thread.cpp revision 1798:fa83ab460c54
1/*
2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25# include "incls/_precompiled.incl"
26# include "incls/_thread.cpp.incl"
27
28#ifdef DTRACE_ENABLED
29
30// Only bother with this argument setup if dtrace is available
31
32HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
33HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
34HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
35  intptr_t, intptr_t, bool);
36HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
37  intptr_t, intptr_t, bool);
38
39#define DTRACE_THREAD_PROBE(probe, javathread)                             \
40  {                                                                        \
41    ResourceMark rm(this);                                                 \
42    int len = 0;                                                           \
43    const char* name = (javathread)->get_thread_name();                    \
44    len = strlen(name);                                                    \
45    HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
46      name, len,                                                           \
47      java_lang_Thread::thread_id((javathread)->threadObj()),              \
48      (javathread)->osthread()->thread_id(),                               \
49      java_lang_Thread::is_daemon((javathread)->threadObj()));             \
50  }
51
52#else //  ndef DTRACE_ENABLED
53
54#define DTRACE_THREAD_PROBE(probe, javathread)
55
56#endif // ndef DTRACE_ENABLED
57
58// Class hierarchy
59// - Thread
60//   - VMThread
61//   - WatcherThread
62//   - ConcurrentMarkSweepThread
63//   - JavaThread
64//     - CompilerThread
65
66// ======= Thread ========
67
68// Support for forcing alignment of thread objects for biased locking
69void* Thread::operator new(size_t size) {
70  if (UseBiasedLocking) {
71    const int alignment = markOopDesc::biased_lock_alignment;
72    size_t aligned_size = size + (alignment - sizeof(intptr_t));
73    void* real_malloc_addr = CHeapObj::operator new(aligned_size);
74    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
75    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
76           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
77           "JavaThread alignment code overflowed allocated storage");
78    if (TraceBiasedLocking) {
79      if (aligned_addr != real_malloc_addr)
80        tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
81                      real_malloc_addr, aligned_addr);
82    }
83    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
84    return aligned_addr;
85  } else {
86    return CHeapObj::operator new(size);
87  }
88}
89
90void Thread::operator delete(void* p) {
91  if (UseBiasedLocking) {
92    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
93    CHeapObj::operator delete(real_malloc_addr);
94  } else {
95    CHeapObj::operator delete(p);
96  }
97}
98
99
100// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
101// JavaThread
102
103
104Thread::Thread() {
105  // stack
106  _stack_base   = NULL;
107  _stack_size   = 0;
108  _self_raw_id  = 0;
109  _lgrp_id      = -1;
110  _osthread     = NULL;
111
112  // allocated data structures
113  set_resource_area(new ResourceArea());
114  set_handle_area(new HandleArea(NULL));
115  set_active_handles(NULL);
116  set_free_handle_block(NULL);
117  set_last_handle_mark(NULL);
118  set_osthread(NULL);
119
120  // This initial value ==> never claimed.
121  _oops_do_parity = 0;
122
123  // the handle mark links itself to last_handle_mark
124  new HandleMark(this);
125
126  // plain initialization
127  debug_only(_owned_locks = NULL;)
128  debug_only(_allow_allocation_count = 0;)
129  NOT_PRODUCT(_allow_safepoint_count = 0;)
130  NOT_PRODUCT(_skip_gcalot = false;)
131  CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
132  _jvmti_env_iteration_count = 0;
133  _vm_operation_started_count = 0;
134  _vm_operation_completed_count = 0;
135  _current_pending_monitor = NULL;
136  _current_pending_monitor_is_from_java = true;
137  _current_waiting_monitor = NULL;
138  _num_nested_signal = 0;
139  omFreeList = NULL ;
140  omFreeCount = 0 ;
141  omFreeProvision = 32 ;
142  omInUseList = NULL ;
143  omInUseCount = 0 ;
144
145  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
146  _suspend_flags = 0;
147
148  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
149  _hashStateX = os::random() ;
150  _hashStateY = 842502087 ;
151  _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
152  _hashStateW = 273326509 ;
153
154  _OnTrap   = 0 ;
155  _schedctl = NULL ;
156  _Stalled  = 0 ;
157  _TypeTag  = 0x2BAD ;
158
159  // Many of the following fields are effectively final - immutable
160  // Note that nascent threads can't use the Native Monitor-Mutex
161  // construct until the _MutexEvent is initialized ...
162  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
163  // we might instead use a stack of ParkEvents that we could provision on-demand.
164  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
165  // and ::Release()
166  _ParkEvent   = ParkEvent::Allocate (this) ;
167  _SleepEvent  = ParkEvent::Allocate (this) ;
168  _MutexEvent  = ParkEvent::Allocate (this) ;
169  _MuxEvent    = ParkEvent::Allocate (this) ;
170
171#ifdef CHECK_UNHANDLED_OOPS
172  if (CheckUnhandledOops) {
173    _unhandled_oops = new UnhandledOops(this);
174  }
175#endif // CHECK_UNHANDLED_OOPS
176#ifdef ASSERT
177  if (UseBiasedLocking) {
178    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
179    assert(this == _real_malloc_address ||
180           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
181           "bug in forced alignment of thread objects");
182  }
183#endif /* ASSERT */
184}
185
186void Thread::initialize_thread_local_storage() {
187  // Note: Make sure this method only calls
188  // non-blocking operations. Otherwise, it might not work
189  // with the thread-startup/safepoint interaction.
190
191  // During Java thread startup, safepoint code should allow this
192  // method to complete because it may need to allocate memory to
193  // store information for the new thread.
194
195  // initialize structure dependent on thread local storage
196  ThreadLocalStorage::set_thread(this);
197
198  // set up any platform-specific state.
199  os::initialize_thread();
200
201}
202
203void Thread::record_stack_base_and_size() {
204  set_stack_base(os::current_stack_base());
205  set_stack_size(os::current_stack_size());
206}
207
208
209Thread::~Thread() {
210  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
211  ObjectSynchronizer::omFlush (this) ;
212
213  // deallocate data structures
214  delete resource_area();
215  // since the handle marks are using the handle area, we have to deallocated the root
216  // handle mark before deallocating the thread's handle area,
217  assert(last_handle_mark() != NULL, "check we have an element");
218  delete last_handle_mark();
219  assert(last_handle_mark() == NULL, "check we have reached the end");
220
221  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
222  // We NULL out the fields for good hygiene.
223  ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
224  ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
225  ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
226  ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
227
228  delete handle_area();
229
230  // osthread() can be NULL, if creation of thread failed.
231  if (osthread() != NULL) os::free_thread(osthread());
232
233  delete _SR_lock;
234
235  // clear thread local storage if the Thread is deleting itself
236  if (this == Thread::current()) {
237    ThreadLocalStorage::set_thread(NULL);
238  } else {
239    // In the case where we're not the current thread, invalidate all the
240    // caches in case some code tries to get the current thread or the
241    // thread that was destroyed, and gets stale information.
242    ThreadLocalStorage::invalidate_all();
243  }
244  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
245}
246
247// NOTE: dummy function for assertion purpose.
248void Thread::run() {
249  ShouldNotReachHere();
250}
251
252#ifdef ASSERT
253// Private method to check for dangling thread pointer
254void check_for_dangling_thread_pointer(Thread *thread) {
255 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
256         "possibility of dangling Thread pointer");
257}
258#endif
259
260
261#ifndef PRODUCT
262// Tracing method for basic thread operations
263void Thread::trace(const char* msg, const Thread* const thread) {
264  if (!TraceThreadEvents) return;
265  ResourceMark rm;
266  ThreadCritical tc;
267  const char *name = "non-Java thread";
268  int prio = -1;
269  if (thread->is_Java_thread()
270      && !thread->is_Compiler_thread()) {
271    // The Threads_lock must be held to get information about
272    // this thread but may not be in some situations when
273    // tracing  thread events.
274    bool release_Threads_lock = false;
275    if (!Threads_lock->owned_by_self()) {
276      Threads_lock->lock();
277      release_Threads_lock = true;
278    }
279    JavaThread* jt = (JavaThread *)thread;
280    name = (char *)jt->get_thread_name();
281    oop thread_oop = jt->threadObj();
282    if (thread_oop != NULL) {
283      prio = java_lang_Thread::priority(thread_oop);
284    }
285    if (release_Threads_lock) {
286      Threads_lock->unlock();
287    }
288  }
289  tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
290}
291#endif
292
293
294ThreadPriority Thread::get_priority(const Thread* const thread) {
295  trace("get priority", thread);
296  ThreadPriority priority;
297  // Can return an error!
298  (void)os::get_priority(thread, priority);
299  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
300  return priority;
301}
302
303void Thread::set_priority(Thread* thread, ThreadPriority priority) {
304  trace("set priority", thread);
305  debug_only(check_for_dangling_thread_pointer(thread);)
306  // Can return an error!
307  (void)os::set_priority(thread, priority);
308}
309
310
311void Thread::start(Thread* thread) {
312  trace("start", thread);
313  // Start is different from resume in that its safety is guaranteed by context or
314  // being called from a Java method synchronized on the Thread object.
315  if (!DisableStartThread) {
316    if (thread->is_Java_thread()) {
317      // Initialize the thread state to RUNNABLE before starting this thread.
318      // Can not set it after the thread started because we do not know the
319      // exact thread state at that time. It could be in MONITOR_WAIT or
320      // in SLEEPING or some other state.
321      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
322                                          java_lang_Thread::RUNNABLE);
323    }
324    os::start_thread(thread);
325  }
326}
327
328// Enqueue a VM_Operation to do the job for us - sometime later
329void Thread::send_async_exception(oop java_thread, oop java_throwable) {
330  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
331  VMThread::execute(vm_stop);
332}
333
334
335//
336// Check if an external suspend request has completed (or has been
337// cancelled). Returns true if the thread is externally suspended and
338// false otherwise.
339//
340// The bits parameter returns information about the code path through
341// the routine. Useful for debugging:
342//
343// set in is_ext_suspend_completed():
344// 0x00000001 - routine was entered
345// 0x00000010 - routine return false at end
346// 0x00000100 - thread exited (return false)
347// 0x00000200 - suspend request cancelled (return false)
348// 0x00000400 - thread suspended (return true)
349// 0x00001000 - thread is in a suspend equivalent state (return true)
350// 0x00002000 - thread is native and walkable (return true)
351// 0x00004000 - thread is native_trans and walkable (needed retry)
352//
353// set in wait_for_ext_suspend_completion():
354// 0x00010000 - routine was entered
355// 0x00020000 - suspend request cancelled before loop (return false)
356// 0x00040000 - thread suspended before loop (return true)
357// 0x00080000 - suspend request cancelled in loop (return false)
358// 0x00100000 - thread suspended in loop (return true)
359// 0x00200000 - suspend not completed during retry loop (return false)
360//
361
362// Helper class for tracing suspend wait debug bits.
363//
364// 0x00000100 indicates that the target thread exited before it could
365// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
366// 0x00080000 each indicate a cancelled suspend request so they don't
367// count as wait failures either.
368#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
369
370class TraceSuspendDebugBits : public StackObj {
371 private:
372  JavaThread * jt;
373  bool         is_wait;
374  bool         called_by_wait;  // meaningful when !is_wait
375  uint32_t *   bits;
376
377 public:
378  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
379                        uint32_t *_bits) {
380    jt             = _jt;
381    is_wait        = _is_wait;
382    called_by_wait = _called_by_wait;
383    bits           = _bits;
384  }
385
386  ~TraceSuspendDebugBits() {
387    if (!is_wait) {
388#if 1
389      // By default, don't trace bits for is_ext_suspend_completed() calls.
390      // That trace is very chatty.
391      return;
392#else
393      if (!called_by_wait) {
394        // If tracing for is_ext_suspend_completed() is enabled, then only
395        // trace calls to it from wait_for_ext_suspend_completion()
396        return;
397      }
398#endif
399    }
400
401    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
402      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
403        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
404        ResourceMark rm;
405
406        tty->print_cr(
407            "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
408            jt->get_thread_name(), *bits);
409
410        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
411      }
412    }
413  }
414};
415#undef DEBUG_FALSE_BITS
416
417
418bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
419  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
420
421  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
422  bool do_trans_retry;           // flag to force the retry
423
424  *bits |= 0x00000001;
425
426  do {
427    do_trans_retry = false;
428
429    if (is_exiting()) {
430      // Thread is in the process of exiting. This is always checked
431      // first to reduce the risk of dereferencing a freed JavaThread.
432      *bits |= 0x00000100;
433      return false;
434    }
435
436    if (!is_external_suspend()) {
437      // Suspend request is cancelled. This is always checked before
438      // is_ext_suspended() to reduce the risk of a rogue resume
439      // confusing the thread that made the suspend request.
440      *bits |= 0x00000200;
441      return false;
442    }
443
444    if (is_ext_suspended()) {
445      // thread is suspended
446      *bits |= 0x00000400;
447      return true;
448    }
449
450    // Now that we no longer do hard suspends of threads running
451    // native code, the target thread can be changing thread state
452    // while we are in this routine:
453    //
454    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
455    //
456    // We save a copy of the thread state as observed at this moment
457    // and make our decision about suspend completeness based on the
458    // copy. This closes the race where the thread state is seen as
459    // _thread_in_native_trans in the if-thread_blocked check, but is
460    // seen as _thread_blocked in if-thread_in_native_trans check.
461    JavaThreadState save_state = thread_state();
462
463    if (save_state == _thread_blocked && is_suspend_equivalent()) {
464      // If the thread's state is _thread_blocked and this blocking
465      // condition is known to be equivalent to a suspend, then we can
466      // consider the thread to be externally suspended. This means that
467      // the code that sets _thread_blocked has been modified to do
468      // self-suspension if the blocking condition releases. We also
469      // used to check for CONDVAR_WAIT here, but that is now covered by
470      // the _thread_blocked with self-suspension check.
471      //
472      // Return true since we wouldn't be here unless there was still an
473      // external suspend request.
474      *bits |= 0x00001000;
475      return true;
476    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
477      // Threads running native code will self-suspend on native==>VM/Java
478      // transitions. If its stack is walkable (should always be the case
479      // unless this function is called before the actual java_suspend()
480      // call), then the wait is done.
481      *bits |= 0x00002000;
482      return true;
483    } else if (!called_by_wait && !did_trans_retry &&
484               save_state == _thread_in_native_trans &&
485               frame_anchor()->walkable()) {
486      // The thread is transitioning from thread_in_native to another
487      // thread state. check_safepoint_and_suspend_for_native_trans()
488      // will force the thread to self-suspend. If it hasn't gotten
489      // there yet we may have caught the thread in-between the native
490      // code check above and the self-suspend. Lucky us. If we were
491      // called by wait_for_ext_suspend_completion(), then it
492      // will be doing the retries so we don't have to.
493      //
494      // Since we use the saved thread state in the if-statement above,
495      // there is a chance that the thread has already transitioned to
496      // _thread_blocked by the time we get here. In that case, we will
497      // make a single unnecessary pass through the logic below. This
498      // doesn't hurt anything since we still do the trans retry.
499
500      *bits |= 0x00004000;
501
502      // Once the thread leaves thread_in_native_trans for another
503      // thread state, we break out of this retry loop. We shouldn't
504      // need this flag to prevent us from getting back here, but
505      // sometimes paranoia is good.
506      did_trans_retry = true;
507
508      // We wait for the thread to transition to a more usable state.
509      for (int i = 1; i <= SuspendRetryCount; i++) {
510        // We used to do an "os::yield_all(i)" call here with the intention
511        // that yielding would increase on each retry. However, the parameter
512        // is ignored on Linux which means the yield didn't scale up. Waiting
513        // on the SR_lock below provides a much more predictable scale up for
514        // the delay. It also provides a simple/direct point to check for any
515        // safepoint requests from the VMThread
516
517        // temporarily drops SR_lock while doing wait with safepoint check
518        // (if we're a JavaThread - the WatcherThread can also call this)
519        // and increase delay with each retry
520        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
521
522        // check the actual thread state instead of what we saved above
523        if (thread_state() != _thread_in_native_trans) {
524          // the thread has transitioned to another thread state so
525          // try all the checks (except this one) one more time.
526          do_trans_retry = true;
527          break;
528        }
529      } // end retry loop
530
531
532    }
533  } while (do_trans_retry);
534
535  *bits |= 0x00000010;
536  return false;
537}
538
539//
540// Wait for an external suspend request to complete (or be cancelled).
541// Returns true if the thread is externally suspended and false otherwise.
542//
543bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
544       uint32_t *bits) {
545  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
546                             false /* !called_by_wait */, bits);
547
548  // local flag copies to minimize SR_lock hold time
549  bool is_suspended;
550  bool pending;
551  uint32_t reset_bits;
552
553  // set a marker so is_ext_suspend_completed() knows we are the caller
554  *bits |= 0x00010000;
555
556  // We use reset_bits to reinitialize the bits value at the top of
557  // each retry loop. This allows the caller to make use of any
558  // unused bits for their own marking purposes.
559  reset_bits = *bits;
560
561  {
562    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
563    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
564                                            delay, bits);
565    pending = is_external_suspend();
566  }
567  // must release SR_lock to allow suspension to complete
568
569  if (!pending) {
570    // A cancelled suspend request is the only false return from
571    // is_ext_suspend_completed() that keeps us from entering the
572    // retry loop.
