synchronizer.cpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 1998, 2009, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25# include "incls/_precompiled.incl"
26# include "incls/_synchronizer.cpp.incl"
27
28#if defined(__GNUC__) && !defined(IA64)
29  // Need to inhibit inlining for older versions of GCC to avoid build-time failures
30  #define ATTR __attribute__((noinline))
31#else
32  #define ATTR
33#endif
34
35// Native markword accessors for synchronization and hashCode().
36//
37// The "core" versions of monitor enter and exit reside in this file.
38// The interpreter and compilers contain specialized transliterated
39// variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
40// for instance.  If you make changes here, make sure to modify the
41// interpreter, and both C1 and C2 fast-path inline locking code emission.
42//
43// TODO: merge the objectMonitor and synchronizer classes.
44//
45// -----------------------------------------------------------------------------
46
47#ifdef DTRACE_ENABLED
48
49// Only bother with this argument setup if dtrace is available
50// TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
51
52HS_DTRACE_PROBE_DECL5(hotspot, monitor__wait,
53  jlong, uintptr_t, char*, int, long);
54HS_DTRACE_PROBE_DECL4(hotspot, monitor__waited,
55  jlong, uintptr_t, char*, int);
56HS_DTRACE_PROBE_DECL4(hotspot, monitor__notify,
57  jlong, uintptr_t, char*, int);
58HS_DTRACE_PROBE_DECL4(hotspot, monitor__notifyAll,
59  jlong, uintptr_t, char*, int);
60HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__enter,
61  jlong, uintptr_t, char*, int);
62HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__entered,
63  jlong, uintptr_t, char*, int);
64HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__exit,
65  jlong, uintptr_t, char*, int);
66
67#define DTRACE_MONITOR_PROBE_COMMON(klassOop, thread)                      \
68  char* bytes = NULL;                                                      \
69  int len = 0;                                                             \
70  jlong jtid = SharedRuntime::get_java_tid(thread);                        \
71  symbolOop klassname = ((oop)(klassOop))->klass()->klass_part()->name();  \
72  if (klassname != NULL) {                                                 \
73    bytes = (char*)klassname->bytes();                                     \
74    len = klassname->utf8_length();                                        \
75  }
76
77#define DTRACE_MONITOR_WAIT_PROBE(monitor, klassOop, thread, millis)       \
78  {                                                                        \
79    if (DTraceMonitorProbes) {                                            \
80      DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
81      HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
82                       (monitor), bytes, len, (millis));                   \
83    }                                                                      \
84  }
85
86#define DTRACE_MONITOR_PROBE(probe, monitor, klassOop, thread)             \
87  {                                                                        \
88    if (DTraceMonitorProbes) {                                            \
89      DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
90      HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
91                       (uintptr_t)(monitor), bytes, len);                  \
92    }                                                                      \
93  }
94
95#else //  ndef DTRACE_ENABLED
96
97#define DTRACE_MONITOR_WAIT_PROBE(klassOop, thread, millis, mon)    {;}
98#define DTRACE_MONITOR_PROBE(probe, klassOop, thread, mon)          {;}
99
100#endif // ndef DTRACE_ENABLED
101
102// ObjectWaiter serves as a "proxy" or surrogate thread.
103// TODO-FIXME: Eliminate ObjectWaiter and use the thread-specific
104// ParkEvent instead.  Beware, however, that the JVMTI code
105// knows about ObjectWaiters, so we'll have to reconcile that code.
106// See next_waiter(), first_waiter(), etc.
107
108class ObjectWaiter : public StackObj {
109 public:
110  enum TStates { TS_UNDEF, TS_READY, TS_RUN, TS_WAIT, TS_ENTER, TS_CXQ } ;
111  enum Sorted  { PREPEND, APPEND, SORTED } ;
112  ObjectWaiter * volatile _next;
113  ObjectWaiter * volatile _prev;
114  Thread*       _thread;
115  ParkEvent *   _event;
116  volatile int  _notified ;
117  volatile TStates TState ;
118  Sorted        _Sorted ;           // List placement disposition
119  bool          _active ;           // Contention monitoring is enabled
120 public:
121  ObjectWaiter(Thread* thread) {
122    _next     = NULL;
123    _prev     = NULL;
124    _notified = 0;
125    TState    = TS_RUN ;
126    _thread   = thread;
127    _event    = thread->_ParkEvent ;
128    _active   = false;
129    assert (_event != NULL, "invariant") ;
130  }
131
132  void wait_reenter_begin(ObjectMonitor *mon) {
133    JavaThread *jt = (JavaThread *)this->_thread;
134    _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
135  }
136
137  void wait_reenter_end(ObjectMonitor *mon) {
138    JavaThread *jt = (JavaThread *)this->_thread;
139    JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
140  }
141};
142
143enum ManifestConstants {
144    ClearResponsibleAtSTW   = 0,
145    MaximumRecheckInterval  = 1000
146} ;
147
148
149#undef TEVENT
150#define TEVENT(nom) {if (SyncVerbose) FEVENT(nom); }
151
152#define FEVENT(nom) { static volatile int ctr = 0 ; int v = ++ctr ; if ((v & (v-1)) == 0) { ::printf (#nom " : %d \n", v); ::fflush(stdout); }}
153
154#undef  TEVENT
155#define TEVENT(nom) {;}
156
157// Performance concern:
158// OrderAccess::storestore() calls release() which STs 0 into the global volatile
159// OrderAccess::Dummy variable.  This store is unnecessary for correctness.
160// Many threads STing into a common location causes considerable cache migration
161// or "sloshing" on large SMP system.  As such, I avoid using OrderAccess::storestore()
162// until it's repaired.  In some cases OrderAccess::fence() -- which incurs local
163// latency on the executing processor -- is a better choice as it scales on SMP
164// systems.  See http://blogs.sun.com/dave/entry/biased_locking_in_hotspot for a
165// discussion of coherency costs.  Note that all our current reference platforms
166// provide strong ST-ST order, so the issue is moot on IA32, x64, and SPARC.
167//
168// As a general policy we use "volatile" to control compiler-based reordering
169// and explicit fences (barriers) to control for architectural reordering performed
170// by the CPU(s) or platform.
171
172static int  MBFence (int x) { OrderAccess::fence(); return x; }
173
174struct SharedGlobals {
175    // These are highly shared mostly-read variables.
176    // To avoid false-sharing they need to be the sole occupants of a $ line.
177    double padPrefix [8];
178    volatile int stwRandom ;
179    volatile int stwCycle ;
180
181    // Hot RW variables -- Sequester to avoid false-sharing
182    double padSuffix [16];
183    volatile int hcSequence ;
184    double padFinal [8] ;
185} ;
186
187static SharedGlobals GVars ;
188
189
190// Tunables ...
191// The knob* variables are effectively final.  Once set they should
192// never be modified hence.  Consider using __read_mostly with GCC.
193
194static int Knob_LogSpins           = 0 ;       // enable jvmstat tally for spins
195static int Knob_HandOff            = 0 ;
196static int Knob_Verbose            = 0 ;
197static int Knob_ReportSettings     = 0 ;
198
199static int Knob_SpinLimit          = 5000 ;    // derived by an external tool -
200static int Knob_SpinBase           = 0 ;       // Floor AKA SpinMin
201static int Knob_SpinBackOff        = 0 ;       // spin-loop backoff
202static int Knob_CASPenalty         = -1 ;      // Penalty for failed CAS
203static int Knob_OXPenalty          = -1 ;      // Penalty for observed _owner change
204static int Knob_SpinSetSucc        = 1 ;       // spinners set the _succ field
205static int Knob_SpinEarly          = 1 ;
206static int Knob_SuccEnabled        = 1 ;       // futile wake throttling
207static int Knob_SuccRestrict       = 0 ;       // Limit successors + spinners to at-most-one
208static int Knob_MaxSpinners        = -1 ;      // Should be a function of # CPUs
209static int Knob_Bonus              = 100 ;     // spin success bonus
210static int Knob_BonusB             = 100 ;     // spin success bonus
211static int Knob_Penalty            = 200 ;     // spin failure penalty
212static int Knob_Poverty            = 1000 ;
213static int Knob_SpinAfterFutile    = 1 ;       // Spin after returning from park()
214static int Knob_FixedSpin          = 0 ;
215static int Knob_OState             = 3 ;       // Spinner checks thread state of _owner
216static int Knob_UsePause           = 1 ;
217static int Knob_ExitPolicy         = 0 ;
218static int Knob_PreSpin            = 10 ;      // 20-100 likely better
219static int Knob_ResetEvent         = 0 ;
220static int BackOffMask             = 0 ;
221
222static int Knob_FastHSSEC          = 0 ;
223static int Knob_MoveNotifyee       = 2 ;       // notify() - disposition of notifyee
224static int Knob_QMode              = 0 ;       // EntryList-cxq policy - queue discipline
225static volatile int InitDone       = 0 ;
226
227
228// hashCode() generation :
229//
230// Possibilities:
231// * MD5Digest of {obj,stwRandom}
232// * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
233// * A DES- or AES-style SBox[] mechanism
234// * One of the Phi-based schemes, such as:
235//   2654435761 = 2^32 * Phi (golden ratio)
236//   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
237// * A variation of Marsaglia's shift-xor RNG scheme.
238// * (obj ^ stwRandom) is appealing, but can result
239//   in undesirable regularity in the hashCode values of adjacent objects
240//   (objects allocated back-to-back, in particular).  This could potentially
241//   result in hashtable collisions and reduced hashtable efficiency.
242//   There are simple ways to "diffuse" the middle address bits over the
243//   generated hashCode values:
244//
245
246static inline intptr_t get_next_hash(Thread * Self, oop obj) {
247  intptr_t value = 0 ;
248  if (hashCode == 0) {
249     // This form uses an unguarded global Park-Miller RNG,
250     // so it's possible for two threads to race and generate the same RNG.
251     // On MP system we'll have lots of RW access to a global, so the
252     // mechanism induces lots of coherency traffic.
253     value = os::random() ;
254  } else
255  if (hashCode == 1) {
256     // This variation has the property of being stable (idempotent)
257     // between STW operations.  This can be useful in some of the 1-0
258     // synchronization schemes.
