thread.cpp revision 1601:126ea7725993
1/*
2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25# include "incls/_precompiled.incl"
26# include "incls/_thread.cpp.incl"
27
28#ifdef DTRACE_ENABLED
29
30// Only bother with this argument setup if dtrace is available
31
32HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
33HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
34HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
35  intptr_t, intptr_t, bool);
36HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
37  intptr_t, intptr_t, bool);
38
39#define DTRACE_THREAD_PROBE(probe, javathread)                             \
40  {                                                                        \
41    ResourceMark rm(this);                                                 \
42    int len = 0;                                                           \
43    const char* name = (javathread)->get_thread_name();                    \
44    len = strlen(name);                                                    \
45    HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
46      name, len,                                                           \
47      java_lang_Thread::thread_id((javathread)->threadObj()),              \
48      (javathread)->osthread()->thread_id(),                               \
49      java_lang_Thread::is_daemon((javathread)->threadObj()));             \
50  }
51
52#else //  ndef DTRACE_ENABLED
53
54#define DTRACE_THREAD_PROBE(probe, javathread)
55
56#endif // ndef DTRACE_ENABLED
57
58// Class hierarchy
59// - Thread
60//   - VMThread
61//   - WatcherThread
62//   - ConcurrentMarkSweepThread
63//   - JavaThread
64//     - CompilerThread
65
66// ======= Thread ========
67
68// Support for forcing alignment of thread objects for biased locking
69void* Thread::operator new(size_t size) {
70  if (UseBiasedLocking) {
71    const int alignment = markOopDesc::biased_lock_alignment;
72    size_t aligned_size = size + (alignment - sizeof(intptr_t));
73    void* real_malloc_addr = CHeapObj::operator new(aligned_size);
74    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
75    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
76           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
77           "JavaThread alignment code overflowed allocated storage");
78    if (TraceBiasedLocking) {
79      if (aligned_addr != real_malloc_addr)
80        tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
81                      real_malloc_addr, aligned_addr);
82    }
83    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
84    return aligned_addr;
85  } else {
86    return CHeapObj::operator new(size);
87  }
88}
89
90void Thread::operator delete(void* p) {
91  if (UseBiasedLocking) {
92    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
93    CHeapObj::operator delete(real_malloc_addr);
94  } else {
95    CHeapObj::operator delete(p);
96  }
97}
98
99
100// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
101// JavaThread
102
103
104Thread::Thread() {
105  // stack
106  _stack_base   = NULL;
107  _stack_size   = 0;
108  _self_raw_id  = 0;
109  _lgrp_id      = -1;
110  _osthread     = NULL;
111
112  // allocated data structures
113  set_resource_area(new ResourceArea());
114  set_handle_area(new HandleArea(NULL));
115  set_active_handles(NULL);
116  set_free_handle_block(NULL);
117  set_last_handle_mark(NULL);
118  set_osthread(NULL);
119
120  // This initial value ==> never claimed.
121  _oops_do_parity = 0;
122
123  // the handle mark links itself to last_handle_mark
124  new HandleMark(this);
125
126  // plain initialization
127  debug_only(_owned_locks = NULL;)
128  debug_only(_allow_allocation_count = 0;)
129  NOT_PRODUCT(_allow_safepoint_count = 0;)
130  NOT_PRODUCT(_skip_gcalot = false;)
131  CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
132  _jvmti_env_iteration_count = 0;
133  _vm_operation_started_count = 0;
134  _vm_operation_completed_count = 0;
135  _current_pending_monitor = NULL;
136  _current_pending_monitor_is_from_java = true;
137  _current_waiting_monitor = NULL;
138  _num_nested_signal = 0;
139  omFreeList = NULL ;
140  omFreeCount = 0 ;
141  omFreeProvision = 32 ;
142  omInUseList = NULL ;
143  omInUseCount = 0 ;
144
145  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
146  _suspend_flags = 0;
147
148  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
149  _hashStateX = os::random() ;
150  _hashStateY = 842502087 ;
151  _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
152  _hashStateW = 273326509 ;
153
154  _OnTrap   = 0 ;
155  _schedctl = NULL ;
156  _Stalled  = 0 ;
157  _TypeTag  = 0x2BAD ;
158
159  // Many of the following fields are effectively final - immutable
160  // Note that nascent threads can't use the Native Monitor-Mutex
161  // construct until the _MutexEvent is initialized ...
162  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
163  // we might instead use a stack of ParkEvents that we could provision on-demand.
164  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
165  // and ::Release()
166  _ParkEvent   = ParkEvent::Allocate (this) ;
167  _SleepEvent  = ParkEvent::Allocate (this) ;
168  _MutexEvent  = ParkEvent::Allocate (this) ;
169  _MuxEvent    = ParkEvent::Allocate (this) ;
170
171#ifdef CHECK_UNHANDLED_OOPS
172  if (CheckUnhandledOops) {
173    _unhandled_oops = new UnhandledOops(this);
174  }
175#endif // CHECK_UNHANDLED_OOPS
176#ifdef ASSERT
177  if (UseBiasedLocking) {
178    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
179    assert(this == _real_malloc_address ||
180           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
181           "bug in forced alignment of thread objects");
182  }
183#endif /* ASSERT */
184}
185
186void Thread::initialize_thread_local_storage() {
187  // Note: Make sure this method only calls
188  // non-blocking operations. Otherwise, it might not work
189  // with the thread-startup/safepoint interaction.
190
191  // During Java thread startup, safepoint code should allow this
192  // method to complete because it may need to allocate memory to
193  // store information for the new thread.
194
195  // initialize structure dependent on thread local storage
196  ThreadLocalStorage::set_thread(this);
197
198  // set up any platform-specific state.
199  os::initialize_thread();
200
201}
202
203void Thread::record_stack_base_and_size() {
204  set_stack_base(os::current_stack_base());
205  set_stack_size(os::current_stack_size());
206}
207
208
209Thread::~Thread() {
210  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
211  ObjectSynchronizer::omFlush (this) ;
212
213  // deallocate data structures
214  delete resource_area();
215  // since the handle marks are using the handle area, we have to deallocated the root
216  // handle mark before deallocating the thread's handle area,
217  assert(last_handle_mark() != NULL, "check we have an element");
218  delete last_handle_mark();
219  assert(last_handle_mark() == NULL, "check we have reached the end");
220
221  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
222  // We NULL out the fields for good hygiene.
223  ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
224  ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
225  ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
226  ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
227
228  delete handle_area();
229
230  // osthread() can be NULL, if creation of thread failed.
231  if (osthread() != NULL) os::free_thread(osthread());
232
233  delete _SR_lock;
234
235  // clear thread local storage if the Thread is deleting itself
236  if (this == Thread::current()) {
237    ThreadLocalStorage::set_thread(NULL);
238  } else {
239    // In the case where we're not the current thread, invalidate all the
240    // caches in case some code tries to get the current thread or the
241    // thread that was destroyed, and gets stale information.
242    ThreadLocalStorage::invalidate_all();
243  }
244  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
245}
246
247// NOTE: dummy function for assertion purpose.
248void Thread::run() {
249  ShouldNotReachHere();
250}
251
252#ifdef ASSERT
253// Private method to check for dangling thread pointer
254void check_for_dangling_thread_pointer(Thread *thread) {
255 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
256         "possibility of dangling Thread pointer");
257}
258#endif
259
260
261#ifndef PRODUCT
262// Tracing method for basic thread operations
263void Thread::trace(const char* msg, const Thread* const thread) {
264  if (!TraceThreadEvents) return;
265  ResourceMark rm;
266  ThreadCritical tc;
267  const char *name = "non-Java thread";
268  int prio = -1;
269  if (thread->is_Java_thread()
270      && !thread->is_Compiler_thread()) {
271    // The Threads_lock must be held to get information about
272    // this thread but may not be in some situations when
273    // tracing  thread events.
274    bool release_Threads_lock = false;
275    if (!Threads_lock->owned_by_self()) {
276      Threads_lock->lock();
277      release_Threads_lock = true;
278    }
279    JavaThread* jt = (JavaThread *)thread;
280    name = (char *)jt->get_thread_name();
281    oop thread_oop = jt->threadObj();
282    if (thread_oop != NULL) {
283      prio = java_lang_Thread::priority(thread_oop);
284    }
285    if (release_Threads_lock) {
286      Threads_lock->unlock();
287    }
288  }
289  tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
290}
291#endif
292
293
294ThreadPriority Thread::get_priority(const Thread* const thread) {
295  trace("get priority", thread);
296  ThreadPriority priority;
297  // Can return an error!
298  (void)os::get_priority(thread, priority);
299  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
300  return priority;
301}
302
303void Thread::set_priority(Thread* thread, ThreadPriority priority) {
304  trace("set priority", thread);
305  debug_only(check_for_dangling_thread_pointer(thread);)
306  // Can return an error!
307  (void)os::set_priority(thread, priority);
308}
309
310
311void Thread::start(Thread* thread) {
312  trace("start", thread);
313  // Start is different from resume in that its safety is guaranteed by context or
314  // being called from a Java method synchronized on the Thread object.
315  if (!DisableStartThread) {
316    if (thread->is_Java_thread()) {
317      // Initialize the thread state to RUNNABLE before starting this thread.
318      // Can not set it after the thread started because we do not know the
319      // exact thread state at that time. It could be in MONITOR_WAIT or
320      // in SLEEPING or some other state.
321      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
322                                          java_lang_Thread::RUNNABLE);
323    }
324    os::start_thread(thread);
325  }
326}
327
328// Enqueue a VM_Operation to do the job for us - sometime later
329void Thread::send_async_exception(oop java_thread, oop java_throwable) {
330  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
331  VMThread::execute(vm_stop);
332}
333
334
335//
336// Check if an external suspend request has completed (or has been
337// cancelled). Returns true if the thread is externally suspended and
338// false otherwise.
339//
340// The bits parameter returns information about the code path through
341// the routine. Useful for debugging:
342//
343// set in is_ext_suspend_completed():
344// 0x00000001 - routine was entered
345// 0x00000010 - routine return false at end
346// 0x00000100 - thread exited (return false)
347// 0x00000200 - suspend request cancelled (return false)
348// 0x00000400 - thread suspended (return true)
349// 0x00001000 - thread is in a suspend equivalent state (return true)
350// 0x00002000 - thread is native and walkable (return true)
351// 0x00004000 - thread is native_trans and walkable (needed retry)
352//
353// set in wait_for_ext_suspend_completion():
354// 0x00010000 - routine was entered
355// 0x00020000 - suspend request cancelled before loop (return false)
356// 0x00040000 - thread suspended before loop (return true)
357// 0x00080000 - suspend request cancelled in loop (return false)
358// 0x00100000 - thread suspended in loop (return true)
359// 0x00200000 - suspend not completed during retry loop (return false)
360//
361
362// Helper class for tracing suspend wait debug bits.
363//
364// 0x00000100 indicates that the target thread exited before it could
365// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
366// 0x00080000 each indicate a cancelled suspend request so they don't
367// count as wait failures either.
368#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
369
370class TraceSuspendDebugBits : public StackObj {
371 private:
372  JavaThread * jt;
373  bool         is_wait;
374  bool         called_by_wait;  // meaningful when !is_wait
375  uint32_t *   bits;
376
377 public:
378  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
379                        uint32_t *_bits) {
380    jt             = _jt;
381    is_wait        = _is_wait;
382    called_by_wait = _called_by_wait;
383    bits           = _bits;
384  }
385
386  ~TraceSuspendDebugBits() {
387    if (!is_wait) {
388#if 1
389      // By default, don't trace bits for is_ext_suspend_completed() calls.
390      // That trace is very chatty.
391      return;
392#else
393      if (!called_by_wait) {
394        // If tracing for is_ext_suspend_completed() is enabled, then only
395        // trace calls to it from wait_for_ext_suspend_completion()
396        return;
397      }
398#endif
399    }
400
401    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
402      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
403        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
404        ResourceMark rm;
405
406        tty->print_cr(
407            "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
408            jt->get_thread_name(), *bits);
409
410        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
411      }
412    }
413  }
414};
415#undef DEBUG_FALSE_BITS
416
417
418bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
419  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
420
421  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
422  bool do_trans_retry;           // flag to force the retry
423
424  *bits |= 0x00000001;
425
426  do {
427    do_trans_retry = false;
428
429    if (is_exiting()) {
430      // Thread is in the process of exiting. This is always checked
431      // first to reduce the risk of dereferencing a freed JavaThread.
432      *bits |= 0x00000100;
433      return false;
434    }
435
436    if (!is_external_suspend()) {
437      // Suspend request is cancelled. This is always checked before
438      // is_ext_suspended() to reduce the risk of a rogue resume
439      // confusing the thread that made the suspend request.
440      *bits |= 0x00000200;
441      return false;
442    }
443
444    if (is_ext_suspended()) {
445      // thread is suspended
446      *bits |= 0x00000400;
447      return true;
448    }
449
450    // Now that we no longer do hard suspends of threads running
451    // native code, the target thread can be changing thread state
452    // while we are in this routine:
453    //
454    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
455    //
456    // We save a copy of the thread state as observed at this moment
457    // and make our decision about suspend completeness based on the
458    // copy. This closes the race where the thread state is seen as
459    // _thread_in_native_trans in the if-thread_blocked check, but is
460    // seen as _thread_blocked in if-thread_in_native_trans check.
461    JavaThreadState save_state = thread_state();
462
463    if (save_state == _thread_blocked && is_suspend_equivalent()) {
464      // If the thread's state is _thread_blocked and this blocking
465      // condition is known to be equivalent to a suspend, then we can
466      // consider the thread to be externally suspended. This means that
467      // the code that sets _thread_blocked has been modified to do
468      // self-suspension if the blocking condition releases. We also
469      // used to check for CONDVAR_WAIT here, but that is now covered by
470      // the _thread_blocked with self-suspension check.
471      //
472      // Return true since we wouldn't be here unless there was still an
473      // external suspend request.
474      *bits |= 0x00001000;
475      return true;
476    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
477      // Threads running native code will self-suspend on native==>VM/Java
478      // transitions. If its stack is walkable (should always be the case
479      // unless this function is called before the actual java_suspend()
480      // call), then the wait is done.
481      *bits |= 0x00002000;
482      return true;
483    } else if (!called_by_wait && !did_trans_retry &&
484               save_state == _thread_in_native_trans &&
485               frame_anchor()->walkable()) {
486      // The thread is transitioning from thread_in_native to another
487      // thread state. check_safepoint_and_suspend_for_native_trans()
488      // will force the thread to self-suspend. If it hasn't gotten
489      // there yet we may have caught the thread in-between the native
490      // code check above and the self-suspend. Lucky us. If we were
491      // called by wait_for_ext_suspend_completion(), then it
492      // will be doing the retries so we don't have to.
493      //
494      // Since we use the saved thread state in the if-statement above,
495      // there is a chance that the thread has already transitioned to
496      // _thread_blocked by the time we get here. In that case, we will
497      // make a single unnecessary pass through the logic below. This
498      // doesn't hurt anything since we still do the trans retry.
499
500      *bits |= 0x00004000;
501
502      // Once the thread leaves thread_in_native_trans for another
503      // thread state, we break out of this retry loop. We shouldn't
504      // need this flag to prevent us from getting back here, but
505      // sometimes paranoia is good.
506      did_trans_retry = true;
507
508      // We wait for the thread to transition to a more usable state.
509      for (int i = 1; i <= SuspendRetryCount; i++) {
510        // We used to do an "os::yield_all(i)" call here with the intention
511        // that yielding would increase on each retry. However, the parameter
512        // is ignored on Linux which means the yield didn't scale up. Waiting
513        // on the SR_lock below provides a much more predictable scale up for
514        // the delay. It also provides a simple/direct point to check for any
515        // safepoint requests from the VMThread
516
517        // temporarily drops SR_lock while doing wait with safepoint check
518        // (if we're a JavaThread - the WatcherThread can also call this)
519        // and increase delay with each retry
520        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
521
522        // check the actual thread state instead of what we saved above
523        if (thread_state() != _thread_in_native_trans) {
524          // the thread has transitioned to another thread state so
525          // try all the checks (except this one) one more time.
526          do_trans_retry = true;
527          break;
528        }
529      } // end retry loop
530
531
532    }
533  } while (do_trans_retry);
534
535  *bits |= 0x00000010;
536  return false;
537}
538
539//
540// Wait for an external suspend request to complete (or be cancelled).
541// Returns true if the thread is externally suspended and false otherwise.
542//
543bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
544       uint32_t *bits) {
545  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
546                             false /* !called_by_wait */, bits);
547
548  // local flag copies to minimize SR_lock hold time
549  bool is_suspended;
550  bool pending;
551  uint32_t reset_bits;
552
553  // set a marker so is_ext_suspend_completed() knows we are the caller
554  *bits |= 0x00010000;
555
556  // We use reset_bits to reinitialize the bits value at the top of
557  // each retry loop. This allows the caller to make use of any
558  // unused bits for their own marking purposes.
559  reset_bits = *bits;
560
561  {
562    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
563    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
564                                            delay, bits);
565    pending = is_external_suspend();
566  }
567  // must release SR_lock to allow suspension to complete
568
569  if (!pending) {
570    // A cancelled suspend request is the only false return from
571    // is_ext_suspend_completed() that keeps us from entering the
572    // retry loop.
