thread.cpp revision 1523:d93949c5bdcc
1/*
2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25# include "incls/_precompiled.incl"
26# include "incls/_thread.cpp.incl"
27
28#ifdef DTRACE_ENABLED
29
30// Only bother with this argument setup if dtrace is available
31
32HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
33HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
34HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
35  intptr_t, intptr_t, bool);
36HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
37  intptr_t, intptr_t, bool);
38
39#define DTRACE_THREAD_PROBE(probe, javathread)                             \
40  {                                                                        \
41    ResourceMark rm(this);                                                 \
42    int len = 0;                                                           \
43    const char* name = (javathread)->get_thread_name();                    \
44    len = strlen(name);                                                    \
45    HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
46      name, len,                                                           \
47      java_lang_Thread::thread_id((javathread)->threadObj()),              \
48      (javathread)->osthread()->thread_id(),                               \
49      java_lang_Thread::is_daemon((javathread)->threadObj()));             \
50  }
51
52#else //  ndef DTRACE_ENABLED
53
54#define DTRACE_THREAD_PROBE(probe, javathread)
55
56#endif // ndef DTRACE_ENABLED
57
58// Class hierarchy
59// - Thread
60//   - VMThread
61//   - WatcherThread
62//   - ConcurrentMarkSweepThread
63//   - JavaThread
64//     - CompilerThread
65
66// ======= Thread ========
67
68// Support for forcing alignment of thread objects for biased locking
69void* Thread::operator new(size_t size) {
70  if (UseBiasedLocking) {
71    const int alignment = markOopDesc::biased_lock_alignment;
72    size_t aligned_size = size + (alignment - sizeof(intptr_t));
73    void* real_malloc_addr = CHeapObj::operator new(aligned_size);
74    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
75    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
76           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
77           "JavaThread alignment code overflowed allocated storage");
78    if (TraceBiasedLocking) {
79      if (aligned_addr != real_malloc_addr)
80        tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
81                      real_malloc_addr, aligned_addr);
82    }
83    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
84    return aligned_addr;
85  } else {
86    return CHeapObj::operator new(size);
87  }
88}
89
90void Thread::operator delete(void* p) {
91  if (UseBiasedLocking) {
92    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
93    CHeapObj::operator delete(real_malloc_addr);
94  } else {
95    CHeapObj::operator delete(p);
96  }
97}
98
99
100// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
101// JavaThread
102
103
104Thread::Thread() {
105  // stack
106  _stack_base   = NULL;
107  _stack_size   = 0;
108  _self_raw_id  = 0;
109  _lgrp_id      = -1;
110  _osthread     = NULL;
111
112  // allocated data structures
113  set_resource_area(new ResourceArea());
114  set_handle_area(new HandleArea(NULL));
115  set_active_handles(NULL);
116  set_free_handle_block(NULL);
117  set_last_handle_mark(NULL);
118  set_osthread(NULL);
119
120  // This initial value ==> never claimed.
121  _oops_do_parity = 0;
122
123  // the handle mark links itself to last_handle_mark
124  new HandleMark(this);
125
126  // plain initialization
127  debug_only(_owned_locks = NULL;)
128  debug_only(_allow_allocation_count = 0;)
129  NOT_PRODUCT(_allow_safepoint_count = 0;)
130  NOT_PRODUCT(_skip_gcalot = false;)
131  CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
132  _jvmti_env_iteration_count = 0;
133  _vm_operation_started_count = 0;
134  _vm_operation_completed_count = 0;
135  _current_pending_monitor = NULL;
136  _current_pending_monitor_is_from_java = true;
137  _current_waiting_monitor = NULL;
138  _num_nested_signal = 0;
139  omFreeList = NULL ;
140  omFreeCount = 0 ;
141  omFreeProvision = 32 ;
142
143  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
144  _suspend_flags = 0;
145
146  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
147  _hashStateX = os::random() ;
148  _hashStateY = 842502087 ;
149  _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
150  _hashStateW = 273326509 ;
151
152  _OnTrap   = 0 ;
153  _schedctl = NULL ;
154  _Stalled  = 0 ;
155  _TypeTag  = 0x2BAD ;
156
157  // Many of the following fields are effectively final - immutable
158  // Note that nascent threads can't use the Native Monitor-Mutex
159  // construct until the _MutexEvent is initialized ...
160  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
161  // we might instead use a stack of ParkEvents that we could provision on-demand.
162  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
163  // and ::Release()
164  _ParkEvent   = ParkEvent::Allocate (this) ;
165  _SleepEvent  = ParkEvent::Allocate (this) ;
166  _MutexEvent  = ParkEvent::Allocate (this) ;
167  _MuxEvent    = ParkEvent::Allocate (this) ;
168
169#ifdef CHECK_UNHANDLED_OOPS
170  if (CheckUnhandledOops) {
171    _unhandled_oops = new UnhandledOops(this);
172  }
173#endif // CHECK_UNHANDLED_OOPS
174#ifdef ASSERT
175  if (UseBiasedLocking) {
176    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
177    assert(this == _real_malloc_address ||
178           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
179           "bug in forced alignment of thread objects");
180  }
181#endif /* ASSERT */
182}
183
184void Thread::initialize_thread_local_storage() {
185  // Note: Make sure this method only calls
186  // non-blocking operations. Otherwise, it might not work
187  // with the thread-startup/safepoint interaction.
188
189  // During Java thread startup, safepoint code should allow this
190  // method to complete because it may need to allocate memory to
191  // store information for the new thread.
192
193  // initialize structure dependent on thread local storage
194  ThreadLocalStorage::set_thread(this);
195
196  // set up any platform-specific state.
197  os::initialize_thread();
198
199}
200
201void Thread::record_stack_base_and_size() {
202  set_stack_base(os::current_stack_base());
203  set_stack_size(os::current_stack_size());
204}
205
206
207Thread::~Thread() {
208  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
209  ObjectSynchronizer::omFlush (this) ;
210
211  // deallocate data structures
212  delete resource_area();
213  // since the handle marks are using the handle area, we have to deallocated the root
214  // handle mark before deallocating the thread's handle area,
215  assert(last_handle_mark() != NULL, "check we have an element");
216  delete last_handle_mark();
217  assert(last_handle_mark() == NULL, "check we have reached the end");
218
219  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
220  // We NULL out the fields for good hygiene.
221  ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
222  ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
223  ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
224  ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
225
226  delete handle_area();
227
228  // osthread() can be NULL, if creation of thread failed.
229  if (osthread() != NULL) os::free_thread(osthread());
230
231  delete _SR_lock;
232
233  // clear thread local storage if the Thread is deleting itself
234  if (this == Thread::current()) {
235    ThreadLocalStorage::set_thread(NULL);
236  } else {
237    // In the case where we're not the current thread, invalidate all the
238    // caches in case some code tries to get the current thread or the
239    // thread that was destroyed, and gets stale information.
240    ThreadLocalStorage::invalidate_all();
241  }
242  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
243}
244
245// NOTE: dummy function for assertion purpose.
246void Thread::run() {
247  ShouldNotReachHere();
248}
249
250#ifdef ASSERT
251// Private method to check for dangling thread pointer
252void check_for_dangling_thread_pointer(Thread *thread) {
253 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
254         "possibility of dangling Thread pointer");
255}
256#endif
257
258
259#ifndef PRODUCT
260// Tracing method for basic thread operations
261void Thread::trace(const char* msg, const Thread* const thread) {
262  if (!TraceThreadEvents) return;
263  ResourceMark rm;
264  ThreadCritical tc;
265  const char *name = "non-Java thread";
266  int prio = -1;
267  if (thread->is_Java_thread()
268      && !thread->is_Compiler_thread()) {
269    // The Threads_lock must be held to get information about
270    // this thread but may not be in some situations when
271    // tracing  thread events.
272    bool release_Threads_lock = false;
273    if (!Threads_lock->owned_by_self()) {
274      Threads_lock->lock();
275      release_Threads_lock = true;
276    }
277    JavaThread* jt = (JavaThread *)thread;
278    name = (char *)jt->get_thread_name();
279    oop thread_oop = jt->threadObj();
280    if (thread_oop != NULL) {
281      prio = java_lang_Thread::priority(thread_oop);
282    }
283    if (release_Threads_lock) {
284      Threads_lock->unlock();
285    }
286  }
287  tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
288}
289#endif
290
291
292ThreadPriority Thread::get_priority(const Thread* const thread) {
293  trace("get priority", thread);
294  ThreadPriority priority;
295  // Can return an error!
296  (void)os::get_priority(thread, priority);
297  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
298  return priority;
299}
300
301void Thread::set_priority(Thread* thread, ThreadPriority priority) {
302  trace("set priority", thread);
303  debug_only(check_for_dangling_thread_pointer(thread);)
304  // Can return an error!
305  (void)os::set_priority(thread, priority);
306}
307
308
309void Thread::start(Thread* thread) {
310  trace("start", thread);
311  // Start is different from resume in that its safety is guaranteed by context or
312  // being called from a Java method synchronized on the Thread object.
313  if (!DisableStartThread) {
314    if (thread->is_Java_thread()) {
315      // Initialize the thread state to RUNNABLE before starting this thread.
316      // Can not set it after the thread started because we do not know the
317      // exact thread state at that time. It could be in MONITOR_WAIT or
318      // in SLEEPING or some other state.
319      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
320                                          java_lang_Thread::RUNNABLE);
321    }
322    os::start_thread(thread);
323  }
324}
325
326// Enqueue a VM_Operation to do the job for us - sometime later
327void Thread::send_async_exception(oop java_thread, oop java_throwable) {
328  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
329  VMThread::execute(vm_stop);
330}
331
332
333//
334// Check if an external suspend request has completed (or has been
335// cancelled). Returns true if the thread is externally suspended and
336// false otherwise.
337//
338// The bits parameter returns information about the code path through
339// the routine. Useful for debugging:
340//
341// set in is_ext_suspend_completed():
342// 0x00000001 - routine was entered
343// 0x00000010 - routine return false at end
344// 0x00000100 - thread exited (return false)
345// 0x00000200 - suspend request cancelled (return false)
346// 0x00000400 - thread suspended (return true)
347// 0x00001000 - thread is in a suspend equivalent state (return true)
348// 0x00002000 - thread is native and walkable (return true)
349// 0x00004000 - thread is native_trans and walkable (needed retry)
350//
351// set in wait_for_ext_suspend_completion():
352// 0x00010000 - routine was entered
353// 0x00020000 - suspend request cancelled before loop (return false)
354// 0x00040000 - thread suspended before loop (return true)
355// 0x00080000 - suspend request cancelled in loop (return false)
356// 0x00100000 - thread suspended in loop (return true)
357// 0x00200000 - suspend not completed during retry loop (return false)
358//
359
360// Helper class for tracing suspend wait debug bits.
361//
362// 0x00000100 indicates that the target thread exited before it could
363// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
364// 0x00080000 each indicate a cancelled suspend request so they don't
365// count as wait failures either.
366#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
367
368class TraceSuspendDebugBits : public StackObj {
369 private:
370  JavaThread * jt;
371  bool         is_wait;
372  bool         called_by_wait;  // meaningful when !is_wait
373  uint32_t *   bits;
374
375 public:
376  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
377                        uint32_t *_bits) {
378    jt             = _jt;
379    is_wait        = _is_wait;
380    called_by_wait = _called_by_wait;
381    bits           = _bits;
382  }
383
384  ~TraceSuspendDebugBits() {
385    if (!is_wait) {
386#if 1
387      // By default, don't trace bits for is_ext_suspend_completed() calls.
388      // That trace is very chatty.
389      return;
390#else
391      if (!called_by_wait) {
392        // If tracing for is_ext_suspend_completed() is enabled, then only
393        // trace calls to it from wait_for_ext_suspend_completion()
394        return;
395      }
396#endif
397    }
398
399    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
400      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
401        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
402        ResourceMark rm;
403
404        tty->print_cr(
405            "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
406            jt->get_thread_name(), *bits);
407
408        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
409      }
410    }
411  }
412};
413#undef DEBUG_FALSE_BITS
414
415
416bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
417  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
418
419  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
420  bool do_trans_retry;           // flag to force the retry
421
422  *bits |= 0x00000001;
423
424  do {
425    do_trans_retry = false;
426
427    if (is_exiting()) {
428      // Thread is in the process of exiting. This is always checked
429      // first to reduce the risk of dereferencing a freed JavaThread.
430      *bits |= 0x00000100;
431      return false;
432    }
433
434    if (!is_external_suspend()) {
435      // Suspend request is cancelled. This is always checked before
436      // is_ext_suspended() to reduce the risk of a rogue resume
437      // confusing the thread that made the suspend request.
438      *bits |= 0x00000200;
439      return false;
440    }
441
442    if (is_ext_suspended()) {
443      // thread is suspended
444      *bits |= 0x00000400;
445      return true;
446    }
447
448    // Now that we no longer do hard suspends of threads running
449    // native code, the target thread can be changing thread state
450    // while we are in this routine:
451    //
452    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
453    //
454    // We save a copy of the thread state as observed at this moment
455    // and make our decision about suspend completeness based on the
456    // copy. This closes the race where the thread state is seen as
457    // _thread_in_native_trans in the if-thread_blocked check, but is
458    // seen as _thread_blocked in if-thread_in_native_trans check.
459    JavaThreadState save_state = thread_state();
460
461    if (save_state == _thread_blocked && is_suspend_equivalent()) {
462      // If the thread's state is _thread_blocked and this blocking
463      // condition is known to be equivalent to a suspend, then we can
464      // consider the thread to be externally suspended. This means that
465      // the code that sets _thread_blocked has been modified to do
466      // self-suspension if the blocking condition releases. We also
467      // used to check for CONDVAR_WAIT here, but that is now covered by
468      // the _thread_blocked with self-suspension check.
469      //
470      // Return true since we wouldn't be here unless there was still an
471      // external suspend request.
472      *bits |= 0x00001000;
473      return true;
474    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
475      // Threads running native code will self-suspend on native==>VM/Java
476      // transitions. If its stack is walkable (should always be the case
477      // unless this function is called before the actual java_suspend()
478      // call), then the wait is done.
479      *bits |= 0x00002000;
480      return true;
481    } else if (!called_by_wait && !did_trans_retry &&
482               save_state == _thread_in_native_trans &&
483               frame_anchor()->walkable()) {
484      // The thread is transitioning from thread_in_native to another
485      // thread state. check_safepoint_and_suspend_for_native_trans()
486      // will force the thread to self-suspend. If it hasn't gotten
487      // there yet we may have caught the thread in-between the native
488      // code check above and the self-suspend. Lucky us. If we were
489      // called by wait_for_ext_suspend_completion(), then it
490      // will be doing the retries so we don't have to.
491      //
492      // Since we use the saved thread state in the if-statement above,
493      // there is a chance that the thread has already transitioned to
494      // _thread_blocked by the time we get here. In that case, we will
495      // make a single unnecessary pass through the logic below. This
496      // doesn't hurt anything since we still do the trans retry.
497
498      *bits |= 0x00004000;
499
500      // Once the thread leaves thread_in_native_trans for another
501      // thread state, we break out of this retry loop. We shouldn't
502      // need this flag to prevent us from getting back here, but
503      // sometimes paranoia is good.
504      did_trans_retry = true;
505
506      // We wait for the thread to transition to a more usable state.
507      for (int i = 1; i <= SuspendRetryCount; i++) {
508        // We used to do an "os::yield_all(i)" call here with the intention
509        // that yielding would increase on each retry. However, the parameter
510        // is ignored on Linux which means the yield didn't scale up. Waiting
511        // on the SR_lock below provides a much more predictable scale up for
512        // the delay. It also provides a simple/direct point to check for any
513        // safepoint requests from the VMThread
514
515        // temporarily drops SR_lock while doing wait with safepoint check
516        // (if we're a JavaThread - the WatcherThread can also call this)
517        // and increase delay with each retry
518        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
519
520        // check the actual thread state instead of what we saved above
521        if (thread_state() != _thread_in_native_trans) {
522          // the thread has transitioned to another thread state so
523          // try all the checks (except this one) one more time.
524          do_trans_retry = true;
525          break;
526        }
527      } // end retry loop
528
529
530    }
531  } while (do_trans_retry);
532
533  *bits |= 0x00000010;
534  return false;
535}
536
537//
538// Wait for an external suspend request to complete (or be cancelled).
539// Returns true if the thread is externally suspended and false otherwise.
540//
541bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
542       uint32_t *bits) {
543  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
544                             false /* !called_by_wait */, bits);
545
546  // local flag copies to minimize SR_lock hold time
547  bool is_suspended;
548  bool pending;
549  uint32_t reset_bits;
550
551  // set a marker so is_ext_suspend_completed() knows we are the caller
552  *bits |= 0x00010000;
553
554  // We use reset_bits to reinitialize the bits value at the top of
555  // each retry loop. This allows the caller to make use of any
556  // unused bits for their own marking purposes.