259     intptr_t addrBits = intptr_t(obj) >> 3 ;
260     value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
261  } else
262  if (hashCode == 2) {
263     value = 1 ;            // for sensitivity testing
264  } else
265  if (hashCode == 3) {
266     value = ++GVars.hcSequence ;
267  } else
268  if (hashCode == 4) {
269     value = intptr_t(obj) ;
270  } else {
271     // Marsaglia's xor-shift scheme with thread-specific state
272     // This is probably the best overall implementation -- we'll
273     // likely make this the default in future releases.
274     unsigned t = Self->_hashStateX ;
275     t ^= (t << 11) ;
276     Self->_hashStateX = Self->_hashStateY ;
277     Self->_hashStateY = Self->_hashStateZ ;
278     Self->_hashStateZ = Self->_hashStateW ;
279     unsigned v = Self->_hashStateW ;
280     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
281     Self->_hashStateW = v ;
282     value = v ;
283  }
284
285  value &= markOopDesc::hash_mask;
286  if (value == 0) value = 0xBAD ;
287  assert (value != markOopDesc::no_hash, "invariant") ;
288  TEVENT (hashCode: GENERATE) ;
289  return value;
290}
291
292void BasicLock::print_on(outputStream* st) const {
293  st->print("monitor");
294}
295
296void BasicLock::move_to(oop obj, BasicLock* dest) {
297  // Check to see if we need to inflate the lock. This is only needed
298  // if an object is locked using "this" lightweight monitor. In that
299  // case, the displaced_header() is unlocked, because the
300  // displaced_header() contains the header for the originally unlocked
301  // object. However the object could have already been inflated. But it
302  // does not matter, the inflation will just a no-op. For other cases,
303  // the displaced header will be either 0x0 or 0x3, which are location
304  // independent, therefore the BasicLock is free to move.
305  //
306  // During OSR we may need to relocate a BasicLock (which contains a
307  // displaced word) from a location in an interpreter frame to a
308  // new location in a compiled frame.  "this" refers to the source
309  // basiclock in the interpreter frame.  "dest" refers to the destination
310  // basiclock in the new compiled frame.  We *always* inflate in move_to().
311  // The always-Inflate policy works properly, but in 1.5.0 it can sometimes
312  // cause performance problems in code that makes heavy use of a small # of
313  // uncontended locks.   (We'd inflate during OSR, and then sync performance
314  // would subsequently plummet because the thread would be forced thru the slow-path).
315  // This problem has been made largely moot on IA32 by inlining the inflated fast-path
316  // operations in Fast_Lock and Fast_Unlock in i486.ad.
317  //
318  // Note that there is a way to safely swing the object's markword from
319  // one stack location to another.  This avoids inflation.  Obviously,
320  // we need to ensure that both locations refer to the current thread's stack.
321  // There are some subtle concurrency issues, however, and since the benefit is
322  // is small (given the support for inflated fast-path locking in the fast_lock, etc)
323  // we'll leave that optimization for another time.
324
325  if (displaced_header()->is_neutral()) {
326    ObjectSynchronizer::inflate_helper(obj);
327    // WARNING: We can not put check here, because the inflation
328    // will not update the displaced header. Once BasicLock is inflated,
329    // no one should ever look at its content.
330  } else {
331    // Typically the displaced header will be 0 (recursive stack lock) or
332    // unused_mark.  Naively we'd like to assert that the displaced mark
333    // value is either 0, neutral, or 3.  But with the advent of the
334    // store-before-CAS avoidance in fast_lock/compiler_lock_object
335    // we can find any flavor mark in the displaced mark.
336  }
337// [RGV] The next line appears to do nothing!
338  intptr_t dh = (intptr_t) displaced_header();
339  dest->set_displaced_header(displaced_header());
340}
341
342// -----------------------------------------------------------------------------
343
344// standard constructor, allows locking failures
345ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
346  _dolock = doLock;
347  _thread = thread;
348  debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
349  _obj = obj;
350
351  if (_dolock) {
352    TEVENT (ObjectLocker) ;
353
354    ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
355  }
356}
357
358ObjectLocker::~ObjectLocker() {
359  if (_dolock) {
360    ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
361  }
362}
363
364// -----------------------------------------------------------------------------
365
366
367PerfCounter * ObjectSynchronizer::_sync_Inflations                  = NULL ;
368PerfCounter * ObjectSynchronizer::_sync_Deflations                  = NULL ;
369PerfCounter * ObjectSynchronizer::_sync_ContendedLockAttempts       = NULL ;
370PerfCounter * ObjectSynchronizer::_sync_FutileWakeups               = NULL ;
371PerfCounter * ObjectSynchronizer::_sync_Parks                       = NULL ;
372PerfCounter * ObjectSynchronizer::_sync_EmptyNotifications          = NULL ;
373PerfCounter * ObjectSynchronizer::_sync_Notifications               = NULL ;
374PerfCounter * ObjectSynchronizer::_sync_PrivateA                    = NULL ;
375PerfCounter * ObjectSynchronizer::_sync_PrivateB                    = NULL ;
376PerfCounter * ObjectSynchronizer::_sync_SlowExit                    = NULL ;
377PerfCounter * ObjectSynchronizer::_sync_SlowEnter                   = NULL ;
378PerfCounter * ObjectSynchronizer::_sync_SlowNotify                  = NULL ;
379PerfCounter * ObjectSynchronizer::_sync_SlowNotifyAll               = NULL ;
380PerfCounter * ObjectSynchronizer::_sync_FailedSpins                 = NULL ;
381PerfCounter * ObjectSynchronizer::_sync_SuccessfulSpins             = NULL ;
382PerfCounter * ObjectSynchronizer::_sync_MonInCirculation            = NULL ;
383PerfCounter * ObjectSynchronizer::_sync_MonScavenged                = NULL ;
384PerfLongVariable * ObjectSynchronizer::_sync_MonExtant              = NULL ;
385
386// One-shot global initialization for the sync subsystem.
387// We could also defer initialization and initialize on-demand
388// the first time we call inflate().  Initialization would
389// be protected - like so many things - by the MonitorCache_lock.
390
391void ObjectSynchronizer::Initialize () {
392  static int InitializationCompleted = 0 ;
393  assert (InitializationCompleted == 0, "invariant") ;
394  InitializationCompleted = 1 ;
395  if (UsePerfData) {
396      EXCEPTION_MARK ;
397      #define NEWPERFCOUNTER(n)   {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
398      #define NEWPERFVARIABLE(n)  {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
399      NEWPERFCOUNTER(_sync_Inflations) ;
400      NEWPERFCOUNTER(_sync_Deflations) ;
401      NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
402      NEWPERFCOUNTER(_sync_FutileWakeups) ;
403      NEWPERFCOUNTER(_sync_Parks) ;
404      NEWPERFCOUNTER(_sync_EmptyNotifications) ;
405      NEWPERFCOUNTER(_sync_Notifications) ;
406      NEWPERFCOUNTER(_sync_SlowEnter) ;
407      NEWPERFCOUNTER(_sync_SlowExit) ;
408      NEWPERFCOUNTER(_sync_SlowNotify) ;
409      NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
410      NEWPERFCOUNTER(_sync_FailedSpins) ;
411      NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
412      NEWPERFCOUNTER(_sync_PrivateA) ;
413      NEWPERFCOUNTER(_sync_PrivateB) ;
414      NEWPERFCOUNTER(_sync_MonInCirculation) ;
415      NEWPERFCOUNTER(_sync_MonScavenged) ;
416      NEWPERFVARIABLE(_sync_MonExtant) ;
417      #undef NEWPERFCOUNTER
418  }
419}
420
421// Compile-time asserts
422// When possible, it's better to catch errors deterministically at
423// compile-time than at runtime.  The down-side to using compile-time
424// asserts is that error message -- often something about negative array
425// indices -- is opaque.
426
427#define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
428
429void ObjectMonitor::ctAsserts() {
430  CTASSERT(offset_of (ObjectMonitor, _header) == 0);
431}
432
433static int Adjust (volatile int * adr, int dx) {
434  int v ;
435  for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
436  return v ;
437}
438
439// Ad-hoc mutual exclusion primitives: SpinLock and Mux
440//
441// We employ SpinLocks _only for low-contention, fixed-length
442// short-duration critical sections where we're concerned
443// about native mutex_t or HotSpot Mutex:: latency.
444// The mux construct provides a spin-then-block mutual exclusion
445// mechanism.
446//
447// Testing has shown that contention on the ListLock guarding gFreeList
448// is common.  If we implement ListLock as a simple SpinLock it's common
449// for the JVM to devolve to yielding with little progress.  This is true
450// despite the fact that the critical sections protected by ListLock are
451// extremely short.
452//
453// TODO-FIXME: ListLock should be of type SpinLock.
454// We should make this a 1st-class type, integrated into the lock
455// hierarchy as leaf-locks.  Critically, the SpinLock structure
456// should have sufficient padding to avoid false-sharing and excessive
457// cache-coherency traffic.
458
459
460typedef volatile int SpinLockT ;
461
462void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
463  if (Atomic::cmpxchg (1, adr, 0) == 0) {
464     return ;   // normal fast-path return
465  }
466
467  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
468  TEVENT (SpinAcquire - ctx) ;
469  int ctr = 0 ;
470  int Yields = 0 ;
471  for (;;) {
472     while (*adr != 0) {
473        ++ctr ;
474        if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
475           if (Yields > 5) {
476             // Consider using a simple NakedSleep() instead.
477             // Then SpinAcquire could be called by non-JVM threads
478             Thread::current()->_ParkEvent->park(1) ;
479           } else {
480             os::NakedYield() ;
481             ++Yields ;
482           }
483        } else {
484           SpinPause() ;
485        }
486     }
487     if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
488  }
489}
490
491void Thread::SpinRelease (volatile int * adr) {
492  assert (*adr != 0, "invariant") ;
493  OrderAccess::fence() ;      // guarantee at least release consistency.
494  // Roach-motel semantics.
495  // It's safe if subsequent LDs and STs float "up" into the critical section,
496  // but prior LDs and STs within the critical section can't be allowed
497  // to reorder or float past the ST that releases the lock.
498  *adr = 0 ;
499}
500
501// muxAcquire and muxRelease:
502//
503// *  muxAcquire and muxRelease support a single-word lock-word construct.
