thread.cpp revision 1887:828eafbd85cc
1/*
2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/scopeDesc.hpp"
31#include "compiler/compileBroker.hpp"
32#include "interpreter/interpreter.hpp"
33#include "interpreter/linkResolver.hpp"
34#include "memory/oopFactory.hpp"
35#include "memory/universe.inline.hpp"
36#include "oops/instanceKlass.hpp"
37#include "oops/objArrayOop.hpp"
38#include "oops/oop.inline.hpp"
39#include "oops/symbolOop.hpp"
40#include "prims/jvm_misc.hpp"
41#include "prims/jvmtiExport.hpp"
42#include "prims/jvmtiThreadState.hpp"
43#include "prims/privilegedStack.hpp"
44#include "runtime/aprofiler.hpp"
45#include "runtime/arguments.hpp"
46#include "runtime/biasedLocking.hpp"
47#include "runtime/deoptimization.hpp"
48#include "runtime/fprofiler.hpp"
49#include "runtime/frame.inline.hpp"
50#include "runtime/init.hpp"
51#include "runtime/interfaceSupport.hpp"
52#include "runtime/java.hpp"
53#include "runtime/javaCalls.hpp"
54#include "runtime/jniPeriodicChecker.hpp"
55#include "runtime/memprofiler.hpp"
56#include "runtime/mutexLocker.hpp"
57#include "runtime/objectMonitor.hpp"
58#include "runtime/osThread.hpp"
59#include "runtime/safepoint.hpp"
60#include "runtime/sharedRuntime.hpp"
61#include "runtime/statSampler.hpp"
62#include "runtime/stubRoutines.hpp"
63#include "runtime/task.hpp"
64#include "runtime/threadCritical.hpp"
65#include "runtime/threadLocalStorage.hpp"
66#include "runtime/vframe.hpp"
67#include "runtime/vframeArray.hpp"
68#include "runtime/vframe_hp.hpp"
69#include "runtime/vmThread.hpp"
70#include "runtime/vm_operations.hpp"
71#include "services/attachListener.hpp"
72#include "services/management.hpp"
73#include "services/threadService.hpp"
74#include "utilities/defaultStream.hpp"
75#include "utilities/dtrace.hpp"
76#include "utilities/events.hpp"
77#include "utilities/preserveException.hpp"
78#ifdef TARGET_OS_FAMILY_linux
79# include "os_linux.inline.hpp"
80# include "thread_linux.inline.hpp"
81#endif
82#ifdef TARGET_OS_FAMILY_solaris
83# include "os_solaris.inline.hpp"
84# include "thread_solaris.inline.hpp"
85#endif
86#ifdef TARGET_OS_FAMILY_windows
87# include "os_windows.inline.hpp"
88# include "thread_windows.inline.hpp"
89#endif
90#ifndef SERIALGC
91#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
92#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
93#include "gc_implementation/parallelScavenge/pcTasks.hpp"
94#endif
95#ifdef COMPILER1
96#include "c1/c1_Compiler.hpp"
97#endif
98#ifdef COMPILER2
99#include "opto/c2compiler.hpp"
100#include "opto/idealGraphPrinter.hpp"
101#endif
102
103#ifdef DTRACE_ENABLED
104
105// Only bother with this argument setup if dtrace is available
106
107HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
108HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
109HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
110  intptr_t, intptr_t, bool);
111HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
112  intptr_t, intptr_t, bool);
113
114#define DTRACE_THREAD_PROBE(probe, javathread)                             \
115  {                                                                        \
116    ResourceMark rm(this);                                                 \
117    int len = 0;                                                           \
118    const char* name = (javathread)->get_thread_name();                    \
119    len = strlen(name);                                                    \
120    HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
121      name, len,                                                           \
122      java_lang_Thread::thread_id((javathread)->threadObj()),              \
123      (javathread)->osthread()->thread_id(),                               \
124      java_lang_Thread::is_daemon((javathread)->threadObj()));             \
125  }
126
127#else //  ndef DTRACE_ENABLED
128
129#define DTRACE_THREAD_PROBE(probe, javathread)
130
131#endif // ndef DTRACE_ENABLED
132
133// Class hierarchy
134// - Thread
135//   - VMThread
136//   - WatcherThread
137//   - ConcurrentMarkSweepThread
138//   - JavaThread
139//     - CompilerThread
140
141// ======= Thread ========
142
143// Support for forcing alignment of thread objects for biased locking
144void* Thread::operator new(size_t size) {
145  if (UseBiasedLocking) {
146    const int alignment = markOopDesc::biased_lock_alignment;
147    size_t aligned_size = size + (alignment - sizeof(intptr_t));
148    void* real_malloc_addr = CHeapObj::operator new(aligned_size);
149    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
150    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
151           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
152           "JavaThread alignment code overflowed allocated storage");
153    if (TraceBiasedLocking) {
154      if (aligned_addr != real_malloc_addr)
155        tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
156                      real_malloc_addr, aligned_addr);
157    }
158    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
159    return aligned_addr;
160  } else {
161    return CHeapObj::operator new(size);
162  }
163}
164
165void Thread::operator delete(void* p) {
166  if (UseBiasedLocking) {
167    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
168    CHeapObj::operator delete(real_malloc_addr);
169  } else {
170    CHeapObj::operator delete(p);
171  }
172}
173
174
175// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
176// JavaThread
177
178
179Thread::Thread() {
180  // stack
181  _stack_base   = NULL;
182  _stack_size   = 0;
183  _self_raw_id  = 0;
184  _lgrp_id      = -1;
185  _osthread     = NULL;
186
187  // allocated data structures
188  set_resource_area(new ResourceArea());
189  set_handle_area(new HandleArea(NULL));
190  set_active_handles(NULL);
191  set_free_handle_block(NULL);
192  set_last_handle_mark(NULL);
193  set_osthread(NULL);
194
195  // This initial value ==> never claimed.
196  _oops_do_parity = 0;
197
198  // the handle mark links itself to last_handle_mark
199  new HandleMark(this);
200
201  // plain initialization
202  debug_only(_owned_locks = NULL;)
203  debug_only(_allow_allocation_count = 0;)
204  NOT_PRODUCT(_allow_safepoint_count = 0;)
205  NOT_PRODUCT(_skip_gcalot = false;)
206  CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
207  _jvmti_env_iteration_count = 0;
208  _vm_operation_started_count = 0;
209  _vm_operation_completed_count = 0;
210  _current_pending_monitor = NULL;
211  _current_pending_monitor_is_from_java = true;
212  _current_waiting_monitor = NULL;
213  _num_nested_signal = 0;
214  omFreeList = NULL ;
215  omFreeCount = 0 ;
216  omFreeProvision = 32 ;
217  omInUseList = NULL ;
218  omInUseCount = 0 ;
219
220  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
221  _suspend_flags = 0;
222
223  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
224  _hashStateX = os::random() ;
225  _hashStateY = 842502087 ;
226  _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
227  _hashStateW = 273326509 ;
228
229  _OnTrap   = 0 ;
230  _schedctl = NULL ;
231  _Stalled  = 0 ;
232  _TypeTag  = 0x2BAD ;
233
234  // Many of the following fields are effectively final - immutable
235  // Note that nascent threads can't use the Native Monitor-Mutex
236  // construct until the _MutexEvent is initialized ...
237  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
238  // we might instead use a stack of ParkEvents that we could provision on-demand.
239  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
240  // and ::Release()
241  _ParkEvent   = ParkEvent::Allocate (this) ;
242  _SleepEvent  = ParkEvent::Allocate (this) ;
243  _MutexEvent  = ParkEvent::Allocate (this) ;
244  _MuxEvent    = ParkEvent::Allocate (this) ;
245
246#ifdef CHECK_UNHANDLED_OOPS
247  if (CheckUnhandledOops) {
248    _unhandled_oops = new UnhandledOops(this);
249  }
250#endif // CHECK_UNHANDLED_OOPS
251#ifdef ASSERT
252  if (UseBiasedLocking) {
253    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
254    assert(this == _real_malloc_address ||
255           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
256           "bug in forced alignment of thread objects");
257  }
258#endif /* ASSERT */
259}
260
261void Thread::initialize_thread_local_storage() {
262  // Note: Make sure this method only calls
263  // non-blocking operations. Otherwise, it might not work
264  // with the thread-startup/safepoint interaction.
265
266  // During Java thread startup, safepoint code should allow this
267  // method to complete because it may need to allocate memory to
268  // store information for the new thread.
269
270  // initialize structure dependent on thread local storage
271  ThreadLocalStorage::set_thread(this);
272
273  // set up any platform-specific state.
274  os::initialize_thread();
275
276}
277
278void Thread::record_stack_base_and_size() {
279  set_stack_base(os::current_stack_base());
280  set_stack_size(os::current_stack_size());
281}
282
283
284Thread::~Thread() {
285  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
286  ObjectSynchronizer::omFlush (this) ;
287
288  // deallocate data structures
289  delete resource_area();
290  // since the handle marks are using the handle area, we have to deallocated the root
291  // handle mark before deallocating the thread's handle area,
292  assert(last_handle_mark() != NULL, "check we have an element");
293  delete last_handle_mark();
294  assert(last_handle_mark() == NULL, "check we have reached the end");
295
296  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
297  // We NULL out the fields for good hygiene.
298  ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
299  ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
300  ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
301  ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
302
303  delete handle_area();
304
305  // osthread() can be NULL, if creation of thread failed.
306  if (osthread() != NULL) os::free_thread(osthread());
307
308  delete _SR_lock;
309
310  // clear thread local storage if the Thread is deleting itself
311  if (this == Thread::current()) {
312    ThreadLocalStorage::set_thread(NULL);
313  } else {
314    // In the case where we're not the current thread, invalidate all the
315    // caches in case some code tries to get the current thread or the
316    // thread that was destroyed, and gets stale information.
317    ThreadLocalStorage::invalidate_all();
318  }
319  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
320}
321
322// NOTE: dummy function for assertion purpose.
323void Thread::run() {
324  ShouldNotReachHere();
325}
326
327#ifdef ASSERT
328// Private method to check for dangling thread pointer
329void check_for_dangling_thread_pointer(Thread *thread) {
330 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
331         "possibility of dangling Thread pointer");
332}
333#endif
334
335
336#ifndef PRODUCT
337// Tracing method for basic thread operations
338void Thread::trace(const char* msg, const Thread* const thread) {
339  if (!TraceThreadEvents) return;
340  ResourceMark rm;
341  ThreadCritical tc;
342  const char *name = "non-Java thread";
343  int prio = -1;
344  if (thread->is_Java_thread()
345      && !thread->is_Compiler_thread()) {
346    // The Threads_lock must be held to get information about
347    // this thread but may not be in some situations when
348    // tracing  thread events.
349    bool release_Threads_lock = false;
350    if (!Threads_lock->owned_by_self()) {
351      Threads_lock->lock();
352      release_Threads_lock = true;
353    }
354    JavaThread* jt = (JavaThread *)thread;
355    name = (char *)jt->get_thread_name();
356    oop thread_oop = jt->threadObj();
357    if (thread_oop != NULL) {
358      prio = java_lang_Thread::priority(thread_oop);
359    }
360    if (release_Threads_lock) {
361      Threads_lock->unlock();
362    }
363  }
364  tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
365}
366#endif
367
368
369ThreadPriority Thread::get_priority(const Thread* const thread) {
370  trace("get priority", thread);
371  ThreadPriority priority;
372  // Can return an error!
373  (void)os::get_priority(thread, priority);
374  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
375  return priority;
376}
377
378void Thread::set_priority(Thread* thread, ThreadPriority priority) {
379  trace("set priority", thread);
380  debug_only(check_for_dangling_thread_pointer(thread);)
381  // Can return an error!
382  (void)os::set_priority(thread, priority);
383}
384
385
386void Thread::start(Thread* thread) {
387  trace("start", thread);
388  // Start is different from resume in that its safety is guaranteed by context or
389  // being called from a Java method synchronized on the Thread object.
390  if (!DisableStartThread) {
391    if (thread->is_Java_thread()) {
392      // Initialize the thread state to RUNNABLE before starting this thread.
393      // Can not set it after the thread started because we do not know the
394      // exact thread state at that time. It could be in MONITOR_WAIT or
395      // in SLEEPING or some other state.
396      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
397                                          java_lang_Thread::RUNNABLE);
398    }
399    os::start_thread(thread);
400  }
401}
402
403// Enqueue a VM_Operation to do the job for us - sometime later
404void Thread::send_async_exception(oop java_thread, oop java_throwable) {
405  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
406  VMThread::execute(vm_stop);
407}
408
409
410//
411// Check if an external suspend request has completed (or has been
412// cancelled). Returns true if the thread is externally suspended and
413// false otherwise.
414//
415// The bits parameter returns information about the code path through
416// the routine. Useful for debugging:
417//
418// set in is_ext_suspend_completed():
419// 0x00000001 - routine was entered
420// 0x00000010 - routine return false at end
421// 0x00000100 - thread exited (return false)
422// 0x00000200 - suspend request cancelled (return false)
423// 0x00000400 - thread suspended (return true)
424// 0x00001000 - thread is in a suspend equivalent state (return true)
425// 0x00002000 - thread is native and walkable (return true)
426// 0x00004000 - thread is native_trans and walkable (needed retry)
427//
428// set in wait_for_ext_suspend_completion():
429// 0x00010000 - routine was entered
430// 0x00020000 - suspend request cancelled before loop (return false)
431// 0x00040000 - thread suspended before loop (return true)
432// 0x00080000 - suspend request cancelled in loop (return false)
433// 0x00100000 - thread suspended in loop (return true)
434// 0x00200000 - suspend not completed during retry loop (return false)
435//
436
437// Helper class for tracing suspend wait debug bits.
438//
439// 0x00000100 indicates that the target thread exited before it could
440// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
441// 0x00080000 each indicate a cancelled suspend request so they don't
442// count as wait failures either.
443#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
444
445class TraceSuspendDebugBits : public StackObj {
446 private:
447  JavaThread * jt;
448  bool         is_wait;
449  bool         called_by_wait;  // meaningful when !is_wait
450  uint32_t *   bits;
451
452 public:
453  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
454                        uint32_t *_bits) {
455    jt             = _jt;
456    is_wait        = _is_wait;
457    called_by_wait = _called_by_wait;
458    bits           = _bits;
459  }
460
461  ~TraceSuspendDebugBits() {
462    if (!is_wait) {
463#if 1
464      // By default, don't trace bits for is_ext_suspend_completed() calls.
465      // That trace is very chatty.
466      return;
467#else
468      if (!called_by_wait) {
469        // If tracing for is_ext_suspend_completed() is enabled, then only
470        // trace calls to it from wait_for_ext_suspend_completion()
471        return;
472      }
473#endif
474    }
475
476    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
477      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
478        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
479        ResourceMark rm;
480
481        tty->print_cr(
482            "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
483            jt->get_thread_name(), *bits);
484
485        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
486      }
487    }
488  }
489};
490#undef DEBUG_FALSE_BITS
491
492
493bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
494  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
495
496  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
497  bool do_trans_retry;           // flag to force the retry
498
499  *bits |= 0x00000001;
500
501  do {
502    do_trans_retry = false;
503
504    if (is_exiting()) {
505      // Thread is in the process of exiting. This is always checked
506      // first to reduce the risk of dereferencing a freed JavaThread.
507      *bits |= 0x00000100;
508      return false;
509    }
510
511    if (!is_external_suspend()) {
512      // Suspend request is cancelled. This is always checked before
513      // is_ext_suspended() to reduce the risk of a rogue resume
514      // confusing the thread that made the suspend request.
515      *bits |= 0x00000200;
516      return false;
517    }
518
519    if (is_ext_suspended()) {
520      // thread is suspended
521      *bits |= 0x00000400;
522      return true;
523    }
524
525    // Now that we no longer do hard suspends of threads running
526    // native code, the target thread can be changing thread state
527    // while we are in this routine:
528    //
529    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
530    //
531    // We save a copy of the thread state as observed at this moment
532    // and make our decision about suspend completeness based on the
533    // copy. This closes the race where the thread state is seen as
534    // _thread_in_native_trans in the if-thread_blocked check, but is
535    // seen as _thread_blocked in if-thread_in_native_trans check.
536    JavaThreadState save_state = thread_state();
537
538    if (save_state == _thread_blocked && is_suspend_equivalent()) {
539      // If the thread's state is _thread_blocked and this blocking
540      // condition is known to be equivalent to a suspend, then we can
541      // consider the thread to be externally suspended. This means that
542      // the code that sets _thread_blocked has been modified to do
543      // self-suspension if the blocking condition releases. We also
544      // used to check for CONDVAR_WAIT here, but that is now covered by
545      // the _thread_blocked with self-suspension check.
546      //
547      // Return true since we wouldn't be here unless there was still an
548      // external suspend request.
549      *bits |= 0x00001000;
550      return true;
551    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
552      // Threads running native code will self-suspend on native==>VM/Java
553      // transitions. If its stack is walkable (should always be the case
554      // unless this function is called before the actual java_suspend()
555      // call), then the wait is done.
556      *bits |= 0x00002000;
557      return true;
558    } else if (!called_by_wait && !did_trans_retry &&
559               save_state == _thread_in_native_trans &&
560               frame_anchor()->walkable()) {
561      // The thread is transitioning from thread_in_native to another
562      // thread state. check_safepoint_and_suspend_for_native_trans()
563      // will force the thread to self-suspend. If it hasn't gotten
564      // there yet we may have caught the thread in-between the native
565      // code check above and the self-suspend. Lucky us. If we were
566      // called by wait_for_ext_suspend_completion(), then it
567      // will be doing the retries so we don't have to.
568      //
569      // Since we use the saved thread state in the if-statement above,
570      // there is a chance that the thread has already transitioned to
571      // _thread_blocked by the time we get here. In that case, we will
572      // make a single unnecessary pass through the logic below. This
573      // doesn't hurt anything since we still do the trans retry.