557  reset_bits = *bits;
558
559  {
560    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
561    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
562                                            delay, bits);
563    pending = is_external_suspend();
564  }
565  // must release SR_lock to allow suspension to complete
566
567  if (!pending) {
568    // A cancelled suspend request is the only false return from
569    // is_ext_suspend_completed() that keeps us from entering the
570    // retry loop.
571    *bits |= 0x00020000;
572    return false;
573  }
574
575  if (is_suspended) {
576    *bits |= 0x00040000;
577    return true;
578  }
579
580  for (int i = 1; i <= retries; i++) {
581    *bits = reset_bits;  // reinit to only track last retry
582
583    // We used to do an "os::yield_all(i)" call here with the intention
584    // that yielding would increase on each retry. However, the parameter
585    // is ignored on Linux which means the yield didn't scale up. Waiting
586    // on the SR_lock below provides a much more predictable scale up for
587    // the delay. It also provides a simple/direct point to check for any
588    // safepoint requests from the VMThread
589
590    {
591      MutexLocker ml(SR_lock());
592      // wait with safepoint check (if we're a JavaThread - the WatcherThread
593      // can also call this)  and increase delay with each retry
594      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
595
596      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
597                                              delay, bits);
598
599      // It is possible for the external suspend request to be cancelled
600      // (by a resume) before the actual suspend operation is completed.
601      // Refresh our local copy to see if we still need to wait.
602      pending = is_external_suspend();
603    }
604
605    if (!pending) {
606      // A cancelled suspend request is the only false return from
607      // is_ext_suspend_completed() that keeps us from staying in the
608      // retry loop.
609      *bits |= 0x00080000;
610      return false;
611    }
612
613    if (is_suspended) {
614      *bits |= 0x00100000;
615      return true;
616    }
617  } // end retry loop
618
619  // thread did not suspend after all our retries
620  *bits |= 0x00200000;
621  return false;
622}
623
624#ifndef PRODUCT
625void JavaThread::record_jump(address target, address instr, const char* file, int line) {
626
627  // This should not need to be atomic as the only way for simultaneous
628  // updates is via interrupts. Even then this should be rare or non-existant
629  // and we don't care that much anyway.
630
631  int index = _jmp_ring_index;
632  _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
633  _jmp_ring[index]._target = (intptr_t) target;
634  _jmp_ring[index]._instruction = (intptr_t) instr;
635  _jmp_ring[index]._file = file;
636  _jmp_ring[index]._line = line;
637}
638#endif /* PRODUCT */
639
640// Called by flat profiler
641// Callers have already called wait_for_ext_suspend_completion
642// The assertion for that is currently too complex to put here:
643bool JavaThread::profile_last_Java_frame(frame* _fr) {
644  bool gotframe = false;
645  // self suspension saves needed state.
646  if (has_last_Java_frame() && _anchor.walkable()) {
647     *_fr = pd_last_frame();
648     gotframe = true;
649  }
650  return gotframe;
651}
652
653void Thread::interrupt(Thread* thread) {
654  trace("interrupt", thread);
655  debug_only(check_for_dangling_thread_pointer(thread);)
656  os::interrupt(thread);
657}
658
659bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
660  trace("is_interrupted", thread);
661  debug_only(check_for_dangling_thread_pointer(thread);)
662  // Note:  If clear_interrupted==false, this simply fetches and
663  // returns the value of the field osthread()->interrupted().
664  return os::is_interrupted(thread, clear_interrupted);
665}
666
667
668// GC Support
669bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
670  jint thread_parity = _oops_do_parity;
671  if (thread_parity != strong_roots_parity) {
672    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
673    if (res == thread_parity) return true;
674    else {
675      guarantee(res == strong_roots_parity, "Or else what?");
676      assert(SharedHeap::heap()->n_par_threads() > 0,
677             "Should only fail when parallel.");
678      return false;
679    }
680  }
681  assert(SharedHeap::heap()->n_par_threads() > 0,
682         "Should only fail when parallel.");
683  return false;
684}
685
686void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
687  active_handles()->oops_do(f);
688  // Do oop for ThreadShadow
689  f->do_oop((oop*)&_pending_exception);
690  handle_area()->oops_do(f);
691}
692
693void Thread::nmethods_do(CodeBlobClosure* cf) {
694  // no nmethods in a generic thread...
695}
696
697void Thread::print_on(outputStream* st) const {
698  // get_priority assumes osthread initialized
699  if (osthread() != NULL) {
700    st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
701    osthread()->print_on(st);
702  }
703  debug_only(if (WizardMode) print_owned_locks_on(st);)
704}
705
706// Thread::print_on_error() is called by fatal error handler. Don't use
707// any lock or allocate memory.
708void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
709  if      (is_VM_thread())                  st->print("VMThread");
710  else if (is_Compiler_thread())            st->print("CompilerThread");
711  else if (is_Java_thread())                st->print("JavaThread");
712  else if (is_GC_task_thread())             st->print("GCTaskThread");
713  else if (is_Watcher_thread())             st->print("WatcherThread");
714  else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
715  else st->print("Thread");
716
717  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
718            _stack_base - _stack_size, _stack_base);
719
720  if (osthread()) {
721    st->print(" [id=%d]", osthread()->thread_id());
722  }
723}
724
725#ifdef ASSERT
726void Thread::print_owned_locks_on(outputStream* st) const {
727  Monitor *cur = _owned_locks;
728  if (cur == NULL) {
729    st->print(" (no locks) ");
730  } else {
731    st->print_cr(" Locks owned:");
732    while(cur) {
733      cur->print_on(st);
734      cur = cur->next();
735    }
736  }
737}
738
739static int ref_use_count  = 0;
740
741bool Thread::owns_locks_but_compiled_lock() const {
742  for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
743    if (cur != Compile_lock) return true;
744  }
745  return false;
746}
747
748
749#endif
750
751#ifndef PRODUCT
752
753// The flag: potential_vm_operation notifies if this particular safepoint state could potential
754// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
755// no threads which allow_vm_block's are held
756void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
757    // Check if current thread is allowed to block at a safepoint
758    if (!(_allow_safepoint_count == 0))
759      fatal("Possible safepoint reached by thread that does not allow it");
760    if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
761      fatal("LEAF method calling lock?");
762    }
763
764#ifdef ASSERT
765    if (potential_vm_operation && is_Java_thread()
766        && !Universe::is_bootstrapping()) {
767      // Make sure we do not hold any locks that the VM thread also uses.
768      // This could potentially lead to deadlocks
769      for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
770        // Threads_lock is special, since the safepoint synchronization will not start before this is
771        // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
772        // since it is used to transfer control between JavaThreads and the VMThread
773        // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
774        if ( (cur->allow_vm_block() &&
775              cur != Threads_lock &&
776              cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
777              cur != VMOperationRequest_lock &&
778              cur != VMOperationQueue_lock) ||
779              cur->rank() == Mutex::special) {
780          warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
781        }
782      }
783    }
784
785    if (GCALotAtAllSafepoints) {
786      // We could enter a safepoint here and thus have a gc
787      InterfaceSupport::check_gc_alot();
788    }
789#endif
790}
791#endif
792
793bool Thread::is_in_stack(address adr) const {
794  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
795  address end = os::current_stack_pointer();
796  if (stack_base() >= adr && adr >= end) return true;
797
798  return false;
799}
800
801
802// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
803// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
804// used for compilation in the future. If that change is made, the need for these methods
805// should be revisited, and they should be removed if possible.
806
807bool Thread::is_lock_owned(address adr) const {
808  return (_stack_base >= adr && adr >= (_stack_base - _stack_size));
809}
810
811bool Thread::set_as_starting_thread() {
812 // NOTE: this must be called inside the main thread.
813  return os::create_main_thread((JavaThread*)this);
814}
815
816static void initialize_class(symbolHandle class_name, TRAPS) {
817  klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
818  instanceKlass::cast(klass)->initialize(CHECK);
819}
820
821
822// Creates the initial ThreadGroup
823static Handle create_initial_thread_group(TRAPS) {
824  klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_ThreadGroup(), true, CHECK_NH);
825  instanceKlassHandle klass (THREAD, k);
826
827  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
828  {
829    JavaValue result(T_VOID);
830    JavaCalls::call_special(&result,
831                            system_instance,
832                            klass,
833                            vmSymbolHandles::object_initializer_name(),
834                            vmSymbolHandles::void_method_signature(),
835                            CHECK_NH);
836  }
837  Universe::set_system_thread_group(system_instance());
838
839  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
840  {
841    JavaValue result(T_VOID);
842    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
843    JavaCalls::call_special(&result,
844                            main_instance,
845                            klass,
846                            vmSymbolHandles::object_initializer_name(),
847                            vmSymbolHandles::threadgroup_string_void_signature(),
848                            system_instance,
849                            string,
850                            CHECK_NH);
851  }
852  return main_instance;
853}
854
855// Creates the initial Thread
856static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
857  klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK_NULL);
858  instanceKlassHandle klass (THREAD, k);
859  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
860
861  java_lang_Thread::set_thread(thread_oop(), thread);
862  java_lang_Thread::set_priority(thread_oop(), NormPriority);
863  thread->set_threadObj(thread_oop());
864
865  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
866
867  JavaValue result(T_VOID);
868  JavaCalls::call_special(&result, thread_oop,
869                                   klass,
870                                   vmSymbolHandles::object_initializer_name(),
871                                   vmSymbolHandles::threadgroup_string_void_signature(),
872                                   thread_group,
873                                   string,
874                                   CHECK_NULL);
875  return thread_oop();
876}
877
878static void call_initializeSystemClass(TRAPS) {
879  klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
880  instanceKlassHandle klass (THREAD, k);
881
882  JavaValue result(T_VOID);
883  JavaCalls::call_static(&result, klass, vmSymbolHandles::initializeSystemClass_name(),
884                                         vmSymbolHandles::void_method_signature(), CHECK);
885}
886
887#ifdef KERNEL
888static void set_jkernel_boot_classloader_hook(TRAPS) {
889  klassOop k = SystemDictionary::sun_jkernel_DownloadManager_klass();
890  instanceKlassHandle klass (THREAD, k);
891
892  if (k == NULL) {
893    // sun.jkernel.DownloadManager may not present in the JDK; just return
894    return;
895  }
896
897  JavaValue result(T_VOID);
898  JavaCalls::call_static(&result, klass, vmSymbolHandles::setBootClassLoaderHook_name(),
899                                         vmSymbolHandles::void_method_signature(), CHECK);
900}
901#endif // KERNEL
902
903static void reset_vm_info_property(TRAPS) {
904  // the vm info string
905  ResourceMark rm(THREAD);
906  const char *vm_info = VM_Version::vm_info_string();
907
908  // java.lang.System class
909  klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
910  instanceKlassHandle klass (THREAD, k);
911
912  // setProperty arguments
913  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
914  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
915
916  // return value
917  JavaValue r(T_OBJECT);
918
919  // public static String setProperty(String key, String value);
920  JavaCalls::call_static(&r,
921                         klass,
922                         vmSymbolHandles::setProperty_name(),
923                         vmSymbolHandles::string_string_string_signature(),
924                         key_str,
925                         value_str,
926                         CHECK);
927}
928
929
930void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
931  assert(thread_group.not_null(), "thread group should be specified");
932  assert(threadObj() == NULL, "should only create Java thread object once");
933
934  klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK);
935  instanceKlassHandle klass (THREAD, k);
936  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
937
938  java_lang_Thread::set_thread(thread_oop(), this);
939  java_lang_Thread::set_priority(thread_oop(), NormPriority);
940  set_threadObj(thread_oop());
941
942  JavaValue result(T_VOID);
943  if (thread_name != NULL) {
944    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
945    // Thread gets assigned specified name and null target
946    JavaCalls::call_special(&result,
947                            thread_oop,
948                            klass,
949                            vmSymbolHandles::object_initializer_name(),
950                            vmSymbolHandles::threadgroup_string_void_signature(),
951                            thread_group, // Argument 1
952                            name,         // Argument 2
953                            THREAD);
954  } else {
955    // Thread gets assigned name "Thread-nnn" and null target
956    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
957    JavaCalls::call_special(&result,
958                            thread_oop,
959                            klass,
960                            vmSymbolHandles::object_initializer_name(),
961                            vmSymbolHandles::threadgroup_runnable_void_signature(),
962                            thread_group, // Argument 1
963                            Handle(),     // Argument 2
964                            THREAD);
965  }
966
967
968  if (daemon) {
969      java_lang_Thread::set_daemon(thread_oop());
970  }
971
972  if (HAS_PENDING_EXCEPTION) {
973    return;
974  }
975
976  KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
977  Handle threadObj(this, this->threadObj());
978
979  JavaCalls::call_special(&result,
980                         thread_group,
981                         group,
982                         vmSymbolHandles::add_method_name(),
983                         vmSymbolHandles::thread_void_signature(),
984                         threadObj,          // Arg 1
985                         THREAD);
986
987
988}
989
990// NamedThread --  non-JavaThread subclasses with multiple
991// uniquely named instances should derive from this.
992NamedThread::NamedThread() : Thread() {
993  _name = NULL;
994  _processed_thread = NULL;
995}
996
997NamedThread::~NamedThread() {
998  if (_name != NULL) {
999    FREE_C_HEAP_ARRAY(char, _name);
1000    _name = NULL;
1001  }
1002}
1003
1004void NamedThread::set_name(const char* format, ...) {
1005  guarantee(_name == NULL, "Only get to set name once.");
1006  _name = NEW_C_HEAP_ARRAY(char, max_name_len);
1007  guarantee(_name != NULL, "alloc failure");
1008  va_list ap;
1009  va_start(ap, format);
1010  jio_vsnprintf(_name, max_name_len, format, ap);
1011  va_end(ap);
1012}
1013
1014// ======= WatcherThread ========
1015
1016// The watcher thread exists to simulate timer interrupts.  It should
1017// be replaced by an abstraction over whatever native support for
1018// timer interrupts exists on the platform.
1019
1020WatcherThread* WatcherThread::_watcher_thread   = NULL;
1021bool           WatcherThread::_should_terminate = false;
1022
1023WatcherThread::WatcherThread() : Thread() {
1024  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1025  if (os::create_thread(this, os::watcher_thread)) {
1026    _watcher_thread = this;
1027
1028    // Set the watcher thread to the highest OS priority which should not be
1029    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1030    // is created. The only normal thread using this priority is the reference
1031    // handler thread, which runs for very short intervals only.
1032    // If the VMThread's priority is not lower than the WatcherThread profiling
1033    // will be inaccurate.
1034    os::set_priority(this, MaxPriority);
1035    if (!DisableStartThread) {
1036      os::start_thread(this);
1037    }
1038  }
1039}
1040
1041void WatcherThread::run() {
1042  assert(this == watcher_thread(), "just checking");
1043
1044  this->record_stack_base_and_size();
1045  this->initialize_thread_local_storage();
1046  this->set_active_handles(JNIHandleBlock::allocate_block());
1047  while(!_should_terminate) {
1048    assert(watcher_thread() == Thread::current(),  "thread consistency check");
1049    assert(watcher_thread() == this,  "thread consistency check");
1050
1051    // Calculate how long it'll be until the next PeriodicTask work
1052    // should be done, and sleep that amount of time.
1053    const size_t time_to_wait = PeriodicTask::time_to_wait();
1054    os::sleep(this, time_to_wait, false);
1055
1056    if (is_error_reported()) {
1057      // A fatal error has happened, the error handler(VMError::report_and_die)
1058      // should abort JVM after creating an error log file. However in some
1059      // rare cases, the error handler itself might deadlock. Here we try to
1060      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1061      //
1062      // This code is in WatcherThread because WatcherThread wakes up
1063      // periodically so the fatal error handler doesn't need to do anything;
1064      // also because the WatcherThread is less likely to crash than other
1065      // threads.
1066
1067      for (;;) {
1068        if (!ShowMessageBoxOnError
1069         && (OnError == NULL || OnError[0] == '\0')
1070         && Arguments::abort_hook() == NULL) {
1071             os::sleep(this, 2 * 60 * 1000, false);
1072             fdStream err(defaultStream::output_fd());
1073             err.print_raw_cr("# [ timer expired, abort... ]");
1074             // skip atexit/vm_exit/vm_abort hooks
1075             os::die();
1076        }
1077
1078        // Wake up 5 seconds later, the fatal handler may reset OnError or
1079        // ShowMessageBoxOnError when it is ready to abort.
1080        os::sleep(this, 5 * 1000, false);
1081      }
1082    }
1083
1084    PeriodicTask::real_time_tick(time_to_wait);
1085
1086    // If we have no more tasks left due to dynamic disenrollment,
1087    // shut down the thread since we don't currently support dynamic enrollment
1088    if (PeriodicTask::num_tasks() == 0) {
1089      _should_terminate = true;
1090    }
1091  }
1092
1093  // Signal that it is terminated
1094  {
1095    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1096    _watcher_thread = NULL;
1097    Terminator_lock->notify();
1098  }
1099
1100  // Thread destructor usually does this..