504//    The LSB of the word is set IFF the lock is held.
505//    The remainder of the word points to the head of a singly-linked list
506//    of threads blocked on the lock.
507//
508// *  The current implementation of muxAcquire-muxRelease uses its own
509//    dedicated Thread._MuxEvent instance.  If we're interested in
510//    minimizing the peak number of extant ParkEvent instances then
511//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
512//    as certain invariants were satisfied.  Specifically, care would need
513//    to be taken with regards to consuming unpark() "permits".
514//    A safe rule of thumb is that a thread would never call muxAcquire()
515//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
516//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
517//    consume an unpark() permit intended for monitorenter, for instance.
518//    One way around this would be to widen the restricted-range semaphore
519//    implemented in park().  Another alternative would be to provide
520//    multiple instances of the PlatformEvent() for each thread.  One
521//    instance would be dedicated to muxAcquire-muxRelease, for instance.
522//
523// *  Usage:
524//    -- Only as leaf locks
525//    -- for short-term locking only as muxAcquire does not perform
526//       thread state transitions.
527//
528// Alternatives:
529// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
530//    but with parking or spin-then-park instead of pure spinning.
531// *  Use Taura-Oyama-Yonenzawa locks.
532// *  It's possible to construct a 1-0 lock if we encode the lockword as
533//    (List,LockByte).  Acquire will CAS the full lockword while Release
534//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
535//    acquiring threads use timers (ParkTimed) to detect and recover from
536//    the stranding window.  Thread/Node structures must be aligned on 256-byte
537//    boundaries by using placement-new.
538// *  Augment MCS with advisory back-link fields maintained with CAS().
539//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
540//    The validity of the backlinks must be ratified before we trust the value.
541//    If the backlinks are invalid the exiting thread must back-track through the
542//    the forward links, which are always trustworthy.
543// *  Add a successor indication.  The LockWord is currently encoded as
544//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
545//    to provide the usual futile-wakeup optimization.
546//    See RTStt for details.
547// *  Consider schedctl.sc_nopreempt to cover the critical section.
548//
549
550
551typedef volatile intptr_t MutexT ;      // Mux Lock-word
552enum MuxBits { LOCKBIT = 1 } ;
553
554void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
555  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
556  if (w == 0) return ;
557  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
558     return ;
559  }
560
561  TEVENT (muxAcquire - Contention) ;
562  ParkEvent * const Self = Thread::current()->_MuxEvent ;
563  assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
564  for (;;) {
565     int its = (os::is_MP() ? 100 : 0) + 1 ;
566
567     // Optional spin phase: spin-then-park strategy
568     while (--its >= 0) {
569       w = *Lock ;
570       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
571          return ;
572       }
573     }
574
575     Self->reset() ;
576     Self->OnList = intptr_t(Lock) ;
577     // The following fence() isn't _strictly necessary as the subsequent
578     // CAS() both serializes execution and ratifies the fetched *Lock value.
579     OrderAccess::fence();
580     for (;;) {
581        w = *Lock ;
582        if ((w & LOCKBIT) == 0) {
583            if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
584                Self->OnList = 0 ;   // hygiene - allows stronger asserts
585                return ;
586            }
587            continue ;      // Interference -- *Lock changed -- Just retry
588        }
589        assert (w & LOCKBIT, "invariant") ;
590        Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
591        if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
592     }
593
594     while (Self->OnList != 0) {
595        Self->park() ;
596     }
597  }
598}
599
600void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
601  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
602  if (w == 0) return ;
603  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
604    return ;
605  }
606
607  TEVENT (muxAcquire - Contention) ;
608  ParkEvent * ReleaseAfter = NULL ;
609  if (ev == NULL) {
610    ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
611  }
612  assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
613  for (;;) {
614    guarantee (ev->OnList == 0, "invariant") ;
615    int its = (os::is_MP() ? 100 : 0) + 1 ;
616
617    // Optional spin phase: spin-then-park strategy
618    while (--its >= 0) {
619      w = *Lock ;
620      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
621        if (ReleaseAfter != NULL) {
622          ParkEvent::Release (ReleaseAfter) ;
623        }
624        return ;
625      }
626    }
627
628    ev->reset() ;
629    ev->OnList = intptr_t(Lock) ;
630    // The following fence() isn't _strictly necessary as the subsequent
631    // CAS() both serializes execution and ratifies the fetched *Lock value.
632    OrderAccess::fence();
633    for (;;) {
634      w = *Lock ;
635      if ((w & LOCKBIT) == 0) {
636        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
637          ev->OnList = 0 ;
638          // We call ::Release while holding the outer lock, thus
639          // artificially lengthening the critical section.
640          // Consider deferring the ::Release() until the subsequent unlock(),
641          // after we've dropped the outer lock.
642          if (ReleaseAfter != NULL) {
643            ParkEvent::Release (ReleaseAfter) ;
644          }
645          return ;
646        }
647        continue ;      // Interference -- *Lock changed -- Just retry
648      }
649      assert (w & LOCKBIT, "invariant") ;
650      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
651      if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
652    }
653
654    while (ev->OnList != 0) {
655      ev->park() ;
656    }
657  }
658}
659
660// Release() must extract a successor from the list and then wake that thread.
661// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
662// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
663// Release() would :
664// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
665// (B) Extract a successor from the private list "in-hand"
666// (C) attempt to CAS() the residual back into *Lock over null.
667//     If there were any newly arrived threads and the CAS() would fail.
668//     In that case Release() would detach the RATs, re-merge the list in-hand
669//     with the RATs and repeat as needed.  Alternately, Release() might
670//     detach and extract a successor, but then pass the residual list to the wakee.
671//     The wakee would be responsible for reattaching and remerging before it
672//     competed for the lock.
673//
674// Both "pop" and DMR are immune from ABA corruption -- there can be
675// multiple concurrent pushers, but only one popper or detacher.
676// This implementation pops from the head of the list.  This is unfair,
677// but tends to provide excellent throughput as hot threads remain hot.
678// (We wake recently run threads first).
679
680void Thread::muxRelease (volatile intptr_t * Lock)  {
681  for (;;) {
682    const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
683    assert (w & LOCKBIT, "invariant") ;
684    if (w == LOCKBIT) return ;
685    ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
686    assert (List != NULL, "invariant") ;
687    assert (List->OnList == intptr_t(Lock), "invariant") ;
688    ParkEvent * nxt = List->ListNext ;
689
690    // The following CAS() releases the lock and pops the head element.
691    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
692      continue ;
693    }
694    List->OnList = 0 ;
695    OrderAccess::fence() ;
696    List->unpark () ;
697    return ;
698  }
699}
700
701// ObjectMonitor Lifecycle
702// -----------------------
703// Inflation unlinks monitors from the global gFreeList and
704// associates them with objects.  Deflation -- which occurs at
705// STW-time -- disassociates idle monitors from objects.  Such
706// scavenged monitors are returned to the gFreeList.
707//
708// The global list is protected by ListLock.  All the critical sections
709// are short and operate in constant-time.
710//
711// ObjectMonitors reside in type-stable memory (TSM) and are immortal.
712//
713// Lifecycle:
714// --   unassigned and on the global free list
715// --   unassigned and on a thread's private omFreeList
716// --   assigned to an object.  The object is inflated and the mark refers
717//      to the objectmonitor.
718//
719// TODO-FIXME:
720//
721// *  We currently protect the gFreeList with a simple lock.
722//    An alternate lock-free scheme would be to pop elements from the gFreeList
723//    with CAS.  This would be safe from ABA corruption as long we only
724//    recycled previously appearing elements onto the list in deflate_idle_monitors()
725//    at STW-time.  Completely new elements could always be pushed onto the gFreeList
726//    with CAS.  Elements that appeared previously on the list could only
727//    be installed at STW-time.
728//
729// *  For efficiency and to help reduce the store-before-CAS penalty
730//    the objectmonitors on gFreeList or local free lists should be ready to install
731//    with the exception of _header and _object.  _object can be set after inflation.
732//    In particular, keep all objectMonitors on a thread's private list in ready-to-install
733//    state with m.Owner set properly.
734//
735// *  We could all diffuse contention by using multiple global (FreeList, Lock)
736//    pairs -- threads could use trylock() and a cyclic-scan strategy to search for
737//    an unlocked free list.
738//
739// *  Add lifecycle tags and assert()s.
740//
741// *  Be more consistent about when we clear an objectmonitor's fields:
742//    A.  After extracting the objectmonitor from a free list.
743//    B.  After adding an objectmonitor to a free list.
744//
745
746ObjectMonitor * ObjectSynchronizer::gBlockList = NULL ;
747ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL ;
748static volatile intptr_t ListLock = 0 ;      // protects global monitor free-list cache
749#define CHAINMARKER ((oop)-1)
750
751ObjectMonitor * ATTR ObjectSynchronizer::omAlloc (Thread * Self) {
752    // A large MAXPRIVATE value reduces both list lock contention
753    // and list coherency traffic, but also tends to increase the
754    // number of objectMonitors in circulation as well as the STW
755    // scavenge costs.  As usual, we lean toward time in space-time
756    // tradeoffs.
757    const int MAXPRIVATE = 1024 ;
758    for (;;) {
759        ObjectMonitor * m ;
760
761        // 1: try to allocate from the thread's local omFreeList.
762        // Threads will attempt to allocate first from their local list, then
763        // from the global list, and only after those attempts fail will the thread
764        // attempt to instantiate new monitors.   Thread-local free lists take
765        // heat off the ListLock and improve allocation latency, as well as reducing
766        // coherency traffic on the shared global list.
767        m = Self->omFreeList ;
768        if (m != NULL) {
769           Self->omFreeList = m->FreeNext ;
770           Self->omFreeCount -- ;
771           // CONSIDER: set m->FreeNext = BAD -- diagnostic hygiene
772           guarantee (m->object() == NULL, "invariant") ;
773           return m ;
774        }
775
776        // 2: try to allocate from the global gFreeList
777        // CONSIDER: use muxTry() instead of muxAcquire().
778        // If the muxTry() fails then drop immediately into case 3.
779        // If we're using thread-local free lists then try
780        // to reprovision the caller's free list.
781        if (gFreeList != NULL) {
782            // Reprovision the thread's omFreeList.
783            // Use bulk transfers to reduce the allocation rate and heat
784            // on various locks.