574
575      *bits |= 0x00004000;
576
577      // Once the thread leaves thread_in_native_trans for another
578      // thread state, we break out of this retry loop. We shouldn't
579      // need this flag to prevent us from getting back here, but
580      // sometimes paranoia is good.
581      did_trans_retry = true;
582
583      // We wait for the thread to transition to a more usable state.
584      for (int i = 1; i <= SuspendRetryCount; i++) {
585        // We used to do an "os::yield_all(i)" call here with the intention
586        // that yielding would increase on each retry. However, the parameter
587        // is ignored on Linux which means the yield didn't scale up. Waiting
588        // on the SR_lock below provides a much more predictable scale up for
589        // the delay. It also provides a simple/direct point to check for any
590        // safepoint requests from the VMThread
591
592        // temporarily drops SR_lock while doing wait with safepoint check
593        // (if we're a JavaThread - the WatcherThread can also call this)
594        // and increase delay with each retry
595        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
596
597        // check the actual thread state instead of what we saved above
598        if (thread_state() != _thread_in_native_trans) {
599          // the thread has transitioned to another thread state so
600          // try all the checks (except this one) one more time.
601          do_trans_retry = true;
602          break;
603        }
604      } // end retry loop
605
606
607    }
608  } while (do_trans_retry);
609
610  *bits |= 0x00000010;
611  return false;
612}
613
614//
615// Wait for an external suspend request to complete (or be cancelled).
616// Returns true if the thread is externally suspended and false otherwise.
617//
618bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
619       uint32_t *bits) {
620  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
621                             false /* !called_by_wait */, bits);
622
623  // local flag copies to minimize SR_lock hold time
624  bool is_suspended;
625  bool pending;
626  uint32_t reset_bits;
627
628  // set a marker so is_ext_suspend_completed() knows we are the caller
629  *bits |= 0x00010000;
630
631  // We use reset_bits to reinitialize the bits value at the top of
632  // each retry loop. This allows the caller to make use of any
633  // unused bits for their own marking purposes.
634  reset_bits = *bits;
635
636  {
637    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
638    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
639                                            delay, bits);
640    pending = is_external_suspend();
641  }
642  // must release SR_lock to allow suspension to complete
643
644  if (!pending) {
645    // A cancelled suspend request is the only false return from
646    // is_ext_suspend_completed() that keeps us from entering the
647    // retry loop.
648    *bits |= 0x00020000;
649    return false;
650  }
651
652  if (is_suspended) {
653    *bits |= 0x00040000;
654    return true;
655  }
656
657  for (int i = 1; i <= retries; i++) {
658    *bits = reset_bits;  // reinit to only track last retry
659
660    // We used to do an "os::yield_all(i)" call here with the intention
661    // that yielding would increase on each retry. However, the parameter
662    // is ignored on Linux which means the yield didn't scale up. Waiting
663    // on the SR_lock below provides a much more predictable scale up for
664    // the delay. It also provides a simple/direct point to check for any
665    // safepoint requests from the VMThread
666
667    {
668      MutexLocker ml(SR_lock());
669      // wait with safepoint check (if we're a JavaThread - the WatcherThread
670      // can also call this)  and increase delay with each retry
671      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
672
673      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
674                                              delay, bits);
675
676      // It is possible for the external suspend request to be cancelled
677      // (by a resume) before the actual suspend operation is completed.
678      // Refresh our local copy to see if we still need to wait.
679      pending = is_external_suspend();
680    }
681
682    if (!pending) {
683      // A cancelled suspend request is the only false return from
684      // is_ext_suspend_completed() that keeps us from staying in the
685      // retry loop.
686      *bits |= 0x00080000;
687      return false;
688    }
689
690    if (is_suspended) {
691      *bits |= 0x00100000;
692      return true;
693    }
694  } // end retry loop
695
696  // thread did not suspend after all our retries
697  *bits |= 0x00200000;
698  return false;
699}
700
701#ifndef PRODUCT
702void JavaThread::record_jump(address target, address instr, const char* file, int line) {
703
704  // This should not need to be atomic as the only way for simultaneous
705  // updates is via interrupts. Even then this should be rare or non-existant
706  // and we don't care that much anyway.
707
708  int index = _jmp_ring_index;
709  _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
710  _jmp_ring[index]._target = (intptr_t) target;
711  _jmp_ring[index]._instruction = (intptr_t) instr;
712  _jmp_ring[index]._file = file;
713  _jmp_ring[index]._line = line;
714}
715#endif /* PRODUCT */
716
717// Called by flat profiler
718// Callers have already called wait_for_ext_suspend_completion
719// The assertion for that is currently too complex to put here:
720bool JavaThread::profile_last_Java_frame(frame* _fr) {
721  bool gotframe = false;
722  // self suspension saves needed state.
723  if (has_last_Java_frame() && _anchor.walkable()) {
724     *_fr = pd_last_frame();
725     gotframe = true;
726  }
727  return gotframe;
728}
729
730void Thread::interrupt(Thread* thread) {
731  trace("interrupt", thread);
732  debug_only(check_for_dangling_thread_pointer(thread);)
733  os::interrupt(thread);
734}
735
736bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
737  trace("is_interrupted", thread);
738  debug_only(check_for_dangling_thread_pointer(thread);)
739  // Note:  If clear_interrupted==false, this simply fetches and
740  // returns the value of the field osthread()->interrupted().
741  return os::is_interrupted(thread, clear_interrupted);
742}
743
744
745// GC Support
746bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
747  jint thread_parity = _oops_do_parity;
748  if (thread_parity != strong_roots_parity) {
749    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
750    if (res == thread_parity) return true;
751    else {
752      guarantee(res == strong_roots_parity, "Or else what?");
753      assert(SharedHeap::heap()->n_par_threads() > 0,
754             "Should only fail when parallel.");
755      return false;
756    }
757  }
758  assert(SharedHeap::heap()->n_par_threads() > 0,
759         "Should only fail when parallel.");
760  return false;
761}
762
763void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
764  active_handles()->oops_do(f);
765  // Do oop for ThreadShadow
766  f->do_oop((oop*)&_pending_exception);
767  handle_area()->oops_do(f);
768}
769
770void Thread::nmethods_do(CodeBlobClosure* cf) {
771  // no nmethods in a generic thread...
772}
773
774void Thread::print_on(outputStream* st) const {
775  // get_priority assumes osthread initialized
776  if (osthread() != NULL) {
777    st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
778    osthread()->print_on(st);
779  }
780  debug_only(if (WizardMode) print_owned_locks_on(st);)
781}
782
783// Thread::print_on_error() is called by fatal error handler. Don't use
784// any lock or allocate memory.
785void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
786  if      (is_VM_thread())                  st->print("VMThread");
787  else if (is_Compiler_thread())            st->print("CompilerThread");
788  else if (is_Java_thread())                st->print("JavaThread");
789  else if (is_GC_task_thread())             st->print("GCTaskThread");
790  else if (is_Watcher_thread())             st->print("WatcherThread");
791  else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
792  else st->print("Thread");
793
794  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
795            _stack_base - _stack_size, _stack_base);
796
797  if (osthread()) {
798    st->print(" [id=%d]", osthread()->thread_id());
799  }
800}
801
802#ifdef ASSERT
803void Thread::print_owned_locks_on(outputStream* st) const {
804  Monitor *cur = _owned_locks;
805  if (cur == NULL) {
806    st->print(" (no locks) ");
807  } else {
808    st->print_cr(" Locks owned:");
809    while(cur) {
810      cur->print_on(st);
811      cur = cur->next();
812    }
813  }
814}
815
816static int ref_use_count  = 0;
817
818bool Thread::owns_locks_but_compiled_lock() const {
819  for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
820    if (cur != Compile_lock) return true;
821  }
822  return false;
823}
824
825
826#endif
827
828#ifndef PRODUCT
829
830// The flag: potential_vm_operation notifies if this particular safepoint state could potential
831// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
832// no threads which allow_vm_block's are held
833void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
834    // Check if current thread is allowed to block at a safepoint
835    if (!(_allow_safepoint_count == 0))
836      fatal("Possible safepoint reached by thread that does not allow it");
837    if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
838      fatal("LEAF method calling lock?");
839    }
840
841#ifdef ASSERT
842    if (potential_vm_operation && is_Java_thread()
843        && !Universe::is_bootstrapping()) {
844      // Make sure we do not hold any locks that the VM thread also uses.
845      // This could potentially lead to deadlocks
846      for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
847        // Threads_lock is special, since the safepoint synchronization will not start before this is
848        // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
849        // since it is used to transfer control between JavaThreads and the VMThread
850        // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
851        if ( (cur->allow_vm_block() &&
852              cur != Threads_lock &&
853              cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
854              cur != VMOperationRequest_lock &&
855              cur != VMOperationQueue_lock) ||
856              cur->rank() == Mutex::special) {
857          warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
858        }
859      }
860    }
861
862    if (GCALotAtAllSafepoints) {
863      // We could enter a safepoint here and thus have a gc
864      InterfaceSupport::check_gc_alot();
865    }
866#endif
867}
868#endif
869
870bool Thread::is_in_stack(address adr) const {
871  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
872  address end = os::current_stack_pointer();
873  if (stack_base() >= adr && adr >= end) return true;
874
875  return false;
876}
877
878
879// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
880// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
881// used for compilation in the future. If that change is made, the need for these methods
882// should be revisited, and they should be removed if possible.
883
884bool Thread::is_lock_owned(address adr) const {
885  return on_local_stack(adr);
886}
887
888bool Thread::set_as_starting_thread() {
889 // NOTE: this must be called inside the main thread.
890  return os::create_main_thread((JavaThread*)this);
891}
892
893static void initialize_class(symbolHandle class_name, TRAPS) {
894  klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
895  instanceKlass::cast(klass)->initialize(CHECK);
896}
897
898
899// Creates the initial ThreadGroup
900static Handle create_initial_thread_group(TRAPS) {
901  klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_ThreadGroup(), true, CHECK_NH);
902  instanceKlassHandle klass (THREAD, k);
903
904  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
905  {
906    JavaValue result(T_VOID);
907    JavaCalls::call_special(&result,
908                            system_instance,
909                            klass,
910                            vmSymbolHandles::object_initializer_name(),
911                            vmSymbolHandles::void_method_signature(),
912                            CHECK_NH);
913  }
914  Universe::set_system_thread_group(system_instance());
915
916  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
917  {
918    JavaValue result(T_VOID);
919    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
920    JavaCalls::call_special(&result,
921                            main_instance,
922                            klass,
923                            vmSymbolHandles::object_initializer_name(),
924                            vmSymbolHandles::threadgroup_string_void_signature(),
925                            system_instance,
926                            string,
927                            CHECK_NH);
928  }
929  return main_instance;
930}
931
932// Creates the initial Thread
933static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
934  klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK_NULL);
935  instanceKlassHandle klass (THREAD, k);
936  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
937
938  java_lang_Thread::set_thread(thread_oop(), thread);
939  java_lang_Thread::set_priority(thread_oop(), NormPriority);
940  thread->set_threadObj(thread_oop());
941
942  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
943
944  JavaValue result(T_VOID);
945  JavaCalls::call_special(&result, thread_oop,
946                                   klass,
947                                   vmSymbolHandles::object_initializer_name(),
948                                   vmSymbolHandles::threadgroup_string_void_signature(),
949                                   thread_group,
950                                   string,
951                                   CHECK_NULL);
952  return thread_oop();
953}
954
955static void call_initializeSystemClass(TRAPS) {
956  klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
957  instanceKlassHandle klass (THREAD, k);
958
959  JavaValue result(T_VOID);
960  JavaCalls::call_static(&result, klass, vmSymbolHandles::initializeSystemClass_name(),
961                                         vmSymbolHandles::void_method_signature(), CHECK);
962}
963
964#ifdef KERNEL
965static void set_jkernel_boot_classloader_hook(TRAPS) {
966  klassOop k = SystemDictionary::sun_jkernel_DownloadManager_klass();
967  instanceKlassHandle klass (THREAD, k);
968
969  if (k == NULL) {
970    // sun.jkernel.DownloadManager may not present in the JDK; just return
971    return;
972  }
973
974  JavaValue result(T_VOID);
975  JavaCalls::call_static(&result, klass, vmSymbolHandles::setBootClassLoaderHook_name(),
976                                         vmSymbolHandles::void_method_signature(), CHECK);
977}
978#endif // KERNEL
979
980static void reset_vm_info_property(TRAPS) {
981  // the vm info string
982  ResourceMark rm(THREAD);
983  const char *vm_info = VM_Version::vm_info_string();
984
985  // java.lang.System class
986  klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
987  instanceKlassHandle klass (THREAD, k);
988
989  // setProperty arguments
990  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
991  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
992
993  // return value
994  JavaValue r(T_OBJECT);
995
996  // public static String setProperty(String key, String value);
997  JavaCalls::call_static(&r,
998                         klass,
999                         vmSymbolHandles::setProperty_name(),
1000                         vmSymbolHandles::string_string_string_signature(),
1001                         key_str,
1002                         value_str,
1003                         CHECK);
1004}
1005
1006
1007void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1008  assert(thread_group.not_null(), "thread group should be specified");
1009  assert(threadObj() == NULL, "should only create Java thread object once");
1010
1011  klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK);
1012  instanceKlassHandle klass (THREAD, k);
1013  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1014
1015  java_lang_Thread::set_thread(thread_oop(), this);
1016  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1017  set_threadObj(thread_oop());
1018
1019  JavaValue result(T_VOID);
1020  if (thread_name != NULL) {
1021    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1022    // Thread gets assigned specified name and null target
1023    JavaCalls::call_special(&result,
1024                            thread_oop,
1025                            klass,
1026                            vmSymbolHandles::object_initializer_name(),
1027                            vmSymbolHandles::threadgroup_string_void_signature(),
1028                            thread_group, // Argument 1
1029                            name,         // Argument 2
1030                            THREAD);
1031  } else {
1032    // Thread gets assigned name "Thread-nnn" and null target
1033    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1034    JavaCalls::call_special(&result,
1035                            thread_oop,
1036                            klass,
1037                            vmSymbolHandles::object_initializer_name(),
1038                            vmSymbolHandles::threadgroup_runnable_void_signature(),
1039                            thread_group, // Argument 1
1040                            Handle(),     // Argument 2
1041                            THREAD);
1042  }
1043
1044
1045  if (daemon) {
1046      java_lang_Thread::set_daemon(thread_oop());
1047  }
1048
1049  if (HAS_PENDING_EXCEPTION) {
1050    return;
1051  }
1052
1053  KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1054  Handle threadObj(this, this->threadObj());
1055
1056  JavaCalls::call_special(&result,
1057                         thread_group,
1058                         group,
1059                         vmSymbolHandles::add_method_name(),
1060                         vmSymbolHandles::thread_void_signature(),
1061                         threadObj,          // Arg 1
1062                         THREAD);
1063
1064
1065}
1066
1067// NamedThread --  non-JavaThread subclasses with multiple
1068// uniquely named instances should derive from this.
1069NamedThread::NamedThread() : Thread() {
1070  _name = NULL;
1071  _processed_thread = NULL;
1072}
1073
1074NamedThread::~NamedThread() {
1075  if (_name != NULL) {
1076    FREE_C_HEAP_ARRAY(char, _name);
1077    _name = NULL;
1078  }
1079}
1080
1081void NamedThread::set_name(const char* format, ...) {
1082  guarantee(_name == NULL, "Only get to set name once.");
1083  _name = NEW_C_HEAP_ARRAY(char, max_name_len);
1084  guarantee(_name != NULL, "alloc failure");
1085  va_list ap;
1086  va_start(ap, format);
1087  jio_vsnprintf(_name, max_name_len, format, ap);
1088  va_end(ap);
1089}
1090
1091// ======= WatcherThread ========
1092
1093// The watcher thread exists to simulate timer interrupts.  It should
1094// be replaced by an abstraction over whatever native support for
1095// timer interrupts exists on the platform.
1096
1097WatcherThread* WatcherThread::_watcher_thread   = NULL;
1098volatile bool  WatcherThread::_should_terminate = false;
1099
1100WatcherThread::WatcherThread() : Thread() {
1101  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1102  if (os::create_thread(this, os::watcher_thread)) {
1103    _watcher_thread = this;
1104
1105    // Set the watcher thread to the highest OS priority which should not be
1106    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1107    // is created. The only normal thread using this priority is the reference
1108    // handler thread, which runs for very short intervals only.
1109    // If the VMThread's priority is not lower than the WatcherThread profiling
1110    // will be inaccurate.
1111    os::set_priority(this, MaxPriority);
1112    if (!DisableStartThread) {
1113      os::start_thread(this);
1114    }
1115  }
1116}
1117
1118void WatcherThread::run() {
1119  assert(this == watcher_thread(), "just checking");
1120
1121  this->record_stack_base_and_size();
1122  this->initialize_thread_local_storage();
1123  this->set_active_handles(JNIHandleBlock::allocate_block());
1124  while(!_should_terminate) {
1125    assert(watcher_thread() == Thread::current(),  "thread consistency check");
1126    assert(watcher_thread() == this,  "thread consistency check");
1127
1128    // Calculate how long it'll be until the next PeriodicTask work
1129    // should be done, and sleep that amount of time.