573    *bits |= 0x00020000;
574    return false;
575  }
576
577  if (is_suspended) {
578    *bits |= 0x00040000;
579    return true;
580  }
581
582  for (int i = 1; i <= retries; i++) {
583    *bits = reset_bits;  // reinit to only track last retry
584
585    // We used to do an "os::yield_all(i)" call here with the intention
586    // that yielding would increase on each retry. However, the parameter
587    // is ignored on Linux which means the yield didn't scale up. Waiting
588    // on the SR_lock below provides a much more predictable scale up for
589    // the delay. It also provides a simple/direct point to check for any
590    // safepoint requests from the VMThread
591
592    {
593      MutexLocker ml(SR_lock());
594      // wait with safepoint check (if we're a JavaThread - the WatcherThread
595      // can also call this)  and increase delay with each retry
596      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
597
598      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
599                                              delay, bits);
600
601      // It is possible for the external suspend request to be cancelled
602      // (by a resume) before the actual suspend operation is completed.
603      // Refresh our local copy to see if we still need to wait.
604      pending = is_external_suspend();
605    }
606
607    if (!pending) {
608      // A cancelled suspend request is the only false return from
609      // is_ext_suspend_completed() that keeps us from staying in the
610      // retry loop.
611      *bits |= 0x00080000;
612      return false;
613    }
614
615    if (is_suspended) {
616      *bits |= 0x00100000;
617      return true;
618    }
619  } // end retry loop
620
621  // thread did not suspend after all our retries
622  *bits |= 0x00200000;
623  return false;
624}
625
626#ifndef PRODUCT
627void JavaThread::record_jump(address target, address instr, const char* file, int line) {
628
629  // This should not need to be atomic as the only way for simultaneous
630  // updates is via interrupts. Even then this should be rare or non-existant
631  // and we don't care that much anyway.
632
633  int index = _jmp_ring_index;
634  _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
635  _jmp_ring[index]._target = (intptr_t) target;
636  _jmp_ring[index]._instruction = (intptr_t) instr;
637  _jmp_ring[index]._file = file;
638  _jmp_ring[index]._line = line;
639}
640#endif /* PRODUCT */
641
642// Called by flat profiler
643// Callers have already called wait_for_ext_suspend_completion
644// The assertion for that is currently too complex to put here:
645bool JavaThread::profile_last_Java_frame(frame* _fr) {
646  bool gotframe = false;
647  // self suspension saves needed state.
648  if (has_last_Java_frame() && _anchor.walkable()) {
649     *_fr = pd_last_frame();
650     gotframe = true;
651  }
652  return gotframe;
653}
654
655void Thread::interrupt(Thread* thread) {
656  trace("interrupt", thread);
657  debug_only(check_for_dangling_thread_pointer(thread);)
658  os::interrupt(thread);
659}
660
661bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
662  trace("is_interrupted", thread);
663  debug_only(check_for_dangling_thread_pointer(thread);)
664  // Note:  If clear_interrupted==false, this simply fetches and
665  // returns the value of the field osthread()->interrupted().
666  return os::is_interrupted(thread, clear_interrupted);
667}
668
669
670// GC Support
671bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
672  jint thread_parity = _oops_do_parity;
673  if (thread_parity != strong_roots_parity) {
674    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
675    if (res == thread_parity) return true;
676    else {
677      guarantee(res == strong_roots_parity, "Or else what?");
678      assert(SharedHeap::heap()->n_par_threads() > 0,
679             "Should only fail when parallel.");
680      return false;
681    }
682  }
683  assert(SharedHeap::heap()->n_par_threads() > 0,
684         "Should only fail when parallel.");
685  return false;
686}
687
688void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
689  active_handles()->oops_do(f);
690  // Do oop for ThreadShadow
691  f->do_oop((oop*)&_pending_exception);
692  handle_area()->oops_do(f);
693}
694
695void Thread::nmethods_do(CodeBlobClosure* cf) {
696  // no nmethods in a generic thread...
697}
698
699void Thread::print_on(outputStream* st) const {
700  // get_priority assumes osthread initialized
701  if (osthread() != NULL) {
702    st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
703    osthread()->print_on(st);
704  }
705  debug_only(if (WizardMode) print_owned_locks_on(st);)
706}
707
708// Thread::print_on_error() is called by fatal error handler. Don't use
709// any lock or allocate memory.
710void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
711  if      (is_VM_thread())                  st->print("VMThread");
712  else if (is_Compiler_thread())            st->print("CompilerThread");
713  else if (is_Java_thread())                st->print("JavaThread");
714  else if (is_GC_task_thread())             st->print("GCTaskThread");
715  else if (is_Watcher_thread())             st->print("WatcherThread");
716  else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
717  else st->print("Thread");
718
719  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
720            _stack_base - _stack_size, _stack_base);
721
722  if (osthread()) {
723    st->print(" [id=%d]", osthread()->thread_id());
724  }
725}
726
727#ifdef ASSERT
728void Thread::print_owned_locks_on(outputStream* st) const {
729  Monitor *cur = _owned_locks;
730  if (cur == NULL) {
731    st->print(" (no locks) ");
732  } else {
733    st->print_cr(" Locks owned:");
734    while(cur) {
735      cur->print_on(st);
736      cur = cur->next();
737    }
738  }
739}
740
741static int ref_use_count  = 0;
742
743bool Thread::owns_locks_but_compiled_lock() const {
744  for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
745    if (cur != Compile_lock) return true;
746  }
747  return false;
748}
749
750
751#endif
752
753#ifndef PRODUCT
754
755// The flag: potential_vm_operation notifies if this particular safepoint state could potential
756// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
757// no threads which allow_vm_block's are held
758void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
759    // Check if current thread is allowed to block at a safepoint
760    if (!(_allow_safepoint_count == 0))
761      fatal("Possible safepoint reached by thread that does not allow it");
762    if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
763      fatal("LEAF method calling lock?");
764    }
765
766#ifdef ASSERT
767    if (potential_vm_operation && is_Java_thread()
768        && !Universe::is_bootstrapping()) {
769      // Make sure we do not hold any locks that the VM thread also uses.
770      // This could potentially lead to deadlocks
771      for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
772        // Threads_lock is special, since the safepoint synchronization will not start before this is
773        // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
774        // since it is used to transfer control between JavaThreads and the VMThread
775        // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
776        if ( (cur->allow_vm_block() &&
777              cur != Threads_lock &&
778              cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
779              cur != VMOperationRequest_lock &&
780              cur != VMOperationQueue_lock) ||
781              cur->rank() == Mutex::special) {
782          warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
783        }
784      }
785    }
786
787    if (GCALotAtAllSafepoints) {
788      // We could enter a safepoint here and thus have a gc
789      InterfaceSupport::check_gc_alot();
790    }
791#endif
792}
793#endif
794
795bool Thread::is_in_stack(address adr) const {
796  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
797  address end = os::current_stack_pointer();
798  if (stack_base() >= adr && adr >= end) return true;
799
800  return false;
801}
802
803
804// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
805// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
806// used for compilation in the future. If that change is made, the need for these methods
807// should be revisited, and they should be removed if possible.
808
809bool Thread::is_lock_owned(address adr) const {
810  return on_local_stack(adr);
811}
812
813bool Thread::set_as_starting_thread() {
814 // NOTE: this must be called inside the main thread.
815  return os::create_main_thread((JavaThread*)this);
816}
817
818static void initialize_class(symbolHandle class_name, TRAPS) {
819  klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
820  instanceKlass::cast(klass)->initialize(CHECK);
821}
822
823
824// Creates the initial ThreadGroup
825static Handle create_initial_thread_group(TRAPS) {
826  klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_ThreadGroup(), true, CHECK_NH);
827  instanceKlassHandle klass (THREAD, k);
828
829  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
830  {
831    JavaValue result(T_VOID);
832    JavaCalls::call_special(&result,
833                            system_instance,
834                            klass,
835                            vmSymbolHandles::object_initializer_name(),
836                            vmSymbolHandles::void_method_signature(),
837                            CHECK_NH);
838  }
839  Universe::set_system_thread_group(system_instance());
840
841  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
842  {
843    JavaValue result(T_VOID);
844    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
845    JavaCalls::call_special(&result,
846                            main_instance,
847                            klass,
848                            vmSymbolHandles::object_initializer_name(),
849                            vmSymbolHandles::threadgroup_string_void_signature(),
850                            system_instance,
851                            string,
852                            CHECK_NH);
853  }
854  return main_instance;
855}
856
857// Creates the initial Thread
858static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
859  klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK_NULL);
860  instanceKlassHandle klass (THREAD, k);
861  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
862
863  java_lang_Thread::set_thread(thread_oop(), thread);
864  java_lang_Thread::set_priority(thread_oop(), NormPriority);
865  thread->set_threadObj(thread_oop());
866
867  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
868
869  JavaValue result(T_VOID);
870  JavaCalls::call_special(&result, thread_oop,
871                                   klass,
872                                   vmSymbolHandles::object_initializer_name(),
873                                   vmSymbolHandles::threadgroup_string_void_signature(),
874                                   thread_group,
875                                   string,
876                                   CHECK_NULL);
877  return thread_oop();
878}
879
880static void call_initializeSystemClass(TRAPS) {
881  klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
882  instanceKlassHandle klass (THREAD, k);
883
884  JavaValue result(T_VOID);
885  JavaCalls::call_static(&result, klass, vmSymbolHandles::initializeSystemClass_name(),
886                                         vmSymbolHandles::void_method_signature(), CHECK);
887}
888
889#ifdef KERNEL
890static void set_jkernel_boot_classloader_hook(TRAPS) {
891  klassOop k = SystemDictionary::sun_jkernel_DownloadManager_klass();
892  instanceKlassHandle klass (THREAD, k);
893
894  if (k == NULL) {
895    // sun.jkernel.DownloadManager may not present in the JDK; just return
896    return;
897  }
898
899  JavaValue result(T_VOID);
900  JavaCalls::call_static(&result, klass, vmSymbolHandles::setBootClassLoaderHook_name(),
901                                         vmSymbolHandles::void_method_signature(), CHECK);
902}
903#endif // KERNEL
904
905static void reset_vm_info_property(TRAPS) {
906  // the vm info string
907  ResourceMark rm(THREAD);
908  const char *vm_info = VM_Version::vm_info_string();
909
910  // java.lang.System class
911  klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
912  instanceKlassHandle klass (THREAD, k);
913
914  // setProperty arguments
915  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
916  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
917
918  // return value
919  JavaValue r(T_OBJECT);
920
921  // public static String setProperty(String key, String value);
922  JavaCalls::call_static(&r,
923                         klass,
924                         vmSymbolHandles::setProperty_name(),
925                         vmSymbolHandles::string_string_string_signature(),
926                         key_str,
927                         value_str,
928                         CHECK);
929}
930
931
932void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
933  assert(thread_group.not_null(), "thread group should be specified");
934  assert(threadObj() == NULL, "should only create Java thread object once");
935
936  klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK);
937  instanceKlassHandle klass (THREAD, k);
938  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
939
940  java_lang_Thread::set_thread(thread_oop(), this);
941  java_lang_Thread::set_priority(thread_oop(), NormPriority);
942  set_threadObj(thread_oop());
943
944  JavaValue result(T_VOID);
945  if (thread_name != NULL) {
946    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
947    // Thread gets assigned specified name and null target
948    JavaCalls::call_special(&result,
949                            thread_oop,
950                            klass,
951                            vmSymbolHandles::object_initializer_name(),
952                            vmSymbolHandles::threadgroup_string_void_signature(),
953                            thread_group, // Argument 1
954                            name,         // Argument 2
955                            THREAD);
956  } else {
957    // Thread gets assigned name "Thread-nnn" and null target
958    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
959    JavaCalls::call_special(&result,
960                            thread_oop,
961                            klass,
962                            vmSymbolHandles::object_initializer_name(),
963                            vmSymbolHandles::threadgroup_runnable_void_signature(),
964                            thread_group, // Argument 1
965                            Handle(),     // Argument 2
966                            THREAD);
967  }
968
969
970  if (daemon) {
971      java_lang_Thread::set_daemon(thread_oop());
972  }
973
974  if (HAS_PENDING_EXCEPTION) {
975    return;
976  }
977
978  KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
979  Handle threadObj(this, this->threadObj());
980
981  JavaCalls::call_special(&result,
982                         thread_group,
983                         group,
984                         vmSymbolHandles::add_method_name(),
985                         vmSymbolHandles::thread_void_signature(),
986                         threadObj,          // Arg 1
987                         THREAD);
988
989
990}
991
992// NamedThread --  non-JavaThread subclasses with multiple
993// uniquely named instances should derive from this.
994NamedThread::NamedThread() : Thread() {
995  _name = NULL;
996  _processed_thread = NULL;
997}
998
999NamedThread::~NamedThread() {
1000  if (_name != NULL) {
1001    FREE_C_HEAP_ARRAY(char, _name);
1002    _name = NULL;
1003  }
1004}
1005
1006void NamedThread::set_name(const char* format, ...) {
1007  guarantee(_name == NULL, "Only get to set name once.");
1008  _name = NEW_C_HEAP_ARRAY(char, max_name_len);
1009  guarantee(_name != NULL, "alloc failure");
1010  va_list ap;
1011  va_start(ap, format);
1012  jio_vsnprintf(_name, max_name_len, format, ap);
1013  va_end(ap);
1014}
1015
1016// ======= WatcherThread ========
1017
1018// The watcher thread exists to simulate timer interrupts.  It should
1019// be replaced by an abstraction over whatever native support for
1020// timer interrupts exists on the platform.
1021
1022WatcherThread* WatcherThread::_watcher_thread   = NULL;
1023volatile bool  WatcherThread::_should_terminate = false;
1024
1025WatcherThread::WatcherThread() : Thread() {
1026  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1027  if (os::create_thread(this, os::watcher_thread)) {
1028    _watcher_thread = this;
1029
1030    // Set the watcher thread to the highest OS priority which should not be
1031    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1032    // is created. The only normal thread using this priority is the reference
1033    // handler thread, which runs for very short intervals only.
1034    // If the VMThread's priority is not lower than the WatcherThread profiling
1035    // will be inaccurate.
1036    os::set_priority(this, MaxPriority);
1037    if (!DisableStartThread) {
1038      os::start_thread(this);
1039    }
1040  }
1041}
1042
1043void WatcherThread::run() {
1044  assert(this == watcher_thread(), "just checking");
1045
1046  this->record_stack_base_and_size();
1047  this->initialize_thread_local_storage();
1048  this->set_active_handles(JNIHandleBlock::allocate_block());
1049  while(!_should_terminate) {
1050    assert(watcher_thread() == Thread::current(),  "thread consistency check");
1051    assert(watcher_thread() == this,  "thread consistency check");
1052
1053    // Calculate how long it'll be until the next PeriodicTask work
1054    // should be done, and sleep that amount of time.
1055    size_t time_to_wait = PeriodicTask::time_to_wait();
1056
1057    // we expect this to timeout - we only ever get unparked when
1058    // we should terminate
1059    {
1060      OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1061
1062      jlong prev_time = os::javaTimeNanos();
1063      for (;;) {
1064        int res= _SleepEvent->park(time_to_wait);
1065        if (res == OS_TIMEOUT || _should_terminate)
1066          break;
1067        // spurious wakeup of some kind
1068        jlong now = os::javaTimeNanos();
1069        time_to_wait -= (now - prev_time) / 1000000;
1070        if (time_to_wait <= 0)
1071          break;
1072        prev_time = now;
1073      }
1074    }
1075
1076    if (is_error_reported()) {
1077      // A fatal error has happened, the error handler(VMError::report_and_die)
1078      // should abort JVM after creating an error log file. However in some
1079      // rare cases, the error handler itself might deadlock. Here we try to
1080      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1081      //
1082      // This code is in WatcherThread because WatcherThread wakes up
1083      // periodically so the fatal error handler doesn't need to do anything;
1084      // also because the WatcherThread is less likely to crash than other
1085      // threads.
1086
1087      for (;;) {
1088        if (!ShowMessageBoxOnError
1089         && (OnError == NULL || OnError[0] == '\0')
1090         && Arguments::abort_hook() == NULL) {
1091             os::sleep(this, 2 * 60 * 1000, false);
1092             fdStream err(defaultStream::output_fd());
1093             err.print_raw_cr("# [ timer expired, abort... ]");
1094             // skip atexit/vm_exit/vm_abort hooks
1095             os::die();
1096        }
1097
1098        // Wake up 5 seconds later, the fatal handler may reset OnError or
1099        // ShowMessageBoxOnError when it is ready to abort.
1100        os::sleep(this, 5 * 1000, false);
1101      }
1102    }
1103
1104    PeriodicTask::real_time_tick(time_to_wait);
1105
1106    // If we have no more tasks left due to dynamic disenrollment,
1107    // shut down the thread since we don't currently support dynamic enrollment
1108    if (PeriodicTask::num_tasks() == 0) {
1109      _should_terminate = true;
1110    }
1111  }
1112
1113  // Signal that it is terminated
1114  {
1115    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1116    _watcher_thread = NULL;
1117    Terminator_lock->notify();
1118  }
1119
1120  // Thread destructor usually does this..
