULL);
119
120  // This initial value ==> never claimed.
121  _oops_do_parity = 0;
122
123  // the handle mark links itself to last_handle_mark
124  new HandleMark(this);
125
126  // plain initialization
127  debug_only(_owned_locks = NULL;)
128  debug_only(_allow_allocation_count = 0;)
129  NOT_PRODUCT(_allow_safepoint_count = 0;)
130  CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
131  _highest_lock = NULL;
132  _jvmti_env_iteration_count = 0;
133  _vm_operation_started_count = 0;
134  _vm_operation_completed_count = 0;
135  _current_pending_monitor = NULL;
136  _current_pending_monitor_is_from_java = true;
137  _current_waiting_monitor = NULL;
138  _num_nested_signal = 0;
139  omFreeList = NULL ;
140  omFreeCount = 0 ;
141  omFreeProvision = 32 ;
142
143  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
144  _suspend_flags = 0;
145
146  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
147  _hashStateX = os::random() ;
148  _hashStateY = 842502087 ;
149  _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
150  _hashStateW = 273326509 ;
151
152  _OnTrap   = 0 ;
153  _schedctl = NULL ;
154  _Stalled  = 0 ;
155  _TypeTag  = 0x2BAD ;
156
157  // Many of the following fields are effectively final - immutable
158  // Note that nascent threads can't use the Native Monitor-Mutex
159  // construct until the _MutexEvent is initialized ...
160  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
161  // we might instead use a stack of ParkEvents that we could provision on-demand.
162  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
163  // and ::Release()
164  _ParkEvent   = ParkEvent::Allocate (this) ;
165  _SleepEvent  = ParkEvent::Allocate (this) ;
166  _MutexEvent  = ParkEvent::Allocate (this) ;
167  _MuxEvent    = ParkEvent::Allocate (this) ;
168
169#ifdef CHECK_UNHANDLED_OOPS
170  if (CheckUnhandledOops) {
171    _unhandled_oops = new UnhandledOops(this);
172  }
173#endif // CHECK_UNHANDLED_OOPS
174#ifdef ASSERT
175  if (UseBiasedLocking) {
176    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
177    assert(this == _real_malloc_address ||
178           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
179           "bug in forced alignment of thread objects");
180  }
181#endif /* ASSERT */
182}
183
184void Thread::initialize_thread_local_storage() {
185  // Note: Make sure this method only calls
186  // non-blocking operations. Otherwise, it might not work
187  // with the thread-startup/safepoint interaction.
188
189  // During Java thread startup, safepoint code should allow this
190  // method to complete because it may need to allocate memory to
191  // store information for the new thread.
192
193  // initialize structure dependent on thread local storage
194  ThreadLocalStorage::set_thread(this);
195
196  // set up any platform-specific state.
197  os::initialize_thread();
198
199}
200
201void Thread::record_stack_base_and_size() {
202  set_stack_base(os::current_stack_base());
203  set_stack_size(os::current_stack_size());
204}
205
206
207Thread::~Thread() {
208  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
209  ObjectSynchronizer::omFlush (this) ;
210
211  // deallocate data structures
212  delete resource_area();
213  // since the handle marks are using the handle area, we have to deallocated the root
214  // handle mark before deallocating the thread's handle area,
215  assert(last_handle_mark() != NULL, "check we have an element");
216  delete last_handle_mark();
217  assert(last_handle_mark() == NULL, "check we have reached the end");
218
219  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
220  // We NULL out the fields for good hygiene.
221  ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
222  ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
223  ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
224  ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
225
226  delete handle_area();
227
228  // osthread() can be NULL, if creation of thread failed.
229  if (osthread() != NULL) os::free_thread(osthread());
230
231  delete _SR_lock;
232
233  // clear thread local storage if the Thread is deleting itself
234  if (this == Thread::current()) {
235    ThreadLocalStorage::set_thread(NULL);
236  } else {
237    // In the case where we're not the current thread, invalidate all the
238    // caches in case some code tries to get the current thread or the
239    // thread that was destroyed, and gets stale information.
240    ThreadLocalStorage::invalidate_all();
241  }
242  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
243}
244
245// NOTE: dummy function for assertion purpose.
246void Thread::run() {
247  ShouldNotReachHere();
248}
249
250#ifdef ASSERT
251// Private method to check for dangling thread pointer
252void check_for_dangling_thread_pointer(Thread *thread) {
253 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
254         "possibility of dangling Thread pointer");
255}
256#endif
257
258
259#ifndef PRODUCT
260// Tracing method for basic thread operations
261void Thread::trace(const char* msg, const Thread* const thread) {
262  if (!TraceThreadEvents) return;
263  ResourceMark rm;
264  ThreadCritical tc;
265  const char *name = "non-Java thread";
266  int prio = -1;
267  if (thread->is_Java_thread()
268      && !thread->is_Compiler_thread()) {
269    // The Threads_lock must be held to get information about
270    // this thread but may not be in some situations when
271    // tracing  thread events.
272    bool release_Threads_lock = false;
273    if (!Threads_lock->owned_by_self()) {
274      Threads_lock->lock();
275      release_Threads_lock = true;
276    }
277    JavaThread* jt = (JavaThread *)thread;
278    name = (char *)jt->get_thread_name();
279    oop thread_oop = jt->threadObj();
280    if (thread_oop != NULL) {
281      prio = java_lang_Thread::priority(thread_oop);
282    }
283    if (release_Threads_lock) {
284      Threads_lock->unlock();
285    }
286  }
287  tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
288}
289#endif
290
291
292ThreadPriority Thread::get_priority(const Thread* const thread) {
293  trace("get priority", thread);
294  ThreadPriority priority;
295  // Can return an error!
296  (void)os::get_priority(thread, priority);
297  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
298  return priority;
299}
300
301void Thread::set_priority(Thread* thread, ThreadPriority priority) {
302  trace("set priority", thread);
303  debug_only(check_for_dangling_thread_pointer(thread);)
304  // Can return an error!
305  (void)os::set_priority(thread, priority);
306}
307
308
309void Thread::start(Thread* thread) {
310  trace("start", thread);
311  // Start is different from resume in that its safety is guaranteed by context or
312  // being called from a Java method synchronized on the Thread object.
313  if (!DisableStartThread) {
314    if (thread->is_Java_thread()) {
315      // Initialize the thread state to RUNNABLE before starting this thread.
316      // Can not set it after the thread started because we do not know the
317      // exact thread state at that time. It could be in MONITOR_WAIT or
318      // in SLEEPING or some other state.
319      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
320                                          java_lang_Thread::RUNNABLE);
321    }
322    os::start_thread(thread);
323  }
324}
325
326// Enqueue a VM_Operation to do the job for us - sometime later
327void Thread::send_async_exception(oop java_thread, oop java_throwable) {
328  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
329  VMThread::execute(vm_stop);
330}
331
332
333//
334// Check if an external suspend request has completed (or has been
335// cancelled). Returns true if the thread is externally suspended and
336// false otherwise.
337//
338// The bits parameter returns information about the code path through
339// the routine. Useful for debugging:
340//
341// set in is_ext_suspend_completed():
342// 0x00000001 - routine was entered
343// 0x00000010 - routine return false at end
344// 0x00000100 - thread exited (return false)
345// 0x00000200 - suspend request cancelled (return false)
346// 0x00000400 - thread suspended (return true)
347// 0x00001000 - thread is in a suspend equivalent state (return true)
348// 0x00002000 - thread is native and walkable (return true)
349// 0x00004000 - thread is native_trans and walkable (needed retry)
350//
351// set in wait_for_ext_suspend_completion():
352// 0x00010000 - routine was entered
353// 0x00020000 - suspend request cancelled before loop (return false)
354// 0x00040000 - thread suspended before loop (return true)
355// 0x00080000 - suspend request cancelled in loop (return false)
356// 0x00100000 - thread suspended in loop (return true)
357// 0x00200000 - suspend not completed during retry loop (return false)
358//
359
360// Helper class for tracing suspend wait debug bits.
361//
362// 0x00000100 indicates that the target thread exited before it could
363// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
364// 0x00080000 each indicate a cancelled suspend request so they don't
365// count as wait failures either.
366#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
367
368class TraceSuspendDebugBits : public StackObj {
369 private:
370  JavaThread * jt;
371  bool         is_wait;
372  bool         called_by_wait;  // meaningful when !is_wait
373  uint32_t *   bits;
374
375 public:
376  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
377                        uint32_t *_bits) {
378    jt             = _jt;
379    is_wait        = _is_wait;
380    called_by_wait = _called_by_wait;
381    bits           = _bits;
382  }
383
384  ~TraceSuspendDebugBits() {
385    if (!is_wait) {
386#if 1
387      // By default, don't trace bits for is_ext_suspend_completed() calls.
388      // That trace is very chatty.
389      return;
390#else
391      if (!called_by_wait) {
392        // If tracing for is_ext_suspend_completed() is enabled, then only
393        // trace calls to it from wait_for_ext_suspend_completion()
394        return;
395      }
396#endif
397    }
398
399    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
400      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
401        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
402        ResourceMark rm;
403
404        tty->print_cr(
405            "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
406            jt->get_thread_name(), *bits);
407
408        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
409      }
410    }
411  }
412};
413#undef DEBUG_FALSE_BITS
414
415
416bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
417  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
418
419  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
420  bool do_trans_retry;           // flag to force the retry
421
422  *bits |= 0x00000001;
423
424  do {
425    do_trans_retry = false;
426
427    if (is_exiting()) {
428      // Thread is in the process of exiting. This is always checked
429      // first to reduce the risk of dereferencing a freed JavaThread.
430      *bits |= 0x00000100;
431      return false;
432    }
433
434    if (!is_external_suspend()) {
435      // Suspend request is cancelled. This is always checked before
436      // is_ext_suspended() to reduce the risk of a rogue resume
437      // confusing the thread that made the suspend request.
438      *bits |= 0x00000200;
439      return false;
440    }
441
442    if (is_ext_suspended()) {
443      // thread is suspended
444      *bits |= 0x00000400;
445      return true;
446    }
447
448    // Now that we no longer do hard suspends of threads running
449    // native code, the target thread can be changing thread state
450    // while we are in this routine:
451    //
452    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
453    //
454    // We save a copy of the thread state as observed at this moment
455    // and make our decision about suspend completeness based on the
456    // copy. This closes the race where the thread state is seen as
457    // _thread_in_native_trans in the if-thread_blocked check, but is
458    // seen as _thread_blocked in if-thread_in_native_trans check.
459    JavaThreadState save_state = thread_state();
460
461    if (save_state == _thread_blocked && is_suspend_equivalent()) {
462      // If the thread's state is _thread_blocked and this blocking
463      // condition is known to be equivalent to a suspend, then we can
464      // consider the thread to be externally suspended. This means that
465      // the code that sets _thread_blocked has been modified to do
466      // self-suspension if the blocking condition releases. We also
467      // used to check for CONDVAR_WAIT here, but that is now covered by
468      // the _thread_blocked with self-suspension check.
469      //
470      // Return true since we wouldn't be here unless there was still an
471      // external suspend request.
472      *bits |= 0x00001000;
473      return true;
474    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
475      // Threads running native code will self-suspend on native==>VM/Java
476      // transitions. If its stack is walkable (should always be the case
477      // unless this function is called before the actual java_suspend()
478      // call), then the wait is done.
479      *bits |= 0x00002000;
480      return true;
481    } else if (!called_by_wait && !did_trans_retry &&
482               save_state == _thread_in_native_trans &&
483               frame_anchor()->walkable()) {
484      // The thread is transitioning from thread_in_native to another
485      // thread state. check_safepoint_and_suspend_for_native_trans()
486      // will force the thread to self-suspend. If it hasn't gotten
487      // there yet we may have caught the thread in-between the native
488      // code check above and the self-suspend. Lucky us. If we were
489      // called by wait_for_ext_suspend_completion(), then it
490      // will be doing the retries so we don't have to.
491      //
492      // Since we use the saved thread state in the if-statement above,
493      // there is a chance that the thread has already transitioned to
494      // _thread_blocked by the time we get here. In that case, we will
495      // make a single unnecessary pass through the logic below. This
496      // doesn't hurt anything since we still do the trans retry.
497
498      *bits |= 0x00004000;
499
500      // Once the thread leaves thread_in_native_trans for another
501      // thread state, we break out of this retry loop. We shouldn't
502      // need this flag to prevent us from getting back here, but
503      // sometimes paranoia is good.
504      did_trans_retry = true;
505
506      // We wait for the thread to transition to a more usable state.
507      for (int i = 1; i <= SuspendRetryCount; i++) {
508        // We used to do an "os::yield_all(i)" call here with the intention
509        // that yielding would increase on each retry. However, the parameter
510        // is ignored on Linux which means the yield didn't scale up. Waiting
511        // on the SR_lock below provides a much more predictable scale up for
512        // the delay. It also provides a simple/direct point to check for any
513        // safepoint requests from the VMThread
514
515        // temporarily drops SR_lock while doing wait with safepoint check
516        // (if we're a JavaThread - the WatcherThread can also call this)
517        // and increase delay with each retry
518        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
519
520        // check the actual thread state instead of what we saved above
521        if (thread_state() != _thread_in_native_trans) {
522          // the thread has transitioned to another thread state so
523          // try all the checks (except this one) one more time.
524          do_trans_retry = true;
525          break;
526        }
527      } // end retry loop
528
529
530    }
531  } while (do_trans_retry);
532
533  *bits |= 0x00000010;
534  return false;
535}
536
537//
538// Wait for an external suspend request to complete (or be cancelled).
539// Returns true if the thread is externally suspended and false otherwise.
540//
541bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
542       uint32_t *bits) {
543  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
544                             false /* !called_by_wait */, bits);
545
546  // local flag copies to minimize SR_lock hold time
547  bool is_suspended;
548  bool pending;
549  uint32_t reset_bits;
550
551  // set a marker so is_ext_suspend_completed() knows we are the caller
552  *bits |= 0x00010000;
553
554  // We use reset_bits to reinitialize the bits value at the top of
555  // each retry loop. This allows the caller to make use of any
556  // unused bits for their own marking purposes.
557  reset_bits = *bits;
558
559  {
560    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
561    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
562                                            delay, bits);
563    pending = is_external_suspend();
564  }
565  // must release SR_lock to allow suspension to complete
566
567  if (!pending) {
568    // A cancelled suspend request is the only false return from
569    // is_ext_suspend_completed() that keeps us from entering the
570    // retry loop.
571    *bits |= 0x00020000;
572    return false;
573  }
574
575  if (is_suspended) {
576    *bits |= 0x00040000;
577    return true;
578  }
579
580  for (int i = 1; i <= retries; i++) {
581    *bits = reset_bits;  // reinit to only track last retry
582
583    // We used to do an "os::yield_all(i)" call here with the intention
584    // that yielding would increase on each retry. However, the parameter
585    // is ignored on Linux which means the yield didn't scale up. Waiting
586    // on the SR_lock below provides a much more predictable scale up for
587    // the delay. It also provides a simple/direct point to check for any
588    // safepoint requests from the VMThread
589
590    {
591      MutexLocker ml(SR_lock());
592      // wait with safepoint check (if we're a JavaThread - the WatcherThread
593      // can also call this)  and increase delay with each retry
594      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
595
596      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
597                                              delay, bits);
598
599      // It is possible for the external suspend request to be cancelled
600      // (by a resume) before the actual suspend operation is completed.
601      // Refresh our local copy to see if we still need to wait.
602      pending = is_external_suspend();
603    }
604
605    if (!pending) {
606      // A cancelled suspend request is the only false return from
607      // is_ext_suspend_completed() that keeps us from staying in the
608      // retry loop.
609      *bits |= 0x00080000;
610      return false;
611    }
612
613    if (is_suspended) {
614      *bits |= 0x00100000;
615      return true;
616    }
617  } // end retry loop
618
619  // thread did not suspend after all our retries
620  *bits |= 0x00200000;
621  return false;
622}
623
624#ifndef PRODUCT
625void JavaThread::record_jump(address target, address instr, const char* file, int line) {
626
627  // This should not need to be atomic as the only way for simultaneous
628  // updates is via interrupts. Even then this should be rare or non-existant
629  // and we don't care that much anyway.