1101  ThreadLocalStorage::set_thread(NULL);
1102}
1103
1104void WatcherThread::start() {
1105  if (watcher_thread() == NULL) {
1106    _should_terminate = false;
1107    // Create the single instance of WatcherThread
1108    new WatcherThread();
1109  }
1110}
1111
1112void WatcherThread::stop() {
1113  // it is ok to take late safepoints here, if needed
1114  MutexLocker mu(Terminator_lock);
1115  _should_terminate = true;
1116  while(watcher_thread() != NULL) {
1117    // This wait should make safepoint checks, wait without a timeout,
1118    // and wait as a suspend-equivalent condition.
1119    //
1120    // Note: If the FlatProfiler is running, then this thread is waiting
1121    // for the WatcherThread to terminate and the WatcherThread, via the
1122    // FlatProfiler task, is waiting for the external suspend request on
1123    // this thread to complete. wait_for_ext_suspend_completion() will
1124    // eventually timeout, but that takes time. Making this wait a
1125    // suspend-equivalent condition solves that timeout problem.
1126    //
1127    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1128                          Mutex::_as_suspend_equivalent_flag);
1129  }
1130}
1131
1132void WatcherThread::print_on(outputStream* st) const {
1133  st->print("\"%s\" ", name());
1134  Thread::print_on(st);
1135  st->cr();
1136}
1137
1138// ======= JavaThread ========
1139
1140// A JavaThread is a normal Java thread
1141
1142void JavaThread::initialize() {
1143  // Initialize fields
1144
1145  // Set the claimed par_id to -1 (ie not claiming any par_ids)
1146  set_claimed_par_id(-1);
1147
1148  set_saved_exception_pc(NULL);
1149  set_threadObj(NULL);
1150  _anchor.clear();
1151  set_entry_point(NULL);
1152  set_jni_functions(jni_functions());
1153  set_callee_target(NULL);
1154  set_vm_result(NULL);
1155  set_vm_result_2(NULL);
1156  set_vframe_array_head(NULL);
1157  set_vframe_array_last(NULL);
1158  set_deferred_locals(NULL);
1159  set_deopt_mark(NULL);
1160  clear_must_deopt_id();
1161  set_monitor_chunks(NULL);
1162  set_next(NULL);
1163  set_thread_state(_thread_new);
1164  _terminated = _not_terminated;
1165  _privileged_stack_top = NULL;
1166  _array_for_gc = NULL;
1167  _suspend_equivalent = false;
1168  _in_deopt_handler = 0;
1169  _doing_unsafe_access = false;
1170  _stack_guard_state = stack_guard_unused;
1171  _exception_oop = NULL;
1172  _exception_pc  = 0;
1173  _exception_handler_pc = 0;
1174  _exception_stack_size = 0;
1175  _jvmti_thread_state= NULL;
1176  _should_post_on_exceptions_flag = JNI_FALSE;
1177  _jvmti_get_loaded_classes_closure = NULL;
1178  _interp_only_mode    = 0;
1179  _special_runtime_exit_condition = _no_async_condition;
1180  _pending_async_exception = NULL;
1181  _is_compiling = false;
1182  _thread_stat = NULL;
1183  _thread_stat = new ThreadStatistics();
1184  _blocked_on_compilation = false;
1185  _jni_active_critical = 0;
1186  _do_not_unlock_if_synchronized = false;
1187  _cached_monitor_info = NULL;
1188  _parker = Parker::Allocate(this) ;
1189
1190#ifndef PRODUCT
1191  _jmp_ring_index = 0;
1192  for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1193    record_jump(NULL, NULL, NULL, 0);
1194  }
1195#endif /* PRODUCT */
1196
1197  set_thread_profiler(NULL);
1198  if (FlatProfiler::is_active()) {
1199    // This is where we would decide to either give each thread it's own profiler
1200    // or use one global one from FlatProfiler,
1201    // or up to some count of the number of profiled threads, etc.
1202    ThreadProfiler* pp = new ThreadProfiler();
1203    pp->engage();
1204    set_thread_profiler(pp);
1205  }
1206
1207  // Setup safepoint state info for this thread
1208  ThreadSafepointState::create(this);
1209
1210  debug_only(_java_call_counter = 0);
1211
1212  // JVMTI PopFrame support
1213  _popframe_condition = popframe_inactive;
1214  _popframe_preserved_args = NULL;
1215  _popframe_preserved_args_size = 0;
1216
1217  pd_initialize();
1218}
1219
1220#ifndef SERIALGC
1221SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1222DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1223#endif // !SERIALGC
1224
1225JavaThread::JavaThread(bool is_attaching) :
1226  Thread()
1227#ifndef SERIALGC
1228  , _satb_mark_queue(&_satb_mark_queue_set),
1229  _dirty_card_queue(&_dirty_card_queue_set)
1230#endif // !SERIALGC
1231{
1232  initialize();
1233  _is_attaching = is_attaching;
1234  assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
1235}
1236
1237bool JavaThread::reguard_stack(address cur_sp) {
1238  if (_stack_guard_state != stack_guard_yellow_disabled) {
1239    return true; // Stack already guarded or guard pages not needed.
1240  }
1241
1242  if (register_stack_overflow()) {
1243    // For those architectures which have separate register and
1244    // memory stacks, we must check the register stack to see if
1245    // it has overflowed.
1246    return false;
1247  }
1248
1249  // Java code never executes within the yellow zone: the latter is only
1250  // there to provoke an exception during stack banging.  If java code
1251  // is executing there, either StackShadowPages should be larger, or
1252  // some exception code in c1, c2 or the interpreter isn't unwinding
1253  // when it should.
1254  guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1255
1256  enable_stack_yellow_zone();
1257  return true;
1258}
1259
1260bool JavaThread::reguard_stack(void) {
1261  return reguard_stack(os::current_stack_pointer());
1262}
1263
1264
1265void JavaThread::block_if_vm_exited() {
1266  if (_terminated == _vm_exited) {
1267    // _vm_exited is set at safepoint, and Threads_lock is never released
1268    // we will block here forever
1269    Threads_lock->lock_without_safepoint_check();
1270    ShouldNotReachHere();
1271  }
1272}
1273
1274
1275// Remove this ifdef when C1 is ported to the compiler interface.
1276static void compiler_thread_entry(JavaThread* thread, TRAPS);
1277
1278JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1279  Thread()
1280#ifndef SERIALGC
1281  , _satb_mark_queue(&_satb_mark_queue_set),
1282  _dirty_card_queue(&_dirty_card_queue_set)
1283#endif // !SERIALGC
1284{
1285  if (TraceThreadEvents) {
1286    tty->print_cr("creating thread %p", this);
1287  }
1288  initialize();
1289  _is_attaching = false;
1290  set_entry_point(entry_point);
1291  // Create the native thread itself.
1292  // %note runtime_23
1293  os::ThreadType thr_type = os::java_thread;
1294  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1295                                                     os::java_thread;
1296  os::create_thread(this, thr_type, stack_sz);
1297
1298  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1299  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1300  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1301  // the exception consists of creating the exception object & initializing it, initialization
1302  // will leave the VM via a JavaCall and then all locks must be unlocked).
1303  //
1304  // The thread is still suspended when we reach here. Thread must be explicit started
1305  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1306  // by calling Threads:add. The reason why this is not done here, is because the thread
1307  // object must be fully initialized (take a look at JVM_Start)
1308}
1309
1310JavaThread::~JavaThread() {
1311  if (TraceThreadEvents) {
1312      tty->print_cr("terminate thread %p", this);
1313  }
1314
1315  // JSR166 -- return the parker to the free list
1316  Parker::Release(_parker);
1317  _parker = NULL ;
1318
1319  // Free any remaining  previous UnrollBlock
1320  vframeArray* old_array = vframe_array_last();
1321
1322  if (old_array != NULL) {
1323    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1324    old_array->set_unroll_block(NULL);
1325    delete old_info;
1326    delete old_array;
1327  }
1328
1329  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1330  if (deferred != NULL) {
1331    // This can only happen if thread is destroyed before deoptimization occurs.
1332    assert(deferred->length() != 0, "empty array!");
1333    do {
1334      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1335      deferred->remove_at(0);
1336      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1337      delete dlv;
1338    } while (deferred->length() != 0);
1339    delete deferred;
1340  }
1341
1342  // All Java related clean up happens in exit
1343  ThreadSafepointState::destroy(this);
1344  if (_thread_profiler != NULL) delete _thread_profiler;
1345  if (_thread_stat != NULL) delete _thread_stat;
1346}
1347
1348
1349// The first routine called by a new Java thread
1350void JavaThread::run() {
1351  // initialize thread-local alloc buffer related fields
1352  this->initialize_tlab();
1353
1354  // used to test validitity of stack trace backs
1355  this->record_base_of_stack_pointer();
1356
1357  // Record real stack base and size.
1358  this->record_stack_base_and_size();
1359
1360  // Initialize thread local storage; set before calling MutexLocker
1361  this->initialize_thread_local_storage();
1362
1363  this->create_stack_guard_pages();
1364
1365  // Thread is now sufficient initialized to be handled by the safepoint code as being
1366  // in the VM. Change thread state from _thread_new to _thread_in_vm
1367  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1368
1369  assert(JavaThread::current() == this, "sanity check");
1370  assert(!Thread::current()->owns_locks(), "sanity check");
1371
1372  DTRACE_THREAD_PROBE(start, this);
1373
1374  // This operation might block. We call that after all safepoint checks for a new thread has
1375  // been completed.
1376  this->set_active_handles(JNIHandleBlock::allocate_block());
1377
1378  if (JvmtiExport::should_post_thread_life()) {
1379    JvmtiExport::post_thread_start(this);
1380  }
1381
1382  // We call another function to do the rest so we are sure that the stack addresses used
1383  // from there will be lower than the stack base just computed
1384  thread_main_inner();
1385
1386  // Note, thread is no longer valid at this point!
1387}
1388
1389
1390void JavaThread::thread_main_inner() {
1391  assert(JavaThread::current() == this, "sanity check");
1392  assert(this->threadObj() != NULL, "just checking");
1393
1394  // Execute thread entry point. If this thread is being asked to restart,
1395  // or has been stopped before starting, do not reexecute entry point.
1396  // Note: Due to JVM_StopThread we can have pending exceptions already!
1397  if (!this->has_pending_exception() && !java_lang_Thread::is_stillborn(this->threadObj())) {
1398    // enter the thread's entry point only if we have no pending exceptions
1399    HandleMark hm(this);
1400    this->entry_point()(this, this);
1401  }
1402
1403  DTRACE_THREAD_PROBE(stop, this);
1404
1405  this->exit(false);
1406  delete this;
1407}
1408
1409
1410static void ensure_join(JavaThread* thread) {
1411  // We do not need to grap the Threads_lock, since we are operating on ourself.
1412  Handle threadObj(thread, thread->threadObj());
1413  assert(threadObj.not_null(), "java thread object must exist");
1414  ObjectLocker lock(threadObj, thread);
1415  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1416  thread->clear_pending_exception();
1417  // It is of profound importance that we set the stillborn bit and reset the thread object,
1418  // before we do the notify. Since, changing these two variable will make JVM_IsAlive return
1419  // false. So in case another thread is doing a join on this thread , it will detect that the thread
1420  // is dead when it gets notified.
1421  java_lang_Thread::set_stillborn(threadObj());
1422  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1423  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1424  java_lang_Thread::set_thread(threadObj(), NULL);
1425  lock.notify_all(thread);
1426  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1427  thread->clear_pending_exception();
1428}
1429
1430
1431// For any new cleanup additions, please check to see if they need to be applied to
1432// cleanup_failed_attach_current_thread as well.
1433void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1434  assert(this == JavaThread::current(),  "thread consistency check");
1435  if (!InitializeJavaLangSystem) return;
1436
1437  HandleMark hm(this);
1438  Handle uncaught_exception(this, this->pending_exception());
1439  this->clear_pending_exception();
1440  Handle threadObj(this, this->threadObj());
1441  assert(threadObj.not_null(), "Java thread object should be created");
1442
1443  if (get_thread_profiler() != NULL) {
1444    get_thread_profiler()->disengage();
1445    ResourceMark rm;
1446    get_thread_profiler()->print(get_thread_name());
1447  }
1448
1449
1450  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1451  {
1452    EXCEPTION_MARK;
1453
1454    CLEAR_PENDING_EXCEPTION;
1455  }
1456  // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1457  // has to be fixed by a runtime query method
1458  if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1459    // JSR-166: change call from from ThreadGroup.uncaughtException to
1460    // java.lang.Thread.dispatchUncaughtException
1461    if (uncaught_exception.not_null()) {
1462      Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1463      Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
1464        (address)uncaught_exception(), (address)threadObj(), (address)group());
1465      {
1466        EXCEPTION_MARK;
1467        // Check if the method Thread.dispatchUncaughtException() exists. If so
1468        // call it.  Otherwise we have an older library without the JSR-166 changes,
1469        // so call ThreadGroup.uncaughtException()
1470        KlassHandle recvrKlass(THREAD, threadObj->klass());
1471        CallInfo callinfo;
1472        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1473        LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1474                                           vmSymbolHandles::dispatchUncaughtException_name(),
1475                                           vmSymbolHandles::throwable_void_signature(),
1476                                           KlassHandle(), false, false, THREAD);
1477        CLEAR_PENDING_EXCEPTION;
1478        methodHandle method = callinfo.selected_method();
1479        if (method.not_null()) {
1480          JavaValue result(T_VOID);
1481          JavaCalls::call_virtual(&result,
1482                                  threadObj, thread_klass,
1483                                  vmSymbolHandles::dispatchUncaughtException_name(),
1484                                  vmSymbolHandles::throwable_void_signature(),
1485                                  uncaught_exception,
1486                                  THREAD);
1487        } else {
1488          KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1489          JavaValue result(T_VOID);
1490          JavaCalls::call_virtual(&result,
1491                                  group, thread_group,
1492                                  vmSymbolHandles::uncaughtException_name(),
1493                                  vmSymbolHandles::thread_throwable_void_signature(),
1494                                  threadObj,           // Arg 1
1495                                  uncaught_exception,  // Arg 2
1496                                  THREAD);
1497        }
1498        CLEAR_PENDING_EXCEPTION;
1499      }
1500    }
1501
1502    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1503    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1504    // is deprecated anyhow.
1505    { int count = 3;
1506      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1507        EXCEPTION_MARK;
1508        JavaValue result(T_VOID);
1509        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1510        JavaCalls::call_virtual(&result,
1511                              threadObj, thread_klass,
1512                              vmSymbolHandles::exit_method_name(),
1513                              vmSymbolHandles::void_method_signature(),
1514                              THREAD);
1515        CLEAR_PENDING_EXCEPTION;
1516      }
1517    }
1518
1519    // notify JVMTI
1520    if (JvmtiExport::should_post_thread_life()) {
1521      JvmtiExport::post_thread_end(this);
1522    }
1523
1524    // We have notified the agents that we are exiting, before we go on,
1525    // we must check for a pending external suspend request and honor it
1526    // in order to not surprise the thread that made the suspend request.
1527    while (true) {
1528      {
1529        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1530        if (!is_external_suspend()) {
1531          set_terminated(_thread_exiting);
1532          ThreadService::current_thread_exiting(this);
1533          break;
1534        }
1535        // Implied else:
1536        // Things get a little tricky here. We have a pending external
1537        // suspend request, but we are holding the SR_lock so we
1538        // can't just self-suspend. So we temporarily drop the lock
1539        // and then self-suspend.
1540      }
1541
1542      ThreadBlockInVM tbivm(this);
1543      java_suspend_self();
1544
1545      // We're done with this suspend request, but we have to loop around
1546      // and check again. Eventually we will get SR_lock without a pending
1547      // external suspend request and will be able to mark ourselves as
1548      // exiting.
1549    }
1550    // no more external suspends are allowed at this point
1551  } else {
1552    // before_exit() has already posted JVMTI THREAD_END events
1553  }
1554
1555  // Notify waiters on thread object. This has to be done after exit() is called
1556  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1557  // group should have the destroyed bit set before waiters are notified).
1558  ensure_join(this);
1559  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1560
1561  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1562  // held by this thread must be released.  A detach operation must only
1563  // get here if there are no Java frames on the stack.  Therefore, any
1564  // owned monitors at this point MUST be JNI-acquired monitors which are
1565  // pre-inflated and in the monitor cache.
1566  //
1567  // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1568  if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1569    assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1570    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1571    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1572  }
1573
1574  // These things needs to be done while we are still a Java Thread. Make sure that thread
1575  // is in a consistent state, in case GC happens
1576  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1577
1578  if (active_handles() != NULL) {
1579    JNIHandleBlock* block = active_handles();
1580    set_active_handles(NULL);
1581    JNIHandleBlock::release_block(block);
1582  }
1583
1584  if (free_handle_block() != NULL) {
1585    JNIHandleBlock* block = free_handle_block();
1586    set_free_handle_block(NULL);
1587    JNIHandleBlock::release_block(block);
1588  }
1589
1590  // These have to be removed while this is still a valid thread.
