synchronizer.cpp revision 1798:fa83ab460c54
1/*
2 * Copyright (c) 1998, 2009, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25# include "incls/_precompiled.incl"
26# include "incls/_synchronizer.cpp.incl"
27
28#if defined(__GNUC__) && !defined(IA64)
29  // Need to inhibit inlining for older versions of GCC to avoid build-time failures
30  #define ATTR __attribute__((noinline))
31#else
32  #define ATTR
33#endif
34
35// The "core" versions of monitor enter and exit reside in this file.
36// The interpreter and compilers contain specialized transliterated
37// variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
38// for instance.  If you make changes here, make sure to modify the
39// interpreter, and both C1 and C2 fast-path inline locking code emission.
40//
41//
42// -----------------------------------------------------------------------------
43
44#ifdef DTRACE_ENABLED
45
46// Only bother with this argument setup if dtrace is available
47// TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
48
49HS_DTRACE_PROBE_DECL5(hotspot, monitor__wait,
50  jlong, uintptr_t, char*, int, long);
51HS_DTRACE_PROBE_DECL4(hotspot, monitor__waited,
52  jlong, uintptr_t, char*, int);
53
54#define DTRACE_MONITOR_PROBE_COMMON(klassOop, thread)                      \
55  char* bytes = NULL;                                                      \
56  int len = 0;                                                             \
57  jlong jtid = SharedRuntime::get_java_tid(thread);                        \
58  symbolOop klassname = ((oop)(klassOop))->klass()->klass_part()->name();  \
59  if (klassname != NULL) {                                                 \
60    bytes = (char*)klassname->bytes();                                     \
61    len = klassname->utf8_length();                                        \
62  }
63
64#define DTRACE_MONITOR_WAIT_PROBE(monitor, klassOop, thread, millis)       \
65  {                                                                        \
66    if (DTraceMonitorProbes) {                                            \
67      DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
68      HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
69                       (monitor), bytes, len, (millis));                   \
70    }                                                                      \
71  }
72
73#define DTRACE_MONITOR_PROBE(probe, monitor, klassOop, thread)             \
74  {                                                                        \
75    if (DTraceMonitorProbes) {                                            \
76      DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
77      HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
78                       (uintptr_t)(monitor), bytes, len);                  \
79    }                                                                      \
80  }
81
82#else //  ndef DTRACE_ENABLED
83
84#define DTRACE_MONITOR_WAIT_PROBE(klassOop, thread, millis, mon)    {;}
85#define DTRACE_MONITOR_PROBE(probe, klassOop, thread, mon)          {;}
86
87#endif // ndef DTRACE_ENABLED
88
89// This exists only as a workaround of dtrace bug 6254741
90int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
91  DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
92  return 0;
93}
94
95#define NINFLATIONLOCKS 256
96static volatile intptr_t InflationLocks [NINFLATIONLOCKS] ;
97
98ObjectMonitor * ObjectSynchronizer::gBlockList = NULL ;
99ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL ;
100ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL ;
101int ObjectSynchronizer::gOmInUseCount = 0;
102static volatile intptr_t ListLock = 0 ;      // protects global monitor free-list cache
103static volatile int MonitorFreeCount  = 0 ;      // # on gFreeList
104static volatile int MonitorPopulation = 0 ;      // # Extant -- in circulation
105#define CHAINMARKER ((oop)-1)
106
107// -----------------------------------------------------------------------------
108//  Fast Monitor Enter/Exit
109// This the fast monitor enter. The interpreter and compiler use
110// some assembly copies of this code. Make sure update those code
111// if the following function is changed. The implementation is
112// extremely sensitive to race condition. Be careful.
113
114void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) {
115 if (UseBiasedLocking) {
116    if (!SafepointSynchronize::is_at_safepoint()) {
117      BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
118      if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
119        return;
120      }
121    } else {
122      assert(!attempt_rebias, "can not rebias toward VM thread");
123      BiasedLocking::revoke_at_safepoint(obj);
124    }
125    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
126 }
127
128 slow_enter (obj, lock, THREAD) ;
129}
130
131void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
132  assert(!object->mark()->has_bias_pattern(), "should not see bias pattern here");
133  // if displaced header is null, the previous enter is recursive enter, no-op
134  markOop dhw = lock->displaced_header();
135  markOop mark ;
136  if (dhw == NULL) {
137     // Recursive stack-lock.
138     // Diagnostics -- Could be: stack-locked, inflating, inflated.
139     mark = object->mark() ;
140     assert (!mark->is_neutral(), "invariant") ;
141     if (mark->has_locker() && mark != markOopDesc::INFLATING()) {
142        assert(THREAD->is_lock_owned((address)mark->locker()), "invariant") ;
143     }
144     if (mark->has_monitor()) {
145        ObjectMonitor * m = mark->monitor() ;
146        assert(((oop)(m->object()))->mark() == mark, "invariant") ;
147        assert(m->is_entered(THREAD), "invariant") ;
148     }
149     return ;
150  }
151
152  mark = object->mark() ;
153
154  // If the object is stack-locked by the current thread, try to
155  // swing the displaced header from the box back to the mark.
156  if (mark == (markOop) lock) {
157     assert (dhw->is_neutral(), "invariant") ;
158     if ((markOop) Atomic::cmpxchg_ptr (dhw, object->mark_addr(), mark) == mark) {
159        TEVENT (fast_exit: release stacklock) ;
160        return;
161     }
162  }
163
164  ObjectSynchronizer::inflate(THREAD, object)->exit (THREAD) ;
165}
166
167// -----------------------------------------------------------------------------
168// Interpreter/Compiler Slow Case
169// This routine is used to handle interpreter/compiler slow case
170// We don't need to use fast path here, because it must have been
171// failed in the interpreter/compiler code.
172void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
173  markOop mark = obj->mark();
174  assert(!mark->has_bias_pattern(), "should not see bias pattern here");
175
176  if (mark->is_neutral()) {
177    // Anticipate successful CAS -- the ST of the displaced mark must
178    // be visible <= the ST performed by the CAS.
179    lock->set_displaced_header(mark);
180    if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
181      TEVENT (slow_enter: release stacklock) ;
182      return ;
183    }
184    // Fall through to inflate() ...
185  } else
186  if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
187    assert(lock != mark->locker(), "must not re-lock the same lock");
188    assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
189    lock->set_displaced_header(NULL);
190    return;
191  }
192
193#if 0
194  // The following optimization isn't particularly useful.
195  if (mark->has_monitor() && mark->monitor()->is_entered(THREAD)) {
196    lock->set_displaced_header (NULL) ;
197    return ;
198  }
199#endif
200
201  // The object header will never be displaced to this lock,
202  // so it does not matter what the value is, except that it
203  // must be non-zero to avoid looking like a re-entrant lock,
204  // and must not look locked either.
205  lock->set_displaced_header(markOopDesc::unused_mark());
206  ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
207}
208
209// This routine is used to handle interpreter/compiler slow case
210// We don't need to use fast path here, because it must have
211// failed in the interpreter/compiler code. Simply use the heavy
212// weight monitor should be ok, unless someone find otherwise.