1130    size_t time_to_wait = PeriodicTask::time_to_wait();
1131
1132    // we expect this to timeout - we only ever get unparked when
1133    // we should terminate
1134    {
1135      OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1136
1137      jlong prev_time = os::javaTimeNanos();
1138      for (;;) {
1139        int res= _SleepEvent->park(time_to_wait);
1140        if (res == OS_TIMEOUT || _should_terminate)
1141          break;
1142        // spurious wakeup of some kind
1143        jlong now = os::javaTimeNanos();
1144        time_to_wait -= (now - prev_time) / 1000000;
1145        if (time_to_wait <= 0)
1146          break;
1147        prev_time = now;
1148      }
1149    }
1150
1151    if (is_error_reported()) {
1152      // A fatal error has happened, the error handler(VMError::report_and_die)
1153      // should abort JVM after creating an error log file. However in some
1154      // rare cases, the error handler itself might deadlock. Here we try to
1155      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1156      //
1157      // This code is in WatcherThread because WatcherThread wakes up
1158      // periodically so the fatal error handler doesn't need to do anything;
1159      // also because the WatcherThread is less likely to crash than other
1160      // threads.
1161
1162      for (;;) {
1163        if (!ShowMessageBoxOnError
1164         && (OnError == NULL || OnError[0] == '\0')
1165         && Arguments::abort_hook() == NULL) {
1166             os::sleep(this, 2 * 60 * 1000, false);
1167             fdStream err(defaultStream::output_fd());
1168             err.print_raw_cr("# [ timer expired, abort... ]");
1169             // skip atexit/vm_exit/vm_abort hooks
1170             os::die();
1171        }
1172
1173        // Wake up 5 seconds later, the fatal handler may reset OnError or
1174        // ShowMessageBoxOnError when it is ready to abort.
1175        os::sleep(this, 5 * 1000, false);
1176      }
1177    }
1178
1179    PeriodicTask::real_time_tick(time_to_wait);
1180
1181    // If we have no more tasks left due to dynamic disenrollment,
1182    // shut down the thread since we don't currently support dynamic enrollment
1183    if (PeriodicTask::num_tasks() == 0) {
1184      _should_terminate = true;
1185    }
1186  }
1187
1188  // Signal that it is terminated
1189  {
1190    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1191    _watcher_thread = NULL;
1192    Terminator_lock->notify();
1193  }
1194
1195  // Thread destructor usually does this..
1196  ThreadLocalStorage::set_thread(NULL);
1197}
1198
1199void WatcherThread::start() {
1200  if (watcher_thread() == NULL) {
1201    _should_terminate = false;
1202    // Create the single instance of WatcherThread
1203    new WatcherThread();
1204  }
1205}
1206
1207void WatcherThread::stop() {
1208  // it is ok to take late safepoints here, if needed
1209  MutexLocker mu(Terminator_lock);
1210  _should_terminate = true;
1211  OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1212
1213  Thread* watcher = watcher_thread();
1214  if (watcher != NULL)
1215    watcher->_SleepEvent->unpark();
1216
1217  while(watcher_thread() != NULL) {
1218    // This wait should make safepoint checks, wait without a timeout,
1219    // and wait as a suspend-equivalent condition.
1220    //
1221    // Note: If the FlatProfiler is running, then this thread is waiting
1222    // for the WatcherThread to terminate and the WatcherThread, via the
1223    // FlatProfiler task, is waiting for the external suspend request on
1224    // this thread to complete. wait_for_ext_suspend_completion() will
1225    // eventually timeout, but that takes time. Making this wait a
1226    // suspend-equivalent condition solves that timeout problem.
1227    //
1228    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1229                          Mutex::_as_suspend_equivalent_flag);
1230  }
1231}
1232
1233void WatcherThread::print_on(outputStream* st) const {
1234  st->print("\"%s\" ", name());
1235  Thread::print_on(st);
1236  st->cr();
1237}
1238
1239// ======= JavaThread ========
1240
1241// A JavaThread is a normal Java thread
1242
1243void JavaThread::initialize() {
1244  // Initialize fields
1245
1246  // Set the claimed par_id to -1 (ie not claiming any par_ids)
1247  set_claimed_par_id(-1);
1248
1249  set_saved_exception_pc(NULL);
1250  set_threadObj(NULL);
1251  _anchor.clear();
1252  set_entry_point(NULL);
1253  set_jni_functions(jni_functions());
1254  set_callee_target(NULL);
1255  set_vm_result(NULL);
1256  set_vm_result_2(NULL);
1257  set_vframe_array_head(NULL);
1258  set_vframe_array_last(NULL);
1259  set_deferred_locals(NULL);
1260  set_deopt_mark(NULL);
1261  set_deopt_nmethod(NULL);
1262  clear_must_deopt_id();
1263  set_monitor_chunks(NULL);
1264  set_next(NULL);
1265  set_thread_state(_thread_new);
1266  _terminated = _not_terminated;
1267  _privileged_stack_top = NULL;
1268  _array_for_gc = NULL;
1269  _suspend_equivalent = false;
1270  _in_deopt_handler = 0;
1271  _doing_unsafe_access = false;
1272  _stack_guard_state = stack_guard_unused;
1273  _exception_oop = NULL;
1274  _exception_pc  = 0;
1275  _exception_handler_pc = 0;
1276  _exception_stack_size = 0;
1277  _is_method_handle_return = 0;
1278  _jvmti_thread_state= NULL;
1279  _should_post_on_exceptions_flag = JNI_FALSE;
1280  _jvmti_get_loaded_classes_closure = NULL;
1281  _interp_only_mode    = 0;
1282  _special_runtime_exit_condition = _no_async_condition;
1283  _pending_async_exception = NULL;
1284  _is_compiling = false;
1285  _thread_stat = NULL;
1286  _thread_stat = new ThreadStatistics();
1287  _blocked_on_compilation = false;
1288  _jni_active_critical = 0;
1289  _do_not_unlock_if_synchronized = false;
1290  _cached_monitor_info = NULL;
1291  _parker = Parker::Allocate(this) ;
1292
1293#ifndef PRODUCT
1294  _jmp_ring_index = 0;
1295  for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1296    record_jump(NULL, NULL, NULL, 0);
1297  }
1298#endif /* PRODUCT */
1299
1300  set_thread_profiler(NULL);
1301  if (FlatProfiler::is_active()) {
1302    // This is where we would decide to either give each thread it's own profiler
1303    // or use one global one from FlatProfiler,
1304    // or up to some count of the number of profiled threads, etc.
1305    ThreadProfiler* pp = new ThreadProfiler();
1306    pp->engage();
1307    set_thread_profiler(pp);
1308  }
1309
1310  // Setup safepoint state info for this thread
1311  ThreadSafepointState::create(this);
1312
1313  debug_only(_java_call_counter = 0);
1314
1315  // JVMTI PopFrame support
1316  _popframe_condition = popframe_inactive;
1317  _popframe_preserved_args = NULL;
1318  _popframe_preserved_args_size = 0;
1319
1320  pd_initialize();
1321}
1322
1323#ifndef SERIALGC
1324SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1325DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1326#endif // !SERIALGC
1327
1328JavaThread::JavaThread(bool is_attaching) :
1329  Thread()
1330#ifndef SERIALGC
1331  , _satb_mark_queue(&_satb_mark_queue_set),
1332  _dirty_card_queue(&_dirty_card_queue_set)
1333#endif // !SERIALGC
1334{
1335  initialize();
1336  _is_attaching = is_attaching;
1337  assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
1338}
1339
1340bool JavaThread::reguard_stack(address cur_sp) {
1341  if (_stack_guard_state != stack_guard_yellow_disabled) {
1342    return true; // Stack already guarded or guard pages not needed.
1343  }
1344
1345  if (register_stack_overflow()) {
1346    // For those architectures which have separate register and
1347    // memory stacks, we must check the register stack to see if
1348    // it has overflowed.
1349    return false;
1350  }
1351
1352  // Java code never executes within the yellow zone: the latter is only
1353  // there to provoke an exception during stack banging.  If java code
1354  // is executing there, either StackShadowPages should be larger, or
1355  // some exception code in c1, c2 or the interpreter isn't unwinding
1356  // when it should.
1357  guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1358
1359  enable_stack_yellow_zone();
1360  return true;
1361}
1362
1363bool JavaThread::reguard_stack(void) {
1364  return reguard_stack(os::current_stack_pointer());
1365}
1366
1367
1368void JavaThread::block_if_vm_exited() {
1369  if (_terminated == _vm_exited) {
1370    // _vm_exited is set at safepoint, and Threads_lock is never released
1371    // we will block here forever
1372    Threads_lock->lock_without_safepoint_check();
1373    ShouldNotReachHere();
1374  }
1375}
1376
1377
1378// Remove this ifdef when C1 is ported to the compiler interface.
1379static void compiler_thread_entry(JavaThread* thread, TRAPS);
1380
1381JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1382  Thread()
1383#ifndef SERIALGC
1384  , _satb_mark_queue(&_satb_mark_queue_set),
1385  _dirty_card_queue(&_dirty_card_queue_set)
1386#endif // !SERIALGC
1387{
1388  if (TraceThreadEvents) {
1389    tty->print_cr("creating thread %p", this);
1390  }
1391  initialize();
1392  _is_attaching = false;
1393  set_entry_point(entry_point);
1394  // Create the native thread itself.
1395  // %note runtime_23
1396  os::ThreadType thr_type = os::java_thread;
1397  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1398                                                     os::java_thread;
1399  os::create_thread(this, thr_type, stack_sz);
1400
1401  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1402  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1403  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1404  // the exception consists of creating the exception object & initializing it, initialization
1405  // will leave the VM via a JavaCall and then all locks must be unlocked).
1406  //
1407  // The thread is still suspended when we reach here. Thread must be explicit started
1408  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1409  // by calling Threads:add. The reason why this is not done here, is because the thread
1410  // object must be fully initialized (take a look at JVM_Start)
1411}
1412
1413JavaThread::~JavaThread() {
1414  if (TraceThreadEvents) {
1415      tty->print_cr("terminate thread %p", this);
1416  }
1417
1418  // JSR166 -- return the parker to the free list
1419  Parker::Release(_parker);
1420  _parker = NULL ;
1421
1422  // Free any remaining  previous UnrollBlock
1423  vframeArray* old_array = vframe_array_last();
1424
1425  if (old_array != NULL) {
1426    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1427    old_array->set_unroll_block(NULL);
1428    delete old_info;
1429    delete old_array;
1430  }
1431
1432  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1433  if (deferred != NULL) {
1434    // This can only happen if thread is destroyed before deoptimization occurs.
1435    assert(deferred->length() != 0, "empty array!");
1436    do {
1437      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1438      deferred->remove_at(0);
1439      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1440      delete dlv;
1441    } while (deferred->length() != 0);
1442    delete deferred;
1443  }
1444
1445  // All Java related clean up happens in exit
1446  ThreadSafepointState::destroy(this);
1447  if (_thread_profiler != NULL) delete _thread_profiler;
1448  if (_thread_stat != NULL) delete _thread_stat;
1449}
1450
1451
1452// The first routine called by a new Java thread
1453void JavaThread::run() {
1454  // initialize thread-local alloc buffer related fields
1455  this->initialize_tlab();
1456
1457  // used to test validitity of stack trace backs
1458  this->record_base_of_stack_pointer();
1459
1460  // Record real stack base and size.
1461  this->record_stack_base_and_size();
1462
1463  // Initialize thread local storage; set before calling MutexLocker
1464  this->initialize_thread_local_storage();
1465
1466  this->create_stack_guard_pages();
1467
1468  this->cache_global_variables();
1469
1470  // Thread is now sufficient initialized to be handled by the safepoint code as being
1471  // in the VM. Change thread state from _thread_new to _thread_in_vm
1472  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1473
1474  assert(JavaThread::current() == this, "sanity check");
1475  assert(!Thread::current()->owns_locks(), "sanity check");
1476
1477  DTRACE_THREAD_PROBE(start, this);
1478
1479  // This operation might block. We call that after all safepoint checks for a new thread has
1480  // been completed.
1481  this->set_active_handles(JNIHandleBlock::allocate_block());
1482
1483  if (JvmtiExport::should_post_thread_life()) {
1484    JvmtiExport::post_thread_start(this);
1485  }
1486
1487  // We call another function to do the rest so we are sure that the stack addresses used
1488  // from there will be lower than the stack base just computed
1489  thread_main_inner();
1490
1491  // Note, thread is no longer valid at this point!
1492}
1493
1494
1495void JavaThread::thread_main_inner() {
1496  assert(JavaThread::current() == this, "sanity check");
1497  assert(this->threadObj() != NULL, "just checking");
1498
1499  // Execute thread entry point. If this thread is being asked to restart,
1500  // or has been stopped before starting, do not reexecute entry point.
1501  // Note: Due to JVM_StopThread we can have pending exceptions already!
1502  if (!this->has_pending_exception() && !java_lang_Thread::is_stillborn(this->threadObj())) {
1503    // enter the thread's entry point only if we have no pending exceptions
1504    HandleMark hm(this);
1505    this->entry_point()(this, this);
1506  }
1507
1508  DTRACE_THREAD_PROBE(stop, this);
1509
1510  this->exit(false);
1511  delete this;
1512}
1513
1514
1515static void ensure_join(JavaThread* thread) {
1516  // We do not need to grap the Threads_lock, since we are operating on ourself.
1517  Handle threadObj(thread, thread->threadObj());
1518  assert(threadObj.not_null(), "java thread object must exist");
1519  ObjectLocker lock(threadObj, thread);
1520  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1521  thread->clear_pending_exception();
1522  // It is of profound importance that we set the stillborn bit and reset the thread object,
1523  // before we do the notify. Since, changing these two variable will make JVM_IsAlive return
1524  // false. So in case another thread is doing a join on this thread , it will detect that the thread
1525  // is dead when it gets notified.
1526  java_lang_Thread::set_stillborn(threadObj());
1527  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1528  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1529  java_lang_Thread::set_thread(threadObj(), NULL);
1530  lock.notify_all(thread);
1531  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1532  thread->clear_pending_exception();
1533}
1534
1535
1536// For any new cleanup additions, please check to see if they need to be applied to
1537// cleanup_failed_attach_current_thread as well.
1538void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1539  assert(this == JavaThread::current(),  "thread consistency check");
1540  if (!InitializeJavaLangSystem) return;
1541
1542  HandleMark hm(this);
1543  Handle uncaught_exception(this, this->pending_exception());
1544  this->clear_pending_exception();
1545  Handle threadObj(this, this->threadObj());
1546  assert(threadObj.not_null(), "Java thread object should be created");
1547
1548  if (get_thread_profiler() != NULL) {
1549    get_thread_profiler()->disengage();
1550    ResourceMark rm;
1551    get_thread_profiler()->print(get_thread_name());
1552  }
1553
1554
1555  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1556  {
1557    EXCEPTION_MARK;
1558
1559    CLEAR_PENDING_EXCEPTION;
1560  }
1561  // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1562  // has to be fixed by a runtime query method
1563  if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1564    // JSR-166: change call from from ThreadGroup.uncaughtException to
1565    // java.lang.Thread.dispatchUncaughtException
1566    if (uncaught_exception.not_null()) {
1567      Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1568      Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
1569        (address)uncaught_exception(), (address)threadObj(), (address)group());
1570      {
1571        EXCEPTION_MARK;
1572        // Check if the method Thread.dispatchUncaughtException() exists. If so
1573        // call it.  Otherwise we have an older library without the JSR-166 changes,
1574        // so call ThreadGroup.uncaughtException()
1575        KlassHandle recvrKlass(THREAD, threadObj->klass());
1576        CallInfo callinfo;
1577        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1578        LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1579                                           vmSymbolHandles::dispatchUncaughtException_name(),
1580                                           vmSymbolHandles::throwable_void_signature(),
1581                                           KlassHandle(), false, false, THREAD);
1582        CLEAR_PENDING_EXCEPTION;
1583        methodHandle method = callinfo.selected_method();
1584        if (method.not_null()) {
1585          JavaValue result(T_VOID);
1586          JavaCalls::call_virtual(&result,
1587                                  threadObj, thread_klass,
1588                                  vmSymbolHandles::dispatchUncaughtException_name(),
1589                                  vmSymbolHandles::throwable_void_signature(),
1590                                  uncaught_exception,
1591                                  THREAD);
1592        } else {
1593          KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1594          JavaValue result(T_VOID);
1595          JavaCalls::call_virtual(&result,
1596                                  group, thread_group,
1597                                  vmSymbolHandles::uncaughtException_name(),
1598                                  vmSymbolHandles::thread_throwable_void_signature(),
1599                                  threadObj,           // Arg 1
1600                                  uncaught_exception,  // Arg 2
1601                                  THREAD);
1602        }
1603        CLEAR_PENDING_EXCEPTION;
1604      }
1605    }
1606
1607    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1608    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1609    // is deprecated anyhow.
1610    { int count = 3;
1611      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1612        EXCEPTION_MARK;
1613        JavaValue result(T_VOID);
1614        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1615        JavaCalls::call_virtual(&result,
1616                              threadObj, thread_klass,
1617                              vmSymbolHandles::exit_method_name(),
1618                              vmSymbolHandles::void_method_signature(),
1619                              THREAD);
1620        CLEAR_PENDING_EXCEPTION;
1621      }
1622    }
1623
1624    // notify JVMTI
1625    if (JvmtiExport::should_post_thread_life()) {
1626      JvmtiExport::post_thread_end(this);
1627    }
1628
1629    // We have notified the agents that we are exiting, before we go on,
1630    // we must check for a pending external suspend request and honor it
1631    // in order to not surprise the thread that made the suspend request.
1632    while (true) {
1633      {
1634        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1635        if (!is_external_suspend()) {
1636          set_terminated(_thread_exiting);
1637          ThreadService::current_thread_exiting(this);
1638          break;
1639        }
1640        // Implied else:
1641        // Things get a little tricky here. We have a pending external
1642        // suspend request, but we are holding the SR_lock so we
1643        // can't just self-suspend. So we temporarily drop the lock
1644        // and then self-suspend.