1591  remove_stack_guard_pages();
1592
1593  if (UseTLAB) {
1594    tlab().make_parsable(true);  // retire TLAB
1595  }
1596
1597  if (jvmti_thread_state() != NULL) {
1598    JvmtiExport::cleanup_thread(this);
1599  }
1600
1601#ifndef SERIALGC
1602  // We must flush G1-related buffers before removing a thread from
1603  // the list of active threads.
1604  if (UseG1GC) {
1605    flush_barrier_queues();
1606  }
1607#endif
1608
1609  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1610  Threads::remove(this);
1611}
1612
1613#ifndef SERIALGC
1614// Flush G1-related queues.
1615void JavaThread::flush_barrier_queues() {
1616  satb_mark_queue().flush();
1617  dirty_card_queue().flush();
1618}
1619#endif
1620
1621void JavaThread::cleanup_failed_attach_current_thread() {
1622  if (get_thread_profiler() != NULL) {
1623    get_thread_profiler()->disengage();
1624    ResourceMark rm;
1625    get_thread_profiler()->print(get_thread_name());
1626  }
1627
1628  if (active_handles() != NULL) {
1629    JNIHandleBlock* block = active_handles();
1630    set_active_handles(NULL);
1631    JNIHandleBlock::release_block(block);
1632  }
1633
1634  if (free_handle_block() != NULL) {
1635    JNIHandleBlock* block = free_handle_block();
1636    set_free_handle_block(NULL);
1637    JNIHandleBlock::release_block(block);
1638  }
1639
1640  // These have to be removed while this is still a valid thread.
1641  remove_stack_guard_pages();
1642
1643  if (UseTLAB) {
1644    tlab().make_parsable(true);  // retire TLAB, if any
1645  }
1646
1647#ifndef SERIALGC
1648  if (UseG1GC) {
1649    flush_barrier_queues();
1650  }
1651#endif
1652
1653  Threads::remove(this);
1654  delete this;
1655}
1656
1657
1658
1659
1660JavaThread* JavaThread::active() {
1661  Thread* thread = ThreadLocalStorage::thread();
1662  assert(thread != NULL, "just checking");
1663  if (thread->is_Java_thread()) {
1664    return (JavaThread*) thread;
1665  } else {
1666    assert(thread->is_VM_thread(), "this must be a vm thread");
1667    VM_Operation* op = ((VMThread*) thread)->vm_operation();
1668    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1669    assert(ret->is_Java_thread(), "must be a Java thread");
1670    return ret;
1671  }
1672}
1673
1674bool JavaThread::is_lock_owned(address adr) const {
1675  if (Thread::is_lock_owned(adr)) return true;
1676
1677  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1678    if (chunk->contains(adr)) return true;
1679  }
1680
1681  return false;
1682}
1683
1684
1685void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1686  chunk->set_next(monitor_chunks());
1687  set_monitor_chunks(chunk);
1688}
1689
1690void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1691  guarantee(monitor_chunks() != NULL, "must be non empty");
1692  if (monitor_chunks() == chunk) {
1693    set_monitor_chunks(chunk->next());
1694  } else {
1695    MonitorChunk* prev = monitor_chunks();
1696    while (prev->next() != chunk) prev = prev->next();
1697    prev->set_next(chunk->next());
1698  }
1699}
1700
1701// JVM support.
1702
1703// Note: this function shouldn't block if it's called in
1704// _thread_in_native_trans state (such as from
1705// check_special_condition_for_native_trans()).
1706void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1707
1708  if (has_last_Java_frame() && has_async_condition()) {
1709    // If we are at a polling page safepoint (not a poll return)
1710    // then we must defer async exception because live registers
1711    // will be clobbered by the exception path. Poll return is
1712    // ok because the call we a returning from already collides
1713    // with exception handling registers and so there is no issue.
1714    // (The exception handling path kills call result registers but
1715    //  this is ok since the exception kills the result anyway).
1716
1717    if (is_at_poll_safepoint()) {
1718      // if the code we are returning to has deoptimized we must defer
1719      // the exception otherwise live registers get clobbered on the
1720      // exception path before deoptimization is able to retrieve them.
1721      //
1722      RegisterMap map(this, false);
1723      frame caller_fr = last_frame().sender(&map);
1724      assert(caller_fr.is_compiled_frame(), "what?");
1725      if (caller_fr.is_deoptimized_frame()) {
1726        if (TraceExceptions) {
1727          ResourceMark rm;
1728          tty->print_cr("deferred async exception at compiled safepoint");
1729        }
1730        return;
1731      }
1732    }
1733  }
1734
1735  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
1736  if (condition == _no_async_condition) {
1737    // Conditions have changed since has_special_runtime_exit_condition()
1738    // was called:
1739    // - if we were here only because of an external suspend request,
1740    //   then that was taken care of above (or cancelled) so we are done
1741    // - if we were here because of another async request, then it has
1742    //   been cleared between the has_special_runtime_exit_condition()
1743    //   and now so again we are done
1744    return;
1745  }
1746
1747  // Check for pending async. exception
1748  if (_pending_async_exception != NULL) {
1749    // Only overwrite an already pending exception, if it is not a threadDeath.
1750    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
1751
1752      // We cannot call Exceptions::_throw(...) here because we cannot block
1753      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
1754
1755      if (TraceExceptions) {
1756        ResourceMark rm;
1757        tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
1758        if (has_last_Java_frame() ) {
1759          frame f = last_frame();
1760          tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
1761        }
1762        tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1763      }
1764      _pending_async_exception = NULL;
1765      clear_has_async_exception();
1766    }
1767  }
1768
1769  if (check_unsafe_error &&
1770      condition == _async_unsafe_access_error && !has_pending_exception()) {
1771    condition = _no_async_condition;  // done
1772    switch (thread_state()) {
1773    case _thread_in_vm:
1774      {
1775        JavaThread* THREAD = this;
1776        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1777      }
1778    case _thread_in_native:
1779      {
1780        ThreadInVMfromNative tiv(this);
1781        JavaThread* THREAD = this;
1782        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1783      }
1784    case _thread_in_Java:
1785      {
1786        ThreadInVMfromJava tiv(this);
1787        JavaThread* THREAD = this;
1788        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
1789      }
1790    default:
1791      ShouldNotReachHere();
1792    }
1793  }
1794
1795  assert(condition == _no_async_condition || has_pending_exception() ||
1796         (!check_unsafe_error && condition == _async_unsafe_access_error),
1797         "must have handled the async condition, if no exception");
1798}
1799
1800void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
1801  //
1802  // Check for pending external suspend. Internal suspend requests do
1803  // not use handle_special_runtime_exit_condition().
1804  // If JNIEnv proxies are allowed, don't self-suspend if the target
1805  // thread is not the current thread. In older versions of jdbx, jdbx
1806  // threads could call into the VM with another thread's JNIEnv so we
1807  // can be here operating on behalf of a suspended thread (4432884).
1808  bool do_self_suspend = is_external_suspend_with_lock();
1809  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
1810    //
1811    // Because thread is external suspended the safepoint code will count
1812    // thread as at a safepoint. This can be odd because we can be here
1813    // as _thread_in_Java which would normally transition to _thread_blocked
1814    // at a safepoint. We would like to mark the thread as _thread_blocked
1815    // before calling java_suspend_self like all other callers of it but
1816    // we must then observe proper safepoint protocol. (We can't leave
1817    // _thread_blocked with a safepoint in progress). However we can be
1818    // here as _thread_in_native_trans so we can't use a normal transition
1819    // constructor/destructor pair because they assert on that type of
1820    // transition. We could do something like:
1821    //
1822    // JavaThreadState state = thread_state();
1823    // set_thread_state(_thread_in_vm);
1824    // {
1825    //   ThreadBlockInVM tbivm(this);
1826    //   java_suspend_self()
1827    // }
1828    // set_thread_state(_thread_in_vm_trans);
1829    // if (safepoint) block;
1830    // set_thread_state(state);
1831    //
1832    // but that is pretty messy. Instead we just go with the way the
1833    // code has worked before and note that this is the only path to
1834    // java_suspend_self that doesn't put the thread in _thread_blocked
1835    // mode.
1836
1837    frame_anchor()->make_walkable(this);
1838    java_suspend_self();
1839
1840    // We might be here for reasons in addition to the self-suspend request
1841    // so check for other async requests.
1842  }
1843
1844  if (check_asyncs) {
1845    check_and_handle_async_exceptions();
1846  }
1847}
1848
1849void JavaThread::send_thread_stop(oop java_throwable)  {
1850  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
1851  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
1852  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
1853
1854  // Do not throw asynchronous exceptions against the compiler thread
1855  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
1856  if (is_Compiler_thread()) return;
1857
1858  // This is a change from JDK 1.1, but JDK 1.2 will also do it:
1859  if (java_throwable->is_a(SystemDictionary::ThreadDeath_klass())) {
1860    java_lang_Thread::set_stillborn(threadObj());
1861  }
1862
1863  {
1864    // Actually throw the Throwable against the target Thread - however
1865    // only if there is no thread death exception installed already.
1866    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
1867      // If the topmost frame is a runtime stub, then we are calling into
1868      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
1869      // must deoptimize the caller before continuing, as the compiled  exception handler table
1870      // may not be valid
1871      if (has_last_Java_frame()) {
1872        frame f = last_frame();
1873        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
1874          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
1875          RegisterMap reg_map(this, UseBiasedLocking);
1876          frame compiled_frame = f.sender(&reg_map);
1877          if (compiled_frame.can_be_deoptimized()) {
1878            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
1879          }
1880        }
1881      }
1882
1883      // Set async. pending exception in thread.
1884      set_pending_async_exception(java_throwable);
1885
1886      if (TraceExceptions) {
1887       ResourceMark rm;
1888       tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1889      }
1890      // for AbortVMOnException flag
1891      NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
1892    }
1893  }
1894
1895
1896  // Interrupt thread so it will wake up from a potential wait()
1897  Thread::interrupt(this);
1898}
1899
1900// External suspension mechanism.
1901//
1902// Tell the VM to suspend a thread when ever it knows that it does not hold on
1903// to any VM_locks and it is at a transition
1904// Self-suspension will happen on the transition out of the vm.
1905// Catch "this" coming in from JNIEnv pointers when the thread has been freed
1906//
1907// Guarantees on return:
1908//   + Target thread will not execute any new bytecode (that's why we need to
1909//     force a safepoint)
1910//   + Target thread will not enter any new monitors
1911//
1912void JavaThread::java_suspend() {
1913  { MutexLocker mu(Threads_lock);
1914    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
1915       return;
1916    }
1917  }
1918
1919  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1920    if (!is_external_suspend()) {
1921      // a racing resume has cancelled us; bail out now
1922      return;
1923    }
1924
1925    // suspend is done
1926    uint32_t debug_bits = 0;
1927    // Warning: is_ext_suspend_completed() may temporarily drop the
1928    // SR_lock to allow the thread to reach a stable thread state if
1929    // it is currently in a transient thread state.
1930    if (is_ext_suspend_completed(false /* !called_by_wait */,
1931                                 SuspendRetryDelay, &debug_bits) ) {
1932      return;
1933    }
1934  }
1935
1936  VM_ForceSafepoint vm_suspend;
1937  VMThread::execute(&vm_suspend);
1938}
1939
1940// Part II of external suspension.
1941// A JavaThread self suspends when it detects a pending external suspend
1942// request. This is usually on transitions. It is also done in places
1943// where continuing to the next transition would surprise the caller,
1944// e.g., monitor entry.
1945//
1946// Returns the number of times that the thread self-suspended.
1947//
1948// Note: DO NOT call java_suspend_self() when you just want to block current
1949//       thread. java_suspend_self() is the second stage of cooperative
1950//       suspension for external suspend requests and should only be used
1951//       to complete an external suspend request.
1952//
1953int JavaThread::java_suspend_self() {
1954  int ret = 0;
1955
1956  // we are in the process of exiting so don't suspend
1957  if (is_exiting()) {
1958     clear_external_suspend();
1959     return ret;
1960  }
1961
1962  assert(_anchor.walkable() ||
1963    (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
1964    "must have walkable stack");
1965
1966  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1967
1968  assert(!this->is_ext_suspended(),
1969    "a thread trying to self-suspend should not already be suspended");
1970
1971  if (this->is_suspend_equivalent()) {
1972    // If we are self-suspending as a result of the lifting of a
1973    // suspend equivalent condition, then the suspend_equivalent
1974    // flag is not cleared until we set the ext_suspended flag so
1975    // that wait_for_ext_suspend_completion() returns consistent
1976    // results.
1977    this->clear_suspend_equivalent();
1978  }
1979
1980  // A racing resume may have cancelled us before we grabbed SR_lock
1981  // above. Or another external suspend request could be waiting for us
1982  // by the time we return from SR_lock()->wait(). The thread
1983  // that requested the suspension may already be trying to walk our
1984  // stack and if we return now, we can change the stack out from under
1985  // it. This would be a "bad thing (TM)" and cause the stack walker
1986  // to crash. We stay self-suspended until there are no more pending
1987  // external suspend requests.
1988  while (is_external_suspend()) {
1989    ret++;
1990    this->set_ext_suspended();
1991
1992    // _ext_suspended flag is cleared by java_resume()
1993    while (is_ext_suspended()) {
1994      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
1995    }
1996  }
1997
1998  return ret;
1999}
2000
2001#ifdef ASSERT
2002// verify the JavaThread has not yet been published in the Threads::list, and
2003// hence doesn't need protection from concurrent access at this stage
2004void JavaThread::verify_not_published() {
2005  if (!Threads_lock->owned_by_self()) {
2006   MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2007   assert( !Threads::includes(this),
2008           "java thread shouldn't have been published yet!");
2009  }
2010  else {
2011   assert( !Threads::includes(this),
2012           "java thread shouldn't have been published yet!");
2013  }
2014}
2015#endif
2016
2017// Slow path when the native==>VM/Java barriers detect a safepoint is in
2018// progress or when _suspend_flags is non-zero.
2019// Current thread needs to self-suspend if there is a suspend request and/or
2020// block if a safepoint is in progress.
2021// Async exception ISN'T checked.
2022// Note only the ThreadInVMfromNative transition can call this function
2023// directly and when thread state is _thread_in_native_trans
2024void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2025  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2026
2027  JavaThread *curJT = JavaThread::current();
2028  bool do_self_suspend = thread->is_external_suspend();
2029
2030  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2031
2032  // If JNIEnv proxies are allowed, don't self-suspend if the target
2033  // thread is not the current thread. In older versions of jdbx, jdbx
2034  // threads could call into the VM with another thread's JNIEnv so we
2035  // can be here operating on behalf of a suspended thread (4432884).
2036  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2037    JavaThreadState state = thread->thread_state();
2038
2039    // We mark this thread_blocked state as a suspend-equivalent so
2040    // that a caller to is_ext_suspend_completed() won't be confused.
2041    // The suspend-equivalent state is cleared by java_suspend_self().
2042    thread->set_suspend_equivalent();
2043
2044    // If the safepoint code sees the _thread_in_native_trans state, it will
2045    // wait until the thread changes to other thread state. There is no
2046    // guarantee on how soon we can obtain the SR_lock and complete the
2047    // self-suspend request. It would be a bad idea to let safepoint wait for
2048    // too long. Temporarily change the state to _thread_blocked to
2049    // let the VM thread know that this thread is ready for GC. The problem
2050    // of changing thread state is that safepoint could happen just after
2051    // java_suspend_self() returns after being resumed, and VM thread will
2052    // see the _thread_blocked state. We must check for safepoint
2053    // after restoring the state and make sure we won't leave while a safepoint
2054    // is in progress.
2055    thread->set_thread_state(_thread_blocked);
2056    thread->java_suspend_self();
2057    thread->set_thread_state(state);
2058    // Make sure new state is seen by VM thread
2059    if (os::is_MP()) {
2060      if (UseMembar) {
2061        // Force a fence between the write above and read below
2062        OrderAccess::fence();
2063      } else {
2064        // Must use this rather than serialization page in particular on Windows
2065        InterfaceSupport::serialize_memory(thread);
2066      }
2067    }
2068  }
2069
2070  if (SafepointSynchronize::do_call_back()) {
2071    // If we are safepointing, then block the caller which may not be
2072    // the same as the target thread (see above).
2073    SafepointSynchronize::block(curJT);
2074  }
2075
2076  if (thread->is_deopt_suspend()) {
2077    thread->clear_deopt_suspend();
2078    RegisterMap map(thread, false);
2079    frame f = thread->last_frame();
2080    while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2081      f = f.sender(&map);
2082    }
2083    if (f.id() == thread->must_deopt_id()) {
2084      thread->clear_must_deopt_id();
2085      // Since we know we're safe to deopt the current state is a safe state
2086      f.deoptimize(thread, true);
2087    } else {
2088      fatal("missed deoptimization!");
2089    }
2090  }
2091}
2092
2093// Slow path when the native==>VM/Java barriers detect a safepoint is in
2094// progress or when _suspend_flags is non-zero.
2095// Current thread needs to self-suspend if there is a suspend request and/or
2096// block if a safepoint is in progress.
2097// Also check for pending async exception (not including unsafe access error).