785            Thread::muxAcquire (&ListLock, "omAlloc") ;
786            for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL; ) {
787                ObjectMonitor * take = gFreeList ;
788                gFreeList = take->FreeNext ;
789                guarantee (take->object() == NULL, "invariant") ;
790                guarantee (!take->is_busy(), "invariant") ;
791                take->Recycle() ;
792                omRelease (Self, take) ;
793            }
794            Thread::muxRelease (&ListLock) ;
795            Self->omFreeProvision += 1 + (Self->omFreeProvision/2) ;
796            if (Self->omFreeProvision > MAXPRIVATE ) Self->omFreeProvision = MAXPRIVATE ;
797            TEVENT (omFirst - reprovision) ;
798            continue ;
799        }
800
801        // 3: allocate a block of new ObjectMonitors
802        // Both the local and global free lists are empty -- resort to malloc().
803        // In the current implementation objectMonitors are TSM - immortal.
804        assert (_BLOCKSIZE > 1, "invariant") ;
805        ObjectMonitor * temp = new ObjectMonitor[_BLOCKSIZE];
806
807        // NOTE: (almost) no way to recover if allocation failed.
808        // We might be able to induce a STW safepoint and scavenge enough
809        // objectMonitors to permit progress.
810        if (temp == NULL) {
811            vm_exit_out_of_memory (sizeof (ObjectMonitor[_BLOCKSIZE]), "Allocate ObjectMonitors") ;
812        }
813
814        // Format the block.
815        // initialize the linked list, each monitor points to its next
816        // forming the single linked free list, the very first monitor
817        // will points to next block, which forms the block list.
818        // The trick of using the 1st element in the block as gBlockList
819        // linkage should be reconsidered.  A better implementation would
820        // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
821
822        for (int i = 1; i < _BLOCKSIZE ; i++) {
823           temp[i].FreeNext = &temp[i+1];
824        }
825
826        // terminate the last monitor as the end of list
827        temp[_BLOCKSIZE - 1].FreeNext = NULL ;
828
829        // Element [0] is reserved for global list linkage
830        temp[0].set_object(CHAINMARKER);
831
832        // Consider carving out this thread's current request from the
833        // block in hand.  This avoids some lock traffic and redundant
834        // list activity.
835
836        // Acquire the ListLock to manipulate BlockList and FreeList.
837        // An Oyama-Taura-Yonezawa scheme might be more efficient.
838        Thread::muxAcquire (&ListLock, "omAlloc [2]") ;
839
840        // Add the new block to the list of extant blocks (gBlockList).
841        // The very first objectMonitor in a block is reserved and dedicated.
842        // It serves as blocklist "next" linkage.
843        temp[0].FreeNext = gBlockList;
844        gBlockList = temp;
845
846        // Add the new string of objectMonitors to the global free list
847        temp[_BLOCKSIZE - 1].FreeNext = gFreeList ;
848        gFreeList = temp + 1;
849        Thread::muxRelease (&ListLock) ;
850        TEVENT (Allocate block of monitors) ;
851    }
852}
853
854// Place "m" on the caller's private per-thread omFreeList.
855// In practice there's no need to clamp or limit the number of
856// monitors on a thread's omFreeList as the only time we'll call
857// omRelease is to return a monitor to the free list after a CAS
858// attempt failed.  This doesn't allow unbounded #s of monitors to
859// accumulate on a thread's free list.
860//
861// In the future the usage of omRelease() might change and monitors
862// could migrate between free lists.  In that case to avoid excessive
863// accumulation we could  limit omCount to (omProvision*2), otherwise return
864// the objectMonitor to the global list.  We should drain (return) in reasonable chunks.
865// That is, *not* one-at-a-time.
866
867
868void ObjectSynchronizer::omRelease (Thread * Self, ObjectMonitor * m) {
869    guarantee (m->object() == NULL, "invariant") ;
870    m->FreeNext = Self->omFreeList ;
871    Self->omFreeList = m ;
872    Self->omFreeCount ++ ;
873}
874
875// Return the monitors of a moribund thread's local free list to
876// the global free list.  Typically a thread calls omFlush() when
877// it's dying.  We could also consider having the VM thread steal
878// monitors from threads that have not run java code over a few
879// consecutive STW safepoints.  Relatedly, we might decay
880// omFreeProvision at STW safepoints.
881//
882// We currently call omFlush() from the Thread:: dtor _after the thread
883// has been excised from the thread list and is no longer a mutator.
884// That means that omFlush() can run concurrently with a safepoint and
885// the scavenge operator.  Calling omFlush() from JavaThread::exit() might
886// be a better choice as we could safely reason that that the JVM is
887// not at a safepoint at the time of the call, and thus there could
888// be not inopportune interleavings between omFlush() and the scavenge
889// operator.
890
891void ObjectSynchronizer::omFlush (Thread * Self) {
892    ObjectMonitor * List = Self->omFreeList ;  // Null-terminated SLL
893    Self->omFreeList = NULL ;
894    if (List == NULL) return ;
895    ObjectMonitor * Tail = NULL ;
896    ObjectMonitor * s ;
897    for (s = List ; s != NULL ; s = s->FreeNext) {
898        Tail = s ;
899        guarantee (s->object() == NULL, "invariant") ;
900        guarantee (!s->is_busy(), "invariant") ;
901        s->set_owner (NULL) ;   // redundant but good hygiene
902        TEVENT (omFlush - Move one) ;
903    }
904
905    guarantee (Tail != NULL && List != NULL, "invariant") ;
906    Thread::muxAcquire (&ListLock, "omFlush") ;
907    Tail->FreeNext = gFreeList ;
908    gFreeList = List ;
909    Thread::muxRelease (&ListLock) ;
910    TEVENT (omFlush) ;
911}
912
913
914// Get the next block in the block list.
915static inline ObjectMonitor* next(ObjectMonitor* block) {
916  assert(block->object() == CHAINMARKER, "must be a block header");
917  block = block->FreeNext ;
918  assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
919  return block;
920}
921
922// Fast path code shared by multiple functions
923ObjectMonitor* ObjectSynchronizer::inflate_helper(oop obj) {
924  markOop mark = obj->mark();
925  if (mark->has_monitor()) {
926    assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid");
927    assert(mark->monitor()->header()->is_neutral(), "monitor must record a good object header");
928    return mark->monitor();
929  }
930  return ObjectSynchronizer::inflate(Thread::current(), obj);
931}
932
933// Note that we could encounter some performance loss through false-sharing as
934// multiple locks occupy the same $ line.  Padding might be appropriate.
935
936#define NINFLATIONLOCKS 256
937static volatile intptr_t InflationLocks [NINFLATIONLOCKS] ;
938
939static markOop ReadStableMark (oop obj) {
940  markOop mark = obj->mark() ;
941  if (!mark->is_being_inflated()) {
942    return mark ;       // normal fast-path return
943  }
944
945  int its = 0 ;
946  for (;;) {
947    markOop mark = obj->mark() ;
948    if (!mark->is_being_inflated()) {
949      return mark ;    // normal fast-path return
950    }
951
952    // The object is being inflated by some other thread.
953    // The caller of ReadStableMark() must wait for inflation to complete.
954    // Avoid live-lock
955    // TODO: consider calling SafepointSynchronize::do_call_back() while
956    // spinning to see if there's a safepoint pending.  If so, immediately
957    // yielding or blocking would be appropriate.  Avoid spinning while
958    // there is a safepoint pending.
959    // TODO: add inflation contention performance counters.
960    // TODO: restrict the aggregate number of spinners.
961
962    ++its ;
963    if (its > 10000 || !os::is_MP()) {
964       if (its & 1) {
965         os::NakedYield() ;
966         TEVENT (Inflate: INFLATING - yield) ;
967       } else {
968         // Note that the following code attenuates the livelock problem but is not
969         // a complete remedy.  A more complete solution would require that the inflating
970         // thread hold the associated inflation lock.  The following code simply restricts
971         // the number of spinners to at most one.  We'll have N-2 threads blocked
972         // on the inflationlock, 1 thread holding the inflation lock and using
973         // a yield/park strategy, and 1 thread in the midst of inflation.
974         // A more refined approach would be to change the encoding of INFLATING
975         // to allow encapsulation of a native thread pointer.  Threads waiting for
976         // inflation to complete would use CAS to push themselves onto a singly linked
977         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
978         // and calling park().  When inflation was complete the thread that accomplished inflation
979         // would detach the list and set the markword to inflated with a single CAS and
980         // then for each thread on the list, set the flag and unpark() the thread.
981         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
982         // wakes at most one thread whereas we need to wake the entire list.
983         int ix = (intptr_t(obj) >> 5) & (NINFLATIONLOCKS-1) ;
984         int YieldThenBlock = 0 ;
985         assert (ix >= 0 && ix < NINFLATIONLOCKS, "invariant") ;
986         assert ((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant") ;
987         Thread::muxAcquire (InflationLocks + ix, "InflationLock") ;
988         while (obj->mark() == markOopDesc::INFLATING()) {
989           // Beware: NakedYield() is advisory and has almost no effect on some platforms
990           // so we periodically call Self->_ParkEvent->park(1).
991           // We use a mixed spin/yield/block mechanism.
992           if ((YieldThenBlock++) >= 16) {
993              Thread::current()->_ParkEvent->park(1) ;
994           } else {
995              os::NakedYield() ;
996           }
997         }
998         Thread::muxRelease (InflationLocks + ix ) ;
999         TEVENT (Inflate: INFLATING - yield/park) ;
1000       }
1001    } else {
1002       SpinPause() ;       // SMP-polite spinning
1003    }
1004  }
1005}
1006
1007ObjectMonitor * ATTR ObjectSynchronizer::inflate (Thread * Self, oop object) {
1008  // Inflate mutates the heap ...
1009  // Relaxing assertion for bug 6320749.
1010  assert (Universe::verify_in_progress() ||
1011          !SafepointSynchronize::is_at_safepoint(), "invariant") ;
1012
1013  for (;;) {
1014      const markOop mark = object->mark() ;
1015      assert (!mark->has_bias_pattern(), "invariant") ;
1016
1017      // The mark can be in one of the following states:
1018      // *  Inflated     - just return
1019      // *  Stack-locked - coerce it to inflated
1020      // *  INFLATING    - busy wait for conversion to complete
1021      // *  Neutral      - aggressively inflate the object.