1645      }
1646
1647      ThreadBlockInVM tbivm(this);
1648      java_suspend_self();
1649
1650      // We're done with this suspend request, but we have to loop around
1651      // and check again. Eventually we will get SR_lock without a pending
1652      // external suspend request and will be able to mark ourselves as
1653      // exiting.
1654    }
1655    // no more external suspends are allowed at this point
1656  } else {
1657    // before_exit() has already posted JVMTI THREAD_END events
1658  }
1659
1660  // Notify waiters on thread object. This has to be done after exit() is called
1661  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1662  // group should have the destroyed bit set before waiters are notified).
1663  ensure_join(this);
1664  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1665
1666  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1667  // held by this thread must be released.  A detach operation must only
1668  // get here if there are no Java frames on the stack.  Therefore, any
1669  // owned monitors at this point MUST be JNI-acquired monitors which are
1670  // pre-inflated and in the monitor cache.
1671  //
1672  // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1673  if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1674    assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1675    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1676    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1677  }
1678
1679  // These things needs to be done while we are still a Java Thread. Make sure that thread
1680  // is in a consistent state, in case GC happens
1681  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1682
1683  if (active_handles() != NULL) {
1684    JNIHandleBlock* block = active_handles();
1685    set_active_handles(NULL);
1686    JNIHandleBlock::release_block(block);
1687  }
1688
1689  if (free_handle_block() != NULL) {
1690    JNIHandleBlock* block = free_handle_block();
1691    set_free_handle_block(NULL);
1692    JNIHandleBlock::release_block(block);
1693  }
1694
1695  // These have to be removed while this is still a valid thread.
1696  remove_stack_guard_pages();
1697
1698  if (UseTLAB) {
1699    tlab().make_parsable(true);  // retire TLAB
1700  }
1701
1702  if (jvmti_thread_state() != NULL) {
1703    JvmtiExport::cleanup_thread(this);
1704  }
1705
1706#ifndef SERIALGC
1707  // We must flush G1-related buffers before removing a thread from
1708  // the list of active threads.
1709  if (UseG1GC) {
1710    flush_barrier_queues();
1711  }
1712#endif
1713
1714  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1715  Threads::remove(this);
1716}
1717
1718#ifndef SERIALGC
1719// Flush G1-related queues.
1720void JavaThread::flush_barrier_queues() {
1721  satb_mark_queue().flush();
1722  dirty_card_queue().flush();
1723}
1724
1725void JavaThread::initialize_queues() {
1726  assert(!SafepointSynchronize::is_at_safepoint(),
1727         "we should not be at a safepoint");
1728
1729  ObjPtrQueue& satb_queue = satb_mark_queue();
1730  SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1731  // The SATB queue should have been constructed with its active
1732  // field set to false.
1733  assert(!satb_queue.is_active(), "SATB queue should not be active");
1734  assert(satb_queue.is_empty(), "SATB queue should be empty");
1735  // If we are creating the thread during a marking cycle, we should
1736  // set the active field of the SATB queue to true.
1737  if (satb_queue_set.is_active()) {
1738    satb_queue.set_active(true);
1739  }
1740
1741  DirtyCardQueue& dirty_queue = dirty_card_queue();
1742  // The dirty card queue should have been constructed with its
1743  // active field set to true.
1744  assert(dirty_queue.is_active(), "dirty card queue should be active");
1745}
1746#endif // !SERIALGC
1747
1748void JavaThread::cleanup_failed_attach_current_thread() {
1749  if (get_thread_profiler() != NULL) {
1750    get_thread_profiler()->disengage();
1751    ResourceMark rm;
1752    get_thread_profiler()->print(get_thread_name());
1753  }
1754
1755  if (active_handles() != NULL) {
1756    JNIHandleBlock* block = active_handles();
1757    set_active_handles(NULL);
1758    JNIHandleBlock::release_block(block);
1759  }
1760
1761  if (free_handle_block() != NULL) {
1762    JNIHandleBlock* block = free_handle_block();
1763    set_free_handle_block(NULL);
1764    JNIHandleBlock::release_block(block);
1765  }
1766
1767  // These have to be removed while this is still a valid thread.
1768  remove_stack_guard_pages();
1769
1770  if (UseTLAB) {
1771    tlab().make_parsable(true);  // retire TLAB, if any
1772  }
1773
1774#ifndef SERIALGC
1775  if (UseG1GC) {
1776    flush_barrier_queues();
1777  }
1778#endif
1779
1780  Threads::remove(this);
1781  delete this;
1782}
1783
1784
1785
1786
1787JavaThread* JavaThread::active() {
1788  Thread* thread = ThreadLocalStorage::thread();
1789  assert(thread != NULL, "just checking");
1790  if (thread->is_Java_thread()) {
1791    return (JavaThread*) thread;
1792  } else {
1793    assert(thread->is_VM_thread(), "this must be a vm thread");
1794    VM_Operation* op = ((VMThread*) thread)->vm_operation();
1795    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1796    assert(ret->is_Java_thread(), "must be a Java thread");
1797    return ret;
1798  }
1799}
1800
1801bool JavaThread::is_lock_owned(address adr) const {
1802  if (Thread::is_lock_owned(adr)) return true;
1803
1804  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1805    if (chunk->contains(adr)) return true;
1806  }
1807
1808  return false;
1809}
1810
1811
1812void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1813  chunk->set_next(monitor_chunks());
1814  set_monitor_chunks(chunk);
1815}
1816
1817void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1818  guarantee(monitor_chunks() != NULL, "must be non empty");
1819  if (monitor_chunks() == chunk) {
1820    set_monitor_chunks(chunk->next());
1821  } else {
1822    MonitorChunk* prev = monitor_chunks();
1823    while (prev->next() != chunk) prev = prev->next();
1824    prev->set_next(chunk->next());
1825  }
1826}
1827
1828// JVM support.
1829
1830// Note: this function shouldn't block if it's called in
1831// _thread_in_native_trans state (such as from
1832// check_special_condition_for_native_trans()).
1833void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1834
1835  if (has_last_Java_frame() && has_async_condition()) {
1836    // If we are at a polling page safepoint (not a poll return)
1837    // then we must defer async exception because live registers
1838    // will be clobbered by the exception path. Poll return is
1839    // ok because the call we a returning from already collides
1840    // with exception handling registers and so there is no issue.
1841    // (The exception handling path kills call result registers but
1842    //  this is ok since the exception kills the result anyway).
1843
1844    if (is_at_poll_safepoint()) {
1845      // if the code we are returning to has deoptimized we must defer
1846      // the exception otherwise live registers get clobbered on the
1847      // exception path before deoptimization is able to retrieve them.
1848      //
1849      RegisterMap map(this, false);
1850      frame caller_fr = last_frame().sender(&map);
1851      assert(caller_fr.is_compiled_frame(), "what?");
1852      if (caller_fr.is_deoptimized_frame()) {
1853        if (TraceExceptions) {
1854          ResourceMark rm;
1855          tty->print_cr("deferred async exception at compiled safepoint");
1856        }
1857        return;
1858      }
1859    }
1860  }
1861
1862  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
1863  if (condition == _no_async_condition) {
1864    // Conditions have changed since has_special_runtime_exit_condition()
1865    // was called:
1866    // - if we were here only because of an external suspend request,
1867    //   then that was taken care of above (or cancelled) so we are done
1868    // - if we were here because of another async request, then it has
1869    //   been cleared between the has_special_runtime_exit_condition()
1870    //   and now so again we are done
1871    return;
1872  }
1873
1874  // Check for pending async. exception
1875  if (_pending_async_exception != NULL) {
1876    // Only overwrite an already pending exception, if it is not a threadDeath.
1877    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
1878
1879      // We cannot call Exceptions::_throw(...) here because we cannot block
1880      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
1881
1882      if (TraceExceptions) {
1883        ResourceMark rm;
1884        tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
1885        if (has_last_Java_frame() ) {
1886          frame f = last_frame();
1887          tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
1888        }
1889        tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1890      }
1891      _pending_async_exception = NULL;
1892      clear_has_async_exception();
1893    }
1894  }
1895
1896  if (check_unsafe_error &&
1897      condition == _async_unsafe_access_error && !has_pending_exception()) {
1898    condition = _no_async_condition;  // done
1899    switch (thread_state()) {
1900    case _thread_in_vm:
1901      {
1902        JavaThread* THREAD = this;
1903        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1904      }
1905    case _thread_in_native:
1906      {
1907        ThreadInVMfromNative tiv(this);
1908        JavaThread* THREAD = this;
1909        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1910      }
1911    case _thread_in_Java:
1912      {
1913        ThreadInVMfromJava tiv(this);
1914        JavaThread* THREAD = this;
1915        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
1916      }
1917    default:
1918      ShouldNotReachHere();
1919    }
1920  }
1921
1922  assert(condition == _no_async_condition || has_pending_exception() ||
1923         (!check_unsafe_error && condition == _async_unsafe_access_error),
1924         "must have handled the async condition, if no exception");
1925}
1926
1927void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
1928  //
1929  // Check for pending external suspend. Internal suspend requests do
1930  // not use handle_special_runtime_exit_condition().
1931  // If JNIEnv proxies are allowed, don't self-suspend if the target
1932  // thread is not the current thread. In older versions of jdbx, jdbx
1933  // threads could call into the VM with another thread's JNIEnv so we
1934  // can be here operating on behalf of a suspended thread (4432884).
1935  bool do_self_suspend = is_external_suspend_with_lock();
1936  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
1937    //
1938    // Because thread is external suspended the safepoint code will count
1939    // thread as at a safepoint. This can be odd because we can be here
1940    // as _thread_in_Java which would normally transition to _thread_blocked
1941    // at a safepoint. We would like to mark the thread as _thread_blocked
1942    // before calling java_suspend_self like all other callers of it but
1943    // we must then observe proper safepoint protocol. (We can't leave
1944    // _thread_blocked with a safepoint in progress). However we can be
1945    // here as _thread_in_native_trans so we can't use a normal transition
1946    // constructor/destructor pair because they assert on that type of
1947    // transition. We could do something like:
1948    //
1949    // JavaThreadState state = thread_state();
1950    // set_thread_state(_thread_in_vm);
1951    // {
1952    //   ThreadBlockInVM tbivm(this);
1953    //   java_suspend_self()
1954    // }
1955    // set_thread_state(_thread_in_vm_trans);
1956    // if (safepoint) block;
1957    // set_thread_state(state);
1958    //
1959    // but that is pretty messy. Instead we just go with the way the
1960    // code has worked before and note that this is the only path to
1961    // java_suspend_self that doesn't put the thread in _thread_blocked
1962    // mode.
1963
1964    frame_anchor()->make_walkable(this);
1965    java_suspend_self();
1966
1967    // We might be here for reasons in addition to the self-suspend request
1968    // so check for other async requests.
1969  }
1970
1971  if (check_asyncs) {
1972    check_and_handle_async_exceptions();
1973  }
1974}
1975
1976void JavaThread::send_thread_stop(oop java_throwable)  {
1977  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
1978  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
1979  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
1980
1981  // Do not throw asynchronous exceptions against the compiler thread
1982  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
1983  if (is_Compiler_thread()) return;
1984
1985  // This is a change from JDK 1.1, but JDK 1.2 will also do it:
1986  if (java_throwable->is_a(SystemDictionary::ThreadDeath_klass())) {
1987    java_lang_Thread::set_stillborn(threadObj());
1988  }
1989
1990  {
1991    // Actually throw the Throwable against the target Thread - however
1992    // only if there is no thread death exception installed already.
1993    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
1994      // If the topmost frame is a runtime stub, then we are calling into
1995      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
1996      // must deoptimize the caller before continuing, as the compiled  exception handler table
1997      // may not be valid
1998      if (has_last_Java_frame()) {
1999        frame f = last_frame();
2000        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2001          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2002          RegisterMap reg_map(this, UseBiasedLocking);
2003          frame compiled_frame = f.sender(&reg_map);
2004          if (compiled_frame.can_be_deoptimized()) {
2005            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2006          }
2007        }
2008      }
2009
2010      // Set async. pending exception in thread.
2011      set_pending_async_exception(java_throwable);
2012
2013      if (TraceExceptions) {
2014       ResourceMark rm;
2015       tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
2016      }
2017      // for AbortVMOnException flag
2018      NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
2019    }
2020  }
2021
2022
2023  // Interrupt thread so it will wake up from a potential wait()
2024  Thread::interrupt(this);
2025}
2026
2027// External suspension mechanism.
2028//
2029// Tell the VM to suspend a thread when ever it knows that it does not hold on
2030// to any VM_locks and it is at a transition
2031// Self-suspension will happen on the transition out of the vm.
2032// Catch "this" coming in from JNIEnv pointers when the thread has been freed
2033//
2034// Guarantees on return:
2035//   + Target thread will not execute any new bytecode (that's why we need to
2036//     force a safepoint)
2037//   + Target thread will not enter any new monitors
2038//
2039void JavaThread::java_suspend() {
2040  { MutexLocker mu(Threads_lock);
2041    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2042       return;
2043    }
2044  }
2045
2046  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2047    if (!is_external_suspend()) {
2048      // a racing resume has cancelled us; bail out now
2049      return;
2050    }
2051
2052    // suspend is done
2053    uint32_t debug_bits = 0;
2054    // Warning: is_ext_suspend_completed() may temporarily drop the
2055    // SR_lock to allow the thread to reach a stable thread state if
2056    // it is currently in a transient thread state.
2057    if (is_ext_suspend_completed(false /* !called_by_wait */,
2058                                 SuspendRetryDelay, &debug_bits) ) {
2059      return;
2060    }
2061  }
2062
2063  VM_ForceSafepoint vm_suspend;
2064  VMThread::execute(&vm_suspend);
2065}
2066
2067// Part II of external suspension.
2068// A JavaThread self suspends when it detects a pending external suspend
2069// request. This is usually on transitions. It is also done in places
2070// where continuing to the next transition would surprise the caller,
2071// e.g., monitor entry.
2072//
2073// Returns the number of times that the thread self-suspended.
2074//
2075// Note: DO NOT call java_suspend_self() when you just want to block current
2076//       thread. java_suspend_self() is the second stage of cooperative
2077//       suspension for external suspend requests and should only be used
2078//       to complete an external suspend request.
2079//
2080int JavaThread::java_suspend_self() {
2081  int ret = 0;
2082
2083  // we are in the process of exiting so don't suspend
2084  if (is_exiting()) {
2085     clear_external_suspend();
2086     return ret;
2087  }
2088
2089  assert(_anchor.walkable() ||
2090    (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2091    "must have walkable stack");
2092
2093  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2094
2095  assert(!this->is_ext_suspended(),
2096    "a thread trying to self-suspend should not already be suspended");
2097
2098  if (this->is_suspend_equivalent()) {
2099    // If we are self-suspending as a result of the lifting of a
2100    // suspend equivalent condition, then the suspend_equivalent
2101    // flag is not cleared until we set the ext_suspended flag so
2102    // that wait_for_ext_suspend_completion() returns consistent
2103    // results.
2104    this->clear_suspend_equivalent();
2105  }
2106
2107  // A racing resume may have cancelled us before we grabbed SR_lock
2108  // above. Or another external suspend request could be waiting for us
2109  // by the time we return from SR_lock()->wait(). The thread
2110  // that requested the suspension may already be trying to walk our
2111  // stack and if we return now, we can change the stack out from under
2112  // it. This would be a "bad thing (TM)" and cause the stack walker
2113  // to crash. We stay self-suspended until there are no more pending
2114  // external suspend requests.
2115  while (is_external_suspend()) {
2116    ret++;
2117    this->set_ext_suspended();
2118
2119    // _ext_suspended flag is cleared by java_resume()
2120    while (is_ext_suspended()) {
2121      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2122    }
2123  }
2124
2125  return ret;
2126}
2127
2128#ifdef ASSERT
2129// verify the JavaThread has not yet been published in the Threads::list, and
2130// hence doesn't need protection from concurrent access at this stage
2131void JavaThread::verify_not_published() {
2132  if (!Threads_lock->owned_by_self()) {
2133   MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2134   assert( !Threads::includes(this),
2135           "java thread shouldn't have been published yet!");
2136  }
2137  else {
2138   assert( !Threads::includes(this),
2139           "java thread shouldn't have been published yet!");
2140  }
2141}
2142#endif
2143
2144// Slow path when the native==>VM/Java barriers detect a safepoint is in
2145// progress or when _suspend_flags is non-zero.
2146// Current thread needs to self-suspend if there is a suspend request and/or
2147// block if a safepoint is in progress.
2148// Async exception ISN'T checked.
2149// Note only the ThreadInVMfromNative transition can call this function
2150// directly and when thread state is _thread_in_native_trans
2151void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2152  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2153
2154  JavaThread *curJT = JavaThread::current();
2155  bool do_self_suspend = thread->is_external_suspend();
2156
2157  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2158
2159  // If JNIEnv proxies are allowed, don't self-suspend if the target
2160  // thread is not the current thread. In older versions of jdbx, jdbx
2161  // threads could call into the VM with another thread's JNIEnv so we
2162  // can be here operating on behalf of a suspended thread (4432884).
2163  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2164    JavaThreadState state = thread->thread_state();
2165
2166    // We mark this thread_blocked state as a suspend-equivalent so
2167    // that a caller to is_ext_suspend_completed() won't be confused.
2168    // The suspend-equivalent state is cleared by java_suspend_self().
2169    thread->set_suspend_equivalent();
2170
2171    // If the safepoint code sees the _thread_in_native_trans state, it will
2172    // wait until the thread changes to other thread state. There is no
2173    // guarantee on how soon we can obtain the SR_lock and complete the
2174    // self-suspend request. It would be a bad idea to let safepoint wait for
2175    // too long. Temporarily change the state to _thread_blocked to
2176    // let the VM thread know that this thread is ready for GC. The problem
2177    // of changing thread state is that safepoint could happen just after
2178    // java_suspend_self() returns after being resumed, and VM thread will
2179    // see the _thread_blocked state. We must check for safepoint
2180    // after restoring the state and make sure we won't leave while a safepoint
2181    // is in progress.