1121  ThreadLocalStorage::set_thread(NULL);
1122}
1123
1124void WatcherThread::start() {
1125  if (watcher_thread() == NULL) {
1126    _should_terminate = false;
1127    // Create the single instance of WatcherThread
1128    new WatcherThread();
1129  }
1130}
1131
1132void WatcherThread::stop() {
1133  // it is ok to take late safepoints here, if needed
1134  MutexLocker mu(Terminator_lock);
1135  _should_terminate = true;
1136  OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1137
1138  Thread* watcher = watcher_thread();
1139  if (watcher != NULL)
1140    watcher->_SleepEvent->unpark();
1141
1142  while(watcher_thread() != NULL) {
1143    // This wait should make safepoint checks, wait without a timeout,
1144    // and wait as a suspend-equivalent condition.
1145    //
1146    // Note: If the FlatProfiler is running, then this thread is waiting
1147    // for the WatcherThread to terminate and the WatcherThread, via the
1148    // FlatProfiler task, is waiting for the external suspend request on
1149    // this thread to complete. wait_for_ext_suspend_completion() will
1150    // eventually timeout, but that takes time. Making this wait a
1151    // suspend-equivalent condition solves that timeout problem.
1152    //
1153    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1154                          Mutex::_as_suspend_equivalent_flag);
1155  }
1156}
1157
1158void WatcherThread::print_on(outputStream* st) const {
1159  st->print("\"%s\" ", name());
1160  Thread::print_on(st);
1161  st->cr();
1162}
1163
1164// ======= JavaThread ========
1165
1166// A JavaThread is a normal Java thread
1167
1168void JavaThread::initialize() {
1169  // Initialize fields
1170
1171  // Set the claimed par_id to -1 (ie not claiming any par_ids)
1172  set_claimed_par_id(-1);
1173
1174  set_saved_exception_pc(NULL);
1175  set_threadObj(NULL);
1176  _anchor.clear();
1177  set_entry_point(NULL);
1178  set_jni_functions(jni_functions());
1179  set_callee_target(NULL);
1180  set_vm_result(NULL);
1181  set_vm_result_2(NULL);
1182  set_vframe_array_head(NULL);
1183  set_vframe_array_last(NULL);
1184  set_deferred_locals(NULL);
1185  set_deopt_mark(NULL);
1186  set_deopt_nmethod(NULL);
1187  clear_must_deopt_id();
1188  set_monitor_chunks(NULL);
1189  set_next(NULL);
1190  set_thread_state(_thread_new);
1191  _terminated = _not_terminated;
1192  _privileged_stack_top = NULL;
1193  _array_for_gc = NULL;
1194  _suspend_equivalent = false;
1195  _in_deopt_handler = 0;
1196  _doing_unsafe_access = false;
1197  _stack_guard_state = stack_guard_unused;
1198  _exception_oop = NULL;
1199  _exception_pc  = 0;
1200  _exception_handler_pc = 0;
1201  _exception_stack_size = 0;
1202  _jvmti_thread_state= NULL;
1203  _should_post_on_exceptions_flag = JNI_FALSE;
1204  _jvmti_get_loaded_classes_closure = NULL;
1205  _interp_only_mode    = 0;
1206  _special_runtime_exit_condition = _no_async_condition;
1207  _pending_async_exception = NULL;
1208  _is_compiling = false;
1209  _thread_stat = NULL;
1210  _thread_stat = new ThreadStatistics();
1211  _blocked_on_compilation = false;
1212  _jni_active_critical = 0;
1213  _do_not_unlock_if_synchronized = false;
1214  _cached_monitor_info = NULL;
1215  _parker = Parker::Allocate(this) ;
1216
1217#ifndef PRODUCT
1218  _jmp_ring_index = 0;
1219  for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1220    record_jump(NULL, NULL, NULL, 0);
1221  }
1222#endif /* PRODUCT */
1223
1224  set_thread_profiler(NULL);
1225  if (FlatProfiler::is_active()) {
1226    // This is where we would decide to either give each thread it's own profiler
1227    // or use one global one from FlatProfiler,
1228    // or up to some count of the number of profiled threads, etc.
1229    ThreadProfiler* pp = new ThreadProfiler();
1230    pp->engage();
1231    set_thread_profiler(pp);
1232  }
1233
1234  // Setup safepoint state info for this thread
1235  ThreadSafepointState::create(this);
1236
1237  debug_only(_java_call_counter = 0);
1238
1239  // JVMTI PopFrame support
1240  _popframe_condition = popframe_inactive;
1241  _popframe_preserved_args = NULL;
1242  _popframe_preserved_args_size = 0;
1243
1244  pd_initialize();
1245}
1246
1247#ifndef SERIALGC
1248SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1249DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1250#endif // !SERIALGC
1251
1252JavaThread::JavaThread(bool is_attaching) :
1253  Thread()
1254#ifndef SERIALGC
1255  , _satb_mark_queue(&_satb_mark_queue_set),
1256  _dirty_card_queue(&_dirty_card_queue_set)
1257#endif // !SERIALGC
1258{
1259  initialize();
1260  _is_attaching = is_attaching;
1261  assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
1262}
1263
1264bool JavaThread::reguard_stack(address cur_sp) {
1265  if (_stack_guard_state != stack_guard_yellow_disabled) {
1266    return true; // Stack already guarded or guard pages not needed.
1267  }
1268
1269  if (register_stack_overflow()) {
1270    // For those architectures which have separate register and
1271    // memory stacks, we must check the register stack to see if
1272    // it has overflowed.
1273    return false;
1274  }
1275
1276  // Java code never executes within the yellow zone: the latter is only
1277  // there to provoke an exception during stack banging.  If java code
1278  // is executing there, either StackShadowPages should be larger, or
1279  // some exception code in c1, c2 or the interpreter isn't unwinding
1280  // when it should.
1281  guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1282
1283  enable_stack_yellow_zone();
1284  return true;
1285}
1286
1287bool JavaThread::reguard_stack(void) {
1288  return reguard_stack(os::current_stack_pointer());
1289}
1290
1291
1292void JavaThread::block_if_vm_exited() {
1293  if (_terminated == _vm_exited) {
1294    // _vm_exited is set at safepoint, and Threads_lock is never released
1295    // we will block here forever
1296    Threads_lock->lock_without_safepoint_check();
1297    ShouldNotReachHere();
1298  }
1299}
1300
1301
1302// Remove this ifdef when C1 is ported to the compiler interface.
1303static void compiler_thread_entry(JavaThread* thread, TRAPS);
1304
1305JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1306  Thread()
1307#ifndef SERIALGC
1308  , _satb_mark_queue(&_satb_mark_queue_set),
1309  _dirty_card_queue(&_dirty_card_queue_set)
1310#endif // !SERIALGC
1311{
1312  if (TraceThreadEvents) {
1313    tty->print_cr("creating thread %p", this);
1314  }
1315  initialize();
1316  _is_attaching = false;
1317  set_entry_point(entry_point);
1318  // Create the native thread itself.
1319  // %note runtime_23
1320  os::ThreadType thr_type = os::java_thread;
1321  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1322                                                     os::java_thread;
1323  os::create_thread(this, thr_type, stack_sz);
1324
1325  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1326  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1327  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1328  // the exception consists of creating the exception object & initializing it, initialization
1329  // will leave the VM via a JavaCall and then all locks must be unlocked).
1330  //
1331  // The thread is still suspended when we reach here. Thread must be explicit started
1332  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1333  // by calling Threads:add. The reason why this is not done here, is because the thread
1334  // object must be fully initialized (take a look at JVM_Start)
1335}
1336
1337JavaThread::~JavaThread() {
1338  if (TraceThreadEvents) {
1339      tty->print_cr("terminate thread %p", this);
1340  }
1341
1342  // JSR166 -- return the parker to the free list
1343  Parker::Release(_parker);
1344  _parker = NULL ;
1345
1346  // Free any remaining  previous UnrollBlock
1347  vframeArray* old_array = vframe_array_last();
1348
1349  if (old_array != NULL) {
1350    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1351    old_array->set_unroll_block(NULL);
1352    delete old_info;
1353    delete old_array;
1354  }
1355
1356  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1357  if (deferred != NULL) {
1358    // This can only happen if thread is destroyed before deoptimization occurs.
1359    assert(deferred->length() != 0, "empty array!");
1360    do {
1361      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1362      deferred->remove_at(0);
1363      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1364      delete dlv;
1365    } while (deferred->length() != 0);
1366    delete deferred;
1367  }
1368
1369  // All Java related clean up happens in exit
1370  ThreadSafepointState::destroy(this);
1371  if (_thread_profiler != NULL) delete _thread_profiler;
1372  if (_thread_stat != NULL) delete _thread_stat;
1373}
1374
1375
1376// The first routine called by a new Java thread
1377void JavaThread::run() {
1378  // initialize thread-local alloc buffer related fields
1379  this->initialize_tlab();
1380
1381  // used to test validitity of stack trace backs
1382  this->record_base_of_stack_pointer();
1383
1384  // Record real stack base and size.
1385  this->record_stack_base_and_size();
1386
1387  // Initialize thread local storage; set before calling MutexLocker
1388  this->initialize_thread_local_storage();
1389
1390  this->create_stack_guard_pages();
1391
1392  this->cache_global_variables();
1393
1394  // Thread is now sufficient initialized to be handled by the safepoint code as being
1395  // in the VM. Change thread state from _thread_new to _thread_in_vm
1396  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1397
1398  assert(JavaThread::current() == this, "sanity check");
1399  assert(!Thread::current()->owns_locks(), "sanity check");
1400
1401  DTRACE_THREAD_PROBE(start, this);
1402
1403  // This operation might block. We call that after all safepoint checks for a new thread has
1404  // been completed.
1405  this->set_active_handles(JNIHandleBlock::allocate_block());
1406
1407  if (JvmtiExport::should_post_thread_life()) {
1408    JvmtiExport::post_thread_start(this);
1409  }
1410
1411  // We call another function to do the rest so we are sure that the stack addresses used
1412  // from there will be lower than the stack base just computed
1413  thread_main_inner();
1414
1415  // Note, thread is no longer valid at this point!
1416}
1417
1418
1419void JavaThread::thread_main_inner() {
1420  assert(JavaThread::current() == this, "sanity check");
1421  assert(this->threadObj() != NULL, "just checking");
1422
1423  // Execute thread entry point. If this thread is being asked to restart,
1424  // or has been stopped before starting, do not reexecute entry point.
1425  // Note: Due to JVM_StopThread we can have pending exceptions already!
1426  if (!this->has_pending_exception() && !java_lang_Thread::is_stillborn(this->threadObj())) {
1427    // enter the thread's entry point only if we have no pending exceptions
1428    HandleMark hm(this);
1429    this->entry_point()(this, this);
1430  }
1431
1432  DTRACE_THREAD_PROBE(stop, this);
1433
1434  this->exit(false);
1435  delete this;
1436}
1437
1438
1439static void ensure_join(JavaThread* thread) {
1440  // We do not need to grap the Threads_lock, since we are operating on ourself.
1441  Handle threadObj(thread, thread->threadObj());
1442  assert(threadObj.not_null(), "java thread object must exist");
1443  ObjectLocker lock(threadObj, thread);
1444  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1445  thread->clear_pending_exception();
1446  // It is of profound importance that we set the stillborn bit and reset the thread object,
1447  // before we do the notify. Since, changing these two variable will make JVM_IsAlive return
1448  // false. So in case another thread is doing a join on this thread , it will detect that the thread
1449  // is dead when it gets notified.
1450  java_lang_Thread::set_stillborn(threadObj());
1451  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1452  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1453  java_lang_Thread::set_thread(threadObj(), NULL);
1454  lock.notify_all(thread);
1455  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1456  thread->clear_pending_exception();
1457}
1458
1459
1460// For any new cleanup additions, please check to see if they need to be applied to
1461// cleanup_failed_attach_current_thread as well.
1462void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1463  assert(this == JavaThread::current(),  "thread consistency check");
1464  if (!InitializeJavaLangSystem) return;
1465
1466  HandleMark hm(this);
1467  Handle uncaught_exception(this, this->pending_exception());
1468  this->clear_pending_exception();
1469  Handle threadObj(this, this->threadObj());
1470  assert(threadObj.not_null(), "Java thread object should be created");
1471
1472  if (get_thread_profiler() != NULL) {
1473    get_thread_profiler()->disengage();
1474    ResourceMark rm;
1475    get_thread_profiler()->print(get_thread_name());
1476  }
1477
1478
1479  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1480  {
1481    EXCEPTION_MARK;
1482
1483    CLEAR_PENDING_EXCEPTION;
1484  }
1485  // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1486  // has to be fixed by a runtime query method
1487  if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1488    // JSR-166: change call from from ThreadGroup.uncaughtException to
1489    // java.lang.Thread.dispatchUncaughtException
1490    if (uncaught_exception.not_null()) {
1491      Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1492      Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
1493        (address)uncaught_exception(), (address)threadObj(), (address)group());
1494      {
1495        EXCEPTION_MARK;
1496        // Check if the method Thread.dispatchUncaughtException() exists. If so
1497        // call it.  Otherwise we have an older library without the JSR-166 changes,
1498        // so call ThreadGroup.uncaughtException()
1499        KlassHandle recvrKlass(THREAD, threadObj->klass());
1500        CallInfo callinfo;
1501        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1502        LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1503                                           vmSymbolHandles::dispatchUncaughtException_name(),
1504                                           vmSymbolHandles::throwable_void_signature(),
1505                                           KlassHandle(), false, false, THREAD);
1506        CLEAR_PENDING_EXCEPTION;
1507        methodHandle method = callinfo.selected_method();
1508        if (method.not_null()) {
1509          JavaValue result(T_VOID);
1510          JavaCalls::call_virtual(&result,
1511                                  threadObj, thread_klass,
1512                                  vmSymbolHandles::dispatchUncaughtException_name(),
1513                                  vmSymbolHandles::throwable_void_signature(),
1514                                  uncaught_exception,
1515                                  THREAD);
1516        } else {
1517          KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1518          JavaValue result(T_VOID);
1519          JavaCalls::call_virtual(&result,
1520                                  group, thread_group,
1521                                  vmSymbolHandles::uncaughtException_name(),
1522                                  vmSymbolHandles::thread_throwable_void_signature(),
1523                                  threadObj,           // Arg 1
1524                                  uncaught_exception,  // Arg 2
1525                                  THREAD);
1526        }
1527        CLEAR_PENDING_EXCEPTION;
1528      }
1529    }
1530
1531    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1532    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1533    // is deprecated anyhow.
1534    { int count = 3;
1535      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1536        EXCEPTION_MARK;
1537        JavaValue result(T_VOID);
1538        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1539        JavaCalls::call_virtual(&result,
1540                              threadObj, thread_klass,
1541                              vmSymbolHandles::exit_method_name(),
1542                              vmSymbolHandles::void_method_signature(),
1543                              THREAD);
1544        CLEAR_PENDING_EXCEPTION;
1545      }
1546    }
1547
1548    // notify JVMTI
1549    if (JvmtiExport::should_post_thread_life()) {
1550      JvmtiExport::post_thread_end(this);
1551    }
1552
1553    // We have notified the agents that we are exiting, before we go on,
1554    // we must check for a pending external suspend request and honor it
1555    // in order to not surprise the thread that made the suspend request.
1556    while (true) {
1557      {
1558        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1559        if (!is_external_suspend()) {
1560          set_terminated(_thread_exiting);
1561          ThreadService::current_thread_exiting(this);
1562          break;
1563        }
1564        // Implied else:
1565        // Things get a little tricky here. We have a pending external
1566        // suspend request, but we are holding the SR_lock so we
1567        // can't just self-suspend. So we temporarily drop the lock
1568        // and then self-suspend.
1569      }
1570
1571      ThreadBlockInVM tbivm(this);
1572      java_suspend_self();
1573
1574      // We're done with this suspend request, but we have to loop around
1575      // and check again. Eventually we will get SR_lock without a pending
1576      // external suspend request and will be able to mark ourselves as
1577      // exiting.
1578    }
1579    // no more external suspends are allowed at this point
1580  } else {
1581    // before_exit() has already posted JVMTI THREAD_END events
1582  }
1583
1584  // Notify waiters on thread object. This has to be done after exit() is called
1585  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1586  // group should have the destroyed bit set before waiters are notified).
1587  ensure_join(this);
1588  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1589
1590  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1591  // held by this thread must be released.  A detach operation must only
1592  // get here if there are no Java frames on the stack.  Therefore, any
1593  // owned monitors at this point MUST be JNI-acquired monitors which are
1594  // pre-inflated and in the monitor cache.
1595  //
1596  // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1597  if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1598    assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1599    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1600    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1601  }
1602
1603  // These things needs to be done while we are still a Java Thread. Make sure that thread
1604  // is in a consistent state, in case GC happens
1605  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1606
1607  if (active_handles() != NULL) {
1608    JNIHandleBlock* block = active_handles();
1609    set_active_handles(NULL);
1610    JNIHandleBlock::release_block(block);
1611  }
1612
1613  if (free_handle_block() != NULL) {
1614    JNIHandleBlock* block = free_handle_block();
1615    set_free_handle_block(NULL);
1616    JNIHandleBlock::release_block(block);
1617  }
1618
1619  // These have to be removed while this is still a valid thread.
1620  remove_stack_guard_pages();
1621
1622  if (UseTLAB) {
1623    tlab().make_parsable(true);  // retire TLAB
1624  }
1625
1626  if (jvmti_thread_state() != NULL) {
1627    JvmtiExport::cleanup_thread(this);
1628  }
1629
1630#ifndef SERIALGC
1631  // We must flush G1-related buffers before removing a thread from
1632  // the list of active threads.