1022      // *  BIASED       - Illegal.  We should never see this
1023
1024      // CASE: inflated
1025      if (mark->has_monitor()) {
1026          ObjectMonitor * inf = mark->monitor() ;
1027          assert (inf->header()->is_neutral(), "invariant");
1028          assert (inf->object() == object, "invariant") ;
1029          assert (ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1030          return inf ;
1031      }
1032
1033      // CASE: inflation in progress - inflating over a stack-lock.
1034      // Some other thread is converting from stack-locked to inflated.
1035      // Only that thread can complete inflation -- other threads must wait.
1036      // The INFLATING value is transient.
1037      // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1038      // We could always eliminate polling by parking the thread on some auxiliary list.
1039      if (mark == markOopDesc::INFLATING()) {
1040         TEVENT (Inflate: spin while INFLATING) ;
1041         ReadStableMark(object) ;
1042         continue ;
1043      }
1044
1045      // CASE: stack-locked
1046      // Could be stack-locked either by this thread or by some other thread.
1047      //
1048      // Note that we allocate the objectmonitor speculatively, _before_ attempting
1049      // to install INFLATING into the mark word.  We originally installed INFLATING,
1050      // allocated the objectmonitor, and then finally STed the address of the
1051      // objectmonitor into the mark.  This was correct, but artificially lengthened
1052      // the interval in which INFLATED appeared in the mark, thus increasing
1053      // the odds of inflation contention.
1054      //
1055      // We now use per-thread private objectmonitor free lists.
1056      // These list are reprovisioned from the global free list outside the
1057      // critical INFLATING...ST interval.  A thread can transfer
1058      // multiple objectmonitors en-mass from the global free list to its local free list.
1059      // This reduces coherency traffic and lock contention on the global free list.
1060      // Using such local free lists, it doesn't matter if the omAlloc() call appears
1061      // before or after the CAS(INFLATING) operation.
1062      // See the comments in omAlloc().
1063
1064      if (mark->has_locker()) {
1065          ObjectMonitor * m = omAlloc (Self) ;
1066          // Optimistically prepare the objectmonitor - anticipate successful CAS
1067          // We do this before the CAS in order to minimize the length of time
1068          // in which INFLATING appears in the mark.
1069          m->Recycle();
1070          m->FreeNext      = NULL ;
1071          m->_Responsible  = NULL ;
1072          m->OwnerIsThread = 0 ;
1073          m->_recursions   = 0 ;
1074          m->_SpinDuration = Knob_SpinLimit ;   // Consider: maintain by type/class
1075
1076          markOop cmp = (markOop) Atomic::cmpxchg_ptr (markOopDesc::INFLATING(), object->mark_addr(), mark) ;
1077          if (cmp != mark) {
1078             omRelease (Self, m) ;
1079             continue ;       // Interference -- just retry
1080          }
1081
1082          // We've successfully installed INFLATING (0) into the mark-word.
1083          // This is the only case where 0 will appear in a mark-work.
1084          // Only the singular thread that successfully swings the mark-word
1085          // to 0 can perform (or more precisely, complete) inflation.
1086          //
1087          // Why do we CAS a 0 into the mark-word instead of just CASing the
1088          // mark-word from the stack-locked value directly to the new inflated state?
1089          // Consider what happens when a thread unlocks a stack-locked object.
1090          // It attempts to use CAS to swing the displaced header value from the
1091          // on-stack basiclock back into the object header.  Recall also that the
1092          // header value (hashcode, etc) can reside in (a) the object header, or
1093          // (b) a displaced header associated with the stack-lock, or (c) a displaced
1094          // header in an objectMonitor.  The inflate() routine must copy the header
1095          // value from the basiclock on the owner's stack to the objectMonitor, all
1096          // the while preserving the hashCode stability invariants.  If the owner
1097          // decides to release the lock while the value is 0, the unlock will fail
1098          // and control will eventually pass from slow_exit() to inflate.  The owner
1099          // will then spin, waiting for the 0 value to disappear.   Put another way,
1100          // the 0 causes the owner to stall if the owner happens to try to
1101          // drop the lock (restoring the header from the basiclock to the object)
1102          // while inflation is in-progress.  This protocol avoids races that might
1103          // would otherwise permit hashCode values to change or "flicker" for an object.
1104          // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
1105          // 0 serves as a "BUSY" inflate-in-progress indicator.
1106
1107
1108          // fetch the displaced mark from the owner's stack.
1109          // The owner can't die or unwind past the lock while our INFLATING
1110          // object is in the mark.  Furthermore the owner can't complete
1111          // an unlock on the object, either.
1112          markOop dmw = mark->displaced_mark_helper() ;
1113          assert (dmw->is_neutral(), "invariant") ;
1114
1115          // Setup monitor fields to proper values -- prepare the monitor
1116          m->set_header(dmw) ;
1117
1118          // Optimization: if the mark->locker stack address is associated
1119          // with this thread we could simply set m->_owner = Self and
1120          // m->OwnerIsThread = 1. Note that a thread can inflate an object
1121          // that it has stack-locked -- as might happen in wait() -- directly
1122          // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1123          m->set_owner(mark->locker());
1124          m->set_object(object);
1125          // TODO-FIXME: assert BasicLock->dhw != 0.
1126
1127          // Must preserve store ordering. The monitor state must
1128          // be stable at the time of publishing the monitor address.
1129          guarantee (object->mark() == markOopDesc::INFLATING(), "invariant") ;
1130          object->release_set_mark(markOopDesc::encode(m));
1131
1132          // Hopefully the performance counters are allocated on distinct cache lines
1133          // to avoid false sharing on MP systems ...
1134          if (_sync_Inflations != NULL) _sync_Inflations->inc() ;
1135          TEVENT(Inflate: overwrite stacklock) ;
1136          if (TraceMonitorInflation) {
1137            if (object->is_instance()) {
1138              ResourceMark rm;
1139              tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1140                (intptr_t) object, (intptr_t) object->mark(),
1141                Klass::cast(object->klass())->external_name());
1142            }
1143          }
1144          return m ;
1145      }
1146
1147      // CASE: neutral
1148      // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1149      // If we know we're inflating for entry it's better to inflate by swinging a
1150      // pre-locked objectMonitor pointer into the object header.   A successful
1151      // CAS inflates the object *and* confers ownership to the inflating thread.
1152      // In the current implementation we use a 2-step mechanism where we CAS()
1153      // to inflate and then CAS() again to try to swing _owner from NULL to Self.
1154      // An inflateTry() method that we could call from fast_enter() and slow_enter()
1155      // would be useful.
1156
1157      assert (mark->is_neutral(), "invariant");
1158      ObjectMonitor * m = omAlloc (Self) ;
1159      // prepare m for installation - set monitor to initial state
1160      m->Recycle();
1161      m->set_header(mark);
1162      m->set_owner(NULL);
1163      m->set_object(object);
1164      m->OwnerIsThread = 1 ;
1165      m->_recursions   = 0 ;
1166      m->FreeNext      = NULL ;
1167      m->_Responsible  = NULL ;
1168      m->_SpinDuration = Knob_SpinLimit ;       // consider: keep metastats by type/class
1169
1170      if (Atomic::cmpxchg_ptr (markOopDesc::encode(m), object->mark_addr(), mark) != mark) {
1171          m->set_object (NULL) ;
1172          m->set_owner  (NULL) ;
1173          m->OwnerIsThread = 0 ;
1174          m->Recycle() ;
1175          omRelease (Self, m) ;
1176          m = NULL ;
1177          continue ;
1178          // interference - the markword changed - just retry.
1179          // The state-transitions are one-way, so there's no chance of
1180          // live-lock -- "Inflated" is an absorbing state.
1181      }
1182
1183      // Hopefully the performance counters are allocated on distinct
1184      // cache lines to avoid false sharing on MP systems ...
1185      if (_sync_Inflations != NULL) _sync_Inflations->inc() ;
1186      TEVENT(Inflate: overwrite neutral) ;
1187      if (TraceMonitorInflation) {
1188        if (object->is_instance()) {
1189          ResourceMark rm;
1190          tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1191            (intptr_t) object, (intptr_t) object->mark(),
1192            Klass::cast(object->klass())->external_name());
1193        }
1194      }
1195      return m ;
1196  }
1197}
1198
1199
1200// This the fast monitor enter. The interpreter and compiler use
1201// some assembly copies of this code. Make sure update those code
1202// if the following function is changed. The implementation is
1203// extremely sensitive to race condition. Be careful.
1204
1205void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) {
1206 if (UseBiasedLocking) {
1207    if (!SafepointSynchronize::is_at_safepoint()) {
1208      BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
1209      if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
1210        return;
1211      }
1212    } else {
1213      assert(!attempt_rebias, "can not rebias toward VM thread");
1214      BiasedLocking::revoke_at_safepoint(obj);
1215    }
1216    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
1217 }
1218
1219 slow_enter (obj, lock, THREAD) ;
1220}
1221
1222void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
1223  assert(!object->mark()->has_bias_pattern(), "should not see bias pattern here");
1224  // if displaced header is null, the previous enter is recursive enter, no-op
1225  markOop dhw = lock->displaced_header();
1226  markOop mark ;
1227  if (dhw == NULL) {
1228     // Recursive stack-lock.
1229     // Diagnostics -- Could be: stack-locked, inflating, inflated.
1230     mark = object->mark() ;
1231     assert (!mark->is_neutral(), "invariant") ;
1232     if (mark->has_locker() && mark != markOopDesc::INFLATING()) {
1233        assert(THREAD->is_lock_owned((address)mark->locker()), "invariant") ;
1234     }
1235     if (mark->has_monitor()) {
1236        ObjectMonitor * m = mark->monitor() ;
1237        assert(((oop)(m->object()))->mark() == mark, "invariant") ;
1238        assert(m->is_entered(THREAD), "invariant") ;
1239     }
1240     return ;
1241  }
1242
1243  mark = object->mark() ;
1244
1245  // If the object is stack-locked by the current thread, try to
1246  // swing the displaced header from the box back to the mark.