573    *bits |= 0x00020000;
574    return false;
575  }
576
577  if (is_suspended) {
578    *bits |= 0x00040000;
579    return true;
580  }
581
582  for (int i = 1; i <= retries; i++) {
583    *bits = reset_bits;  // reinit to only track last retry
584
585    // We used to do an "os::yield_all(i)" call here with the intention
586    // that yielding would increase on each retry. However, the parameter
587    // is ignored on Linux which means the yield didn't scale up. Waiting
588    // on the SR_lock below provides a much more predictable scale up for
589    // the delay. It also provides a simple/direct point to check for any
590    // safepoint requests from the VMThread
591
592    {
593      MutexLocker ml(SR_lock());
594      // wait with safepoint check (if we're a JavaThread - the WatcherThread
595      // can also call this)  and increase delay with each retry
596      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
597
598      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
599                                              delay, bits);
600
601      // It is possible for the external suspend request to be cancelled
602      // (by a resume) before the actual suspend operation is completed.
603      // Refresh our local copy to see if we still need to wait.
604      pending = is_external_suspend();
605    }
606
607    if (!pending) {
608      // A cancelled suspend request is the only false return from
609      // is_ext_suspend_completed() that keeps us from staying in the
610      // retry loop.
611      *bits |= 0x00080000;
612      return false;
613    }
614
615    if (is_suspended) {
616      *bits |= 0x00100000;
617      return true;
618    }
619  } // end retry loop
620
621  // thread did not suspend after all our retries
622  *bits |= 0x00200000;
623  return false;
624}
625
626#ifndef PRODUCT
627void JavaThread::record_jump(address target, address instr, const char* file, int line) {
628
629  // This should not need to be atomic as the only way for simultaneous
630  // updates is via interrupts. Even then this should be rare or non-existant
631  // and we don't care that much anyway.
632
633  int index = _jmp_ring_index;
634  _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
635  _jmp_ring[index]._target = (intptr_t) target;
636  _jmp_ring[index]._instruction = (intptr_t) instr;
637  _jmp_ring[index]._file = file;
638  _jmp_ring[index]._line = line;
639}
640#endif /* PRODUCT */
641
642// Called by flat profiler
643// Callers have already called wait_for_ext_suspend_completion
644// The assertion for that is currently too complex to put here:
645bool JavaThread::profile_last_Java_frame(frame* _fr) {
646  bool gotframe = false;
647  // self suspension saves needed state.
648  if (has_last_Java_frame() && _anchor.walkable()) {
649     *_fr = pd_last_frame();
650     gotframe = true;
651  }
652  return gotframe;
653}
654
655void Thread::interrupt(Thread* thread) {
656  trace("interrupt", thread);
657  debug_only(check_for_dangling_thread_pointer(thread);)
658  os::interrupt(thread);
659}
660
661bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
662  trace("is_interrupted", thread);
663  debug_only(check_for_dangling_thread_pointer(thread);)
664  // Note:  If clear_interrupted==false, this simply fetches and
665  // returns the value of the field osthread()->interrupted().
666  return os::is_interrupted(thread, clear_interrupted);
667}
668
669
670// GC Support
671bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
672  jint thread_parity = _oops_do_parity;
673  if (thread_parity != strong_roots_parity) {
674    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
675    if (res == thread_parity) return true;
676    else {
677      guarantee(res == strong_roots_parity, "Or else what?");
678      assert(SharedHeap::heap()->n_par_threads() > 0,
679             "Should only fail when parallel.");
680      return false;
681    }
682  }
683  assert(SharedHeap::heap()->n_par_threads() > 0,
684         "Should only fail when parallel.");
685  return false;
686}
687
688void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
689  active_handles()->oops_do(f);
690  // Do oop for ThreadShadow
691  f->do_oop((oop*)&_pending_exception);
692  handle_area()->oops_do(f);
693}
694
695void Thread::nmethods_do(CodeBlobClosure* cf) {
696  // no nmethods in a generic thread...
697}
698
699void Thread::print_on(outputStream* st) const {
700  // get_priority assumes osthread initialized
701  if (osthread() != NULL) {
702    st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
703    osthread()->print_on(st);
704  }
705  debug_only(if (WizardMode) print_owned_locks_on(st);)
706}
707
708// Thread::print_on_error() is called by fatal error handler. Don't use
709// any lock or allocate memory.
710void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
711  if      (is_VM_thread())                  st->print("VMThread");
712  else if (is_Compiler_thread())            st->print("CompilerThread");
713  else if (is_Java_thread())                st->print("JavaThread");
714  else if (is_GC_task_thread())             st->print("GCTaskThread");
715  else if (is_Watcher_thread())             st->print("WatcherThread");
716  else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
717  else st->print("Thread");
718
719  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
720            _stack_base - _stack_size, _stack_base);
721
722  if (osthread()) {
723    st->print(" [id=%d]", osthread()->thread_id());
724  }
725}
726
727#ifdef ASSERT
728void Thread::print_owned_locks_on(outputStream* st) const {
729  Monitor *cur = _owned_locks;
730  if (cur == NULL) {
731    st->print(" (no locks) ");
732  } else {
733    st->print_cr(" Locks owned:");
734    while(cur) {
735      cur->print_on(st);
736      cur = cur->next();
737    }
738  }
739}
740
741static int ref_use_count  = 0;
742
743bool Thread::owns_locks_but_compiled_lock() const {
744  for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
745    if (cur != Compile_lock) return true;
746  }
747  return false;
748}
749
750
751#endif
752
753#ifndef PRODUCT
754
755// The flag: potential_vm_operation notifies if this particular safepoint state could potential
756// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
757// no threads which allow_vm_block's are held
758void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
759    // Check if current thread is allowed to block at a safepoint
760    if (!(_allow_safepoint_count == 0))
761      fatal("Possible safepoint reached by thread that does not allow it");
762    if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
763      fatal("LEAF method calling lock?");
764    }
765
766#ifdef ASSERT
767    if (potential_vm_operation && is_Java_thread()
768        && !Universe::is_bootstrapping()) {
769      // Make sure we do not hold any locks that the VM thread also uses.
770      // This could potentially lead to deadlocks
771      for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
772        // Threads_lock is special, since the safepoint synchronization will not start before this is
773        // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
774        // since it is used to transfer control between JavaThreads and the VMThread
775        // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
776        if ( (cur->allow_vm_block() &&
777              cur != Threads_lock &&
778              cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
779              cur != VMOperationRequest_lock &&
780              cur != VMOperationQueue_lock) ||
781              cur->rank() == Mutex::special) {
782          warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
783        }
784      }
785    }
786
787    if (GCALotAtAllSafepoints) {
788      // We could enter a safepoint here and thus have a gc
789      InterfaceSupport::check_gc_alot();
790    }
791#endif
792}
793#endif
794
795bool Thread::is_in_stack(address adr) const {
796  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
797  address end = os::current_stack_pointer();
798  if (stack_base() >= adr && adr >= end) return true;
799
800  return false;
801}
802
803
804// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
805// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
806// used for compilation in the future. If that change is made, the need for these methods
807// should be revisited, and they should be removed if possible.
808
809bool Thread::is_lock_owned(address adr) const {
810  return (_stack_base >= adr && adr >= (_stack_base - _stack_size));
811}
812
813bool Thread::set_as_starting_thread() {
814 // NOTE: this must be called inside the main thread.
815  return os::create_main_thread((JavaThread*)this);
816}
817
818static void initialize_class(symbolHandle class_name, TRAPS) {
819  klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
820  instanceKlass::cast(klass)->initialize(CHECK);
821}
822
823
824// Creates the initial ThreadGroup
825static Handle create_initial_thread_group(TRAPS) {
826  klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_ThreadGroup(), true, CHECK_NH);
827  instanceKlassHandle klass (THREAD, k);
828
829  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
830  {
831    JavaValue result(T_VOID);
832    JavaCalls::call_special(&result,
833                            system_instance,
834                            klass,
835                            vmSymbolHandles::object_initializer_name(),
836                            vmSymbolHandles::void_method_signature(),
837                            CHECK_NH);
838  }
839  Universe::set_system_thread_group(system_instance());
840
841  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
842  {
843    JavaValue result(T_VOID);
844    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
845    JavaCalls::call_special(&result,
846                            main_instance,
847                            klass,
848                            vmSymbolHandles::object_initializer_name(),
849                            vmSymbolHandles::threadgroup_string_void_signature(),
850                            system_instance,
851                            string,
852                            CHECK_NH);
853  }
854  return main_instance;
855}
856
857// Creates the initial Thread
858static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
859  klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK_NULL);
860  instanceKlassHandle klass (THREAD, k);
861  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
862
863  java_lang_Thread::set_thread(thread_oop(), thread);
864  java_lang_Thread::set_priority(thread_oop(), NormPriority);
865  thread->set_threadObj(thread_oop());
866
867  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
868
869  JavaValue result(T_VOID);
870  JavaCalls::call_special(&result, thread_oop,
871                                   klass,
872                                   vmSymbolHandles::object_initializer_name(),
873                                   vmSymbolHandles::threadgroup_string_void_signature(),
874                                   thread_group,
875                                   string,
876                                   CHECK_NULL);
877  return thread_oop();
878}
879
880static void call_initializeSystemClass(TRAPS) {
881  klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
882  instanceKlassHandle klass (THREAD, k);
883
884  JavaValue result(T_VOID);
885  JavaCalls::call_static(&result, klass, vmSymbolHandles::initializeSystemClass_name(),
886                                         vmSymbolHandles::void_method_signature(), CHECK);
887}
888
889#ifdef KERNEL
890static void set_jkernel_boot_classloader_hook(TRAPS) {
891  klassOop k = SystemDictionary::sun_jkernel_DownloadManager_klass();
892  instanceKlassHandle klass (THREAD, k);
893
894  if (k == NULL) {
895    // sun.jkernel.DownloadManager may not present in the JDK; just return
896    return;
897  }
898
899  JavaValue result(T_VOID);
900  JavaCalls::call_static(&result, klass, vmSymbolHandles::setBootClassLoaderHook_name(),
901                                         vmSymbolHandles::void_method_signature(), CHECK);
902}
903#endif // KERNEL
904
905static void reset_vm_info_property(TRAPS) {
906  // the vm info string
907  ResourceMark rm(THREAD);
908  const char *vm_info = VM_Version::vm_info_string();
909
910  // java.lang.System class
911  klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
912  instanceKlassHandle klass (THREAD, k);
913
914  // setProperty arguments
915  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
916  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
917
918  // return value
919  JavaValue r(T_OBJECT);
920
921  // public static String setProperty(String key, String value);
922  JavaCalls::call_static(&r,
923                         klass,
924                         vmSymbolHandles::setProperty_name(),
925                         vmSymbolHandles::string_string_string_signature(),
926                         key_str,
927                         value_str,
928                         CHECK);
929}
930
931
932void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
933  assert(thread_group.not_null(), "thread group should be specified");
934  assert(threadObj() == NULL, "should only create Java thread object once");
935
936  klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK);
937  instanceKlassHandle klass (THREAD, k);
938  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
939
940  java_lang_Thread::set_thread(thread_oop(), this);
941  java_lang_Thread::set_priority(thread_oop(), NormPriority);
942  set_threadObj(thread_oop());
943
944  JavaValue result(T_VOID);
945  if (thread_name != NULL) {
946    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
947    // Thread gets assigned specified name and null target
948    JavaCalls::call_special(&result,
949                            thread_oop,
950                            klass,
951                            vmSymbolHandles::object_initializer_name(),
952                            vmSymbolHandles::threadgroup_string_void_signature(),
953                            thread_group, // Argument 1
954                            name,         // Argument 2
955                            THREAD);
956  } else {
957    // Thread gets assigned name "Thread-nnn" and null target
958    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
959    JavaCalls::call_special(&result,
960                            thread_oop,
961                            klass,
962                            vmSymbolHandles::object_initializer_name(),
963                            vmSymbolHandles::threadgroup_runnable_void_signature(),
964                            thread_group, // Argument 1
965                            Handle(),     // Argument 2
966                            THREAD);
967  }
968
969
970  if (daemon) {
971      java_lang_Thread::set_daemon(thread_oop());
972  }
973
974  if (HAS_PENDING_EXCEPTION) {
975    return;
976  }
977
978  KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
979  Handle threadObj(this, this->threadObj());
980
981  JavaCalls::call_special(&result,
982                         thread_group,
983                         group,
984                         vmSymbolHandles::add_method_name(),
985                         vmSymbolHandles::thread_void_signature(),
986                         threadObj,          // Arg 1
987                         THREAD);
988
989
990}
991
992// NamedThread --  non-JavaThread subclasses with multiple
993// uniquely named instances should derive from this.
994NamedThread::NamedThread() : Thread() {
995  _name = NULL;
996  _processed_thread = NULL;
997}
998
999NamedThread::~NamedThread() {
1000  if (_name != NULL) {
1001    FREE_C_HEAP_ARRAY(char, _name);
1002    _name = NULL;
1003  }
1004}
1005
1006void NamedThread::set_name(const char* format, ...) {
1007  guarantee(_name == NULL, "Only get to set name once.");
1008  _name = NEW_C_HEAP_ARRAY(char, max_name_len);
1009  guarantee(_name != NULL, "alloc failure");
1010  va_list ap;
1011  va_start(ap, format);
1012  jio_vsnprintf(_name, max_name_len, format, ap);
1013  va_end(ap);
1014}
1015
1016// ======= WatcherThread ========
1017
1018// The watcher thread exists to simulate timer interrupts.  It should
1019// be replaced by an abstraction over whatever native support for
1020// timer interrupts exists on the platform.
1021
1022WatcherThread* WatcherThread::_watcher_thread   = NULL;
1023volatile bool  WatcherThread::_should_terminate = false;
1024
1025WatcherThread::WatcherThread() : Thread() {
1026  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1027  if (os::create_thread(this, os::watcher_thread)) {
1028    _watcher_thread = this;
1029
1030    // Set the watcher thread to the highest OS priority which should not be
1031    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1032    // is created. The only normal thread using this priority is the reference
1033    // handler thread, which runs for very short intervals only.
1034    // If the VMThread's priority is not lower than the WatcherThread profiling
1035    // will be inaccurate.
1036    os::set_priority(this, MaxPriority);
1037    if (!DisableStartThread) {
1038      os::start_thread(this);
1039    }
1040  }
1041}
1042
1043void WatcherThread::run() {
1044  assert(this == watcher_thread(), "just checking");
1045
1046  this->record_stack_base_and_size();
1047  this->initialize_thread_local_storage();
1048  this->set_active_handles(JNIHandleBlock::allocate_block());
1049  while(!_should_terminate) {
1050    assert(watcher_thread() == Thread::current(),  "thread consistency check");
1051    assert(watcher_thread() == this,  "thread consistency check");
1052
1053    // Calculate how long it'll be until the next PeriodicTask work
1054    // should be done, and sleep that amount of time.
1055    size_t time_to_wait = PeriodicTask::time_to_wait();
1056
1057    // we expect this to timeout - we only ever get unparked when
1058    // we should terminate
1059    {
1060      OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1061
1062      jlong prev_time = os::javaTimeNanos();
1063      for (;;) {
1064        int res= _SleepEvent->park(time_to_wait);
1065        if (res == OS_TIMEOUT || _should_terminate)
1066          break;
1067        // spurious wakeup of some kind
1068        jlong now = os::javaTimeNanos();
1069        time_to_wait -= (now - prev_time) / 1000000;
1070        if (time_to_wait <= 0)
1071          break;
1072        prev_time = now;
1073      }
1074    }
1075
1076    if (is_error_reported()) {
1077      // A fatal error has happened, the error handler(VMError::report_and_die)
1078      // should abort JVM after creating an error log file. However in some
1079      // rare cases, the error handler itself might deadlock. Here we try to
1080      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1081      //
1082      // This code is in WatcherThread because WatcherThread wakes up
1083      // periodically so the fatal error handler doesn't need to do anything;
1084      // also because the WatcherThread is less likely to crash than other
1085      // threads.
1086
1087      for (;;) {
1088        if (!ShowMessageBoxOnError
1089         && (OnError == NULL || OnError[0] == '\0')
1090         && Arguments::abort_hook() == NULL) {
1091             os::sleep(this, 2 * 60 * 1000, false);
1092             fdStream err(defaultStream::output_fd());
1093             err.print_raw_cr("# [ timer expired, abort... ]");
1094             // skip atexit/vm_exit/vm_abort hooks
1095             os::die();
1096        }
1097
1098        // Wake up 5 seconds later, the fatal handler may reset OnError or
1099        // ShowMessageBoxOnError when it is ready to abort.
1100        os::sleep(this, 5 * 1000, false);
1101      }
1102    }
1103
1104    PeriodicTask::real_time_tick(time_to_wait);
1105
1106    // If we have no more tasks left due to dynamic disenrollment,
1107    // shut down the thread since we don't currently support dynamic enrollment
1108    if (PeriodicTask::num_tasks() == 0) {
1109      _should_terminate = true;
1110    }
1111  }
1112
1113  // Signal that it is terminated
1114  {
1115    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1116    _watcher_thread = NULL;
1117    Terminator_lock->notify();
1118  }
1119
1120  // Thread destructor usually does this..