1633  if (UseG1GC) {
1634    flush_barrier_queues();
1635  }
1636#endif
1637
1638  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1639  Threads::remove(this);
1640}
1641
1642#ifndef SERIALGC
1643// Flush G1-related queues.
1644void JavaThread::flush_barrier_queues() {
1645  satb_mark_queue().flush();
1646  dirty_card_queue().flush();
1647}
1648
1649void JavaThread::initialize_queues() {
1650  assert(!SafepointSynchronize::is_at_safepoint(),
1651         "we should not be at a safepoint");
1652
1653  ObjPtrQueue& satb_queue = satb_mark_queue();
1654  SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1655  // The SATB queue should have been constructed with its active
1656  // field set to false.
1657  assert(!satb_queue.is_active(), "SATB queue should not be active");
1658  assert(satb_queue.is_empty(), "SATB queue should be empty");
1659  // If we are creating the thread during a marking cycle, we should
1660  // set the active field of the SATB queue to true.
1661  if (satb_queue_set.is_active()) {
1662    satb_queue.set_active(true);
1663  }
1664
1665  DirtyCardQueue& dirty_queue = dirty_card_queue();
1666  // The dirty card queue should have been constructed with its
1667  // active field set to true.
1668  assert(dirty_queue.is_active(), "dirty card queue should be active");
1669}
1670#endif // !SERIALGC
1671
1672void JavaThread::cleanup_failed_attach_current_thread() {
1673  if (get_thread_profiler() != NULL) {
1674    get_thread_profiler()->disengage();
1675    ResourceMark rm;
1676    get_thread_profiler()->print(get_thread_name());
1677  }
1678
1679  if (active_handles() != NULL) {
1680    JNIHandleBlock* block = active_handles();
1681    set_active_handles(NULL);
1682    JNIHandleBlock::release_block(block);
1683  }
1684
1685  if (free_handle_block() != NULL) {
1686    JNIHandleBlock* block = free_handle_block();
1687    set_free_handle_block(NULL);
1688    JNIHandleBlock::release_block(block);
1689  }
1690
1691  // These have to be removed while this is still a valid thread.
1692  remove_stack_guard_pages();
1693
1694  if (UseTLAB) {
1695    tlab().make_parsable(true);  // retire TLAB, if any
1696  }
1697
1698#ifndef SERIALGC
1699  if (UseG1GC) {
1700    flush_barrier_queues();
1701  }
1702#endif
1703
1704  Threads::remove(this);
1705  delete this;
1706}
1707
1708
1709
1710
1711JavaThread* JavaThread::active() {
1712  Thread* thread = ThreadLocalStorage::thread();
1713  assert(thread != NULL, "just checking");
1714  if (thread->is_Java_thread()) {
1715    return (JavaThread*) thread;
1716  } else {
1717    assert(thread->is_VM_thread(), "this must be a vm thread");
1718    VM_Operation* op = ((VMThread*) thread)->vm_operation();
1719    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1720    assert(ret->is_Java_thread(), "must be a Java thread");
1721    return ret;
1722  }
1723}
1724
1725bool JavaThread::is_lock_owned(address adr) const {
1726  if (Thread::is_lock_owned(adr)) return true;
1727
1728  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1729    if (chunk->contains(adr)) return true;
1730  }
1731
1732  return false;
1733}
1734
1735
1736void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1737  chunk->set_next(monitor_chunks());
1738  set_monitor_chunks(chunk);
1739}
1740
1741void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1742  guarantee(monitor_chunks() != NULL, "must be non empty");
1743  if (monitor_chunks() == chunk) {
1744    set_monitor_chunks(chunk->next());
1745  } else {
1746    MonitorChunk* prev = monitor_chunks();
1747    while (prev->next() != chunk) prev = prev->next();
1748    prev->set_next(chunk->next());
1749  }
1750}
1751
1752// JVM support.
1753
1754// Note: this function shouldn't block if it's called in
1755// _thread_in_native_trans state (such as from
1756// check_special_condition_for_native_trans()).
1757void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1758
1759  if (has_last_Java_frame() && has_async_condition()) {
1760    // If we are at a polling page safepoint (not a poll return)
1761    // then we must defer async exception because live registers
1762    // will be clobbered by the exception path. Poll return is
1763    // ok because the call we a returning from already collides
1764    // with exception handling registers and so there is no issue.
1765    // (The exception handling path kills call result registers but
1766    //  this is ok since the exception kills the result anyway).
1767
1768    if (is_at_poll_safepoint()) {
1769      // if the code we are returning to has deoptimized we must defer
1770      // the exception otherwise live registers get clobbered on the
1771      // exception path before deoptimization is able to retrieve them.
1772      //
1773      RegisterMap map(this, false);
1774      frame caller_fr = last_frame().sender(&map);
1775      assert(caller_fr.is_compiled_frame(), "what?");
1776      if (caller_fr.is_deoptimized_frame()) {
1777        if (TraceExceptions) {
1778          ResourceMark rm;
1779          tty->print_cr("deferred async exception at compiled safepoint");
1780        }
1781        return;
1782      }
1783    }
1784  }
1785
1786  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
1787  if (condition == _no_async_condition) {
1788    // Conditions have changed since has_special_runtime_exit_condition()
1789    // was called:
1790    // - if we were here only because of an external suspend request,
1791    //   then that was taken care of above (or cancelled) so we are done
1792    // - if we were here because of another async request, then it has
1793    //   been cleared between the has_special_runtime_exit_condition()
1794    //   and now so again we are done
1795    return;
1796  }
1797
1798  // Check for pending async. exception
1799  if (_pending_async_exception != NULL) {
1800    // Only overwrite an already pending exception, if it is not a threadDeath.
1801    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
1802
1803      // We cannot call Exceptions::_throw(...) here because we cannot block
1804      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
1805
1806      if (TraceExceptions) {
1807        ResourceMark rm;
1808        tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
1809        if (has_last_Java_frame() ) {
1810          frame f = last_frame();
1811          tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
1812        }
1813        tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1814      }
1815      _pending_async_exception = NULL;
1816      clear_has_async_exception();
1817    }
1818  }
1819
1820  if (check_unsafe_error &&
1821      condition == _async_unsafe_access_error && !has_pending_exception()) {
1822    condition = _no_async_condition;  // done
1823    switch (thread_state()) {
1824    case _thread_in_vm:
1825      {
1826        JavaThread* THREAD = this;
1827        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1828      }
1829    case _thread_in_native:
1830      {
1831        ThreadInVMfromNative tiv(this);
1832        JavaThread* THREAD = this;
1833        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1834      }
1835    case _thread_in_Java:
1836      {
1837        ThreadInVMfromJava tiv(this);
1838        JavaThread* THREAD = this;
1839        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
1840      }
1841    default:
1842      ShouldNotReachHere();
1843    }
1844  }
1845
1846  assert(condition == _no_async_condition || has_pending_exception() ||
1847         (!check_unsafe_error && condition == _async_unsafe_access_error),
1848         "must have handled the async condition, if no exception");
1849}
1850
1851void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
1852  //
1853  // Check for pending external suspend. Internal suspend requests do
1854  // not use handle_special_runtime_exit_condition().
1855  // If JNIEnv proxies are allowed, don't self-suspend if the target
1856  // thread is not the current thread. In older versions of jdbx, jdbx
1857  // threads could call into the VM with another thread's JNIEnv so we
1858  // can be here operating on behalf of a suspended thread (4432884).
1859  bool do_self_suspend = is_external_suspend_with_lock();
1860  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
1861    //
1862    // Because thread is external suspended the safepoint code will count
1863    // thread as at a safepoint. This can be odd because we can be here
1864    // as _thread_in_Java which would normally transition to _thread_blocked
1865    // at a safepoint. We would like to mark the thread as _thread_blocked
1866    // before calling java_suspend_self like all other callers of it but
1867    // we must then observe proper safepoint protocol. (We can't leave
1868    // _thread_blocked with a safepoint in progress). However we can be
1869    // here as _thread_in_native_trans so we can't use a normal transition
1870    // constructor/destructor pair because they assert on that type of
1871    // transition. We could do something like:
1872    //
1873    // JavaThreadState state = thread_state();
1874    // set_thread_state(_thread_in_vm);
1875    // {
1876    //   ThreadBlockInVM tbivm(this);
1877    //   java_suspend_self()
1878    // }
1879    // set_thread_state(_thread_in_vm_trans);
1880    // if (safepoint) block;
1881    // set_thread_state(state);
1882    //
1883    // but that is pretty messy. Instead we just go with the way the
1884    // code has worked before and note that this is the only path to
1885    // java_suspend_self that doesn't put the thread in _thread_blocked
1886    // mode.
1887
1888    frame_anchor()->make_walkable(this);
1889    java_suspend_self();
1890
1891    // We might be here for reasons in addition to the self-suspend request
1892    // so check for other async requests.
1893  }
1894
1895  if (check_asyncs) {
1896    check_and_handle_async_exceptions();
1897  }
1898}
1899
1900void JavaThread::send_thread_stop(oop java_throwable)  {
1901  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
1902  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
1903  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
1904
1905  // Do not throw asynchronous exceptions against the compiler thread
1906  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
1907  if (is_Compiler_thread()) return;
1908
1909  // This is a change from JDK 1.1, but JDK 1.2 will also do it:
1910  if (java_throwable->is_a(SystemDictionary::ThreadDeath_klass())) {
1911    java_lang_Thread::set_stillborn(threadObj());
1912  }
1913
1914  {
1915    // Actually throw the Throwable against the target Thread - however
1916    // only if there is no thread death exception installed already.
1917    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
1918      // If the topmost frame is a runtime stub, then we are calling into
1919      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
1920      // must deoptimize the caller before continuing, as the compiled  exception handler table
1921      // may not be valid
1922      if (has_last_Java_frame()) {
1923        frame f = last_frame();
1924        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
1925          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
1926          RegisterMap reg_map(this, UseBiasedLocking);
1927          frame compiled_frame = f.sender(&reg_map);
1928          if (compiled_frame.can_be_deoptimized()) {
1929            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
1930          }
1931        }
1932      }
1933
1934      // Set async. pending exception in thread.
1935      set_pending_async_exception(java_throwable);
1936
1937      if (TraceExceptions) {
1938       ResourceMark rm;
1939       tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1940      }
1941      // for AbortVMOnException flag
1942      NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
1943    }
1944  }
1945
1946
1947  // Interrupt thread so it will wake up from a potential wait()
1948  Thread::interrupt(this);
1949}
1950
1951// External suspension mechanism.
1952//
1953// Tell the VM to suspend a thread when ever it knows that it does not hold on
1954// to any VM_locks and it is at a transition
1955// Self-suspension will happen on the transition out of the vm.
1956// Catch "this" coming in from JNIEnv pointers when the thread has been freed
1957//
1958// Guarantees on return:
1959//   + Target thread will not execute any new bytecode (that's why we need to
1960//     force a safepoint)
1961//   + Target thread will not enter any new monitors
1962//
1963void JavaThread::java_suspend() {
1964  { MutexLocker mu(Threads_lock);
1965    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
1966       return;
1967    }
1968  }
1969
1970  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1971    if (!is_external_suspend()) {
1972      // a racing resume has cancelled us; bail out now
1973      return;
1974    }
1975
1976    // suspend is done
1977    uint32_t debug_bits = 0;
1978    // Warning: is_ext_suspend_completed() may temporarily drop the
1979    // SR_lock to allow the thread to reach a stable thread state if
1980    // it is currently in a transient thread state.
1981    if (is_ext_suspend_completed(false /* !called_by_wait */,
1982                                 SuspendRetryDelay, &debug_bits) ) {
1983      return;
1984    }
1985  }
1986
1987  VM_ForceSafepoint vm_suspend;
1988  VMThread::execute(&vm_suspend);
1989}
1990
1991// Part II of external suspension.
1992// A JavaThread self suspends when it detects a pending external suspend
1993// request. This is usually on transitions. It is also done in places
1994// where continuing to the next transition would surprise the caller,
1995// e.g., monitor entry.
1996//
1997// Returns the number of times that the thread self-suspended.
1998//
1999// Note: DO NOT call java_suspend_self() when you just want to block current
2000//       thread. java_suspend_self() is the second stage of cooperative
2001//       suspension for external suspend requests and should only be used
2002//       to complete an external suspend request.
2003//
2004int JavaThread::java_suspend_self() {
2005  int ret = 0;
2006
2007  // we are in the process of exiting so don't suspend
2008  if (is_exiting()) {
2009     clear_external_suspend();
2010     return ret;
2011  }
2012
2013  assert(_anchor.walkable() ||
2014    (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2015    "must have walkable stack");
2016
2017  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2018
2019  assert(!this->is_ext_suspended(),
2020    "a thread trying to self-suspend should not already be suspended");
2021
2022  if (this->is_suspend_equivalent()) {
2023    // If we are self-suspending as a result of the lifting of a
2024    // suspend equivalent condition, then the suspend_equivalent
2025    // flag is not cleared until we set the ext_suspended flag so
2026    // that wait_for_ext_suspend_completion() returns consistent
2027    // results.
2028    this->clear_suspend_equivalent();
2029  }
2030
2031  // A racing resume may have cancelled us before we grabbed SR_lock
2032  // above. Or another external suspend request could be waiting for us
2033  // by the time we return from SR_lock()->wait(). The thread
2034  // that requested the suspension may already be trying to walk our
2035  // stack and if we return now, we can change the stack out from under
2036  // it. This would be a "bad thing (TM)" and cause the stack walker
2037  // to crash. We stay self-suspended until there are no more pending
2038  // external suspend requests.
2039  while (is_external_suspend()) {
2040    ret++;
2041    this->set_ext_suspended();
2042
2043    // _ext_suspended flag is cleared by java_resume()
2044    while (is_ext_suspended()) {
2045      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2046    }
2047  }
2048
2049  return ret;
2050}
2051
2052#ifdef ASSERT
2053// verify the JavaThread has not yet been published in the Threads::list, and
2054// hence doesn't need protection from concurrent access at this stage
2055void JavaThread::verify_not_published() {
2056  if (!Threads_lock->owned_by_self()) {
2057   MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2058   assert( !Threads::includes(this),
2059           "java thread shouldn't have been published yet!");
2060  }
2061  else {
2062   assert( !Threads::includes(this),
2063           "java thread shouldn't have been published yet!");
2064  }
2065}
2066#endif
2067
2068// Slow path when the native==>VM/Java barriers detect a safepoint is in
2069// progress or when _suspend_flags is non-zero.
2070// Current thread needs to self-suspend if there is a suspend request and/or
2071// block if a safepoint is in progress.
2072// Async exception ISN'T checked.
2073// Note only the ThreadInVMfromNative transition can call this function
2074// directly and when thread state is _thread_in_native_trans
2075void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2076  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2077
2078  JavaThread *curJT = JavaThread::current();
2079  bool do_self_suspend = thread->is_external_suspend();
2080
2081  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2082
2083  // If JNIEnv proxies are allowed, don't self-suspend if the target
2084  // thread is not the current thread. In older versions of jdbx, jdbx
2085  // threads could call into the VM with another thread's JNIEnv so we
2086  // can be here operating on behalf of a suspended thread (4432884).
2087  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2088    JavaThreadState state = thread->thread_state();
2089
2090    // We mark this thread_blocked state as a suspend-equivalent so
2091    // that a caller to is_ext_suspend_completed() won't be confused.
2092    // The suspend-equivalent state is cleared by java_suspend_self().
2093    thread->set_suspend_equivalent();
2094
2095    // If the safepoint code sees the _thread_in_native_trans state, it will
2096    // wait until the thread changes to other thread state. There is no
2097    // guarantee on how soon we can obtain the SR_lock and complete the
2098    // self-suspend request. It would be a bad idea to let safepoint wait for
2099    // too long. Temporarily change the state to _thread_blocked to
2100    // let the VM thread know that this thread is ready for GC. The problem
2101    // of changing thread state is that safepoint could happen just after
2102    // java_suspend_self() returns after being resumed, and VM thread will
2103    // see the _thread_blocked state. We must check for safepoint
2104    // after restoring the state and make sure we won't leave while a safepoint
2105    // is in progress.
2106    thread->set_thread_state(_thread_blocked);
2107    thread->java_suspend_self();
2108    thread->set_thread_state(state);
2109    // Make sure new state is seen by VM thread
2110    if (os::is_MP()) {
2111      if (UseMembar) {
2112        // Force a fence between the write above and read below
2113        OrderAccess::fence();
2114      } else {
2115        // Must use this rather than serialization page in particular on Windows
2116        InterfaceSupport::serialize_memory(thread);
2117      }
2118    }
2119  }
2120
2121  if (SafepointSynchronize::do_call_back()) {
2122    // If we are safepointing, then block the caller which may not be
2123    // the same as the target thread (see above).
2124    SafepointSynchronize::block(curJT);
2125  }
2126
2127  if (thread->is_deopt_suspend()) {
2128    thread->clear_deopt_suspend();
2129    RegisterMap map(thread, false);
2130    frame f = thread->last_frame();
2131    while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2132      f = f.sender(&map);
2133    }
2134    if (f.id() == thread->must_deopt_id()) {
2135      thread->clear_must_deopt_id();
2136      f.deoptimize(thread);
2137    } else {
2138      fatal("missed deoptimization!");
2139    }
2140  }
2141}
2142
2143// Slow path when the native==>VM/Java barriers detect a safepoint is in
2144// progress or when _suspend_flags is non-zero.
2145// Current thread needs to self-suspend if there is a suspend request and/or
2146// block if a safepoint is in progress.