2182    thread->set_thread_state(_thread_blocked);
2183    thread->java_suspend_self();
2184    thread->set_thread_state(state);
2185    // Make sure new state is seen by VM thread
2186    if (os::is_MP()) {
2187      if (UseMembar) {
2188        // Force a fence between the write above and read below
2189        OrderAccess::fence();
2190      } else {
2191        // Must use this rather than serialization page in particular on Windows
2192        InterfaceSupport::serialize_memory(thread);
2193      }
2194    }
2195  }
2196
2197  if (SafepointSynchronize::do_call_back()) {
2198    // If we are safepointing, then block the caller which may not be
2199    // the same as the target thread (see above).
2200    SafepointSynchronize::block(curJT);
2201  }
2202
2203  if (thread->is_deopt_suspend()) {
2204    thread->clear_deopt_suspend();
2205    RegisterMap map(thread, false);
2206    frame f = thread->last_frame();
2207    while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2208      f = f.sender(&map);
2209    }
2210    if (f.id() == thread->must_deopt_id()) {
2211      thread->clear_must_deopt_id();
2212      f.deoptimize(thread);
2213    } else {
2214      fatal("missed deoptimization!");
2215    }
2216  }
2217}
2218
2219// Slow path when the native==>VM/Java barriers detect a safepoint is in
2220// progress or when _suspend_flags is non-zero.
2221// Current thread needs to self-suspend if there is a suspend request and/or
2222// block if a safepoint is in progress.
2223// Also check for pending async exception (not including unsafe access error).
2224// Note only the native==>VM/Java barriers can call this function and when
2225// thread state is _thread_in_native_trans.
2226void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2227  check_safepoint_and_suspend_for_native_trans(thread);
2228
2229  if (thread->has_async_exception()) {
2230    // We are in _thread_in_native_trans state, don't handle unsafe
2231    // access error since that may block.
2232    thread->check_and_handle_async_exceptions(false);
2233  }
2234}
2235
2236// We need to guarantee the Threads_lock here, since resumes are not
2237// allowed during safepoint synchronization
2238// Can only resume from an external suspension
2239void JavaThread::java_resume() {
2240  assert_locked_or_safepoint(Threads_lock);
2241
2242  // Sanity check: thread is gone, has started exiting or the thread
2243  // was not externally suspended.
2244  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2245    return;
2246  }
2247
2248  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2249
2250  clear_external_suspend();
2251
2252  if (is_ext_suspended()) {
2253    clear_ext_suspended();
2254    SR_lock()->notify_all();
2255  }
2256}
2257
2258void JavaThread::create_stack_guard_pages() {
2259  if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2260  address low_addr = stack_base() - stack_size();
2261  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2262
2263  int allocate = os::allocate_stack_guard_pages();
2264  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2265
2266  if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2267    warning("Attempt to allocate stack guard pages failed.");
2268    return;
2269  }
2270
2271  if (os::guard_memory((char *) low_addr, len)) {
2272    _stack_guard_state = stack_guard_enabled;
2273  } else {
2274    warning("Attempt to protect stack guard pages failed.");
2275    if (os::uncommit_memory((char *) low_addr, len)) {
2276      warning("Attempt to deallocate stack guard pages failed.");
2277    }
2278  }
2279}
2280
2281void JavaThread::remove_stack_guard_pages() {
2282  if (_stack_guard_state == stack_guard_unused) return;
2283  address low_addr = stack_base() - stack_size();
2284  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2285
2286  if (os::allocate_stack_guard_pages()) {
2287    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2288      _stack_guard_state = stack_guard_unused;
2289    } else {
2290      warning("Attempt to deallocate stack guard pages failed.");
2291    }
2292  } else {
2293    if (_stack_guard_state == stack_guard_unused) return;
2294    if (os::unguard_memory((char *) low_addr, len)) {
2295      _stack_guard_state = stack_guard_unused;
2296    } else {
2297        warning("Attempt to unprotect stack guard pages failed.");
2298    }
2299  }
2300}
2301
2302void JavaThread::enable_stack_yellow_zone() {
2303  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2304  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2305
2306  // The base notation is from the stacks point of view, growing downward.
2307  // We need to adjust it to work correctly with guard_memory()
2308  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2309
2310  guarantee(base < stack_base(),"Error calculating stack yellow zone");
2311  guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2312
2313  if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2314    _stack_guard_state = stack_guard_enabled;
2315  } else {
2316    warning("Attempt to guard stack yellow zone failed.");
2317  }
2318  enable_register_stack_guard();
2319}
2320
2321void JavaThread::disable_stack_yellow_zone() {
2322  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2323  assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2324
2325  // Simply return if called for a thread that does not use guard pages.
2326  if (_stack_guard_state == stack_guard_unused) return;
2327
2328  // The base notation is from the stacks point of view, growing downward.
2329  // We need to adjust it to work correctly with guard_memory()
2330  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2331
2332  if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2333    _stack_guard_state = stack_guard_yellow_disabled;
2334  } else {
2335    warning("Attempt to unguard stack yellow zone failed.");
2336  }
2337  disable_register_stack_guard();
2338}
2339
2340void JavaThread::enable_stack_red_zone() {
2341  // The base notation is from the stacks point of view, growing downward.
2342  // We need to adjust it to work correctly with guard_memory()
2343  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2344  address base = stack_red_zone_base() - stack_red_zone_size();
2345
2346  guarantee(base < stack_base(),"Error calculating stack red zone");
2347  guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2348
2349  if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2350    warning("Attempt to guard stack red zone failed.");
2351  }
2352}
2353
2354void JavaThread::disable_stack_red_zone() {
2355  // The base notation is from the stacks point of view, growing downward.
2356  // We need to adjust it to work correctly with guard_memory()
2357  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2358  address base = stack_red_zone_base() - stack_red_zone_size();
2359  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2360    warning("Attempt to unguard stack red zone failed.");
2361  }
2362}
2363
2364void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2365  // ignore is there is no stack
2366  if (!has_last_Java_frame()) return;
2367  // traverse the stack frames. Starts from top frame.
2368  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2369    frame* fr = fst.current();
2370    f(fr, fst.register_map());
2371  }
2372}
2373
2374
2375#ifndef PRODUCT
2376// Deoptimization
2377// Function for testing deoptimization
2378void JavaThread::deoptimize() {
2379  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2380  StackFrameStream fst(this, UseBiasedLocking);
2381  bool deopt = false;           // Dump stack only if a deopt actually happens.
2382  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2383  // Iterate over all frames in the thread and deoptimize
2384  for(; !fst.is_done(); fst.next()) {
2385    if(fst.current()->can_be_deoptimized()) {
2386
2387      if (only_at) {
2388        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2389        // consists of comma or carriage return separated numbers so
2390        // search for the current bci in that string.
2391        address pc = fst.current()->pc();
2392        nmethod* nm =  (nmethod*) fst.current()->cb();
2393        ScopeDesc* sd = nm->scope_desc_at( pc);
2394        char buffer[8];
2395        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2396        size_t len = strlen(buffer);
2397        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2398        while (found != NULL) {
2399          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2400              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2401            // Check that the bci found is bracketed by terminators.
2402            break;
2403          }
2404          found = strstr(found + 1, buffer);
2405        }
2406        if (!found) {
2407          continue;
2408        }
2409      }
2410
2411      if (DebugDeoptimization && !deopt) {
2412        deopt = true; // One-time only print before deopt
2413        tty->print_cr("[BEFORE Deoptimization]");
2414        trace_frames();
2415        trace_stack();
2416      }
2417      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2418    }
2419  }
2420
2421  if (DebugDeoptimization && deopt) {
2422    tty->print_cr("[AFTER Deoptimization]");
2423    trace_frames();
2424  }
2425}
2426
2427
2428// Make zombies
2429void JavaThread::make_zombies() {
2430  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2431    if (fst.current()->can_be_deoptimized()) {
2432      // it is a Java nmethod
2433      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2434      nm->make_not_entrant();
2435    }
2436  }
2437}
2438#endif // PRODUCT
2439
2440
2441void JavaThread::deoptimized_wrt_marked_nmethods() {
2442  if (!has_last_Java_frame()) return;
2443  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2444  StackFrameStream fst(this, UseBiasedLocking);
2445  for(; !fst.is_done(); fst.next()) {
2446    if (fst.current()->should_be_deoptimized()) {
2447      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2448    }
2449  }
2450}
2451
2452
2453// GC support
2454static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2455
2456void JavaThread::gc_epilogue() {
2457  frames_do(frame_gc_epilogue);
2458}
2459
2460
2461static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2462
2463void JavaThread::gc_prologue() {
2464  frames_do(frame_gc_prologue);
2465}
2466
2467// If the caller is a NamedThread, then remember, in the current scope,
2468// the given JavaThread in its _processed_thread field.
2469class RememberProcessedThread: public StackObj {
2470  NamedThread* _cur_thr;
2471public:
2472  RememberProcessedThread(JavaThread* jthr) {
2473    Thread* thread = Thread::current();
2474    if (thread->is_Named_thread()) {
2475      _cur_thr = (NamedThread *)thread;
2476      _cur_thr->set_processed_thread(jthr);
2477    } else {
2478      _cur_thr = NULL;
2479    }
2480  }
2481
2482  ~RememberProcessedThread() {
2483    if (_cur_thr) {
2484      _cur_thr->set_processed_thread(NULL);
2485    }
2486  }
2487};
2488
2489void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2490  // Verify that the deferred card marks have been flushed.
2491  assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2492
2493  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2494  // since there may be more than one thread using each ThreadProfiler.
2495
2496  // Traverse the GCHandles
2497  Thread::oops_do(f, cf);
2498
2499  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2500          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2501
2502  if (has_last_Java_frame()) {
2503    // Record JavaThread to GC thread
2504    RememberProcessedThread rpt(this);
2505
2506    // Traverse the privileged stack
2507    if (_privileged_stack_top != NULL) {
2508      _privileged_stack_top->oops_do(f);
2509    }
2510
2511    // traverse the registered growable array
2512    if (_array_for_gc != NULL) {
2513      for (int index = 0; index < _array_for_gc->length(); index++) {
2514        f->do_oop(_array_for_gc->adr_at(index));
2515      }
2516    }
2517
2518    // Traverse the monitor chunks
2519    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2520      chunk->oops_do(f);
2521    }
2522
2523    // Traverse the execution stack
2524    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2525      fst.current()->oops_do(f, cf, fst.register_map());
2526    }
2527  }
2528
2529  // callee_target is never live across a gc point so NULL it here should
2530  // it still contain a methdOop.
2531
2532  set_callee_target(NULL);
2533
2534  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2535  // If we have deferred set_locals there might be oops waiting to be
2536  // written
2537  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2538  if (list != NULL) {
2539    for (int i = 0; i < list->length(); i++) {
2540      list->at(i)->oops_do(f);
2541    }
2542  }
2543
2544  // Traverse instance variables at the end since the GC may be moving things
2545  // around using this function
2546  f->do_oop((oop*) &_threadObj);
2547  f->do_oop((oop*) &_vm_result);
2548  f->do_oop((oop*) &_vm_result_2);
2549  f->do_oop((oop*) &_exception_oop);
2550  f->do_oop((oop*) &_pending_async_exception);
2551
2552  if (jvmti_thread_state() != NULL) {
2553    jvmti_thread_state()->oops_do(f);
2554  }
2555}
2556
2557void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2558  Thread::nmethods_do(cf);  // (super method is a no-op)
2559
2560  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2561          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2562
2563  if (has_last_Java_frame()) {
2564    // Traverse the execution stack
2565    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2566      fst.current()->nmethods_do(cf);
2567    }
2568  }
2569}
2570
2571// Printing
2572const char* _get_thread_state_name(JavaThreadState _thread_state) {
2573  switch (_thread_state) {
2574  case _thread_uninitialized:     return "_thread_uninitialized";
2575  case _thread_new:               return "_thread_new";
2576  case _thread_new_trans:         return "_thread_new_trans";
2577  case _thread_in_native:         return "_thread_in_native";
2578  case _thread_in_native_trans:   return "_thread_in_native_trans";
2579  case _thread_in_vm:             return "_thread_in_vm";
2580  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2581  case _thread_in_Java:           return "_thread_in_Java";
2582  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2583  case _thread_blocked:           return "_thread_blocked";
2584  case _thread_blocked_trans:     return "_thread_blocked_trans";
2585  default:                        return "unknown thread state";
2586  }
2587}
2588
2589#ifndef PRODUCT
2590void JavaThread::print_thread_state_on(outputStream *st) const {
2591  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2592};
2593void JavaThread::print_thread_state() const {
2594  print_thread_state_on(tty);
2595};
2596#endif // PRODUCT
2597
2598// Called by Threads::print() for VM_PrintThreads operation
2599void JavaThread::print_on(outputStream *st) const {
2600  st->print("\"%s\" ", get_thread_name());
2601  oop thread_oop = threadObj();
2602  if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2603  Thread::print_on(st);
2604  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2605  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2606  if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2607    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2608  }
2609#ifndef PRODUCT
2610  print_thread_state_on(st);
2611  _safepoint_state->print_on(st);
2612#endif // PRODUCT
2613}
2614
2615// Called by fatal error handler. The difference between this and
2616// JavaThread::print() is that we can't grab lock or allocate memory.
2617void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2618  st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2619  oop thread_obj = threadObj();
2620  if (thread_obj != NULL) {
2621     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2622  }
2623  st->print(" [");
2624  st->print("%s", _get_thread_state_name(_thread_state));
2625  if (osthread()) {
2626    st->print(", id=%d", osthread()->thread_id());
2627  }
2628  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2629            _stack_base - _stack_size, _stack_base);
2630  st->print("]");
2631  return;
2632}
2633
2634// Verification
2635
2636static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2637
2638void JavaThread::verify() {
2639  // Verify oops in the thread.
2640  oops_do(&VerifyOopClosure::verify_oop, NULL);
2641
2642  // Verify the stack frames.
2643  frames_do(frame_verify);
2644}
2645
2646// CR 6300358 (sub-CR 2137150)
2647// Most callers of this method assume that it can't return NULL but a
2648// thread may not have a name whilst it is in the process of attaching to
2649// the VM - see CR 6412693, and there are places where a JavaThread can be
2650// seen prior to having it's threadObj set (eg JNI attaching threads and
2651// if vm exit occurs during initialization). These cases can all be accounted
2652// for such that this method never returns NULL.
2653const char* JavaThread::get_thread_name() const {
2654#ifdef ASSERT
2655  // early safepoints can hit while current thread does not yet have TLS
2656  if (!SafepointSynchronize::is_at_safepoint()) {
2657    Thread *cur = Thread::current();
2658    if (!(cur->is_Java_thread() && cur == this)) {
2659      // Current JavaThreads are allowed to get their own name without
2660      // the Threads_lock.
2661      assert_locked_or_safepoint(Threads_lock);
2662    }
2663  }
2664#endif // ASSERT
2665    return get_thread_name_string();
2666}
2667
2668// Returns a non-NULL representation of this thread's name, or a suitable
2669// descriptive string if there is no set name
2670const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2671  const char* name_str;
2672  oop thread_obj = threadObj();
2673  if (thread_obj != NULL) {
2674    typeArrayOop name = java_lang_Thread::name(thread_obj);
2675    if (name != NULL) {
2676      if (buf == NULL) {
2677        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2678      }
2679      else {
2680        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2681      }
2682    }
2683    else if (is_attaching()) { // workaround for 6412693 - see 6404306
2684      name_str = "<no-name - thread is attaching>";
2685    }
2686    else {
2687      name_str = Thread::name();
2688    }
2689  }
2690  else {
2691    name_str = Thread::name();
2692  }
2693  assert(name_str != NULL, "unexpected NULL thread name");
2694  return name_str;
2695}
2696
2697
2698const char* JavaThread::get_threadgroup_name() const {
2699  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2700  oop thread_obj = threadObj();
2701  if (thread_obj != NULL) {
2702    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2703    if (thread_group != NULL) {
2704      typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2705      // ThreadGroup.name can be null
2706      if (name != NULL) {
2707        const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2708        return str;
2709      }
2710    }
2711  }
2712  return NULL;
2713}
2714
2715const char* JavaThread::get_parent_name() const {
2716  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2717  oop thread_obj = threadObj();
2718  if (thread_obj != NULL) {
2719    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2720    if (thread_group != NULL) {
2721      oop parent = java_lang_ThreadGroup::parent(thread_group);
2722      if (parent != NULL) {
2723        typeArrayOop name = java_lang_ThreadGroup::name(parent);
2724        // ThreadGroup.name can be null
2725        if (name != NULL) {
2726          const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2727          return str;
2728        }
2729      }
2730    }
2731  }
2732  return NULL;
2733}
2734
2735ThreadPriority JavaThread::java_priority() const {
2736  oop thr_oop = threadObj();
2737  if (thr_oop == NULL) return NormPriority; // Bootstrapping
2738  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2739  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2740  return priority;
2741}
2742
2743void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2744
2745  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2746  // Link Java Thread object <-> C++ Thread
2747
2748  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2749  // and put it into a new Handle.  The Handle "thread_oop" can then
2750  // be used to pass the C++ thread object to other methods.
2751
2752  // Set the Java level thread object (jthread) field of the
2753  // new thread (a JavaThread *) to C++ thread object using the
2754  // "thread_oop" handle.