1121  ThreadLocalStorage::set_thread(NULL);
1122}
1123
1124void WatcherThread::start() {
1125  if (watcher_thread() == NULL) {
1126    _should_terminate = false;
1127    // Create the single instance of WatcherThread
1128    new WatcherThread();
1129  }
1130}
1131
1132void WatcherThread::stop() {
1133  // it is ok to take late safepoints here, if needed
1134  MutexLocker mu(Terminator_lock);
1135  _should_terminate = true;
1136  OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1137
1138  Thread* watcher = watcher_thread();
1139  if (watcher != NULL)
1140    watcher->_SleepEvent->unpark();
1141
1142  while(watcher_thread() != NULL) {
1143    // This wait should make safepoint checks, wait without a timeout,
1144    // and wait as a suspend-equivalent condition.
1145    //
1146    // Note: If the FlatProfiler is running, then this thread is waiting
1147    // for the WatcherThread to terminate and the WatcherThread, via the
1148    // FlatProfiler task, is waiting for the external suspend request on
1149    // this thread to complete. wait_for_ext_suspend_completion() will
1150    // eventually timeout, but that takes time. Making this wait a
1151    // suspend-equivalent condition solves that timeout problem.
1152    //
1153    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1154                          Mutex::_as_suspend_equivalent_flag);
1155  }
1156}
1157
1158void WatcherThread::print_on(outputStream* st) const {
1159  st->print("\"%s\" ", name());
1160  Thread::print_on(st);
1161  st->cr();
1162}
1163
1164// ======= JavaThread ========
1165
1166// A JavaThread is a normal Java thread
1167
1168void JavaThread::initialize() {
1169  // Initialize fields
1170
1171  // Set the claimed par_id to -1 (ie not claiming any par_ids)
1172  set_claimed_par_id(-1);
1173
1174  set_saved_exception_pc(NULL);
1175  set_threadObj(NULL);
1176  _anchor.clear();
1177  set_entry_point(NULL);
1178  set_jni_functions(jni_functions());
1179  set_callee_target(NULL);
1180  set_vm_result(NULL);
1181  set_vm_result_2(NULL);
1182  set_vframe_array_head(NULL);
1183  set_vframe_array_last(NULL);
1184  set_deferred_locals(NULL);
1185  set_deopt_mark(NULL);
1186  clear_must_deopt_id();
1187  set_monitor_chunks(NULL);
1188  set_next(NULL);
1189  set_thread_state(_thread_new);
1190  _terminated = _not_terminated;
1191  _privileged_stack_top = NULL;
1192  _array_for_gc = NULL;
1193  _suspend_equivalent = false;
1194  _in_deopt_handler = 0;
1195  _doing_unsafe_access = false;
1196  _stack_guard_state = stack_guard_unused;
1197  _exception_oop = NULL;
1198  _exception_pc  = 0;
1199  _exception_handler_pc = 0;
1200  _exception_stack_size = 0;
1201  _jvmti_thread_state= NULL;
1202  _should_post_on_exceptions_flag = JNI_FALSE;
1203  _jvmti_get_loaded_classes_closure = NULL;
1204  _interp_only_mode    = 0;
1205  _special_runtime_exit_condition = _no_async_condition;
1206  _pending_async_exception = NULL;
1207  _is_compiling = false;
1208  _thread_stat = NULL;
1209  _thread_stat = new ThreadStatistics();
1210  _blocked_on_compilation = false;
1211  _jni_active_critical = 0;
1212  _do_not_unlock_if_synchronized = false;
1213  _cached_monitor_info = NULL;
1214  _parker = Parker::Allocate(this) ;
1215
1216#ifndef PRODUCT
1217  _jmp_ring_index = 0;
1218  for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1219    record_jump(NULL, NULL, NULL, 0);
1220  }
1221#endif /* PRODUCT */
1222
1223  set_thread_profiler(NULL);
1224  if (FlatProfiler::is_active()) {
1225    // This is where we would decide to either give each thread it's own profiler
1226    // or use one global one from FlatProfiler,
1227    // or up to some count of the number of profiled threads, etc.
1228    ThreadProfiler* pp = new ThreadProfiler();
1229    pp->engage();
1230    set_thread_profiler(pp);
1231  }
1232
1233  // Setup safepoint state info for this thread
1234  ThreadSafepointState::create(this);
1235
1236  debug_only(_java_call_counter = 0);
1237
1238  // JVMTI PopFrame support
1239  _popframe_condition = popframe_inactive;
1240  _popframe_preserved_args = NULL;
1241  _popframe_preserved_args_size = 0;
1242
1243  pd_initialize();
1244}
1245
1246#ifndef SERIALGC
1247SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1248DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1249#endif // !SERIALGC
1250
1251JavaThread::JavaThread(bool is_attaching) :
1252  Thread()
1253#ifndef SERIALGC
1254  , _satb_mark_queue(&_satb_mark_queue_set),
1255  _dirty_card_queue(&_dirty_card_queue_set)
1256#endif // !SERIALGC
1257{
1258  initialize();
1259  _is_attaching = is_attaching;
1260  assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
1261}
1262
1263bool JavaThread::reguard_stack(address cur_sp) {
1264  if (_stack_guard_state != stack_guard_yellow_disabled) {
1265    return true; // Stack already guarded or guard pages not needed.
1266  }
1267
1268  if (register_stack_overflow()) {
1269    // For those architectures which have separate register and
1270    // memory stacks, we must check the register stack to see if
1271    // it has overflowed.
1272    return false;
1273  }
1274
1275  // Java code never executes within the yellow zone: the latter is only
1276  // there to provoke an exception during stack banging.  If java code
1277  // is executing there, either StackShadowPages should be larger, or
1278  // some exception code in c1, c2 or the interpreter isn't unwinding
1279  // when it should.
1280  guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1281
1282  enable_stack_yellow_zone();
1283  return true;
1284}
1285
1286bool JavaThread::reguard_stack(void) {
1287  return reguard_stack(os::current_stack_pointer());
1288}
1289
1290
1291void JavaThread::block_if_vm_exited() {
1292  if (_terminated == _vm_exited) {
1293    // _vm_exited is set at safepoint, and Threads_lock is never released
1294    // we will block here forever
1295    Threads_lock->lock_without_safepoint_check();
1296    ShouldNotReachHere();
1297  }
1298}
1299
1300
1301// Remove this ifdef when C1 is ported to the compiler interface.
1302static void compiler_thread_entry(JavaThread* thread, TRAPS);
1303
1304JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1305  Thread()
1306#ifndef SERIALGC
1307  , _satb_mark_queue(&_satb_mark_queue_set),
1308  _dirty_card_queue(&_dirty_card_queue_set)
1309#endif // !SERIALGC
1310{
1311  if (TraceThreadEvents) {
1312    tty->print_cr("creating thread %p", this);
1313  }
1314  initialize();
1315  _is_attaching = false;
1316  set_entry_point(entry_point);
1317  // Create the native thread itself.
1318  // %note runtime_23
1319  os::ThreadType thr_type = os::java_thread;
1320  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1321                                                     os::java_thread;
1322  os::create_thread(this, thr_type, stack_sz);
1323
1324  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1325  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1326  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1327  // the exception consists of creating the exception object & initializing it, initialization
1328  // will leave the VM via a JavaCall and then all locks must be unlocked).
1329  //
1330  // The thread is still suspended when we reach here. Thread must be explicit started
1331  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1332  // by calling Threads:add. The reason why this is not done here, is because the thread
1333  // object must be fully initialized (take a look at JVM_Start)
1334}
1335
1336JavaThread::~JavaThread() {
1337  if (TraceThreadEvents) {
1338      tty->print_cr("terminate thread %p", this);
1339  }
1340
1341  // JSR166 -- return the parker to the free list
1342  Parker::Release(_parker);
1343  _parker = NULL ;
1344
1345  // Free any remaining  previous UnrollBlock
1346  vframeArray* old_array = vframe_array_last();
1347
1348  if (old_array != NULL) {
1349    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1350    old_array->set_unroll_block(NULL);
1351    delete old_info;
1352    delete old_array;
1353  }
1354
1355  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1356  if (deferred != NULL) {
1357    // This can only happen if thread is destroyed before deoptimization occurs.
1358    assert(deferred->length() != 0, "empty array!");
1359    do {
1360      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1361      deferred->remove_at(0);
1362      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1363      delete dlv;
1364    } while (deferred->length() != 0);
1365    delete deferred;
1366  }
1367
1368  // All Java related clean up happens in exit
1369  ThreadSafepointState::destroy(this);
1370  if (_thread_profiler != NULL) delete _thread_profiler;
1371  if (_thread_stat != NULL) delete _thread_stat;
1372}
1373
1374
1375// The first routine called by a new Java thread
1376void JavaThread::run() {
1377  // initialize thread-local alloc buffer related fields
1378  this->initialize_tlab();
1379
1380  // used to test validitity of stack trace backs
1381  this->record_base_of_stack_pointer();
1382
1383  // Record real stack base and size.
1384  this->record_stack_base_and_size();
1385
1386  // Initialize thread local storage; set before calling MutexLocker
1387  this->initialize_thread_local_storage();
1388
1389  this->create_stack_guard_pages();
1390
1391  this->cache_global_variables();
1392
1393  // Thread is now sufficient initialized to be handled by the safepoint code as being
1394  // in the VM. Change thread state from _thread_new to _thread_in_vm
1395  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1396
1397  assert(JavaThread::current() == this, "sanity check");
1398  assert(!Thread::current()->owns_locks(), "sanity check");
1399
1400  DTRACE_THREAD_PROBE(start, this);
1401
1402  // This operation might block. We call that after all safepoint checks for a new thread has
1403  // been completed.
1404  this->set_active_handles(JNIHandleBlock::allocate_block());
1405
1406  if (JvmtiExport::should_post_thread_life()) {
1407    JvmtiExport::post_thread_start(this);
1408  }
1409
1410  // We call another function to do the rest so we are sure that the stack addresses used
1411  // from there will be lower than the stack base just computed
1412  thread_main_inner();
1413
1414  // Note, thread is no longer valid at this point!
1415}
1416
1417
1418void JavaThread::thread_main_inner() {
1419  assert(JavaThread::current() == this, "sanity check");
1420  assert(this->threadObj() != NULL, "just checking");
1421
1422  // Execute thread entry point. If this thread is being asked to restart,
1423  // or has been stopped before starting, do not reexecute entry point.
1424  // Note: Due to JVM_StopThread we can have pending exceptions already!
1425  if (!this->has_pending_exception() && !java_lang_Thread::is_stillborn(this->threadObj())) {
1426    // enter the thread's entry point only if we have no pending exceptions
1427    HandleMark hm(this);
1428    this->entry_point()(this, this);
1429  }
1430
1431  DTRACE_THREAD_PROBE(stop, this);
1432
1433  this->exit(false);
1434  delete this;
1435}
1436
1437
1438static void ensure_join(JavaThread* thread) {
1439  // We do not need to grap the Threads_lock, since we are operating on ourself.
1440  Handle threadObj(thread, thread->threadObj());
1441  assert(threadObj.not_null(), "java thread object must exist");
1442  ObjectLocker lock(threadObj, thread);
1443  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1444  thread->clear_pending_exception();
1445  // It is of profound importance that we set the stillborn bit and reset the thread object,
1446  // before we do the notify. Since, changing these two variable will make JVM_IsAlive return
1447  // false. So in case another thread is doing a join on this thread , it will detect that the thread
1448  // is dead when it gets notified.
1449  java_lang_Thread::set_stillborn(threadObj());
1450  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1451  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1452  java_lang_Thread::set_thread(threadObj(), NULL);
1453  lock.notify_all(thread);
1454  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1455  thread->clear_pending_exception();
1456}
1457
1458
1459// For any new cleanup additions, please check to see if they need to be applied to
1460// cleanup_failed_attach_current_thread as well.
1461void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1462  assert(this == JavaThread::current(),  "thread consistency check");
1463  if (!InitializeJavaLangSystem) return;
1464
1465  HandleMark hm(this);
1466  Handle uncaught_exception(this, this->pending_exception());
1467  this->clear_pending_exception();
1468  Handle threadObj(this, this->threadObj());
1469  assert(threadObj.not_null(), "Java thread object should be created");
1470
1471  if (get_thread_profiler() != NULL) {
1472    get_thread_profiler()->disengage();
1473    ResourceMark rm;
1474    get_thread_profiler()->print(get_thread_name());
1475  }
1476
1477
1478  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1479  {
1480    EXCEPTION_MARK;
1481
1482    CLEAR_PENDING_EXCEPTION;
1483  }
1484  // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1485  // has to be fixed by a runtime query method
1486  if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1487    // JSR-166: change call from from ThreadGroup.uncaughtException to
1488    // java.lang.Thread.dispatchUncaughtException
1489    if (uncaught_exception.not_null()) {
1490      Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1491      Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
1492        (address)uncaught_exception(), (address)threadObj(), (address)group());
1493      {
1494        EXCEPTION_MARK;
1495        // Check if the method Thread.dispatchUncaughtException() exists. If so
1496        // call it.  Otherwise we have an older library without the JSR-166 changes,
1497        // so call ThreadGroup.uncaughtException()
1498        KlassHandle recvrKlass(THREAD, threadObj->klass());
1499        CallInfo callinfo;
1500        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1501        LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1502                                           vmSymbolHandles::dispatchUncaughtException_name(),
1503                                           vmSymbolHandles::throwable_void_signature(),
1504                                           KlassHandle(), false, false, THREAD);
1505        CLEAR_PENDING_EXCEPTION;
1506        methodHandle method = callinfo.selected_method();
1507        if (method.not_null()) {
1508          JavaValue result(T_VOID);
1509          JavaCalls::call_virtual(&result,
1510                                  threadObj, thread_klass,
1511                                  vmSymbolHandles::dispatchUncaughtException_name(),
1512                                  vmSymbolHandles::throwable_void_signature(),
1513                                  uncaught_exception,
1514                                  THREAD);
1515        } else {
1516          KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1517          JavaValue result(T_VOID);
1518          JavaCalls::call_virtual(&result,
1519                                  group, thread_group,
1520                                  vmSymbolHandles::uncaughtException_name(),
1521                                  vmSymbolHandles::thread_throwable_void_signature(),
1522                                  threadObj,           // Arg 1
1523                                  uncaught_exception,  // Arg 2
1524                                  THREAD);
1525        }
1526        CLEAR_PENDING_EXCEPTION;
1527      }
1528    }
1529
1530    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1531    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1532    // is deprecated anyhow.
1533    { int count = 3;
1534      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1535        EXCEPTION_MARK;
1536        JavaValue result(T_VOID);
1537        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1538        JavaCalls::call_virtual(&result,
1539                              threadObj, thread_klass,
1540                              vmSymbolHandles::exit_method_name(),
1541                              vmSymbolHandles::void_method_signature(),
1542                              THREAD);
1543        CLEAR_PENDING_EXCEPTION;
1544      }
1545    }
1546
1547    // notify JVMTI
1548    if (JvmtiExport::should_post_thread_life()) {
1549      JvmtiExport::post_thread_end(this);
1550    }
1551
1552    // We have notified the agents that we are exiting, before we go on,
1553    // we must check for a pending external suspend request and honor it
1554    // in order to not surprise the thread that made the suspend request.
1555    while (true) {
1556      {
1557        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1558        if (!is_external_suspend()) {
1559          set_terminated(_thread_exiting);
1560          ThreadService::current_thread_exiting(this);
1561          break;
1562        }
1563        // Implied else:
1564        // Things get a little tricky here. We have a pending external
1565        // suspend request, but we are holding the SR_lock so we
1566        // can't just self-suspend. So we temporarily drop the lock
1567        // and then self-suspend.
1568      }
1569
1570      ThreadBlockInVM tbivm(this);
1571      java_suspend_self();
1572
1573      // We're done with this suspend request, but we have to loop around
1574      // and check again. Eventually we will get SR_lock without a pending
1575      // external suspend request and will be able to mark ourselves as
1576      // exiting.
1577    }
1578    // no more external suspends are allowed at this point
1579  } else {
1580    // before_exit() has already posted JVMTI THREAD_END events
1581  }
1582
1583  // Notify waiters on thread object. This has to be done after exit() is called
1584  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1585  // group should have the destroyed bit set before waiters are notified).
1586  ensure_join(this);
1587  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1588
1589  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1590  // held by this thread must be released.  A detach operation must only
1591  // get here if there are no Java frames on the stack.  Therefore, any
1592  // owned monitors at this point MUST be JNI-acquired monitors which are
1593  // pre-inflated and in the monitor cache.