630
631  int index = _jmp_ring_index;
632  _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
633  _jmp_ring[index]._target = (intptr_t) target;
634  _jmp_ring[index]._instruction = (intptr_t) instr;
635  _jmp_ring[index]._file = file;
636  _jmp_ring[index]._line = line;
637}
638#endif /* PRODUCT */
639
640// Called by flat profiler
641// Callers have already called wait_for_ext_suspend_completion
642// The assertion for that is currently too complex to put here:
643bool JavaThread::profile_last_Java_frame(frame* _fr) {
644  bool gotframe = false;
645  // self suspension saves needed state.
646  if (has_last_Java_frame() && _anchor.walkable()) {
647     *_fr = pd_last_frame();
648     gotframe = true;
649  }
650  return gotframe;
651}
652
653void Thread::interrupt(Thread* thread) {
654  trace("interrupt", thread);
655  debug_only(check_for_dangling_thread_pointer(thread);)
656  os::interrupt(thread);
657}
658
659bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
660  trace("is_interrupted", thread);
661  debug_only(check_for_dangling_thread_pointer(thread);)
662  // Note:  If clear_interrupted==false, this simply fetches and
663  // returns the value of the field osthread()->interrupted().
664  return os::is_interrupted(thread, clear_interrupted);
665}
666
667
668// GC Support
669bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
670  jint thread_parity = _oops_do_parity;
671  if (thread_parity != strong_roots_parity) {
672    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
673    if (res == thread_parity) return true;
674    else {
675      guarantee(res == strong_roots_parity, "Or else what?");
676      assert(SharedHeap::heap()->n_par_threads() > 0,
677             "Should only fail when parallel.");
678      return false;
679    }
680  }
681  assert(SharedHeap::heap()->n_par_threads() > 0,
682         "Should only fail when parallel.");
683  return false;
684}
685
686void Thread::oops_do(OopClosure* f) {
687  active_handles()->oops_do(f);
688  // Do oop for ThreadShadow
689  f->do_oop((oop*)&_pending_exception);
690  handle_area()->oops_do(f);
691}
692
693void Thread::nmethods_do() {
694}
695
696void Thread::print_on(outputStream* st) const {
697  // get_priority assumes osthread initialized
698  if (osthread() != NULL) {
699    st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
700    osthread()->print_on(st);
701  }
702  debug_only(if (WizardMode) print_owned_locks_on(st);)
703}
704
705// Thread::print_on_error() is called by fatal error handler. Don't use
706// any lock or allocate memory.
707void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
708  if      (is_VM_thread())                  st->print("VMThread");
709  else if (is_Compiler_thread())            st->print("CompilerThread");
710  else if (is_Java_thread())                st->print("JavaThread");
711  else if (is_GC_task_thread())             st->print("GCTaskThread");
712  else if (is_Watcher_thread())             st->print("WatcherThread");
713  else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
714  else st->print("Thread");
715
716  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
717            _stack_base - _stack_size, _stack_base);
718
719  if (osthread()) {
720    st->print(" [id=%d]", osthread()->thread_id());
721  }
722}
723
724#ifdef ASSERT
725void Thread::print_owned_locks_on(outputStream* st) const {
726  Monitor *cur = _owned_locks;
727  if (cur == NULL) {
728    st->print(" (no locks) ");
729  } else {
730    st->print_cr(" Locks owned:");
731    while(cur) {
732      cur->print_on(st);
733      cur = cur->next();
734    }
735  }
736}
737
738static int ref_use_count  = 0;
739
740bool Thread::owns_locks_but_compiled_lock() const {
741  for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
742    if (cur != Compile_lock) return true;
743  }
744  return false;
745}
746
747
748#endif
749
750#ifndef PRODUCT
751
752// The flag: potential_vm_operation notifies if this particular safepoint state could potential
753// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
754// no threads which allow_vm_block's are held
755void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
756    // Check if current thread is allowed to block at a safepoint
757    if (!(_allow_safepoint_count == 0))
758      fatal("Possible safepoint reached by thread that does not allow it");
759    if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
760      fatal("LEAF method calling lock?");
761    }
762
763#ifdef ASSERT
764    if (potential_vm_operation && is_Java_thread()
765        && !Universe::is_bootstrapping()) {
766      // Make sure we do not hold any locks that the VM thread also uses.
767      // This could potentially lead to deadlocks
768      for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
769        // Threads_lock is special, since the safepoint synchronization will not start before this is
770        // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
771        // since it is used to transfer control between JavaThreads and the VMThread
772        // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
773        if ( (cur->allow_vm_block() &&
774              cur != Threads_lock &&
775              cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
776              cur != VMOperationRequest_lock &&
777              cur != VMOperationQueue_lock) ||
778              cur->rank() == Mutex::special) {
779          warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
780        }
781      }
782    }
783
784    if (GCALotAtAllSafepoints) {
785      // We could enter a safepoint here and thus have a gc
786      InterfaceSupport::check_gc_alot();
787    }
788
789#endif
790}
791#endif
792
793bool Thread::lock_is_in_stack(address adr) const {
794  assert(Thread::current() == this, "lock_is_in_stack can only be called from current thread");
795  // High limit: highest_lock is set during thread execution
796  // Low  limit: address of the local variable dummy, rounded to 4K boundary.
797  // (The rounding helps finding threads in unsafe mode, even if the particular stack
798  // frame has been popped already.  Correct as long as stacks are at least 4K long and aligned.)
799  address end = os::current_stack_pointer();
800  if (_highest_lock >= adr && adr >= end) return true;
801
802  return false;
803}
804
805
806bool Thread::is_in_stack(address adr) const {
807  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
808  address end = os::current_stack_pointer();
809  if (stack_base() >= adr && adr >= end) return true;
810
811  return false;
812}
813
814
815// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
816// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
817// used for compilation in the future. If that change is made, the need for these methods
818// should be revisited, and they should be removed if possible.
819
820bool Thread::is_lock_owned(address adr) const {
821  if (lock_is_in_stack(adr) ) return true;
822  return false;
823}
824
825bool Thread::set_as_starting_thread() {
826 // NOTE: this must be called inside the main thread.
827  return os::create_main_thread((JavaThread*)this);
828}
829
830static void initialize_class(symbolHandle class_name, TRAPS) {
831  klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
832  instanceKlass::cast(klass)->initialize(CHECK);
833}
834
835
836// Creates the initial ThreadGroup
837static Handle create_initial_thread_group(TRAPS) {
838  klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_ThreadGroup(), true, CHECK_NH);
839  instanceKlassHandle klass (THREAD, k);
840
841  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
842  {
843    JavaValue result(T_VOID);
844    JavaCalls::call_special(&result,
845                            system_instance,
846                            klass,
847                            vmSymbolHandles::object_initializer_name(),
848                            vmSymbolHandles::void_method_signature(),
849                            CHECK_NH);
850  }
851  Universe::set_system_thread_group(system_instance());
852
853  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
854  {
855    JavaValue result(T_VOID);
856    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
857    JavaCalls::call_special(&result,
858                            main_instance,
859                            klass,
860                            vmSymbolHandles::object_initializer_name(),
861                            vmSymbolHandles::threadgroup_string_void_signature(),
862                            system_instance,
863                            string,
864                            CHECK_NH);
865  }
866  return main_instance;
867}
868
869// Creates the initial Thread
870static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
871  klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK_NULL);
872  instanceKlassHandle klass (THREAD, k);
873  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
874
875  java_lang_Thread::set_thread(thread_oop(), thread);
876  java_lang_Thread::set_priority(thread_oop(), NormPriority);
877  thread->set_threadObj(thread_oop());
878
879  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
880
881  JavaValue result(T_VOID);
882  JavaCalls::call_special(&result, thread_oop,
883                                   klass,
884                                   vmSymbolHandles::object_initializer_name(),
885                                   vmSymbolHandles::threadgroup_string_void_signature(),
886                                   thread_group,
887                                   string,
888                                   CHECK_NULL);
889  return thread_oop();
890}
891
892static void call_initializeSystemClass(TRAPS) {
893  klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
894  instanceKlassHandle klass (THREAD, k);
895
896  JavaValue result(T_VOID);
897  JavaCalls::call_static(&result, klass, vmSymbolHandles::initializeSystemClass_name(),
898                                         vmSymbolHandles::void_method_signature(), CHECK);
899}
900
901static void reset_vm_info_property(TRAPS) {
902  // the vm info string
903  ResourceMark rm(THREAD);
904  const char *vm_info = VM_Version::vm_info_string();
905
906  // java.lang.System class
907  klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
908  instanceKlassHandle klass (THREAD, k);
909
910  // setProperty arguments
911  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
912  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
913
914  // return value
915  JavaValue r(T_OBJECT);
916
917  // public static String setProperty(String key, String value);
918  JavaCalls::call_static(&r,
919                         klass,
920                         vmSymbolHandles::setProperty_name(),
921                         vmSymbolHandles::string_string_string_signature(),
922                         key_str,
923                         value_str,
924                         CHECK);
925}
926
927
928void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
929  assert(thread_group.not_null(), "thread group should be specified");
930  assert(threadObj() == NULL, "should only create Java thread object once");
931
932  klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK);
933  instanceKlassHandle klass (THREAD, k);
934  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
935
936  java_lang_Thread::set_thread(thread_oop(), this);
937  java_lang_Thread::set_priority(thread_oop(), NormPriority);
938  set_threadObj(thread_oop());
939
940  JavaValue result(T_VOID);
941  if (thread_name != NULL) {
942    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
943    // Thread gets assigned specified name and null target
944    JavaCalls::call_special(&result,
945                            thread_oop,
946                            klass,
947                            vmSymbolHandles::object_initializer_name(),
948                            vmSymbolHandles::threadgroup_string_void_signature(),
949                            thread_group, // Argument 1
950                            name,         // Argument 2
951                            THREAD);
952  } else {
953    // Thread gets assigned name "Thread-nnn" and null target
954    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
955    JavaCalls::call_special(&result,
956                            thread_oop,
957                            klass,
958                            vmSymbolHandles::object_initializer_name(),
959                            vmSymbolHandles::threadgroup_runnable_void_signature(),
960                            thread_group, // Argument 1
961                            Handle(),     // Argument 2
962                            THREAD);
963  }
964
965
966  if (daemon) {
967      java_lang_Thread::set_daemon(thread_oop());
968  }
969
970  if (HAS_PENDING_EXCEPTION) {
971    return;
972  }
973
974  KlassHandle group(this, SystemDictionary::threadGroup_klass());
975  Handle threadObj(this, this->threadObj());
976
977  JavaCalls::call_special(&result,
978                         thread_group,
979                         group,
980                         vmSymbolHandles::add_method_name(),
981                         vmSymbolHandles::thread_void_signature(),
982                         threadObj,          // Arg 1
983                         THREAD);
984
985
986}
987
988// NamedThread --  non-JavaThread subclasses with multiple
989// uniquely named instances should derive from this.
990NamedThread::NamedThread() : Thread() {
991  _name = NULL;
992}
993
994NamedThread::~NamedThread() {
995  if (_name != NULL) {
996    FREE_C_HEAP_ARRAY(char, _name);
997    _name = NULL;
998  }
999}
1000
1001void NamedThread::set_name(const char* format, ...) {
1002  guarantee(_name == NULL, "Only get to set name once.");
1003  _name = NEW_C_HEAP_ARRAY(char, max_name_len);
1004  guarantee(_name != NULL, "alloc failure");
1005  va_list ap;
1006  va_start(ap, format);
1007  jio_vsnprintf(_name, max_name_len, format, ap);
1008  va_end(ap);
1009}
1010
1011// ======= WatcherThread ========
1012
1013// The watcher thread exists to simulate timer interrupts.  It should
1014// be replaced by an abstraction over whatever native support for
1015// timer interrupts exists on the platform.
1016
1017WatcherThread* WatcherThread::_watcher_thread   = NULL;
1018bool           WatcherThread::_should_terminate = false;
1019
1020WatcherThread::WatcherThread() : Thread() {
1021  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1022  if (os::create_thread(this, os::watcher_thread)) {
1023    _watcher_thread = this;
1024
1025    // Set the watcher thread to the highest OS priority which should not be
1026    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1027    // is created. The only normal thread using this priority is the reference
1028    // handler thread, which runs for very short intervals only.
1029    // If the VMThread's priority is not lower than the WatcherThread profiling
1030    // will be inaccurate.
1031    os::set_priority(this, MaxPriority);
1032    if (!DisableStartThread) {
1033      os::start_thread(this);
1034    }
1035  }
1036}
1037
1038void WatcherThread::run() {
1039  assert(this == watcher_thread(), "just checking");
1040
1041  this->record_stack_base_and_size();
1042  this->initialize_thread_local_storage();
1043  this->set_active_handles(JNIHandleBlock::allocate_block());
1044  while(!_should_terminate) {
1045    assert(watcher_thread() == Thread::current(),  "thread consistency check");
1046    assert(watcher_thread() == this,  "thread consistency check");
1047
1048    // Calculate how long it'll be until the next PeriodicTask work
1049    // should be done, and sleep that amount of time.
1050    const size_t time_to_wait = PeriodicTask::time_to_wait();
1051    os::sleep(this, time_to_wait, false);
1052
1053    if (is_error_reported()) {
1054      // A fatal error has happened, the error handler(VMError::report_and_die)
1055      // should abort JVM after creating an error log file. However in some
1056      // rare cases, the error handler itself might deadlock. Here we try to
1057      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1058      //
1059      // This code is in WatcherThread because WatcherThread wakes up
1060      // periodically so the fatal error handler doesn't need to do anything;
1061      // also because the WatcherThread is less likely to crash than other
1062      // threads.
1063
1064      for (;;) {
1065        if (!ShowMessageBoxOnError
1066         && (OnError == NULL || OnError[0] == '\0')
1067         && Arguments::abort_hook() == NULL) {
1068             os::sleep(this, 2 * 60 * 1000, false);
1069             fdStream err(defaultStream::output_fd());
1070             err.print_raw_cr("# [ timer expired, abort... ]");
1071             // skip atexit/vm_exit/vm_abort hooks
1072             os::die();
1073        }
1074
1075        // Wake up 5 seconds later, the fatal handler may reset OnError or
1076        // ShowMessageBoxOnError when it is ready to abort.
1077        os::sleep(this, 5 * 1000, false);
1078      }
1079    }
1080
1081    PeriodicTask::real_time_tick(time_to_wait);
1082
1083    // If we have no more tasks left due to dynamic disenrollment,
1084    // shut down the thread since we don't currently support dynamic enrollment
1085    if (PeriodicTask::num_tasks() == 0) {
1086      _should_terminate = true;
1087    }
1088  }
1089
1090  // Signal that it is terminated
1091  {
1092    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1093    _watcher_thread = NULL;
1094    Terminator_lock->notify();
1095  }
1096
1097  // Thread destructor usually does this..
1098  ThreadLocalStorage::set_thread(NULL);
1099}
1100
1101void WatcherThread::start() {
1102  if (watcher_thread() == NULL) {
1103    _should_terminate = false;
1104    // Create the single instance of WatcherThread
1105    new WatcherThread();
1106  }
1107}
1108
1109void WatcherThread::stop() {
1110  // it is ok to take late safepoints here, if needed
1111  MutexLocker mu(Terminator_lock);
1112  _should_terminate = true;
1113  while(watcher_thread() != NULL) {
1114    // This wait should make safepoint checks, wait without a timeout,
1115    // and wait as a suspend-equivalent condition.
1116    //
1117    // Note: If the FlatProfiler is running, then this thread is waiting
1118    // for the WatcherThread to terminate and the WatcherThread, via the
1119    // FlatProfiler task, is waiting for the external suspend request on
1120    // this thread to complete. wait_for_ext_suspend_completion() will
1121    // eventually timeout, but that takes time. Making this wait a
1122    // suspend-equivalent condition solves that timeout problem.