2755
2756  // Set the thread field (a JavaThread *) of the
2757  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2758
2759  Handle thread_oop(Thread::current(),
2760                    JNIHandles::resolve_non_null(jni_thread));
2761  assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
2762    "must be initialized");
2763  set_threadObj(thread_oop());
2764  java_lang_Thread::set_thread(thread_oop(), this);
2765
2766  if (prio == NoPriority) {
2767    prio = java_lang_Thread::priority(thread_oop());
2768    assert(prio != NoPriority, "A valid priority should be present");
2769  }
2770
2771  // Push the Java priority down to the native thread; needs Threads_lock
2772  Thread::set_priority(this, prio);
2773
2774  // Add the new thread to the Threads list and set it in motion.
2775  // We must have threads lock in order to call Threads::add.
2776  // It is crucial that we do not block before the thread is
2777  // added to the Threads list for if a GC happens, then the java_thread oop
2778  // will not be visited by GC.
2779  Threads::add(this);
2780}
2781
2782oop JavaThread::current_park_blocker() {
2783  // Support for JSR-166 locks
2784  oop thread_oop = threadObj();
2785  if (thread_oop != NULL &&
2786      JDK_Version::current().supports_thread_park_blocker()) {
2787    return java_lang_Thread::park_blocker(thread_oop);
2788  }
2789  return NULL;
2790}
2791
2792
2793void JavaThread::print_stack_on(outputStream* st) {
2794  if (!has_last_Java_frame()) return;
2795  ResourceMark rm;
2796  HandleMark   hm;
2797
2798  RegisterMap reg_map(this);
2799  vframe* start_vf = last_java_vframe(&reg_map);
2800  int count = 0;
2801  for (vframe* f = start_vf; f; f = f->sender() ) {
2802    if (f->is_java_frame()) {
2803      javaVFrame* jvf = javaVFrame::cast(f);
2804      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2805
2806      // Print out lock information
2807      if (JavaMonitorsInStackTrace) {
2808        jvf->print_lock_info_on(st, count);
2809      }
2810    } else {
2811      // Ignore non-Java frames
2812    }
2813
2814    // Bail-out case for too deep stacks
2815    count++;
2816    if (MaxJavaStackTraceDepth == count) return;
2817  }
2818}
2819
2820
2821// JVMTI PopFrame support
2822void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2823  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2824  if (in_bytes(size_in_bytes) != 0) {
2825    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
2826    _popframe_preserved_args_size = in_bytes(size_in_bytes);
2827    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2828  }
2829}
2830
2831void* JavaThread::popframe_preserved_args() {
2832  return _popframe_preserved_args;
2833}
2834
2835ByteSize JavaThread::popframe_preserved_args_size() {
2836  return in_ByteSize(_popframe_preserved_args_size);
2837}
2838
2839WordSize JavaThread::popframe_preserved_args_size_in_words() {
2840  int sz = in_bytes(popframe_preserved_args_size());
2841  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
2842  return in_WordSize(sz / wordSize);
2843}
2844
2845void JavaThread::popframe_free_preserved_args() {
2846  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
2847  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
2848  _popframe_preserved_args = NULL;
2849  _popframe_preserved_args_size = 0;
2850}
2851
2852#ifndef PRODUCT
2853
2854void JavaThread::trace_frames() {
2855  tty->print_cr("[Describe stack]");
2856  int frame_no = 1;
2857  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2858    tty->print("  %d. ", frame_no++);
2859    fst.current()->print_value_on(tty,this);
2860    tty->cr();
2861  }
2862}
2863
2864
2865void JavaThread::trace_stack_from(vframe* start_vf) {
2866  ResourceMark rm;
2867  int vframe_no = 1;
2868  for (vframe* f = start_vf; f; f = f->sender() ) {
2869    if (f->is_java_frame()) {
2870      javaVFrame::cast(f)->print_activation(vframe_no++);
2871    } else {
2872      f->print();
2873    }
2874    if (vframe_no > StackPrintLimit) {
2875      tty->print_cr("...<more frames>...");
2876      return;
2877    }
2878  }
2879}
2880
2881
2882void JavaThread::trace_stack() {
2883  if (!has_last_Java_frame()) return;
2884  ResourceMark rm;
2885  HandleMark   hm;
2886  RegisterMap reg_map(this);
2887  trace_stack_from(last_java_vframe(&reg_map));
2888}
2889
2890
2891#endif // PRODUCT
2892
2893
2894javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
2895  assert(reg_map != NULL, "a map must be given");
2896  frame f = last_frame();
2897  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
2898    if (vf->is_java_frame()) return javaVFrame::cast(vf);
2899  }
2900  return NULL;
2901}
2902
2903
2904klassOop JavaThread::security_get_caller_class(int depth) {
2905  vframeStream vfst(this);
2906  vfst.security_get_caller_frame(depth);
2907  if (!vfst.at_end()) {
2908    return vfst.method()->method_holder();
2909  }
2910  return NULL;
2911}
2912
2913static void compiler_thread_entry(JavaThread* thread, TRAPS) {
2914  assert(thread->is_Compiler_thread(), "must be compiler thread");
2915  CompileBroker::compiler_thread_loop();
2916}
2917
2918// Create a CompilerThread
2919CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
2920: JavaThread(&compiler_thread_entry) {
2921  _env   = NULL;
2922  _log   = NULL;
2923  _task  = NULL;
2924  _queue = queue;
2925  _counters = counters;
2926  _buffer_blob = NULL;
2927
2928#ifndef PRODUCT
2929  _ideal_graph_printer = NULL;
2930#endif
2931}
2932
2933
2934// ======= Threads ========
2935
2936// The Threads class links together all active threads, and provides
2937// operations over all threads.  It is protected by its own Mutex
2938// lock, which is also used in other contexts to protect thread
2939// operations from having the thread being operated on from exiting
2940// and going away unexpectedly (e.g., safepoint synchronization)
2941
2942JavaThread* Threads::_thread_list = NULL;
2943int         Threads::_number_of_threads = 0;
2944int         Threads::_number_of_non_daemon_threads = 0;
2945int         Threads::_return_code = 0;
2946size_t      JavaThread::_stack_size_at_create = 0;
2947
2948// All JavaThreads
2949#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
2950
2951void os_stream();
2952
2953// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
2954void Threads::threads_do(ThreadClosure* tc) {
2955  assert_locked_or_safepoint(Threads_lock);
2956  // ALL_JAVA_THREADS iterates through all JavaThreads
2957  ALL_JAVA_THREADS(p) {
2958    tc->do_thread(p);
2959  }
2960  // Someday we could have a table or list of all non-JavaThreads.
2961  // For now, just manually iterate through them.
2962  tc->do_thread(VMThread::vm_thread());
2963  Universe::heap()->gc_threads_do(tc);
2964  WatcherThread *wt = WatcherThread::watcher_thread();
2965  // Strictly speaking, the following NULL check isn't sufficient to make sure
2966  // the data for WatcherThread is still valid upon being examined. However,
2967  // considering that WatchThread terminates when the VM is on the way to
2968  // exit at safepoint, the chance of the above is extremely small. The right
2969  // way to prevent termination of WatcherThread would be to acquire
2970  // Terminator_lock, but we can't do that without violating the lock rank
2971  // checking in some cases.
2972  if (wt != NULL)
2973    tc->do_thread(wt);
2974
2975  // If CompilerThreads ever become non-JavaThreads, add them here
2976}
2977
2978jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
2979
2980  extern void JDK_Version_init();
2981
2982  // Check version
2983  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
2984
2985  // Initialize the output stream module
2986  ostream_init();
2987
2988  // Process java launcher properties.
2989  Arguments::process_sun_java_launcher_properties(args);
2990
2991  // Initialize the os module before using TLS
2992  os::init();
2993
2994  // Initialize system properties.
2995  Arguments::init_system_properties();
2996
2997  // So that JDK version can be used as a discrimintor when parsing arguments
2998  JDK_Version_init();
2999
3000  // Update/Initialize System properties after JDK version number is known
3001  Arguments::init_version_specific_system_properties();
3002
3003  // Parse arguments
3004  jint parse_result = Arguments::parse(args);
3005  if (parse_result != JNI_OK) return parse_result;
3006
3007  if (PauseAtStartup) {
3008    os::pause();
3009  }
3010
3011  HS_DTRACE_PROBE(hotspot, vm__init__begin);
3012
3013  // Record VM creation timing statistics
3014  TraceVmCreationTime create_vm_timer;
3015  create_vm_timer.start();
3016
3017  // Timing (must come after argument parsing)
3018  TraceTime timer("Create VM", TraceStartupTime);
3019
3020  // Initialize the os module after parsing the args
3021  jint os_init_2_result = os::init_2();
3022  if (os_init_2_result != JNI_OK) return os_init_2_result;
3023
3024  // Initialize output stream logging
3025  ostream_init_log();
3026
3027  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3028  // Must be before create_vm_init_agents()
3029  if (Arguments::init_libraries_at_startup()) {
3030    convert_vm_init_libraries_to_agents();
3031  }
3032
3033  // Launch -agentlib/-agentpath and converted -Xrun agents
3034  if (Arguments::init_agents_at_startup()) {
3035    create_vm_init_agents();
3036  }
3037
3038  // Initialize Threads state
3039  _thread_list = NULL;
3040  _number_of_threads = 0;
3041  _number_of_non_daemon_threads = 0;
3042
3043  // Initialize TLS
3044  ThreadLocalStorage::init();
3045
3046  // Initialize global data structures and create system classes in heap
3047  vm_init_globals();
3048
3049  // Attach the main thread to this os thread
3050  JavaThread* main_thread = new JavaThread();
3051  main_thread->set_thread_state(_thread_in_vm);
3052  // must do this before set_active_handles and initialize_thread_local_storage
3053  // Note: on solaris initialize_thread_local_storage() will (indirectly)
3054  // change the stack size recorded here to one based on the java thread
3055  // stacksize. This adjusted size is what is used to figure the placement
3056  // of the guard pages.
3057  main_thread->record_stack_base_and_size();
3058  main_thread->initialize_thread_local_storage();
3059
3060  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3061
3062  if (!main_thread->set_as_starting_thread()) {
3063    vm_shutdown_during_initialization(
3064      "Failed necessary internal allocation. Out of swap space");
3065    delete main_thread;
3066    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3067    return JNI_ENOMEM;
3068  }
3069
3070  // Enable guard page *after* os::create_main_thread(), otherwise it would
3071  // crash Linux VM, see notes in os_linux.cpp.
3072  main_thread->create_stack_guard_pages();
3073
3074  // Initialize Java-Level synchronization subsystem
3075  ObjectMonitor::Initialize() ;
3076
3077  // Initialize global modules
3078  jint status = init_globals();
3079  if (status != JNI_OK) {
3080    delete main_thread;
3081    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3082    return status;
3083  }
3084
3085  // Should be done after the heap is fully created
3086  main_thread->cache_global_variables();
3087
3088  HandleMark hm;
3089
3090  { MutexLocker mu(Threads_lock);
3091    Threads::add(main_thread);
3092  }
3093
3094  // Any JVMTI raw monitors entered in onload will transition into
3095  // real raw monitor. VM is setup enough here for raw monitor enter.
3096  JvmtiExport::transition_pending_onload_raw_monitors();
3097
3098  if (VerifyBeforeGC &&
3099      Universe::heap()->total_collections() >= VerifyGCStartAt) {
3100    Universe::heap()->prepare_for_verify();
3101    Universe::verify();   // make sure we're starting with a clean slate
3102  }
3103
3104  // Create the VMThread
3105  { TraceTime timer("Start VMThread", TraceStartupTime);
3106    VMThread::create();
3107    Thread* vmthread = VMThread::vm_thread();
3108
3109    if (!os::create_thread(vmthread, os::vm_thread))
3110      vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3111
3112    // Wait for the VM thread to become ready, and VMThread::run to initialize
3113    // Monitors can have spurious returns, must always check another state flag
3114    {
3115      MutexLocker ml(Notify_lock);
3116      os::start_thread(vmthread);
3117      while (vmthread->active_handles() == NULL) {
3118        Notify_lock->wait();
3119      }
3120    }
3121  }
3122
3123  assert (Universe::is_fully_initialized(), "not initialized");
3124  EXCEPTION_MARK;
3125
3126  // At this point, the Universe is initialized, but we have not executed
3127  // any byte code.  Now is a good time (the only time) to dump out the
3128  // internal state of the JVM for sharing.
3129
3130  if (DumpSharedSpaces) {
3131    Universe::heap()->preload_and_dump(CHECK_0);
3132    ShouldNotReachHere();
3133  }
3134
3135  // Always call even when there are not JVMTI environments yet, since environments
3136  // may be attached late and JVMTI must track phases of VM execution
3137  JvmtiExport::enter_start_phase();
3138
3139  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3140  JvmtiExport::post_vm_start();
3141
3142  {
3143    TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3144
3145    if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3146      create_vm_init_libraries();
3147    }
3148
3149    if (InitializeJavaLangString) {
3150      initialize_class(vmSymbolHandles::java_lang_String(), CHECK_0);
3151    } else {
3152      warning("java.lang.String not initialized");
3153    }
3154
3155    if (AggressiveOpts) {
3156      {
3157        // Forcibly initialize java/util/HashMap and mutate the private
3158        // static final "frontCacheEnabled" field before we start creating instances
3159#ifdef ASSERT
3160        klassOop tmp_k = SystemDictionary::find(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3161        assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3162#endif
3163        klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3164        KlassHandle k = KlassHandle(THREAD, k_o);
3165        guarantee(k.not_null(), "Must find java/util/HashMap");
3166        instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3167        ik->initialize(CHECK_0);
3168        fieldDescriptor fd;
3169        // Possible we might not find this field; if so, don't break
3170        if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3171          k()->bool_field_put(fd.offset(), true);
3172        }
3173      }
3174
3175      if (UseStringCache) {
3176        // Forcibly initialize java/lang/StringValue and mutate the private
3177        // static final "stringCacheEnabled" field before we start creating instances
3178        klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3179        // Possible that StringValue isn't present: if so, silently don't break
3180        if (k_o != NULL) {
3181          KlassHandle k = KlassHandle(THREAD, k_o);
3182          instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3183          ik->initialize(CHECK_0);
3184          fieldDescriptor fd;
3185          // Possible we might not find this field: if so, silently don't break
3186          if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3187            k()->bool_field_put(fd.offset(), true);
3188          }
3189        }
3190      }
3191    }
3192
3193    // Initialize java_lang.System (needed before creating the thread)
3194    if (InitializeJavaLangSystem) {
3195      initialize_class(vmSymbolHandles::java_lang_System(), CHECK_0);
3196      initialize_class(vmSymbolHandles::java_lang_ThreadGroup(), CHECK_0);
3197      Handle thread_group = create_initial_thread_group(CHECK_0);
3198      Universe::set_main_thread_group(thread_group());
3199      initialize_class(vmSymbolHandles::java_lang_Thread(), CHECK_0);
3200      oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3201      main_thread->set_threadObj(thread_object);
3202      // Set thread status to running since main thread has
3203      // been started and running.
3204      java_lang_Thread::set_thread_status(thread_object,
3205                                          java_lang_Thread::RUNNABLE);
3206
3207      // The VM preresolve methods to these classes. Make sure that get initialized
3208      initialize_class(vmSymbolHandles::java_lang_reflect_Method(), CHECK_0);
3209      initialize_class(vmSymbolHandles::java_lang_ref_Finalizer(),  CHECK_0);
3210      // The VM creates & returns objects of this class. Make sure it's initialized.
3211      initialize_class(vmSymbolHandles::java_lang_Class(), CHECK_0);
3212      call_initializeSystemClass(CHECK_0);
3213    } else {
3214      warning("java.lang.System not initialized");
3215    }
3216
3217    // an instance of OutOfMemory exception has been allocated earlier
3218    if (InitializeJavaLangExceptionsErrors) {
3219      initialize_class(vmSymbolHandles::java_lang_OutOfMemoryError(), CHECK_0);
3220      initialize_class(vmSymbolHandles::java_lang_NullPointerException(), CHECK_0);
3221      initialize_class(vmSymbolHandles::java_lang_ClassCastException(), CHECK_0);
3222      initialize_class(vmSymbolHandles::java_lang_ArrayStoreException(), CHECK_0);
3223      initialize_class(vmSymbolHandles::java_lang_ArithmeticException(), CHECK_0);
3224      initialize_class(vmSymbolHandles::java_lang_StackOverflowError(), CHECK_0);
3225      initialize_class(vmSymbolHandles::java_lang_IllegalMonitorStateException(), CHECK_0);
3226    } else {
3227      warning("java.lang.OutOfMemoryError has not been initialized");
3228      warning("java.lang.NullPointerException has not been initialized");
3229      warning("java.lang.ClassCastException has not been initialized");
3230      warning("java.lang.ArrayStoreException has not been initialized");
3231      warning("java.lang.ArithmeticException has not been initialized");
3232      warning("java.lang.StackOverflowError has not been initialized");
3233    }
3234
3235    if (EnableInvokeDynamic) {
3236      // JSR 292: An intialized java.dyn.InvokeDynamic is required in
3237      // the compiler.
3238      initialize_class(vmSymbolHandles::java_dyn_InvokeDynamic(), CHECK_0);
3239    }
3240  }
3241
3242  // See        : bugid 4211085.
3243  // Background : the static initializer of java.lang.Compiler tries to read
3244  //              property"java.compiler" and read & write property "java.vm.info".
3245  //              When a security manager is installed through the command line
3246  //              option "-Djava.security.manager", the above properties are not
3247  //              readable and the static initializer for java.lang.Compiler fails
3248  //              resulting in a NoClassDefFoundError.  This can happen in any
3249  //              user code which calls methods in java.lang.Compiler.
3250  // Hack :       the hack is to pre-load and initialize this class, so that only
3251  //              system domains are on the stack when the properties are read.
3252  //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3253  //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3254  // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3255  //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3256  //              Once that is done, we should remove this hack.