1594  //
1595  // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1596  if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1597    assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1598    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1599    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1600  }
1601
1602  // These things needs to be done while we are still a Java Thread. Make sure that thread
1603  // is in a consistent state, in case GC happens
1604  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1605
1606  if (active_handles() != NULL) {
1607    JNIHandleBlock* block = active_handles();
1608    set_active_handles(NULL);
1609    JNIHandleBlock::release_block(block);
1610  }
1611
1612  if (free_handle_block() != NULL) {
1613    JNIHandleBlock* block = free_handle_block();
1614    set_free_handle_block(NULL);
1615    JNIHandleBlock::release_block(block);
1616  }
1617
1618  // These have to be removed while this is still a valid thread.
1619  remove_stack_guard_pages();
1620
1621  if (UseTLAB) {
1622    tlab().make_parsable(true);  // retire TLAB
1623  }
1624
1625  if (jvmti_thread_state() != NULL) {
1626    JvmtiExport::cleanup_thread(this);
1627  }
1628
1629#ifndef SERIALGC
1630  // We must flush G1-related buffers before removing a thread from
1631  // the list of active threads.
1632  if (UseG1GC) {
1633    flush_barrier_queues();
1634  }
1635#endif
1636
1637  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1638  Threads::remove(this);
1639}
1640
1641#ifndef SERIALGC
1642// Flush G1-related queues.
1643void JavaThread::flush_barrier_queues() {
1644  satb_mark_queue().flush();
1645  dirty_card_queue().flush();
1646}
1647#endif
1648
1649void JavaThread::cleanup_failed_attach_current_thread() {
1650  if (get_thread_profiler() != NULL) {
1651    get_thread_profiler()->disengage();
1652    ResourceMark rm;
1653    get_thread_profiler()->print(get_thread_name());
1654  }
1655
1656  if (active_handles() != NULL) {
1657    JNIHandleBlock* block = active_handles();
1658    set_active_handles(NULL);
1659    JNIHandleBlock::release_block(block);
1660  }
1661
1662  if (free_handle_block() != NULL) {
1663    JNIHandleBlock* block = free_handle_block();
1664    set_free_handle_block(NULL);
1665    JNIHandleBlock::release_block(block);
1666  }
1667
1668  // These have to be removed while this is still a valid thread.
1669  remove_stack_guard_pages();
1670
1671  if (UseTLAB) {
1672    tlab().make_parsable(true);  // retire TLAB, if any
1673  }
1674
1675#ifndef SERIALGC
1676  if (UseG1GC) {
1677    flush_barrier_queues();
1678  }
1679#endif
1680
1681  Threads::remove(this);
1682  delete this;
1683}
1684
1685
1686
1687
1688JavaThread* JavaThread::active() {
1689  Thread* thread = ThreadLocalStorage::thread();
1690  assert(thread != NULL, "just checking");
1691  if (thread->is_Java_thread()) {
1692    return (JavaThread*) thread;
1693  } else {
1694    assert(thread->is_VM_thread(), "this must be a vm thread");
1695    VM_Operation* op = ((VMThread*) thread)->vm_operation();
1696    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1697    assert(ret->is_Java_thread(), "must be a Java thread");
1698    return ret;
1699  }
1700}
1701
1702bool JavaThread::is_lock_owned(address adr) const {
1703  if (Thread::is_lock_owned(adr)) return true;
1704
1705  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1706    if (chunk->contains(adr)) return true;
1707  }
1708
1709  return false;
1710}
1711
1712
1713void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1714  chunk->set_next(monitor_chunks());
1715  set_monitor_chunks(chunk);
1716}
1717
1718void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1719  guarantee(monitor_chunks() != NULL, "must be non empty");
1720  if (monitor_chunks() == chunk) {
1721    set_monitor_chunks(chunk->next());
1722  } else {
1723    MonitorChunk* prev = monitor_chunks();
1724    while (prev->next() != chunk) prev = prev->next();
1725    prev->set_next(chunk->next());
1726  }
1727}
1728
1729// JVM support.
1730
1731// Note: this function shouldn't block if it's called in
1732// _thread_in_native_trans state (such as from
1733// check_special_condition_for_native_trans()).
1734void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1735
1736  if (has_last_Java_frame() && has_async_condition()) {
1737    // If we are at a polling page safepoint (not a poll return)
1738    // then we must defer async exception because live registers
1739    // will be clobbered by the exception path. Poll return is
1740    // ok because the call we a returning from already collides
1741    // with exception handling registers and so there is no issue.
1742    // (The exception handling path kills call result registers but
1743    //  this is ok since the exception kills the result anyway).
1744
1745    if (is_at_poll_safepoint()) {
1746      // if the code we are returning to has deoptimized we must defer
1747      // the exception otherwise live registers get clobbered on the
1748      // exception path before deoptimization is able to retrieve them.
1749      //
1750      RegisterMap map(this, false);
1751      frame caller_fr = last_frame().sender(&map);
1752      assert(caller_fr.is_compiled_frame(), "what?");
1753      if (caller_fr.is_deoptimized_frame()) {
1754        if (TraceExceptions) {
1755          ResourceMark rm;
1756          tty->print_cr("deferred async exception at compiled safepoint");
1757        }
1758        return;
1759      }
1760    }
1761  }
1762
1763  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
1764  if (condition == _no_async_condition) {
1765    // Conditions have changed since has_special_runtime_exit_condition()
1766    // was called:
1767    // - if we were here only because of an external suspend request,
1768    //   then that was taken care of above (or cancelled) so we are done
1769    // - if we were here because of another async request, then it has
1770    //   been cleared between the has_special_runtime_exit_condition()
1771    //   and now so again we are done
1772    return;
1773  }
1774
1775  // Check for pending async. exception
1776  if (_pending_async_exception != NULL) {
1777    // Only overwrite an already pending exception, if it is not a threadDeath.
1778    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
1779
1780      // We cannot call Exceptions::_throw(...) here because we cannot block
1781      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
1782
1783      if (TraceExceptions) {
1784        ResourceMark rm;
1785        tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
1786        if (has_last_Java_frame() ) {
1787          frame f = last_frame();
1788          tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
1789        }
1790        tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1791      }
1792      _pending_async_exception = NULL;
1793      clear_has_async_exception();
1794    }
1795  }
1796
1797  if (check_unsafe_error &&
1798      condition == _async_unsafe_access_error && !has_pending_exception()) {
1799    condition = _no_async_condition;  // done
1800    switch (thread_state()) {
1801    case _thread_in_vm:
1802      {
1803        JavaThread* THREAD = this;
1804        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1805      }
1806    case _thread_in_native:
1807      {
1808        ThreadInVMfromNative tiv(this);
1809        JavaThread* THREAD = this;
1810        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1811      }
1812    case _thread_in_Java:
1813      {
1814        ThreadInVMfromJava tiv(this);
1815        JavaThread* THREAD = this;
1816        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
1817      }
1818    default:
1819      ShouldNotReachHere();
1820    }
1821  }
1822
1823  assert(condition == _no_async_condition || has_pending_exception() ||
1824         (!check_unsafe_error && condition == _async_unsafe_access_error),
1825         "must have handled the async condition, if no exception");
1826}
1827
1828void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
1829  //
1830  // Check for pending external suspend. Internal suspend requests do
1831  // not use handle_special_runtime_exit_condition().
1832  // If JNIEnv proxies are allowed, don't self-suspend if the target
1833  // thread is not the current thread. In older versions of jdbx, jdbx
1834  // threads could call into the VM with another thread's JNIEnv so we
1835  // can be here operating on behalf of a suspended thread (4432884).
1836  bool do_self_suspend = is_external_suspend_with_lock();
1837  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
1838    //
1839    // Because thread is external suspended the safepoint code will count
1840    // thread as at a safepoint. This can be odd because we can be here
1841    // as _thread_in_Java which would normally transition to _thread_blocked
1842    // at a safepoint. We would like to mark the thread as _thread_blocked
1843    // before calling java_suspend_self like all other callers of it but
1844    // we must then observe proper safepoint protocol. (We can't leave
1845    // _thread_blocked with a safepoint in progress). However we can be
1846    // here as _thread_in_native_trans so we can't use a normal transition
1847    // constructor/destructor pair because they assert on that type of
1848    // transition. We could do something like:
1849    //
1850    // JavaThreadState state = thread_state();
1851    // set_thread_state(_thread_in_vm);
1852    // {
1853    //   ThreadBlockInVM tbivm(this);
1854    //   java_suspend_self()
1855    // }
1856    // set_thread_state(_thread_in_vm_trans);
1857    // if (safepoint) block;
1858    // set_thread_state(state);
1859    //
1860    // but that is pretty messy. Instead we just go with the way the
1861    // code has worked before and note that this is the only path to
1862    // java_suspend_self that doesn't put the thread in _thread_blocked
1863    // mode.
1864
1865    frame_anchor()->make_walkable(this);
1866    java_suspend_self();
1867
1868    // We might be here for reasons in addition to the self-suspend request
1869    // so check for other async requests.
1870  }
1871
1872  if (check_asyncs) {
1873    check_and_handle_async_exceptions();
1874  }
1875}
1876
1877void JavaThread::send_thread_stop(oop java_throwable)  {
1878  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
1879  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
1880  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
1881
1882  // Do not throw asynchronous exceptions against the compiler thread
1883  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
1884  if (is_Compiler_thread()) return;
1885
1886  // This is a change from JDK 1.1, but JDK 1.2 will also do it:
1887  if (java_throwable->is_a(SystemDictionary::ThreadDeath_klass())) {
1888    java_lang_Thread::set_stillborn(threadObj());
1889  }
1890
1891  {
1892    // Actually throw the Throwable against the target Thread - however
1893    // only if there is no thread death exception installed already.
1894    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
1895      // If the topmost frame is a runtime stub, then we are calling into
1896      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
1897      // must deoptimize the caller before continuing, as the compiled  exception handler table
1898      // may not be valid
1899      if (has_last_Java_frame()) {
1900        frame f = last_frame();
1901        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
1902          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
1903          RegisterMap reg_map(this, UseBiasedLocking);
1904          frame compiled_frame = f.sender(&reg_map);
1905          if (compiled_frame.can_be_deoptimized()) {
1906            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
1907          }
1908        }
1909      }
1910
1911      // Set async. pending exception in thread.
1912      set_pending_async_exception(java_throwable);
1913
1914      if (TraceExceptions) {
1915       ResourceMark rm;
1916       tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1917      }
1918      // for AbortVMOnException flag
1919      NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
1920    }
1921  }
1922
1923
1924  // Interrupt thread so it will wake up from a potential wait()
1925  Thread::interrupt(this);
1926}
1927
1928// External suspension mechanism.
1929//
1930// Tell the VM to suspend a thread when ever it knows that it does not hold on
1931// to any VM_locks and it is at a transition
1932// Self-suspension will happen on the transition out of the vm.
1933// Catch "this" coming in from JNIEnv pointers when the thread has been freed
1934//
1935// Guarantees on return:
1936//   + Target thread will not execute any new bytecode (that's why we need to
1937//     force a safepoint)
1938//   + Target thread will not enter any new monitors
1939//
1940void JavaThread::java_suspend() {
1941  { MutexLocker mu(Threads_lock);
1942    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
1943       return;
1944    }
1945  }
1946
1947  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1948    if (!is_external_suspend()) {
1949      // a racing resume has cancelled us; bail out now
1950      return;
1951    }
1952
1953    // suspend is done
1954    uint32_t debug_bits = 0;
1955    // Warning: is_ext_suspend_completed() may temporarily drop the
1956    // SR_lock to allow the thread to reach a stable thread state if
1957    // it is currently in a transient thread state.
1958    if (is_ext_suspend_completed(false /* !called_by_wait */,
1959                                 SuspendRetryDelay, &debug_bits) ) {
1960      return;
1961    }
1962  }
1963
1964  VM_ForceSafepoint vm_suspend;
1965  VMThread::execute(&vm_suspend);
1966}
1967
1968// Part II of external suspension.
1969// A JavaThread self suspends when it detects a pending external suspend
1970// request. This is usually on transitions. It is also done in places
1971// where continuing to the next transition would surprise the caller,
1972// e.g., monitor entry.
1973//
1974// Returns the number of times that the thread self-suspended.
1975//
1976// Note: DO NOT call java_suspend_self() when you just want to block current
1977//       thread. java_suspend_self() is the second stage of cooperative
1978//       suspension for external suspend requests and should only be used
1979//       to complete an external suspend request.
1980//
1981int JavaThread::java_suspend_self() {
1982  int ret = 0;
1983
1984  // we are in the process of exiting so don't suspend
1985  if (is_exiting()) {
1986     clear_external_suspend();
1987     return ret;
1988  }
1989
1990  assert(_anchor.walkable() ||
1991    (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
1992    "must have walkable stack");
1993
1994  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1995
1996  assert(!this->is_ext_suspended(),
1997    "a thread trying to self-suspend should not already be suspended");
1998
1999  if (this->is_suspend_equivalent()) {
2000    // If we are self-suspending as a result of the lifting of a
2001    // suspend equivalent condition, then the suspend_equivalent
2002    // flag is not cleared until we set the ext_suspended flag so
2003    // that wait_for_ext_suspend_completion() returns consistent
2004    // results.
2005    this->clear_suspend_equivalent();
2006  }
2007
2008  // A racing resume may have cancelled us before we grabbed SR_lock
2009  // above. Or another external suspend request could be waiting for us
2010  // by the time we return from SR_lock()->wait(). The thread
2011  // that requested the suspension may already be trying to walk our
2012  // stack and if we return now, we can change the stack out from under
2013  // it. This would be a "bad thing (TM)" and cause the stack walker
2014  // to crash. We stay self-suspended until there are no more pending
2015  // external suspend requests.
2016  while (is_external_suspend()) {
2017    ret++;
2018    this->set_ext_suspended();
2019
2020    // _ext_suspended flag is cleared by java_resume()
2021    while (is_ext_suspended()) {
2022      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2023    }
2024  }
2025
2026  return ret;
2027}
2028
2029#ifdef ASSERT
2030// verify the JavaThread has not yet been published in the Threads::list, and
2031// hence doesn't need protection from concurrent access at this stage
2032void JavaThread::verify_not_published() {
2033  if (!Threads_lock->owned_by_self()) {
2034   MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2035   assert( !Threads::includes(this),
2036           "java thread shouldn't have been published yet!");
2037  }
2038  else {
2039   assert( !Threads::includes(this),
2040           "java thread shouldn't have been published yet!");
2041  }
2042}
2043#endif
2044
2045// Slow path when the native==>VM/Java barriers detect a safepoint is in
2046// progress or when _suspend_flags is non-zero.
2047// Current thread needs to self-suspend if there is a suspend request and/or
2048// block if a safepoint is in progress.
2049// Async exception ISN'T checked.
2050// Note only the ThreadInVMfromNative transition can call this function
2051// directly and when thread state is _thread_in_native_trans
2052void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2053  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2054
2055  JavaThread *curJT = JavaThread::current();
2056  bool do_self_suspend = thread->is_external_suspend();
2057
2058  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2059
2060  // If JNIEnv proxies are allowed, don't self-suspend if the target
2061  // thread is not the current thread. In older versions of jdbx, jdbx
2062  // threads could call into the VM with another thread's JNIEnv so we
2063  // can be here operating on behalf of a suspended thread (4432884).
2064  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2065    JavaThreadState state = thread->thread_state();
2066
2067    // We mark this thread_blocked state as a suspend-equivalent so
2068    // that a caller to is_ext_suspend_completed() won't be confused.
2069    // The suspend-equivalent state is cleared by java_suspend_self().
2070    thread->set_suspend_equivalent();
2071
2072    // If the safepoint code sees the _thread_in_native_trans state, it will
2073    // wait until the thread changes to other thread state. There is no
2074    // guarantee on how soon we can obtain the SR_lock and complete the
2075    // self-suspend request. It would be a bad idea to let safepoint wait for
2076    // too long. Temporarily change the state to _thread_blocked to
2077    // let the VM thread know that this thread is ready for GC. The problem
2078    // of changing thread state is that safepoint could happen just after
2079    // java_suspend_self() returns after being resumed, and VM thread will
2080    // see the _thread_blocked state. We must check for safepoint
2081    // after restoring the state and make sure we won't leave while a safepoint
2082    // is in progress.
2083    thread->set_thread_state(_thread_blocked);
2084    thread->java_suspend_self();
2085    thread->set_thread_state(state);
2086    // Make sure new state is seen by VM thread
2087    if (os::is_MP()) {
2088      if (UseMembar) {
2089        // Force a fence between the write above and read below
2090        OrderAccess::fence();
2091      } else {
2092        // Must use this rather than serialization page in particular on Windows
2093        InterfaceSupport::serialize_memory(thread);
2094      }
2095    }
2096  }
2097
2098  if (SafepointSynchronize::do_call_back()) {
2099    // If we are safepointing, then block the caller which may not be
2100    // the same as the target thread (see above).
2101    SafepointSynchronize::block(curJT);
2102  }
2103
2104  if (thread->is_deopt_suspend()) {
2105    thread->clear_deopt_suspend();
2106    RegisterMap map(thread, false);
2107    frame f = thread->last_frame();
2108    while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2109      f = f.sender(&map);
2110    }
2111    if (f.id() == thread->must_deopt_id()) {
2112      thread->clear_must_deopt_id();
2113      // Since we know we're safe to deopt the current state is a safe state
2114      f.deoptimize(thread, true);
2115    } else {
2116      fatal("missed deoptimization!");
2117    }
2118  }
2119}
2120
2121// Slow path when the native==>VM/Java barriers detect a safepoint is in
2122// progress or when _suspend_flags is non-zero.