2147// Also check for pending async exception (not including unsafe access error).
2148// Note only the native==>VM/Java barriers can call this function and when
2149// thread state is _thread_in_native_trans.
2150void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2151  check_safepoint_and_suspend_for_native_trans(thread);
2152
2153  if (thread->has_async_exception()) {
2154    // We are in _thread_in_native_trans state, don't handle unsafe
2155    // access error since that may block.
2156    thread->check_and_handle_async_exceptions(false);
2157  }
2158}
2159
2160// We need to guarantee the Threads_lock here, since resumes are not
2161// allowed during safepoint synchronization
2162// Can only resume from an external suspension
2163void JavaThread::java_resume() {
2164  assert_locked_or_safepoint(Threads_lock);
2165
2166  // Sanity check: thread is gone, has started exiting or the thread
2167  // was not externally suspended.
2168  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2169    return;
2170  }
2171
2172  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2173
2174  clear_external_suspend();
2175
2176  if (is_ext_suspended()) {
2177    clear_ext_suspended();
2178    SR_lock()->notify_all();
2179  }
2180}
2181
2182void JavaThread::create_stack_guard_pages() {
2183  if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2184  address low_addr = stack_base() - stack_size();
2185  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2186
2187  int allocate = os::allocate_stack_guard_pages();
2188  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2189
2190  if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2191    warning("Attempt to allocate stack guard pages failed.");
2192    return;
2193  }
2194
2195  if (os::guard_memory((char *) low_addr, len)) {
2196    _stack_guard_state = stack_guard_enabled;
2197  } else {
2198    warning("Attempt to protect stack guard pages failed.");
2199    if (os::uncommit_memory((char *) low_addr, len)) {
2200      warning("Attempt to deallocate stack guard pages failed.");
2201    }
2202  }
2203}
2204
2205void JavaThread::remove_stack_guard_pages() {
2206  if (_stack_guard_state == stack_guard_unused) return;
2207  address low_addr = stack_base() - stack_size();
2208  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2209
2210  if (os::allocate_stack_guard_pages()) {
2211    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2212      _stack_guard_state = stack_guard_unused;
2213    } else {
2214      warning("Attempt to deallocate stack guard pages failed.");
2215    }
2216  } else {
2217    if (_stack_guard_state == stack_guard_unused) return;
2218    if (os::unguard_memory((char *) low_addr, len)) {
2219      _stack_guard_state = stack_guard_unused;
2220    } else {
2221        warning("Attempt to unprotect stack guard pages failed.");
2222    }
2223  }
2224}
2225
2226void JavaThread::enable_stack_yellow_zone() {
2227  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2228  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2229
2230  // The base notation is from the stacks point of view, growing downward.
2231  // We need to adjust it to work correctly with guard_memory()
2232  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2233
2234  guarantee(base < stack_base(),"Error calculating stack yellow zone");
2235  guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2236
2237  if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2238    _stack_guard_state = stack_guard_enabled;
2239  } else {
2240    warning("Attempt to guard stack yellow zone failed.");
2241  }
2242  enable_register_stack_guard();
2243}
2244
2245void JavaThread::disable_stack_yellow_zone() {
2246  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2247  assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2248
2249  // Simply return if called for a thread that does not use guard pages.
2250  if (_stack_guard_state == stack_guard_unused) return;
2251
2252  // The base notation is from the stacks point of view, growing downward.
2253  // We need to adjust it to work correctly with guard_memory()
2254  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2255
2256  if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2257    _stack_guard_state = stack_guard_yellow_disabled;
2258  } else {
2259    warning("Attempt to unguard stack yellow zone failed.");
2260  }
2261  disable_register_stack_guard();
2262}
2263
2264void JavaThread::enable_stack_red_zone() {
2265  // The base notation is from the stacks point of view, growing downward.
2266  // We need to adjust it to work correctly with guard_memory()
2267  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2268  address base = stack_red_zone_base() - stack_red_zone_size();
2269
2270  guarantee(base < stack_base(),"Error calculating stack red zone");
2271  guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2272
2273  if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2274    warning("Attempt to guard stack red zone failed.");
2275  }
2276}
2277
2278void JavaThread::disable_stack_red_zone() {
2279  // The base notation is from the stacks point of view, growing downward.
2280  // We need to adjust it to work correctly with guard_memory()
2281  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2282  address base = stack_red_zone_base() - stack_red_zone_size();
2283  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2284    warning("Attempt to unguard stack red zone failed.");
2285  }
2286}
2287
2288void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2289  // ignore is there is no stack
2290  if (!has_last_Java_frame()) return;
2291  // traverse the stack frames. Starts from top frame.
2292  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2293    frame* fr = fst.current();
2294    f(fr, fst.register_map());
2295  }
2296}
2297
2298
2299#ifndef PRODUCT
2300// Deoptimization
2301// Function for testing deoptimization
2302void JavaThread::deoptimize() {
2303  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2304  StackFrameStream fst(this, UseBiasedLocking);
2305  bool deopt = false;           // Dump stack only if a deopt actually happens.
2306  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2307  // Iterate over all frames in the thread and deoptimize
2308  for(; !fst.is_done(); fst.next()) {
2309    if(fst.current()->can_be_deoptimized()) {
2310
2311      if (only_at) {
2312        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2313        // consists of comma or carriage return separated numbers so
2314        // search for the current bci in that string.
2315        address pc = fst.current()->pc();
2316        nmethod* nm =  (nmethod*) fst.current()->cb();
2317        ScopeDesc* sd = nm->scope_desc_at( pc);
2318        char buffer[8];
2319        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2320        size_t len = strlen(buffer);
2321        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2322        while (found != NULL) {
2323          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2324              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2325            // Check that the bci found is bracketed by terminators.
2326            break;
2327          }
2328          found = strstr(found + 1, buffer);
2329        }
2330        if (!found) {
2331          continue;
2332        }
2333      }
2334
2335      if (DebugDeoptimization && !deopt) {
2336        deopt = true; // One-time only print before deopt
2337        tty->print_cr("[BEFORE Deoptimization]");
2338        trace_frames();
2339        trace_stack();
2340      }
2341      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2342    }
2343  }
2344
2345  if (DebugDeoptimization && deopt) {
2346    tty->print_cr("[AFTER Deoptimization]");
2347    trace_frames();
2348  }
2349}
2350
2351
2352// Make zombies
2353void JavaThread::make_zombies() {
2354  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2355    if (fst.current()->can_be_deoptimized()) {
2356      // it is a Java nmethod
2357      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2358      nm->make_not_entrant();
2359    }
2360  }
2361}
2362#endif // PRODUCT
2363
2364
2365void JavaThread::deoptimized_wrt_marked_nmethods() {
2366  if (!has_last_Java_frame()) return;
2367  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2368  StackFrameStream fst(this, UseBiasedLocking);
2369  for(; !fst.is_done(); fst.next()) {
2370    if (fst.current()->should_be_deoptimized()) {
2371      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2372    }
2373  }
2374}
2375
2376
2377// GC support
2378static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2379
2380void JavaThread::gc_epilogue() {
2381  frames_do(frame_gc_epilogue);
2382}
2383
2384
2385static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2386
2387void JavaThread::gc_prologue() {
2388  frames_do(frame_gc_prologue);
2389}
2390
2391// If the caller is a NamedThread, then remember, in the current scope,
2392// the given JavaThread in its _processed_thread field.
2393class RememberProcessedThread: public StackObj {
2394  NamedThread* _cur_thr;
2395public:
2396  RememberProcessedThread(JavaThread* jthr) {
2397    Thread* thread = Thread::current();
2398    if (thread->is_Named_thread()) {
2399      _cur_thr = (NamedThread *)thread;
2400      _cur_thr->set_processed_thread(jthr);
2401    } else {
2402      _cur_thr = NULL;
2403    }
2404  }
2405
2406  ~RememberProcessedThread() {
2407    if (_cur_thr) {
2408      _cur_thr->set_processed_thread(NULL);
2409    }
2410  }
2411};
2412
2413void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2414  // Verify that the deferred card marks have been flushed.
2415  assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2416
2417  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2418  // since there may be more than one thread using each ThreadProfiler.
2419
2420  // Traverse the GCHandles
2421  Thread::oops_do(f, cf);
2422
2423  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2424          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2425
2426  if (has_last_Java_frame()) {
2427    // Record JavaThread to GC thread
2428    RememberProcessedThread rpt(this);
2429
2430    // Traverse the privileged stack
2431    if (_privileged_stack_top != NULL) {
2432      _privileged_stack_top->oops_do(f);
2433    }
2434
2435    // traverse the registered growable array
2436    if (_array_for_gc != NULL) {
2437      for (int index = 0; index < _array_for_gc->length(); index++) {
2438        f->do_oop(_array_for_gc->adr_at(index));
2439      }
2440    }
2441
2442    // Traverse the monitor chunks
2443    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2444      chunk->oops_do(f);
2445    }
2446
2447    // Traverse the execution stack
2448    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2449      fst.current()->oops_do(f, cf, fst.register_map());
2450    }
2451  }
2452
2453  // callee_target is never live across a gc point so NULL it here should
2454  // it still contain a methdOop.
2455
2456  set_callee_target(NULL);
2457
2458  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2459  // If we have deferred set_locals there might be oops waiting to be
2460  // written
2461  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2462  if (list != NULL) {
2463    for (int i = 0; i < list->length(); i++) {
2464      list->at(i)->oops_do(f);
2465    }
2466  }
2467
2468  // Traverse instance variables at the end since the GC may be moving things
2469  // around using this function
2470  f->do_oop((oop*) &_threadObj);
2471  f->do_oop((oop*) &_vm_result);
2472  f->do_oop((oop*) &_vm_result_2);
2473  f->do_oop((oop*) &_exception_oop);
2474  f->do_oop((oop*) &_pending_async_exception);
2475
2476  if (jvmti_thread_state() != NULL) {
2477    jvmti_thread_state()->oops_do(f);
2478  }
2479}
2480
2481void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2482  Thread::nmethods_do(cf);  // (super method is a no-op)
2483
2484  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2485          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2486
2487  if (has_last_Java_frame()) {
2488    // Traverse the execution stack
2489    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2490      fst.current()->nmethods_do(cf);
2491    }
2492  }
2493}
2494
2495// Printing
2496const char* _get_thread_state_name(JavaThreadState _thread_state) {
2497  switch (_thread_state) {
2498  case _thread_uninitialized:     return "_thread_uninitialized";
2499  case _thread_new:               return "_thread_new";
2500  case _thread_new_trans:         return "_thread_new_trans";
2501  case _thread_in_native:         return "_thread_in_native";
2502  case _thread_in_native_trans:   return "_thread_in_native_trans";
2503  case _thread_in_vm:             return "_thread_in_vm";
2504  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2505  case _thread_in_Java:           return "_thread_in_Java";
2506  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2507  case _thread_blocked:           return "_thread_blocked";
2508  case _thread_blocked_trans:     return "_thread_blocked_trans";
2509  default:                        return "unknown thread state";
2510  }
2511}
2512
2513#ifndef PRODUCT
2514void JavaThread::print_thread_state_on(outputStream *st) const {
2515  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2516};
2517void JavaThread::print_thread_state() const {
2518  print_thread_state_on(tty);
2519};
2520#endif // PRODUCT
2521
2522// Called by Threads::print() for VM_PrintThreads operation
2523void JavaThread::print_on(outputStream *st) const {
2524  st->print("\"%s\" ", get_thread_name());
2525  oop thread_oop = threadObj();
2526  if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2527  Thread::print_on(st);
2528  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2529  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2530  if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2531    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2532  }
2533#ifndef PRODUCT
2534  print_thread_state_on(st);
2535  _safepoint_state->print_on(st);
2536#endif // PRODUCT
2537}
2538
2539// Called by fatal error handler. The difference between this and
2540// JavaThread::print() is that we can't grab lock or allocate memory.
2541void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2542  st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2543  oop thread_obj = threadObj();
2544  if (thread_obj != NULL) {
2545     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2546  }
2547  st->print(" [");
2548  st->print("%s", _get_thread_state_name(_thread_state));
2549  if (osthread()) {
2550    st->print(", id=%d", osthread()->thread_id());
2551  }
2552  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2553            _stack_base - _stack_size, _stack_base);
2554  st->print("]");
2555  return;
2556}
2557
2558// Verification
2559
2560static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2561
2562void JavaThread::verify() {
2563  // Verify oops in the thread.
2564  oops_do(&VerifyOopClosure::verify_oop, NULL);
2565
2566  // Verify the stack frames.
2567  frames_do(frame_verify);
2568}
2569
2570// CR 6300358 (sub-CR 2137150)
2571// Most callers of this method assume that it can't return NULL but a
2572// thread may not have a name whilst it is in the process of attaching to
2573// the VM - see CR 6412693, and there are places where a JavaThread can be
2574// seen prior to having it's threadObj set (eg JNI attaching threads and
2575// if vm exit occurs during initialization). These cases can all be accounted
2576// for such that this method never returns NULL.
2577const char* JavaThread::get_thread_name() const {
2578#ifdef ASSERT
2579  // early safepoints can hit while current thread does not yet have TLS
2580  if (!SafepointSynchronize::is_at_safepoint()) {
2581    Thread *cur = Thread::current();
2582    if (!(cur->is_Java_thread() && cur == this)) {
2583      // Current JavaThreads are allowed to get their own name without
2584      // the Threads_lock.
2585      assert_locked_or_safepoint(Threads_lock);
2586    }
2587  }
2588#endif // ASSERT
2589    return get_thread_name_string();
2590}
2591
2592// Returns a non-NULL representation of this thread's name, or a suitable
2593// descriptive string if there is no set name
2594const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2595  const char* name_str;
2596  oop thread_obj = threadObj();
2597  if (thread_obj != NULL) {
2598    typeArrayOop name = java_lang_Thread::name(thread_obj);
2599    if (name != NULL) {
2600      if (buf == NULL) {
2601        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2602      }
2603      else {
2604        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2605      }
2606    }
2607    else if (is_attaching()) { // workaround for 6412693 - see 6404306
2608      name_str = "<no-name - thread is attaching>";
2609    }
2610    else {
2611      name_str = Thread::name();
2612    }
2613  }
2614  else {
2615    name_str = Thread::name();
2616  }
2617  assert(name_str != NULL, "unexpected NULL thread name");
2618  return name_str;
2619}
2620
2621
2622const char* JavaThread::get_threadgroup_name() const {
2623  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2624  oop thread_obj = threadObj();
2625  if (thread_obj != NULL) {
2626    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2627    if (thread_group != NULL) {
2628      typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2629      // ThreadGroup.name can be null
2630      if (name != NULL) {
2631        const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2632        return str;
2633      }
2634    }
2635  }
2636  return NULL;
2637}
2638
2639const char* JavaThread::get_parent_name() const {
2640  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2641  oop thread_obj = threadObj();
2642  if (thread_obj != NULL) {
2643    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2644    if (thread_group != NULL) {
2645      oop parent = java_lang_ThreadGroup::parent(thread_group);
2646      if (parent != NULL) {
2647        typeArrayOop name = java_lang_ThreadGroup::name(parent);
2648        // ThreadGroup.name can be null
2649        if (name != NULL) {
2650          const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2651          return str;
2652        }
2653      }
2654    }
2655  }
2656  return NULL;
2657}
2658
2659ThreadPriority JavaThread::java_priority() const {
2660  oop thr_oop = threadObj();
2661  if (thr_oop == NULL) return NormPriority; // Bootstrapping
2662  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2663  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2664  return priority;
2665}
2666
2667void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2668
2669  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2670  // Link Java Thread object <-> C++ Thread
2671
2672  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2673  // and put it into a new Handle.  The Handle "thread_oop" can then
2674  // be used to pass the C++ thread object to other methods.
2675
2676  // Set the Java level thread object (jthread) field of the
2677  // new thread (a JavaThread *) to C++ thread object using the
2678  // "thread_oop" handle.
2679
2680  // Set the thread field (a JavaThread *) of the
2681  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2682
2683  Handle thread_oop(Thread::current(),
2684                    JNIHandles::resolve_non_null(jni_thread));
2685  assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
2686    "must be initialized");
2687  set_threadObj(thread_oop());
2688  java_lang_Thread::set_thread(thread_oop(), this);
2689
2690  if (prio == NoPriority) {
2691    prio = java_lang_Thread::priority(thread_oop());
2692    assert(prio != NoPriority, "A valid priority should be present");
2693  }
2694
2695  // Push the Java priority down to the native thread; needs Threads_lock
2696  Thread::set_priority(this, prio);
2697
2698  // Add the new thread to the Threads list and set it in motion.
2699  // We must have threads lock in order to call Threads::add.
2700  // It is crucial that we do not block before the thread is
2701  // added to the Threads list for if a GC happens, then the java_thread oop
2702  // will not be visited by GC.