213void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
214  fast_exit (object, lock, THREAD) ;
215}
216
217// -----------------------------------------------------------------------------
218// Class Loader  support to workaround deadlocks on the class loader lock objects
219// Also used by GC
220// complete_exit()/reenter() are used to wait on a nested lock
221// i.e. to give up an outer lock completely and then re-enter
222// Used when holding nested locks - lock acquisition order: lock1 then lock2
223//  1) complete_exit lock1 - saving recursion count
224//  2) wait on lock2
225//  3) when notified on lock2, unlock lock2
226//  4) reenter lock1 with original recursion count
227//  5) lock lock2
228// NOTE: must use heavy weight monitor to handle complete_exit/reenter()
229intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
230  TEVENT (complete_exit) ;
231  if (UseBiasedLocking) {
232    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
233    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
234  }
235
236  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
237
238  return monitor->complete_exit(THREAD);
239}
240
241// NOTE: must use heavy weight monitor to handle complete_exit/reenter()
242void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
243  TEVENT (reenter) ;
244  if (UseBiasedLocking) {
245    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
246    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
247  }
248
249  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
250
251  monitor->reenter(recursion, THREAD);
252}
253// -----------------------------------------------------------------------------
254// JNI locks on java objects
255// NOTE: must use heavy weight monitor to handle jni monitor enter
256void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) { // possible entry from jni enter
257  // the current locking is from JNI instead of Java code
258  TEVENT (jni_enter) ;
259  if (UseBiasedLocking) {
260    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
261    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
262  }
263  THREAD->set_current_pending_monitor_is_from_java(false);
264  ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
265  THREAD->set_current_pending_monitor_is_from_java(true);
266}
267
268// NOTE: must use heavy weight monitor to handle jni monitor enter
269bool ObjectSynchronizer::jni_try_enter(Handle obj, Thread* THREAD) {
270  if (UseBiasedLocking) {
271    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
272    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
273  }
274
275  ObjectMonitor* monitor = ObjectSynchronizer::inflate_helper(obj());
276  return monitor->try_enter(THREAD);
277}
278
279
280// NOTE: must use heavy weight monitor to handle jni monitor exit
281void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
282  TEVENT (jni_exit) ;
283  if (UseBiasedLocking) {
284    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
285  }
286  assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
287
288  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj);
289  // If this thread has locked the object, exit the monitor.  Note:  can't use
290  // monitor->check(CHECK); must exit even if an exception is pending.
291  if (monitor->check(THREAD)) {
292     monitor->exit(THREAD);
293  }
294}
295
296// -----------------------------------------------------------------------------
297// Internal VM locks on java objects
298// standard constructor, allows locking failures
299ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
300  _dolock = doLock;
301  _thread = thread;
302  debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
303  _obj = obj;
304
305  if (_dolock) {
306    TEVENT (ObjectLocker) ;
307
308    ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
309  }
310}
311
312ObjectLocker::~ObjectLocker() {
313  if (_dolock) {
314    ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
315  }
316}
317
318
319// -----------------------------------------------------------------------------
320//  Wait/Notify/NotifyAll
321// NOTE: must use heavy weight monitor to handle wait()
322void ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
323  if (UseBiasedLocking) {
324    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
325    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
326  }
327  if (millis < 0) {
328    TEVENT (wait - throw IAX) ;
329    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
330  }
331  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
332  DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
333  monitor->wait(millis, true, THREAD);
334
335  /* This dummy call is in place to get around dtrace bug 6254741.  Once
336     that's fixed we can uncomment the following line and remove the call */
337  // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
338  dtrace_waited_probe(monitor, obj, THREAD);
339}
340
341void ObjectSynchronizer::waitUninterruptibly (Handle obj, jlong millis, TRAPS) {
342  if (UseBiasedLocking) {
343    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
344    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
345  }
346  if (millis < 0) {
347    TEVENT (wait - throw IAX) ;
348    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
349  }
350  ObjectSynchronizer::inflate(THREAD, obj()) -> wait(millis, false, THREAD) ;
351}
352
353void ObjectSynchronizer::notify(Handle obj, TRAPS) {
354 if (UseBiasedLocking) {
355    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
356    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
357  }
358
359  markOop mark = obj->mark();
360  if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
361    return;
362  }
363  ObjectSynchronizer::inflate(THREAD, obj())->notify(THREAD);
364}
365
366// NOTE: see comment of notify()
367void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
368  if (UseBiasedLocking) {
369    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
370    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
371  }
372
373  markOop mark = obj->mark();
374  if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
375    return;
376  }
377  ObjectSynchronizer::inflate(THREAD, obj())->notifyAll(THREAD);
378}
379
380// -----------------------------------------------------------------------------
381// Hash Code handling
382//
383// Performance concern:
384// OrderAccess::storestore() calls release() which STs 0 into the global volatile
385// OrderAccess::Dummy variable.  This store is unnecessary for correctness.
386// Many threads STing into a common location causes considerable cache migration
387// or "sloshing" on large SMP system.  As such, I avoid using OrderAccess::storestore()
388// until it's repaired.  In some cases OrderAccess::fence() -- which incurs local
389// latency on the executing processor -- is a better choice as it scales on SMP
390// systems.  See http://blogs.sun.com/dave/entry/biased_locking_in_hotspot for a
391// discussion of coherency costs.  Note that all our current reference platforms
392// provide strong ST-ST order, so the issue is moot on IA32, x64, and SPARC.
393//
394// As a general policy we use "volatile" to control compiler-based reordering
395// and explicit fences (barriers) to control for architectural reordering performed
396// by the CPU(s) or platform.
397
398static int  MBFence (int x) { OrderAccess::fence(); return x; }
399
400struct SharedGlobals {
401    // These are highly shared mostly-read variables.
402    // To avoid false-sharing they need to be the sole occupants of a $ line.
403    double padPrefix [8];
404    volatile int stwRandom ;
405    volatile int stwCycle ;
406
407    // Hot RW variables -- Sequester to avoid false-sharing
408    double padSuffix [16];
409    volatile int hcSequence ;
410    double padFinal [8] ;
411} ;
412
413static SharedGlobals GVars ;
414static int MonitorScavengeThreshold = 1000000 ;
415static volatile int ForceMonitorScavenge = 0 ; // Scavenge required and pending
416
417static markOop ReadStableMark (oop obj) {
418  markOop mark = obj->mark() ;
419  if (!mark->is_being_inflated()) {
420    return mark ;       // normal fast-path return
421  }
422
423  int its = 0 ;
424  for (;;) {
425    markOop mark = obj->mark() ;
426    if (!mark->is_being_inflated()) {
427      return mark ;    // normal fast-path return
428    }
429
430    // The object is being inflated by some other thread.
431    // The caller of ReadStableMark() must wait for inflation to complete.
432    // Avoid live-lock
433    // TODO: consider calling SafepointSynchronize::do_call_back() while
434    // spinning to see if there's a safepoint pending.  If so, immediately
435    // yielding or blocking would be appropriate.  Avoid spinning while
436    // there is a safepoint pending.
437    // TODO: add inflation contention performance counters.
438    // TODO: restrict the aggregate number of spinners.
439
440    ++its ;
441    if (its > 10000 || !os::is_MP()) {
442       if (its & 1) {
443         os::NakedYield() ;
444         TEVENT (Inflate: INFLATING - yield) ;
445       } else {
446         // Note that the following code attenuates the livelock problem but is not
447         // a complete remedy.  A more complete solution would require that the inflating
448         // thread hold the associated inflation lock.  The following code simply restricts
449         // the number of spinners to at most one.  We'll have N-2 threads blocked
450         // on the inflationlock, 1 thread holding the inflation lock and using
451         // a yield/park strategy, and 1 thread in the midst of inflation.
452         // A more refined approach would be to change the encoding of INFLATING
453         // to allow encapsulation of a native thread pointer.  Threads waiting for
454         // inflation to complete would use CAS to push themselves onto a singly linked
455         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
456         // and calling park().  When inflation was complete the thread that accomplished inflation
457         // would detach the list and set the markword to inflated with a single CAS and
458         // then for each thread on the list, set the flag and unpark() the thread.
459         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
460         // wakes at most one thread whereas we need to wake the entire list.
461         int ix = (intptr_t(obj) >> 5) & (NINFLATIONLOCKS-1) ;
462         int YieldThenBlock = 0 ;
463         assert (ix >= 0 && ix < NINFLATIONLOCKS, "invariant") ;
464         assert ((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant") ;
465         Thread::muxAcquire (InflationLocks + ix, "InflationLock") ;
466         while (obj->mark() == markOopDesc::INFLATING()) {
467           // Beware: NakedYield() is advisory and has almost no effect on some platforms
468           // so we periodically call Self->_ParkEvent->park(1).