1123    //
1124    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1125                          Mutex::_as_suspend_equivalent_flag);
1126  }
1127}
1128
1129void WatcherThread::print_on(outputStream* st) const {
1130  st->print("\"%s\" ", name());
1131  Thread::print_on(st);
1132  st->cr();
1133}
1134
1135// ======= JavaThread ========
1136
1137// A JavaThread is a normal Java thread
1138
1139void JavaThread::initialize() {
1140  // Initialize fields
1141  set_saved_exception_pc(NULL);
1142  set_threadObj(NULL);
1143  _anchor.clear();
1144  set_entry_point(NULL);
1145  set_jni_functions(jni_functions());
1146  set_callee_target(NULL);
1147  set_vm_result(NULL);
1148  set_vm_result_2(NULL);
1149  set_vframe_array_head(NULL);
1150  set_vframe_array_last(NULL);
1151  set_deferred_locals(NULL);
1152  set_deopt_mark(NULL);
1153  clear_must_deopt_id();
1154  set_monitor_chunks(NULL);
1155  set_next(NULL);
1156  set_thread_state(_thread_new);
1157  _terminated = _not_terminated;
1158  _privileged_stack_top = NULL;
1159  _array_for_gc = NULL;
1160  _suspend_equivalent = false;
1161  _in_deopt_handler = 0;
1162  _doing_unsafe_access = false;
1163  _stack_guard_state = stack_guard_unused;
1164  _exception_oop = NULL;
1165  _exception_pc  = 0;
1166  _exception_handler_pc = 0;
1167  _exception_stack_size = 0;
1168  _jvmti_thread_state= NULL;
1169  _jvmti_get_loaded_classes_closure = NULL;
1170  _interp_only_mode    = 0;
1171  _special_runtime_exit_condition = _no_async_condition;
1172  _pending_async_exception = NULL;
1173  _is_compiling = false;
1174  _thread_stat = NULL;
1175  _thread_stat = new ThreadStatistics();
1176  _blocked_on_compilation = false;
1177  _jni_active_critical = 0;
1178  _do_not_unlock_if_synchronized = false;
1179  _cached_monitor_info = NULL;
1180  _parker = Parker::Allocate(this) ;
1181
1182#ifndef PRODUCT
1183  _jmp_ring_index = 0;
1184  for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1185    record_jump(NULL, NULL, NULL, 0);
1186  }
1187#endif /* PRODUCT */
1188
1189  set_thread_profiler(NULL);
1190  if (FlatProfiler::is_active()) {
1191    // This is where we would decide to either give each thread it's own profiler
1192    // or use one global one from FlatProfiler,
1193    // or up to some count of the number of profiled threads, etc.
1194    ThreadProfiler* pp = new ThreadProfiler();
1195    pp->engage();
1196    set_thread_profiler(pp);
1197  }
1198
1199  // Setup safepoint state info for this thread
1200  ThreadSafepointState::create(this);
1201
1202  debug_only(_java_call_counter = 0);
1203
1204  // JVMTI PopFrame support
1205  _popframe_condition = popframe_inactive;
1206  _popframe_preserved_args = NULL;
1207  _popframe_preserved_args_size = 0;
1208
1209  pd_initialize();
1210}
1211
1212JavaThread::JavaThread(bool is_attaching) : Thread() {
1213  initialize();
1214  _is_attaching = is_attaching;
1215}
1216
1217bool JavaThread::reguard_stack(address cur_sp) {
1218  if (_stack_guard_state != stack_guard_yellow_disabled) {
1219    return true; // Stack already guarded or guard pages not needed.
1220  }
1221
1222  if (register_stack_overflow()) {
1223    // For those architectures which have separate register and
1224    // memory stacks, we must check the register stack to see if
1225    // it has overflowed.
1226    return false;
1227  }
1228
1229  // Java code never executes within the yellow zone: the latter is only
1230  // there to provoke an exception during stack banging.  If java code
1231  // is executing there, either StackShadowPages should be larger, or
1232  // some exception code in c1, c2 or the interpreter isn't unwinding
1233  // when it should.
1234  guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1235
1236  enable_stack_yellow_zone();
1237  return true;
1238}
1239
1240bool JavaThread::reguard_stack(void) {
1241  return reguard_stack(os::current_stack_pointer());
1242}
1243
1244
1245void JavaThread::block_if_vm_exited() {
1246  if (_terminated == _vm_exited) {
1247    // _vm_exited is set at safepoint, and Threads_lock is never released
1248    // we will block here forever
1249    Threads_lock->lock_without_safepoint_check();
1250    ShouldNotReachHere();
1251  }
1252}
1253
1254
1255// Remove this ifdef when C1 is ported to the compiler interface.
1256static void compiler_thread_entry(JavaThread* thread, TRAPS);
1257
1258JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) : Thread() {
1259  if (TraceThreadEvents) {
1260    tty->print_cr("creating thread %p", this);
1261  }
1262  initialize();
1263  _is_attaching = false;
1264  set_entry_point(entry_point);
1265  // Create the native thread itself.
1266  // %note runtime_23
1267  os::ThreadType thr_type = os::java_thread;
1268  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1269                                                     os::java_thread;
1270  os::create_thread(this, thr_type, stack_sz);
1271
1272  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1273  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1274  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1275  // the exception consists of creating the exception object & initializing it, initialization
1276  // will leave the VM via a JavaCall and then all locks must be unlocked).
1277  //
1278  // The thread is still suspended when we reach here. Thread must be explicit started
1279  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1280  // by calling Threads:add. The reason why this is not done here, is because the thread
1281  // object must be fully initialized (take a look at JVM_Start)
1282}
1283
1284JavaThread::~JavaThread() {
1285  if (TraceThreadEvents) {
1286      tty->print_cr("terminate thread %p", this);
1287  }
1288
1289  // JSR166 -- return the parker to the free list
1290  Parker::Release(_parker);
1291  _parker = NULL ;
1292
1293  // Free any remaining  previous UnrollBlock
1294  vframeArray* old_array = vframe_array_last();
1295
1296  if (old_array != NULL) {
1297    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1298    old_array->set_unroll_block(NULL);
1299    delete old_info;
1300    delete old_array;
1301  }
1302
1303  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1304  if (deferred != NULL) {
1305    // This can only happen if thread is destroyed before deoptimization occurs.
1306    assert(deferred->length() != 0, "empty array!");
1307    do {
1308      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1309      deferred->remove_at(0);
1310      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1311      delete dlv;
1312    } while (deferred->length() != 0);
1313    delete deferred;
1314  }
1315
1316  // All Java related clean up happens in exit
1317  ThreadSafepointState::destroy(this);
1318  if (_thread_profiler != NULL) delete _thread_profiler;
1319  if (_thread_stat != NULL) delete _thread_stat;
1320}
1321
1322
1323// The first routine called by a new Java thread
1324void JavaThread::run() {
1325  // initialize thread-local alloc buffer related fields
1326  this->initialize_tlab();
1327
1328  // used to test validitity of stack trace backs
1329  this->record_base_of_stack_pointer();
1330
1331  // Record real stack base and size.
1332  this->record_stack_base_and_size();
1333
1334  // Initialize thread local storage; set before calling MutexLocker
1335  this->initialize_thread_local_storage();
1336
1337  this->create_stack_guard_pages();
1338
1339  // Thread is now sufficient initialized to be handled by the safepoint code as being
1340  // in the VM. Change thread state from _thread_new to _thread_in_vm
1341  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1342
1343  assert(JavaThread::current() == this, "sanity check");
1344  assert(!Thread::current()->owns_locks(), "sanity check");
1345
1346  DTRACE_THREAD_PROBE(start, this);
1347
1348  // This operation might block. We call that after all safepoint checks for a new thread has
1349  // been completed.
1350  this->set_active_handles(JNIHandleBlock::allocate_block());
1351
1352  if (JvmtiExport::should_post_thread_life()) {
1353    JvmtiExport::post_thread_start(this);
1354  }
1355
1356  // We call another function to do the rest so we are sure that the stack addresses used
1357  // from there will be lower than the stack base just computed
1358  thread_main_inner();
1359
1360  // Note, thread is no longer valid at this point!
1361}
1362
1363
1364void JavaThread::thread_main_inner() {
1365  assert(JavaThread::current() == this, "sanity check");
1366  assert(this->threadObj() != NULL, "just checking");
1367
1368  // Execute thread entry point. If this thread is being asked to restart,
1369  // or has been stopped before starting, do not reexecute entry point.
1370  // Note: Due to JVM_StopThread we can have pending exceptions already!
1371  if (!this->has_pending_exception() && !java_lang_Thread::is_stillborn(this->threadObj())) {
1372    // enter the thread's entry point only if we have no pending exceptions
1373    HandleMark hm(this);
1374    this->entry_point()(this, this);
1375  }
1376
1377  DTRACE_THREAD_PROBE(stop, this);
1378
1379  this->exit(false);
1380  delete this;
1381}
1382
1383
1384static void ensure_join(JavaThread* thread) {
1385  // We do not need to grap the Threads_lock, since we are operating on ourself.
1386  Handle threadObj(thread, thread->threadObj());
1387  assert(threadObj.not_null(), "java thread object must exist");
1388  ObjectLocker lock(threadObj, thread);
1389  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1390  thread->clear_pending_exception();
1391  // It is of profound importance that we set the stillborn bit and reset the thread object,
1392  // before we do the notify. Since, changing these two variable will make JVM_IsAlive return
1393  // false. So in case another thread is doing a join on this thread , it will detect that the thread
1394  // is dead when it gets notified.
1395  java_lang_Thread::set_stillborn(threadObj());
1396  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1397  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1398  java_lang_Thread::set_thread(threadObj(), NULL);
1399  lock.notify_all(thread);
1400  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1401  thread->clear_pending_exception();
1402}
1403
1404// For any new cleanup additions, please check to see if they need to be applied to
1405// cleanup_failed_attach_current_thread as well.
1406void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1407  assert(this == JavaThread::current(),  "thread consistency check");
1408  if (!InitializeJavaLangSystem) return;
1409
1410  HandleMark hm(this);
1411  Handle uncaught_exception(this, this->pending_exception());
1412  this->clear_pending_exception();
1413  Handle threadObj(this, this->threadObj());
1414  assert(threadObj.not_null(), "Java thread object should be created");
1415
1416  if (get_thread_profiler() != NULL) {
1417    get_thread_profiler()->disengage();
1418    ResourceMark rm;
1419    get_thread_profiler()->print(get_thread_name());
1420  }
1421
1422
1423  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1424  {
1425    EXCEPTION_MARK;
1426
1427    CLEAR_PENDING_EXCEPTION;
1428  }
1429  // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1430  // has to be fixed by a runtime query method
1431  if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1432    // JSR-166: change call from from ThreadGroup.uncaughtException to
1433    // java.lang.Thread.dispatchUncaughtException
1434    if (uncaught_exception.not_null()) {
1435      Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1436      Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
1437        (address)uncaught_exception(), (address)threadObj(), (address)group());
1438      {
1439        EXCEPTION_MARK;
1440        // Check if the method Thread.dispatchUncaughtException() exists. If so
1441        // call it.  Otherwise we have an older library without the JSR-166 changes,
1442        // so call ThreadGroup.uncaughtException()
1443        KlassHandle recvrKlass(THREAD, threadObj->klass());
1444        CallInfo callinfo;
1445        KlassHandle thread_klass(THREAD, SystemDictionary::thread_klass());
1446        LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1447                                           vmSymbolHandles::dispatchUncaughtException_name(),
1448                                           vmSymbolHandles::throwable_void_signature(),
1449                                           KlassHandle(), false, false, THREAD);
1450        CLEAR_PENDING_EXCEPTION;
1451        methodHandle method = callinfo.selected_method();
1452        if (method.not_null()) {
1453          JavaValue result(T_VOID);
1454          JavaCalls::call_virtual(&result,
1455                                  threadObj, thread_klass,
1456                                  vmSymbolHandles::dispatchUncaughtException_name(),
1457                                  vmSymbolHandles::throwable_void_signature(),
1458                                  uncaught_exception,
1459                                  THREAD);
1460        } else {
1461          KlassHandle thread_group(THREAD, SystemDictionary::threadGroup_klass());
1462          JavaValue result(T_VOID);
1463          JavaCalls::call_virtual(&result,
1464                                  group, thread_group,
1465                                  vmSymbolHandles::uncaughtException_name(),
1466                                  vmSymbolHandles::thread_throwable_void_signature(),
1467                                  threadObj,           // Arg 1
1468                                  uncaught_exception,  // Arg 2
1469                                  THREAD);
1470        }
1471        CLEAR_PENDING_EXCEPTION;
1472      }
1473    }
1474
1475    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1476    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1477    // is deprecated anyhow.
1478    { int count = 3;
1479      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1480        EXCEPTION_MARK;
1481        JavaValue result(T_VOID);
1482        KlassHandle thread_klass(THREAD, SystemDictionary::thread_klass());
1483        JavaCalls::call_virtual(&result,
1484                              threadObj, thread_klass,
1485                              vmSymbolHandles::exit_method_name(),
1486                              vmSymbolHandles::void_method_signature(),
1487                              THREAD);
1488        CLEAR_PENDING_EXCEPTION;
1489      }
1490    }
1491
1492    // notify JVMTI
1493    if (JvmtiExport::should_post_thread_life()) {
1494      JvmtiExport::post_thread_end(this);
1495    }
1496
1497    // We have notified the agents that we are exiting, before we go on,
1498    // we must check for a pending external suspend request and honor it
1499    // in order to not surprise the thread that made the suspend request.
1500    while (true) {
1501      {
1502        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1503        if (!is_external_suspend()) {
1504          set_terminated(_thread_exiting);
1505          ThreadService::current_thread_exiting(this);
1506          break;
1507        }
1508        // Implied else:
1509        // Things get a little tricky here. We have a pending external
1510        // suspend request, but we are holding the SR_lock so we
1511        // can't just self-suspend. So we temporarily drop the lock
1512        // and then self-suspend.
1513      }
1514
1515      ThreadBlockInVM tbivm(this);
1516      java_suspend_self();
1517
1518      // We're done with this suspend request, but we have to loop around
1519      // and check again. Eventually we will get SR_lock without a pending
1520      // external suspend request and will be able to mark ourselves as
1521      // exiting.
1522    }
1523    // no more external suspends are allowed at this point
1524  } else {
1525    // before_exit() has already posted JVMTI THREAD_END events
1526  }
1527
1528  // Notify waiters on thread object. This has to be done after exit() is called
1529  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1530  // group should have the destroyed bit set before waiters are notified).
1531  ensure_join(this);
1532  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1533
1534  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1535  // held by this thread must be released.  A detach operation must only
1536  // get here if there are no Java frames on the stack.  Therefore, any
1537  // owned monitors at this point MUST be JNI-acquired monitors which are
1538  // pre-inflated and in the monitor cache.
1539  //
1540  // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1541  if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1542    assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1543    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1544    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1545  }
1546
1547  // These things needs to be done while we are still a Java Thread. Make sure that thread
1548  // is in a consistent state, in case GC happens
1549  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1550
1551  if (active_handles() != NULL) {
1552    JNIHandleBlock* block = active_handles();
1553    set_active_handles(NULL);
1554    JNIHandleBlock::release_block(block);
1555  }
1556
1557  if (free_handle_block() != NULL) {
1558    JNIHandleBlock* block = free_handle_block();
1559    set_free_handle_block(NULL);
1560    JNIHandleBlock::release_block(block);
1561  }
1562
1563  // These have to be removed while this is still a valid thread.
1564  remove_stack_guard_pages();
1565
1566  if (UseTLAB) {
1567    tlab().make_parsable(true);  // retire TLAB
1568  }
1569
1570  if (jvmti_thread_state() != NULL) {
1571    JvmtiExport::cleanup_thread(this);
1572  }
1573
1574  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1575  Threads::remove(this);
1576}
1577
1578void JavaThread::cleanup_failed_attach_current_thread() {
1579
1580     if (get_thread_profiler() != NULL) {
1581       get_thread_profiler()->disengage();
1582       ResourceMark rm;
1583       get_thread_profiler()->print(get_thread_name());
1584     }
1585
1586     if (active_handles() != NULL) {
1587      JNIHandleBlock* block = active_handles();
1588      set_active_handles(NULL);
1589      JNIHandleBlock::release_block(block);
1590     }
1591
1592     if (free_handle_block() != NULL) {
1593       JNIHandleBlock* block = free_handle_block();
1594       set_free_handle_block(NULL);
1595       JNIHandleBlock::release_block(block);
1596     }
1597
1598     if (UseTLAB) {
1599       tlab().make_parsable(true);  // retire TLAB, if any
1600     }
1601
1602     Threads::remove(this);
1603     delete this;
1604}
1605
1606
1607JavaThread* JavaThread::active() {
1608  Thread* thread = ThreadLocalStorage::thread();
1609  assert(thread != NULL, "just checking");
1610  if (thread->is_Java_thread()) {
1611    return (JavaThread*) thread;
1612  } else {
1613    assert(thread->is_VM_thread(), "this must be a vm thread");
1614    VM_Operation* op = ((VMThread*) thread)->vm_operation();
1615    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1616    assert(ret->is_Java_thread(), "must be a Java thread");
1617    return ret;
1618  }
1619}
1620
1621bool JavaThread::is_lock_owned(address adr) const {
1622  if (lock_is_in_stack(adr)) return true;
1623
1624  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1625    if (chunk->contains(adr)) return true;
1626  }
1627
1628  return false;
1629}
1630
1631
1632void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1633  chunk->set_next(monitor_chunks());
1634  set_monitor_chunks(chunk);
1635}
1636
1637void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1638  guarantee(monitor_chunks() != NULL, "must be non empty");
1639  if (monitor_chunks() == chunk) {
1640    set_monitor_chunks(chunk->next());
1641  } else {
1642    MonitorChunk* prev = monitor_chunks();
1643    while (prev->next() != chunk) prev = prev->next();
1644    prev->set_next(chunk->next());
1645  }
1646}
1647
1648// JVM support.