2123// Current thread needs to self-suspend if there is a suspend request and/or
2124// block if a safepoint is in progress.
2125// Also check for pending async exception (not including unsafe access error).
2126// Note only the native==>VM/Java barriers can call this function and when
2127// thread state is _thread_in_native_trans.
2128void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2129  check_safepoint_and_suspend_for_native_trans(thread);
2130
2131  if (thread->has_async_exception()) {
2132    // We are in _thread_in_native_trans state, don't handle unsafe
2133    // access error since that may block.
2134    thread->check_and_handle_async_exceptions(false);
2135  }
2136}
2137
2138// We need to guarantee the Threads_lock here, since resumes are not
2139// allowed during safepoint synchronization
2140// Can only resume from an external suspension
2141void JavaThread::java_resume() {
2142  assert_locked_or_safepoint(Threads_lock);
2143
2144  // Sanity check: thread is gone, has started exiting or the thread
2145  // was not externally suspended.
2146  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2147    return;
2148  }
2149
2150  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2151
2152  clear_external_suspend();
2153
2154  if (is_ext_suspended()) {
2155    clear_ext_suspended();
2156    SR_lock()->notify_all();
2157  }
2158}
2159
2160void JavaThread::create_stack_guard_pages() {
2161  if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2162  address low_addr = stack_base() - stack_size();
2163  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2164
2165  int allocate = os::allocate_stack_guard_pages();
2166  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2167
2168  if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2169    warning("Attempt to allocate stack guard pages failed.");
2170    return;
2171  }
2172
2173  if (os::guard_memory((char *) low_addr, len)) {
2174    _stack_guard_state = stack_guard_enabled;
2175  } else {
2176    warning("Attempt to protect stack guard pages failed.");
2177    if (os::uncommit_memory((char *) low_addr, len)) {
2178      warning("Attempt to deallocate stack guard pages failed.");
2179    }
2180  }
2181}
2182
2183void JavaThread::remove_stack_guard_pages() {
2184  if (_stack_guard_state == stack_guard_unused) return;
2185  address low_addr = stack_base() - stack_size();
2186  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2187
2188  if (os::allocate_stack_guard_pages()) {
2189    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2190      _stack_guard_state = stack_guard_unused;
2191    } else {
2192      warning("Attempt to deallocate stack guard pages failed.");
2193    }
2194  } else {
2195    if (_stack_guard_state == stack_guard_unused) return;
2196    if (os::unguard_memory((char *) low_addr, len)) {
2197      _stack_guard_state = stack_guard_unused;
2198    } else {
2199        warning("Attempt to unprotect stack guard pages failed.");
2200    }
2201  }
2202}
2203
2204void JavaThread::enable_stack_yellow_zone() {
2205  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2206  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2207
2208  // The base notation is from the stacks point of view, growing downward.
2209  // We need to adjust it to work correctly with guard_memory()
2210  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2211
2212  guarantee(base < stack_base(),"Error calculating stack yellow zone");
2213  guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2214
2215  if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2216    _stack_guard_state = stack_guard_enabled;
2217  } else {
2218    warning("Attempt to guard stack yellow zone failed.");
2219  }
2220  enable_register_stack_guard();
2221}
2222
2223void JavaThread::disable_stack_yellow_zone() {
2224  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2225  assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2226
2227  // Simply return if called for a thread that does not use guard pages.
2228  if (_stack_guard_state == stack_guard_unused) return;
2229
2230  // The base notation is from the stacks point of view, growing downward.
2231  // We need to adjust it to work correctly with guard_memory()
2232  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2233
2234  if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2235    _stack_guard_state = stack_guard_yellow_disabled;
2236  } else {
2237    warning("Attempt to unguard stack yellow zone failed.");
2238  }
2239  disable_register_stack_guard();
2240}
2241
2242void JavaThread::enable_stack_red_zone() {
2243  // The base notation is from the stacks point of view, growing downward.
2244  // We need to adjust it to work correctly with guard_memory()
2245  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2246  address base = stack_red_zone_base() - stack_red_zone_size();
2247
2248  guarantee(base < stack_base(),"Error calculating stack red zone");
2249  guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2250
2251  if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2252    warning("Attempt to guard stack red zone failed.");
2253  }
2254}
2255
2256void JavaThread::disable_stack_red_zone() {
2257  // The base notation is from the stacks point of view, growing downward.
2258  // We need to adjust it to work correctly with guard_memory()
2259  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2260  address base = stack_red_zone_base() - stack_red_zone_size();
2261  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2262    warning("Attempt to unguard stack red zone failed.");
2263  }
2264}
2265
2266void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2267  // ignore is there is no stack
2268  if (!has_last_Java_frame()) return;
2269  // traverse the stack frames. Starts from top frame.
2270  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2271    frame* fr = fst.current();
2272    f(fr, fst.register_map());
2273  }
2274}
2275
2276
2277#ifndef PRODUCT
2278// Deoptimization
2279// Function for testing deoptimization
2280void JavaThread::deoptimize() {
2281  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2282  StackFrameStream fst(this, UseBiasedLocking);
2283  bool deopt = false;           // Dump stack only if a deopt actually happens.
2284  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2285  // Iterate over all frames in the thread and deoptimize
2286  for(; !fst.is_done(); fst.next()) {
2287    if(fst.current()->can_be_deoptimized()) {
2288
2289      if (only_at) {
2290        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2291        // consists of comma or carriage return separated numbers so
2292        // search for the current bci in that string.
2293        address pc = fst.current()->pc();
2294        nmethod* nm =  (nmethod*) fst.current()->cb();
2295        ScopeDesc* sd = nm->scope_desc_at( pc);
2296        char buffer[8];
2297        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2298        size_t len = strlen(buffer);
2299        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2300        while (found != NULL) {
2301          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2302              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2303            // Check that the bci found is bracketed by terminators.
2304            break;
2305          }
2306          found = strstr(found + 1, buffer);
2307        }
2308        if (!found) {
2309          continue;
2310        }
2311      }
2312
2313      if (DebugDeoptimization && !deopt) {
2314        deopt = true; // One-time only print before deopt
2315        tty->print_cr("[BEFORE Deoptimization]");
2316        trace_frames();
2317        trace_stack();
2318      }
2319      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2320    }
2321  }
2322
2323  if (DebugDeoptimization && deopt) {
2324    tty->print_cr("[AFTER Deoptimization]");
2325    trace_frames();
2326  }
2327}
2328
2329
2330// Make zombies
2331void JavaThread::make_zombies() {
2332  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2333    if (fst.current()->can_be_deoptimized()) {
2334      // it is a Java nmethod
2335      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2336      nm->make_not_entrant();
2337    }
2338  }
2339}
2340#endif // PRODUCT
2341
2342
2343void JavaThread::deoptimized_wrt_marked_nmethods() {
2344  if (!has_last_Java_frame()) return;
2345  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2346  StackFrameStream fst(this, UseBiasedLocking);
2347  for(; !fst.is_done(); fst.next()) {
2348    if (fst.current()->should_be_deoptimized()) {
2349      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2350    }
2351  }
2352}
2353
2354
2355// GC support
2356static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2357
2358void JavaThread::gc_epilogue() {
2359  frames_do(frame_gc_epilogue);
2360}
2361
2362
2363static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2364
2365void JavaThread::gc_prologue() {
2366  frames_do(frame_gc_prologue);
2367}
2368
2369// If the caller is a NamedThread, then remember, in the current scope,
2370// the given JavaThread in its _processed_thread field.
2371class RememberProcessedThread: public StackObj {
2372  NamedThread* _cur_thr;
2373public:
2374  RememberProcessedThread(JavaThread* jthr) {
2375    Thread* thread = Thread::current();
2376    if (thread->is_Named_thread()) {
2377      _cur_thr = (NamedThread *)thread;
2378      _cur_thr->set_processed_thread(jthr);
2379    } else {
2380      _cur_thr = NULL;
2381    }
2382  }
2383
2384  ~RememberProcessedThread() {
2385    if (_cur_thr) {
2386      _cur_thr->set_processed_thread(NULL);
2387    }
2388  }
2389};
2390
2391void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2392  // Verify that the deferred card marks have been flushed.
2393  assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2394
2395  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2396  // since there may be more than one thread using each ThreadProfiler.
2397
2398  // Traverse the GCHandles
2399  Thread::oops_do(f, cf);
2400
2401  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2402          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2403
2404  if (has_last_Java_frame()) {
2405    // Record JavaThread to GC thread
2406    RememberProcessedThread rpt(this);
2407
2408    // Traverse the privileged stack
2409    if (_privileged_stack_top != NULL) {
2410      _privileged_stack_top->oops_do(f);
2411    }
2412
2413    // traverse the registered growable array
2414    if (_array_for_gc != NULL) {
2415      for (int index = 0; index < _array_for_gc->length(); index++) {
2416        f->do_oop(_array_for_gc->adr_at(index));
2417      }
2418    }
2419
2420    // Traverse the monitor chunks
2421    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2422      chunk->oops_do(f);
2423    }
2424
2425    // Traverse the execution stack
2426    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2427      fst.current()->oops_do(f, cf, fst.register_map());
2428    }
2429  }
2430
2431  // callee_target is never live across a gc point so NULL it here should
2432  // it still contain a methdOop.
2433
2434  set_callee_target(NULL);
2435
2436  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2437  // If we have deferred set_locals there might be oops waiting to be
2438  // written
2439  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2440  if (list != NULL) {
2441    for (int i = 0; i < list->length(); i++) {
2442      list->at(i)->oops_do(f);
2443    }
2444  }
2445
2446  // Traverse instance variables at the end since the GC may be moving things
2447  // around using this function
2448  f->do_oop((oop*) &_threadObj);
2449  f->do_oop((oop*) &_vm_result);
2450  f->do_oop((oop*) &_vm_result_2);
2451  f->do_oop((oop*) &_exception_oop);
2452  f->do_oop((oop*) &_pending_async_exception);
2453
2454  if (jvmti_thread_state() != NULL) {
2455    jvmti_thread_state()->oops_do(f);
2456  }
2457}
2458
2459void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2460  Thread::nmethods_do(cf);  // (super method is a no-op)
2461
2462  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2463          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2464
2465  if (has_last_Java_frame()) {
2466    // Traverse the execution stack
2467    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2468      fst.current()->nmethods_do(cf);
2469    }
2470  }
2471}
2472
2473// Printing
2474const char* _get_thread_state_name(JavaThreadState _thread_state) {
2475  switch (_thread_state) {
2476  case _thread_uninitialized:     return "_thread_uninitialized";
2477  case _thread_new:               return "_thread_new";
2478  case _thread_new_trans:         return "_thread_new_trans";
2479  case _thread_in_native:         return "_thread_in_native";
2480  case _thread_in_native_trans:   return "_thread_in_native_trans";
2481  case _thread_in_vm:             return "_thread_in_vm";
2482  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2483  case _thread_in_Java:           return "_thread_in_Java";
2484  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2485  case _thread_blocked:           return "_thread_blocked";
2486  case _thread_blocked_trans:     return "_thread_blocked_trans";
2487  default:                        return "unknown thread state";
2488  }
2489}
2490
2491#ifndef PRODUCT
2492void JavaThread::print_thread_state_on(outputStream *st) const {
2493  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2494};
2495void JavaThread::print_thread_state() const {
2496  print_thread_state_on(tty);
2497};
2498#endif // PRODUCT
2499
2500// Called by Threads::print() for VM_PrintThreads operation
2501void JavaThread::print_on(outputStream *st) const {
2502  st->print("\"%s\" ", get_thread_name());
2503  oop thread_oop = threadObj();
2504  if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2505  Thread::print_on(st);
2506  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2507  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2508  if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2509    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2510  }
2511#ifndef PRODUCT
2512  print_thread_state_on(st);
2513  _safepoint_state->print_on(st);
2514#endif // PRODUCT
2515}
2516
2517// Called by fatal error handler. The difference between this and
2518// JavaThread::print() is that we can't grab lock or allocate memory.
2519void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2520  st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2521  oop thread_obj = threadObj();
2522  if (thread_obj != NULL) {
2523     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2524  }
2525  st->print(" [");
2526  st->print("%s", _get_thread_state_name(_thread_state));
2527  if (osthread()) {
2528    st->print(", id=%d", osthread()->thread_id());
2529  }
2530  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2531            _stack_base - _stack_size, _stack_base);
2532  st->print("]");
2533  return;
2534}
2535
2536// Verification
2537
2538static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2539
2540void JavaThread::verify() {
2541  // Verify oops in the thread.
2542  oops_do(&VerifyOopClosure::verify_oop, NULL);
2543
2544  // Verify the stack frames.
2545  frames_do(frame_verify);
2546}
2547
2548// CR 6300358 (sub-CR 2137150)
2549// Most callers of this method assume that it can't return NULL but a
2550// thread may not have a name whilst it is in the process of attaching to
2551// the VM - see CR 6412693, and there are places where a JavaThread can be
2552// seen prior to having it's threadObj set (eg JNI attaching threads and
2553// if vm exit occurs during initialization). These cases can all be accounted
2554// for such that this method never returns NULL.
2555const char* JavaThread::get_thread_name() const {
2556#ifdef ASSERT
2557  // early safepoints can hit while current thread does not yet have TLS
2558  if (!SafepointSynchronize::is_at_safepoint()) {
2559    Thread *cur = Thread::current();
2560    if (!(cur->is_Java_thread() && cur == this)) {
2561      // Current JavaThreads are allowed to get their own name without
2562      // the Threads_lock.
2563      assert_locked_or_safepoint(Threads_lock);
2564    }
2565  }
2566#endif // ASSERT
2567    return get_thread_name_string();
2568}
2569
2570// Returns a non-NULL representation of this thread's name, or a suitable
2571// descriptive string if there is no set name
2572const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2573  const char* name_str;
2574  oop thread_obj = threadObj();
2575  if (thread_obj != NULL) {
2576    typeArrayOop name = java_lang_Thread::name(thread_obj);
2577    if (name != NULL) {
2578      if (buf == NULL) {
2579        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2580      }
2581      else {
2582        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2583      }
2584    }
2585    else if (is_attaching()) { // workaround for 6412693 - see 6404306
2586      name_str = "<no-name - thread is attaching>";
2587    }
2588    else {
2589      name_str = Thread::name();
2590    }
2591  }
2592  else {
2593    name_str = Thread::name();
2594  }
2595  assert(name_str != NULL, "unexpected NULL thread name");
2596  return name_str;
2597}
2598
2599
2600const char* JavaThread::get_threadgroup_name() const {
2601  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2602  oop thread_obj = threadObj();
2603  if (thread_obj != NULL) {
2604    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2605    if (thread_group != NULL) {
2606      typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2607      // ThreadGroup.name can be null
2608      if (name != NULL) {
2609        const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2610        return str;
2611      }
2612    }
2613  }
2614  return NULL;
2615}
2616
2617const char* JavaThread::get_parent_name() const {
2618  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2619  oop thread_obj = threadObj();
2620  if (thread_obj != NULL) {
2621    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2622    if (thread_group != NULL) {
2623      oop parent = java_lang_ThreadGroup::parent(thread_group);
2624      if (parent != NULL) {
2625        typeArrayOop name = java_lang_ThreadGroup::name(parent);
2626        // ThreadGroup.name can be null
2627        if (name != NULL) {
2628          const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2629          return str;
2630        }
2631      }
2632    }
2633  }
2634  return NULL;
2635}
2636
2637ThreadPriority JavaThread::java_priority() const {
2638  oop thr_oop = threadObj();
2639  if (thr_oop == NULL) return NormPriority; // Bootstrapping
2640  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2641  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2642  return priority;
2643}
2644
2645void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2646
2647  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2648  // Link Java Thread object <-> C++ Thread
2649
2650  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2651  // and put it into a new Handle.  The Handle "thread_oop" can then
2652  // be used to pass the C++ thread object to other methods.
2653
2654  // Set the Java level thread object (jthread) field of the
2655  // new thread (a JavaThread *) to C++ thread object using the
2656  // "thread_oop" handle.
2657
2658  // Set the thread field (a JavaThread *) of the
2659  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2660
2661  Handle thread_oop(Thread::current(),
2662                    JNIHandles::resolve_non_null(jni_thread));
2663  assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
2664    "must be initialized");
2665  set_threadObj(thread_oop());
2666  java_lang_Thread::set_thread(thread_oop(), this);
2667
2668  if (prio == NoPriority) {
2669    prio = java_lang_Thread::priority(thread_oop());
2670    assert(prio != NoPriority, "A valid priority should be present");
2671  }
2672
2673  // Push the Java priority down to the native thread; needs Threads_lock
2674  Thread::set_priority(this, prio);
2675
2676  // Add the new thread to the Threads list and set it in motion.
2677  // We must have threads lock in order to call Threads::add.
2678  // It is crucial that we do not block before the thread is
2679  // added to the Threads list for if a GC happens, then the java_thread oop
2680  // will not be visited by GC.