469           // We use a mixed spin/yield/block mechanism.
470           if ((YieldThenBlock++) >= 16) {
471              Thread::current()->_ParkEvent->park(1) ;
472           } else {
473              os::NakedYield() ;
474           }
475         }
476         Thread::muxRelease (InflationLocks + ix ) ;
477         TEVENT (Inflate: INFLATING - yield/park) ;
478       }
479    } else {
480       SpinPause() ;       // SMP-polite spinning
481    }
482  }
483}
484
485// hashCode() generation :
486//
487// Possibilities:
488// * MD5Digest of {obj,stwRandom}
489// * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
490// * A DES- or AES-style SBox[] mechanism
491// * One of the Phi-based schemes, such as:
492//   2654435761 = 2^32 * Phi (golden ratio)
493//   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
494// * A variation of Marsaglia's shift-xor RNG scheme.
495// * (obj ^ stwRandom) is appealing, but can result
496//   in undesirable regularity in the hashCode values of adjacent objects
497//   (objects allocated back-to-back, in particular).  This could potentially
498//   result in hashtable collisions and reduced hashtable efficiency.
499//   There are simple ways to "diffuse" the middle address bits over the
500//   generated hashCode values:
501//
502
503static inline intptr_t get_next_hash(Thread * Self, oop obj) {
504  intptr_t value = 0 ;
505  if (hashCode == 0) {
506     // This form uses an unguarded global Park-Miller RNG,
507     // so it's possible for two threads to race and generate the same RNG.
508     // On MP system we'll have lots of RW access to a global, so the
509     // mechanism induces lots of coherency traffic.
510     value = os::random() ;
511  } else
512  if (hashCode == 1) {
513     // This variation has the property of being stable (idempotent)
514     // between STW operations.  This can be useful in some of the 1-0
515     // synchronization schemes.
516     intptr_t addrBits = intptr_t(obj) >> 3 ;
517     value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
518  } else
519  if (hashCode == 2) {
520     value = 1 ;            // for sensitivity testing
521  } else
522  if (hashCode == 3) {
523     value = ++GVars.hcSequence ;
524  } else
525  if (hashCode == 4) {
526     value = intptr_t(obj) ;
527  } else {
528     // Marsaglia's xor-shift scheme with thread-specific state
529     // This is probably the best overall implementation -- we'll
530     // likely make this the default in future releases.
531     unsigned t = Self->_hashStateX ;
532     t ^= (t << 11) ;
533     Self->_hashStateX = Self->_hashStateY ;
534     Self->_hashStateY = Self->_hashStateZ ;
535     Self->_hashStateZ = Self->_hashStateW ;
536     unsigned v = Self->_hashStateW ;
537     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
538     Self->_hashStateW = v ;
539     value = v ;
540  }
541
542  value &= markOopDesc::hash_mask;
543  if (value == 0) value = 0xBAD ;
544  assert (value != markOopDesc::no_hash, "invariant") ;
545  TEVENT (hashCode: GENERATE) ;
546  return value;
547}
548//
549intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
550  if (UseBiasedLocking) {
551    // NOTE: many places throughout the JVM do not expect a safepoint
552    // to be taken here, in particular most operations on perm gen
553    // objects. However, we only ever bias Java instances and all of
554    // the call sites of identity_hash that might revoke biases have
555    // been checked to make sure they can handle a safepoint. The
556    // added check of the bias pattern is to avoid useless calls to
557    // thread-local storage.
558    if (obj->mark()->has_bias_pattern()) {
559      // Box and unbox the raw reference just in case we cause a STW safepoint.
560      Handle hobj (Self, obj) ;
561      // Relaxing assertion for bug 6320749.
562      assert (Universe::verify_in_progress() ||
563              !SafepointSynchronize::is_at_safepoint(),
564             "biases should not be seen by VM thread here");
565      BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
566      obj = hobj() ;
567      assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
568    }
569  }
570
571  // hashCode() is a heap mutator ...
572  // Relaxing assertion for bug 6320749.
573  assert (Universe::verify_in_progress() ||
574          !SafepointSynchronize::is_at_safepoint(), "invariant") ;
575  assert (Universe::verify_in_progress() ||
576          Self->is_Java_thread() , "invariant") ;
577  assert (Universe::verify_in_progress() ||
578         ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
579
580  ObjectMonitor* monitor = NULL;
581  markOop temp, test;
582  intptr_t hash;
583  markOop mark = ReadStableMark (obj);
584
585  // object should remain ineligible for biased locking
586  assert (!mark->has_bias_pattern(), "invariant") ;
587
588  if (mark->is_neutral()) {
589    hash = mark->hash();              // this is a normal header
590    if (hash) {                       // if it has hash, just return it
591      return hash;
592    }
593    hash = get_next_hash(Self, obj);  // allocate a new hash code
594    temp = mark->copy_set_hash(hash); // merge the hash code into header
595    // use (machine word version) atomic operation to install the hash
596    test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
597    if (test == mark) {
598      return hash;
599    }
600    // If atomic operation failed, we must inflate the header
601    // into heavy weight monitor. We could add more code here
602    // for fast path, but it does not worth the complexity.
603  } else if (mark->has_monitor()) {
604    monitor = mark->monitor();
605    temp = monitor->header();
606    assert (temp->is_neutral(), "invariant") ;
607    hash = temp->hash();
608    if (hash) {
609      return hash;
610    }
611    // Skip to the following code to reduce code size
612  } else if (Self->is_lock_owned((address)mark->locker())) {
613    temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
614    assert (temp->is_neutral(), "invariant") ;
615    hash = temp->hash();              // by current thread, check if the displaced
616    if (hash) {                       // header contains hash code
617      return hash;
618    }
619    // WARNING:
620    //   The displaced header is strictly immutable.
621    // It can NOT be changed in ANY cases. So we have
622    // to inflate the header into heavyweight monitor
623    // even the current thread owns the lock. The reason
624    // is the BasicLock (stack slot) will be asynchronously
625    // read by other threads during the inflate() function.
626    // Any change to stack may not propagate to other threads
627    // correctly.
628  }
629
630  // Inflate the monitor to set hash code
631  monitor = ObjectSynchronizer::inflate(Self, obj);
632  // Load displaced header and check it has hash code
633  mark = monitor->header();
634  assert (mark->is_neutral(), "invariant") ;
635  hash = mark->hash();
636  if (hash == 0) {
637    hash = get_next_hash(Self, obj);
638    temp = mark->copy_set_hash(hash); // merge hash code into header
639    assert (temp->is_neutral(), "invariant") ;
640    test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
641    if (test != mark) {
642      // The only update to the header in the monitor (outside GC)
643      // is install the hash code. If someone add new usage of
644      // displaced header, please update this code
645      hash = test->hash();
646      assert (test->is_neutral(), "invariant") ;
647      assert (hash != 0, "Trivial unexpected object/monitor header usage.");
648    }
649  }
650  // We finally get the hash
651  return hash;
652}
653
654// Deprecated -- use FastHashCode() instead.
655
656intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
657  return FastHashCode (Thread::current(), obj()) ;
658}
659
660
661bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
662                                                   Handle h_obj) {
663  if (UseBiasedLocking) {
664    BiasedLocking::revoke_and_rebias(h_obj, false, thread);
665    assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
666  }
667
668  assert(thread == JavaThread::current(), "Can only be called on current thread");
669  oop obj = h_obj();
670
671  markOop mark = ReadStableMark (obj) ;
672
673  // Uncontended case, header points to stack
674  if (mark->has_locker()) {
675    return thread->is_lock_owned((address)mark->locker());
676  }
677  // Contended case, header points to ObjectMonitor (tagged pointer)
678  if (mark->has_monitor()) {
679    ObjectMonitor* monitor = mark->monitor();
680    return monitor->is_entered(thread) != 0 ;
681  }
682  // Unlocked case, header in place
683  assert(mark->is_neutral(), "sanity check");
684  return false;
685}
686
687// Be aware of this method could revoke bias of the lock object.