1649
1650// Note: this function shouldn't block if it's called in
1651// _thread_in_native_trans state (such as from
1652// check_special_condition_for_native_trans()).
1653void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1654
1655  if (has_last_Java_frame() && has_async_condition()) {
1656    // If we are at a polling page safepoint (not a poll return)
1657    // then we must defer async exception because live registers
1658    // will be clobbered by the exception path. Poll return is
1659    // ok because the call we a returning from already collides
1660    // with exception handling registers and so there is no issue.
1661    // (The exception handling path kills call result registers but
1662    //  this is ok since the exception kills the result anyway).
1663
1664    if (is_at_poll_safepoint()) {
1665      // if the code we are returning to has deoptimized we must defer
1666      // the exception otherwise live registers get clobbered on the
1667      // exception path before deoptimization is able to retrieve them.
1668      //
1669      RegisterMap map(this, false);
1670      frame caller_fr = last_frame().sender(&map);
1671      assert(caller_fr.is_compiled_frame(), "what?");
1672      if (caller_fr.is_deoptimized_frame()) {
1673        if (TraceExceptions) {
1674          ResourceMark rm;
1675          tty->print_cr("deferred async exception at compiled safepoint");
1676        }
1677        return;
1678      }
1679    }
1680  }
1681
1682  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
1683  if (condition == _no_async_condition) {
1684    // Conditions have changed since has_special_runtime_exit_condition()
1685    // was called:
1686    // - if we were here only because of an external suspend request,
1687    //   then that was taken care of above (or cancelled) so we are done
1688    // - if we were here because of another async request, then it has
1689    //   been cleared between the has_special_runtime_exit_condition()
1690    //   and now so again we are done
1691    return;
1692  }
1693
1694  // Check for pending async. exception
1695  if (_pending_async_exception != NULL) {
1696    // Only overwrite an already pending exception, if it is not a threadDeath.
1697    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::threaddeath_klass())) {
1698
1699      // We cannot call Exceptions::_throw(...) here because we cannot block
1700      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
1701
1702      if (TraceExceptions) {
1703        ResourceMark rm;
1704        tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
1705        if (has_last_Java_frame() ) {
1706          frame f = last_frame();
1707          tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
1708        }
1709        tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1710      }
1711      _pending_async_exception = NULL;
1712      clear_has_async_exception();
1713    }
1714  }
1715
1716  if (check_unsafe_error &&
1717      condition == _async_unsafe_access_error && !has_pending_exception()) {
1718    condition = _no_async_condition;  // done
1719    switch (thread_state()) {
1720    case _thread_in_vm:
1721      {
1722        JavaThread* THREAD = this;
1723        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1724      }
1725    case _thread_in_native:
1726      {
1727        ThreadInVMfromNative tiv(this);
1728        JavaThread* THREAD = this;
1729        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1730      }
1731    case _thread_in_Java:
1732      {
1733        ThreadInVMfromJava tiv(this);
1734        JavaThread* THREAD = this;
1735        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
1736      }
1737    default:
1738      ShouldNotReachHere();
1739    }
1740  }
1741
1742  assert(condition == _no_async_condition || has_pending_exception() ||
1743         (!check_unsafe_error && condition == _async_unsafe_access_error),
1744         "must have handled the async condition, if no exception");
1745}
1746
1747void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
1748  //
1749  // Check for pending external suspend. Internal suspend requests do
1750  // not use handle_special_runtime_exit_condition().
1751  // If JNIEnv proxies are allowed, don't self-suspend if the target
1752  // thread is not the current thread. In older versions of jdbx, jdbx
1753  // threads could call into the VM with another thread's JNIEnv so we
1754  // can be here operating on behalf of a suspended thread (4432884).
1755  bool do_self_suspend = is_external_suspend_with_lock();
1756  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
1757    //
1758    // Because thread is external suspended the safepoint code will count
1759    // thread as at a safepoint. This can be odd because we can be here
1760    // as _thread_in_Java which would normally transition to _thread_blocked
1761    // at a safepoint. We would like to mark the thread as _thread_blocked
1762    // before calling java_suspend_self like all other callers of it but
1763    // we must then observe proper safepoint protocol. (We can't leave
1764    // _thread_blocked with a safepoint in progress). However we can be
1765    // here as _thread_in_native_trans so we can't use a normal transition
1766    // constructor/destructor pair because they assert on that type of
1767    // transition. We could do something like:
1768    //
1769    // JavaThreadState state = thread_state();
1770    // set_thread_state(_thread_in_vm);
1771    // {
1772    //   ThreadBlockInVM tbivm(this);
1773    //   java_suspend_self()
1774    // }
1775    // set_thread_state(_thread_in_vm_trans);
1776    // if (safepoint) block;
1777    // set_thread_state(state);
1778    //
1779    // but that is pretty messy. Instead we just go with the way the
1780    // code has worked before and note that this is the only path to
1781    // java_suspend_self that doesn't put the thread in _thread_blocked
1782    // mode.
1783
1784    frame_anchor()->make_walkable(this);
1785    java_suspend_self();
1786
1787    // We might be here for reasons in addition to the self-suspend request
1788    // so check for other async requests.
1789  }
1790
1791  if (check_asyncs) {
1792    check_and_handle_async_exceptions();
1793  }
1794}
1795
1796void JavaThread::send_thread_stop(oop java_throwable)  {
1797  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
1798  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
1799  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
1800
1801  // Do not throw asynchronous exceptions against the compiler thread
1802  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
1803  if (is_Compiler_thread()) return;
1804
1805  // This is a change from JDK 1.1, but JDK 1.2 will also do it:
1806  if (java_throwable->is_a(SystemDictionary::threaddeath_klass())) {
1807    java_lang_Thread::set_stillborn(threadObj());
1808  }
1809
1810  {
1811    // Actually throw the Throwable against the target Thread - however
1812    // only if there is no thread death exception installed already.
1813    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::threaddeath_klass())) {
1814      // If the topmost frame is a runtime stub, then we are calling into
1815      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
1816      // must deoptimize the caller before continuing, as the compiled  exception handler table
1817      // may not be valid
1818      if (has_last_Java_frame()) {
1819        frame f = last_frame();
1820        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
1821          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
1822          RegisterMap reg_map(this, UseBiasedLocking);
1823          frame compiled_frame = f.sender(&reg_map);
1824          if (compiled_frame.can_be_deoptimized()) {
1825            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
1826          }
1827        }
1828      }
1829
1830      // Set async. pending exception in thread.
1831      set_pending_async_exception(java_throwable);
1832
1833      if (TraceExceptions) {
1834       ResourceMark rm;
1835       tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1836      }
1837      // for AbortVMOnException flag
1838      NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
1839    }
1840  }
1841
1842
1843  // Interrupt thread so it will wake up from a potential wait()
1844  Thread::interrupt(this);
1845}
1846
1847// External suspension mechanism.
1848//
1849// Tell the VM to suspend a thread when ever it knows that it does not hold on
1850// to any VM_locks and it is at a transition
1851// Self-suspension will happen on the transition out of the vm.
1852// Catch "this" coming in from JNIEnv pointers when the thread has been freed
1853//
1854// Guarantees on return:
1855//   + Target thread will not execute any new bytecode (that's why we need to
1856//     force a safepoint)
1857//   + Target thread will not enter any new monitors
1858//
1859void JavaThread::java_suspend() {
1860  { MutexLocker mu(Threads_lock);
1861    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
1862       return;
1863    }
1864  }
1865
1866  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1867    if (!is_external_suspend()) {
1868      // a racing resume has cancelled us; bail out now
1869      return;
1870    }
1871
1872    // suspend is done
1873    uint32_t debug_bits = 0;
1874    // Warning: is_ext_suspend_completed() may temporarily drop the
1875    // SR_lock to allow the thread to reach a stable thread state if
1876    // it is currently in a transient thread state.
1877    if (is_ext_suspend_completed(false /* !called_by_wait */,
1878                                 SuspendRetryDelay, &debug_bits) ) {
1879      return;
1880    }
1881  }
1882
1883  VM_ForceSafepoint vm_suspend;
1884  VMThread::execute(&vm_suspend);
1885}
1886
1887// Part II of external suspension.
1888// A JavaThread self suspends when it detects a pending external suspend
1889// request. This is usually on transitions. It is also done in places
1890// where continuing to the next transition would surprise the caller,
1891// e.g., monitor entry.
1892//
1893// Returns the number of times that the thread self-suspended.
1894//
1895// Note: DO NOT call java_suspend_self() when you just want to block current
1896//       thread. java_suspend_self() is the second stage of cooperative
1897//       suspension for external suspend requests and should only be used
1898//       to complete an external suspend request.
1899//
1900int JavaThread::java_suspend_self() {
1901  int ret = 0;
1902
1903  // we are in the process of exiting so don't suspend
1904  if (is_exiting()) {
1905     clear_external_suspend();
1906     return ret;
1907  }
1908
1909  assert(_anchor.walkable() ||
1910    (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
1911    "must have walkable stack");
1912
1913  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1914
1915  assert(!this->is_any_suspended(),
1916    "a thread trying to self-suspend should not already be suspended");
1917
1918  if (this->is_suspend_equivalent()) {
1919    // If we are self-suspending as a result of the lifting of a
1920    // suspend equivalent condition, then the suspend_equivalent
1921    // flag is not cleared until we set the ext_suspended flag so
1922    // that wait_for_ext_suspend_completion() returns consistent
1923    // results.
1924    this->clear_suspend_equivalent();
1925  }
1926
1927  // A racing resume may have cancelled us before we grabbed SR_lock
1928  // above. Or another external suspend request could be waiting for us
1929  // by the time we return from SR_lock()->wait(). The thread
1930  // that requested the suspension may already be trying to walk our
1931  // stack and if we return now, we can change the stack out from under
1932  // it. This would be a "bad thing (TM)" and cause the stack walker
1933  // to crash. We stay self-suspended until there are no more pending
1934  // external suspend requests.
1935  while (is_external_suspend()) {
1936    ret++;
1937    this->set_ext_suspended();
1938
1939    // _ext_suspended flag is cleared by java_resume()
1940    while (is_ext_suspended()) {
1941      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
1942    }
1943  }
1944
1945  return ret;
1946}
1947
1948#ifdef ASSERT
1949// verify the JavaThread has not yet been published in the Threads::list, and
1950// hence doesn't need protection from concurrent access at this stage
1951void JavaThread::verify_not_published() {
1952  if (!Threads_lock->owned_by_self()) {
1953   MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
1954   assert( !Threads::includes(this),
1955           "java thread shouldn't have been published yet!");
1956  }
1957  else {
1958   assert( !Threads::includes(this),
1959           "java thread shouldn't have been published yet!");
1960  }
1961}
1962#endif
1963
1964// Slow path when the native==>VM/Java barriers detect a safepoint is in
1965// progress or when _suspend_flags is non-zero.
1966// Current thread needs to self-suspend if there is a suspend request and/or
1967// block if a safepoint is in progress.
1968// Async exception ISN'T checked.
1969// Note only the ThreadInVMfromNative transition can call this function
1970// directly and when thread state is _thread_in_native_trans
1971void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
1972  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
1973
1974  JavaThread *curJT = JavaThread::current();
1975  bool do_self_suspend = thread->is_external_suspend();
1976
1977  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
1978
1979  // If JNIEnv proxies are allowed, don't self-suspend if the target
1980  // thread is not the current thread. In older versions of jdbx, jdbx
1981  // threads could call into the VM with another thread's JNIEnv so we
1982  // can be here operating on behalf of a suspended thread (4432884).
1983  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
1984    JavaThreadState state = thread->thread_state();
1985
1986    // We mark this thread_blocked state as a suspend-equivalent so
1987    // that a caller to is_ext_suspend_completed() won't be confused.
1988    // The suspend-equivalent state is cleared by java_suspend_self().
1989    thread->set_suspend_equivalent();
1990
1991    // If the safepoint code sees the _thread_in_native_trans state, it will
1992    // wait until the thread changes to other thread state. There is no
1993    // guarantee on how soon we can obtain the SR_lock and complete the
1994    // self-suspend request. It would be a bad idea to let safepoint wait for
1995    // too long. Temporarily change the state to _thread_blocked to
1996    // let the VM thread know that this thread is ready for GC. The problem
1997    // of changing thread state is that safepoint could happen just after
1998    // java_suspend_self() returns after being resumed, and VM thread will
1999    // see the _thread_blocked state. We must check for safepoint
2000    // after restoring the state and make sure we won't leave while a safepoint
2001    // is in progress.
2002    thread->set_thread_state(_thread_blocked);
2003    thread->java_suspend_self();
2004    thread->set_thread_state(state);
2005    // Make sure new state is seen by VM thread
2006    if (os::is_MP()) {
2007      if (UseMembar) {
2008        // Force a fence between the write above and read below
2009        OrderAccess::fence();
2010      } else {
2011        // Must use this rather than serialization page in particular on Windows
2012        InterfaceSupport::serialize_memory(thread);
2013      }
2014    }
2015  }
2016
2017  if (SafepointSynchronize::do_call_back()) {
2018    // If we are safepointing, then block the caller which may not be
2019    // the same as the target thread (see above).
2020    SafepointSynchronize::block(curJT);
2021  }
2022
2023  if (thread->is_deopt_suspend()) {
2024    thread->clear_deopt_suspend();
2025    RegisterMap map(thread, false);
2026    frame f = thread->last_frame();
2027    while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2028      f = f.sender(&map);
2029    }
2030    if (f.id() == thread->must_deopt_id()) {
2031      thread->clear_must_deopt_id();
2032      // Since we know we're safe to deopt the current state is a safe state
2033      f.deoptimize(thread, true);
2034    } else {
2035      fatal("missed deoptimization!");
2036    }
2037  }
2038}
2039
2040// Slow path when the native==>VM/Java barriers detect a safepoint is in
2041// progress or when _suspend_flags is non-zero.
2042// Current thread needs to self-suspend if there is a suspend request and/or
2043// block if a safepoint is in progress.
2044// Also check for pending async exception (not including unsafe access error).
2045// Note only the native==>VM/Java barriers can call this function and when
2046// thread state is _thread_in_native_trans.
2047void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2048  check_safepoint_and_suspend_for_native_trans(thread);
2049
2050  if (thread->has_async_exception()) {
2051    // We are in _thread_in_native_trans state, don't handle unsafe
2052    // access error since that may block.
2053    thread->check_and_handle_async_exceptions(false);
2054  }
2055}
2056
2057// We need to guarantee the Threads_lock here, since resumes are not
2058// allowed during safepoint synchronization
2059// Can only resume from an external suspension
2060void JavaThread::java_resume() {
2061  assert_locked_or_safepoint(Threads_lock);
2062
2063  // Sanity check: thread is gone, has started exiting or the thread
2064  // was not externally suspended.