2681  Threads::add(this);
2682}
2683
2684oop JavaThread::current_park_blocker() {
2685  // Support for JSR-166 locks
2686  oop thread_oop = threadObj();
2687  if (thread_oop != NULL &&
2688      JDK_Version::current().supports_thread_park_blocker()) {
2689    return java_lang_Thread::park_blocker(thread_oop);
2690  }
2691  return NULL;
2692}
2693
2694
2695void JavaThread::print_stack_on(outputStream* st) {
2696  if (!has_last_Java_frame()) return;
2697  ResourceMark rm;
2698  HandleMark   hm;
2699
2700  RegisterMap reg_map(this);
2701  vframe* start_vf = last_java_vframe(&reg_map);
2702  int count = 0;
2703  for (vframe* f = start_vf; f; f = f->sender() ) {
2704    if (f->is_java_frame()) {
2705      javaVFrame* jvf = javaVFrame::cast(f);
2706      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2707
2708      // Print out lock information
2709      if (JavaMonitorsInStackTrace) {
2710        jvf->print_lock_info_on(st, count);
2711      }
2712    } else {
2713      // Ignore non-Java frames
2714    }
2715
2716    // Bail-out case for too deep stacks
2717    count++;
2718    if (MaxJavaStackTraceDepth == count) return;
2719  }
2720}
2721
2722
2723// JVMTI PopFrame support
2724void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2725  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2726  if (in_bytes(size_in_bytes) != 0) {
2727    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
2728    _popframe_preserved_args_size = in_bytes(size_in_bytes);
2729    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2730  }
2731}
2732
2733void* JavaThread::popframe_preserved_args() {
2734  return _popframe_preserved_args;
2735}
2736
2737ByteSize JavaThread::popframe_preserved_args_size() {
2738  return in_ByteSize(_popframe_preserved_args_size);
2739}
2740
2741WordSize JavaThread::popframe_preserved_args_size_in_words() {
2742  int sz = in_bytes(popframe_preserved_args_size());
2743  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
2744  return in_WordSize(sz / wordSize);
2745}
2746
2747void JavaThread::popframe_free_preserved_args() {
2748  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
2749  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
2750  _popframe_preserved_args = NULL;
2751  _popframe_preserved_args_size = 0;
2752}
2753
2754#ifndef PRODUCT
2755
2756void JavaThread::trace_frames() {
2757  tty->print_cr("[Describe stack]");
2758  int frame_no = 1;
2759  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2760    tty->print("  %d. ", frame_no++);
2761    fst.current()->print_value_on(tty,this);
2762    tty->cr();
2763  }
2764}
2765
2766
2767void JavaThread::trace_stack_from(vframe* start_vf) {
2768  ResourceMark rm;
2769  int vframe_no = 1;
2770  for (vframe* f = start_vf; f; f = f->sender() ) {
2771    if (f->is_java_frame()) {
2772      javaVFrame::cast(f)->print_activation(vframe_no++);
2773    } else {
2774      f->print();
2775    }
2776    if (vframe_no > StackPrintLimit) {
2777      tty->print_cr("...<more frames>...");
2778      return;
2779    }
2780  }
2781}
2782
2783
2784void JavaThread::trace_stack() {
2785  if (!has_last_Java_frame()) return;
2786  ResourceMark rm;
2787  HandleMark   hm;
2788  RegisterMap reg_map(this);
2789  trace_stack_from(last_java_vframe(&reg_map));
2790}
2791
2792
2793#endif // PRODUCT
2794
2795
2796javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
2797  assert(reg_map != NULL, "a map must be given");
2798  frame f = last_frame();
2799  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
2800    if (vf->is_java_frame()) return javaVFrame::cast(vf);
2801  }
2802  return NULL;
2803}
2804
2805
2806klassOop JavaThread::security_get_caller_class(int depth) {
2807  vframeStream vfst(this);
2808  vfst.security_get_caller_frame(depth);
2809  if (!vfst.at_end()) {
2810    return vfst.method()->method_holder();
2811  }
2812  return NULL;
2813}
2814
2815static void compiler_thread_entry(JavaThread* thread, TRAPS) {
2816  assert(thread->is_Compiler_thread(), "must be compiler thread");
2817  CompileBroker::compiler_thread_loop();
2818}
2819
2820// Create a CompilerThread
2821CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
2822: JavaThread(&compiler_thread_entry) {
2823  _env   = NULL;
2824  _log   = NULL;
2825  _task  = NULL;
2826  _queue = queue;
2827  _counters = counters;
2828  _buffer_blob = NULL;
2829
2830#ifndef PRODUCT
2831  _ideal_graph_printer = NULL;
2832#endif
2833}
2834
2835
2836// ======= Threads ========
2837
2838// The Threads class links together all active threads, and provides
2839// operations over all threads.  It is protected by its own Mutex
2840// lock, which is also used in other contexts to protect thread
2841// operations from having the thread being operated on from exiting
2842// and going away unexpectedly (e.g., safepoint synchronization)
2843
2844JavaThread* Threads::_thread_list = NULL;
2845int         Threads::_number_of_threads = 0;
2846int         Threads::_number_of_non_daemon_threads = 0;
2847int         Threads::_return_code = 0;
2848size_t      JavaThread::_stack_size_at_create = 0;
2849
2850// All JavaThreads
2851#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
2852
2853void os_stream();
2854
2855// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
2856void Threads::threads_do(ThreadClosure* tc) {
2857  assert_locked_or_safepoint(Threads_lock);
2858  // ALL_JAVA_THREADS iterates through all JavaThreads
2859  ALL_JAVA_THREADS(p) {
2860    tc->do_thread(p);
2861  }
2862  // Someday we could have a table or list of all non-JavaThreads.
2863  // For now, just manually iterate through them.
2864  tc->do_thread(VMThread::vm_thread());
2865  Universe::heap()->gc_threads_do(tc);
2866  WatcherThread *wt = WatcherThread::watcher_thread();
2867  // Strictly speaking, the following NULL check isn't sufficient to make sure
2868  // the data for WatcherThread is still valid upon being examined. However,
2869  // considering that WatchThread terminates when the VM is on the way to
2870  // exit at safepoint, the chance of the above is extremely small. The right
2871  // way to prevent termination of WatcherThread would be to acquire
2872  // Terminator_lock, but we can't do that without violating the lock rank
2873  // checking in some cases.
2874  if (wt != NULL)
2875    tc->do_thread(wt);
2876
2877  // If CompilerThreads ever become non-JavaThreads, add them here
2878}
2879
2880jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
2881
2882  extern void JDK_Version_init();
2883
2884  // Check version
2885  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
2886
2887  // Initialize the output stream module
2888  ostream_init();
2889
2890  // Process java launcher properties.
2891  Arguments::process_sun_java_launcher_properties(args);
2892
2893  // Initialize the os module before using TLS
2894  os::init();
2895
2896  // Initialize system properties.
2897  Arguments::init_system_properties();
2898
2899  // So that JDK version can be used as a discrimintor when parsing arguments
2900  JDK_Version_init();
2901
2902  // Parse arguments
2903  jint parse_result = Arguments::parse(args);
2904  if (parse_result != JNI_OK) return parse_result;
2905
2906  if (PauseAtStartup) {
2907    os::pause();
2908  }
2909
2910  HS_DTRACE_PROBE(hotspot, vm__init__begin);
2911
2912  // Record VM creation timing statistics
2913  TraceVmCreationTime create_vm_timer;
2914  create_vm_timer.start();
2915
2916  // Timing (must come after argument parsing)
2917  TraceTime timer("Create VM", TraceStartupTime);
2918
2919  // Initialize the os module after parsing the args
2920  jint os_init_2_result = os::init_2();
2921  if (os_init_2_result != JNI_OK) return os_init_2_result;
2922
2923  // Initialize output stream logging
2924  ostream_init_log();
2925
2926  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
2927  // Must be before create_vm_init_agents()
2928  if (Arguments::init_libraries_at_startup()) {
2929    convert_vm_init_libraries_to_agents();
2930  }
2931
2932  // Launch -agentlib/-agentpath and converted -Xrun agents
2933  if (Arguments::init_agents_at_startup()) {
2934    create_vm_init_agents();
2935  }
2936
2937  // Initialize Threads state
2938  _thread_list = NULL;
2939  _number_of_threads = 0;
2940  _number_of_non_daemon_threads = 0;
2941
2942  // Initialize TLS
2943  ThreadLocalStorage::init();
2944
2945  // Initialize global data structures and create system classes in heap
2946  vm_init_globals();
2947
2948  // Attach the main thread to this os thread
2949  JavaThread* main_thread = new JavaThread();
2950  main_thread->set_thread_state(_thread_in_vm);
2951  // must do this before set_active_handles and initialize_thread_local_storage
2952  // Note: on solaris initialize_thread_local_storage() will (indirectly)
2953  // change the stack size recorded here to one based on the java thread
2954  // stacksize. This adjusted size is what is used to figure the placement
2955  // of the guard pages.
2956  main_thread->record_stack_base_and_size();
2957  main_thread->initialize_thread_local_storage();
2958
2959  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
2960
2961  if (!main_thread->set_as_starting_thread()) {
2962    vm_shutdown_during_initialization(
2963      "Failed necessary internal allocation. Out of swap space");
2964    delete main_thread;
2965    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
2966    return JNI_ENOMEM;
2967  }
2968
2969  // Enable guard page *after* os::create_main_thread(), otherwise it would
2970  // crash Linux VM, see notes in os_linux.cpp.
2971  main_thread->create_stack_guard_pages();
2972
2973  // Initialize Java-Leve synchronization subsystem
2974  ObjectSynchronizer::Initialize() ;
2975
2976  // Initialize global modules
2977  jint status = init_globals();
2978  if (status != JNI_OK) {
2979    delete main_thread;
2980    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
2981    return status;
2982  }
2983
2984  // Should be done after the heap is fully created
2985  main_thread->cache_global_variables();
2986
2987  HandleMark hm;
2988
2989  { MutexLocker mu(Threads_lock);
2990    Threads::add(main_thread);
2991  }
2992
2993  // Any JVMTI raw monitors entered in onload will transition into
2994  // real raw monitor. VM is setup enough here for raw monitor enter.
2995  JvmtiExport::transition_pending_onload_raw_monitors();
2996
2997  if (VerifyBeforeGC &&
2998      Universe::heap()->total_collections() >= VerifyGCStartAt) {
2999    Universe::heap()->prepare_for_verify();
3000    Universe::verify();   // make sure we're starting with a clean slate
3001  }
3002
3003  // Create the VMThread
3004  { TraceTime timer("Start VMThread", TraceStartupTime);
3005    VMThread::create();
3006    Thread* vmthread = VMThread::vm_thread();
3007
3008    if (!os::create_thread(vmthread, os::vm_thread))
3009      vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3010
3011    // Wait for the VM thread to become ready, and VMThread::run to initialize
3012    // Monitors can have spurious returns, must always check another state flag
3013    {
3014      MutexLocker ml(Notify_lock);
3015      os::start_thread(vmthread);
3016      while (vmthread->active_handles() == NULL) {
3017        Notify_lock->wait();
3018      }
3019    }
3020  }
3021
3022  assert (Universe::is_fully_initialized(), "not initialized");
3023  EXCEPTION_MARK;
3024
3025  // At this point, the Universe is initialized, but we have not executed
3026  // any byte code.  Now is a good time (the only time) to dump out the
3027  // internal state of the JVM for sharing.
3028
3029  if (DumpSharedSpaces) {
3030    Universe::heap()->preload_and_dump(CHECK_0);
3031    ShouldNotReachHere();
3032  }
3033
3034  // Always call even when there are not JVMTI environments yet, since environments
3035  // may be attached late and JVMTI must track phases of VM execution
3036  JvmtiExport::enter_start_phase();
3037
3038  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3039  JvmtiExport::post_vm_start();
3040
3041  {
3042    TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3043
3044    if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3045      create_vm_init_libraries();
3046    }
3047
3048    if (InitializeJavaLangString) {
3049      initialize_class(vmSymbolHandles::java_lang_String(), CHECK_0);
3050    } else {
3051      warning("java.lang.String not initialized");
3052    }
3053
3054    if (AggressiveOpts) {
3055      {
3056        // Forcibly initialize java/util/HashMap and mutate the private
3057        // static final "frontCacheEnabled" field before we start creating instances
3058#ifdef ASSERT
3059        klassOop tmp_k = SystemDictionary::find(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3060        assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3061#endif
3062        klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3063        KlassHandle k = KlassHandle(THREAD, k_o);
3064        guarantee(k.not_null(), "Must find java/util/HashMap");
3065        instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3066        ik->initialize(CHECK_0);
3067        fieldDescriptor fd;
3068        // Possible we might not find this field; if so, don't break
3069        if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3070          k()->bool_field_put(fd.offset(), true);
3071        }
3072      }
3073
3074      if (UseStringCache) {
3075        // Forcibly initialize java/lang/StringValue and mutate the private
3076        // static final "stringCacheEnabled" field before we start creating instances
3077        klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3078        // Possible that StringValue isn't present: if so, silently don't break
3079        if (k_o != NULL) {
3080          KlassHandle k = KlassHandle(THREAD, k_o);
3081          instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3082          ik->initialize(CHECK_0);
3083          fieldDescriptor fd;
3084          // Possible we might not find this field: if so, silently don't break
3085          if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3086            k()->bool_field_put(fd.offset(), true);
3087          }
3088        }
3089      }
3090    }
3091
3092    // Initialize java_lang.System (needed before creating the thread)
3093    if (InitializeJavaLangSystem) {
3094      initialize_class(vmSymbolHandles::java_lang_System(), CHECK_0);
3095      initialize_class(vmSymbolHandles::java_lang_ThreadGroup(), CHECK_0);
3096      Handle thread_group = create_initial_thread_group(CHECK_0);
3097      Universe::set_main_thread_group(thread_group());
3098      initialize_class(vmSymbolHandles::java_lang_Thread(), CHECK_0);
3099      oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3100      main_thread->set_threadObj(thread_object);
3101      // Set thread status to running since main thread has
3102      // been started and running.
3103      java_lang_Thread::set_thread_status(thread_object,
3104                                          java_lang_Thread::RUNNABLE);
3105
3106      // The VM preresolve methods to these classes. Make sure that get initialized
3107      initialize_class(vmSymbolHandles::java_lang_reflect_Method(), CHECK_0);
3108      initialize_class(vmSymbolHandles::java_lang_ref_Finalizer(),  CHECK_0);
3109      // The VM creates & returns objects of this class. Make sure it's initialized.
3110      initialize_class(vmSymbolHandles::java_lang_Class(), CHECK_0);
3111      call_initializeSystemClass(CHECK_0);
3112    } else {
3113      warning("java.lang.System not initialized");
3114    }
3115
3116    // an instance of OutOfMemory exception has been allocated earlier
3117    if (InitializeJavaLangExceptionsErrors) {
3118      initialize_class(vmSymbolHandles::java_lang_OutOfMemoryError(), CHECK_0);
3119      initialize_class(vmSymbolHandles::java_lang_NullPointerException(), CHECK_0);
3120      initialize_class(vmSymbolHandles::java_lang_ClassCastException(), CHECK_0);
3121      initialize_class(vmSymbolHandles::java_lang_ArrayStoreException(), CHECK_0);
3122      initialize_class(vmSymbolHandles::java_lang_ArithmeticException(), CHECK_0);
3123      initialize_class(vmSymbolHandles::java_lang_StackOverflowError(), CHECK_0);
3124      initialize_class(vmSymbolHandles::java_lang_IllegalMonitorStateException(), CHECK_0);
3125    } else {
3126      warning("java.lang.OutOfMemoryError has not been initialized");
3127      warning("java.lang.NullPointerException has not been initialized");
3128      warning("java.lang.ClassCastException has not been initialized");
3129      warning("java.lang.ArrayStoreException has not been initialized");
3130      warning("java.lang.ArithmeticException has not been initialized");
3131      warning("java.lang.StackOverflowError has not been initialized");
3132    }
3133
3134    if (EnableInvokeDynamic) {
3135      // JSR 292: An intialized java.dyn.InvokeDynamic is required in
3136      // the compiler.
3137      initialize_class(vmSymbolHandles::java_dyn_InvokeDynamic(), CHECK_0);
3138    }
3139  }
3140
3141  // See        : bugid 4211085.
3142  // Background : the static initializer of java.lang.Compiler tries to read
3143  //              property"java.compiler" and read & write property "java.vm.info".
3144  //              When a security manager is installed through the command line
3145  //              option "-Djava.security.manager", the above properties are not
3146  //              readable and the static initializer for java.lang.Compiler fails
3147  //              resulting in a NoClassDefFoundError.  This can happen in any
3148  //              user code which calls methods in java.lang.Compiler.
3149  // Hack :       the hack is to pre-load and initialize this class, so that only
3150  //              system domains are on the stack when the properties are read.
3151  //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3152  //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3153  // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3154  //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3155  //              Once that is done, we should remove this hack.
3156  initialize_class(vmSymbolHandles::java_lang_Compiler(), CHECK_0);
3157
3158  // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3159  // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3160  // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3161  // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3162  // This should also be taken out as soon as 4211383 gets fixed.