1247  if (mark == (markOop) lock) {
1248     assert (dhw->is_neutral(), "invariant") ;
1249     if ((markOop) Atomic::cmpxchg_ptr (dhw, object->mark_addr(), mark) == mark) {
1250        TEVENT (fast_exit: release stacklock) ;
1251        return;
1252     }
1253  }
1254
1255  ObjectSynchronizer::inflate(THREAD, object)->exit (THREAD) ;
1256}
1257
1258// This routine is used to handle interpreter/compiler slow case
1259// We don't need to use fast path here, because it must have been
1260// failed in the interpreter/compiler code.
1261void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
1262  markOop mark = obj->mark();
1263  assert(!mark->has_bias_pattern(), "should not see bias pattern here");
1264
1265  if (mark->is_neutral()) {
1266    // Anticipate successful CAS -- the ST of the displaced mark must
1267    // be visible <= the ST performed by the CAS.
1268    lock->set_displaced_header(mark);
1269    if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
1270      TEVENT (slow_enter: release stacklock) ;
1271      return ;
1272    }
1273    // Fall through to inflate() ...
1274  } else
1275  if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
1276    assert(lock != mark->locker(), "must not re-lock the same lock");
1277    assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
1278    lock->set_displaced_header(NULL);
1279    return;
1280  }
1281
1282#if 0
1283  // The following optimization isn't particularly useful.
1284  if (mark->has_monitor() && mark->monitor()->is_entered(THREAD)) {
1285    lock->set_displaced_header (NULL) ;
1286    return ;
1287  }
1288#endif
1289
1290  // The object header will never be displaced to this lock,
1291  // so it does not matter what the value is, except that it
1292  // must be non-zero to avoid looking like a re-entrant lock,
1293  // and must not look locked either.
1294  lock->set_displaced_header(markOopDesc::unused_mark());
1295  ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
1296}
1297
1298// This routine is used to handle interpreter/compiler slow case
1299// We don't need to use fast path here, because it must have
1300// failed in the interpreter/compiler code. Simply use the heavy
1301// weight monitor should be ok, unless someone find otherwise.
1302void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
1303  fast_exit (object, lock, THREAD) ;
1304}
1305
1306// NOTE: must use heavy weight monitor to handle jni monitor enter
1307void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) { // possible entry from jni enter
1308  // the current locking is from JNI instead of Java code
1309  TEVENT (jni_enter) ;
1310  if (UseBiasedLocking) {
1311    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
1312    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
1313  }
1314  THREAD->set_current_pending_monitor_is_from_java(false);
1315  ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
1316  THREAD->set_current_pending_monitor_is_from_java(true);
1317}
1318
1319// NOTE: must use heavy weight monitor to handle jni monitor enter
1320bool ObjectSynchronizer::jni_try_enter(Handle obj, Thread* THREAD) {
1321  if (UseBiasedLocking) {
1322    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
1323    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
1324  }
1325
1326  ObjectMonitor* monitor = ObjectSynchronizer::inflate_helper(obj());
1327  return monitor->try_enter(THREAD);
1328}
1329
1330
1331// NOTE: must use heavy weight monitor to handle jni monitor exit
1332void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
1333  TEVENT (jni_exit) ;
1334  if (UseBiasedLocking) {
1335    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
1336  }
1337  assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
1338
1339  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj);
1340  // If this thread has locked the object, exit the monitor.  Note:  can't use
1341  // monitor->check(CHECK); must exit even if an exception is pending.
1342  if (monitor->check(THREAD)) {
1343     monitor->exit(THREAD);
1344  }
1345}
1346
1347// complete_exit()/reenter() are used to wait on a nested lock
1348// i.e. to give up an outer lock completely and then re-enter
1349// Used when holding nested locks - lock acquisition order: lock1 then lock2
1350//  1) complete_exit lock1 - saving recursion count
1351//  2) wait on lock2
1352//  3) when notified on lock2, unlock lock2
1353//  4) reenter lock1 with original recursion count
1354//  5) lock lock2
1355// NOTE: must use heavy weight monitor to handle complete_exit/reenter()
1356intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
1357  TEVENT (complete_exit) ;
1358  if (UseBiasedLocking) {
1359    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
1360    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
1361  }
1362
1363  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
1364
1365  return monitor->complete_exit(THREAD);
1366}
1367
1368// NOTE: must use heavy weight monitor to handle complete_exit/reenter()
1369void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
1370  TEVENT (reenter) ;
1371  if (UseBiasedLocking) {
1372    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
1373    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
1374  }
1375
1376  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
1377
1378  monitor->reenter(recursion, THREAD);
1379}
1380
1381// This exists only as a workaround of dtrace bug 6254741
1382int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
1383  DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
1384  return 0;
1385}
1386
1387// NOTE: must use heavy weight monitor to handle wait()
1388void ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
1389  if (UseBiasedLocking) {
1390    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
1391    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
1392  }
1393  if (millis < 0) {
1394    TEVENT (wait - throw IAX) ;
1395    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
1396  }
1397  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
1398  DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
1399  monitor->wait(millis, true, THREAD);
1400
1401  /* This dummy call is in place to get around dtrace bug 6254741.  Once
1402     that's fixed we can uncomment the following line and remove the call */
1403  // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
1404  dtrace_waited_probe(monitor, obj, THREAD);
1405}
1406
1407void ObjectSynchronizer::waitUninterruptibly (Handle obj, jlong millis, TRAPS) {
1408  if (UseBiasedLocking) {
1409    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
1410    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
1411  }
1412  if (millis < 0) {
1413    TEVENT (wait - throw IAX) ;
1414    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
1415  }
1416  ObjectSynchronizer::inflate(THREAD, obj()) -> wait(millis, false, THREAD) ;
1417}
1418
1419void ObjectSynchronizer::notify(Handle obj, TRAPS) {
1420 if (UseBiasedLocking) {
1421    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
1422    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
1423  }
1424
1425  markOop mark = obj->mark();
1426  if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
1427    return;
1428  }
1429  ObjectSynchronizer::inflate(THREAD, obj())->notify(THREAD);
1430}
1431
1432// NOTE: see comment of notify()
1433void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
1434  if (UseBiasedLocking) {
1435    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
1436    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
1437  }
1438
1439  markOop mark = obj->mark();
1440  if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
1441    return;
1442  }
1443  ObjectSynchronizer::inflate(THREAD, obj())->notifyAll(THREAD);
1444}
1445
1446intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
1447  if (UseBiasedLocking) {
1448    // NOTE: many places throughout the JVM do not expect a safepoint
1449    // to be taken here, in particular most operations on perm gen
1450    // objects. However, we only ever bias Java instances and all of
1451    // the call sites of identity_hash that might revoke biases have
1452    // been checked to make sure they can handle a safepoint. The
1453    // added check of the bias pattern is to avoid useless calls to
1454    // thread-local storage.
1455    if (obj->mark()->has_bias_pattern()) {
1456      // Box and unbox the raw reference just in case we cause a STW safepoint.
1457      Handle hobj (Self, obj) ;
1458      // Relaxing assertion for bug 6320749.
1459      assert (Universe::verify_in_progress() ||
1460              !SafepointSynchronize::is_at_safepoint(),
1461             "biases should not be seen by VM thread here");
1462      BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
1463      obj = hobj() ;
1464      assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
1465    }
1466  }
1467
1468  // hashCode() is a heap mutator ...
1469  // Relaxing assertion for bug 6320749.
1470  assert (Universe::verify_in_progress() ||
1471          !SafepointSynchronize::is_at_safepoint(), "invariant") ;
1472  assert (Universe::verify_in_progress() ||
1473          Self->is_Java_thread() , "invariant") ;
1474  assert (Universe::verify_in_progress() ||
1475         ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
1476
1477  ObjectMonitor* monitor = NULL;
1478  markOop temp, test;
1479  intptr_t hash;
1480  markOop mark = ReadStableMark (obj);
1481
1482  // object should remain ineligible for biased locking
1483  assert (!mark->has_bias_pattern(), "invariant") ;
1484
1485  if (mark->is_neutral()) {
1486    hash = mark->hash();              // this is a normal header
1487    if (hash) {                       // if it has hash, just return it
1488      return hash;
1489    }
1490    hash = get_next_hash(Self, obj);  // allocate a new hash code
1491    temp = mark->copy_set_hash(hash); // merge the hash code into header
1492    // use (machine word version) atomic operation to install the hash
1493    test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
1494    if (test == mark) {
1495      return hash;
1496    }
1497    // If atomic operation failed, we must inflate the header
1498    // into heavy weight monitor. We could add more code here
1499    // for fast path, but it does not worth the complexity.
1500  } else if (mark->has_monitor()) {
1501    monitor = mark->monitor();
1502    temp = monitor->header();
1503    assert (temp->is_neutral(), "invariant") ;
1504    hash = temp->hash();
1505    if (hash) {
1506      return hash;
1507    }
1508    // Skip to the following code to reduce code size
1509  } else if (Self->is_lock_owned((address)mark->locker())) {
1510    temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
1511    assert (temp->is_neutral(), "invariant") ;
1512    hash = temp->hash();              // by current thread, check if the displaced
1513    if (hash) {                       // header contains hash code
1514      return hash;
1515    }
1516    // WARNING:
1517    //   The displaced header is strictly immutable.
1518    // It can NOT be changed in ANY cases. So we have
1519    // to inflate the header into heavyweight monitor
1520    // even the current thread owns the lock. The reason
1521    // is the BasicLock (stack slot) will be asynchronously
1522    // read by other threads during the inflate() function.
1523    // Any change to stack may not propagate to other threads
1524    // correctly.
1525  }
1526
1527  // Inflate the monitor to set hash code
1528  monitor = ObjectSynchronizer::inflate(Self, obj);
1529  // Load displaced header and check it has hash code
1530  mark = monitor->header();
1531  assert (mark->is_neutral(), "invariant") ;
1532  hash = mark->hash();
1533  if (hash == 0) {
1534    hash = get_next_hash(Self, obj);
1535    temp = mark->copy_set_hash(hash); // merge hash code into header
1536    assert (temp->is_neutral(), "invariant") ;
1537    test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
1538    if (test != mark) {
1539      // The only update to the header in the monitor (outside GC)
1540      // is install the hash code. If someone add new usage of
1541      // displaced header, please update this code
1542      hash = test->hash();
1543      assert (test->is_neutral(), "invariant") ;
1544      assert (hash != 0, "Trivial unexpected object/monitor header usage.");
1545    }
1546  }
1547  // We finally get the hash
1548  return hash;
1549}
1550
1551// Deprecated -- use FastHashCode() instead.