2065  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2066    return;
2067  }
2068
2069  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2070
2071  clear_external_suspend();
2072
2073  if (is_ext_suspended()) {
2074    clear_ext_suspended();
2075    SR_lock()->notify_all();
2076  }
2077}
2078
2079void JavaThread::create_stack_guard_pages() {
2080  if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2081  address low_addr = stack_base() - stack_size();
2082  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2083
2084  int allocate = os::allocate_stack_guard_pages();
2085  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2086
2087  if (allocate && !os::commit_memory((char *) low_addr, len)) {
2088    warning("Attempt to allocate stack guard pages failed.");
2089    return;
2090  }
2091
2092  if (os::guard_memory((char *) low_addr, len)) {
2093    _stack_guard_state = stack_guard_enabled;
2094  } else {
2095    warning("Attempt to protect stack guard pages failed.");
2096    if (os::uncommit_memory((char *) low_addr, len)) {
2097      warning("Attempt to deallocate stack guard pages failed.");
2098    }
2099  }
2100}
2101
2102void JavaThread::remove_stack_guard_pages() {
2103  if (_stack_guard_state == stack_guard_unused) return;
2104  address low_addr = stack_base() - stack_size();
2105  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2106
2107  if (os::allocate_stack_guard_pages()) {
2108    if (os::uncommit_memory((char *) low_addr, len)) {
2109      _stack_guard_state = stack_guard_unused;
2110    } else {
2111      warning("Attempt to deallocate stack guard pages failed.");
2112    }
2113  } else {
2114    if (_stack_guard_state == stack_guard_unused) return;
2115    if (os::unguard_memory((char *) low_addr, len)) {
2116      _stack_guard_state = stack_guard_unused;
2117    } else {
2118        warning("Attempt to unprotect stack guard pages failed.");
2119    }
2120  }
2121}
2122
2123void JavaThread::enable_stack_yellow_zone() {
2124  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2125  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2126
2127  // The base notation is from the stacks point of view, growing downward.
2128  // We need to adjust it to work correctly with guard_memory()
2129  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2130
2131  guarantee(base < stack_base(),"Error calculating stack yellow zone");
2132  guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2133
2134  if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2135    _stack_guard_state = stack_guard_enabled;
2136  } else {
2137    warning("Attempt to guard stack yellow zone failed.");
2138  }
2139  enable_register_stack_guard();
2140}
2141
2142void JavaThread::disable_stack_yellow_zone() {
2143  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2144  assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2145
2146  // Simply return if called for a thread that does not use guard pages.
2147  if (_stack_guard_state == stack_guard_unused) return;
2148
2149  // The base notation is from the stacks point of view, growing downward.
2150  // We need to adjust it to work correctly with guard_memory()
2151  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2152
2153  if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2154    _stack_guard_state = stack_guard_yellow_disabled;
2155  } else {
2156    warning("Attempt to unguard stack yellow zone failed.");
2157  }
2158  disable_register_stack_guard();
2159}
2160
2161void JavaThread::enable_stack_red_zone() {
2162  // The base notation is from the stacks point of view, growing downward.
2163  // We need to adjust it to work correctly with guard_memory()
2164  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2165  address base = stack_red_zone_base() - stack_red_zone_size();
2166
2167  guarantee(base < stack_base(),"Error calculating stack red zone");
2168  guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2169
2170  if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2171    warning("Attempt to guard stack red zone failed.");
2172  }
2173}
2174
2175void JavaThread::disable_stack_red_zone() {
2176  // The base notation is from the stacks point of view, growing downward.
2177  // We need to adjust it to work correctly with guard_memory()
2178  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2179  address base = stack_red_zone_base() - stack_red_zone_size();
2180  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2181    warning("Attempt to unguard stack red zone failed.");
2182  }
2183}
2184
2185void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2186  // ignore is there is no stack
2187  if (!has_last_Java_frame()) return;
2188  // traverse the stack frames. Starts from top frame.
2189  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2190    frame* fr = fst.current();
2191    f(fr, fst.register_map());
2192  }
2193}
2194
2195
2196#ifndef PRODUCT
2197// Deoptimization
2198// Function for testing deoptimization
2199void JavaThread::deoptimize() {
2200  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2201  StackFrameStream fst(this, UseBiasedLocking);
2202  bool deopt = false;           // Dump stack only if a deopt actually happens.
2203  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2204  // Iterate over all frames in the thread and deoptimize
2205  for(; !fst.is_done(); fst.next()) {
2206    if(fst.current()->can_be_deoptimized()) {
2207
2208      if (only_at) {
2209        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2210        // consists of comma or carriage return separated numbers so
2211        // search for the current bci in that string.
2212        address pc = fst.current()->pc();
2213        nmethod* nm =  (nmethod*) fst.current()->cb();
2214        ScopeDesc* sd = nm->scope_desc_at( pc);
2215        char buffer[8];
2216        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2217        size_t len = strlen(buffer);
2218        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2219        while (found != NULL) {
2220          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2221              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2222            // Check that the bci found is bracketed by terminators.
2223            break;
2224          }
2225          found = strstr(found + 1, buffer);
2226        }
2227        if (!found) {
2228          continue;
2229        }
2230      }
2231
2232      if (DebugDeoptimization && !deopt) {
2233        deopt = true; // One-time only print before deopt
2234        tty->print_cr("[BEFORE Deoptimization]");
2235        trace_frames();
2236        trace_stack();
2237      }
2238      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2239    }
2240  }
2241
2242  if (DebugDeoptimization && deopt) {
2243    tty->print_cr("[AFTER Deoptimization]");
2244    trace_frames();
2245  }
2246}
2247
2248
2249// Make zombies
2250void JavaThread::make_zombies() {
2251  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2252    if (fst.current()->can_be_deoptimized()) {
2253      // it is a Java nmethod
2254      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2255      nm->make_not_entrant();
2256    }
2257  }
2258}
2259#endif // PRODUCT
2260
2261
2262void JavaThread::deoptimized_wrt_marked_nmethods() {
2263  if (!has_last_Java_frame()) return;
2264  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2265  StackFrameStream fst(this, UseBiasedLocking);
2266  for(; !fst.is_done(); fst.next()) {
2267    if (fst.current()->should_be_deoptimized()) {
2268      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2269    }
2270  }
2271}
2272
2273
2274// GC support
2275static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2276
2277void JavaThread::gc_epilogue() {
2278  frames_do(frame_gc_epilogue);
2279}
2280
2281
2282static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2283
2284void JavaThread::gc_prologue() {
2285  frames_do(frame_gc_prologue);
2286}
2287
2288
2289void JavaThread::oops_do(OopClosure* f) {
2290  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2291  // since there may be more than one thread using each ThreadProfiler.
2292
2293  // Traverse the GCHandles
2294  Thread::oops_do(f);
2295
2296  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2297          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2298
2299  if (has_last_Java_frame()) {
2300
2301    // Traverse the privileged stack
2302    if (_privileged_stack_top != NULL) {
2303      _privileged_stack_top->oops_do(f);
2304    }
2305
2306    // traverse the registered growable array
2307    if (_array_for_gc != NULL) {
2308      for (int index = 0; index < _array_for_gc->length(); index++) {
2309        f->do_oop(_array_for_gc->adr_at(index));
2310      }
2311    }
2312
2313    // Traverse the monitor chunks
2314    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2315      chunk->oops_do(f);
2316    }
2317
2318    // Traverse the execution stack
2319    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2320      fst.current()->oops_do(f, fst.register_map());
2321    }
2322  }
2323
2324  // callee_target is never live across a gc point so NULL it here should
2325  // it still contain a methdOop.
2326
2327  set_callee_target(NULL);
2328
2329  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2330  // If we have deferred set_locals there might be oops waiting to be
2331  // written
2332  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2333  if (list != NULL) {
2334    for (int i = 0; i < list->length(); i++) {
2335      list->at(i)->oops_do(f);
2336    }
2337  }
2338
2339  // Traverse instance variables at the end since the GC may be moving things
2340  // around using this function
2341  f->do_oop((oop*) &_threadObj);
2342  f->do_oop((oop*) &_vm_result);
2343  f->do_oop((oop*) &_vm_result_2);
2344  f->do_oop((oop*) &_exception_oop);
2345  f->do_oop((oop*) &_pending_async_exception);
2346
2347  if (jvmti_thread_state() != NULL) {
2348    jvmti_thread_state()->oops_do(f);
2349  }
2350}
2351
2352void JavaThread::nmethods_do() {
2353  // Traverse the GCHandles
2354  Thread::nmethods_do();
2355
2356  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2357          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2358
2359  if (has_last_Java_frame()) {
2360    // Traverse the execution stack
2361    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2362      fst.current()->nmethods_do();
2363    }
2364  }
2365}
2366
2367// Printing
2368const char* _get_thread_state_name(JavaThreadState _thread_state) {
2369  switch (_thread_state) {
2370  case _thread_uninitialized:     return "_thread_uninitialized";
2371  case _thread_new:               return "_thread_new";
2372  case _thread_new_trans:         return "_thread_new_trans";
2373  case _thread_in_native:         return "_thread_in_native";
2374  case _thread_in_native_trans:   return "_thread_in_native_trans";
2375  case _thread_in_vm:             return "_thread_in_vm";
2376  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2377  case _thread_in_Java:           return "_thread_in_Java";
2378  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2379  case _thread_blocked:           return "_thread_blocked";
2380  case _thread_blocked_trans:     return "_thread_blocked_trans";
2381  default:                        return "unknown thread state";
2382  }
2383}
2384
2385#ifndef PRODUCT
2386void JavaThread::print_thread_state_on(outputStream *st) const {
2387  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2388};
2389void JavaThread::print_thread_state() const {
2390  print_thread_state_on(tty);
2391};
2392#endif // PRODUCT
2393
2394// Called by Threads::print() for VM_PrintThreads operation
2395void JavaThread::print_on(outputStream *st) const {
2396  st->print("\"%s\" ", get_thread_name());
2397  oop thread_oop = threadObj();
2398  if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2399  Thread::print_on(st);
2400  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2401  st->print_cr("[" INTPTR_FORMAT ".." INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12), highest_lock());
2402  if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2403    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2404  }
2405#ifndef PRODUCT
2406  print_thread_state_on(st);
2407  _safepoint_state->print_on(st);
2408#endif // PRODUCT
2409}
2410
2411// Called by fatal error handler. The difference between this and
2412// JavaThread::print() is that we can't grab lock or allocate memory.
2413void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2414  st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2415  oop thread_obj = threadObj();
2416  if (thread_obj != NULL) {
2417     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2418  }
2419  st->print(" [");
2420  st->print("%s", _get_thread_state_name(_thread_state));
2421  if (osthread()) {
2422    st->print(", id=%d", osthread()->thread_id());
2423  }
2424  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2425            _stack_base - _stack_size, _stack_base);
2426  st->print("]");
2427  return;
2428}
2429
2430// Verification
2431
2432static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2433
2434void JavaThread::verify() {
2435  // Verify oops in the thread.
2436  oops_do(&VerifyOopClosure::verify_oop);
2437
2438  // Verify the stack frames.
2439  frames_do(frame_verify);
2440}
2441
2442// CR 6300358 (sub-CR 2137150)
2443// Most callers of this method assume that it can't return NULL but a
2444// thread may not have a name whilst it is in the process of attaching to
2445// the VM - see CR 6412693, and there are places where a JavaThread can be
2446// seen prior to having it's threadObj set (eg JNI attaching threads and
2447// if vm exit occurs during initialization). These cases can all be accounted
2448// for such that this method never returns NULL.
2449const char* JavaThread::get_thread_name() const {
2450#ifdef ASSERT
2451  // early safepoints can hit while current thread does not yet have TLS
2452  if (!SafepointSynchronize::is_at_safepoint()) {
2453    Thread *cur = Thread::current();
2454    if (!(cur->is_Java_thread() && cur == this)) {
2455      // Current JavaThreads are allowed to get their own name without
2456      // the Threads_lock.
2457      assert_locked_or_safepoint(Threads_lock);
2458    }
2459  }
2460#endif // ASSERT
2461    return get_thread_name_string();
2462}
2463
2464// Returns a non-NULL representation of this thread's name, or a suitable
2465// descriptive string if there is no set name
2466const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2467  const char* name_str;
2468  oop thread_obj = threadObj();
2469  if (thread_obj != NULL) {
2470    typeArrayOop name = java_lang_Thread::name(thread_obj);
2471    if (name != NULL) {
2472      if (buf == NULL) {
2473        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2474      }
2475      else {
2476        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2477      }
2478    }
2479    else if (is_attaching()) { // workaround for 6412693 - see 6404306
2480      name_str = "<no-name - thread is attaching>";
2481    }
2482    else {
2483      name_str = Thread::name();
2484    }
2485  }
2486  else {
2487    name_str = Thread::name();
2488  }
2489  assert(name_str != NULL, "unexpected NULL thread name");
2490  return name_str;
2491}
2492
2493
2494const char* JavaThread::get_threadgroup_name() const {
2495  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2496  oop thread_obj = threadObj();
2497  if (thread_obj != NULL) {
2498    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2499    if (thread_group != NULL) {
2500      typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2501      // ThreadGroup.name can be null
2502      if (name != NULL) {
2503        const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2504        return str;
2505      }
2506    }
2507  }
2508  return NULL;
2509}
2510
2511const char* JavaThread::get_parent_name() const {
2512  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2513  oop thread_obj = threadObj();
2514  if (thread_obj != NULL) {
2515    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2516    if (thread_group != NULL) {
2517      oop parent = java_lang_ThreadGroup::parent(thread_group);
2518      if (parent != NULL) {
2519        typeArrayOop name = java_lang_ThreadGroup::name(parent);
2520        // ThreadGroup.name can be null
2521        if (name != NULL) {
2522          const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2523          return str;
2524        }
2525      }
2526    }
2527  }
2528  return NULL;
2529}
2530
2531ThreadPriority JavaThread::java_priority() const {
2532  oop thr_oop = threadObj();
2533  if (thr_oop == NULL) return NormPriority; // Bootstrapping
2534  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2535  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2536  return priority;
2537}
2538
2539void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2540
2541  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2542  // Link Java Thread object <-> C++ Thread
2543
2544  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2545  // and put it into a new Handle.  The Handle "thread_oop" can then
2546  // be used to pass the C++ thread object to other methods.
2547
2548  // Set the Java level thread object (jthread) field of the
2549  // new thread (a JavaThread *) to C++ thread object using the
2550  // "thread_oop" handle.
2551
2552  // Set the thread field (a JavaThread *) of the
2553  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2554
2555  Handle thread_oop(Thread::current(),
2556                    JNIHandles::resolve_non_null(jni_thread));
2557  assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
2558    "must be initialized");
2559  set_threadObj(thread_oop());
2560  java_lang_Thread::set_thread(thread_oop(), this);
2561
2562  if (prio == NoPriority) {
2563    prio = java_lang_Thread::priority(thread_oop());
2564    assert(prio != NoPriority, "A valid priority should be present");
2565  }
2566
2567  // Push the Java priority down to the native thread; needs Threads_lock
2568  Thread::set_priority(this, prio);
2569
2570  // Add the new thread to the Threads list and set it in motion.
2571  // We must have threads lock in order to call Threads::add.
2572  // It is crucial that we do not block before the thread is
2573  // added to the Threads list for if a GC happens, then the java_thread oop
2574  // will not be visited by GC.