3163  reset_vm_info_property(CHECK_0);
3164
3165  quicken_jni_functions();
3166
3167  // Set flag that basic initialization has completed. Used by exceptions and various
3168  // debug stuff, that does not work until all basic classes have been initialized.
3169  set_init_completed();
3170
3171  HS_DTRACE_PROBE(hotspot, vm__init__end);
3172
3173  // record VM initialization completion time
3174  Management::record_vm_init_completed();
3175
3176  // Compute system loader. Note that this has to occur after set_init_completed, since
3177  // valid exceptions may be thrown in the process.
3178  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3179  // set_init_completed has just been called, causing exceptions not to be shortcut
3180  // anymore. We call vm_exit_during_initialization directly instead.
3181  SystemDictionary::compute_java_system_loader(THREAD);
3182  if (HAS_PENDING_EXCEPTION) {
3183    vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3184  }
3185
3186#ifdef KERNEL
3187  if (JDK_Version::is_gte_jdk17x_version()) {
3188    set_jkernel_boot_classloader_hook(THREAD);
3189  }
3190#endif // KERNEL
3191
3192#ifndef SERIALGC
3193  // Support for ConcurrentMarkSweep. This should be cleaned up
3194  // and better encapsulated. The ugly nested if test would go away
3195  // once things are properly refactored. XXX YSR
3196  if (UseConcMarkSweepGC || UseG1GC) {
3197    if (UseConcMarkSweepGC) {
3198      ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3199    } else {
3200      ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3201    }
3202    if (HAS_PENDING_EXCEPTION) {
3203      vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3204    }
3205  }
3206#endif // SERIALGC
3207
3208  // Always call even when there are not JVMTI environments yet, since environments
3209  // may be attached late and JVMTI must track phases of VM execution
3210  JvmtiExport::enter_live_phase();
3211
3212  // Signal Dispatcher needs to be started before VMInit event is posted
3213  os::signal_init();
3214
3215  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3216  if (!DisableAttachMechanism) {
3217    if (StartAttachListener || AttachListener::init_at_startup()) {
3218      AttachListener::init();
3219    }
3220  }
3221
3222  // Launch -Xrun agents
3223  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3224  // back-end can launch with -Xdebug -Xrunjdwp.
3225  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3226    create_vm_init_libraries();
3227  }
3228
3229  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3230  JvmtiExport::post_vm_initialized();
3231
3232  Chunk::start_chunk_pool_cleaner_task();
3233
3234  // initialize compiler(s)
3235  CompileBroker::compilation_init();
3236
3237  Management::initialize(THREAD);
3238  if (HAS_PENDING_EXCEPTION) {
3239    // management agent fails to start possibly due to
3240    // configuration problem and is responsible for printing
3241    // stack trace if appropriate. Simply exit VM.
3242    vm_exit(1);
3243  }
3244
3245  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3246  if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3247  if (MemProfiling)                   MemProfiler::engage();
3248  StatSampler::engage();
3249  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3250
3251  BiasedLocking::init();
3252
3253
3254  // Start up the WatcherThread if there are any periodic tasks
3255  // NOTE:  All PeriodicTasks should be registered by now. If they
3256  //   aren't, late joiners might appear to start slowly (we might
3257  //   take a while to process their first tick).
3258  if (PeriodicTask::num_tasks() > 0) {
3259    WatcherThread::start();
3260  }
3261
3262  // Give os specific code one last chance to start
3263  os::init_3();
3264
3265  create_vm_timer.end();
3266  return JNI_OK;
3267}
3268
3269// type for the Agent_OnLoad and JVM_OnLoad entry points
3270extern "C" {
3271  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3272}
3273// Find a command line agent library and return its entry point for
3274//         -agentlib:  -agentpath:   -Xrun
3275// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3276static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3277  OnLoadEntry_t on_load_entry = NULL;
3278  void *library = agent->os_lib();  // check if we have looked it up before
3279
3280  if (library == NULL) {
3281    char buffer[JVM_MAXPATHLEN];
3282    char ebuf[1024];
3283    const char *name = agent->name();
3284
3285    if (agent->is_absolute_path()) {
3286      library = hpi::dll_load(name, ebuf, sizeof ebuf);
3287      if (library == NULL) {
3288        // If we can't find the agent, exit.
3289        vm_exit_during_initialization("Could not find agent library in absolute path", name);
3290      }
3291    } else {
3292      // Try to load the agent from the standard dll directory
3293      hpi::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
3294      library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3295#ifdef KERNEL
3296      // Download instrument dll
3297      if (library == NULL && strcmp(name, "instrument") == 0) {
3298        char *props = Arguments::get_kernel_properties();
3299        char *home  = Arguments::get_java_home();
3300        const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
3301                      " sun.jkernel.DownloadManager -download client_jvm";
3302        int length = strlen(props) + strlen(home) + strlen(fmt) + 1;
3303        char *cmd = AllocateHeap(length);
3304        jio_snprintf(cmd, length, fmt, home, props);
3305        int status = os::fork_and_exec(cmd);
3306        FreeHeap(props);
3307        FreeHeap(cmd);
3308        if (status == -1) {
3309          warning(cmd);
3310          vm_exit_during_initialization("fork_and_exec failed: %s",
3311                                         strerror(errno));
3312        }
3313        // when this comes back the instrument.dll should be where it belongs.
3314        library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3315      }
3316#endif // KERNEL
3317      if (library == NULL) { // Try the local directory
3318        char ns[1] = {0};
3319        hpi::dll_build_name(buffer, sizeof(buffer), ns, name);
3320        library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3321        if (library == NULL) {
3322          // If we can't find the agent, exit.
3323          vm_exit_during_initialization("Could not find agent library on the library path or in the local directory", name);
3324        }
3325      }
3326    }
3327    agent->set_os_lib(library);
3328  }
3329
3330  // Find the OnLoad function.
3331  for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3332    on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, hpi::dll_lookup(library, on_load_symbols[symbol_index]));
3333    if (on_load_entry != NULL) break;
3334  }
3335  return on_load_entry;
3336}
3337
3338// Find the JVM_OnLoad entry point
3339static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3340  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3341  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3342}
3343
3344// Find the Agent_OnLoad entry point
3345static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3346  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3347  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3348}
3349
3350// For backwards compatibility with -Xrun
3351// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3352// treated like -agentpath:
3353// Must be called before agent libraries are created
3354void Threads::convert_vm_init_libraries_to_agents() {
3355  AgentLibrary* agent;
3356  AgentLibrary* next;
3357
3358  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3359    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3360    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3361
3362    // If there is an JVM_OnLoad function it will get called later,
3363    // otherwise see if there is an Agent_OnLoad
3364    if (on_load_entry == NULL) {
3365      on_load_entry = lookup_agent_on_load(agent);
3366      if (on_load_entry != NULL) {
3367        // switch it to the agent list -- so that Agent_OnLoad will be called,
3368        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3369        Arguments::convert_library_to_agent(agent);
3370      } else {
3371        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3372      }
3373    }
3374  }
3375}
3376
3377// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3378// Invokes Agent_OnLoad
3379// Called very early -- before JavaThreads exist
3380void Threads::create_vm_init_agents() {
3381  extern struct JavaVM_ main_vm;
3382  AgentLibrary* agent;
3383
3384  JvmtiExport::enter_onload_phase();
3385  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3386    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3387
3388    if (on_load_entry != NULL) {
3389      // Invoke the Agent_OnLoad function
3390      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3391      if (err != JNI_OK) {
3392        vm_exit_during_initialization("agent library failed to init", agent->name());
3393      }
3394    } else {
3395      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3396    }
3397  }
3398  JvmtiExport::enter_primordial_phase();
3399}
3400
3401extern "C" {
3402  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3403}
3404
3405void Threads::shutdown_vm_agents() {
3406  // Send any Agent_OnUnload notifications
3407  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3408  extern struct JavaVM_ main_vm;
3409  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3410
3411    // Find the Agent_OnUnload function.
3412    for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3413      Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3414               hpi::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3415
3416      // Invoke the Agent_OnUnload function
3417      if (unload_entry != NULL) {
3418        JavaThread* thread = JavaThread::current();
3419        ThreadToNativeFromVM ttn(thread);
3420        HandleMark hm(thread);
3421        (*unload_entry)(&main_vm);
3422        break;
3423      }
3424    }
3425  }
3426}
3427
3428// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3429// Invokes JVM_OnLoad
3430void Threads::create_vm_init_libraries() {
3431  extern struct JavaVM_ main_vm;
3432  AgentLibrary* agent;
3433
3434  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3435    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3436
3437    if (on_load_entry != NULL) {
3438      // Invoke the JVM_OnLoad function
3439      JavaThread* thread = JavaThread::current();
3440      ThreadToNativeFromVM ttn(thread);
3441      HandleMark hm(thread);
3442      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3443      if (err != JNI_OK) {
3444        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3445      }
3446    } else {
3447      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3448    }
3449  }
3450}
3451
3452// Last thread running calls java.lang.Shutdown.shutdown()
3453void JavaThread::invoke_shutdown_hooks() {
3454  HandleMark hm(this);
3455
3456  // We could get here with a pending exception, if so clear it now.
3457  if (this->has_pending_exception()) {
3458    this->clear_pending_exception();
3459  }
3460
3461  EXCEPTION_MARK;
3462  klassOop k =
3463    SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_Shutdown(),
3464                                      THREAD);
3465  if (k != NULL) {
3466    // SystemDictionary::resolve_or_null will return null if there was
3467    // an exception.  If we cannot load the Shutdown class, just don't
3468    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3469    // and finalizers (if runFinalizersOnExit is set) won't be run.
3470    // Note that if a shutdown hook was registered or runFinalizersOnExit
3471    // was called, the Shutdown class would have already been loaded
3472    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3473    instanceKlassHandle shutdown_klass (THREAD, k);
3474    JavaValue result(T_VOID);
3475    JavaCalls::call_static(&result,
3476                           shutdown_klass,
3477                           vmSymbolHandles::shutdown_method_name(),
3478                           vmSymbolHandles::void_method_signature(),
3479                           THREAD);
3480  }
3481  CLEAR_PENDING_EXCEPTION;
3482}
3483
3484// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3485// the program falls off the end of main(). Another VM exit path is through
3486// vm_exit() when the program calls System.exit() to return a value or when
3487// there is a serious error in VM. The two shutdown paths are not exactly
3488// the same, but they share Shutdown.shutdown() at Java level and before_exit()
3489// and VM_Exit op at VM level.
3490//
3491// Shutdown sequence:
3492//   + Wait until we are the last non-daemon thread to execute
3493//     <-- every thing is still working at this moment -->
3494//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3495//        shutdown hooks, run finalizers if finalization-on-exit
3496//   + Call before_exit(), prepare for VM exit
3497//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3498//        currently the only user of this mechanism is File.deleteOnExit())
3499//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3500//        post thread end and vm death events to JVMTI,
3501//        stop signal thread
3502//   + Call JavaThread::exit(), it will:
3503//      > release JNI handle blocks, remove stack guard pages
3504//      > remove this thread from Threads list
3505//     <-- no more Java code from this thread after this point -->
3506//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3507//     the compiler threads at safepoint
3508//     <-- do not use anything that could get blocked by Safepoint -->
3509//   + Disable tracing at JNI/JVM barriers
3510//   + Set _vm_exited flag for threads that are still running native code
3511//   + Delete this thread
3512//   + Call exit_globals()
3513//      > deletes tty
3514//      > deletes PerfMemory resources
3515//   + Return to caller
3516
3517bool Threads::destroy_vm() {
3518  JavaThread* thread = JavaThread::current();
3519
3520  // Wait until we are the last non-daemon thread to execute
3521  { MutexLocker nu(Threads_lock);
3522    while (Threads::number_of_non_daemon_threads() > 1 )
3523      // This wait should make safepoint checks, wait without a timeout,
3524      // and wait as a suspend-equivalent condition.
3525      //
3526      // Note: If the FlatProfiler is running and this thread is waiting
3527      // for another non-daemon thread to finish, then the FlatProfiler
3528      // is waiting for the external suspend request on this thread to
3529      // complete. wait_for_ext_suspend_completion() will eventually
3530      // timeout, but that takes time. Making this wait a suspend-
3531      // equivalent condition solves that timeout problem.
3532      //
3533      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3534                         Mutex::_as_suspend_equivalent_flag);
3535  }
3536
3537  // Hang forever on exit if we are reporting an error.
3538  if (ShowMessageBoxOnError && is_error_reported()) {
3539    os::infinite_sleep();
3540  }
3541
3542  if (JDK_Version::is_jdk12x_version()) {
3543    // We are the last thread running, so check if finalizers should be run.
3544    // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3545    HandleMark rm(thread);
3546    Universe::run_finalizers_on_exit();
3547  } else {
3548    // run Java level shutdown hooks
3549    thread->invoke_shutdown_hooks();
3550  }
3551
3552  before_exit(thread);
3553
3554  thread->exit(true);
3555
3556  // Stop VM thread.
3557  {
3558    // 4945125 The vm thread comes to a safepoint during exit.
3559    // GC vm_operations can get caught at the safepoint, and the
3560    // heap is unparseable if they are caught. Grab the Heap_lock
3561    // to prevent this. The GC vm_operations will not be able to
3562    // queue until after the vm thread is dead.
3563    MutexLocker ml(Heap_lock);
3564
3565    VMThread::wait_for_vm_thread_exit();
3566    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3567    VMThread::destroy();
3568  }
3569
3570  // clean up ideal graph printers
3571#if defined(COMPILER2) && !defined(PRODUCT)
3572  IdealGraphPrinter::clean_up();
3573#endif
3574
3575  // Now, all Java threads are gone except daemon threads. Daemon threads
3576  // running Java code or in VM are stopped by the Safepoint. However,
3577  // daemon threads executing native code are still running.  But they
3578  // will be stopped at native=>Java/VM barriers. Note that we can't
3579  // simply kill or suspend them, as it is inherently deadlock-prone.
3580
3581#ifndef PRODUCT
3582  // disable function tracing at JNI/JVM barriers
3583  TraceHPI = false;
3584  TraceJNICalls = false;
3585  TraceJVMCalls = false;
3586  TraceRuntimeCalls = false;
3587#endif
3588
3589  VM_Exit::set_vm_exited();
3590
3591  notify_vm_shutdown();
3592
3593  delete thread;
3594
3595  // exit_globals() will delete tty
3596  exit_globals();
3597
3598  return true;
3599}
3600
3601
3602jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3603  if (version == JNI_VERSION_1_1) return JNI_TRUE;
3604  return is_supported_jni_version(version);
3605}
3606
3607
3608jboolean Threads::is_supported_jni_version(jint version) {
3609  if (version == JNI_VERSION_1_2) return JNI_TRUE;
3610  if (version == JNI_VERSION_1_4) return JNI_TRUE;
3611  if (version == JNI_VERSION_1_6) return JNI_TRUE;
3612  return JNI_FALSE;
3613}
3614
3615
3616void Threads::add(JavaThread* p, bool force_daemon) {
3617  // The threads lock must be owned at this point
3618  assert_locked_or_safepoint(Threads_lock);
3619  p->set_next(_thread_list);
3620  _thread_list = p;
3621  _number_of_threads++;
3622  oop threadObj = p->threadObj();
3623  bool daemon = true;
3624  // Bootstrapping problem: threadObj can be null for initial
3625  // JavaThread (or for threads attached via JNI)
3626  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3627    _number_of_non_daemon_threads++;
3628    daemon = false;
3629  }
3630
3631  ThreadService::add_thread(p, daemon);
3632
3633  // Possible GC point.
3634  Events::log("Thread added: " INTPTR_FORMAT, p);
3635}
3636
3637void Threads::remove(JavaThread* p) {
3638  // Extra scope needed for Thread_lock, so we can check
3639  // that we do not remove thread without safepoint code notice
3640  { MutexLocker ml(Threads_lock);
3641
3642    assert(includes(p), "p must be present");
3643
3644    JavaThread* current = _thread_list;
3645    JavaThread* prev    = NULL;
3646
3647    while (current != p) {
3648      prev    = current;
3649      current = current->next();
3650    }
3651
3652    if (prev) {
3653      prev->set_next(current->next());
3654    } else {
3655      _thread_list = p->next();
3656    }
3657    _number_of_threads--;
3658    oop threadObj = p->threadObj();
3659    bool daemon = true;
3660    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
3661      _number_of_non_daemon_threads--;
3662      daemon = false;
3663
3664      // Only one thread left, do a notify on the Threads_lock so a thread waiting
3665      // on destroy_vm will wake up.
3666      if (number_of_non_daemon_threads() == 1)
3667        Threads_lock->notify_all();
3668    }
3669    ThreadService::remove_thread(p, daemon);
3670
3671    // Make sure that safepoint code disregard this thread. This is needed since
3672    // the thread might mess around with locks after this point. This can cause it
3673    // to do callbacks into the safepoint code. However, the safepoint code is not aware
3674    // of this thread since it is removed from the queue.