1552
1553intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
1554  return FastHashCode (Thread::current(), obj()) ;
1555}
1556
1557bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
1558                                                   Handle h_obj) {
1559  if (UseBiasedLocking) {
1560    BiasedLocking::revoke_and_rebias(h_obj, false, thread);
1561    assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
1562  }
1563
1564  assert(thread == JavaThread::current(), "Can only be called on current thread");
1565  oop obj = h_obj();
1566
1567  markOop mark = ReadStableMark (obj) ;
1568
1569  // Uncontended case, header points to stack
1570  if (mark->has_locker()) {
1571    return thread->is_lock_owned((address)mark->locker());
1572  }
1573  // Contended case, header points to ObjectMonitor (tagged pointer)
1574  if (mark->has_monitor()) {
1575    ObjectMonitor* monitor = mark->monitor();
1576    return monitor->is_entered(thread) != 0 ;
1577  }
1578  // Unlocked case, header in place
1579  assert(mark->is_neutral(), "sanity check");
1580  return false;
1581}
1582
1583// Be aware of this method could revoke bias of the lock object.
1584// This method querys the ownership of the lock handle specified by 'h_obj'.
1585// If the current thread owns the lock, it returns owner_self. If no
1586// thread owns the lock, it returns owner_none. Otherwise, it will return
1587// ower_other.
1588ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
1589(JavaThread *self, Handle h_obj) {
1590  // The caller must beware this method can revoke bias, and
1591  // revocation can result in a safepoint.
1592  assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
1593  assert (self->thread_state() != _thread_blocked , "invariant") ;
1594
1595  // Possible mark states: neutral, biased, stack-locked, inflated
1596
1597  if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
1598    // CASE: biased
1599    BiasedLocking::revoke_and_rebias(h_obj, false, self);
1600    assert(!h_obj->mark()->has_bias_pattern(),
1601           "biases should be revoked by now");
1602  }
1603
1604  assert(self == JavaThread::current(), "Can only be called on current thread");
1605  oop obj = h_obj();
1606  markOop mark = ReadStableMark (obj) ;
1607
1608  // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
1609  if (mark->has_locker()) {
1610    return self->is_lock_owned((address)mark->locker()) ?
1611      owner_self : owner_other;
1612  }
1613
1614  // CASE: inflated. Mark (tagged pointer) points to an objectMonitor.
1615  // The Object:ObjectMonitor relationship is stable as long as we're
1616  // not at a safepoint.
1617  if (mark->has_monitor()) {
1618    void * owner = mark->monitor()->_owner ;
1619    if (owner == NULL) return owner_none ;
1620    return (owner == self ||
1621            self->is_lock_owned((address)owner)) ? owner_self : owner_other;
1622  }
1623
1624  // CASE: neutral
1625  assert(mark->is_neutral(), "sanity check");
1626  return owner_none ;           // it's unlocked
1627}
1628
1629// FIXME: jvmti should call this
1630JavaThread* ObjectSynchronizer::get_lock_owner(Handle h_obj, bool doLock) {
1631  if (UseBiasedLocking) {
1632    if (SafepointSynchronize::is_at_safepoint()) {
1633      BiasedLocking::revoke_at_safepoint(h_obj);
1634    } else {
1635      BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
1636    }
1637    assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
1638  }
1639
1640  oop obj = h_obj();
1641  address owner = NULL;
1642
1643  markOop mark = ReadStableMark (obj) ;
1644
1645  // Uncontended case, header points to stack
1646  if (mark->has_locker()) {
1647    owner = (address) mark->locker();
1648  }
1649
1650  // Contended case, header points to ObjectMonitor (tagged pointer)
1651  if (mark->has_monitor()) {
1652    ObjectMonitor* monitor = mark->monitor();
1653    assert(monitor != NULL, "monitor should be non-null");
1654    owner = (address) monitor->owner();
1655  }
1656
1657  if (owner != NULL) {
1658    return Threads::owning_thread_from_monitor_owner(owner, doLock);
1659  }
1660
1661  // Unlocked case, header in place
1662  // Cannot have assertion since this object may have been
1663  // locked by another thread when reaching here.
1664  // assert(mark->is_neutral(), "sanity check");
1665
1666  return NULL;
1667}
1668
1669// Iterate through monitor cache and attempt to release thread's monitors
1670// Gives up on a particular monitor if an exception occurs, but continues
1671// the overall iteration, swallowing the exception.
1672class ReleaseJavaMonitorsClosure: public MonitorClosure {
1673private:
1674  TRAPS;
1675
1676public:
1677  ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
1678  void do_monitor(ObjectMonitor* mid) {
1679    if (mid->owner() == THREAD) {
1680      (void)mid->complete_exit(CHECK);
1681    }
1682  }
1683};
1684
1685// Release all inflated monitors owned by THREAD.  Lightweight monitors are
1686// ignored.  This is meant to be called during JNI thread detach which assumes
1687// all remaining monitors are heavyweight.  All exceptions are swallowed.
1688// Scanning the extant monitor list can be time consuming.
1689// A simple optimization is to add a per-thread flag that indicates a thread
1690// called jni_monitorenter() during its lifetime.
1691//
1692// Instead of No_Savepoint_Verifier it might be cheaper to
1693// use an idiom of the form:
1694//   auto int tmp = SafepointSynchronize::_safepoint_counter ;
1695//   <code that must not run at safepoint>
1696//   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
1697// Since the tests are extremely cheap we could leave them enabled
1698// for normal product builds.
1699
1700void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
1701  assert(THREAD == JavaThread::current(), "must be current Java thread");
1702  No_Safepoint_Verifier nsv ;
1703  ReleaseJavaMonitorsClosure rjmc(THREAD);
1704  Thread::muxAcquire(&ListLock, "release_monitors_owned_by_thread");
1705  ObjectSynchronizer::monitors_iterate(&rjmc);
1706  Thread::muxRelease(&ListLock);
1707  THREAD->clear_pending_exception();
1708}
1709
1710// Visitors ...
1711
1712void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
1713  ObjectMonitor* block = gBlockList;
1714  ObjectMonitor* mid;
1715  while (block) {
1716    assert(block->object() == CHAINMARKER, "must be a block header");
1717    for (int i = _BLOCKSIZE - 1; i > 0; i--) {
1718      mid = block + i;
1719      oop object = (oop) mid->object();
1720      if (object != NULL) {
1721        closure->do_monitor(mid);
1722      }
1723    }
1724    block = (ObjectMonitor*) block->FreeNext;
1725  }
1726}
1727
1728void ObjectSynchronizer::oops_do(OopClosure* f) {
1729  assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1730  for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
1731    assert(block->object() == CHAINMARKER, "must be a block header");
1732    for (int i = 1; i < _BLOCKSIZE; i++) {
1733      ObjectMonitor* mid = &block[i];
1734      if (mid->object() != NULL) {
1735        f->do_oop((oop*)mid->object_addr());
1736      }
1737    }
1738  }
1739}
1740
1741// Deflate_idle_monitors() is called at all safepoints, immediately
1742// after all mutators are stopped, but before any objects have moved.
1743// It traverses the list of known monitors, deflating where possible.
1744// The scavenged monitor are returned to the monitor free list.
1745//
1746// Beware that we scavenge at *every* stop-the-world point.
1747// Having a large number of monitors in-circulation negatively
1748// impacts the performance of some applications (e.g., PointBase).
1749// Broadly, we want to minimize the # of monitors in circulation.
1750// Alternately, we could partition the active monitors into sub-lists
1751// of those that need scanning and those that do not.
1752// Specifically, we would add a new sub-list of objectmonitors
1753// that are in-circulation and potentially active.  deflate_idle_monitors()
1754// would scan only that list.  Other monitors could reside on a quiescent
1755// list.  Such sequestered monitors wouldn't need to be scanned by
1756// deflate_idle_monitors().  omAlloc() would first check the global free list,
1757// then the quiescent list, and, failing those, would allocate a new block.
1758// Deflate_idle_monitors() would scavenge and move monitors to the
1759// quiescent list.
1760//
1761// Perversely, the heap size -- and thus the STW safepoint rate --
1762// typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1763// which in turn can mean large(r) numbers of objectmonitors in circulation.
1764// This is an unfortunate aspect of this design.
1765//
1766// Another refinement would be to refrain from calling deflate_idle_monitors()
1767// except at stop-the-world points associated with garbage collections.
1768//
1769// An even better solution would be to deflate on-the-fly, aggressively,
1770// at monitorexit-time as is done in EVM's metalock or Relaxed Locks.
1771
1772void ObjectSynchronizer::deflate_idle_monitors() {
1773  assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1774  int nInuse = 0 ;              // currently associated with objects
1775  int nInCirculation = 0 ;      // extant
1776  int nScavenged = 0 ;          // reclaimed
1777
1778  ObjectMonitor * FreeHead = NULL ;  // Local SLL of scavenged monitors
1779  ObjectMonitor * FreeTail = NULL ;
1780
1781  // Iterate over all extant monitors - Scavenge all idle monitors.
1782  TEVENT (deflate_idle_monitors) ;
1783  for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
1784    assert(block->object() == CHAINMARKER, "must be a block header");
1785    nInCirculation += _BLOCKSIZE ;
1786    for (int i = 1 ; i < _BLOCKSIZE; i++) {
1787      ObjectMonitor* mid = &block[i];
1788      oop obj = (oop) mid->object();
1789
1790      if (obj == NULL) {
1791        // The monitor is not associated with an object.
1792        // The monitor should either be a thread-specific private
1793        // free list or the global free list.
1794        // obj == NULL IMPLIES mid->is_busy() == 0
1795        guarantee (!mid->is_busy(), "invariant") ;
1796        continue ;
1797      }
1798
1799      // Normal case ... The monitor is associated with obj.