688// This method querys the ownership of the lock handle specified by 'h_obj'.
689// If the current thread owns the lock, it returns owner_self. If no
690// thread owns the lock, it returns owner_none. Otherwise, it will return
691// ower_other.
692ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
693(JavaThread *self, Handle h_obj) {
694  // The caller must beware this method can revoke bias, and
695  // revocation can result in a safepoint.
696  assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
697  assert (self->thread_state() != _thread_blocked , "invariant") ;
698
699  // Possible mark states: neutral, biased, stack-locked, inflated
700
701  if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
702    // CASE: biased
703    BiasedLocking::revoke_and_rebias(h_obj, false, self);
704    assert(!h_obj->mark()->has_bias_pattern(),
705           "biases should be revoked by now");
706  }
707
708  assert(self == JavaThread::current(), "Can only be called on current thread");
709  oop obj = h_obj();
710  markOop mark = ReadStableMark (obj) ;
711
712  // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
713  if (mark->has_locker()) {
714    return self->is_lock_owned((address)mark->locker()) ?
715      owner_self : owner_other;
716  }
717
718  // CASE: inflated. Mark (tagged pointer) points to an objectMonitor.
719  // The Object:ObjectMonitor relationship is stable as long as we're
720  // not at a safepoint.
721  if (mark->has_monitor()) {
722    void * owner = mark->monitor()->_owner ;
723    if (owner == NULL) return owner_none ;
724    return (owner == self ||
725            self->is_lock_owned((address)owner)) ? owner_self : owner_other;
726  }
727
728  // CASE: neutral
729  assert(mark->is_neutral(), "sanity check");
730  return owner_none ;           // it's unlocked
731}
732
733// FIXME: jvmti should call this
734JavaThread* ObjectSynchronizer::get_lock_owner(Handle h_obj, bool doLock) {
735  if (UseBiasedLocking) {
736    if (SafepointSynchronize::is_at_safepoint()) {
737      BiasedLocking::revoke_at_safepoint(h_obj);
738    } else {
739      BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
740    }
741    assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
742  }
743
744  oop obj = h_obj();
745  address owner = NULL;
746
747  markOop mark = ReadStableMark (obj) ;
748
749  // Uncontended case, header points to stack
750  if (mark->has_locker()) {
751    owner = (address) mark->locker();
752  }
753
754  // Contended case, header points to ObjectMonitor (tagged pointer)
755  if (mark->has_monitor()) {
756    ObjectMonitor* monitor = mark->monitor();
757    assert(monitor != NULL, "monitor should be non-null");
758    owner = (address) monitor->owner();
759  }
760
761  if (owner != NULL) {
762    return Threads::owning_thread_from_monitor_owner(owner, doLock);
763  }
764
765  // Unlocked case, header in place
766  // Cannot have assertion since this object may have been
767  // locked by another thread when reaching here.
768  // assert(mark->is_neutral(), "sanity check");
769
770  return NULL;
771}
772// Visitors ...
773
774void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
775  ObjectMonitor* block = gBlockList;
776  ObjectMonitor* mid;
777  while (block) {
778    assert(block->object() == CHAINMARKER, "must be a block header");
779    for (int i = _BLOCKSIZE - 1; i > 0; i--) {
780      mid = block + i;
781      oop object = (oop) mid->object();
782      if (object != NULL) {
783        closure->do_monitor(mid);
784      }
785    }
786    block = (ObjectMonitor*) block->FreeNext;
787  }
788}
789
790// Get the next block in the block list.
791static inline ObjectMonitor* next(ObjectMonitor* block) {
792  assert(block->object() == CHAINMARKER, "must be a block header");
793  block = block->FreeNext ;
794  assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
795  return block;
796}
797
798
799void ObjectSynchronizer::oops_do(OopClosure* f) {
800  assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
801  for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
802    assert(block->object() == CHAINMARKER, "must be a block header");
803    for (int i = 1; i < _BLOCKSIZE; i++) {
804      ObjectMonitor* mid = &block[i];
805      if (mid->object() != NULL) {
806        f->do_oop((oop*)mid->object_addr());
807      }
808    }
809  }
810}
811
812
813// -----------------------------------------------------------------------------
814// ObjectMonitor Lifecycle
815// -----------------------
816// Inflation unlinks monitors from the global gFreeList and
817// associates them with objects.  Deflation -- which occurs at
818// STW-time -- disassociates idle monitors from objects.  Such
819// scavenged monitors are returned to the gFreeList.
820//
821// The global list is protected by ListLock.  All the critical sections
822// are short and operate in constant-time.
823//
824// ObjectMonitors reside in type-stable memory (TSM) and are immortal.
825//
826// Lifecycle:
827// --   unassigned and on the global free list
828// --   unassigned and on a thread's private omFreeList
829// --   assigned to an object.  The object is inflated and the mark refers
830//      to the objectmonitor.
831//
832
833
834// Constraining monitor pool growth via MonitorBound ...
835//
836// The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
837// the rate of scavenging is driven primarily by GC.  As such,  we can find
838// an inordinate number of monitors in circulation.
839// To avoid that scenario we can artificially induce a STW safepoint
840// if the pool appears to be growing past some reasonable bound.
841// Generally we favor time in space-time tradeoffs, but as there's no
842// natural back-pressure on the # of extant monitors we need to impose some
843// type of limit.  Beware that if MonitorBound is set to too low a value
844// we could just loop. In addition, if MonitorBound is set to a low value
845// we'll incur more safepoints, which are harmful to performance.
846// See also: GuaranteedSafepointInterval
847//
848// The current implementation uses asynchronous VM operations.
849//
850
851static void InduceScavenge (Thread * Self, const char * Whence) {
852  // Induce STW safepoint to trim monitors
853  // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
854  // More precisely, trigger an asynchronous STW safepoint as the number
855  // of active monitors passes the specified threshold.
856  // TODO: assert thread state is reasonable
857
858  if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
859    if (ObjectMonitor::Knob_Verbose) {
860      ::printf ("Monitor scavenge - Induced STW @%s (%d)\n", Whence, ForceMonitorScavenge) ;
861      ::fflush(stdout) ;
862    }
863    // Induce a 'null' safepoint to scavenge monitors
864    // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
865    // to the VMthread and have a lifespan longer than that of this activation record.
866    // The VMThread will delete the op when completed.
867    VMThread::execute (new VM_ForceAsyncSafepoint()) ;
868
869    if (ObjectMonitor::Knob_Verbose) {
870      ::printf ("Monitor scavenge - STW posted @%s (%d)\n", Whence, ForceMonitorScavenge) ;
871      ::fflush(stdout) ;
872    }
873  }
874}
875/* Too slow for general assert or debug
876void ObjectSynchronizer::verifyInUse (Thread *Self) {
877   ObjectMonitor* mid;
878   int inusetally = 0;
879   for (mid = Self->omInUseList; mid != NULL; mid = mid->FreeNext) {
880     inusetally ++;
881   }
882   assert(inusetally == Self->omInUseCount, "inuse count off");
883
884   int freetally = 0;
885   for (mid = Self->omFreeList; mid != NULL; mid = mid->FreeNext) {
886     freetally ++;
887   }
888   assert(freetally == Self->omFreeCount, "free count off");
889}
890*/
891ObjectMonitor * ATTR ObjectSynchronizer::omAlloc (Thread * Self) {
892    // A large MAXPRIVATE value reduces both list lock contention
893    // and list coherency traffic, but also tends to increase the
894    // number of objectMonitors in circulation as well as the STW
895    // scavenge costs.  As usual, we lean toward time in space-time
896    // tradeoffs.