3675    p->set_terminated_value();
3676  } // unlock Threads_lock
3677
3678  // Since Events::log uses a lock, we grab it outside the Threads_lock
3679  Events::log("Thread exited: " INTPTR_FORMAT, p);
3680}
3681
3682// Threads_lock must be held when this is called (or must be called during a safepoint)
3683bool Threads::includes(JavaThread* p) {
3684  assert(Threads_lock->is_locked(), "sanity check");
3685  ALL_JAVA_THREADS(q) {
3686    if (q == p ) {
3687      return true;
3688    }
3689  }
3690  return false;
3691}
3692
3693// Operations on the Threads list for GC.  These are not explicitly locked,
3694// but the garbage collector must provide a safe context for them to run.
3695// In particular, these things should never be called when the Threads_lock
3696// is held by some other thread. (Note: the Safepoint abstraction also
3697// uses the Threads_lock to gurantee this property. It also makes sure that
3698// all threads gets blocked when exiting or starting).
3699
3700void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3701  ALL_JAVA_THREADS(p) {
3702    p->oops_do(f, cf);
3703  }
3704  VMThread::vm_thread()->oops_do(f, cf);
3705}
3706
3707void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
3708  // Introduce a mechanism allowing parallel threads to claim threads as
3709  // root groups.  Overhead should be small enough to use all the time,
3710  // even in sequential code.
3711  SharedHeap* sh = SharedHeap::heap();
3712  bool is_par = (sh->n_par_threads() > 0);
3713  int cp = SharedHeap::heap()->strong_roots_parity();
3714  ALL_JAVA_THREADS(p) {
3715    if (p->claim_oops_do(is_par, cp)) {
3716      p->oops_do(f, cf);
3717    }
3718  }
3719  VMThread* vmt = VMThread::vm_thread();
3720  if (vmt->claim_oops_do(is_par, cp))
3721    vmt->oops_do(f, cf);
3722}
3723
3724#ifndef SERIALGC
3725// Used by ParallelScavenge
3726void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
3727  ALL_JAVA_THREADS(p) {
3728    q->enqueue(new ThreadRootsTask(p));
3729  }
3730  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
3731}
3732
3733// Used by Parallel Old
3734void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
3735  ALL_JAVA_THREADS(p) {
3736    q->enqueue(new ThreadRootsMarkingTask(p));
3737  }
3738  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
3739}
3740#endif // SERIALGC
3741
3742void Threads::nmethods_do(CodeBlobClosure* cf) {
3743  ALL_JAVA_THREADS(p) {
3744    p->nmethods_do(cf);
3745  }
3746  VMThread::vm_thread()->nmethods_do(cf);
3747}
3748
3749void Threads::gc_epilogue() {
3750  ALL_JAVA_THREADS(p) {
3751    p->gc_epilogue();
3752  }
3753}
3754
3755void Threads::gc_prologue() {
3756  ALL_JAVA_THREADS(p) {
3757    p->gc_prologue();
3758  }
3759}
3760
3761void Threads::deoptimized_wrt_marked_nmethods() {
3762  ALL_JAVA_THREADS(p) {
3763    p->deoptimized_wrt_marked_nmethods();
3764  }
3765}
3766
3767
3768// Get count Java threads that are waiting to enter the specified monitor.
3769GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
3770  address monitor, bool doLock) {
3771  assert(doLock || SafepointSynchronize::is_at_safepoint(),
3772    "must grab Threads_lock or be at safepoint");
3773  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
3774
3775  int i = 0;
3776  {
3777    MutexLockerEx ml(doLock ? Threads_lock : NULL);
3778    ALL_JAVA_THREADS(p) {
3779      if (p->is_Compiler_thread()) continue;
3780
3781      address pending = (address)p->current_pending_monitor();
3782      if (pending == monitor) {             // found a match
3783        if (i < count) result->append(p);   // save the first count matches
3784        i++;
3785      }
3786    }
3787  }
3788  return result;
3789}
3790
3791
3792JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
3793  assert(doLock ||
3794         Threads_lock->owned_by_self() ||
3795         SafepointSynchronize::is_at_safepoint(),
3796         "must grab Threads_lock or be at safepoint");
3797
3798  // NULL owner means not locked so we can skip the search
3799  if (owner == NULL) return NULL;
3800
3801  {
3802    MutexLockerEx ml(doLock ? Threads_lock : NULL);
3803    ALL_JAVA_THREADS(p) {
3804      // first, see if owner is the address of a Java thread
3805      if (owner == (address)p) return p;
3806    }
3807  }
3808  assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
3809  if (UseHeavyMonitors) return NULL;
3810
3811  //
3812  // If we didn't find a matching Java thread and we didn't force use of
3813  // heavyweight monitors, then the owner is the stack address of the
3814  // Lock Word in the owning Java thread's stack.
3815  //
3816  JavaThread* the_owner = NULL;
3817  {
3818    MutexLockerEx ml(doLock ? Threads_lock : NULL);
3819    ALL_JAVA_THREADS(q) {
3820      if (q->is_lock_owned(owner)) {
3821        the_owner = q;
3822        break;
3823      }
3824    }
3825  }
3826  assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
3827  return the_owner;
3828}
3829
3830// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
3831void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
3832  char buf[32];
3833  st->print_cr(os::local_time_string(buf, sizeof(buf)));
3834
3835  st->print_cr("Full thread dump %s (%s %s):",
3836                Abstract_VM_Version::vm_name(),
3837                Abstract_VM_Version::vm_release(),
3838                Abstract_VM_Version::vm_info_string()
3839               );
3840  st->cr();
3841
3842#ifndef SERIALGC
3843  // Dump concurrent locks
3844  ConcurrentLocksDump concurrent_locks;
3845  if (print_concurrent_locks) {
3846    concurrent_locks.dump_at_safepoint();
3847  }
3848#endif // SERIALGC
3849
3850  ALL_JAVA_THREADS(p) {
3851    ResourceMark rm;
3852    p->print_on(st);
3853    if (print_stacks) {
3854      if (internal_format) {
3855        p->trace_stack();
3856      } else {
3857        p->print_stack_on(st);
3858      }
3859    }
3860    st->cr();
3861#ifndef SERIALGC
3862    if (print_concurrent_locks) {
3863      concurrent_locks.print_locks_on(p, st);
3864    }
3865#endif // SERIALGC
3866  }
3867
3868  VMThread::vm_thread()->print_on(st);
3869  st->cr();
3870  Universe::heap()->print_gc_threads_on(st);
3871  WatcherThread* wt = WatcherThread::watcher_thread();
3872  if (wt != NULL) wt->print_on(st);
3873  st->cr();
3874  CompileBroker::print_compiler_threads_on(st);
3875  st->flush();
3876}
3877
3878// Threads::print_on_error() is called by fatal error handler. It's possible
3879// that VM is not at safepoint and/or current thread is inside signal handler.
3880// Don't print stack trace, as the stack may not be walkable. Don't allocate
3881// memory (even in resource area), it might deadlock the error handler.
3882void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
3883  bool found_current = false;
3884  st->print_cr("Java Threads: ( => current thread )");
3885  ALL_JAVA_THREADS(thread) {
3886    bool is_current = (current == thread);
3887    found_current = found_current || is_current;
3888
3889    st->print("%s", is_current ? "=>" : "  ");
3890
3891    st->print(PTR_FORMAT, thread);
3892    st->print(" ");
3893    thread->print_on_error(st, buf, buflen);
3894    st->cr();
3895  }
3896  st->cr();
3897
3898  st->print_cr("Other Threads:");
3899  if (VMThread::vm_thread()) {
3900    bool is_current = (current == VMThread::vm_thread());
3901    found_current = found_current || is_current;
3902    st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
3903
3904    st->print(PTR_FORMAT, VMThread::vm_thread());
3905    st->print(" ");
3906    VMThread::vm_thread()->print_on_error(st, buf, buflen);
3907    st->cr();
3908  }
3909  WatcherThread* wt = WatcherThread::watcher_thread();
3910  if (wt != NULL) {
3911    bool is_current = (current == wt);
3912    found_current = found_current || is_current;
3913    st->print("%s", is_current ? "=>" : "  ");
3914
3915    st->print(PTR_FORMAT, wt);
3916    st->print(" ");
3917    wt->print_on_error(st, buf, buflen);
3918    st->cr();
3919  }
3920  if (!found_current) {
3921    st->cr();
3922    st->print("=>" PTR_FORMAT " (exited) ", current);
3923    current->print_on_error(st, buf, buflen);
3924    st->cr();
3925  }
3926}
3927
3928
3929// Lifecycle management for TSM ParkEvents.
3930// ParkEvents are type-stable (TSM).
3931// In our particular implementation they happen to be immortal.
3932//
3933// We manage concurrency on the FreeList with a CAS-based
3934// detach-modify-reattach idiom that avoids the ABA problems
3935// that would otherwise be present in a simple CAS-based
3936// push-pop implementation.   (push-one and pop-all)
3937//
3938// Caveat: Allocate() and Release() may be called from threads
3939// other than the thread associated with the Event!
3940// If we need to call Allocate() when running as the thread in
3941// question then look for the PD calls to initialize native TLS.
3942// Native TLS (Win32/Linux/Solaris) can only be initialized or
3943// accessed by the associated thread.
3944// See also pd_initialize().
3945//
3946// Note that we could defer associating a ParkEvent with a thread
3947// until the 1st time the thread calls park().  unpark() calls to
3948// an unprovisioned thread would be ignored.  The first park() call
3949// for a thread would allocate and associate a ParkEvent and return
3950// immediately.
3951
3952volatile int ParkEvent::ListLock = 0 ;
3953ParkEvent * volatile ParkEvent::FreeList = NULL ;
3954
3955ParkEvent * ParkEvent::Allocate (Thread * t) {
3956  // In rare cases -- JVM_RawMonitor* operations -- we can find t == null.
3957  ParkEvent * ev ;
3958
3959  // Start by trying to recycle an existing but unassociated
3960  // ParkEvent from the global free list.
3961  for (;;) {
3962    ev = FreeList ;
3963    if (ev == NULL) break ;
3964    // 1: Detach - sequester or privatize the list
3965    // Tantamount to ev = Swap (&FreeList, NULL)
3966    if (Atomic::cmpxchg_ptr (NULL, &FreeList, ev) != ev) {
3967       continue ;
3968    }
3969
3970    // We've detached the list.  The list in-hand is now
3971    // local to this thread.   This thread can operate on the
3972    // list without risk of interference from other threads.
3973    // 2: Extract -- pop the 1st element from the list.
3974    ParkEvent * List = ev->FreeNext ;
3975    if (List == NULL) break ;
3976    for (;;) {
3977        // 3: Try to reattach the residual list
3978        guarantee (List != NULL, "invariant") ;
3979        ParkEvent * Arv =  (ParkEvent *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
3980        if (Arv == NULL) break ;
3981
3982        // New nodes arrived.  Try to detach the recent arrivals.
3983        if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
3984            continue ;
3985        }
3986        guarantee (Arv != NULL, "invariant") ;
3987        // 4: Merge Arv into List
3988        ParkEvent * Tail = List ;
3989        while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
3990        Tail->FreeNext = Arv ;
3991    }
3992    break ;
3993  }
3994
3995  if (ev != NULL) {
3996    guarantee (ev->AssociatedWith == NULL, "invariant") ;
3997  } else {
3998    // Do this the hard way -- materialize a new ParkEvent.
3999    // In rare cases an allocating thread might detach a long list --
4000    // installing null into FreeList -- and then stall or be obstructed.
4001    // A 2nd thread calling Allocate() would see FreeList == null.
4002    // The list held privately by the 1st thread is unavailable to the 2nd thread.
4003    // In that case the 2nd thread would have to materialize a new ParkEvent,
4004    // even though free ParkEvents existed in the system.  In this case we end up
4005    // with more ParkEvents in circulation than we need, but the race is
4006    // rare and the outcome is benign.  Ideally, the # of extant ParkEvents
4007    // is equal to the maximum # of threads that existed at any one time.
4008    // Because of the race mentioned above, segments of the freelist
4009    // can be transiently inaccessible.  At worst we may end up with the
4010    // # of ParkEvents in circulation slightly above the ideal.
4011    // Note that if we didn't have the TSM/immortal constraint, then
4012    // when reattaching, above, we could trim the list.
4013    ev = new ParkEvent () ;
4014    guarantee ((intptr_t(ev) & 0xFF) == 0, "invariant") ;
4015  }
4016  ev->reset() ;                     // courtesy to caller
4017  ev->AssociatedWith = t ;          // Associate ev with t
4018  ev->FreeNext       = NULL ;
4019  return ev ;
4020}
4021
4022void ParkEvent::Release (ParkEvent * ev) {
4023  if (ev == NULL) return ;
4024  guarantee (ev->FreeNext == NULL      , "invariant") ;
4025  ev->AssociatedWith = NULL ;
4026  for (;;) {
4027    // Push ev onto FreeList
4028    // The mechanism is "half" lock-free.
4029    ParkEvent * List = FreeList ;
4030    ev->FreeNext = List ;
4031    if (Atomic::cmpxchg_ptr (ev, &FreeList, List) == List) break ;
4032  }
4033}
4034
4035// Override operator new and delete so we can ensure that the
4036// least significant byte of ParkEvent addresses is 0.
4037// Beware that excessive address alignment is undesirable
4038// as it can result in D$ index usage imbalance as
4039// well as bank access imbalance on Niagara-like platforms,
4040// although Niagara's hash function should help.
4041
4042void * ParkEvent::operator new (size_t sz) {
4043  return (void *) ((intptr_t (CHeapObj::operator new (sz + 256)) + 256) & -256) ;
4044}
4045
4046void ParkEvent::operator delete (void * a) {
4047  // ParkEvents are type-stable and immortal ...
4048  ShouldNotReachHere();
4049}
4050
4051
4052// 6399321 As a temporary measure we copied & modified the ParkEvent::
4053// allocate() and release() code for use by Parkers.  The Parker:: forms
4054// will eventually be removed as we consolide and shift over to ParkEvents
4055// for both builtin synchronization and JSR166 operations.
4056
4057volatile int Parker::ListLock = 0 ;
4058Parker * volatile Parker::FreeList = NULL ;
4059
4060Parker * Parker::Allocate (JavaThread * t) {
4061  guarantee (t != NULL, "invariant") ;
4062  Parker * p ;
4063
4064  // Start by trying to recycle an existing but unassociated
4065  // Parker from the global free list.
4066  for (;;) {
4067    p = FreeList ;
4068    if (p  == NULL) break ;
4069    // 1: Detach
4070    // Tantamount to p = Swap (&FreeList, NULL)
4071    if (Atomic::cmpxchg_ptr (NULL, &FreeList, p) != p) {
4072       continue ;
4073    }
4074
4075    // We've detached the list.  The list in-hand is now
4076    // local to this thread.   This thread can operate on the
4077    // list without risk of interference from other threads.
4078    // 2: Extract -- pop the 1st element from the list.
4079    Parker * List = p->FreeNext ;
4080    if (List == NULL) break ;
4081    for (;;) {
4082        // 3: Try to reattach the residual list
4083        guarantee (List != NULL, "invariant") ;
4084        Parker * Arv =  (Parker *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
4085        if (Arv == NULL) break ;
4086
4087        // New nodes arrived.  Try to detach the recent arrivals.
4088        if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
4089            continue ;
4090        }
4091        guarantee (Arv != NULL, "invariant") ;
4092        // 4: Merge Arv into List
4093        Parker * Tail = List ;
4094        while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
4095        Tail->FreeNext = Arv ;
4096    }
4097    break ;
4098  }
4099
4100  if (p != NULL) {
4101    guarantee (p->AssociatedWith == NULL, "invariant") ;
4102  } else {
4103    // Do this the hard way -- materialize a new Parker..
4104    // In rare cases an allocating thread might detach
4105    // a long list -- installing null into FreeList --and
4106    // then stall.  Another thread calling Allocate() would see
4107    // FreeList == null and then invoke the ctor.  In this case we
4108    // end up with more Parkers in circulation than we need, but
4109    // the race is rare and the outcome is benign.
4110    // Ideally, the # of extant Parkers is equal to the
4111    // maximum # of threads that existed at any one time.
4112    // Because of the race mentioned above, segments of the
4113    // freelist can be transiently inaccessible.  At worst
4114    // we may end up with the # of Parkers in circulation
4115    // slightly above the ideal.
4116    p = new Parker() ;
4117  }
4118  p->AssociatedWith = t ;          // Associate p with t
4119  p->FreeNext       = NULL ;
4120  return p ;
4121}
4122
4123
4124void Parker::Release (Parker * p) {
4125  if (p == NULL) return ;
4126  guarantee (p->AssociatedWith != NULL, "invariant") ;
4127  guarantee (p->FreeNext == NULL      , "invariant") ;
4128  p->AssociatedWith = NULL ;
4129  for (;;) {
4130    // Push p onto FreeList
4131    Parker * List = FreeList ;
4132    p->FreeNext = List ;
4133    if (Atomic::cmpxchg_ptr (p, &FreeList, List) == List) break ;
4134  }
4135}
4136
4137void Threads::verify() {
4138  ALL_JAVA_THREADS(p) {
4139    p->verify();
4140  }
4141  VMThread* thread = VMThread::vm_thread();
4142  if (thread != NULL) thread->verify();
4143}
4144