2098// Note only the native==>VM/Java barriers can call this function and when
2099// thread state is _thread_in_native_trans.
2100void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2101  check_safepoint_and_suspend_for_native_trans(thread);
2102
2103  if (thread->has_async_exception()) {
2104    // We are in _thread_in_native_trans state, don't handle unsafe
2105    // access error since that may block.
2106    thread->check_and_handle_async_exceptions(false);
2107  }
2108}
2109
2110// We need to guarantee the Threads_lock here, since resumes are not
2111// allowed during safepoint synchronization
2112// Can only resume from an external suspension
2113void JavaThread::java_resume() {
2114  assert_locked_or_safepoint(Threads_lock);
2115
2116  // Sanity check: thread is gone, has started exiting or the thread
2117  // was not externally suspended.
2118  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2119    return;
2120  }
2121
2122  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2123
2124  clear_external_suspend();
2125
2126  if (is_ext_suspended()) {
2127    clear_ext_suspended();
2128    SR_lock()->notify_all();
2129  }
2130}
2131
2132void JavaThread::create_stack_guard_pages() {
2133  if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2134  address low_addr = stack_base() - stack_size();
2135  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2136
2137  int allocate = os::allocate_stack_guard_pages();
2138  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2139
2140  if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2141    warning("Attempt to allocate stack guard pages failed.");
2142    return;
2143  }
2144
2145  if (os::guard_memory((char *) low_addr, len)) {
2146    _stack_guard_state = stack_guard_enabled;
2147  } else {
2148    warning("Attempt to protect stack guard pages failed.");
2149    if (os::uncommit_memory((char *) low_addr, len)) {
2150      warning("Attempt to deallocate stack guard pages failed.");
2151    }
2152  }
2153}
2154
2155void JavaThread::remove_stack_guard_pages() {
2156  if (_stack_guard_state == stack_guard_unused) return;
2157  address low_addr = stack_base() - stack_size();
2158  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2159
2160  if (os::allocate_stack_guard_pages()) {
2161    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2162      _stack_guard_state = stack_guard_unused;
2163    } else {
2164      warning("Attempt to deallocate stack guard pages failed.");
2165    }
2166  } else {
2167    if (_stack_guard_state == stack_guard_unused) return;
2168    if (os::unguard_memory((char *) low_addr, len)) {
2169      _stack_guard_state = stack_guard_unused;
2170    } else {
2171        warning("Attempt to unprotect stack guard pages failed.");
2172    }
2173  }
2174}
2175
2176void JavaThread::enable_stack_yellow_zone() {
2177  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2178  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2179
2180  // The base notation is from the stacks point of view, growing downward.
2181  // We need to adjust it to work correctly with guard_memory()
2182  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2183
2184  guarantee(base < stack_base(),"Error calculating stack yellow zone");
2185  guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2186
2187  if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2188    _stack_guard_state = stack_guard_enabled;
2189  } else {
2190    warning("Attempt to guard stack yellow zone failed.");
2191  }
2192  enable_register_stack_guard();
2193}
2194
2195void JavaThread::disable_stack_yellow_zone() {
2196  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2197  assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2198
2199  // Simply return if called for a thread that does not use guard pages.
2200  if (_stack_guard_state == stack_guard_unused) return;
2201
2202  // The base notation is from the stacks point of view, growing downward.
2203  // We need to adjust it to work correctly with guard_memory()
2204  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2205
2206  if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2207    _stack_guard_state = stack_guard_yellow_disabled;
2208  } else {
2209    warning("Attempt to unguard stack yellow zone failed.");
2210  }
2211  disable_register_stack_guard();
2212}
2213
2214void JavaThread::enable_stack_red_zone() {
2215  // The base notation is from the stacks point of view, growing downward.
2216  // We need to adjust it to work correctly with guard_memory()
2217  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2218  address base = stack_red_zone_base() - stack_red_zone_size();
2219
2220  guarantee(base < stack_base(),"Error calculating stack red zone");
2221  guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2222
2223  if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2224    warning("Attempt to guard stack red zone failed.");
2225  }
2226}
2227
2228void JavaThread::disable_stack_red_zone() {
2229  // The base notation is from the stacks point of view, growing downward.
2230  // We need to adjust it to work correctly with guard_memory()
2231  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2232  address base = stack_red_zone_base() - stack_red_zone_size();
2233  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2234    warning("Attempt to unguard stack red zone failed.");
2235  }
2236}
2237
2238void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2239  // ignore is there is no stack
2240  if (!has_last_Java_frame()) return;
2241  // traverse the stack frames. Starts from top frame.
2242  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2243    frame* fr = fst.current();
2244    f(fr, fst.register_map());
2245  }
2246}
2247
2248
2249#ifndef PRODUCT
2250// Deoptimization
2251// Function for testing deoptimization
2252void JavaThread::deoptimize() {
2253  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2254  StackFrameStream fst(this, UseBiasedLocking);
2255  bool deopt = false;           // Dump stack only if a deopt actually happens.
2256  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2257  // Iterate over all frames in the thread and deoptimize
2258  for(; !fst.is_done(); fst.next()) {
2259    if(fst.current()->can_be_deoptimized()) {
2260
2261      if (only_at) {
2262        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2263        // consists of comma or carriage return separated numbers so
2264        // search for the current bci in that string.
2265        address pc = fst.current()->pc();
2266        nmethod* nm =  (nmethod*) fst.current()->cb();
2267        ScopeDesc* sd = nm->scope_desc_at( pc);
2268        char buffer[8];
2269        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2270        size_t len = strlen(buffer);
2271        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2272        while (found != NULL) {
2273          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2274              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2275            // Check that the bci found is bracketed by terminators.
2276            break;
2277          }
2278          found = strstr(found + 1, buffer);
2279        }
2280        if (!found) {
2281          continue;
2282        }
2283      }
2284
2285      if (DebugDeoptimization && !deopt) {
2286        deopt = true; // One-time only print before deopt
2287        tty->print_cr("[BEFORE Deoptimization]");
2288        trace_frames();
2289        trace_stack();
2290      }
2291      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2292    }
2293  }
2294
2295  if (DebugDeoptimization && deopt) {
2296    tty->print_cr("[AFTER Deoptimization]");
2297    trace_frames();
2298  }
2299}
2300
2301
2302// Make zombies
2303void JavaThread::make_zombies() {
2304  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2305    if (fst.current()->can_be_deoptimized()) {
2306      // it is a Java nmethod
2307      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2308      nm->make_not_entrant();
2309    }
2310  }
2311}
2312#endif // PRODUCT
2313
2314
2315void JavaThread::deoptimized_wrt_marked_nmethods() {
2316  if (!has_last_Java_frame()) return;
2317  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2318  StackFrameStream fst(this, UseBiasedLocking);
2319  for(; !fst.is_done(); fst.next()) {
2320    if (fst.current()->should_be_deoptimized()) {
2321      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2322    }
2323  }
2324}
2325
2326
2327// GC support
2328static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2329
2330void JavaThread::gc_epilogue() {
2331  frames_do(frame_gc_epilogue);
2332}
2333
2334
2335static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2336
2337void JavaThread::gc_prologue() {
2338  frames_do(frame_gc_prologue);
2339}
2340
2341// If the caller is a NamedThread, then remember, in the current scope,
2342// the given JavaThread in its _processed_thread field.
2343class RememberProcessedThread: public StackObj {
2344  NamedThread* _cur_thr;
2345public:
2346  RememberProcessedThread(JavaThread* jthr) {
2347    Thread* thread = Thread::current();
2348    if (thread->is_Named_thread()) {
2349      _cur_thr = (NamedThread *)thread;
2350      _cur_thr->set_processed_thread(jthr);
2351    } else {
2352      _cur_thr = NULL;
2353    }
2354  }
2355
2356  ~RememberProcessedThread() {
2357    if (_cur_thr) {
2358      _cur_thr->set_processed_thread(NULL);
2359    }
2360  }
2361};
2362
2363void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2364  // Verify that the deferred card marks have been flushed.
2365  assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2366
2367  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2368  // since there may be more than one thread using each ThreadProfiler.
2369
2370  // Traverse the GCHandles
2371  Thread::oops_do(f, cf);
2372
2373  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2374          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2375
2376  if (has_last_Java_frame()) {
2377    // Record JavaThread to GC thread
2378    RememberProcessedThread rpt(this);
2379
2380    // Traverse the privileged stack
2381    if (_privileged_stack_top != NULL) {
2382      _privileged_stack_top->oops_do(f);
2383    }
2384
2385    // traverse the registered growable array
2386    if (_array_for_gc != NULL) {
2387      for (int index = 0; index < _array_for_gc->length(); index++) {
2388        f->do_oop(_array_for_gc->adr_at(index));
2389      }
2390    }
2391
2392    // Traverse the monitor chunks
2393    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2394      chunk->oops_do(f);
2395    }
2396
2397    // Traverse the execution stack
2398    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2399      fst.current()->oops_do(f, cf, fst.register_map());
2400    }
2401  }
2402
2403  // callee_target is never live across a gc point so NULL it here should
2404  // it still contain a methdOop.
2405
2406  set_callee_target(NULL);
2407
2408  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2409  // If we have deferred set_locals there might be oops waiting to be
2410  // written
2411  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2412  if (list != NULL) {
2413    for (int i = 0; i < list->length(); i++) {
2414      list->at(i)->oops_do(f);
2415    }
2416  }
2417
2418  // Traverse instance variables at the end since the GC may be moving things
2419  // around using this function
2420  f->do_oop((oop*) &_threadObj);
2421  f->do_oop((oop*) &_vm_result);
2422  f->do_oop((oop*) &_vm_result_2);
2423  f->do_oop((oop*) &_exception_oop);
2424  f->do_oop((oop*) &_pending_async_exception);
2425
2426  if (jvmti_thread_state() != NULL) {
2427    jvmti_thread_state()->oops_do(f);
2428  }
2429}
2430
2431void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2432  Thread::nmethods_do(cf);  // (super method is a no-op)
2433
2434  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2435          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2436
2437  if (has_last_Java_frame()) {
2438    // Traverse the execution stack
2439    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2440      fst.current()->nmethods_do(cf);
2441    }
2442  }
2443}
2444
2445// Printing
2446const char* _get_thread_state_name(JavaThreadState _thread_state) {
2447  switch (_thread_state) {
2448  case _thread_uninitialized:     return "_thread_uninitialized";
2449  case _thread_new:               return "_thread_new";
2450  case _thread_new_trans:         return "_thread_new_trans";
2451  case _thread_in_native:         return "_thread_in_native";
2452  case _thread_in_native_trans:   return "_thread_in_native_trans";
2453  case _thread_in_vm:             return "_thread_in_vm";
2454  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2455  case _thread_in_Java:           return "_thread_in_Java";
2456  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2457  case _thread_blocked:           return "_thread_blocked";
2458  case _thread_blocked_trans:     return "_thread_blocked_trans";
2459  default:                        return "unknown thread state";
2460  }
2461}
2462
2463#ifndef PRODUCT
2464void JavaThread::print_thread_state_on(outputStream *st) const {
2465  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2466};
2467void JavaThread::print_thread_state() const {
2468  print_thread_state_on(tty);
2469};
2470#endif // PRODUCT
2471
2472// Called by Threads::print() for VM_PrintThreads operation
2473void JavaThread::print_on(outputStream *st) const {
2474  st->print("\"%s\" ", get_thread_name());
2475  oop thread_oop = threadObj();
2476  if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2477  Thread::print_on(st);
2478  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2479  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2480  if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2481    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2482  }
2483#ifndef PRODUCT
2484  print_thread_state_on(st);
2485  _safepoint_state->print_on(st);
2486#endif // PRODUCT
2487}
2488
2489// Called by fatal error handler. The difference between this and
2490// JavaThread::print() is that we can't grab lock or allocate memory.
2491void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2492  st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2493  oop thread_obj = threadObj();
2494  if (thread_obj != NULL) {
2495     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2496  }
2497  st->print(" [");
2498  st->print("%s", _get_thread_state_name(_thread_state));
2499  if (osthread()) {
2500    st->print(", id=%d", osthread()->thread_id());
2501  }
2502  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2503            _stack_base - _stack_size, _stack_base);
2504  st->print("]");
2505  return;
2506}
2507
2508// Verification
2509
2510static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2511
2512void JavaThread::verify() {
2513  // Verify oops in the thread.
2514  oops_do(&VerifyOopClosure::verify_oop, NULL);
2515
2516  // Verify the stack frames.
2517  frames_do(frame_verify);
2518}
2519
2520// CR 6300358 (sub-CR 2137150)
2521// Most callers of this method assume that it can't return NULL but a
2522// thread may not have a name whilst it is in the process of attaching to
2523// the VM - see CR 6412693, and there are places where a JavaThread can be
2524// seen prior to having it's threadObj set (eg JNI attaching threads and
2525// if vm exit occurs during initialization). These cases can all be accounted
2526// for such that this method never returns NULL.
2527const char* JavaThread::get_thread_name() const {
2528#ifdef ASSERT
2529  // early safepoints can hit while current thread does not yet have TLS
2530  if (!SafepointSynchronize::is_at_safepoint()) {
2531    Thread *cur = Thread::current();
2532    if (!(cur->is_Java_thread() && cur == this)) {
2533      // Current JavaThreads are allowed to get their own name without
2534      // the Threads_lock.
2535      assert_locked_or_safepoint(Threads_lock);
2536    }
2537  }
2538#endif // ASSERT
2539    return get_thread_name_string();
2540}
2541
2542// Returns a non-NULL representation of this thread's name, or a suitable
2543// descriptive string if there is no set name
2544const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2545  const char* name_str;
2546  oop thread_obj = threadObj();
2547  if (thread_obj != NULL) {
2548    typeArrayOop name = java_lang_Thread::name(thread_obj);
2549    if (name != NULL) {
2550      if (buf == NULL) {
2551        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2552      }
2553      else {
2554        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2555      }
2556    }
2557    else if (is_attaching()) { // workaround for 6412693 - see 6404306
2558      name_str = "<no-name - thread is attaching>";
2559    }
2560    else {
2561      name_str = Thread::name();
2562    }
2563  }
2564  else {
2565    name_str = Thread::name();
2566  }
2567  assert(name_str != NULL, "unexpected NULL thread name");
2568  return name_str;
2569}
2570
2571
2572const char* JavaThread::get_threadgroup_name() const {
2573  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2574  oop thread_obj = threadObj();
2575  if (thread_obj != NULL) {
2576    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2577    if (thread_group != NULL) {
2578      typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2579      // ThreadGroup.name can be null
2580      if (name != NULL) {
2581        const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2582        return str;
2583      }
2584    }
2585  }
2586  return NULL;
2587}
2588
2589const char* JavaThread::get_parent_name() const {
2590  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2591  oop thread_obj = threadObj();
2592  if (thread_obj != NULL) {
2593    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2594    if (thread_group != NULL) {
2595      oop parent = java_lang_ThreadGroup::parent(thread_group);
2596      if (parent != NULL) {
2597        typeArrayOop name = java_lang_ThreadGroup::name(parent);
2598        // ThreadGroup.name can be null
2599        if (name != NULL) {
2600          const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2601          return str;
2602        }
2603      }
2604    }
2605  }
2606  return NULL;
2607}
2608
2609ThreadPriority JavaThread::java_priority() const {
2610  oop thr_oop = threadObj();
2611  if (thr_oop == NULL) return NormPriority; // Bootstrapping
2612  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2613  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2614  return priority;
2615}
2616
2617void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2618
2619  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2620  // Link Java Thread object <-> C++ Thread
2621
2622  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2623  // and put it into a new Handle.  The Handle "thread_oop" can then
2624  // be used to pass the C++ thread object to other methods.
2625
2626  // Set the Java level thread object (jthread) field of the
2627  // new thread (a JavaThread *) to C++ thread object using the
2628  // "thread_oop" handle.
2629
2630  // Set the thread field (a JavaThread *) of the
2631  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2632
2633  Handle thread_oop(Thread::current(),
2634                    JNIHandles::resolve_non_null(jni_thread));
2635  assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
2636    "must be initialized");
2637  set_threadObj(thread_oop());
2638  java_lang_Thread::set_thread(thread_oop(), this);
2639
2640  if (prio == NoPriority) {
2641    prio = java_lang_Thread::priority(thread_oop());
2642    assert(prio != NoPriority, "A valid priority should be present");
2643  }
2644
2645  // Push the Java priority down to the native thread; needs Threads_lock
2646  Thread::set_priority(this, prio);
2647
2648  // Add the new thread to the Threads list and set it in motion.
2649  // We must have threads lock in order to call Threads::add.
2650  // It is crucial that we do not block before the thread is
2651  // added to the Threads list for if a GC happens, then the java_thread oop
2652  // will not be visited by GC.