897    const int MAXPRIVATE = 1024 ;
898    for (;;) {
899        ObjectMonitor * m ;
900
901        // 1: try to allocate from the thread's local omFreeList.
902        // Threads will attempt to allocate first from their local list, then
903        // from the global list, and only after those attempts fail will the thread
904        // attempt to instantiate new monitors.   Thread-local free lists take
905        // heat off the ListLock and improve allocation latency, as well as reducing
906        // coherency traffic on the shared global list.
907        m = Self->omFreeList ;
908        if (m != NULL) {
909           Self->omFreeList = m->FreeNext ;
910           Self->omFreeCount -- ;
911           // CONSIDER: set m->FreeNext = BAD -- diagnostic hygiene
912           guarantee (m->object() == NULL, "invariant") ;
913           if (MonitorInUseLists) {
914             m->FreeNext = Self->omInUseList;
915             Self->omInUseList = m;
916             Self->omInUseCount ++;
917             // verifyInUse(Self);
918           } else {
919             m->FreeNext = NULL;
920           }
921           return m ;
922        }
923
924        // 2: try to allocate from the global gFreeList
925        // CONSIDER: use muxTry() instead of muxAcquire().
926        // If the muxTry() fails then drop immediately into case 3.
927        // If we're using thread-local free lists then try
928        // to reprovision the caller's free list.
929        if (gFreeList != NULL) {
930            // Reprovision the thread's omFreeList.
931            // Use bulk transfers to reduce the allocation rate and heat
932            // on various locks.
933            Thread::muxAcquire (&ListLock, "omAlloc") ;
934            for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL; ) {
935                MonitorFreeCount --;
936                ObjectMonitor * take = gFreeList ;
937                gFreeList = take->FreeNext ;
938                guarantee (take->object() == NULL, "invariant") ;
939                guarantee (!take->is_busy(), "invariant") ;
940                take->Recycle() ;
941                omRelease (Self, take, false) ;
942            }
943            Thread::muxRelease (&ListLock) ;
944            Self->omFreeProvision += 1 + (Self->omFreeProvision/2) ;
945            if (Self->omFreeProvision > MAXPRIVATE ) Self->omFreeProvision = MAXPRIVATE ;
946            TEVENT (omFirst - reprovision) ;
947
948            const int mx = MonitorBound ;
949            if (mx > 0 && (MonitorPopulation-MonitorFreeCount) > mx) {
950              // We can't safely induce a STW safepoint from omAlloc() as our thread
951              // state may not be appropriate for such activities and callers may hold
952              // naked oops, so instead we defer the action.
953              InduceScavenge (Self, "omAlloc") ;
954            }
955            continue;
956        }
957
958        // 3: allocate a block of new ObjectMonitors
959        // Both the local and global free lists are empty -- resort to malloc().
960        // In the current implementation objectMonitors are TSM - immortal.
961        assert (_BLOCKSIZE > 1, "invariant") ;
962        ObjectMonitor * temp = new ObjectMonitor[_BLOCKSIZE];
963
964        // NOTE: (almost) no way to recover if allocation failed.
965        // We might be able to induce a STW safepoint and scavenge enough
966        // objectMonitors to permit progress.
967        if (temp == NULL) {
968            vm_exit_out_of_memory (sizeof (ObjectMonitor[_BLOCKSIZE]), "Allocate ObjectMonitors") ;
969        }
970
971        // Format the block.
972        // initialize the linked list, each monitor points to its next
973        // forming the single linked free list, the very first monitor
974        // will points to next block, which forms the block list.
975        // The trick of using the 1st element in the block as gBlockList
976        // linkage should be reconsidered.  A better implementation would
977        // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
978
979        for (int i = 1; i < _BLOCKSIZE ; i++) {
980           temp[i].FreeNext = &temp[i+1];
981        }
982
983        // terminate the last monitor as the end of list
984        temp[_BLOCKSIZE - 1].FreeNext = NULL ;
985
986        // Element [0] is reserved for global list linkage
987        temp[0].set_object(CHAINMARKER);
988
989        // Consider carving out this thread's current request from the
990        // block in hand.  This avoids some lock traffic and redundant
991        // list activity.
992
993        // Acquire the ListLock to manipulate BlockList and FreeList.
994        // An Oyama-Taura-Yonezawa scheme might be more efficient.
995        Thread::muxAcquire (&ListLock, "omAlloc [2]") ;
996        MonitorPopulation += _BLOCKSIZE-1;
997        MonitorFreeCount += _BLOCKSIZE-1;
998
999        // Add the new block to the list of extant blocks (gBlockList).
1000        // The very first objectMonitor in a block is reserved and dedicated.
1001        // It serves as blocklist "next" linkage.
1002        temp[0].FreeNext = gBlockList;
1003        gBlockList = temp;
1004
1005        // Add the new string of objectMonitors to the global free list
1006        temp[_BLOCKSIZE - 1].FreeNext = gFreeList ;
1007        gFreeList = temp + 1;
1008        Thread::muxRelease (&ListLock) ;
1009        TEVENT (Allocate block of monitors) ;
1010    }
1011}
1012
1013// Place "m" on the caller's private per-thread omFreeList.
1014// In practice there's no need to clamp or limit the number of
1015// monitors on a thread's omFreeList as the only time we'll call
1016// omRelease is to return a monitor to the free list after a CAS
1017// attempt failed.  This doesn't allow unbounded #s of monitors to
1018// accumulate on a thread's free list.
1019//
1020
1021void ObjectSynchronizer::omRelease (Thread * Self, ObjectMonitor * m, bool fromPerThreadAlloc) {
1022    guarantee (m->object() == NULL, "invariant") ;
1023
1024    // Remove from omInUseList
1025    if (MonitorInUseLists && fromPerThreadAlloc) {
1026      ObjectMonitor* curmidinuse = NULL;
1027      for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; ) {
1028       if (m == mid) {
1029         // extract from per-thread in-use-list
1030         if (mid == Self->omInUseList) {
1031           Self->omInUseList = mid->FreeNext;
1032         } else if (curmidinuse != NULL) {
1033           curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
1034         }
1035         Self->omInUseCount --;
1036         // verifyInUse(Self);
1037         break;
1038       } else {
1039         curmidinuse = mid;
1040         mid = mid->FreeNext;
1041      }
1042    }
1043  }
1044
1045  // FreeNext is used for both onInUseList and omFreeList, so clear old before setting new
1046  m->FreeNext = Self->omFreeList ;
1047  Self->omFreeList = m ;
1048  Self->omFreeCount ++ ;
1049}
1050
1051// Return the monitors of a moribund thread's local free list to
1052// the global free list.  Typically a thread calls omFlush() when
1053// it's dying.  We could also consider having the VM thread steal
1054// monitors from threads that have not run java code over a few
1055// consecutive STW safepoints.  Relatedly, we might decay
1056// omFreeProvision at STW safepoints.
1057//
1058// Also return the monitors of a moribund thread"s omInUseList to
1059// a global gOmInUseList under the global list lock so these
1060// will continue to be scanned.
1061//
1062// We currently call omFlush() from the Thread:: dtor _after the thread
1063// has been excised from the thread list and is no longer a mutator.
1064// That means that omFlush() can run concurrently with a safepoint and
1065// the scavenge operator.  Calling omFlush() from JavaThread::exit() might
1066// be a better choice as we could safely reason that that the JVM is
1067// not at a safepoint at the time of the call, and thus there could
1068// be not inopportune interleavings between omFlush() and the scavenge
1069// operator.