2575  Threads::add(this);
2576}
2577
2578oop JavaThread::current_park_blocker() {
2579  // Support for JSR-166 locks
2580  oop thread_oop = threadObj();
2581  if (thread_oop != NULL && JDK_Version::supports_thread_park_blocker()) {
2582    return java_lang_Thread::park_blocker(thread_oop);
2583  }
2584  return NULL;
2585}
2586
2587
2588void JavaThread::print_stack_on(outputStream* st) {
2589  if (!has_last_Java_frame()) return;
2590  ResourceMark rm;
2591  HandleMark   hm;
2592
2593  RegisterMap reg_map(this);
2594  vframe* start_vf = last_java_vframe(&reg_map);
2595  int count = 0;
2596  for (vframe* f = start_vf; f; f = f->sender() ) {
2597    if (f->is_java_frame()) {
2598      javaVFrame* jvf = javaVFrame::cast(f);
2599      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2600
2601      // Print out lock information
2602      if (JavaMonitorsInStackTrace) {
2603        jvf->print_lock_info_on(st, count);
2604      }
2605    } else {
2606      // Ignore non-Java frames
2607    }
2608
2609    // Bail-out case for too deep stacks
2610    count++;
2611    if (MaxJavaStackTraceDepth == count) return;
2612  }
2613}
2614
2615
2616// JVMTI PopFrame support
2617void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2618  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2619  if (in_bytes(size_in_bytes) != 0) {
2620    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
2621    _popframe_preserved_args_size = in_bytes(size_in_bytes);
2622    Copy::conjoint_bytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2623  }
2624}
2625
2626void* JavaThread::popframe_preserved_args() {
2627  return _popframe_preserved_args;
2628}
2629
2630ByteSize JavaThread::popframe_preserved_args_size() {
2631  return in_ByteSize(_popframe_preserved_args_size);
2632}
2633
2634WordSize JavaThread::popframe_preserved_args_size_in_words() {
2635  int sz = in_bytes(popframe_preserved_args_size());
2636  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
2637  return in_WordSize(sz / wordSize);
2638}
2639
2640void JavaThread::popframe_free_preserved_args() {
2641  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
2642  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
2643  _popframe_preserved_args = NULL;
2644  _popframe_preserved_args_size = 0;
2645}
2646
2647#ifndef PRODUCT
2648
2649void JavaThread::trace_frames() {
2650  tty->print_cr("[Describe stack]");
2651  int frame_no = 1;
2652  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2653    tty->print("  %d. ", frame_no++);
2654    fst.current()->print_value_on(tty,this);
2655    tty->cr();
2656  }
2657}
2658
2659
2660void JavaThread::trace_stack_from(vframe* start_vf) {
2661  ResourceMark rm;
2662  int vframe_no = 1;
2663  for (vframe* f = start_vf; f; f = f->sender() ) {
2664    if (f->is_java_frame()) {
2665      javaVFrame::cast(f)->print_activation(vframe_no++);
2666    } else {
2667      f->print();
2668    }
2669    if (vframe_no > StackPrintLimit) {
2670      tty->print_cr("...<more frames>...");
2671      return;
2672    }
2673  }
2674}
2675
2676
2677void JavaThread::trace_stack() {
2678  if (!has_last_Java_frame()) return;
2679  ResourceMark rm;
2680  HandleMark   hm;
2681  RegisterMap reg_map(this);
2682  trace_stack_from(last_java_vframe(&reg_map));
2683}
2684
2685
2686#endif // PRODUCT
2687
2688
2689javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
2690  assert(reg_map != NULL, "a map must be given");
2691  frame f = last_frame();
2692  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
2693    if (vf->is_java_frame()) return javaVFrame::cast(vf);
2694  }
2695  return NULL;
2696}
2697
2698
2699klassOop JavaThread::security_get_caller_class(int depth) {
2700  vframeStream vfst(this);
2701  vfst.security_get_caller_frame(depth);
2702  if (!vfst.at_end()) {
2703    return vfst.method()->method_holder();
2704  }
2705  return NULL;
2706}
2707
2708static void compiler_thread_entry(JavaThread* thread, TRAPS) {
2709  assert(thread->is_Compiler_thread(), "must be compiler thread");
2710  CompileBroker::compiler_thread_loop();
2711}
2712
2713// Create a CompilerThread
2714CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
2715: JavaThread(&compiler_thread_entry) {
2716  _env   = NULL;
2717  _log   = NULL;
2718  _task  = NULL;
2719  _queue = queue;
2720  _counters = counters;
2721
2722#ifndef PRODUCT
2723  _ideal_graph_printer = NULL;
2724#endif
2725}
2726
2727
2728// ======= Threads ========
2729
2730// The Threads class links together all active threads, and provides
2731// operations over all threads.  It is protected by its own Mutex
2732// lock, which is also used in other contexts to protect thread
2733// operations from having the thread being operated on from exiting
2734// and going away unexpectedly (e.g., safepoint synchronization)
2735
2736JavaThread* Threads::_thread_list = NULL;
2737int         Threads::_number_of_threads = 0;
2738int         Threads::_number_of_non_daemon_threads = 0;
2739int         Threads::_return_code = 0;
2740size_t      JavaThread::_stack_size_at_create = 0;
2741
2742// All JavaThreads
2743#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
2744
2745void os_stream();
2746
2747// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
2748void Threads::threads_do(ThreadClosure* tc) {
2749  assert_locked_or_safepoint(Threads_lock);
2750  // ALL_JAVA_THREADS iterates through all JavaThreads
2751  ALL_JAVA_THREADS(p) {
2752    tc->do_thread(p);
2753  }
2754  // Someday we could have a table or list of all non-JavaThreads.
2755  // For now, just manually iterate through them.
2756  tc->do_thread(VMThread::vm_thread());
2757  Universe::heap()->gc_threads_do(tc);
2758  tc->do_thread(WatcherThread::watcher_thread());
2759  // If CompilerThreads ever become non-JavaThreads, add them here
2760}
2761
2762jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
2763
2764  // Check version
2765  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
2766
2767  // Initialize the output stream module
2768  ostream_init();
2769
2770  // Process java launcher properties.
2771  Arguments::process_sun_java_launcher_properties(args);
2772
2773  // Initialize the os module before using TLS
2774  os::init();
2775
2776  // Initialize system properties.
2777  Arguments::init_system_properties();
2778
2779  // Parse arguments
2780  jint parse_result = Arguments::parse(args);
2781  if (parse_result != JNI_OK) return parse_result;
2782
2783  if (PauseAtStartup) {
2784    os::pause();
2785  }
2786
2787  HS_DTRACE_PROBE(hotspot, vm__init__begin);
2788
2789  // Record VM creation timing statistics
2790  TraceVmCreationTime create_vm_timer;
2791  create_vm_timer.start();
2792
2793  // Timing (must come after argument parsing)
2794  TraceTime timer("Create VM", TraceStartupTime);
2795
2796  // Initialize the os module after parsing the args
2797  jint os_init_2_result = os::init_2();
2798  if (os_init_2_result != JNI_OK) return os_init_2_result;
2799
2800  // Initialize output stream logging
2801  ostream_init_log();
2802
2803  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
2804  // Must be before create_vm_init_agents()
2805  if (Arguments::init_libraries_at_startup()) {
2806    convert_vm_init_libraries_to_agents();
2807  }
2808
2809  // Launch -agentlib/-agentpath and converted -Xrun agents
2810  if (Arguments::init_agents_at_startup()) {
2811    create_vm_init_agents();
2812  }
2813
2814  // Initialize Threads state
2815  _thread_list = NULL;
2816  _number_of_threads = 0;
2817  _number_of_non_daemon_threads = 0;
2818
2819  // Initialize TLS
2820  ThreadLocalStorage::init();
2821
2822  // Initialize global data structures and create system classes in heap
2823  vm_init_globals();
2824
2825  // Attach the main thread to this os thread
2826  JavaThread* main_thread = new JavaThread();
2827  main_thread->set_thread_state(_thread_in_vm);
2828  // must do this before set_active_handles and initialize_thread_local_storage
2829  // Note: on solaris initialize_thread_local_storage() will (indirectly)
2830  // change the stack size recorded here to one based on the java thread
2831  // stacksize. This adjusted size is what is used to figure the placement
2832  // of the guard pages.
2833  main_thread->record_stack_base_and_size();
2834  main_thread->initialize_thread_local_storage();
2835
2836  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
2837
2838  if (!main_thread->set_as_starting_thread()) {
2839    vm_shutdown_during_initialization(
2840      "Failed necessary internal allocation. Out of swap space");
2841    delete main_thread;
2842    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
2843    return JNI_ENOMEM;
2844  }
2845
2846  // Enable guard page *after* os::create_main_thread(), otherwise it would
2847  // crash Linux VM, see notes in os_linux.cpp.
2848  main_thread->create_stack_guard_pages();
2849
2850  // Initialize Java-Leve synchronization subsystem
2851  ObjectSynchronizer::Initialize() ;
2852
2853  // Initialize global modules
2854  jint status = init_globals();
2855  if (status != JNI_OK) {
2856    delete main_thread;
2857    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
2858    return status;
2859  }
2860
2861  HandleMark hm;
2862
2863  { MutexLocker mu(Threads_lock);
2864    Threads::add(main_thread);
2865  }
2866
2867  // Any JVMTI raw monitors entered in onload will transition into
2868  // real raw monitor. VM is setup enough here for raw monitor enter.
2869  JvmtiExport::transition_pending_onload_raw_monitors();
2870
2871  if (VerifyBeforeGC &&
2872      Universe::heap()->total_collections() >= VerifyGCStartAt) {
2873    Universe::heap()->prepare_for_verify();
2874    Universe::verify();   // make sure we're starting with a clean slate
2875  }
2876
2877  // Create the VMThread
2878  { TraceTime timer("Start VMThread", TraceStartupTime);
2879    VMThread::create();
2880    Thread* vmthread = VMThread::vm_thread();
2881
2882    if (!os::create_thread(vmthread, os::vm_thread))
2883      vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
2884
2885    // Wait for the VM thread to become ready, and VMThread::run to initialize
2886    // Monitors can have spurious returns, must always check another state flag
2887    {
2888      MutexLocker ml(Notify_lock);
2889      os::start_thread(vmthread);
2890      while (vmthread->active_handles() == NULL) {
2891        Notify_lock->wait();
2892      }
2893    }
2894  }
2895
2896  assert (Universe::is_fully_initialized(), "not initialized");
2897  EXCEPTION_MARK;
2898
2899  // At this point, the Universe is initialized, but we have not executed
2900  // any byte code.  Now is a good time (the only time) to dump out the
2901  // internal state of the JVM for sharing.
2902
2903  if (DumpSharedSpaces) {
2904    Universe::heap()->preload_and_dump(CHECK_0);
2905    ShouldNotReachHere();
2906  }
2907
2908  // Always call even when there are not JVMTI environments yet, since environments
2909  // may be attached late and JVMTI must track phases of VM execution
2910  JvmtiExport::enter_start_phase();
2911
2912  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
2913  JvmtiExport::post_vm_start();
2914
2915  {
2916    TraceTime timer("Initialize java.lang classes", TraceStartupTime);
2917
2918    if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
2919      create_vm_init_libraries();
2920    }
2921
2922    if (InitializeJavaLangString) {
2923      initialize_class(vmSymbolHandles::java_lang_String(), CHECK_0);
2924    } else {
2925      warning("java.lang.String not initialized");
2926    }
2927
2928    if (AggressiveOpts) {
2929      {
2930        // Forcibly initialize java/util/HashMap and mutate the private
2931        // static final "frontCacheEnabled" field before we start creating instances
2932#ifdef ASSERT
2933        klassOop tmp_k = SystemDictionary::find(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
2934        assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
2935#endif
2936        klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
2937        KlassHandle k = KlassHandle(THREAD, k_o);
2938        guarantee(k.not_null(), "Must find java/util/HashMap");
2939        instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
2940        ik->initialize(CHECK_0);
2941        fieldDescriptor fd;
2942        // Possible we might not find this field; if so, don't break
2943        if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
2944          k()->bool_field_put(fd.offset(), true);
2945        }
2946      }
2947
2948      if (UseStringCache) {
2949        // Forcibly initialize java/lang/String and mutate the private
2950        // static final "stringCacheEnabled" field before we start creating instances
2951#ifdef ASSERT
2952        klassOop tmp_k = SystemDictionary::find(vmSymbolHandles::java_lang_String(), Handle(), Handle(), CHECK_0);
2953        assert(tmp_k == NULL, "java/lang/String should not be loaded yet");
2954#endif
2955        klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_String(), Handle(), Handle(), CHECK_0);
2956        KlassHandle k = KlassHandle(THREAD, k_o);
2957        guarantee(k.not_null(), "Must find java/lang/String");
2958        instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
2959        ik->initialize(CHECK_0);
2960        fieldDescriptor fd;
2961        // Possible we might not find this field; if so, don't break
2962        if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
2963          k()->bool_field_put(fd.offset(), true);
2964        }
2965      }
2966    }
2967
2968    // Initialize java_lang.System (needed before creating the thread)
2969    if (InitializeJavaLangSystem) {
2970      initialize_class(vmSymbolHandles::java_lang_System(), CHECK_0);
2971      initialize_class(vmSymbolHandles::java_lang_ThreadGroup(), CHECK_0);
2972      Handle thread_group = create_initial_thread_group(CHECK_0);
2973      Universe::set_main_thread_group(thread_group());
2974      initialize_class(vmSymbolHandles::java_lang_Thread(), CHECK_0);
2975      oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
2976      main_thread->set_threadObj(thread_object);
2977      // Set thread status to running since main thread has
2978      // been started and running.
2979      java_lang_Thread::set_thread_status(thread_object,
2980                                          java_lang_Thread::RUNNABLE);
2981
2982      // The VM preresolve methods to these classes. Make sure that get initialized
2983      initialize_class(vmSymbolHandles::java_lang_reflect_Method(), CHECK_0);
2984      initialize_class(vmSymbolHandles::java_lang_ref_Finalizer(),  CHECK_0);
2985      // The VM creates & returns objects of this class. Make sure it's initialized.
2986      initialize_class(vmSymbolHandles::java_lang_Class(), CHECK_0);
2987      call_initializeSystemClass(CHECK_0);
2988    } else {
2989      warning("java.lang.System not initialized");
2990    }
2991
2992    // an instance of OutOfMemory exception has been allocated earlier
2993    if (InitializeJavaLangExceptionsErrors) {
2994      initialize_class(vmSymbolHandles::java_lang_OutOfMemoryError(), CHECK_0);
2995      initialize_class(vmSymbolHandles::java_lang_NullPointerException(), CHECK_0);
2996      initialize_class(vmSymbolHandles::java_lang_ClassCastException(), CHECK_0);
2997      initialize_class(vmSymbolHandles::java_lang_ArrayStoreException(), CHECK_0);
2998      initialize_class(vmSymbolHandles::java_lang_ArithmeticException(), CHECK_0);
2999      initialize_class(vmSymbolHandles::java_lang_StackOverflowError(), CHECK_0);
3000      initialize_class(vmSymbolHandles::java_lang_IllegalMonitorStateException(), CHECK_0);
3001    } else {
3002      warning("java.lang.OutOfMemoryError has not been initialized");
3003      warning("java.lang.NullPointerException has not been initialized");
3004      warning("java.lang.ClassCastException has not been initialized");
3005      warning("java.lang.ArrayStoreException has not been initialized");
3006      warning("java.lang.ArithmeticException has not been initialized");
3007      warning("java.lang.StackOverflowError has not been initialized");
3008    }
3009  }
3010
3011  // See        : bugid 4211085.
3012  // Background : the static initializer of java.lang.Compiler tries to read
3013  //              property"java.compiler" and read & write property "java.vm.info".
3014  //              When a security manager is installed through the command line
3015  //              option "-Djava.security.manager", the above properties are not
3016  //              readable and the static initializer for java.lang.Compiler fails
3017  //              resulting in a NoClassDefFoundError.  This can happen in any
3018  //              user code which calls methods in java.lang.Compiler.
3019  // Hack :       the hack is to pre-load and initialize this class, so that only
3020  //              system domains are on the stack when the properties are read.
3021  //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3022  //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3023  // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3024  //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3025  //              Once that is done, we should remove this hack.
3026  initialize_class(vmSymbolHandles::java_lang_Compiler(), CHECK_0);
3027
3028  // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3029  // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3030  // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3031  // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3032  // This should also be taken out as soon as 4211383 gets fixed.
3033  reset_vm_info_property(CHECK_0);
3034
3035  quicken_jni_functions();
3036
3037  // Set flag that basic initialization has completed. Used by exceptions and various
3038  // debug stuff, that does not work until all basic classes have been initialized.
3039  set_init_completed();
3040
3041  HS_DTRACE_PROBE(hotspot, vm__init__end);
3042
3043  // record VM initialization completion time
3044  Management::record_vm_init_completed();
3045
3046  // Compute system loader. Note that this has to occur after set_init_completed, since
3047  // valid exceptions may be thrown in the process.
3048  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3049  // set_init_completed has just been called, causing exceptions not to be shortcut
3050  // anymore. We call vm_exit_during_initialization directly instead.
3051  SystemDictionary::compute_java_system_loader(THREAD);
3052  if (HAS_PENDING_EXCEPTION) {
3053    vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3054  }
3055
3056#ifndef SERIALGC
3057  // Support for ConcurrentMarkSweep. This should be cleaned up
3058  // and better encapsulated. XXX YSR
3059  if (UseConcMarkSweepGC) {
3060    ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3061    if (HAS_PENDING_EXCEPTION) {
3062      vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3063    }
3064  }
3065#endif // SERIALGC
3066
3067  // Always call even when there are not JVMTI environments yet, since environments
3068  // may be attached late and JVMTI must track phases of VM execution
3069  JvmtiExport::enter_live_phase();
3070
3071  // Signal Dispatcher needs to be started before VMInit event is posted
3072  os::signal_init();
3073
3074  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3075  if (!DisableAttachMechanism) {
3076    if (StartAttachListener || AttachListener::init_at_startup()) {
3077      AttachListener::init();
3078    }
3079  }
3080
3081  // Launch -Xrun agents
3082  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3083  // back-end can launch with -Xdebug -Xrunjdwp.