2653  Threads::add(this);
2654}
2655
2656oop JavaThread::current_park_blocker() {
2657  // Support for JSR-166 locks
2658  oop thread_oop = threadObj();
2659  if (thread_oop != NULL &&
2660      JDK_Version::current().supports_thread_park_blocker()) {
2661    return java_lang_Thread::park_blocker(thread_oop);
2662  }
2663  return NULL;
2664}
2665
2666
2667void JavaThread::print_stack_on(outputStream* st) {
2668  if (!has_last_Java_frame()) return;
2669  ResourceMark rm;
2670  HandleMark   hm;
2671
2672  RegisterMap reg_map(this);
2673  vframe* start_vf = last_java_vframe(&reg_map);
2674  int count = 0;
2675  for (vframe* f = start_vf; f; f = f->sender() ) {
2676    if (f->is_java_frame()) {
2677      javaVFrame* jvf = javaVFrame::cast(f);
2678      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2679
2680      // Print out lock information
2681      if (JavaMonitorsInStackTrace) {
2682        jvf->print_lock_info_on(st, count);
2683      }
2684    } else {
2685      // Ignore non-Java frames
2686    }
2687
2688    // Bail-out case for too deep stacks
2689    count++;
2690    if (MaxJavaStackTraceDepth == count) return;
2691  }
2692}
2693
2694
2695// JVMTI PopFrame support
2696void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2697  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2698  if (in_bytes(size_in_bytes) != 0) {
2699    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
2700    _popframe_preserved_args_size = in_bytes(size_in_bytes);
2701    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2702  }
2703}
2704
2705void* JavaThread::popframe_preserved_args() {
2706  return _popframe_preserved_args;
2707}
2708
2709ByteSize JavaThread::popframe_preserved_args_size() {
2710  return in_ByteSize(_popframe_preserved_args_size);
2711}
2712
2713WordSize JavaThread::popframe_preserved_args_size_in_words() {
2714  int sz = in_bytes(popframe_preserved_args_size());
2715  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
2716  return in_WordSize(sz / wordSize);
2717}
2718
2719void JavaThread::popframe_free_preserved_args() {
2720  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
2721  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
2722  _popframe_preserved_args = NULL;
2723  _popframe_preserved_args_size = 0;
2724}
2725
2726#ifndef PRODUCT
2727
2728void JavaThread::trace_frames() {
2729  tty->print_cr("[Describe stack]");
2730  int frame_no = 1;
2731  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2732    tty->print("  %d. ", frame_no++);
2733    fst.current()->print_value_on(tty,this);
2734    tty->cr();
2735  }
2736}
2737
2738
2739void JavaThread::trace_stack_from(vframe* start_vf) {
2740  ResourceMark rm;
2741  int vframe_no = 1;
2742  for (vframe* f = start_vf; f; f = f->sender() ) {
2743    if (f->is_java_frame()) {
2744      javaVFrame::cast(f)->print_activation(vframe_no++);
2745    } else {
2746      f->print();
2747    }
2748    if (vframe_no > StackPrintLimit) {
2749      tty->print_cr("...<more frames>...");
2750      return;
2751    }
2752  }
2753}
2754
2755
2756void JavaThread::trace_stack() {
2757  if (!has_last_Java_frame()) return;
2758  ResourceMark rm;
2759  HandleMark   hm;
2760  RegisterMap reg_map(this);
2761  trace_stack_from(last_java_vframe(&reg_map));
2762}
2763
2764
2765#endif // PRODUCT
2766
2767
2768javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
2769  assert(reg_map != NULL, "a map must be given");
2770  frame f = last_frame();
2771  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
2772    if (vf->is_java_frame()) return javaVFrame::cast(vf);
2773  }
2774  return NULL;
2775}
2776
2777
2778klassOop JavaThread::security_get_caller_class(int depth) {
2779  vframeStream vfst(this);
2780  vfst.security_get_caller_frame(depth);
2781  if (!vfst.at_end()) {
2782    return vfst.method()->method_holder();
2783  }
2784  return NULL;
2785}
2786
2787static void compiler_thread_entry(JavaThread* thread, TRAPS) {
2788  assert(thread->is_Compiler_thread(), "must be compiler thread");
2789  CompileBroker::compiler_thread_loop();
2790}
2791
2792// Create a CompilerThread
2793CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
2794: JavaThread(&compiler_thread_entry) {
2795  _env   = NULL;
2796  _log   = NULL;
2797  _task  = NULL;
2798  _queue = queue;
2799  _counters = counters;
2800  _buffer_blob = NULL;
2801
2802#ifndef PRODUCT
2803  _ideal_graph_printer = NULL;
2804#endif
2805}
2806
2807
2808// ======= Threads ========
2809
2810// The Threads class links together all active threads, and provides
2811// operations over all threads.  It is protected by its own Mutex
2812// lock, which is also used in other contexts to protect thread
2813// operations from having the thread being operated on from exiting
2814// and going away unexpectedly (e.g., safepoint synchronization)
2815
2816JavaThread* Threads::_thread_list = NULL;
2817int         Threads::_number_of_threads = 0;
2818int         Threads::_number_of_non_daemon_threads = 0;
2819int         Threads::_return_code = 0;
2820size_t      JavaThread::_stack_size_at_create = 0;
2821
2822// All JavaThreads
2823#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
2824
2825void os_stream();
2826
2827// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
2828void Threads::threads_do(ThreadClosure* tc) {
2829  assert_locked_or_safepoint(Threads_lock);
2830  // ALL_JAVA_THREADS iterates through all JavaThreads
2831  ALL_JAVA_THREADS(p) {
2832    tc->do_thread(p);
2833  }
2834  // Someday we could have a table or list of all non-JavaThreads.
2835  // For now, just manually iterate through them.
2836  tc->do_thread(VMThread::vm_thread());
2837  Universe::heap()->gc_threads_do(tc);
2838  WatcherThread *wt = WatcherThread::watcher_thread();
2839  // Strictly speaking, the following NULL check isn't sufficient to make sure
2840  // the data for WatcherThread is still valid upon being examined. However,
2841  // considering that WatchThread terminates when the VM is on the way to
2842  // exit at safepoint, the chance of the above is extremely small. The right
2843  // way to prevent termination of WatcherThread would be to acquire
2844  // Terminator_lock, but we can't do that without violating the lock rank
2845  // checking in some cases.
2846  if (wt != NULL)
2847    tc->do_thread(wt);
2848
2849  // If CompilerThreads ever become non-JavaThreads, add them here
2850}
2851
2852jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
2853
2854  extern void JDK_Version_init();
2855
2856  // Check version
2857  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
2858
2859  // Initialize the output stream module
2860  ostream_init();
2861
2862  // Process java launcher properties.
2863  Arguments::process_sun_java_launcher_properties(args);
2864
2865  // Initialize the os module before using TLS
2866  os::init();
2867
2868  // Initialize system properties.
2869  Arguments::init_system_properties();
2870
2871  // So that JDK version can be used as a discrimintor when parsing arguments
2872  JDK_Version_init();
2873
2874  // Parse arguments
2875  jint parse_result = Arguments::parse(args);
2876  if (parse_result != JNI_OK) return parse_result;
2877
2878  if (PauseAtStartup) {
2879    os::pause();
2880  }
2881
2882  HS_DTRACE_PROBE(hotspot, vm__init__begin);
2883
2884  // Record VM creation timing statistics
2885  TraceVmCreationTime create_vm_timer;
2886  create_vm_timer.start();
2887
2888  // Timing (must come after argument parsing)
2889  TraceTime timer("Create VM", TraceStartupTime);
2890
2891  // Initialize the os module after parsing the args
2892  jint os_init_2_result = os::init_2();
2893  if (os_init_2_result != JNI_OK) return os_init_2_result;
2894
2895  // Initialize output stream logging
2896  ostream_init_log();
2897
2898  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
2899  // Must be before create_vm_init_agents()
2900  if (Arguments::init_libraries_at_startup()) {
2901    convert_vm_init_libraries_to_agents();
2902  }
2903
2904  // Launch -agentlib/-agentpath and converted -Xrun agents
2905  if (Arguments::init_agents_at_startup()) {
2906    create_vm_init_agents();
2907  }
2908
2909  // Initialize Threads state
2910  _thread_list = NULL;
2911  _number_of_threads = 0;
2912  _number_of_non_daemon_threads = 0;
2913
2914  // Initialize TLS
2915  ThreadLocalStorage::init();
2916
2917  // Initialize global data structures and create system classes in heap
2918  vm_init_globals();
2919
2920  // Attach the main thread to this os thread
2921  JavaThread* main_thread = new JavaThread();
2922  main_thread->set_thread_state(_thread_in_vm);
2923  // must do this before set_active_handles and initialize_thread_local_storage
2924  // Note: on solaris initialize_thread_local_storage() will (indirectly)
2925  // change the stack size recorded here to one based on the java thread
2926  // stacksize. This adjusted size is what is used to figure the placement
2927  // of the guard pages.
2928  main_thread->record_stack_base_and_size();
2929  main_thread->initialize_thread_local_storage();
2930
2931  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
2932
2933  if (!main_thread->set_as_starting_thread()) {
2934    vm_shutdown_during_initialization(
2935      "Failed necessary internal allocation. Out of swap space");
2936    delete main_thread;
2937    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
2938    return JNI_ENOMEM;
2939  }
2940
2941  // Enable guard page *after* os::create_main_thread(), otherwise it would
2942  // crash Linux VM, see notes in os_linux.cpp.
2943  main_thread->create_stack_guard_pages();
2944
2945  // Initialize Java-Leve synchronization subsystem
2946  ObjectSynchronizer::Initialize() ;
2947
2948  // Initialize global modules
2949  jint status = init_globals();
2950  if (status != JNI_OK) {
2951    delete main_thread;
2952    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
2953    return status;
2954  }
2955
2956  HandleMark hm;
2957
2958  { MutexLocker mu(Threads_lock);
2959    Threads::add(main_thread);
2960  }
2961
2962  // Any JVMTI raw monitors entered in onload will transition into
2963  // real raw monitor. VM is setup enough here for raw monitor enter.
2964  JvmtiExport::transition_pending_onload_raw_monitors();
2965
2966  if (VerifyBeforeGC &&
2967      Universe::heap()->total_collections() >= VerifyGCStartAt) {
2968    Universe::heap()->prepare_for_verify();
2969    Universe::verify();   // make sure we're starting with a clean slate
2970  }
2971
2972  // Create the VMThread
2973  { TraceTime timer("Start VMThread", TraceStartupTime);
2974    VMThread::create();
2975    Thread* vmthread = VMThread::vm_thread();
2976
2977    if (!os::create_thread(vmthread, os::vm_thread))
2978      vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
2979
2980    // Wait for the VM thread to become ready, and VMThread::run to initialize
2981    // Monitors can have spurious returns, must always check another state flag
2982    {
2983      MutexLocker ml(Notify_lock);
2984      os::start_thread(vmthread);
2985      while (vmthread->active_handles() == NULL) {
2986        Notify_lock->wait();
2987      }
2988    }
2989  }
2990
2991  assert (Universe::is_fully_initialized(), "not initialized");
2992  EXCEPTION_MARK;
2993
2994  // At this point, the Universe is initialized, but we have not executed
2995  // any byte code.  Now is a good time (the only time) to dump out the
2996  // internal state of the JVM for sharing.
2997
2998  if (DumpSharedSpaces) {
2999    Universe::heap()->preload_and_dump(CHECK_0);
3000    ShouldNotReachHere();
3001  }
3002
3003  // Always call even when there are not JVMTI environments yet, since environments
3004  // may be attached late and JVMTI must track phases of VM execution
3005  JvmtiExport::enter_start_phase();
3006
3007  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3008  JvmtiExport::post_vm_start();
3009
3010  {
3011    TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3012
3013    if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3014      create_vm_init_libraries();
3015    }
3016
3017    if (InitializeJavaLangString) {
3018      initialize_class(vmSymbolHandles::java_lang_String(), CHECK_0);
3019    } else {
3020      warning("java.lang.String not initialized");
3021    }
3022
3023    if (AggressiveOpts) {
3024      {
3025        // Forcibly initialize java/util/HashMap and mutate the private
3026        // static final "frontCacheEnabled" field before we start creating instances
3027#ifdef ASSERT
3028        klassOop tmp_k = SystemDictionary::find(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3029        assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3030#endif
3031        klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3032        KlassHandle k = KlassHandle(THREAD, k_o);
3033        guarantee(k.not_null(), "Must find java/util/HashMap");
3034        instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3035        ik->initialize(CHECK_0);
3036        fieldDescriptor fd;
3037        // Possible we might not find this field; if so, don't break
3038        if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3039          k()->bool_field_put(fd.offset(), true);
3040        }
3041      }
3042
3043      if (UseStringCache) {
3044        // Forcibly initialize java/lang/StringValue and mutate the private
3045        // static final "stringCacheEnabled" field before we start creating instances
3046        klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3047        // Possible that StringValue isn't present: if so, silently don't break
3048        if (k_o != NULL) {
3049          KlassHandle k = KlassHandle(THREAD, k_o);
3050          instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3051          ik->initialize(CHECK_0);
3052          fieldDescriptor fd;
3053          // Possible we might not find this field: if so, silently don't break
3054          if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3055            k()->bool_field_put(fd.offset(), true);
3056          }
3057        }
3058      }
3059    }
3060
3061    // Initialize java_lang.System (needed before creating the thread)
3062    if (InitializeJavaLangSystem) {
3063      initialize_class(vmSymbolHandles::java_lang_System(), CHECK_0);
3064      initialize_class(vmSymbolHandles::java_lang_ThreadGroup(), CHECK_0);
3065      Handle thread_group = create_initial_thread_group(CHECK_0);
3066      Universe::set_main_thread_group(thread_group());
3067      initialize_class(vmSymbolHandles::java_lang_Thread(), CHECK_0);
3068      oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3069      main_thread->set_threadObj(thread_object);
3070      // Set thread status to running since main thread has
3071      // been started and running.
3072      java_lang_Thread::set_thread_status(thread_object,
3073                                          java_lang_Thread::RUNNABLE);
3074
3075      // The VM preresolve methods to these classes. Make sure that get initialized
3076      initialize_class(vmSymbolHandles::java_lang_reflect_Method(), CHECK_0);
3077      initialize_class(vmSymbolHandles::java_lang_ref_Finalizer(),  CHECK_0);
3078      // The VM creates & returns objects of this class. Make sure it's initialized.
3079      initialize_class(vmSymbolHandles::java_lang_Class(), CHECK_0);
3080      call_initializeSystemClass(CHECK_0);
3081    } else {
3082      warning("java.lang.System not initialized");
3083    }
3084
3085    // an instance of OutOfMemory exception has been allocated earlier
3086    if (InitializeJavaLangExceptionsErrors) {
3087      initialize_class(vmSymbolHandles::java_lang_OutOfMemoryError(), CHECK_0);
3088      initialize_class(vmSymbolHandles::java_lang_NullPointerException(), CHECK_0);
3089      initialize_class(vmSymbolHandles::java_lang_ClassCastException(), CHECK_0);
3090      initialize_class(vmSymbolHandles::java_lang_ArrayStoreException(), CHECK_0);
3091      initialize_class(vmSymbolHandles::java_lang_ArithmeticException(), CHECK_0);
3092      initialize_class(vmSymbolHandles::java_lang_StackOverflowError(), CHECK_0);
3093      initialize_class(vmSymbolHandles::java_lang_IllegalMonitorStateException(), CHECK_0);
3094    } else {
3095      warning("java.lang.OutOfMemoryError has not been initialized");
3096      warning("java.lang.NullPointerException has not been initialized");
3097      warning("java.lang.ClassCastException has not been initialized");
3098      warning("java.lang.ArrayStoreException has not been initialized");
3099      warning("java.lang.ArithmeticException has not been initialized");
3100      warning("java.lang.StackOverflowError has not been initialized");
3101    }
3102
3103    if (EnableInvokeDynamic) {
3104      // JSR 292: An intialized java.dyn.InvokeDynamic is required in
3105      // the compiler.
3106      initialize_class(vmSymbolHandles::java_dyn_InvokeDynamic(), CHECK_0);
3107    }
3108  }
3109
3110  // See        : bugid 4211085.
3111  // Background : the static initializer of java.lang.Compiler tries to read
3112  //              property"java.compiler" and read & write property "java.vm.info".
3113  //              When a security manager is installed through the command line
3114  //              option "-Djava.security.manager", the above properties are not
3115  //              readable and the static initializer for java.lang.Compiler fails
3116  //              resulting in a NoClassDefFoundError.  This can happen in any
3117  //              user code which calls methods in java.lang.Compiler.
3118  // Hack :       the hack is to pre-load and initialize this class, so that only
3119  //              system domains are on the stack when the properties are read.
3120  //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3121  //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3122  // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3123  //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3124  //              Once that is done, we should remove this hack.
3125  initialize_class(vmSymbolHandles::java_lang_Compiler(), CHECK_0);
3126
3127  // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3128  // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3129  // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3130  // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3131  // This should also be taken out as soon as 4211383 gets fixed.
3132  reset_vm_info_property(CHECK_0);
3133
3134  quicken_jni_functions();
3135
3136  // Set flag that basic initialization has completed. Used by exceptions and various
3137  // debug stuff, that does not work until all basic classes have been initialized.