1070
1071void ObjectSynchronizer::omFlush (Thread * Self) {
1072    ObjectMonitor * List = Self->omFreeList ;  // Null-terminated SLL
1073    Self->omFreeList = NULL ;
1074    ObjectMonitor * Tail = NULL ;
1075    int Tally = 0;
1076    if (List != NULL) {
1077      ObjectMonitor * s ;
1078      for (s = List ; s != NULL ; s = s->FreeNext) {
1079          Tally ++ ;
1080          Tail = s ;
1081          guarantee (s->object() == NULL, "invariant") ;
1082          guarantee (!s->is_busy(), "invariant") ;
1083          s->set_owner (NULL) ;   // redundant but good hygiene
1084          TEVENT (omFlush - Move one) ;
1085      }
1086      guarantee (Tail != NULL && List != NULL, "invariant") ;
1087    }
1088
1089    ObjectMonitor * InUseList = Self->omInUseList;
1090    ObjectMonitor * InUseTail = NULL ;
1091    int InUseTally = 0;
1092    if (InUseList != NULL) {
1093      Self->omInUseList = NULL;
1094      ObjectMonitor *curom;
1095      for (curom = InUseList; curom != NULL; curom = curom->FreeNext) {
1096        InUseTail = curom;
1097        InUseTally++;
1098      }
1099// TODO debug
1100      assert(Self->omInUseCount == InUseTally, "inuse count off");
1101      Self->omInUseCount = 0;
1102      guarantee (InUseTail != NULL && InUseList != NULL, "invariant");
1103    }
1104
1105    Thread::muxAcquire (&ListLock, "omFlush") ;
1106    if (Tail != NULL) {
1107      Tail->FreeNext = gFreeList ;
1108      gFreeList = List ;
1109      MonitorFreeCount += Tally;
1110    }
1111
1112    if (InUseTail != NULL) {
1113      InUseTail->FreeNext = gOmInUseList;
1114      gOmInUseList = InUseList;
1115      gOmInUseCount += InUseTally;
1116    }
1117
1118    Thread::muxRelease (&ListLock) ;
1119    TEVENT (omFlush) ;
1120}
1121
1122// Fast path code shared by multiple functions
1123ObjectMonitor* ObjectSynchronizer::inflate_helper(oop obj) {
1124  markOop mark = obj->mark();
1125  if (mark->has_monitor()) {
1126    assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid");
1127    assert(mark->monitor()->header()->is_neutral(), "monitor must record a good object header");
1128    return mark->monitor();
1129  }
1130  return ObjectSynchronizer::inflate(Thread::current(), obj);
1131}
1132
1133
1134// Note that we could encounter some performance loss through false-sharing as
1135// multiple locks occupy the same $ line.  Padding might be appropriate.
1136
1137
1138ObjectMonitor * ATTR ObjectSynchronizer::inflate (Thread * Self, oop object) {
1139  // Inflate mutates the heap ...
1140  // Relaxing assertion for bug 6320749.
1141  assert (Universe::verify_in_progress() ||
1142          !SafepointSynchronize::is_at_safepoint(), "invariant") ;
1143
1144  for (;;) {
1145      const markOop mark = object->mark() ;
1146      assert (!mark->has_bias_pattern(), "invariant") ;
1147
1148      // The mark can be in one of the following states:
1149      // *  Inflated     - just return
1150      // *  Stack-locked - coerce it to inflated
1151      // *  INFLATING    - busy wait for conversion to complete
1152      // *  Neutral      - aggressively inflate the object.
1153      // *  BIASED       - Illegal.  We should never see this
1154
1155      // CASE: inflated
1156      if (mark->has_monitor()) {
1157          ObjectMonitor * inf = mark->monitor() ;
1158          assert (inf->header()->is_neutral(), "invariant");
1159          assert (inf->object() == object, "invariant") ;
1160          assert (ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1161          return inf ;
1162      }
1163
1164      // CASE: inflation in progress - inflating over a stack-lock.
1165      // Some other thread is converting from stack-locked to inflated.
1166      // Only that thread can complete inflation -- other threads must wait.
1167      // The INFLATING value is transient.
1168      // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1169      // We could always eliminate polling by parking the thread on some auxiliary list.
1170      if (mark == markOopDesc::INFLATING()) {
1171         TEVENT (Inflate: spin while INFLATING) ;
1172         ReadStableMark(object) ;
1173         continue ;
1174      }
1175
1176      // CASE: stack-locked
1177      // Could be stack-locked either by this thread or by some other thread.
1178      //
1179      // Note that we allocate the objectmonitor speculatively, _before_ attempting
1180      // to install INFLATING into the mark word.  We originally installed INFLATING,
1181      // allocated the objectmonitor, and then finally STed the address of the
1182      // objectmonitor into the mark.  This was correct, but artificially lengthened
1183      // the interval in which INFLATED appeared in the mark, thus increasing
1184      // the odds of inflation contention.
1185      //
1186      // We now use per-thread private objectmonitor free lists.
1187      // These list are reprovisioned from the global free list outside the
1188      // critical INFLATING...ST interval.  A thread can transfer
1189      // multiple objectmonitors en-mass from the global free list to its local free list.
1190      // This reduces coherency traffic and lock contention on the global free list.
1191      // Using such local free lists, it doesn't matter if the omAlloc() call appears
1192      // before or after the CAS(INFLATING) operation.
1193      // See the comments in omAlloc().
1194
1195      if (mark->has_locker()) {
1196          ObjectMonitor * m = omAlloc (Self) ;
1197          // Optimistically prepare the objectmonitor - anticipate successful CAS
1198          // We do this before the CAS in order to minimize the length of time
1199          // in which INFLATING appears in the mark.
1200          m->Recycle();
1201          m->_Responsible  = NULL ;
1202          m->OwnerIsThread = 0 ;
1203          m->_recursions   = 0 ;
1204          m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;   // Consider: maintain by type/class
1205
1206          markOop cmp = (markOop) Atomic::cmpxchg_ptr (markOopDesc::INFLATING(), object->mark_addr(), mark) ;
1207          if (cmp != mark) {
1208             omRelease (Self, m, true) ;
1209             continue ;       // Interference -- just retry
1210          }
1211
1212          // We've successfully installed INFLATING (0) into the mark-word.
1213          // This is the only case where 0 will appear in a mark-work.
1214          // Only the singular thread that successfully swings the mark-word
1215          // to 0 can perform (or more precisely, complete) inflation.
1216          //
1217          // Why do we CAS a 0 into the mark-word instead of just CASing the
1218          // mark-word from the stack-locked value directly to the new inflated state?
1219          // Consider what happens when a thread unlocks a stack-locked object.
1220          // It attempts to use CAS to swing the displaced header value from the
1221          // on-stack basiclock back into the object header.  Recall also that the
1222          // header value (hashcode, etc) can reside in (a) the object header, or
1223          // (b) a displaced header associated with the stack-lock, or (c) a displaced
1224          // header in an objectMonitor.  The inflate() routine must copy the header
1225          // value from the basiclock on the owner's stack to the objectMonitor, all
1226          // the while preserving the hashCode stability invariants.  If the owner
1227          // decides to release the lock while the value is 0, the unlock will fail
1228          // and control will eventually pass from slow_exit() to inflate.  The owner
1229          // will then spin, waiting for the 0 value to disappear.   Put another way,
1230          // the 0 causes the owner to stall if the owner happens to try to
1231          // drop the lock (restoring the header from the basiclock to the object)
1232          // while inflation is in-progress.  This protocol avoids races that might
1233          // would otherwise permit hashCode values to change or "flicker" for an object.
1234          // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
1235          // 0 serves as a "BUSY" inflate-in-progress indicator.
1236
1237
1238          // fetch the displaced mark from the owner's stack.
1239          // The owner can't die or unwind past the lock while our INFLATING
1240          // object is in the mark.  Furthermore the owner can't complete
1241          // an unlock on the object, either.
1242          markOop dmw = mark->displaced_mark_helper() ;
1243          assert (dmw->is_neutral(), "invariant") ;
1244
1245          // Setup monitor fields to proper values -- prepare the monitor
1246          m->set_header(dmw) ;
1247
1248          // Optimization: if the mark->locker stack address is associated
1249          // with this thread we could simply set m->_owner = Self and
1250          // m->OwnerIsThread = 1. Note that a thread can inflate an object
1251          // that it has stack-locked -- as might happen in wait() -- directly
1252          // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1253          m->set_owner(mark->locker());
1254          m->set_object(object);
1255          // TODO-FIXME: assert BasicLock->dhw != 0.