2703  Threads::add(this);
2704}
2705
2706oop JavaThread::current_park_blocker() {
2707  // Support for JSR-166 locks
2708  oop thread_oop = threadObj();
2709  if (thread_oop != NULL &&
2710      JDK_Version::current().supports_thread_park_blocker()) {
2711    return java_lang_Thread::park_blocker(thread_oop);
2712  }
2713  return NULL;
2714}
2715
2716
2717void JavaThread::print_stack_on(outputStream* st) {
2718  if (!has_last_Java_frame()) return;
2719  ResourceMark rm;
2720  HandleMark   hm;
2721
2722  RegisterMap reg_map(this);
2723  vframe* start_vf = last_java_vframe(&reg_map);
2724  int count = 0;
2725  for (vframe* f = start_vf; f; f = f->sender() ) {
2726    if (f->is_java_frame()) {
2727      javaVFrame* jvf = javaVFrame::cast(f);
2728      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2729
2730      // Print out lock information
2731      if (JavaMonitorsInStackTrace) {
2732        jvf->print_lock_info_on(st, count);
2733      }
2734    } else {
2735      // Ignore non-Java frames
2736    }
2737
2738    // Bail-out case for too deep stacks
2739    count++;
2740    if (MaxJavaStackTraceDepth == count) return;
2741  }
2742}
2743
2744
2745// JVMTI PopFrame support
2746void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2747  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2748  if (in_bytes(size_in_bytes) != 0) {
2749    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
2750    _popframe_preserved_args_size = in_bytes(size_in_bytes);
2751    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2752  }
2753}
2754
2755void* JavaThread::popframe_preserved_args() {
2756  return _popframe_preserved_args;
2757}
2758
2759ByteSize JavaThread::popframe_preserved_args_size() {
2760  return in_ByteSize(_popframe_preserved_args_size);
2761}
2762
2763WordSize JavaThread::popframe_preserved_args_size_in_words() {
2764  int sz = in_bytes(popframe_preserved_args_size());
2765  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
2766  return in_WordSize(sz / wordSize);
2767}
2768
2769void JavaThread::popframe_free_preserved_args() {
2770  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
2771  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
2772  _popframe_preserved_args = NULL;
2773  _popframe_preserved_args_size = 0;
2774}
2775
2776#ifndef PRODUCT
2777
2778void JavaThread::trace_frames() {
2779  tty->print_cr("[Describe stack]");
2780  int frame_no = 1;
2781  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2782    tty->print("  %d. ", frame_no++);
2783    fst.current()->print_value_on(tty,this);
2784    tty->cr();
2785  }
2786}
2787
2788
2789void JavaThread::trace_stack_from(vframe* start_vf) {
2790  ResourceMark rm;
2791  int vframe_no = 1;
2792  for (vframe* f = start_vf; f; f = f->sender() ) {
2793    if (f->is_java_frame()) {
2794      javaVFrame::cast(f)->print_activation(vframe_no++);
2795    } else {
2796      f->print();
2797    }
2798    if (vframe_no > StackPrintLimit) {
2799      tty->print_cr("...<more frames>...");
2800      return;
2801    }
2802  }
2803}
2804
2805
2806void JavaThread::trace_stack() {
2807  if (!has_last_Java_frame()) return;
2808  ResourceMark rm;
2809  HandleMark   hm;
2810  RegisterMap reg_map(this);
2811  trace_stack_from(last_java_vframe(&reg_map));
2812}
2813
2814
2815#endif // PRODUCT
2816
2817
2818javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
2819  assert(reg_map != NULL, "a map must be given");
2820  frame f = last_frame();
2821  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
2822    if (vf->is_java_frame()) return javaVFrame::cast(vf);
2823  }
2824  return NULL;
2825}
2826
2827
2828klassOop JavaThread::security_get_caller_class(int depth) {
2829  vframeStream vfst(this);
2830  vfst.security_get_caller_frame(depth);
2831  if (!vfst.at_end()) {
2832    return vfst.method()->method_holder();
2833  }
2834  return NULL;
2835}
2836
2837static void compiler_thread_entry(JavaThread* thread, TRAPS) {
2838  assert(thread->is_Compiler_thread(), "must be compiler thread");
2839  CompileBroker::compiler_thread_loop();
2840}
2841
2842// Create a CompilerThread
2843CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
2844: JavaThread(&compiler_thread_entry) {
2845  _env   = NULL;
2846  _log   = NULL;
2847  _task  = NULL;
2848  _queue = queue;
2849  _counters = counters;
2850  _buffer_blob = NULL;
2851
2852#ifndef PRODUCT
2853  _ideal_graph_printer = NULL;
2854#endif
2855}
2856
2857
2858// ======= Threads ========
2859
2860// The Threads class links together all active threads, and provides
2861// operations over all threads.  It is protected by its own Mutex
2862// lock, which is also used in other contexts to protect thread
2863// operations from having the thread being operated on from exiting
2864// and going away unexpectedly (e.g., safepoint synchronization)
2865
2866JavaThread* Threads::_thread_list = NULL;
2867int         Threads::_number_of_threads = 0;
2868int         Threads::_number_of_non_daemon_threads = 0;
2869int         Threads::_return_code = 0;
2870size_t      JavaThread::_stack_size_at_create = 0;
2871
2872// All JavaThreads
2873#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
2874
2875void os_stream();
2876
2877// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
2878void Threads::threads_do(ThreadClosure* tc) {
2879  assert_locked_or_safepoint(Threads_lock);
2880  // ALL_JAVA_THREADS iterates through all JavaThreads
2881  ALL_JAVA_THREADS(p) {
2882    tc->do_thread(p);
2883  }
2884  // Someday we could have a table or list of all non-JavaThreads.
2885  // For now, just manually iterate through them.
2886  tc->do_thread(VMThread::vm_thread());
2887  Universe::heap()->gc_threads_do(tc);
2888  WatcherThread *wt = WatcherThread::watcher_thread();
2889  // Strictly speaking, the following NULL check isn't sufficient to make sure
2890  // the data for WatcherThread is still valid upon being examined. However,
2891  // considering that WatchThread terminates when the VM is on the way to
2892  // exit at safepoint, the chance of the above is extremely small. The right
2893  // way to prevent termination of WatcherThread would be to acquire
2894  // Terminator_lock, but we can't do that without violating the lock rank
2895  // checking in some cases.
2896  if (wt != NULL)
2897    tc->do_thread(wt);
2898
2899  // If CompilerThreads ever become non-JavaThreads, add them here
2900}
2901
2902jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
2903
2904  extern void JDK_Version_init();
2905
2906  // Check version
2907  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
2908
2909  // Initialize the output stream module
2910  ostream_init();
2911
2912  // Process java launcher properties.
2913  Arguments::process_sun_java_launcher_properties(args);
2914
2915  // Initialize the os module before using TLS
2916  os::init();
2917
2918  // Initialize system properties.
2919  Arguments::init_system_properties();
2920
2921  // So that JDK version can be used as a discrimintor when parsing arguments
2922  JDK_Version_init();
2923
2924  // Update/Initialize System properties after JDK version number is known
2925  Arguments::init_version_specific_system_properties();
2926
2927  // Parse arguments
2928  jint parse_result = Arguments::parse(args);
2929  if (parse_result != JNI_OK) return parse_result;
2930
2931  if (PauseAtStartup) {
2932    os::pause();
2933  }
2934
2935  HS_DTRACE_PROBE(hotspot, vm__init__begin);
2936
2937  // Record VM creation timing statistics
2938  TraceVmCreationTime create_vm_timer;
2939  create_vm_timer.start();
2940
2941  // Timing (must come after argument parsing)
2942  TraceTime timer("Create VM", TraceStartupTime);
2943
2944  // Initialize the os module after parsing the args
2945  jint os_init_2_result = os::init_2();
2946  if (os_init_2_result != JNI_OK) return os_init_2_result;
2947
2948  // Initialize output stream logging
2949  ostream_init_log();
2950
2951  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
2952  // Must be before create_vm_init_agents()
2953  if (Arguments::init_libraries_at_startup()) {
2954    convert_vm_init_libraries_to_agents();
2955  }
2956
2957  // Launch -agentlib/-agentpath and converted -Xrun agents
2958  if (Arguments::init_agents_at_startup()) {
2959    create_vm_init_agents();
2960  }
2961
2962  // Initialize Threads state
2963  _thread_list = NULL;
2964  _number_of_threads = 0;
2965  _number_of_non_daemon_threads = 0;
2966
2967  // Initialize TLS
2968  ThreadLocalStorage::init();
2969
2970  // Initialize global data structures and create system classes in heap
2971  vm_init_globals();
2972
2973  // Attach the main thread to this os thread
2974  JavaThread* main_thread = new JavaThread();
2975  main_thread->set_thread_state(_thread_in_vm);
2976  // must do this before set_active_handles and initialize_thread_local_storage
2977  // Note: on solaris initialize_thread_local_storage() will (indirectly)
2978  // change the stack size recorded here to one based on the java thread
2979  // stacksize. This adjusted size is what is used to figure the placement
2980  // of the guard pages.
2981  main_thread->record_stack_base_and_size();
2982  main_thread->initialize_thread_local_storage();
2983
2984  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
2985
2986  if (!main_thread->set_as_starting_thread()) {
2987    vm_shutdown_during_initialization(
2988      "Failed necessary internal allocation. Out of swap space");
2989    delete main_thread;
2990    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
2991    return JNI_ENOMEM;
2992  }
2993
2994  // Enable guard page *after* os::create_main_thread(), otherwise it would
2995  // crash Linux VM, see notes in os_linux.cpp.
2996  main_thread->create_stack_guard_pages();
2997
2998  // Initialize Java-Level synchronization subsystem
2999  ObjectMonitor::Initialize() ;
3000
3001  // Initialize global modules
3002  jint status = init_globals();
3003  if (status != JNI_OK) {
3004    delete main_thread;
3005    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3006    return status;
3007  }
3008
3009  // Should be done after the heap is fully created
3010  main_thread->cache_global_variables();
3011
3012  HandleMark hm;
3013
3014  { MutexLocker mu(Threads_lock);
3015    Threads::add(main_thread);
3016  }
3017
3018  // Any JVMTI raw monitors entered in onload will transition into
3019  // real raw monitor. VM is setup enough here for raw monitor enter.
3020  JvmtiExport::transition_pending_onload_raw_monitors();
3021
3022  if (VerifyBeforeGC &&
3023      Universe::heap()->total_collections() >= VerifyGCStartAt) {
3024    Universe::heap()->prepare_for_verify();
3025    Universe::verify();   // make sure we're starting with a clean slate
3026  }
3027
3028  // Create the VMThread
3029  { TraceTime timer("Start VMThread", TraceStartupTime);
3030    VMThread::create();
3031    Thread* vmthread = VMThread::vm_thread();
3032
3033    if (!os::create_thread(vmthread, os::vm_thread))
3034      vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3035
3036    // Wait for the VM thread to become ready, and VMThread::run to initialize
3037    // Monitors can have spurious returns, must always check another state flag
3038    {
3039      MutexLocker ml(Notify_lock);
3040      os::start_thread(vmthread);
3041      while (vmthread->active_handles() == NULL) {
3042        Notify_lock->wait();
3043      }
3044    }
3045  }
3046
3047  assert (Universe::is_fully_initialized(), "not initialized");
3048  EXCEPTION_MARK;
3049
3050  // At this point, the Universe is initialized, but we have not executed
3051  // any byte code.  Now is a good time (the only time) to dump out the
3052  // internal state of the JVM for sharing.
3053
3054  if (DumpSharedSpaces) {
3055    Universe::heap()->preload_and_dump(CHECK_0);
3056    ShouldNotReachHere();
3057  }
3058
3059  // Always call even when there are not JVMTI environments yet, since environments
3060  // may be attached late and JVMTI must track phases of VM execution
3061  JvmtiExport::enter_start_phase();
3062
3063  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3064  JvmtiExport::post_vm_start();
3065
3066  {
3067    TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3068
3069    if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3070      create_vm_init_libraries();
3071    }
3072
3073    if (InitializeJavaLangString) {
3074      initialize_class(vmSymbolHandles::java_lang_String(), CHECK_0);
3075    } else {
3076      warning("java.lang.String not initialized");
3077    }
3078
3079    if (AggressiveOpts) {
3080      {
3081        // Forcibly initialize java/util/HashMap and mutate the private
3082        // static final "frontCacheEnabled" field before we start creating instances
3083#ifdef ASSERT
3084        klassOop tmp_k = SystemDictionary::find(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3085        assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3086#endif
3087        klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3088        KlassHandle k = KlassHandle(THREAD, k_o);
3089        guarantee(k.not_null(), "Must find java/util/HashMap");
3090        instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3091        ik->initialize(CHECK_0);
3092        fieldDescriptor fd;
3093        // Possible we might not find this field; if so, don't break
3094        if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3095          k()->bool_field_put(fd.offset(), true);
3096        }
3097      }
3098
3099      if (UseStringCache) {
3100        // Forcibly initialize java/lang/StringValue and mutate the private
3101        // static final "stringCacheEnabled" field before we start creating instances
3102        klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3103        // Possible that StringValue isn't present: if so, silently don't break
3104        if (k_o != NULL) {
3105          KlassHandle k = KlassHandle(THREAD, k_o);
3106          instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3107          ik->initialize(CHECK_0);
3108          fieldDescriptor fd;
3109          // Possible we might not find this field: if so, silently don't break
3110          if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3111            k()->bool_field_put(fd.offset(), true);
3112          }
3113        }
3114      }
3115    }
3116
3117    // Initialize java_lang.System (needed before creating the thread)
3118    if (InitializeJavaLangSystem) {
3119      initialize_class(vmSymbolHandles::java_lang_System(), CHECK_0);
3120      initialize_class(vmSymbolHandles::java_lang_ThreadGroup(), CHECK_0);
3121      Handle thread_group = create_initial_thread_group(CHECK_0);
3122      Universe::set_main_thread_group(thread_group());
3123      initialize_class(vmSymbolHandles::java_lang_Thread(), CHECK_0);
3124      oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3125      main_thread->set_threadObj(thread_object);
3126      // Set thread status to running since main thread has
3127      // been started and running.
3128      java_lang_Thread::set_thread_status(thread_object,
3129                                          java_lang_Thread::RUNNABLE);
3130
3131      // The VM preresolve methods to these classes. Make sure that get initialized
3132      initialize_class(vmSymbolHandles::java_lang_reflect_Method(), CHECK_0);
3133      initialize_class(vmSymbolHandles::java_lang_ref_Finalizer(),  CHECK_0);
3134      // The VM creates & returns objects of this class. Make sure it's initialized.
3135      initialize_class(vmSymbolHandles::java_lang_Class(), CHECK_0);
3136      call_initializeSystemClass(CHECK_0);
3137    } else {
3138      warning("java.lang.System not initialized");
3139    }
3140
3141    // an instance of OutOfMemory exception has been allocated earlier
3142    if (InitializeJavaLangExceptionsErrors) {
3143      initialize_class(vmSymbolHandles::java_lang_OutOfMemoryError(), CHECK_0);
3144      initialize_class(vmSymbolHandles::java_lang_NullPointerException(), CHECK_0);
3145      initialize_class(vmSymbolHandles::java_lang_ClassCastException(), CHECK_0);
3146      initialize_class(vmSymbolHandles::java_lang_ArrayStoreException(), CHECK_0);
3147      initialize_class(vmSymbolHandles::java_lang_ArithmeticException(), CHECK_0);
3148      initialize_class(vmSymbolHandles::java_lang_StackOverflowError(), CHECK_0);
3149      initialize_class(vmSymbolHandles::java_lang_IllegalMonitorStateException(), CHECK_0);
3150    } else {
3151      warning("java.lang.OutOfMemoryError has not been initialized");
3152      warning("java.lang.NullPointerException has not been initialized");
3153      warning("java.lang.ClassCastException has not been initialized");
3154      warning("java.lang.ArrayStoreException has not been initialized");
3155      warning("java.lang.ArithmeticException has not been initialized");
3156      warning("java.lang.StackOverflowError has not been initialized");
3157    }
3158
3159    if (EnableInvokeDynamic) {
3160      // JSR 292: An intialized java.dyn.InvokeDynamic is required in
3161      // the compiler.
3162      initialize_class(vmSymbolHandles::java_dyn_InvokeDynamic(), CHECK_0);
3163    }
3164  }
3165
3166  // See        : bugid 4211085.
3167  // Background : the static initializer of java.lang.Compiler tries to read
3168  //              property"java.compiler" and read & write property "java.vm.info".
3169  //              When a security manager is installed through the command line
3170  //              option "-Djava.security.manager", the above properties are not
3171  //              readable and the static initializer for java.lang.Compiler fails
3172  //              resulting in a NoClassDefFoundError.  This can happen in any
3173  //              user code which calls methods in java.lang.Compiler.
3174  // Hack :       the hack is to pre-load and initialize this class, so that only
3175  //              system domains are on the stack when the properties are read.
3176  //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3177  //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3178  // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3179  //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3180  //              Once that is done, we should remove this hack.
3181  initialize_class(vmSymbolHandles::java_lang_Compiler(), CHECK_0);
3182
3183  // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3184  // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3185  // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3186  // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3187  // This should also be taken out as soon as 4211383 gets fixed.
3188  reset_vm_info_property(CHECK_0);
3189
3190  quicken_jni_functions();
3191
3192  // Set flag that basic initialization has completed. Used by exceptions and various
3193  // debug stuff, that does not work until all basic classes have been initialized.
3194  set_init_completed();
3195
3196  HS_DTRACE_PROBE(hotspot, vm__init__end);
3197
3198  // record VM initialization completion time
3199  Management::record_vm_init_completed();
3200
3201  // Compute system loader. Note that this has to occur after set_init_completed, since
3202  // valid exceptions may be thrown in the process.
3203  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3204  // set_init_completed has just been called, causing exceptions not to be shortcut
3205  // anymore. We call vm_exit_during_initialization directly instead.