3138  set_init_completed();
3139
3140  HS_DTRACE_PROBE(hotspot, vm__init__end);
3141
3142  // record VM initialization completion time
3143  Management::record_vm_init_completed();
3144
3145  // Compute system loader. Note that this has to occur after set_init_completed, since
3146  // valid exceptions may be thrown in the process.
3147  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3148  // set_init_completed has just been called, causing exceptions not to be shortcut
3149  // anymore. We call vm_exit_during_initialization directly instead.
3150  SystemDictionary::compute_java_system_loader(THREAD);
3151  if (HAS_PENDING_EXCEPTION) {
3152    vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3153  }
3154
3155#ifdef KERNEL
3156  if (JDK_Version::is_gte_jdk17x_version()) {
3157    set_jkernel_boot_classloader_hook(THREAD);
3158  }
3159#endif // KERNEL
3160
3161#ifndef SERIALGC
3162  // Support for ConcurrentMarkSweep. This should be cleaned up
3163  // and better encapsulated. The ugly nested if test would go away
3164  // once things are properly refactored. XXX YSR
3165  if (UseConcMarkSweepGC || UseG1GC) {
3166    if (UseConcMarkSweepGC) {
3167      ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3168    } else {
3169      ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3170    }
3171    if (HAS_PENDING_EXCEPTION) {
3172      vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3173    }
3174  }
3175#endif // SERIALGC
3176
3177  // Always call even when there are not JVMTI environments yet, since environments
3178  // may be attached late and JVMTI must track phases of VM execution
3179  JvmtiExport::enter_live_phase();
3180
3181  // Signal Dispatcher needs to be started before VMInit event is posted
3182  os::signal_init();
3183
3184  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3185  if (!DisableAttachMechanism) {
3186    if (StartAttachListener || AttachListener::init_at_startup()) {
3187      AttachListener::init();
3188    }
3189  }
3190
3191  // Launch -Xrun agents
3192  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3193  // back-end can launch with -Xdebug -Xrunjdwp.
3194  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3195    create_vm_init_libraries();
3196  }
3197
3198  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3199  JvmtiExport::post_vm_initialized();
3200
3201  Chunk::start_chunk_pool_cleaner_task();
3202
3203  // initialize compiler(s)
3204  CompileBroker::compilation_init();
3205
3206  Management::initialize(THREAD);
3207  if (HAS_PENDING_EXCEPTION) {
3208    // management agent fails to start possibly due to
3209    // configuration problem and is responsible for printing
3210    // stack trace if appropriate. Simply exit VM.
3211    vm_exit(1);
3212  }
3213
3214  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3215  if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3216  if (MemProfiling)                   MemProfiler::engage();
3217  StatSampler::engage();
3218  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3219
3220  BiasedLocking::init();
3221
3222
3223  // Start up the WatcherThread if there are any periodic tasks
3224  // NOTE:  All PeriodicTasks should be registered by now. If they
3225  //   aren't, late joiners might appear to start slowly (we might
3226  //   take a while to process their first tick).
3227  if (PeriodicTask::num_tasks() > 0) {
3228    WatcherThread::start();
3229  }
3230
3231  create_vm_timer.end();
3232  return JNI_OK;
3233}
3234
3235// type for the Agent_OnLoad and JVM_OnLoad entry points
3236extern "C" {
3237  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3238}
3239// Find a command line agent library and return its entry point for
3240//         -agentlib:  -agentpath:   -Xrun
3241// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3242static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3243  OnLoadEntry_t on_load_entry = NULL;
3244  void *library = agent->os_lib();  // check if we have looked it up before
3245
3246  if (library == NULL) {
3247    char buffer[JVM_MAXPATHLEN];
3248    char ebuf[1024];
3249    const char *name = agent->name();
3250
3251    if (agent->is_absolute_path()) {
3252      library = hpi::dll_load(name, ebuf, sizeof ebuf);
3253      if (library == NULL) {
3254        // If we can't find the agent, exit.
3255        vm_exit_during_initialization("Could not find agent library in absolute path", name);
3256      }
3257    } else {
3258      // Try to load the agent from the standard dll directory
3259      hpi::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
3260      library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3261#ifdef KERNEL
3262      // Download instrument dll
3263      if (library == NULL && strcmp(name, "instrument") == 0) {
3264        char *props = Arguments::get_kernel_properties();
3265        char *home  = Arguments::get_java_home();
3266        const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
3267                      " sun.jkernel.DownloadManager -download client_jvm";
3268        int length = strlen(props) + strlen(home) + strlen(fmt) + 1;
3269        char *cmd = AllocateHeap(length);
3270        jio_snprintf(cmd, length, fmt, home, props);
3271        int status = os::fork_and_exec(cmd);
3272        FreeHeap(props);
3273        FreeHeap(cmd);
3274        if (status == -1) {
3275          warning(cmd);
3276          vm_exit_during_initialization("fork_and_exec failed: %s",
3277                                         strerror(errno));
3278        }
3279        // when this comes back the instrument.dll should be where it belongs.
3280        library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3281      }
3282#endif // KERNEL
3283      if (library == NULL) { // Try the local directory
3284        char ns[1] = {0};
3285        hpi::dll_build_name(buffer, sizeof(buffer), ns, name);
3286        library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3287        if (library == NULL) {
3288          // If we can't find the agent, exit.
3289          vm_exit_during_initialization("Could not find agent library on the library path or in the local directory", name);
3290        }
3291      }
3292    }
3293    agent->set_os_lib(library);
3294  }
3295
3296  // Find the OnLoad function.
3297  for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3298    on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, hpi::dll_lookup(library, on_load_symbols[symbol_index]));
3299    if (on_load_entry != NULL) break;
3300  }
3301  return on_load_entry;
3302}
3303
3304// Find the JVM_OnLoad entry point
3305static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3306  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3307  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3308}
3309
3310// Find the Agent_OnLoad entry point
3311static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3312  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3313  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3314}
3315
3316// For backwards compatibility with -Xrun
3317// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3318// treated like -agentpath:
3319// Must be called before agent libraries are created
3320void Threads::convert_vm_init_libraries_to_agents() {
3321  AgentLibrary* agent;
3322  AgentLibrary* next;
3323
3324  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3325    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3326    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3327
3328    // If there is an JVM_OnLoad function it will get called later,
3329    // otherwise see if there is an Agent_OnLoad
3330    if (on_load_entry == NULL) {
3331      on_load_entry = lookup_agent_on_load(agent);
3332      if (on_load_entry != NULL) {
3333        // switch it to the agent list -- so that Agent_OnLoad will be called,
3334        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3335        Arguments::convert_library_to_agent(agent);
3336      } else {
3337        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3338      }
3339    }
3340  }
3341}
3342
3343// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3344// Invokes Agent_OnLoad
3345// Called very early -- before JavaThreads exist
3346void Threads::create_vm_init_agents() {
3347  extern struct JavaVM_ main_vm;
3348  AgentLibrary* agent;
3349
3350  JvmtiExport::enter_onload_phase();
3351  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3352    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3353
3354    if (on_load_entry != NULL) {
3355      // Invoke the Agent_OnLoad function
3356      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3357      if (err != JNI_OK) {
3358        vm_exit_during_initialization("agent library failed to init", agent->name());
3359      }
3360    } else {
3361      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3362    }
3363  }
3364  JvmtiExport::enter_primordial_phase();
3365}
3366
3367extern "C" {
3368  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3369}
3370
3371void Threads::shutdown_vm_agents() {
3372  // Send any Agent_OnUnload notifications
3373  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3374  extern struct JavaVM_ main_vm;
3375  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3376
3377    // Find the Agent_OnUnload function.
3378    for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3379      Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3380               hpi::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3381
3382      // Invoke the Agent_OnUnload function
3383      if (unload_entry != NULL) {
3384        JavaThread* thread = JavaThread::current();
3385        ThreadToNativeFromVM ttn(thread);
3386        HandleMark hm(thread);
3387        (*unload_entry)(&main_vm);
3388        break;
3389      }
3390    }
3391  }
3392}
3393
3394// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3395// Invokes JVM_OnLoad
3396void Threads::create_vm_init_libraries() {
3397  extern struct JavaVM_ main_vm;
3398  AgentLibrary* agent;
3399
3400  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3401    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3402
3403    if (on_load_entry != NULL) {
3404      // Invoke the JVM_OnLoad function
3405      JavaThread* thread = JavaThread::current();
3406      ThreadToNativeFromVM ttn(thread);
3407      HandleMark hm(thread);
3408      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3409      if (err != JNI_OK) {
3410        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3411      }
3412    } else {
3413      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3414    }
3415  }
3416}
3417
3418// Last thread running calls java.lang.Shutdown.shutdown()
3419void JavaThread::invoke_shutdown_hooks() {
3420  HandleMark hm(this);
3421
3422  // We could get here with a pending exception, if so clear it now.
3423  if (this->has_pending_exception()) {
3424    this->clear_pending_exception();
3425  }
3426
3427  EXCEPTION_MARK;
3428  klassOop k =
3429    SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_Shutdown(),
3430                                      THREAD);
3431  if (k != NULL) {
3432    // SystemDictionary::resolve_or_null will return null if there was
3433    // an exception.  If we cannot load the Shutdown class, just don't
3434    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3435    // and finalizers (if runFinalizersOnExit is set) won't be run.
3436    // Note that if a shutdown hook was registered or runFinalizersOnExit
3437    // was called, the Shutdown class would have already been loaded
3438    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3439    instanceKlassHandle shutdown_klass (THREAD, k);
3440    JavaValue result(T_VOID);
3441    JavaCalls::call_static(&result,
3442                           shutdown_klass,
3443                           vmSymbolHandles::shutdown_method_name(),
3444                           vmSymbolHandles::void_method_signature(),
3445                           THREAD);
3446  }
3447  CLEAR_PENDING_EXCEPTION;
3448}
3449
3450// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3451// the program falls off the end of main(). Another VM exit path is through
3452// vm_exit() when the program calls System.exit() to return a value or when
3453// there is a serious error in VM. The two shutdown paths are not exactly
3454// the same, but they share Shutdown.shutdown() at Java level and before_exit()
3455// and VM_Exit op at VM level.
3456//
3457// Shutdown sequence:
3458//   + Wait until we are the last non-daemon thread to execute
3459//     <-- every thing is still working at this moment -->
3460//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3461//        shutdown hooks, run finalizers if finalization-on-exit
3462//   + Call before_exit(), prepare for VM exit
3463//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3464//        currently the only user of this mechanism is File.deleteOnExit())
3465//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3466//        post thread end and vm death events to JVMTI,
3467//        stop signal thread
3468//   + Call JavaThread::exit(), it will:
3469//      > release JNI handle blocks, remove stack guard pages
3470//      > remove this thread from Threads list
3471//     <-- no more Java code from this thread after this point -->
3472//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3473//     the compiler threads at safepoint
3474//     <-- do not use anything that could get blocked by Safepoint -->
3475//   + Disable tracing at JNI/JVM barriers
3476//   + Set _vm_exited flag for threads that are still running native code
3477//   + Delete this thread
3478//   + Call exit_globals()
3479//      > deletes tty
3480//      > deletes PerfMemory resources
3481//   + Return to caller
3482
3483bool Threads::destroy_vm() {
3484  JavaThread* thread = JavaThread::current();
3485
3486  // Wait until we are the last non-daemon thread to execute
3487  { MutexLocker nu(Threads_lock);
3488    while (Threads::number_of_non_daemon_threads() > 1 )
3489      // This wait should make safepoint checks, wait without a timeout,
3490      // and wait as a suspend-equivalent condition.
3491      //
3492      // Note: If the FlatProfiler is running and this thread is waiting
3493      // for another non-daemon thread to finish, then the FlatProfiler
3494      // is waiting for the external suspend request on this thread to
3495      // complete. wait_for_ext_suspend_completion() will eventually
3496      // timeout, but that takes time. Making this wait a suspend-
3497      // equivalent condition solves that timeout problem.
3498      //
3499      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3500                         Mutex::_as_suspend_equivalent_flag);
3501  }
3502
3503  // Hang forever on exit if we are reporting an error.
3504  if (ShowMessageBoxOnError && is_error_reported()) {
3505    os::infinite_sleep();
3506  }
3507
3508  if (JDK_Version::is_jdk12x_version()) {
3509    // We are the last thread running, so check if finalizers should be run.
3510    // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3511    HandleMark rm(thread);
3512    Universe::run_finalizers_on_exit();
3513  } else {
3514    // run Java level shutdown hooks
3515    thread->invoke_shutdown_hooks();
3516  }
3517
3518  before_exit(thread);
3519
3520  thread->exit(true);
3521
3522  // Stop VM thread.
3523  {
3524    // 4945125 The vm thread comes to a safepoint during exit.
3525    // GC vm_operations can get caught at the safepoint, and the
3526    // heap is unparseable if they are caught. Grab the Heap_lock
3527    // to prevent this. The GC vm_operations will not be able to
3528    // queue until after the vm thread is dead.
3529    MutexLocker ml(Heap_lock);
3530
3531    VMThread::wait_for_vm_thread_exit();
3532    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3533    VMThread::destroy();
3534  }
3535
3536  // clean up ideal graph printers
3537#if defined(COMPILER2) && !defined(PRODUCT)
3538  IdealGraphPrinter::clean_up();
3539#endif
3540
3541  // Now, all Java threads are gone except daemon threads. Daemon threads
3542  // running Java code or in VM are stopped by the Safepoint. However,
3543  // daemon threads executing native code are still running.  But they
3544  // will be stopped at native=>Java/VM barriers. Note that we can't
3545  // simply kill or suspend them, as it is inherently deadlock-prone.
3546
3547#ifndef PRODUCT
3548  // disable function tracing at JNI/JVM barriers
3549  TraceHPI = false;
3550  TraceJNICalls = false;
3551  TraceJVMCalls = false;
3552  TraceRuntimeCalls = false;
3553#endif
3554
3555  VM_Exit::set_vm_exited();
3556
3557  notify_vm_shutdown();
3558
3559  delete thread;
3560
3561  // exit_globals() will delete tty
3562  exit_globals();
3563
3564  return true;
3565}
3566
3567
3568jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3569  if (version == JNI_VERSION_1_1) return JNI_TRUE;
3570  return is_supported_jni_version(version);
3571}
3572
3573
3574jboolean Threads::is_supported_jni_version(jint version) {
3575  if (version == JNI_VERSION_1_2) return JNI_TRUE;
3576  if (version == JNI_VERSION_1_4) return JNI_TRUE;
3577  if (version == JNI_VERSION_1_6) return JNI_TRUE;
3578  return JNI_FALSE;
3579}
3580
3581
3582void Threads::add(JavaThread* p, bool force_daemon) {
3583  // The threads lock must be owned at this point
3584  assert_locked_or_safepoint(Threads_lock);
3585  p->set_next(_thread_list);
3586  _thread_list = p;
3587  _number_of_threads++;
3588  oop threadObj = p->threadObj();
3589  bool daemon = true;
3590  // Bootstrapping problem: threadObj can be null for initial
3591  // JavaThread (or for threads attached via JNI)
3592  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3593    _number_of_non_daemon_threads++;
3594    daemon = false;
3595  }
3596
3597  ThreadService::add_thread(p, daemon);
3598
3599  // Possible GC point.
3600  Events::log("Thread added: " INTPTR_FORMAT, p);
3601}
3602
3603void Threads::remove(JavaThread* p) {
3604  // Extra scope needed for Thread_lock, so we can check
3605  // that we do not remove thread without safepoint code notice
3606  { MutexLocker ml(Threads_lock);
3607
3608    assert(includes(p), "p must be present");
3609
3610    JavaThread* current = _thread_list;
3611    JavaThread* prev    = NULL;
3612
3613    while (current != p) {
3614      prev    = current;
3615      current = current->next();
3616    }
3617
3618    if (prev) {
3619      prev->set_next(current->next());
3620    } else {
3621      _thread_list = p->next();
3622    }
3623    _number_of_threads--;
3624    oop threadObj = p->threadObj();
3625    bool daemon = true;
3626    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
3627      _number_of_non_daemon_threads--;
3628      daemon = false;
3629
3630      // Only one thread left, do a notify on the Threads_lock so a thread waiting
3631      // on destroy_vm will wake up.
3632      if (number_of_non_daemon_threads() == 1)
3633        Threads_lock->notify_all();
3634    }
3635    ThreadService::remove_thread(p, daemon);
3636
3637    // Make sure that safepoint code disregard this thread. This is needed since
3638    // the thread might mess around with locks after this point. This can cause it
3639    // to do callbacks into the safepoint code. However, the safepoint code is not aware
3640    // of this thread since it is removed from the queue.