3084  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3085    create_vm_init_libraries();
3086  }
3087
3088  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3089  JvmtiExport::post_vm_initialized();
3090
3091  Chunk::start_chunk_pool_cleaner_task();
3092
3093  // initialize compiler(s)
3094  CompileBroker::compilation_init();
3095
3096  Management::initialize(THREAD);
3097  if (HAS_PENDING_EXCEPTION) {
3098    // management agent fails to start possibly due to
3099    // configuration problem and is responsible for printing
3100    // stack trace if appropriate. Simply exit VM.
3101    vm_exit(1);
3102  }
3103
3104  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3105  if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3106  if (MemProfiling)                   MemProfiler::engage();
3107  StatSampler::engage();
3108  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3109
3110  BiasedLocking::init();
3111
3112
3113  // Start up the WatcherThread if there are any periodic tasks
3114  // NOTE:  All PeriodicTasks should be registered by now. If they
3115  //   aren't, late joiners might appear to start slowly (we might
3116  //   take a while to process their first tick).
3117  if (PeriodicTask::num_tasks() > 0) {
3118    WatcherThread::start();
3119  }
3120
3121  create_vm_timer.end();
3122  return JNI_OK;
3123}
3124
3125// type for the Agent_OnLoad and JVM_OnLoad entry points
3126extern "C" {
3127  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3128}
3129// Find a command line agent library and return its entry point for
3130//         -agentlib:  -agentpath:   -Xrun
3131// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3132static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3133  OnLoadEntry_t on_load_entry = NULL;
3134  void *library = agent->os_lib();  // check if we have looked it up before
3135
3136  if (library == NULL) {
3137    char buffer[JVM_MAXPATHLEN];
3138    char ebuf[1024];
3139    const char *name = agent->name();
3140
3141    if (agent->is_absolute_path()) {
3142      library = hpi::dll_load(name, ebuf, sizeof ebuf);
3143      if (library == NULL) {
3144        // If we can't find the agent, exit.
3145        vm_exit_during_initialization("Could not find agent library in absolute path", name);
3146      }
3147    } else {
3148      // Try to load the agent from the standard dll directory
3149      hpi::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
3150      library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3151#ifdef KERNEL
3152      // Download instrument dll
3153      if (library == NULL && strcmp(name, "instrument") == 0) {
3154        char *props = Arguments::get_kernel_properties();
3155        char *home  = Arguments::get_java_home();
3156        const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
3157                      " sun.jkernel.DownloadManager -download client_jvm";
3158        int length = strlen(props) + strlen(home) + strlen(fmt) + 1;
3159        char *cmd = AllocateHeap(length);
3160        jio_snprintf(cmd, length, fmt, home, props);
3161        int status = os::fork_and_exec(cmd);
3162        FreeHeap(props);
3163        FreeHeap(cmd);
3164        if (status == -1) {
3165          warning(cmd);
3166          vm_exit_during_initialization("fork_and_exec failed: %s",
3167                                         strerror(errno));
3168        }
3169        // when this comes back the instrument.dll should be where it belongs.
3170        library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3171      }
3172#endif // KERNEL
3173      if (library == NULL) { // Try the local directory
3174        char ns[1] = {0};
3175        hpi::dll_build_name(buffer, sizeof(buffer), ns, name);
3176        library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3177        if (library == NULL) {
3178          // If we can't find the agent, exit.
3179          vm_exit_during_initialization("Could not find agent library on the library path or in the local directory", name);
3180        }
3181      }
3182    }
3183    agent->set_os_lib(library);
3184  }
3185
3186  // Find the OnLoad function.
3187  for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3188    on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, hpi::dll_lookup(library, on_load_symbols[symbol_index]));
3189    if (on_load_entry != NULL) break;
3190  }
3191  return on_load_entry;
3192}
3193
3194// Find the JVM_OnLoad entry point
3195static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3196  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3197  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3198}
3199
3200// Find the Agent_OnLoad entry point
3201static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3202  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3203  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3204}
3205
3206// For backwards compatibility with -Xrun
3207// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3208// treated like -agentpath:
3209// Must be called before agent libraries are created
3210void Threads::convert_vm_init_libraries_to_agents() {
3211  AgentLibrary* agent;
3212  AgentLibrary* next;
3213
3214  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3215    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3216    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3217
3218    // If there is an JVM_OnLoad function it will get called later,
3219    // otherwise see if there is an Agent_OnLoad
3220    if (on_load_entry == NULL) {
3221      on_load_entry = lookup_agent_on_load(agent);
3222      if (on_load_entry != NULL) {
3223        // switch it to the agent list -- so that Agent_OnLoad will be called,
3224        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3225        Arguments::convert_library_to_agent(agent);
3226      } else {
3227        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3228      }
3229    }
3230  }
3231}
3232
3233// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3234// Invokes Agent_OnLoad
3235// Called very early -- before JavaThreads exist
3236void Threads::create_vm_init_agents() {
3237  extern struct JavaVM_ main_vm;
3238  AgentLibrary* agent;
3239
3240  JvmtiExport::enter_onload_phase();
3241  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3242    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3243
3244    if (on_load_entry != NULL) {
3245      // Invoke the Agent_OnLoad function
3246      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3247      if (err != JNI_OK) {
3248        vm_exit_during_initialization("agent library failed to init", agent->name());
3249      }
3250    } else {
3251      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3252    }
3253  }
3254  JvmtiExport::enter_primordial_phase();
3255}
3256
3257extern "C" {
3258  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3259}
3260
3261void Threads::shutdown_vm_agents() {
3262  // Send any Agent_OnUnload notifications
3263  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3264  extern struct JavaVM_ main_vm;
3265  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3266
3267    // Find the Agent_OnUnload function.
3268    for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3269      Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3270               hpi::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3271
3272      // Invoke the Agent_OnUnload function
3273      if (unload_entry != NULL) {
3274        JavaThread* thread = JavaThread::current();
3275        ThreadToNativeFromVM ttn(thread);
3276        HandleMark hm(thread);
3277        (*unload_entry)(&main_vm);
3278        break;
3279      }
3280    }
3281  }
3282}
3283
3284// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3285// Invokes JVM_OnLoad
3286void Threads::create_vm_init_libraries() {
3287  extern struct JavaVM_ main_vm;
3288  AgentLibrary* agent;
3289
3290  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3291    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3292
3293    if (on_load_entry != NULL) {
3294      // Invoke the JVM_OnLoad function
3295      JavaThread* thread = JavaThread::current();
3296      ThreadToNativeFromVM ttn(thread);
3297      HandleMark hm(thread);
3298      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3299      if (err != JNI_OK) {
3300        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3301      }
3302    } else {
3303      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3304    }
3305  }
3306}
3307
3308// Last thread running calls java.lang.Shutdown.shutdown()
3309void JavaThread::invoke_shutdown_hooks() {
3310  HandleMark hm(this);
3311
3312  // We could get here with a pending exception, if so clear it now.
3313  if (this->has_pending_exception()) {
3314    this->clear_pending_exception();
3315  }
3316
3317  EXCEPTION_MARK;
3318  klassOop k =
3319    SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_Shutdown(),
3320                                      THREAD);
3321  if (k != NULL) {
3322    // SystemDictionary::resolve_or_null will return null if there was
3323    // an exception.  If we cannot load the Shutdown class, just don't
3324    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3325    // and finalizers (if runFinalizersOnExit is set) won't be run.
3326    // Note that if a shutdown hook was registered or runFinalizersOnExit
3327    // was called, the Shutdown class would have already been loaded
3328    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3329    instanceKlassHandle shutdown_klass (THREAD, k);
3330    JavaValue result(T_VOID);
3331    JavaCalls::call_static(&result,
3332                           shutdown_klass,
3333                           vmSymbolHandles::shutdown_method_name(),
3334                           vmSymbolHandles::void_method_signature(),
3335                           THREAD);
3336  }
3337  CLEAR_PENDING_EXCEPTION;
3338}
3339
3340// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3341// the program falls off the end of main(). Another VM exit path is through
3342// vm_exit() when the program calls System.exit() to return a value or when
3343// there is a serious error in VM. The two shutdown paths are not exactly
3344// the same, but they share Shutdown.shutdown() at Java level and before_exit()
3345// and VM_Exit op at VM level.
3346//
3347// Shutdown sequence:
3348//   + Wait until we are the last non-daemon thread to execute
3349//     <-- every thing is still working at this moment -->
3350//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3351//        shutdown hooks, run finalizers if finalization-on-exit
3352//   + Call before_exit(), prepare for VM exit
3353//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3354//        currently the only user of this mechanism is File.deleteOnExit())
3355//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3356//        post thread end and vm death events to JVMTI,
3357//        stop signal thread
3358//   + Call JavaThread::exit(), it will:
3359//      > release JNI handle blocks, remove stack guard pages
3360//      > remove this thread from Threads list
3361//     <-- no more Java code from this thread after this point -->
3362//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3363//     the compiler threads at safepoint
3364//     <-- do not use anything that could get blocked by Safepoint -->
3365//   + Disable tracing at JNI/JVM barriers
3366//   + Set _vm_exited flag for threads that are still running native code
3367//   + Delete this thread
3368//   + Call exit_globals()
3369//      > deletes tty
3370//      > deletes PerfMemory resources
3371//   + Return to caller
3372
3373bool Threads::destroy_vm() {
3374  JavaThread* thread = JavaThread::current();
3375
3376  // Wait until we are the last non-daemon thread to execute
3377  { MutexLocker nu(Threads_lock);
3378    while (Threads::number_of_non_daemon_threads() > 1 )
3379      // This wait should make safepoint checks, wait without a timeout,
3380      // and wait as a suspend-equivalent condition.
3381      //
3382      // Note: If the FlatProfiler is running and this thread is waiting
3383      // for another non-daemon thread to finish, then the FlatProfiler
3384      // is waiting for the external suspend request on this thread to
3385      // complete. wait_for_ext_suspend_completion() will eventually
3386      // timeout, but that takes time. Making this wait a suspend-
3387      // equivalent condition solves that timeout problem.
3388      //
3389      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3390                         Mutex::_as_suspend_equivalent_flag);
3391  }
3392
3393  // Hang forever on exit if we are reporting an error.
3394  if (ShowMessageBoxOnError && is_error_reported()) {
3395    os::infinite_sleep();
3396  }
3397
3398  if (JDK_Version::is_jdk12x_version()) {
3399    // We are the last thread running, so check if finalizers should be run.
3400    // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3401    HandleMark rm(thread);
3402    Universe::run_finalizers_on_exit();
3403  } else {
3404    // run Java level shutdown hooks
3405    thread->invoke_shutdown_hooks();
3406  }
3407
3408  before_exit(thread);
3409
3410  thread->exit(true);
3411
3412  // Stop VM thread.
3413  {
3414    // 4945125 The vm thread comes to a safepoint during exit.
3415    // GC vm_operations can get caught at the safepoint, and the
3416    // heap is unparseable if they are caught. Grab the Heap_lock
3417    // to prevent this. The GC vm_operations will not be able to
3418    // queue until after the vm thread is dead.
3419    MutexLocker ml(Heap_lock);
3420
3421    VMThread::wait_for_vm_thread_exit();
3422    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3423    VMThread::destroy();
3424  }
3425
3426  // clean up ideal graph printers
3427#if defined(COMPILER2) && !defined(PRODUCT)
3428  IdealGraphPrinter::clean_up();
3429#endif
3430
3431  // Now, all Java threads are gone except daemon threads. Daemon threads
3432  // running Java code or in VM are stopped by the Safepoint. However,
3433  // daemon threads executing native code are still running.  But they
3434  // will be stopped at native=>Java/VM barriers. Note that we can't
3435  // simply kill or suspend them, as it is inherently deadlock-prone.
3436
3437#ifndef PRODUCT
3438  // disable function tracing at JNI/JVM barriers
3439  TraceHPI = false;
3440  TraceJNICalls = false;
3441  TraceJVMCalls = false;
3442  TraceRuntimeCalls = false;
3443#endif
3444
3445  VM_Exit::set_vm_exited();
3446
3447  notify_vm_shutdown();
3448
3449  delete thread;
3450
3451  // exit_globals() will delete tty
3452  exit_globals();
3453
3454  return true;
3455}
3456
3457
3458jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3459  if (version == JNI_VERSION_1_1) return JNI_TRUE;
3460  return is_supported_jni_version(version);
3461}
3462
3463
3464jboolean Threads::is_supported_jni_version(jint version) {
3465  if (version == JNI_VERSION_1_2) return JNI_TRUE;
3466  if (version == JNI_VERSION_1_4) return JNI_TRUE;
3467  if (version == JNI_VERSION_1_6) return JNI_TRUE;
3468  return JNI_FALSE;
3469}
3470
3471
3472void Threads::add(JavaThread* p, bool force_daemon) {
3473  // The threads lock must be owned at this point
3474  assert_locked_or_safepoint(Threads_lock);
3475  p->set_next(_thread_list);
3476  _thread_list = p;
3477  _number_of_threads++;
3478  oop threadObj = p->threadObj();
3479  bool daemon = true;
3480  // Bootstrapping problem: threadObj can be null for initial
3481  // JavaThread (or for threads attached via JNI)
3482  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3483    _number_of_non_daemon_threads++;
3484    daemon = false;
3485  }
3486
3487  ThreadService::add_thread(p, daemon);
3488
3489  // Possible GC point.
3490  Events::log("Thread added: " INTPTR_FORMAT, p);
3491}
3492
3493void Threads::remove(JavaThread* p) {
3494  // Extra scope needed for Thread_lock, so we can check
3495  // that we do not remove thread without safepoint code notice
3496  { MutexLocker ml(Threads_lock);
3497
3498    assert(includes(p), "p must be present");
3499
3500    JavaThread* current = _thread_list;
3501    JavaThread* prev    = NULL;
3502
3503    while (current != p) {
3504      prev    = current;
3505      current = current->next();
3506    }
3507
3508    if (prev) {
3509      prev->set_next(current->next());
3510    } else {
3511      _thread_list = p->next();
3512    }
3513    _number_of_threads--;
3514    oop threadObj = p->threadObj();
3515    bool daemon = true;
3516    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
3517      _number_of_non_daemon_threads--;
3518      daemon = false;
3519
3520      // Only one thread left, do a notify on the Threads_lock so a thread waiting
3521      // on destroy_vm will wake up.
3522      if (number_of_non_daemon_threads() == 1)
3523        Threads_lock->notify_all();
3524    }
3525    ThreadService::remove_thread(p, daemon);
3526
3527    // Make sure that safepoint code disregard this thread. This is needed since
3528    // the thread might mess around with locks after this point. This can cause it
3529    // to do callbacks into the safepoint code. However, the safepoint code is not aware
3530    // of this thread since it is removed from the queue.
3531    p->set_terminated_value();
3532  } // unlock Threads_lock
3533
3534  // Since Events::log uses a lock, we grab it outside the Threads_lock
3535  Events::log("Thread exited: " INTPTR_FORMAT, p);
3536}
3537
3538// Threads_lock must be held when this is called (or must be called during a safepoint)
3539bool Threads::includes(JavaThread* p) {
3540  assert(Threads_lock->is_locked(), "sanity check");
3541  ALL_JAVA_THREADS(q) {
3542    if (q == p ) {
3543      return true;
3544    }
3545  }
3546  return false;
3547}
3548
3549// Operations on the Threads list for GC.  These are not explicitly locked,
3550// but the garbage collector must provide a safe context for them to run.
3551// In particular, these things should never be called when the Threads_lock
3552// is held by some other thread. (Note: the Safepoint abstraction also
3553// uses the Threads_lock to gurantee this property. It also makes sure that
3554// all threads gets blocked when exiting or starting).
3555
3556void Threads::oops_do(OopClosure* f) {
3557  ALL_JAVA_THREADS(p) {
3558    p->oops_do(f);
3559  }
3560  VMThread::vm_thread()->oops_do(f);
3561}
3562
3563void Threads::possibly_parallel_oops_do(OopClosure* f) {
3564  // Introduce a mechanism allowing parallel threads to claim threads as
3565  // root groups.  Overhead should be small enough to use all the time,
3566  // even in sequential code.