3257  initialize_class(vmSymbolHandles::java_lang_Compiler(), CHECK_0);
3258
3259  // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3260  // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3261  // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3262  // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3263  // This should also be taken out as soon as 4211383 gets fixed.
3264  reset_vm_info_property(CHECK_0);
3265
3266  quicken_jni_functions();
3267
3268  // Set flag that basic initialization has completed. Used by exceptions and various
3269  // debug stuff, that does not work until all basic classes have been initialized.
3270  set_init_completed();
3271
3272  HS_DTRACE_PROBE(hotspot, vm__init__end);
3273
3274  // record VM initialization completion time
3275  Management::record_vm_init_completed();
3276
3277  // Compute system loader. Note that this has to occur after set_init_completed, since
3278  // valid exceptions may be thrown in the process.
3279  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3280  // set_init_completed has just been called, causing exceptions not to be shortcut
3281  // anymore. We call vm_exit_during_initialization directly instead.
3282  SystemDictionary::compute_java_system_loader(THREAD);
3283  if (HAS_PENDING_EXCEPTION) {
3284    vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3285  }
3286
3287#ifdef KERNEL
3288  if (JDK_Version::is_gte_jdk17x_version()) {
3289    set_jkernel_boot_classloader_hook(THREAD);
3290  }
3291#endif // KERNEL
3292
3293#ifndef SERIALGC
3294  // Support for ConcurrentMarkSweep. This should be cleaned up
3295  // and better encapsulated. The ugly nested if test would go away
3296  // once things are properly refactored. XXX YSR
3297  if (UseConcMarkSweepGC || UseG1GC) {
3298    if (UseConcMarkSweepGC) {
3299      ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3300    } else {
3301      ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3302    }
3303    if (HAS_PENDING_EXCEPTION) {
3304      vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3305    }
3306  }
3307#endif // SERIALGC
3308
3309  // Always call even when there are not JVMTI environments yet, since environments
3310  // may be attached late and JVMTI must track phases of VM execution
3311  JvmtiExport::enter_live_phase();
3312
3313  // Signal Dispatcher needs to be started before VMInit event is posted
3314  os::signal_init();
3315
3316  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3317  if (!DisableAttachMechanism) {
3318    if (StartAttachListener || AttachListener::init_at_startup()) {
3319      AttachListener::init();
3320    }
3321  }
3322
3323  // Launch -Xrun agents
3324  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3325  // back-end can launch with -Xdebug -Xrunjdwp.
3326  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3327    create_vm_init_libraries();
3328  }
3329
3330  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3331  JvmtiExport::post_vm_initialized();
3332
3333  Chunk::start_chunk_pool_cleaner_task();
3334
3335  // initialize compiler(s)
3336  CompileBroker::compilation_init();
3337
3338  Management::initialize(THREAD);
3339  if (HAS_PENDING_EXCEPTION) {
3340    // management agent fails to start possibly due to
3341    // configuration problem and is responsible for printing
3342    // stack trace if appropriate. Simply exit VM.
3343    vm_exit(1);
3344  }
3345
3346  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3347  if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3348  if (MemProfiling)                   MemProfiler::engage();
3349  StatSampler::engage();
3350  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3351
3352  BiasedLocking::init();
3353
3354
3355  // Start up the WatcherThread if there are any periodic tasks
3356  // NOTE:  All PeriodicTasks should be registered by now. If they
3357  //   aren't, late joiners might appear to start slowly (we might
3358  //   take a while to process their first tick).
3359  if (PeriodicTask::num_tasks() > 0) {
3360    WatcherThread::start();
3361  }
3362
3363  // Give os specific code one last chance to start
3364  os::init_3();
3365
3366  create_vm_timer.end();
3367  return JNI_OK;
3368}
3369
3370// type for the Agent_OnLoad and JVM_OnLoad entry points
3371extern "C" {
3372  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3373}
3374// Find a command line agent library and return its entry point for
3375//         -agentlib:  -agentpath:   -Xrun
3376// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3377static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3378  OnLoadEntry_t on_load_entry = NULL;
3379  void *library = agent->os_lib();  // check if we have looked it up before
3380
3381  if (library == NULL) {
3382    char buffer[JVM_MAXPATHLEN];
3383    char ebuf[1024];
3384    const char *name = agent->name();
3385    const char *msg = "Could not find agent library ";
3386
3387    if (agent->is_absolute_path()) {
3388      library = os::dll_load(name, ebuf, sizeof ebuf);
3389      if (library == NULL) {
3390        const char *sub_msg = " in absolute path, with error: ";
3391        size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3392        char *buf = NEW_C_HEAP_ARRAY(char, len);
3393        jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3394        // If we can't find the agent, exit.
3395        vm_exit_during_initialization(buf, NULL);
3396        FREE_C_HEAP_ARRAY(char, buf);
3397      }
3398    } else {
3399      // Try to load the agent from the standard dll directory
3400      os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
3401      library = os::dll_load(buffer, ebuf, sizeof ebuf);
3402#ifdef KERNEL
3403      // Download instrument dll
3404      if (library == NULL && strcmp(name, "instrument") == 0) {
3405        char *props = Arguments::get_kernel_properties();
3406        char *home  = Arguments::get_java_home();
3407        const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
3408                      " sun.jkernel.DownloadManager -download client_jvm";
3409        size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
3410        char *cmd = NEW_C_HEAP_ARRAY(char, length);
3411        jio_snprintf(cmd, length, fmt, home, props);
3412        int status = os::fork_and_exec(cmd);
3413        FreeHeap(props);
3414        if (status == -1) {
3415          warning(cmd);
3416          vm_exit_during_initialization("fork_and_exec failed: %s",
3417                                         strerror(errno));
3418        }
3419        FREE_C_HEAP_ARRAY(char, cmd);
3420        // when this comes back the instrument.dll should be where it belongs.
3421        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3422      }
3423#endif // KERNEL
3424      if (library == NULL) { // Try the local directory
3425        char ns[1] = {0};
3426        os::dll_build_name(buffer, sizeof(buffer), ns, name);
3427        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3428        if (library == NULL) {
3429          const char *sub_msg = " on the library path, with error: ";
3430          size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3431          char *buf = NEW_C_HEAP_ARRAY(char, len);
3432          jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3433          // If we can't find the agent, exit.
3434          vm_exit_during_initialization(buf, NULL);
3435          FREE_C_HEAP_ARRAY(char, buf);
3436        }
3437      }
3438    }
3439    agent->set_os_lib(library);
3440  }
3441
3442  // Find the OnLoad function.
3443  for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3444    on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
3445    if (on_load_entry != NULL) break;
3446  }
3447  return on_load_entry;
3448}
3449
3450// Find the JVM_OnLoad entry point
3451static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3452  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3453  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3454}
3455
3456// Find the Agent_OnLoad entry point
3457static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3458  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3459  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3460}
3461
3462// For backwards compatibility with -Xrun
3463// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3464// treated like -agentpath:
3465// Must be called before agent libraries are created
3466void Threads::convert_vm_init_libraries_to_agents() {
3467  AgentLibrary* agent;
3468  AgentLibrary* next;
3469
3470  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3471    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3472    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3473
3474    // If there is an JVM_OnLoad function it will get called later,
3475    // otherwise see if there is an Agent_OnLoad
3476    if (on_load_entry == NULL) {
3477      on_load_entry = lookup_agent_on_load(agent);
3478      if (on_load_entry != NULL) {
3479        // switch it to the agent list -- so that Agent_OnLoad will be called,
3480        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3481        Arguments::convert_library_to_agent(agent);
3482      } else {
3483        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3484      }
3485    }
3486  }
3487}
3488
3489// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3490// Invokes Agent_OnLoad
3491// Called very early -- before JavaThreads exist
3492void Threads::create_vm_init_agents() {
3493  extern struct JavaVM_ main_vm;
3494  AgentLibrary* agent;
3495
3496  JvmtiExport::enter_onload_phase();
3497  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3498    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3499
3500    if (on_load_entry != NULL) {
3501      // Invoke the Agent_OnLoad function
3502      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3503      if (err != JNI_OK) {
3504        vm_exit_during_initialization("agent library failed to init", agent->name());
3505      }
3506    } else {
3507      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3508    }
3509  }
3510  JvmtiExport::enter_primordial_phase();
3511}
3512
3513extern "C" {
3514  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3515}
3516
3517void Threads::shutdown_vm_agents() {
3518  // Send any Agent_OnUnload notifications
3519  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3520  extern struct JavaVM_ main_vm;
3521  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3522
3523    // Find the Agent_OnUnload function.
3524    for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3525      Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3526               os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3527
3528      // Invoke the Agent_OnUnload function
3529      if (unload_entry != NULL) {
3530        JavaThread* thread = JavaThread::current();
3531        ThreadToNativeFromVM ttn(thread);
3532        HandleMark hm(thread);
3533        (*unload_entry)(&main_vm);
3534        break;
3535      }
3536    }
3537  }
3538}
3539
3540// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3541// Invokes JVM_OnLoad
3542void Threads::create_vm_init_libraries() {
3543  extern struct JavaVM_ main_vm;
3544  AgentLibrary* agent;
3545
3546  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3547    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3548
3549    if (on_load_entry != NULL) {
3550      // Invoke the JVM_OnLoad function
3551      JavaThread* thread = JavaThread::current();
3552      ThreadToNativeFromVM ttn(thread);
3553      HandleMark hm(thread);
3554      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3555      if (err != JNI_OK) {
3556        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3557      }
3558    } else {
3559      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3560    }
3561  }
3562}
3563
3564// Last thread running calls java.lang.Shutdown.shutdown()
3565void JavaThread::invoke_shutdown_hooks() {
3566  HandleMark hm(this);
3567
3568  // We could get here with a pending exception, if so clear it now.
3569  if (this->has_pending_exception()) {
3570    this->clear_pending_exception();
3571  }
3572
3573  EXCEPTION_MARK;
3574  klassOop k =
3575    SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_Shutdown(),
3576                                      THREAD);
3577  if (k != NULL) {
3578    // SystemDictionary::resolve_or_null will return null if there was
3579    // an exception.  If we cannot load the Shutdown class, just don't
3580    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3581    // and finalizers (if runFinalizersOnExit is set) won't be run.
3582    // Note that if a shutdown hook was registered or runFinalizersOnExit
3583    // was called, the Shutdown class would have already been loaded
3584    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3585    instanceKlassHandle shutdown_klass (THREAD, k);
3586    JavaValue result(T_VOID);
3587    JavaCalls::call_static(&result,
3588                           shutdown_klass,
3589                           vmSymbolHandles::shutdown_method_name(),
3590                           vmSymbolHandles::void_method_signature(),
3591                           THREAD);
3592  }
3593  CLEAR_PENDING_EXCEPTION;
3594}
3595
3596// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3597// the program falls off the end of main(). Another VM exit path is through
3598// vm_exit() when the program calls System.exit() to return a value or when
3599// there is a serious error in VM. The two shutdown paths are not exactly
3600// the same, but they share Shutdown.shutdown() at Java level and before_exit()
3601// and VM_Exit op at VM level.
3602//
3603// Shutdown sequence:
3604//   + Wait until we are the last non-daemon thread to execute
3605//     <-- every thing is still working at this moment -->
3606//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3607//        shutdown hooks, run finalizers if finalization-on-exit
3608//   + Call before_exit(), prepare for VM exit
3609//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3610//        currently the only user of this mechanism is File.deleteOnExit())
3611//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3612//        post thread end and vm death events to JVMTI,
3613//        stop signal thread
3614//   + Call JavaThread::exit(), it will:
3615//      > release JNI handle blocks, remove stack guard pages
3616//      > remove this thread from Threads list
3617//     <-- no more Java code from this thread after this point -->
3618//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3619//     the compiler threads at safepoint
3620//     <-- do not use anything that could get blocked by Safepoint -->
3621//   + Disable tracing at JNI/JVM barriers
3622//   + Set _vm_exited flag for threads that are still running native code
3623//   + Delete this thread
3624//   + Call exit_globals()
3625//      > deletes tty
3626//      > deletes PerfMemory resources
3627//   + Return to caller
3628
3629bool Threads::destroy_vm() {
3630  JavaThread* thread = JavaThread::current();
3631
3632  // Wait until we are the last non-daemon thread to execute
3633  { MutexLocker nu(Threads_lock);
3634    while (Threads::number_of_non_daemon_threads() > 1 )
3635      // This wait should make safepoint checks, wait without a timeout,
3636      // and wait as a suspend-equivalent condition.
3637      //
3638      // Note: If the FlatProfiler is running and this thread is waiting
3639      // for another non-daemon thread to finish, then the FlatProfiler
3640      // is waiting for the external suspend request on this thread to
3641      // complete. wait_for_ext_suspend_completion() will eventually
3642      // timeout, but that takes time. Making this wait a suspend-
3643      // equivalent condition solves that timeout problem.
3644      //
3645      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3646                         Mutex::_as_suspend_equivalent_flag);
3647  }
3648
3649  // Hang forever on exit if we are reporting an error.
3650  if (ShowMessageBoxOnError && is_error_reported()) {
3651    os::infinite_sleep();
3652  }
3653
3654  if (JDK_Version::is_jdk12x_version()) {
3655    // We are the last thread running, so check if finalizers should be run.
3656    // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3657    HandleMark rm(thread);
3658    Universe::run_finalizers_on_exit();
3659  } else {
3660    // run Java level shutdown hooks
3661    thread->invoke_shutdown_hooks();
3662  }
3663
3664  before_exit(thread);
3665
3666  thread->exit(true);
3667
3668  // Stop VM thread.
3669  {
3670    // 4945125 The vm thread comes to a safepoint during exit.
3671    // GC vm_operations can get caught at the safepoint, and the
3672    // heap is unparseable if they are caught. Grab the Heap_lock
3673    // to prevent this. The GC vm_operations will not be able to
3674    // queue until after the vm thread is dead.
3675    MutexLocker ml(Heap_lock);
3676
3677    VMThread::wait_for_vm_thread_exit();
3678    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3679    VMThread::destroy();
3680  }
3681
3682  // clean up ideal graph printers
3683#if defined(COMPILER2) && !defined(PRODUCT)
3684  IdealGraphPrinter::clean_up();
3685#endif
3686
3687  // Now, all Java threads are gone except daemon threads. Daemon threads
3688  // running Java code or in VM are stopped by the Safepoint. However,
3689  // daemon threads executing native code are still running.  But they
3690  // will be stopped at native=>Java/VM barriers. Note that we can't
3691  // simply kill or suspend them, as it is inherently deadlock-prone.
3692
3693#ifndef PRODUCT
3694  // disable function tracing at JNI/JVM barriers
3695  TraceJNICalls = false;
3696  TraceJVMCalls = false;
3697  TraceRuntimeCalls = false;
3698#endif
3699
3700  VM_Exit::set_vm_exited();
3701
3702  notify_vm_shutdown();
3703
3704  delete thread;
3705
3706  // exit_globals() will delete tty
3707  exit_globals();
3708
3709  return true;
3710}
3711
3712
3713jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3714  if (version == JNI_VERSION_1_1) return JNI_TRUE;
3715  return is_supported_jni_version(version);
3716}
3717
3718
3719jboolean Threads::is_supported_jni_version(jint version) {
3720  if (version == JNI_VERSION_1_2) return JNI_TRUE;
3721  if (version == JNI_VERSION_1_4) return JNI_TRUE;
3722  if (version == JNI_VERSION_1_6) return JNI_TRUE;
3723  return JNI_FALSE;
3724}
3725
3726
3727void Threads::add(JavaThread* p, bool force_daemon) {
3728  // The threads lock must be owned at this point
3729  assert_locked_or_safepoint(Threads_lock);
3730
3731  // See the comment for this method in thread.hpp for its purpose and
3732  // why it is called here.
3733  p->initialize_queues();
3734  p->set_next(_thread_list);
3735  _thread_list = p;
3736  _number_of_threads++;
3737  oop threadObj = p->threadObj();
3738  bool daemon = true;
3739  // Bootstrapping problem: threadObj can be null for initial
3740  // JavaThread (or for threads attached via JNI)
3741  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3742    _number_of_non_daemon_threads++;
3743    daemon = false;
3744  }
3745
3746  ThreadService::add_thread(p, daemon);
3747
3748  // Possible GC point.
3749  Events::log("Thread added: " INTPTR_FORMAT, p);
3750}
3751
3752void Threads::remove(JavaThread* p) {
3753  // Extra scope needed for Thread_lock, so we can check
3754  // that we do not remove thread without safepoint code notice
3755  { MutexLocker ml(Threads_lock);
3756
3757    assert(includes(p), "p must be present");
3758
3759    JavaThread* current = _thread_list;
3760    JavaThread* prev    = NULL;
3761
3762    while (current != p) {
3763      prev    = current;
3764      current = current->next();
3765    }
3766
3767    if (prev) {
3768      prev->set_next(current->next());
3769    } else {
3770      _thread_list = p->next();
3771    }
3772    _number_of_threads--;
3773    oop threadObj = p->threadObj();
3774    bool daemon = true;
3775    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
3776      _number_of_non_daemon_threads--;
3777      daemon = false;
3778
3779      // Only one thread left, do a notify on the Threads_lock so a thread waiting
3780      // on destroy_vm will wake up.
3781      if (number_of_non_daemon_threads() == 1)
3782        Threads_lock->notify_all();
3783    }
3784    ThreadService::remove_thread(p, daemon);
3785
3786    // Make sure that safepoint code disregard this thread. This is needed since
3787    // the thread might mess around with locks after this point. This can cause it
3788    // to do callbacks into the safepoint code. However, the safepoint code is not aware
3789    // of this thread since it is removed from the queue.