3641    p->set_terminated_value();
3642  } // unlock Threads_lock
3643
3644  // Since Events::log uses a lock, we grab it outside the Threads_lock
3645  Events::log("Thread exited: " INTPTR_FORMAT, p);
3646}
3647
3648// Threads_lock must be held when this is called (or must be called during a safepoint)
3649bool Threads::includes(JavaThread* p) {
3650  assert(Threads_lock->is_locked(), "sanity check");
3651  ALL_JAVA_THREADS(q) {
3652    if (q == p ) {
3653      return true;
3654    }
3655  }
3656  return false;
3657}
3658
3659// Operations on the Threads list for GC.  These are not explicitly locked,
3660// but the garbage collector must provide a safe context for them to run.
3661// In particular, these things should never be called when the Threads_lock
3662// is held by some other thread. (Note: the Safepoint abstraction also
3663// uses the Threads_lock to gurantee this property. It also makes sure that
3664// all threads gets blocked when exiting or starting).
3665
3666void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3667  ALL_JAVA_THREADS(p) {
3668    p->oops_do(f, cf);
3669  }
3670  VMThread::vm_thread()->oops_do(f, cf);
3671}
3672
3673void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
3674  // Introduce a mechanism allowing parallel threads to claim threads as
3675  // root groups.  Overhead should be small enough to use all the time,
3676  // even in sequential code.
3677  SharedHeap* sh = SharedHeap::heap();
3678  bool is_par = (sh->n_par_threads() > 0);
3679  int cp = SharedHeap::heap()->strong_roots_parity();
3680  ALL_JAVA_THREADS(p) {
3681    if (p->claim_oops_do(is_par, cp)) {
3682      p->oops_do(f, cf);
3683    }
3684  }
3685  VMThread* vmt = VMThread::vm_thread();
3686  if (vmt->claim_oops_do(is_par, cp))
3687    vmt->oops_do(f, cf);
3688}
3689
3690#ifndef SERIALGC
3691// Used by ParallelScavenge
3692void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
3693  ALL_JAVA_THREADS(p) {
3694    q->enqueue(new ThreadRootsTask(p));
3695  }
3696  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
3697}
3698
3699// Used by Parallel Old
3700void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
3701  ALL_JAVA_THREADS(p) {
3702    q->enqueue(new ThreadRootsMarkingTask(p));
3703  }
3704  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
3705}
3706#endif // SERIALGC
3707
3708void Threads::nmethods_do(CodeBlobClosure* cf) {
3709  ALL_JAVA_THREADS(p) {
3710    p->nmethods_do(cf);
3711  }
3712  VMThread::vm_thread()->nmethods_do(cf);
3713}
3714
3715void Threads::gc_epilogue() {
3716  ALL_JAVA_THREADS(p) {
3717    p->gc_epilogue();
3718  }
3719}
3720
3721void Threads::gc_prologue() {
3722  ALL_JAVA_THREADS(p) {
3723    p->gc_prologue();
3724  }
3725}
3726
3727void Threads::deoptimized_wrt_marked_nmethods() {
3728  ALL_JAVA_THREADS(p) {
3729    p->deoptimized_wrt_marked_nmethods();
3730  }
3731}
3732
3733
3734// Get count Java threads that are waiting to enter the specified monitor.
3735GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
3736  address monitor, bool doLock) {
3737  assert(doLock || SafepointSynchronize::is_at_safepoint(),
3738    "must grab Threads_lock or be at safepoint");
3739  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
3740
3741  int i = 0;
3742  {
3743    MutexLockerEx ml(doLock ? Threads_lock : NULL);
3744    ALL_JAVA_THREADS(p) {
3745      if (p->is_Compiler_thread()) continue;
3746
3747      address pending = (address)p->current_pending_monitor();
3748      if (pending == monitor) {             // found a match
3749        if (i < count) result->append(p);   // save the first count matches
3750        i++;
3751      }
3752    }
3753  }
3754  return result;
3755}
3756
3757
3758JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
3759  assert(doLock ||
3760         Threads_lock->owned_by_self() ||
3761         SafepointSynchronize::is_at_safepoint(),
3762         "must grab Threads_lock or be at safepoint");
3763
3764  // NULL owner means not locked so we can skip the search
3765  if (owner == NULL) return NULL;
3766
3767  {
3768    MutexLockerEx ml(doLock ? Threads_lock : NULL);
3769    ALL_JAVA_THREADS(p) {
3770      // first, see if owner is the address of a Java thread
3771      if (owner == (address)p) return p;
3772    }
3773  }
3774  assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
3775  if (UseHeavyMonitors) return NULL;
3776
3777  //
3778  // If we didn't find a matching Java thread and we didn't force use of
3779  // heavyweight monitors, then the owner is the stack address of the
3780  // Lock Word in the owning Java thread's stack.
3781  //
3782  JavaThread* the_owner = NULL;
3783  {
3784    MutexLockerEx ml(doLock ? Threads_lock : NULL);
3785    ALL_JAVA_THREADS(q) {
3786      if (q->is_lock_owned(owner)) {
3787        the_owner = q;
3788        break;
3789      }
3790    }
3791  }
3792  assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
3793  return the_owner;
3794}
3795
3796// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
3797void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
3798  char buf[32];
3799  st->print_cr(os::local_time_string(buf, sizeof(buf)));
3800
3801  st->print_cr("Full thread dump %s (%s %s):",
3802                Abstract_VM_Version::vm_name(),
3803                Abstract_VM_Version::vm_release(),
3804                Abstract_VM_Version::vm_info_string()
3805               );
3806  st->cr();
3807
3808#ifndef SERIALGC
3809  // Dump concurrent locks
3810  ConcurrentLocksDump concurrent_locks;
3811  if (print_concurrent_locks) {
3812    concurrent_locks.dump_at_safepoint();
3813  }
3814#endif // SERIALGC
3815
3816  ALL_JAVA_THREADS(p) {
3817    ResourceMark rm;
3818    p->print_on(st);
3819    if (print_stacks) {
3820      if (internal_format) {
3821        p->trace_stack();
3822      } else {
3823        p->print_stack_on(st);
3824      }
3825    }
3826    st->cr();
3827#ifndef SERIALGC
3828    if (print_concurrent_locks) {
3829      concurrent_locks.print_locks_on(p, st);
3830    }
3831#endif // SERIALGC
3832  }
3833
3834  VMThread::vm_thread()->print_on(st);
3835  st->cr();
3836  Universe::heap()->print_gc_threads_on(st);
3837  WatcherThread* wt = WatcherThread::watcher_thread();
3838  if (wt != NULL) wt->print_on(st);
3839  st->cr();
3840  CompileBroker::print_compiler_threads_on(st);
3841  st->flush();
3842}
3843
3844// Threads::print_on_error() is called by fatal error handler. It's possible
3845// that VM is not at safepoint and/or current thread is inside signal handler.
3846// Don't print stack trace, as the stack may not be walkable. Don't allocate
3847// memory (even in resource area), it might deadlock the error handler.
3848void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
3849  bool found_current = false;
3850  st->print_cr("Java Threads: ( => current thread )");
3851  ALL_JAVA_THREADS(thread) {
3852    bool is_current = (current == thread);
3853    found_current = found_current || is_current;
3854
3855    st->print("%s", is_current ? "=>" : "  ");
3856
3857    st->print(PTR_FORMAT, thread);
3858    st->print(" ");
3859    thread->print_on_error(st, buf, buflen);
3860    st->cr();
3861  }
3862  st->cr();
3863
3864  st->print_cr("Other Threads:");
3865  if (VMThread::vm_thread()) {
3866    bool is_current = (current == VMThread::vm_thread());
3867    found_current = found_current || is_current;
3868    st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
3869
3870    st->print(PTR_FORMAT, VMThread::vm_thread());
3871    st->print(" ");
3872    VMThread::vm_thread()->print_on_error(st, buf, buflen);
3873    st->cr();
3874  }
3875  WatcherThread* wt = WatcherThread::watcher_thread();
3876  if (wt != NULL) {
3877    bool is_current = (current == wt);
3878    found_current = found_current || is_current;
3879    st->print("%s", is_current ? "=>" : "  ");
3880
3881    st->print(PTR_FORMAT, wt);
3882    st->print(" ");
3883    wt->print_on_error(st, buf, buflen);
3884    st->cr();
3885  }
3886  if (!found_current) {
3887    st->cr();
3888    st->print("=>" PTR_FORMAT " (exited) ", current);
3889    current->print_on_error(st, buf, buflen);
3890    st->cr();
3891  }
3892}
3893
3894
3895// Lifecycle management for TSM ParkEvents.
3896// ParkEvents are type-stable (TSM).
3897// In our particular implementation they happen to be immortal.
3898//
3899// We manage concurrency on the FreeList with a CAS-based
3900// detach-modify-reattach idiom that avoids the ABA problems
3901// that would otherwise be present in a simple CAS-based
3902// push-pop implementation.   (push-one and pop-all)
3903//
3904// Caveat: Allocate() and Release() may be called from threads
3905// other than the thread associated with the Event!
3906// If we need to call Allocate() when running as the thread in
3907// question then look for the PD calls to initialize native TLS.
3908// Native TLS (Win32/Linux/Solaris) can only be initialized or
3909// accessed by the associated thread.
3910// See also pd_initialize().
3911//
3912// Note that we could defer associating a ParkEvent with a thread
3913// until the 1st time the thread calls park().  unpark() calls to
3914// an unprovisioned thread would be ignored.  The first park() call
3915// for a thread would allocate and associate a ParkEvent and return
3916// immediately.
3917
3918volatile int ParkEvent::ListLock = 0 ;
3919ParkEvent * volatile ParkEvent::FreeList = NULL ;
3920
3921ParkEvent * ParkEvent::Allocate (Thread * t) {
3922  // In rare cases -- JVM_RawMonitor* operations -- we can find t == null.
3923  ParkEvent * ev ;
3924
3925  // Start by trying to recycle an existing but unassociated
3926  // ParkEvent from the global free list.
3927  for (;;) {
3928    ev = FreeList ;
3929    if (ev == NULL) break ;
3930    // 1: Detach - sequester or privatize the list
3931    // Tantamount to ev = Swap (&FreeList, NULL)
3932    if (Atomic::cmpxchg_ptr (NULL, &FreeList, ev) != ev) {
3933       continue ;
3934    }
3935
3936    // We've detached the list.  The list in-hand is now
3937    // local to this thread.   This thread can operate on the
3938    // list without risk of interference from other threads.
3939    // 2: Extract -- pop the 1st element from the list.
3940    ParkEvent * List = ev->FreeNext ;
3941    if (List == NULL) break ;
3942    for (;;) {
3943        // 3: Try to reattach the residual list
3944        guarantee (List != NULL, "invariant") ;
3945        ParkEvent * Arv =  (ParkEvent *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
3946        if (Arv == NULL) break ;
3947
3948        // New nodes arrived.  Try to detach the recent arrivals.
3949        if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
3950            continue ;
3951        }
3952        guarantee (Arv != NULL, "invariant") ;
3953        // 4: Merge Arv into List
3954        ParkEvent * Tail = List ;
3955        while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
3956        Tail->FreeNext = Arv ;
3957    }
3958    break ;
3959  }
3960
3961  if (ev != NULL) {
3962    guarantee (ev->AssociatedWith == NULL, "invariant") ;
3963  } else {
3964    // Do this the hard way -- materialize a new ParkEvent.
3965    // In rare cases an allocating thread might detach a long list --
3966    // installing null into FreeList -- and then stall or be obstructed.
3967    // A 2nd thread calling Allocate() would see FreeList == null.
3968    // The list held privately by the 1st thread is unavailable to the 2nd thread.
3969    // In that case the 2nd thread would have to materialize a new ParkEvent,
3970    // even though free ParkEvents existed in the system.  In this case we end up
3971    // with more ParkEvents in circulation than we need, but the race is
3972    // rare and the outcome is benign.  Ideally, the # of extant ParkEvents
3973    // is equal to the maximum # of threads that existed at any one time.
3974    // Because of the race mentioned above, segments of the freelist
3975    // can be transiently inaccessible.  At worst we may end up with the
3976    // # of ParkEvents in circulation slightly above the ideal.
3977    // Note that if we didn't have the TSM/immortal constraint, then
3978    // when reattaching, above, we could trim the list.
3979    ev = new ParkEvent () ;
3980    guarantee ((intptr_t(ev) & 0xFF) == 0, "invariant") ;
3981  }
3982  ev->reset() ;                     // courtesy to caller
3983  ev->AssociatedWith = t ;          // Associate ev with t
3984  ev->FreeNext       = NULL ;
3985  return ev ;
3986}
3987
3988void ParkEvent::Release (ParkEvent * ev) {
3989  if (ev == NULL) return ;
3990  guarantee (ev->FreeNext == NULL      , "invariant") ;
3991  ev->AssociatedWith = NULL ;
3992  for (;;) {
3993    // Push ev onto FreeList
3994    // The mechanism is "half" lock-free.
3995    ParkEvent * List = FreeList ;
3996    ev->FreeNext = List ;
3997    if (Atomic::cmpxchg_ptr (ev, &FreeList, List) == List) break ;
3998  }
3999}
4000
4001// Override operator new and delete so we can ensure that the
4002// least significant byte of ParkEvent addresses is 0.
4003// Beware that excessive address alignment is undesirable
4004// as it can result in D$ index usage imbalance as
4005// well as bank access imbalance on Niagara-like platforms,
4006// although Niagara's hash function should help.
4007
4008void * ParkEvent::operator new (size_t sz) {
4009  return (void *) ((intptr_t (CHeapObj::operator new (sz + 256)) + 256) & -256) ;
4010}
4011
4012void ParkEvent::operator delete (void * a) {
4013  // ParkEvents are type-stable and immortal ...
4014  ShouldNotReachHere();
4015}
4016
4017
4018// 6399321 As a temporary measure we copied & modified the ParkEvent::
4019// allocate() and release() code for use by Parkers.  The Parker:: forms
4020// will eventually be removed as we consolide and shift over to ParkEvents
4021// for both builtin synchronization and JSR166 operations.
4022
4023volatile int Parker::ListLock = 0 ;
4024Parker * volatile Parker::FreeList = NULL ;
4025
4026Parker * Parker::Allocate (JavaThread * t) {
4027  guarantee (t != NULL, "invariant") ;
4028  Parker * p ;
4029
4030  // Start by trying to recycle an existing but unassociated
4031  // Parker from the global free list.
4032  for (;;) {
4033    p = FreeList ;
4034    if (p  == NULL) break ;
4035    // 1: Detach
4036    // Tantamount to p = Swap (&FreeList, NULL)
4037    if (Atomic::cmpxchg_ptr (NULL, &FreeList, p) != p) {
4038       continue ;
4039    }
4040
4041    // We've detached the list.  The list in-hand is now
4042    // local to this thread.   This thread can operate on the
4043    // list without risk of interference from other threads.
4044    // 2: Extract -- pop the 1st element from the list.
4045    Parker * List = p->FreeNext ;
4046    if (List == NULL) break ;
4047    for (;;) {
4048        // 3: Try to reattach the residual list
4049        guarantee (List != NULL, "invariant") ;
4050        Parker * Arv =  (Parker *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
4051        if (Arv == NULL) break ;
4052
4053        // New nodes arrived.  Try to detach the recent arrivals.
4054        if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
4055            continue ;
4056        }
4057        guarantee (Arv != NULL, "invariant") ;
4058        // 4: Merge Arv into List
4059        Parker * Tail = List ;
4060        while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
4061        Tail->FreeNext = Arv ;
4062    }
4063    break ;
4064  }
4065
4066  if (p != NULL) {
4067    guarantee (p->AssociatedWith == NULL, "invariant") ;
4068  } else {
4069    // Do this the hard way -- materialize a new Parker..
4070    // In rare cases an allocating thread might detach
4071    // a long list -- installing null into FreeList --and
4072    // then stall.  Another thread calling Allocate() would see
4073    // FreeList == null and then invoke the ctor.  In this case we
4074    // end up with more Parkers in circulation than we need, but
4075    // the race is rare and the outcome is benign.
4076    // Ideally, the # of extant Parkers is equal to the
4077    // maximum # of threads that existed at any one time.
4078    // Because of the race mentioned above, segments of the
4079    // freelist can be transiently inaccessible.  At worst
4080    // we may end up with the # of Parkers in circulation
4081    // slightly above the ideal.
4082    p = new Parker() ;
4083  }
4084  p->AssociatedWith = t ;          // Associate p with t
4085  p->FreeNext       = NULL ;
4086  return p ;
4087}
4088
4089
4090void Parker::Release (Parker * p) {
4091  if (p == NULL) return ;
4092  guarantee (p->AssociatedWith != NULL, "invariant") ;
4093  guarantee (p->FreeNext == NULL      , "invariant") ;
4094  p->AssociatedWith = NULL ;
4095  for (;;) {
4096    // Push p onto FreeList
4097    Parker * List = FreeList ;
4098    p->FreeNext = List ;
4099    if (Atomic::cmpxchg_ptr (p, &FreeList, List) == List) break ;
4100  }
4101}
4102
4103void Threads::verify() {
4104  ALL_JAVA_THREADS(p) {
4105    p->verify();
4106  }
4107  VMThread* thread = VMThread::vm_thread();
4108  if (thread != NULL) thread->verify();
4109}
4110