3206  SystemDictionary::compute_java_system_loader(THREAD);
3207  if (HAS_PENDING_EXCEPTION) {
3208    vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3209  }
3210
3211#ifdef KERNEL
3212  if (JDK_Version::is_gte_jdk17x_version()) {
3213    set_jkernel_boot_classloader_hook(THREAD);
3214  }
3215#endif // KERNEL
3216
3217#ifndef SERIALGC
3218  // Support for ConcurrentMarkSweep. This should be cleaned up
3219  // and better encapsulated. The ugly nested if test would go away
3220  // once things are properly refactored. XXX YSR
3221  if (UseConcMarkSweepGC || UseG1GC) {
3222    if (UseConcMarkSweepGC) {
3223      ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3224    } else {
3225      ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3226    }
3227    if (HAS_PENDING_EXCEPTION) {
3228      vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3229    }
3230  }
3231#endif // SERIALGC
3232
3233  // Always call even when there are not JVMTI environments yet, since environments
3234  // may be attached late and JVMTI must track phases of VM execution
3235  JvmtiExport::enter_live_phase();
3236
3237  // Signal Dispatcher needs to be started before VMInit event is posted
3238  os::signal_init();
3239
3240  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3241  if (!DisableAttachMechanism) {
3242    if (StartAttachListener || AttachListener::init_at_startup()) {
3243      AttachListener::init();
3244    }
3245  }
3246
3247  // Launch -Xrun agents
3248  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3249  // back-end can launch with -Xdebug -Xrunjdwp.
3250  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3251    create_vm_init_libraries();
3252  }
3253
3254  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3255  JvmtiExport::post_vm_initialized();
3256
3257  Chunk::start_chunk_pool_cleaner_task();
3258
3259  // initialize compiler(s)
3260  CompileBroker::compilation_init();
3261
3262  Management::initialize(THREAD);
3263  if (HAS_PENDING_EXCEPTION) {
3264    // management agent fails to start possibly due to
3265    // configuration problem and is responsible for printing
3266    // stack trace if appropriate. Simply exit VM.
3267    vm_exit(1);
3268  }
3269
3270  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3271  if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3272  if (MemProfiling)                   MemProfiler::engage();
3273  StatSampler::engage();
3274  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3275
3276  BiasedLocking::init();
3277
3278
3279  // Start up the WatcherThread if there are any periodic tasks
3280  // NOTE:  All PeriodicTasks should be registered by now. If they
3281  //   aren't, late joiners might appear to start slowly (we might
3282  //   take a while to process their first tick).
3283  if (PeriodicTask::num_tasks() > 0) {
3284    WatcherThread::start();
3285  }
3286
3287  // Give os specific code one last chance to start
3288  os::init_3();
3289
3290  create_vm_timer.end();
3291  return JNI_OK;
3292}
3293
3294// type for the Agent_OnLoad and JVM_OnLoad entry points
3295extern "C" {
3296  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3297}
3298// Find a command line agent library and return its entry point for
3299//         -agentlib:  -agentpath:   -Xrun
3300// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3301static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3302  OnLoadEntry_t on_load_entry = NULL;
3303  void *library = agent->os_lib();  // check if we have looked it up before
3304
3305  if (library == NULL) {
3306    char buffer[JVM_MAXPATHLEN];
3307    char ebuf[1024];
3308    const char *name = agent->name();
3309    const char *msg = "Could not find agent library ";
3310
3311    if (agent->is_absolute_path()) {
3312      library = hpi::dll_load(name, ebuf, sizeof ebuf);
3313      if (library == NULL) {
3314        const char *sub_msg = " in absolute path, with error: ";
3315        size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3316        char *buf = NEW_C_HEAP_ARRAY(char, len);
3317        jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3318        // If we can't find the agent, exit.
3319        vm_exit_during_initialization(buf, NULL);
3320        FREE_C_HEAP_ARRAY(char, buf);
3321      }
3322    } else {
3323      // Try to load the agent from the standard dll directory
3324      hpi::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
3325      library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3326#ifdef KERNEL
3327      // Download instrument dll
3328      if (library == NULL && strcmp(name, "instrument") == 0) {
3329        char *props = Arguments::get_kernel_properties();
3330        char *home  = Arguments::get_java_home();
3331        const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
3332                      " sun.jkernel.DownloadManager -download client_jvm";
3333        size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
3334        char *cmd = NEW_C_HEAP_ARRAY(char, length);
3335        jio_snprintf(cmd, length, fmt, home, props);
3336        int status = os::fork_and_exec(cmd);
3337        FreeHeap(props);
3338        if (status == -1) {
3339          warning(cmd);
3340          vm_exit_during_initialization("fork_and_exec failed: %s",
3341                                         strerror(errno));
3342        }
3343        FREE_C_HEAP_ARRAY(char, cmd);
3344        // when this comes back the instrument.dll should be where it belongs.
3345        library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3346      }
3347#endif // KERNEL
3348      if (library == NULL) { // Try the local directory
3349        char ns[1] = {0};
3350        hpi::dll_build_name(buffer, sizeof(buffer), ns, name);
3351        library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3352        if (library == NULL) {
3353          const char *sub_msg = " on the library path, with error: ";
3354          size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3355          char *buf = NEW_C_HEAP_ARRAY(char, len);
3356          jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3357          // If we can't find the agent, exit.
3358          vm_exit_during_initialization(buf, NULL);
3359          FREE_C_HEAP_ARRAY(char, buf);
3360        }
3361      }
3362    }
3363    agent->set_os_lib(library);
3364  }
3365
3366  // Find the OnLoad function.
3367  for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3368    on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, hpi::dll_lookup(library, on_load_symbols[symbol_index]));
3369    if (on_load_entry != NULL) break;
3370  }
3371  return on_load_entry;
3372}
3373
3374// Find the JVM_OnLoad entry point
3375static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3376  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3377  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3378}
3379
3380// Find the Agent_OnLoad entry point
3381static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3382  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3383  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3384}
3385
3386// For backwards compatibility with -Xrun
3387// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3388// treated like -agentpath:
3389// Must be called before agent libraries are created
3390void Threads::convert_vm_init_libraries_to_agents() {
3391  AgentLibrary* agent;
3392  AgentLibrary* next;
3393
3394  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3395    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3396    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3397
3398    // If there is an JVM_OnLoad function it will get called later,
3399    // otherwise see if there is an Agent_OnLoad
3400    if (on_load_entry == NULL) {
3401      on_load_entry = lookup_agent_on_load(agent);
3402      if (on_load_entry != NULL) {
3403        // switch it to the agent list -- so that Agent_OnLoad will be called,
3404        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3405        Arguments::convert_library_to_agent(agent);
3406      } else {
3407        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3408      }
3409    }
3410  }
3411}
3412
3413// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3414// Invokes Agent_OnLoad
3415// Called very early -- before JavaThreads exist
3416void Threads::create_vm_init_agents() {
3417  extern struct JavaVM_ main_vm;
3418  AgentLibrary* agent;
3419
3420  JvmtiExport::enter_onload_phase();
3421  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3422    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3423
3424    if (on_load_entry != NULL) {
3425      // Invoke the Agent_OnLoad function
3426      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3427      if (err != JNI_OK) {
3428        vm_exit_during_initialization("agent library failed to init", agent->name());
3429      }
3430    } else {
3431      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3432    }
3433  }
3434  JvmtiExport::enter_primordial_phase();
3435}
3436
3437extern "C" {
3438  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3439}
3440
3441void Threads::shutdown_vm_agents() {
3442  // Send any Agent_OnUnload notifications
3443  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3444  extern struct JavaVM_ main_vm;
3445  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3446
3447    // Find the Agent_OnUnload function.
3448    for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3449      Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3450               hpi::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3451
3452      // Invoke the Agent_OnUnload function
3453      if (unload_entry != NULL) {
3454        JavaThread* thread = JavaThread::current();
3455        ThreadToNativeFromVM ttn(thread);
3456        HandleMark hm(thread);
3457        (*unload_entry)(&main_vm);
3458        break;
3459      }
3460    }
3461  }
3462}
3463
3464// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3465// Invokes JVM_OnLoad
3466void Threads::create_vm_init_libraries() {
3467  extern struct JavaVM_ main_vm;
3468  AgentLibrary* agent;
3469
3470  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3471    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3472
3473    if (on_load_entry != NULL) {
3474      // Invoke the JVM_OnLoad function
3475      JavaThread* thread = JavaThread::current();
3476      ThreadToNativeFromVM ttn(thread);
3477      HandleMark hm(thread);
3478      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3479      if (err != JNI_OK) {
3480        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3481      }
3482    } else {
3483      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3484    }
3485  }
3486}
3487
3488// Last thread running calls java.lang.Shutdown.shutdown()
3489void JavaThread::invoke_shutdown_hooks() {
3490  HandleMark hm(this);
3491
3492  // We could get here with a pending exception, if so clear it now.
3493  if (this->has_pending_exception()) {
3494    this->clear_pending_exception();
3495  }
3496
3497  EXCEPTION_MARK;
3498  klassOop k =
3499    SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_Shutdown(),
3500                                      THREAD);
3501  if (k != NULL) {
3502    // SystemDictionary::resolve_or_null will return null if there was
3503    // an exception.  If we cannot load the Shutdown class, just don't
3504    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3505    // and finalizers (if runFinalizersOnExit is set) won't be run.
3506    // Note that if a shutdown hook was registered or runFinalizersOnExit
3507    // was called, the Shutdown class would have already been loaded
3508    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3509    instanceKlassHandle shutdown_klass (THREAD, k);
3510    JavaValue result(T_VOID);
3511    JavaCalls::call_static(&result,
3512                           shutdown_klass,
3513                           vmSymbolHandles::shutdown_method_name(),
3514                           vmSymbolHandles::void_method_signature(),
3515                           THREAD);
3516  }
3517  CLEAR_PENDING_EXCEPTION;
3518}
3519
3520// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3521// the program falls off the end of main(). Another VM exit path is through
3522// vm_exit() when the program calls System.exit() to return a value or when
3523// there is a serious error in VM. The two shutdown paths are not exactly
3524// the same, but they share Shutdown.shutdown() at Java level and before_exit()
3525// and VM_Exit op at VM level.
3526//
3527// Shutdown sequence:
3528//   + Wait until we are the last non-daemon thread to execute
3529//     <-- every thing is still working at this moment -->
3530//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3531//        shutdown hooks, run finalizers if finalization-on-exit
3532//   + Call before_exit(), prepare for VM exit
3533//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3534//        currently the only user of this mechanism is File.deleteOnExit())
3535//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3536//        post thread end and vm death events to JVMTI,
3537//        stop signal thread
3538//   + Call JavaThread::exit(), it will:
3539//      > release JNI handle blocks, remove stack guard pages
3540//      > remove this thread from Threads list
3541//     <-- no more Java code from this thread after this point -->
3542//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3543//     the compiler threads at safepoint
3544//     <-- do not use anything that could get blocked by Safepoint -->
3545//   + Disable tracing at JNI/JVM barriers
3546//   + Set _vm_exited flag for threads that are still running native code
3547//   + Delete this thread
3548//   + Call exit_globals()
3549//      > deletes tty
3550//      > deletes PerfMemory resources
3551//   + Return to caller
3552
3553bool Threads::destroy_vm() {
3554  JavaThread* thread = JavaThread::current();
3555
3556  // Wait until we are the last non-daemon thread to execute
3557  { MutexLocker nu(Threads_lock);
3558    while (Threads::number_of_non_daemon_threads() > 1 )
3559      // This wait should make safepoint checks, wait without a timeout,
3560      // and wait as a suspend-equivalent condition.
3561      //
3562      // Note: If the FlatProfiler is running and this thread is waiting
3563      // for another non-daemon thread to finish, then the FlatProfiler
3564      // is waiting for the external suspend request on this thread to
3565      // complete. wait_for_ext_suspend_completion() will eventually
3566      // timeout, but that takes time. Making this wait a suspend-
3567      // equivalent condition solves that timeout problem.
3568      //
3569      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3570                         Mutex::_as_suspend_equivalent_flag);
3571  }
3572
3573  // Hang forever on exit if we are reporting an error.
3574  if (ShowMessageBoxOnError && is_error_reported()) {
3575    os::infinite_sleep();
3576  }
3577
3578  if (JDK_Version::is_jdk12x_version()) {
3579    // We are the last thread running, so check if finalizers should be run.
3580    // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3581    HandleMark rm(thread);
3582    Universe::run_finalizers_on_exit();
3583  } else {
3584    // run Java level shutdown hooks
3585    thread->invoke_shutdown_hooks();
3586  }
3587
3588  before_exit(thread);
3589
3590  thread->exit(true);
3591
3592  // Stop VM thread.
3593  {
3594    // 4945125 The vm thread comes to a safepoint during exit.
3595    // GC vm_operations can get caught at the safepoint, and the
3596    // heap is unparseable if they are caught. Grab the Heap_lock
3597    // to prevent this. The GC vm_operations will not be able to
3598    // queue until after the vm thread is dead.
3599    MutexLocker ml(Heap_lock);
3600
3601    VMThread::wait_for_vm_thread_exit();
3602    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3603    VMThread::destroy();
3604  }
3605
3606  // clean up ideal graph printers
3607#if defined(COMPILER2) && !defined(PRODUCT)
3608  IdealGraphPrinter::clean_up();
3609#endif
3610
3611  // Now, all Java threads are gone except daemon threads. Daemon threads
3612  // running Java code or in VM are stopped by the Safepoint. However,
3613  // daemon threads executing native code are still running.  But they
3614  // will be stopped at native=>Java/VM barriers. Note that we can't
3615  // simply kill or suspend them, as it is inherently deadlock-prone.
3616
3617#ifndef PRODUCT
3618  // disable function tracing at JNI/JVM barriers
3619  TraceHPI = false;
3620  TraceJNICalls = false;
3621  TraceJVMCalls = false;
3622  TraceRuntimeCalls = false;
3623#endif
3624
3625  VM_Exit::set_vm_exited();
3626
3627  notify_vm_shutdown();
3628
3629  delete thread;
3630
3631  // exit_globals() will delete tty
3632  exit_globals();
3633
3634  return true;
3635}
3636
3637
3638jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3639  if (version == JNI_VERSION_1_1) return JNI_TRUE;
3640  return is_supported_jni_version(version);
3641}
3642
3643
3644jboolean Threads::is_supported_jni_version(jint version) {
3645  if (version == JNI_VERSION_1_2) return JNI_TRUE;
3646  if (version == JNI_VERSION_1_4) return JNI_TRUE;
3647  if (version == JNI_VERSION_1_6) return JNI_TRUE;
3648  return JNI_FALSE;
3649}
3650
3651
3652void Threads::add(JavaThread* p, bool force_daemon) {
3653  // The threads lock must be owned at this point
3654  assert_locked_or_safepoint(Threads_lock);
3655
3656  // See the comment for this method in thread.hpp for its purpose and
3657  // why it is called here.
3658  p->initialize_queues();
3659  p->set_next(_thread_list);
3660  _thread_list = p;
3661  _number_of_threads++;
3662  oop threadObj = p->threadObj();
3663  bool daemon = true;
3664  // Bootstrapping problem: threadObj can be null for initial
3665  // JavaThread (or for threads attached via JNI)
3666  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3667    _number_of_non_daemon_threads++;
3668    daemon = false;
3669  }
3670
3671  ThreadService::add_thread(p, daemon);
3672
3673  // Possible GC point.
3674  Events::log("Thread added: " INTPTR_FORMAT, p);
3675}
3676
3677void Threads::remove(JavaThread* p) {
3678  // Extra scope needed for Thread_lock, so we can check
3679  // that we do not remove thread without safepoint code notice
3680  { MutexLocker ml(Threads_lock);
3681
3682    assert(includes(p), "p must be present");
3683
3684    JavaThread* current = _thread_list;
3685    JavaThread* prev    = NULL;
3686
3687    while (current != p) {
3688      prev    = current;
3689      current = current->next();
3690    }
3691
3692    if (prev) {
3693      prev->set_next(current->next());
3694    } else {
3695      _thread_list = p->next();
3696    }
3697    _number_of_threads--;
3698    oop threadObj = p->threadObj();
3699    bool daemon = true;
3700    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
3701      _number_of_non_daemon_threads--;
3702      daemon = false;
3703
3704      // Only one thread left, do a notify on the Threads_lock so a thread waiting
3705      // on destroy_vm will wake up.
3706      if (number_of_non_daemon_threads() == 1)
3707        Threads_lock->notify_all();
3708    }
3709    ThreadService::remove_thread(p, daemon);
3710
3711    // Make sure that safepoint code disregard this thread. This is needed since
3712    // the thread might mess around with locks after this point. This can cause it
3713    // to do callbacks into the safepoint code. However, the safepoint code is not aware
3714    // of this thread since it is removed from the queue.
3715    p->set_terminated_value();
3716  } // unlock Threads_lock
3717
3718  // Since Events::log uses a lock, we grab it outside the Threads_lock
3719  Events::log("Thread exited: " INTPTR_FORMAT, p);
3720}
3721
3722// Threads_lock must be held when this is called (or must be called during a safepoint)
3723bool Threads::includes(JavaThread* p) {
3724  assert(Threads_lock->is_locked(), "sanity check");
3725  ALL_JAVA_THREADS(q) {
3726    if (q == p ) {
3727      return true;
3728    }
3729  }
3730  return false;
3731}
3732
3733// Operations on the Threads list for GC.  These are not explicitly locked,
3734// but the garbage collector must provide a safe context for them to run.