1256
1257          // Must preserve store ordering. The monitor state must
1258          // be stable at the time of publishing the monitor address.
1259          guarantee (object->mark() == markOopDesc::INFLATING(), "invariant") ;
1260          object->release_set_mark(markOopDesc::encode(m));
1261
1262          // Hopefully the performance counters are allocated on distinct cache lines
1263          // to avoid false sharing on MP systems ...
1264          if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
1265          TEVENT(Inflate: overwrite stacklock) ;
1266          if (TraceMonitorInflation) {
1267            if (object->is_instance()) {
1268              ResourceMark rm;
1269              tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1270                (intptr_t) object, (intptr_t) object->mark(),
1271                Klass::cast(object->klass())->external_name());
1272            }
1273          }
1274          return m ;
1275      }
1276
1277      // CASE: neutral
1278      // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1279      // If we know we're inflating for entry it's better to inflate by swinging a
1280      // pre-locked objectMonitor pointer into the object header.   A successful
1281      // CAS inflates the object *and* confers ownership to the inflating thread.
1282      // In the current implementation we use a 2-step mechanism where we CAS()
1283      // to inflate and then CAS() again to try to swing _owner from NULL to Self.
1284      // An inflateTry() method that we could call from fast_enter() and slow_enter()
1285      // would be useful.
1286
1287      assert (mark->is_neutral(), "invariant");
1288      ObjectMonitor * m = omAlloc (Self) ;
1289      // prepare m for installation - set monitor to initial state
1290      m->Recycle();
1291      m->set_header(mark);
1292      m->set_owner(NULL);
1293      m->set_object(object);
1294      m->OwnerIsThread = 1 ;
1295      m->_recursions   = 0 ;
1296      m->_Responsible  = NULL ;
1297      m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;       // consider: keep metastats by type/class
1298
1299      if (Atomic::cmpxchg_ptr (markOopDesc::encode(m), object->mark_addr(), mark) != mark) {
1300          m->set_object (NULL) ;
1301          m->set_owner  (NULL) ;
1302          m->OwnerIsThread = 0 ;
1303          m->Recycle() ;
1304          omRelease (Self, m, true) ;
1305          m = NULL ;
1306          continue ;
1307          // interference - the markword changed - just retry.
1308          // The state-transitions are one-way, so there's no chance of
1309          // live-lock -- "Inflated" is an absorbing state.
1310      }
1311
1312      // Hopefully the performance counters are allocated on distinct
1313      // cache lines to avoid false sharing on MP systems ...
1314      if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
1315      TEVENT(Inflate: overwrite neutral) ;
1316      if (TraceMonitorInflation) {
1317        if (object->is_instance()) {
1318          ResourceMark rm;
1319          tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1320            (intptr_t) object, (intptr_t) object->mark(),
1321            Klass::cast(object->klass())->external_name());
1322        }
1323      }
1324      return m ;
1325  }
1326}
1327
1328// Note that we could encounter some performance loss through false-sharing as
1329// multiple locks occupy the same $ line.  Padding might be appropriate.
1330
1331
1332// Deflate_idle_monitors() is called at all safepoints, immediately
1333// after all mutators are stopped, but before any objects have moved.
1334// It traverses the list of known monitors, deflating where possible.
1335// The scavenged monitor are returned to the monitor free list.
1336//
1337// Beware that we scavenge at *every* stop-the-world point.
1338// Having a large number of monitors in-circulation negatively
1339// impacts the performance of some applications (e.g., PointBase).
1340// Broadly, we want to minimize the # of monitors in circulation.
1341//
1342// We have added a flag, MonitorInUseLists, which creates a list
1343// of active monitors for each thread. deflate_idle_monitors()
1344// only scans the per-thread inuse lists. omAlloc() puts all
1345// assigned monitors on the per-thread list. deflate_idle_monitors()
1346// returns the non-busy monitors to the global free list.
1347// When a thread dies, omFlush() adds the list of active monitors for
1348// that thread to a global gOmInUseList acquiring the
1349// global list lock. deflate_idle_monitors() acquires the global
1350// list lock to scan for non-busy monitors to the global free list.
1351// An alternative could have used a single global inuse list. The
1352// downside would have been the additional cost of acquiring the global list lock
1353// for every omAlloc().
1354//
1355// Perversely, the heap size -- and thus the STW safepoint rate --
1356// typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1357// which in turn can mean large(r) numbers of objectmonitors in circulation.
1358// This is an unfortunate aspect of this design.
1359//
1360
1361enum ManifestConstants {
1362    ClearResponsibleAtSTW   = 0,
1363    MaximumRecheckInterval  = 1000
1364} ;
1365
1366// Deflate a single monitor if not in use
1367// Return true if deflated, false if in use
1368bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
1369                                         ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
1370  bool deflated;
1371  // Normal case ... The monitor is associated with obj.
1372  guarantee (obj->mark() == markOopDesc::encode(mid), "invariant") ;
1373  guarantee (mid == obj->mark()->monitor(), "invariant");
1374  guarantee (mid->header()->is_neutral(), "invariant");
1375
1376  if (mid->is_busy()) {
1377     if (ClearResponsibleAtSTW) mid->_Responsible = NULL ;
1378     deflated = false;
1379  } else {
1380     // Deflate the monitor if it is no longer being used
1381     // It's idle - scavenge and return to the global free list
1382     // plain old deflation ...
1383     TEVENT (deflate_idle_monitors - scavenge1) ;
1384     if (TraceMonitorInflation) {
1385       if (obj->is_instance()) {
1386         ResourceMark rm;
1387           tty->print_cr("Deflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1388                (intptr_t) obj, (intptr_t) obj->mark(), Klass::cast(obj->klass())->external_name());
1389       }
1390     }
1391
1392     // Restore the header back to obj
1393     obj->release_set_mark(mid->header());
1394     mid->clear();
1395
1396     assert (mid->object() == NULL, "invariant") ;
1397
1398     // Move the object to the working free list defined by FreeHead,FreeTail.