3790    p->set_terminated_value();
3791  } // unlock Threads_lock
3792
3793  // Since Events::log uses a lock, we grab it outside the Threads_lock
3794  Events::log("Thread exited: " INTPTR_FORMAT, p);
3795}
3796
3797// Threads_lock must be held when this is called (or must be called during a safepoint)
3798bool Threads::includes(JavaThread* p) {
3799  assert(Threads_lock->is_locked(), "sanity check");
3800  ALL_JAVA_THREADS(q) {
3801    if (q == p ) {
3802      return true;
3803    }
3804  }
3805  return false;
3806}
3807
3808// Operations on the Threads list for GC.  These are not explicitly locked,
3809// but the garbage collector must provide a safe context for them to run.
3810// In particular, these things should never be called when the Threads_lock
3811// is held by some other thread. (Note: the Safepoint abstraction also
3812// uses the Threads_lock to gurantee this property. It also makes sure that
3813// all threads gets blocked when exiting or starting).
3814
3815void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3816  ALL_JAVA_THREADS(p) {
3817    p->oops_do(f, cf);
3818  }
3819  VMThread::vm_thread()->oops_do(f, cf);
3820}
3821
3822void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
3823  // Introduce a mechanism allowing parallel threads to claim threads as
3824  // root groups.  Overhead should be small enough to use all the time,
3825  // even in sequential code.
3826  SharedHeap* sh = SharedHeap::heap();
3827  bool is_par = (sh->n_par_threads() > 0);
3828  int cp = SharedHeap::heap()->strong_roots_parity();
3829  ALL_JAVA_THREADS(p) {
3830    if (p->claim_oops_do(is_par, cp)) {
3831      p->oops_do(f, cf);
3832    }
3833  }
3834  VMThread* vmt = VMThread::vm_thread();
3835  if (vmt->claim_oops_do(is_par, cp))
3836    vmt->oops_do(f, cf);
3837}
3838
3839#ifndef SERIALGC
3840// Used by ParallelScavenge
3841void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
3842  ALL_JAVA_THREADS(p) {
3843    q->enqueue(new ThreadRootsTask(p));
3844  }
3845  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
3846}
3847
3848// Used by Parallel Old
3849void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
3850  ALL_JAVA_THREADS(p) {
3851    q->enqueue(new ThreadRootsMarkingTask(p));
3852  }
3853  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
3854}
3855#endif // SERIALGC
3856
3857void Threads::nmethods_do(CodeBlobClosure* cf) {
3858  ALL_JAVA_THREADS(p) {
3859    p->nmethods_do(cf);
3860  }
3861  VMThread::vm_thread()->nmethods_do(cf);
3862}
3863
3864void Threads::gc_epilogue() {
3865  ALL_JAVA_THREADS(p) {
3866    p->gc_epilogue();
3867  }
3868}
3869
3870void Threads::gc_prologue() {
3871  ALL_JAVA_THREADS(p) {
3872    p->gc_prologue();
3873  }
3874}
3875
3876void Threads::deoptimized_wrt_marked_nmethods() {
3877  ALL_JAVA_THREADS(p) {
3878    p->deoptimized_wrt_marked_nmethods();
3879  }
3880}
3881
3882
3883// Get count Java threads that are waiting to enter the specified monitor.
3884GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
3885  address monitor, bool doLock) {
3886  assert(doLock || SafepointSynchronize::is_at_safepoint(),
3887    "must grab Threads_lock or be at safepoint");
3888  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
3889
3890  int i = 0;
3891  {
3892    MutexLockerEx ml(doLock ? Threads_lock : NULL);
3893    ALL_JAVA_THREADS(p) {
3894      if (p->is_Compiler_thread()) continue;
3895
3896      address pending = (address)p->current_pending_monitor();
3897      if (pending == monitor) {             // found a match
3898        if (i < count) result->append(p);   // save the first count matches
3899        i++;
3900      }
3901    }
3902  }
3903  return result;
3904}
3905
3906
3907JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
3908  assert(doLock ||
3909         Threads_lock->owned_by_self() ||
3910         SafepointSynchronize::is_at_safepoint(),
3911         "must grab Threads_lock or be at safepoint");
3912
3913  // NULL owner means not locked so we can skip the search
3914  if (owner == NULL) return NULL;
3915
3916  {
3917    MutexLockerEx ml(doLock ? Threads_lock : NULL);
3918    ALL_JAVA_THREADS(p) {
3919      // first, see if owner is the address of a Java thread
3920      if (owner == (address)p) return p;
3921    }
3922  }
3923  assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
3924  if (UseHeavyMonitors) return NULL;
3925
3926  //
3927  // If we didn't find a matching Java thread and we didn't force use of
3928  // heavyweight monitors, then the owner is the stack address of the
3929  // Lock Word in the owning Java thread's stack.
3930  //
3931  JavaThread* the_owner = NULL;
3932  {
3933    MutexLockerEx ml(doLock ? Threads_lock : NULL);
3934    ALL_JAVA_THREADS(q) {
3935      if (q->is_lock_owned(owner)) {
3936        the_owner = q;
3937        break;
3938      }
3939    }
3940  }
3941  assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
3942  return the_owner;
3943}
3944
3945// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
3946void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
3947  char buf[32];
3948  st->print_cr(os::local_time_string(buf, sizeof(buf)));
3949
3950  st->print_cr("Full thread dump %s (%s %s):",
3951                Abstract_VM_Version::vm_name(),
3952                Abstract_VM_Version::vm_release(),
3953                Abstract_VM_Version::vm_info_string()
3954               );
3955  st->cr();
3956
3957#ifndef SERIALGC
3958  // Dump concurrent locks
3959  ConcurrentLocksDump concurrent_locks;
3960  if (print_concurrent_locks) {
3961    concurrent_locks.dump_at_safepoint();
3962  }
3963#endif // SERIALGC
3964
3965  ALL_JAVA_THREADS(p) {
3966    ResourceMark rm;
3967    p->print_on(st);
3968    if (print_stacks) {
3969      if (internal_format) {
3970        p->trace_stack();
3971      } else {
3972        p->print_stack_on(st);
3973      }
3974    }
3975    st->cr();
3976#ifndef SERIALGC
3977    if (print_concurrent_locks) {
3978      concurrent_locks.print_locks_on(p, st);
3979    }
3980#endif // SERIALGC
3981  }
3982
3983  VMThread::vm_thread()->print_on(st);
3984  st->cr();
3985  Universe::heap()->print_gc_threads_on(st);
3986  WatcherThread* wt = WatcherThread::watcher_thread();
3987  if (wt != NULL) wt->print_on(st);
3988  st->cr();
3989  CompileBroker::print_compiler_threads_on(st);
3990  st->flush();
3991}
3992
3993// Threads::print_on_error() is called by fatal error handler. It's possible
3994// that VM is not at safepoint and/or current thread is inside signal handler.
3995// Don't print stack trace, as the stack may not be walkable. Don't allocate
3996// memory (even in resource area), it might deadlock the error handler.
3997void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
3998  bool found_current = false;
3999  st->print_cr("Java Threads: ( => current thread )");
4000  ALL_JAVA_THREADS(thread) {
4001    bool is_current = (current == thread);
4002    found_current = found_current || is_current;
4003
4004    st->print("%s", is_current ? "=>" : "  ");
4005
4006    st->print(PTR_FORMAT, thread);
4007    st->print(" ");
4008    thread->print_on_error(st, buf, buflen);
4009    st->cr();
4010  }
4011  st->cr();
4012
4013  st->print_cr("Other Threads:");
4014  if (VMThread::vm_thread()) {
4015    bool is_current = (current == VMThread::vm_thread());
4016    found_current = found_current || is_current;
4017    st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4018
4019    st->print(PTR_FORMAT, VMThread::vm_thread());
4020    st->print(" ");
4021    VMThread::vm_thread()->print_on_error(st, buf, buflen);
4022    st->cr();
4023  }
4024  WatcherThread* wt = WatcherThread::watcher_thread();
4025  if (wt != NULL) {
4026    bool is_current = (current == wt);
4027    found_current = found_current || is_current;
4028    st->print("%s", is_current ? "=>" : "  ");
4029
4030    st->print(PTR_FORMAT, wt);
4031    st->print(" ");
4032    wt->print_on_error(st, buf, buflen);
4033    st->cr();
4034  }
4035  if (!found_current) {
4036    st->cr();
4037    st->print("=>" PTR_FORMAT " (exited) ", current);
4038    current->print_on_error(st, buf, buflen);
4039    st->cr();
4040  }
4041}
4042
4043// Internal SpinLock and Mutex
4044// Based on ParkEvent
4045
4046// Ad-hoc mutual exclusion primitives: SpinLock and Mux
4047//
4048// We employ SpinLocks _only for low-contention, fixed-length
4049// short-duration critical sections where we're concerned
4050// about native mutex_t or HotSpot Mutex:: latency.
4051// The mux construct provides a spin-then-block mutual exclusion
4052// mechanism.
4053//
4054// Testing has shown that contention on the ListLock guarding gFreeList
4055// is common.  If we implement ListLock as a simple SpinLock it's common
4056// for the JVM to devolve to yielding with little progress.  This is true
4057// despite the fact that the critical sections protected by ListLock are
4058// extremely short.
4059//
4060// TODO-FIXME: ListLock should be of type SpinLock.
4061// We should make this a 1st-class type, integrated into the lock
4062// hierarchy as leaf-locks.  Critically, the SpinLock structure
4063// should have sufficient padding to avoid false-sharing and excessive
4064// cache-coherency traffic.
4065
4066
4067typedef volatile int SpinLockT ;
4068
4069void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4070  if (Atomic::cmpxchg (1, adr, 0) == 0) {
4071     return ;   // normal fast-path return
4072  }
4073
4074  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4075  TEVENT (SpinAcquire - ctx) ;
4076  int ctr = 0 ;
4077  int Yields = 0 ;
4078  for (;;) {
4079     while (*adr != 0) {
4080        ++ctr ;
4081        if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4082           if (Yields > 5) {
4083             // Consider using a simple NakedSleep() instead.
4084             // Then SpinAcquire could be called by non-JVM threads
4085             Thread::current()->_ParkEvent->park(1) ;
4086           } else {
4087             os::NakedYield() ;
4088             ++Yields ;
4089           }
4090        } else {
4091           SpinPause() ;
4092        }
4093     }
4094     if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4095  }
4096}
4097
4098void Thread::SpinRelease (volatile int * adr) {
4099  assert (*adr != 0, "invariant") ;
4100  OrderAccess::fence() ;      // guarantee at least release consistency.
4101  // Roach-motel semantics.
4102  // It's safe if subsequent LDs and STs float "up" into the critical section,
4103  // but prior LDs and STs within the critical section can't be allowed
4104  // to reorder or float past the ST that releases the lock.
4105  *adr = 0 ;
4106}
4107
4108// muxAcquire and muxRelease:
4109//
4110// *  muxAcquire and muxRelease support a single-word lock-word construct.
4111//    The LSB of the word is set IFF the lock is held.
4112//    The remainder of the word points to the head of a singly-linked list
4113//    of threads blocked on the lock.
4114//
4115// *  The current implementation of muxAcquire-muxRelease uses its own
4116//    dedicated Thread._MuxEvent instance.  If we're interested in
4117//    minimizing the peak number of extant ParkEvent instances then
4118//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4119//    as certain invariants were satisfied.  Specifically, care would need
4120//    to be taken with regards to consuming unpark() "permits".
4121//    A safe rule of thumb is that a thread would never call muxAcquire()
4122//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4123//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4124//    consume an unpark() permit intended for monitorenter, for instance.
4125//    One way around this would be to widen the restricted-range semaphore
4126//    implemented in park().  Another alternative would be to provide
4127//    multiple instances of the PlatformEvent() for each thread.  One
4128//    instance would be dedicated to muxAcquire-muxRelease, for instance.
4129//
4130// *  Usage:
4131//    -- Only as leaf locks
4132//    -- for short-term locking only as muxAcquire does not perform
4133//       thread state transitions.
4134//
4135// Alternatives:
4136// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4137//    but with parking or spin-then-park instead of pure spinning.
4138// *  Use Taura-Oyama-Yonenzawa locks.
4139// *  It's possible to construct a 1-0 lock if we encode the lockword as
4140//    (List,LockByte).  Acquire will CAS the full lockword while Release
4141//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4142//    acquiring threads use timers (ParkTimed) to detect and recover from
4143//    the stranding window.  Thread/Node structures must be aligned on 256-byte
4144//    boundaries by using placement-new.
4145// *  Augment MCS with advisory back-link fields maintained with CAS().
4146//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4147//    The validity of the backlinks must be ratified before we trust the value.
4148//    If the backlinks are invalid the exiting thread must back-track through the
4149//    the forward links, which are always trustworthy.
4150// *  Add a successor indication.  The LockWord is currently encoded as
4151//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4152//    to provide the usual futile-wakeup optimization.
4153//    See RTStt for details.
4154// *  Consider schedctl.sc_nopreempt to cover the critical section.
4155//
4156
4157
4158typedef volatile intptr_t MutexT ;      // Mux Lock-word
4159enum MuxBits { LOCKBIT = 1 } ;
4160
4161void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4162  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4163  if (w == 0) return ;
4164  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4165     return ;
4166  }
4167
4168  TEVENT (muxAcquire - Contention) ;
4169  ParkEvent * const Self = Thread::current()->_MuxEvent ;
4170  assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4171  for (;;) {
4172     int its = (os::is_MP() ? 100 : 0) + 1 ;
4173
4174     // Optional spin phase: spin-then-park strategy
4175     while (--its >= 0) {
4176       w = *Lock ;
4177       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4178          return ;
4179       }
4180     }
4181
4182     Self->reset() ;
4183     Self->OnList = intptr_t(Lock) ;
4184     // The following fence() isn't _strictly necessary as the subsequent
4185     // CAS() both serializes execution and ratifies the fetched *Lock value.
4186     OrderAccess::fence();
4187     for (;;) {
4188        w = *Lock ;
4189        if ((w & LOCKBIT) == 0) {
4190            if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4191                Self->OnList = 0 ;   // hygiene - allows stronger asserts
4192                return ;
4193            }
4194            continue ;      // Interference -- *Lock changed -- Just retry
4195        }
4196        assert (w & LOCKBIT, "invariant") ;
4197        Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4198        if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4199     }
4200
4201     while (Self->OnList != 0) {
4202        Self->park() ;
4203     }
4204  }
4205}
4206
4207void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4208  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4209  if (w == 0) return ;
4210  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4211    return ;
4212  }
4213
4214  TEVENT (muxAcquire - Contention) ;
4215  ParkEvent * ReleaseAfter = NULL ;
4216  if (ev == NULL) {
4217    ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4218  }
4219  assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4220  for (;;) {
4221    guarantee (ev->OnList == 0, "invariant") ;
4222    int its = (os::is_MP() ? 100 : 0) + 1 ;
4223
4224    // Optional spin phase: spin-then-park strategy
4225    while (--its >= 0) {
4226      w = *Lock ;
4227      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4228        if (ReleaseAfter != NULL) {
4229          ParkEvent::Release (ReleaseAfter) ;
4230        }
4231        return ;
4232      }
4233    }
4234
4235    ev->reset() ;
4236    ev->OnList = intptr_t(Lock) ;
4237    // The following fence() isn't _strictly necessary as the subsequent
4238    // CAS() both serializes execution and ratifies the fetched *Lock value.
4239    OrderAccess::fence();
4240    for (;;) {
4241      w = *Lock ;
4242      if ((w & LOCKBIT) == 0) {
4243        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4244          ev->OnList = 0 ;
4245          // We call ::Release while holding the outer lock, thus
4246          // artificially lengthening the critical section.
4247          // Consider deferring the ::Release() until the subsequent unlock(),
4248          // after we've dropped the outer lock.
4249          if (ReleaseAfter != NULL) {
4250            ParkEvent::Release (ReleaseAfter) ;
4251          }
4252          return ;
4253        }
4254        continue ;      // Interference -- *Lock changed -- Just retry
4255      }
4256      assert (w & LOCKBIT, "invariant") ;
4257      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4258      if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4259    }
4260
4261    while (ev->OnList != 0) {
4262      ev->park() ;
4263    }
4264  }
4265}
4266
4267// Release() must extract a successor from the list and then wake that thread.
4268// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4269// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4270// Release() would :
4271// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4272// (B) Extract a successor from the private list "in-hand"
4273// (C) attempt to CAS() the residual back into *Lock over null.
4274//     If there were any newly arrived threads and the CAS() would fail.
4275//     In that case Release() would detach the RATs, re-merge the list in-hand
4276//     with the RATs and repeat as needed.  Alternately, Release() might
4277//     detach and extract a successor, but then pass the residual list to the wakee.
4278//     The wakee would be responsible for reattaching and remerging before it
4279//     competed for the lock.
4280//
4281// Both "pop" and DMR are immune from ABA corruption -- there can be
4282// multiple concurrent pushers, but only one popper or detacher.
4283// This implementation pops from the head of the list.  This is unfair,
4284// but tends to provide excellent throughput as hot threads remain hot.
4285// (We wake recently run threads first).
4286
4287void Thread::muxRelease (volatile intptr_t * Lock)  {
4288  for (;;) {
4289    const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4290    assert (w & LOCKBIT, "invariant") ;
4291    if (w == LOCKBIT) return ;
4292    ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4293    assert (List != NULL, "invariant") ;
4294    assert (List->OnList == intptr_t(Lock), "invariant") ;
4295    ParkEvent * nxt = List->ListNext ;
4296
4297    // The following CAS() releases the lock and pops the head element.
4298    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4299      continue ;
4300    }
4301    List->OnList = 0 ;
4302    OrderAccess::fence() ;
4303    List->unpark () ;
4304    return ;
4305  }
4306}
4307
4308
4309void Threads::verify() {
4310  ALL_JAVA_THREADS(p) {
4311    p->verify();
4312  }
4313  VMThread* thread = VMThread::vm_thread();
4314  if (thread != NULL) thread->verify();
4315}
4316