3567  SharedHeap* sh = SharedHeap::heap();
3568  bool is_par = (sh->n_par_threads() > 0);
3569  int cp = SharedHeap::heap()->strong_roots_parity();
3570  ALL_JAVA_THREADS(p) {
3571    if (p->claim_oops_do(is_par, cp)) {
3572      p->oops_do(f);
3573    }
3574  }
3575  VMThread* vmt = VMThread::vm_thread();
3576  if (vmt->claim_oops_do(is_par, cp))
3577    vmt->oops_do(f);
3578}
3579
3580#ifndef SERIALGC
3581// Used by ParallelScavenge
3582void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
3583  ALL_JAVA_THREADS(p) {
3584    q->enqueue(new ThreadRootsTask(p));
3585  }
3586  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
3587}
3588
3589// Used by Parallel Old
3590void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
3591  ALL_JAVA_THREADS(p) {
3592    q->enqueue(new ThreadRootsMarkingTask(p));
3593  }
3594  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
3595}
3596#endif // SERIALGC
3597
3598void Threads::nmethods_do() {
3599  ALL_JAVA_THREADS(p) {
3600    p->nmethods_do();
3601  }
3602  VMThread::vm_thread()->nmethods_do();
3603}
3604
3605void Threads::gc_epilogue() {
3606  ALL_JAVA_THREADS(p) {
3607    p->gc_epilogue();
3608  }
3609}
3610
3611void Threads::gc_prologue() {
3612  ALL_JAVA_THREADS(p) {
3613    p->gc_prologue();
3614  }
3615}
3616
3617void Threads::deoptimized_wrt_marked_nmethods() {
3618  ALL_JAVA_THREADS(p) {
3619    p->deoptimized_wrt_marked_nmethods();
3620  }
3621}
3622
3623
3624// Get count Java threads that are waiting to enter the specified monitor.
3625GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
3626  address monitor, bool doLock) {
3627  assert(doLock || SafepointSynchronize::is_at_safepoint(),
3628    "must grab Threads_lock or be at safepoint");
3629  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
3630
3631  int i = 0;
3632  {
3633    MutexLockerEx ml(doLock ? Threads_lock : NULL);
3634    ALL_JAVA_THREADS(p) {
3635      if (p->is_Compiler_thread()) continue;
3636
3637      address pending = (address)p->current_pending_monitor();
3638      if (pending == monitor) {             // found a match
3639        if (i < count) result->append(p);   // save the first count matches
3640        i++;
3641      }
3642    }
3643  }
3644  return result;
3645}
3646
3647
3648JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
3649  assert(doLock ||
3650         Threads_lock->owned_by_self() ||
3651         SafepointSynchronize::is_at_safepoint(),
3652         "must grab Threads_lock or be at safepoint");
3653
3654  // NULL owner means not locked so we can skip the search
3655  if (owner == NULL) return NULL;
3656
3657  {
3658    MutexLockerEx ml(doLock ? Threads_lock : NULL);
3659    ALL_JAVA_THREADS(p) {
3660      // first, see if owner is the address of a Java thread
3661      if (owner == (address)p) return p;
3662    }
3663  }
3664  assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
3665  if (UseHeavyMonitors) return NULL;
3666
3667  //
3668  // If we didn't find a matching Java thread and we didn't force use of
3669  // heavyweight monitors, then the owner is the stack address of the
3670  // Lock Word in the owning Java thread's stack.
3671  //
3672  // We can't use Thread::is_lock_owned() or Thread::lock_is_in_stack() because
3673  // those routines rely on the "current" stack pointer. That would be our
3674  // stack pointer which is not relevant to the question. Instead we use the
3675  // highest lock ever entered by the thread and find the thread that is
3676  // higher than and closest to our target stack address.
3677  //
3678  address    least_diff = 0;
3679  bool       least_diff_initialized = false;
3680  JavaThread* the_owner = NULL;
3681  {
3682    MutexLockerEx ml(doLock ? Threads_lock : NULL);
3683    ALL_JAVA_THREADS(q) {
3684      address addr = q->highest_lock();
3685      if (addr == NULL || addr < owner) continue;  // thread has entered no monitors or is too low
3686      address diff = (address)(addr - owner);
3687      if (!least_diff_initialized || diff < least_diff) {
3688        least_diff_initialized = true;
3689        least_diff = diff;
3690        the_owner = q;
3691      }
3692    }
3693  }
3694  assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
3695  return the_owner;
3696}
3697
3698// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
3699void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
3700  char buf[32];
3701  st->print_cr(os::local_time_string(buf, sizeof(buf)));
3702
3703  st->print_cr("Full thread dump %s (%s %s):",
3704                Abstract_VM_Version::vm_name(),
3705                Abstract_VM_Version::vm_release(),
3706                Abstract_VM_Version::vm_info_string()
3707               );
3708  st->cr();
3709
3710#ifndef SERIALGC
3711  // Dump concurrent locks
3712  ConcurrentLocksDump concurrent_locks;
3713  if (print_concurrent_locks) {
3714    concurrent_locks.dump_at_safepoint();
3715  }
3716#endif // SERIALGC
3717
3718  ALL_JAVA_THREADS(p) {
3719    ResourceMark rm;
3720    p->print_on(st);
3721    if (print_stacks) {
3722      if (internal_format) {
3723        p->trace_stack();
3724      } else {
3725        p->print_stack_on(st);
3726      }
3727    }
3728    st->cr();
3729#ifndef SERIALGC
3730    if (print_concurrent_locks) {
3731      concurrent_locks.print_locks_on(p, st);
3732    }
3733#endif // SERIALGC
3734  }
3735
3736  VMThread::vm_thread()->print_on(st);
3737  st->cr();
3738  Universe::heap()->print_gc_threads_on(st);
3739  WatcherThread* wt = WatcherThread::watcher_thread();
3740  if (wt != NULL) wt->print_on(st);
3741  st->cr();
3742  CompileBroker::print_compiler_threads_on(st);
3743  st->flush();
3744}
3745
3746// Threads::print_on_error() is called by fatal error handler. It's possible
3747// that VM is not at safepoint and/or current thread is inside signal handler.
3748// Don't print stack trace, as the stack may not be walkable. Don't allocate
3749// memory (even in resource area), it might deadlock the error handler.
3750void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
3751  bool found_current = false;
3752  st->print_cr("Java Threads: ( => current thread )");
3753  ALL_JAVA_THREADS(thread) {
3754    bool is_current = (current == thread);
3755    found_current = found_current || is_current;
3756
3757    st->print("%s", is_current ? "=>" : "  ");
3758
3759    st->print(PTR_FORMAT, thread);
3760    st->print(" ");
3761    thread->print_on_error(st, buf, buflen);
3762    st->cr();
3763  }
3764  st->cr();
3765
3766  st->print_cr("Other Threads:");
3767  if (VMThread::vm_thread()) {
3768    bool is_current = (current == VMThread::vm_thread());
3769    found_current = found_current || is_current;
3770    st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
3771
3772    st->print(PTR_FORMAT, VMThread::vm_thread());
3773    st->print(" ");
3774    VMThread::vm_thread()->print_on_error(st, buf, buflen);
3775    st->cr();
3776  }
3777  WatcherThread* wt = WatcherThread::watcher_thread();
3778  if (wt != NULL) {
3779    bool is_current = (current == wt);
3780    found_current = found_current || is_current;
3781    st->print("%s", is_current ? "=>" : "  ");
3782
3783    st->print(PTR_FORMAT, wt);
3784    st->print(" ");
3785    wt->print_on_error(st, buf, buflen);
3786    st->cr();
3787  }
3788  if (!found_current) {
3789    st->cr();
3790    st->print("=>" PTR_FORMAT " (exited) ", current);
3791    current->print_on_error(st, buf, buflen);
3792    st->cr();
3793  }
3794}
3795
3796
3797// Lifecycle management for TSM ParkEvents.
3798// ParkEvents are type-stable (TSM).
3799// In our particular implementation they happen to be immortal.
3800//
3801// We manage concurrency on the FreeList with a CAS-based
3802// detach-modify-reattach idiom that avoids the ABA problems
3803// that would otherwise be present in a simple CAS-based
3804// push-pop implementation.   (push-one and pop-all)
3805//
3806// Caveat: Allocate() and Release() may be called from threads
3807// other than the thread associated with the Event!
3808// If we need to call Allocate() when running as the thread in
3809// question then look for the PD calls to initialize native TLS.
3810// Native TLS (Win32/Linux/Solaris) can only be initialized or
3811// accessed by the associated thread.
3812// See also pd_initialize().
3813//
3814// Note that we could defer associating a ParkEvent with a thread
3815// until the 1st time the thread calls park().  unpark() calls to
3816// an unprovisioned thread would be ignored.  The first park() call
3817// for a thread would allocate and associate a ParkEvent and return
3818// immediately.
3819
3820volatile int ParkEvent::ListLock = 0 ;
3821ParkEvent * volatile ParkEvent::FreeList = NULL ;
3822
3823ParkEvent * ParkEvent::Allocate (Thread * t) {
3824  // In rare cases -- JVM_RawMonitor* operations -- we can find t == null.
3825  ParkEvent * ev ;
3826
3827  // Start by trying to recycle an existing but unassociated
3828  // ParkEvent from the global free list.
3829  for (;;) {
3830    ev = FreeList ;
3831    if (ev == NULL) break ;
3832    // 1: Detach - sequester or privatize the list
3833    // Tantamount to ev = Swap (&FreeList, NULL)
3834    if (Atomic::cmpxchg_ptr (NULL, &FreeList, ev) != ev) {
3835       continue ;
3836    }
3837
3838    // We've detached the list.  The list in-hand is now
3839    // local to this thread.   This thread can operate on the
3840    // list without risk of interference from other threads.
3841    // 2: Extract -- pop the 1st element from the list.
3842    ParkEvent * List = ev->FreeNext ;
3843    if (List == NULL) break ;
3844    for (;;) {
3845        // 3: Try to reattach the residual list
3846        guarantee (List != NULL, "invariant") ;
3847        ParkEvent * Arv =  (ParkEvent *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
3848        if (Arv == NULL) break ;
3849
3850        // New nodes arrived.  Try to detach the recent arrivals.
3851        if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
3852            continue ;
3853        }
3854        guarantee (Arv != NULL, "invariant") ;
3855        // 4: Merge Arv into List
3856        ParkEvent * Tail = List ;
3857        while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
3858        Tail->FreeNext = Arv ;
3859    }
3860    break ;
3861  }
3862
3863  if (ev != NULL) {
3864    guarantee (ev->AssociatedWith == NULL, "invariant") ;
3865  } else {
3866    // Do this the hard way -- materialize a new ParkEvent.
3867    // In rare cases an allocating thread might detach a long list --
3868    // installing null into FreeList -- and then stall or be obstructed.
3869    // A 2nd thread calling Allocate() would see FreeList == null.
3870    // The list held privately by the 1st thread is unavailable to the 2nd thread.
3871    // In that case the 2nd thread would have to materialize a new ParkEvent,
3872    // even though free ParkEvents existed in the system.  In this case we end up
3873    // with more ParkEvents in circulation than we need, but the race is
3874    // rare and the outcome is benign.  Ideally, the # of extant ParkEvents
3875    // is equal to the maximum # of threads that existed at any one time.
3876    // Because of the race mentioned above, segments of the freelist
3877    // can be transiently inaccessible.  At worst we may end up with the
3878    // # of ParkEvents in circulation slightly above the ideal.
3879    // Note that if we didn't have the TSM/immortal constraint, then
3880    // when reattaching, above, we could trim the list.
3881    ev = new ParkEvent () ;
3882    guarantee ((intptr_t(ev) & 0xFF) == 0, "invariant") ;
3883  }
3884  ev->reset() ;                     // courtesy to caller
3885  ev->AssociatedWith = t ;          // Associate ev with t
3886  ev->FreeNext       = NULL ;
3887  return ev ;
3888}
3889
3890void ParkEvent::Release (ParkEvent * ev) {
3891  if (ev == NULL) return ;
3892  guarantee (ev->FreeNext == NULL      , "invariant") ;
3893  ev->AssociatedWith = NULL ;
3894  for (;;) {
3895    // Push ev onto FreeList
3896    // The mechanism is "half" lock-free.
3897    ParkEvent * List = FreeList ;
3898    ev->FreeNext = List ;
3899    if (Atomic::cmpxchg_ptr (ev, &FreeList, List) == List) break ;
3900  }
3901}
3902
3903// Override operator new and delete so we can ensure that the
3904// least significant byte of ParkEvent addresses is 0.
3905// Beware that excessive address alignment is undesirable
3906// as it can result in D$ index usage imbalance as
3907// well as bank access imbalance on Niagara-like platforms,
3908// although Niagara's hash function should help.
3909
3910void * ParkEvent::operator new (size_t sz) {
3911  return (void *) ((intptr_t (CHeapObj::operator new (sz + 256)) + 256) & -256) ;
3912}
3913
3914void ParkEvent::operator delete (void * a) {
3915  // ParkEvents are type-stable and immortal ...
3916  ShouldNotReachHere();
3917}
3918
3919
3920// 6399321 As a temporary measure we copied & modified the ParkEvent::
3921// allocate() and release() code for use by Parkers.  The Parker:: forms
3922// will eventually be removed as we consolide and shift over to ParkEvents
3923// for both builtin synchronization and JSR166 operations.
3924
3925volatile int Parker::ListLock = 0 ;
3926Parker * volatile Parker::FreeList = NULL ;
3927
3928Parker * Parker::Allocate (JavaThread * t) {
3929  guarantee (t != NULL, "invariant") ;
3930  Parker * p ;
3931
3932  // Start by trying to recycle an existing but unassociated
3933  // Parker from the global free list.
3934  for (;;) {
3935    p = FreeList ;
3936    if (p  == NULL) break ;
3937    // 1: Detach
3938    // Tantamount to p = Swap (&FreeList, NULL)
3939    if (Atomic::cmpxchg_ptr (NULL, &FreeList, p) != p) {
3940       continue ;
3941    }
3942
3943    // We've detached the list.  The list in-hand is now
3944    // local to this thread.   This thread can operate on the
3945    // list without risk of interference from other threads.
3946    // 2: Extract -- pop the 1st element from the list.
3947    Parker * List = p->FreeNext ;
3948    if (List == NULL) break ;
3949    for (;;) {
3950        // 3: Try to reattach the residual list
3951        guarantee (List != NULL, "invariant") ;
3952        Parker * Arv =  (Parker *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
3953        if (Arv == NULL) break ;
3954
3955        // New nodes arrived.  Try to detach the recent arrivals.
3956        if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
3957            continue ;
3958        }
3959        guarantee (Arv != NULL, "invariant") ;
3960        // 4: Merge Arv into List
3961        Parker * Tail = List ;
3962        while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
3963        Tail->FreeNext = Arv ;
3964    }
3965    break ;
3966  }
3967
3968  if (p != NULL) {
3969    guarantee (p->AssociatedWith == NULL, "invariant") ;
3970  } else {
3971    // Do this the hard way -- materialize a new Parker..
3972    // In rare cases an allocating thread might detach
3973    // a long list -- installing null into FreeList --and
3974    // then stall.  Another thread calling Allocate() would see
3975    // FreeList == null and then invoke the ctor.  In this case we
3976    // end up with more Parkers in circulation than we need, but
3977    // the race is rare and the outcome is benign.
3978    // Ideally, the # of extant Parkers is equal to the
3979    // maximum # of threads that existed at any one time.
3980    // Because of the race mentioned above, segments of the
3981    // freelist can be transiently inaccessible.  At worst
3982    // we may end up with the # of Parkers in circulation
3983    // slightly above the ideal.
3984    p = new Parker() ;
3985  }
3986  p->AssociatedWith = t ;          // Associate p with t
3987  p->FreeNext       = NULL ;
3988  return p ;
3989}
3990
3991
3992void Parker::Release (Parker * p) {
3993  if (p == NULL) return ;
3994  guarantee (p->AssociatedWith != NULL, "invariant") ;
3995  guarantee (p->FreeNext == NULL      , "invariant") ;
3996  p->AssociatedWith = NULL ;
3997  for (;;) {
3998    // Push p onto FreeList
3999    Parker * List = FreeList ;
4000    p->FreeNext = List ;
4001    if (Atomic::cmpxchg_ptr (p, &FreeList, List) == List) break ;
4002  }
4003}
4004
4005void Threads::verify() {
4006  ALL_JAVA_THREADS(p) {
4007    p->verify();
4008  }
4009  VMThread* thread = VMThread::vm_thread();
4010  if (thread != NULL) thread->verify();
4011}
4012