1399     if (*FreeHeadp == NULL) *FreeHeadp = mid;
1400     if (*FreeTailp != NULL) {
1401       ObjectMonitor * prevtail = *FreeTailp;
1402       assert(prevtail->FreeNext == NULL, "cleaned up deflated?"); // TODO KK
1403       prevtail->FreeNext = mid;
1404      }
1405     *FreeTailp = mid;
1406     deflated = true;
1407  }
1408  return deflated;
1409}
1410
1411// Caller acquires ListLock
1412int ObjectSynchronizer::walk_monitor_list(ObjectMonitor** listheadp,
1413                                          ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
1414  ObjectMonitor* mid;
1415  ObjectMonitor* next;
1416  ObjectMonitor* curmidinuse = NULL;
1417  int deflatedcount = 0;
1418
1419  for (mid = *listheadp; mid != NULL; ) {
1420     oop obj = (oop) mid->object();
1421     bool deflated = false;
1422     if (obj != NULL) {
1423       deflated = deflate_monitor(mid, obj, FreeHeadp, FreeTailp);
1424     }
1425     if (deflated) {
1426       // extract from per-thread in-use-list
1427       if (mid == *listheadp) {
1428         *listheadp = mid->FreeNext;
1429       } else if (curmidinuse != NULL) {
1430         curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
1431       }
1432       next = mid->FreeNext;
1433       mid->FreeNext = NULL;  // This mid is current tail in the FreeHead list
1434       mid = next;
1435       deflatedcount++;
1436     } else {
1437       curmidinuse = mid;
1438       mid = mid->FreeNext;
1439    }
1440  }
1441  return deflatedcount;
1442}
1443
1444void ObjectSynchronizer::deflate_idle_monitors() {
1445  assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1446  int nInuse = 0 ;              // currently associated with objects
1447  int nInCirculation = 0 ;      // extant
1448  int nScavenged = 0 ;          // reclaimed
1449  bool deflated = false;
1450
1451  ObjectMonitor * FreeHead = NULL ;  // Local SLL of scavenged monitors
1452  ObjectMonitor * FreeTail = NULL ;
1453
1454  TEVENT (deflate_idle_monitors) ;
1455  // Prevent omFlush from changing mids in Thread dtor's during deflation
1456  // And in case the vm thread is acquiring a lock during a safepoint
1457  // See e.g. 6320749
1458  Thread::muxAcquire (&ListLock, "scavenge - return") ;
1459
1460  if (MonitorInUseLists) {
1461    int inUse = 0;
1462    for (JavaThread* cur = Threads::first(); cur != NULL; cur = cur->next()) {
1463      nInCirculation+= cur->omInUseCount;
1464      int deflatedcount = walk_monitor_list(cur->omInUseList_addr(), &FreeHead, &FreeTail);
1465      cur->omInUseCount-= deflatedcount;
1466      // verifyInUse(cur);
1467      nScavenged += deflatedcount;
1468      nInuse += cur->omInUseCount;
1469     }
1470
1471   // For moribund threads, scan gOmInUseList
1472   if (gOmInUseList) {
1473     nInCirculation += gOmInUseCount;
1474     int deflatedcount = walk_monitor_list((ObjectMonitor **)&gOmInUseList, &FreeHead, &FreeTail);
1475     gOmInUseCount-= deflatedcount;
1476     nScavenged += deflatedcount;
1477     nInuse += gOmInUseCount;
1478    }
1479
1480  } else for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
1481  // Iterate over all extant monitors - Scavenge all idle monitors.
1482    assert(block->object() == CHAINMARKER, "must be a block header");
1483    nInCirculation += _BLOCKSIZE ;
1484    for (int i = 1 ; i < _BLOCKSIZE; i++) {
1485      ObjectMonitor* mid = &block[i];
1486      oop obj = (oop) mid->object();
1487
1488      if (obj == NULL) {
1489        // The monitor is not associated with an object.
1490        // The monitor should either be a thread-specific private
1491        // free list or the global free list.
1492        // obj == NULL IMPLIES mid->is_busy() == 0
1493        guarantee (!mid->is_busy(), "invariant") ;
1494        continue ;
1495      }
1496      deflated = deflate_monitor(mid, obj, &FreeHead, &FreeTail);
1497
1498      if (deflated) {
1499        mid->FreeNext = NULL ;
1500        nScavenged ++ ;
1501      } else {
1502        nInuse ++;
1503      }
1504    }
1505  }
1506
1507  MonitorFreeCount += nScavenged;
1508
1509  // Consider: audit gFreeList to ensure that MonitorFreeCount and list agree.
1510
1511  if (ObjectMonitor::Knob_Verbose) {
1512    ::printf ("Deflate: InCirc=%d InUse=%d Scavenged=%d ForceMonitorScavenge=%d : pop=%d free=%d\n",
1513        nInCirculation, nInuse, nScavenged, ForceMonitorScavenge,
1514        MonitorPopulation, MonitorFreeCount) ;
1515    ::fflush(stdout) ;
1516  }
1517
1518  ForceMonitorScavenge = 0;    // Reset
1519
1520  // Move the scavenged monitors back to the global free list.
1521  if (FreeHead != NULL) {
1522     guarantee (FreeTail != NULL && nScavenged > 0, "invariant") ;
1523     assert (FreeTail->FreeNext == NULL, "invariant") ;
1524     // constant-time list splice - prepend scavenged segment to gFreeList
1525     FreeTail->FreeNext = gFreeList ;
1526     gFreeList = FreeHead ;
1527  }
1528  Thread::muxRelease (&ListLock) ;
1529
1530  if (ObjectMonitor::_sync_Deflations != NULL) ObjectMonitor::_sync_Deflations->inc(nScavenged) ;
1531  if (ObjectMonitor::_sync_MonExtant  != NULL) ObjectMonitor::_sync_MonExtant ->set_value(nInCirculation);
1532
1533  // TODO: Add objectMonitor leak detection.
1534  // Audit/inventory the objectMonitors -- make sure they're all accounted for.
1535  GVars.stwRandom = os::random() ;
1536  GVars.stwCycle ++ ;
1537}
1538
1539// Monitor cleanup on JavaThread::exit
1540
1541// Iterate through monitor cache and attempt to release thread's monitors
1542// Gives up on a particular monitor if an exception occurs, but continues
1543// the overall iteration, swallowing the exception.
1544class ReleaseJavaMonitorsClosure: public MonitorClosure {
1545private:
1546  TRAPS;
1547
1548public:
1549  ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
1550  void do_monitor(ObjectMonitor* mid) {
1551    if (mid->owner() == THREAD) {
1552      (void)mid->complete_exit(CHECK);
1553    }
1554  }
1555};
1556
1557// Release all inflated monitors owned by THREAD.  Lightweight monitors are
1558// ignored.  This is meant to be called during JNI thread detach which assumes
1559// all remaining monitors are heavyweight.  All exceptions are swallowed.
1560// Scanning the extant monitor list can be time consuming.
1561// A simple optimization is to add a per-thread flag that indicates a thread
1562// called jni_monitorenter() during its lifetime.
1563//
1564// Instead of No_Savepoint_Verifier it might be cheaper to
1565// use an idiom of the form:
1566//   auto int tmp = SafepointSynchronize::_safepoint_counter ;
1567//   <code that must not run at safepoint>
1568//   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
1569// Since the tests are extremely cheap we could leave them enabled
1570// for normal product builds.
1571
1572void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
1573  assert(THREAD == JavaThread::current(), "must be current Java thread");
1574  No_Safepoint_Verifier nsv ;
1575  ReleaseJavaMonitorsClosure rjmc(THREAD);
1576  Thread::muxAcquire(&ListLock, "release_monitors_owned_by_thread");
1577  ObjectSynchronizer::monitors_iterate(&rjmc);
1578  Thread::muxRelease(&ListLock);
1579  THREAD->clear_pending_exception();
1580}
1581
1582//------------------------------------------------------------------------------
1583// Non-product code
1584
1585#ifndef PRODUCT
1586
1587void ObjectSynchronizer::trace_locking(Handle locking_obj, bool is_compiled,
1588                                       bool is_method, bool is_locking) {
1589  // Don't know what to do here
1590}
1591
1592// Verify all monitors in the monitor cache, the verification is weak.
1593void ObjectSynchronizer::verify() {
1594  ObjectMonitor* block = gBlockList;
1595  ObjectMonitor* mid;
1596  while (block) {
1597    assert(block->object() == CHAINMARKER, "must be a block header");
1598    for (int i = 1; i < _BLOCKSIZE; i++) {
1599      mid = block + i;
1600      oop object = (oop) mid->object();
1601      if (object != NULL) {
1602        mid->verify();
1603      }
1604    }
1605    block = (ObjectMonitor*) block->FreeNext;
1606  }
1607}
1608
1609// Check if monitor belongs to the monitor cache
1610// The list is grow-only so it's *relatively* safe to traverse
1611// the list of extant blocks without taking a lock.
1612
1613int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
1614  ObjectMonitor* block = gBlockList;
1615
1616  while (block) {
1617    assert(block->object() == CHAINMARKER, "must be a block header");
1618    if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
1619      address mon = (address) monitor;
1620      address blk = (address) block;
1621      size_t diff = mon - blk;
1622      assert((diff % sizeof(ObjectMonitor)) == 0, "check");
1623      return 1;
1624    }
1625    block = (ObjectMonitor*) block->FreeNext;
1626  }
1627  return 0;
1628}
1629
1630#endif
1631