3735// In particular, these things should never be called when the Threads_lock
3736// is held by some other thread. (Note: the Safepoint abstraction also
3737// uses the Threads_lock to gurantee this property. It also makes sure that
3738// all threads gets blocked when exiting or starting).
3739
3740void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3741  ALL_JAVA_THREADS(p) {
3742    p->oops_do(f, cf);
3743  }
3744  VMThread::vm_thread()->oops_do(f, cf);
3745}
3746
3747void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
3748  // Introduce a mechanism allowing parallel threads to claim threads as
3749  // root groups.  Overhead should be small enough to use all the time,
3750  // even in sequential code.
3751  SharedHeap* sh = SharedHeap::heap();
3752  bool is_par = (sh->n_par_threads() > 0);
3753  int cp = SharedHeap::heap()->strong_roots_parity();
3754  ALL_JAVA_THREADS(p) {
3755    if (p->claim_oops_do(is_par, cp)) {
3756      p->oops_do(f, cf);
3757    }
3758  }
3759  VMThread* vmt = VMThread::vm_thread();
3760  if (vmt->claim_oops_do(is_par, cp))
3761    vmt->oops_do(f, cf);
3762}
3763
3764#ifndef SERIALGC
3765// Used by ParallelScavenge
3766void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
3767  ALL_JAVA_THREADS(p) {
3768    q->enqueue(new ThreadRootsTask(p));
3769  }
3770  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
3771}
3772
3773// Used by Parallel Old
3774void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
3775  ALL_JAVA_THREADS(p) {
3776    q->enqueue(new ThreadRootsMarkingTask(p));
3777  }
3778  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
3779}
3780#endif // SERIALGC
3781
3782void Threads::nmethods_do(CodeBlobClosure* cf) {
3783  ALL_JAVA_THREADS(p) {
3784    p->nmethods_do(cf);
3785  }
3786  VMThread::vm_thread()->nmethods_do(cf);
3787}
3788
3789void Threads::gc_epilogue() {
3790  ALL_JAVA_THREADS(p) {
3791    p->gc_epilogue();
3792  }
3793}
3794
3795void Threads::gc_prologue() {
3796  ALL_JAVA_THREADS(p) {
3797    p->gc_prologue();
3798  }
3799}
3800
3801void Threads::deoptimized_wrt_marked_nmethods() {
3802  ALL_JAVA_THREADS(p) {
3803    p->deoptimized_wrt_marked_nmethods();
3804  }
3805}
3806
3807
3808// Get count Java threads that are waiting to enter the specified monitor.
3809GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
3810  address monitor, bool doLock) {
3811  assert(doLock || SafepointSynchronize::is_at_safepoint(),
3812    "must grab Threads_lock or be at safepoint");
3813  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
3814
3815  int i = 0;
3816  {
3817    MutexLockerEx ml(doLock ? Threads_lock : NULL);
3818    ALL_JAVA_THREADS(p) {
3819      if (p->is_Compiler_thread()) continue;
3820
3821      address pending = (address)p->current_pending_monitor();
3822      if (pending == monitor) {             // found a match
3823        if (i < count) result->append(p);   // save the first count matches
3824        i++;
3825      }
3826    }
3827  }
3828  return result;
3829}
3830
3831
3832JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
3833  assert(doLock ||
3834         Threads_lock->owned_by_self() ||
3835         SafepointSynchronize::is_at_safepoint(),
3836         "must grab Threads_lock or be at safepoint");
3837
3838  // NULL owner means not locked so we can skip the search
3839  if (owner == NULL) return NULL;
3840
3841  {
3842    MutexLockerEx ml(doLock ? Threads_lock : NULL);
3843    ALL_JAVA_THREADS(p) {
3844      // first, see if owner is the address of a Java thread
3845      if (owner == (address)p) return p;
3846    }
3847  }
3848  assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
3849  if (UseHeavyMonitors) return NULL;
3850
3851  //
3852  // If we didn't find a matching Java thread and we didn't force use of
3853  // heavyweight monitors, then the owner is the stack address of the
3854  // Lock Word in the owning Java thread's stack.
3855  //
3856  JavaThread* the_owner = NULL;
3857  {
3858    MutexLockerEx ml(doLock ? Threads_lock : NULL);
3859    ALL_JAVA_THREADS(q) {
3860      if (q->is_lock_owned(owner)) {
3861        the_owner = q;
3862        break;
3863      }
3864    }
3865  }
3866  assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
3867  return the_owner;
3868}
3869
3870// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
3871void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
3872  char buf[32];
3873  st->print_cr(os::local_time_string(buf, sizeof(buf)));
3874
3875  st->print_cr("Full thread dump %s (%s %s):",
3876                Abstract_VM_Version::vm_name(),
3877                Abstract_VM_Version::vm_release(),
3878                Abstract_VM_Version::vm_info_string()
3879               );
3880  st->cr();
3881
3882#ifndef SERIALGC
3883  // Dump concurrent locks
3884  ConcurrentLocksDump concurrent_locks;
3885  if (print_concurrent_locks) {
3886    concurrent_locks.dump_at_safepoint();
3887  }
3888#endif // SERIALGC
3889
3890  ALL_JAVA_THREADS(p) {
3891    ResourceMark rm;
3892    p->print_on(st);
3893    if (print_stacks) {
3894      if (internal_format) {
3895        p->trace_stack();
3896      } else {
3897        p->print_stack_on(st);
3898      }
3899    }
3900    st->cr();
3901#ifndef SERIALGC
3902    if (print_concurrent_locks) {
3903      concurrent_locks.print_locks_on(p, st);
3904    }
3905#endif // SERIALGC
3906  }
3907
3908  VMThread::vm_thread()->print_on(st);
3909  st->cr();
3910  Universe::heap()->print_gc_threads_on(st);
3911  WatcherThread* wt = WatcherThread::watcher_thread();
3912  if (wt != NULL) wt->print_on(st);
3913  st->cr();
3914  CompileBroker::print_compiler_threads_on(st);
3915  st->flush();
3916}
3917
3918// Threads::print_on_error() is called by fatal error handler. It's possible
3919// that VM is not at safepoint and/or current thread is inside signal handler.
3920// Don't print stack trace, as the stack may not be walkable. Don't allocate
3921// memory (even in resource area), it might deadlock the error handler.
3922void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
3923  bool found_current = false;
3924  st->print_cr("Java Threads: ( => current thread )");
3925  ALL_JAVA_THREADS(thread) {
3926    bool is_current = (current == thread);
3927    found_current = found_current || is_current;
3928
3929    st->print("%s", is_current ? "=>" : "  ");
3930
3931    st->print(PTR_FORMAT, thread);
3932    st->print(" ");
3933    thread->print_on_error(st, buf, buflen);
3934    st->cr();
3935  }
3936  st->cr();
3937
3938  st->print_cr("Other Threads:");
3939  if (VMThread::vm_thread()) {
3940    bool is_current = (current == VMThread::vm_thread());
3941    found_current = found_current || is_current;
3942    st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
3943
3944    st->print(PTR_FORMAT, VMThread::vm_thread());
3945    st->print(" ");
3946    VMThread::vm_thread()->print_on_error(st, buf, buflen);
3947    st->cr();
3948  }
3949  WatcherThread* wt = WatcherThread::watcher_thread();
3950  if (wt != NULL) {
3951    bool is_current = (current == wt);
3952    found_current = found_current || is_current;
3953    st->print("%s", is_current ? "=>" : "  ");
3954
3955    st->print(PTR_FORMAT, wt);
3956    st->print(" ");
3957    wt->print_on_error(st, buf, buflen);
3958    st->cr();
3959  }
3960  if (!found_current) {
3961    st->cr();
3962    st->print("=>" PTR_FORMAT " (exited) ", current);
3963    current->print_on_error(st, buf, buflen);
3964    st->cr();
3965  }
3966}
3967
3968// Internal SpinLock and Mutex
3969// Based on ParkEvent
3970
3971// Ad-hoc mutual exclusion primitives: SpinLock and Mux
3972//
3973// We employ SpinLocks _only for low-contention, fixed-length
3974// short-duration critical sections where we're concerned
3975// about native mutex_t or HotSpot Mutex:: latency.
3976// The mux construct provides a spin-then-block mutual exclusion
3977// mechanism.
3978//
3979// Testing has shown that contention on the ListLock guarding gFreeList
3980// is common.  If we implement ListLock as a simple SpinLock it's common
3981// for the JVM to devolve to yielding with little progress.  This is true
3982// despite the fact that the critical sections protected by ListLock are
3983// extremely short.
3984//
3985// TODO-FIXME: ListLock should be of type SpinLock.
3986// We should make this a 1st-class type, integrated into the lock
3987// hierarchy as leaf-locks.  Critically, the SpinLock structure
3988// should have sufficient padding to avoid false-sharing and excessive
3989// cache-coherency traffic.
3990
3991
3992typedef volatile int SpinLockT ;
3993
3994void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
3995  if (Atomic::cmpxchg (1, adr, 0) == 0) {
3996     return ;   // normal fast-path return
3997  }
3998
3999  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4000  TEVENT (SpinAcquire - ctx) ;
4001  int ctr = 0 ;
4002  int Yields = 0 ;
4003  for (;;) {
4004     while (*adr != 0) {
4005        ++ctr ;
4006        if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4007           if (Yields > 5) {
4008             // Consider using a simple NakedSleep() instead.
4009             // Then SpinAcquire could be called by non-JVM threads
4010             Thread::current()->_ParkEvent->park(1) ;
4011           } else {
4012             os::NakedYield() ;
4013             ++Yields ;
4014           }
4015        } else {
4016           SpinPause() ;
4017        }
4018     }
4019     if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4020  }
4021}
4022
4023void Thread::SpinRelease (volatile int * adr) {
4024  assert (*adr != 0, "invariant") ;
4025  OrderAccess::fence() ;      // guarantee at least release consistency.
4026  // Roach-motel semantics.
4027  // It's safe if subsequent LDs and STs float "up" into the critical section,
4028  // but prior LDs and STs within the critical section can't be allowed
4029  // to reorder or float past the ST that releases the lock.
4030  *adr = 0 ;
4031}
4032
4033// muxAcquire and muxRelease:
4034//
4035// *  muxAcquire and muxRelease support a single-word lock-word construct.
4036//    The LSB of the word is set IFF the lock is held.
4037//    The remainder of the word points to the head of a singly-linked list
4038//    of threads blocked on the lock.
4039//
4040// *  The current implementation of muxAcquire-muxRelease uses its own
4041//    dedicated Thread._MuxEvent instance.  If we're interested in
4042//    minimizing the peak number of extant ParkEvent instances then
4043//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4044//    as certain invariants were satisfied.  Specifically, care would need
4045//    to be taken with regards to consuming unpark() "permits".
4046//    A safe rule of thumb is that a thread would never call muxAcquire()
4047//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4048//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4049//    consume an unpark() permit intended for monitorenter, for instance.
4050//    One way around this would be to widen the restricted-range semaphore
4051//    implemented in park().  Another alternative would be to provide
4052//    multiple instances of the PlatformEvent() for each thread.  One
4053//    instance would be dedicated to muxAcquire-muxRelease, for instance.
4054//
4055// *  Usage:
4056//    -- Only as leaf locks
4057//    -- for short-term locking only as muxAcquire does not perform
4058//       thread state transitions.
4059//
4060// Alternatives:
4061// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4062//    but with parking or spin-then-park instead of pure spinning.
4063// *  Use Taura-Oyama-Yonenzawa locks.
4064// *  It's possible to construct a 1-0 lock if we encode the lockword as
4065//    (List,LockByte).  Acquire will CAS the full lockword while Release
4066//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4067//    acquiring threads use timers (ParkTimed) to detect and recover from
4068//    the stranding window.  Thread/Node structures must be aligned on 256-byte
4069//    boundaries by using placement-new.
4070// *  Augment MCS with advisory back-link fields maintained with CAS().
4071//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4072//    The validity of the backlinks must be ratified before we trust the value.
4073//    If the backlinks are invalid the exiting thread must back-track through the
4074//    the forward links, which are always trustworthy.
4075// *  Add a successor indication.  The LockWord is currently encoded as
4076//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4077//    to provide the usual futile-wakeup optimization.
4078//    See RTStt for details.
4079// *  Consider schedctl.sc_nopreempt to cover the critical section.
4080//
4081
4082
4083typedef volatile intptr_t MutexT ;      // Mux Lock-word
4084enum MuxBits { LOCKBIT = 1 } ;
4085
4086void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4087  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4088  if (w == 0) return ;
4089  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4090     return ;
4091  }
4092
4093  TEVENT (muxAcquire - Contention) ;
4094  ParkEvent * const Self = Thread::current()->_MuxEvent ;
4095  assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4096  for (;;) {
4097     int its = (os::is_MP() ? 100 : 0) + 1 ;
4098
4099     // Optional spin phase: spin-then-park strategy
4100     while (--its >= 0) {
4101       w = *Lock ;
4102       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4103          return ;
4104       }
4105     }
4106
4107     Self->reset() ;
4108     Self->OnList = intptr_t(Lock) ;
4109     // The following fence() isn't _strictly necessary as the subsequent
4110     // CAS() both serializes execution and ratifies the fetched *Lock value.
4111     OrderAccess::fence();
4112     for (;;) {
4113        w = *Lock ;
4114        if ((w & LOCKBIT) == 0) {
4115            if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4116                Self->OnList = 0 ;   // hygiene - allows stronger asserts
4117                return ;
4118            }
4119            continue ;      // Interference -- *Lock changed -- Just retry
4120        }
4121        assert (w & LOCKBIT, "invariant") ;
4122        Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4123        if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4124     }
4125
4126     while (Self->OnList != 0) {
4127        Self->park() ;
4128     }
4129  }
4130}
4131
4132void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4133  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4134  if (w == 0) return ;
4135  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4136    return ;
4137  }
4138
4139  TEVENT (muxAcquire - Contention) ;
4140  ParkEvent * ReleaseAfter = NULL ;
4141  if (ev == NULL) {
4142    ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4143  }
4144  assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4145  for (;;) {
4146    guarantee (ev->OnList == 0, "invariant") ;
4147    int its = (os::is_MP() ? 100 : 0) + 1 ;
4148
4149    // Optional spin phase: spin-then-park strategy
4150    while (--its >= 0) {
4151      w = *Lock ;
4152      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4153        if (ReleaseAfter != NULL) {
4154          ParkEvent::Release (ReleaseAfter) ;
4155        }
4156        return ;
4157      }
4158    }
4159
4160    ev->reset() ;
4161    ev->OnList = intptr_t(Lock) ;
4162    // The following fence() isn't _strictly necessary as the subsequent
4163    // CAS() both serializes execution and ratifies the fetched *Lock value.
4164    OrderAccess::fence();
4165    for (;;) {
4166      w = *Lock ;
4167      if ((w & LOCKBIT) == 0) {
4168        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4169          ev->OnList = 0 ;
4170          // We call ::Release while holding the outer lock, thus
4171          // artificially lengthening the critical section.
4172          // Consider deferring the ::Release() until the subsequent unlock(),
4173          // after we've dropped the outer lock.
4174          if (ReleaseAfter != NULL) {
4175            ParkEvent::Release (ReleaseAfter) ;
4176          }
4177          return ;
4178        }
4179        continue ;      // Interference -- *Lock changed -- Just retry
4180      }
4181      assert (w & LOCKBIT, "invariant") ;
4182      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4183      if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4184    }
4185
4186    while (ev->OnList != 0) {
4187      ev->park() ;
4188    }
4189  }
4190}
4191
4192// Release() must extract a successor from the list and then wake that thread.
4193// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4194// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4195// Release() would :
4196// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4197// (B) Extract a successor from the private list "in-hand"
4198// (C) attempt to CAS() the residual back into *Lock over null.
4199//     If there were any newly arrived threads and the CAS() would fail.
4200//     In that case Release() would detach the RATs, re-merge the list in-hand
4201//     with the RATs and repeat as needed.  Alternately, Release() might
4202//     detach and extract a successor, but then pass the residual list to the wakee.
4203//     The wakee would be responsible for reattaching and remerging before it
4204//     competed for the lock.
4205//
4206// Both "pop" and DMR are immune from ABA corruption -- there can be
4207// multiple concurrent pushers, but only one popper or detacher.
4208// This implementation pops from the head of the list.  This is unfair,
4209// but tends to provide excellent throughput as hot threads remain hot.
4210// (We wake recently run threads first).
4211
4212void Thread::muxRelease (volatile intptr_t * Lock)  {
4213  for (;;) {
4214    const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4215    assert (w & LOCKBIT, "invariant") ;
4216    if (w == LOCKBIT) return ;
4217    ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4218    assert (List != NULL, "invariant") ;
4219    assert (List->OnList == intptr_t(Lock), "invariant") ;
4220    ParkEvent * nxt = List->ListNext ;
4221
4222    // The following CAS() releases the lock and pops the head element.
4223    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4224      continue ;
4225    }
4226    List->OnList = 0 ;
4227    OrderAccess::fence() ;
4228    List->unpark () ;
4229    return ;
4230  }
4231}
4232
4233
4234void Threads::verify() {
4235  ALL_JAVA_THREADS(p) {
4236    p->verify();
4237  }
4238  VMThread* thread = VMThread::vm_thread();
4239  if (thread != NULL) thread->verify();
4240}
4241