1800      guarantee (obj->mark() == markOopDesc::encode(mid), "invariant") ;
1801      guarantee (mid == obj->mark()->monitor(), "invariant");
1802      guarantee (mid->header()->is_neutral(), "invariant");
1803
1804      if (mid->is_busy()) {
1805         if (ClearResponsibleAtSTW) mid->_Responsible = NULL ;
1806         nInuse ++ ;
1807      } else {
1808         // Deflate the monitor if it is no longer being used
1809         // It's idle - scavenge and return to the global free list
1810         // plain old deflation ...
1811         TEVENT (deflate_idle_monitors - scavenge1) ;
1812         if (TraceMonitorInflation) {
1813           if (obj->is_instance()) {
1814             ResourceMark rm;
1815               tty->print_cr("Deflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1816                    (intptr_t) obj, (intptr_t) obj->mark(), Klass::cast(obj->klass())->external_name());
1817           }
1818         }
1819
1820         // Restore the header back to obj
1821         obj->release_set_mark(mid->header());
1822         mid->clear();
1823
1824         assert (mid->object() == NULL, "invariant") ;
1825
1826         // Move the object to the working free list defined by FreeHead,FreeTail.
1827         mid->FreeNext = NULL ;
1828         if (FreeHead == NULL) FreeHead = mid ;
1829         if (FreeTail != NULL) FreeTail->FreeNext = mid ;
1830         FreeTail = mid ;
1831         nScavenged ++ ;
1832      }
1833    }
1834  }
1835
1836  // Move the scavenged monitors back to the global free list.
1837  // In theory we don't need the freelist lock as we're at a STW safepoint.
1838  // omAlloc() and omFree() can only be called while a thread is _not in safepoint state.
1839  // But it's remotely possible that omFlush() or release_monitors_owned_by_thread()
1840  // might be called while not at a global STW safepoint.  In the interest of
1841  // safety we protect the following access with ListLock.
1842  // An even more conservative and prudent approach would be to guard
1843  // the main loop in scavenge_idle_monitors() with ListLock.
1844  if (FreeHead != NULL) {
1845     guarantee (FreeTail != NULL && nScavenged > 0, "invariant") ;
1846     assert (FreeTail->FreeNext == NULL, "invariant") ;
1847     // constant-time list splice - prepend scavenged segment to gFreeList
1848     Thread::muxAcquire (&ListLock, "scavenge - return") ;
1849     FreeTail->FreeNext = gFreeList ;
1850     gFreeList = FreeHead ;
1851     Thread::muxRelease (&ListLock) ;
1852  }
1853
1854  if (_sync_Deflations != NULL) _sync_Deflations->inc(nScavenged) ;
1855  if (_sync_MonExtant  != NULL) _sync_MonExtant ->set_value(nInCirculation);
1856
1857  // TODO: Add objectMonitor leak detection.
1858  // Audit/inventory the objectMonitors -- make sure they're all accounted for.
1859  GVars.stwRandom = os::random() ;
1860  GVars.stwCycle ++ ;
1861}
1862
1863// A macro is used below because there may already be a pending
1864// exception which should not abort the execution of the routines
1865// which use this (which is why we don't put this into check_slow and
1866// call it with a CHECK argument).
1867
1868#define CHECK_OWNER()                                                             \
1869  do {                                                                            \
1870    if (THREAD != _owner) {                                                       \
1871      if (THREAD->is_lock_owned((address) _owner)) {                              \
1872        _owner = THREAD ;  /* Convert from basiclock addr to Thread addr */       \
1873        _recursions = 0;                                                          \
1874        OwnerIsThread = 1 ;                                                       \
1875      } else {                                                                    \
1876        TEVENT (Throw IMSX) ;                                                     \
1877        THROW(vmSymbols::java_lang_IllegalMonitorStateException());               \
1878      }                                                                           \
1879    }                                                                             \
1880  } while (false)
1881
1882// TODO-FIXME: eliminate ObjectWaiters.  Replace this visitor/enumerator
1883// interface with a simple FirstWaitingThread(), NextWaitingThread() interface.
1884
1885ObjectWaiter* ObjectMonitor::first_waiter() {
1886  return _WaitSet;
1887}
1888
1889ObjectWaiter* ObjectMonitor::next_waiter(ObjectWaiter* o) {
1890  return o->_next;
1891}
1892
1893Thread* ObjectMonitor::thread_of_waiter(ObjectWaiter* o) {
1894  return o->_thread;
1895}
1896
1897// initialize the monitor, exception the semaphore, all other fields
1898// are simple integers or pointers
1899ObjectMonitor::ObjectMonitor() {
1900  _header       = NULL;
1901  _count        = 0;
1902  _waiters      = 0,
1903  _recursions   = 0;
1904  _object       = NULL;
1905  _owner        = NULL;
1906  _WaitSet      = NULL;
1907  _WaitSetLock  = 0 ;
1908  _Responsible  = NULL ;
1909  _succ         = NULL ;
1910  _cxq          = NULL ;
1911  FreeNext      = NULL ;
1912  _EntryList    = NULL ;
1913  _SpinFreq     = 0 ;
1914  _SpinClock    = 0 ;
1915  OwnerIsThread = 0 ;
1916}
1917
1918ObjectMonitor::~ObjectMonitor() {
1919   // TODO: Add asserts ...
1920   // _cxq == 0 _succ == NULL _owner == NULL _waiters == 0
1921   // _count == 0 _EntryList  == NULL etc
1922}
1923
1924intptr_t ObjectMonitor::is_busy() const {
1925  // TODO-FIXME: merge _count and _waiters.
1926  // TODO-FIXME: assert _owner == null implies _recursions = 0
1927  // TODO-FIXME: assert _WaitSet != null implies _count > 0
1928  return _count|_waiters|intptr_t(_owner)|intptr_t(_cxq)|intptr_t(_EntryList ) ;
1929}
1930
1931void ObjectMonitor::Recycle () {
1932  // TODO: add stronger asserts ...
1933  // _cxq == 0 _succ == NULL _owner == NULL _waiters == 0
1934  // _count == 0 EntryList  == NULL
1935  // _recursions == 0 _WaitSet == NULL
1936  // TODO: assert (is_busy()|_recursions) == 0
1937  _succ          = NULL ;
1938  _EntryList     = NULL ;
1939  _cxq           = NULL ;
1940  _WaitSet       = NULL ;
1941  _recursions    = 0 ;
1942  _SpinFreq      = 0 ;
1943  _SpinClock     = 0 ;
1944  OwnerIsThread  = 0 ;
1945}
1946
1947// WaitSet management ...
1948
1949inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
1950  assert(node != NULL, "should not dequeue NULL node");
1951  assert(node->_prev == NULL, "node already in list");
1952  assert(node->_next == NULL, "node already in list");
1953  // put node at end of queue (circular doubly linked list)
1954  if (_WaitSet == NULL) {
1955    _WaitSet = node;
1956    node->_prev = node;
1957    node->_next = node;
1958  } else {
1959    ObjectWaiter* head = _WaitSet ;
1960    ObjectWaiter* tail = head->_prev;
1961    assert(tail->_next == head, "invariant check");
1962    tail->_next = node;
1963    head->_prev = node;
1964    node->_next = head;
1965    node->_prev = tail;
1966  }
1967}
1968
1969inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
1970  // dequeue the very first waiter
1971  ObjectWaiter* waiter = _WaitSet;
1972  if (waiter) {
1973    DequeueSpecificWaiter(waiter);
1974  }
1975  return waiter;
1976}
1977
1978inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
1979  assert(node != NULL, "should not dequeue NULL node");
1980  assert(node->_prev != NULL, "node already removed from list");
1981  assert(node->_next != NULL, "node already removed from list");
1982  // when the waiter has woken up because of interrupt,
1983  // timeout or other spurious wake-up, dequeue the
1984  // waiter from waiting list
1985  ObjectWaiter* next = node->_next;
1986  if (next == node) {
1987    assert(node->_prev == node, "invariant check");
1988    _WaitSet = NULL;
1989  } else {
1990    ObjectWaiter* prev = node->_prev;
1991    assert(prev->_next == node, "invariant check");
1992    assert(next->_prev == node, "invariant check");
1993    next->_prev = prev;
1994    prev->_next = next;
1995    if (_WaitSet == node) {
1996      _WaitSet = next;
1997    }
1998  }
1999  node->_next = NULL;
2000  node->_prev = NULL;
2001}
2002
2003static char * kvGet (char * kvList, const char * Key) {
2004    if (kvList == NULL) return NULL ;
2005    size_t n = strlen (Key) ;
2006    char * Search ;
2007    for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
2008        if (strncmp (Search, Key, n) == 0) {
2009            if (Search[n] == '=') return Search + n + 1 ;
2010            if (Search[n] == 0)   return (char *) "1" ;
2011        }
2012    }
2013    return NULL ;
2014}
2015
2016static int kvGetInt (char * kvList, const char * Key, int Default) {
2017    char * v = kvGet (kvList, Key) ;
2018    int rslt = v ? ::strtol (v, NULL, 0) : Default ;
2019    if (Knob_ReportSettings && v != NULL) {
2020        ::printf ("  SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
2021        ::fflush (stdout) ;
2022    }
2023    return rslt ;
2024}
2025
2026// By convention we unlink a contending thread from EntryList|cxq immediately
2027// after the thread acquires the lock in ::enter().  Equally, we could defer
2028// unlinking the thread until ::exit()-time.
2029
2030void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
2031{
2032    assert (_owner == Self, "invariant") ;
2033    assert (SelfNode->_thread == Self, "invariant") ;
2034
2035    if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
2036        // Normal case: remove Self from the DLL EntryList .
2037        // This is a constant-time operation.
2038        ObjectWaiter * nxt = SelfNode->_next ;
2039        ObjectWaiter * prv = SelfNode->_prev ;
2040        if (nxt != NULL) nxt->_prev = prv ;
2041        if (prv != NULL) prv->_next = nxt ;
2042        if (SelfNode == _EntryList ) _EntryList = nxt ;
2043        assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
2044        assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
2045        TEVENT (Unlink from EntryList) ;
2046    } else {
2047        guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
2048        // Inopportune interleaving -- Self is still on the cxq.
2049        // This usually means the enqueue of self raced an exiting thread.
2050        // Normally we'll find Self near the front of the cxq, so
2051        // dequeueing is typically fast.  If needbe we can accelerate
2052        // this with some MCS/CHL-like bidirectional list hints and advisory
2053        // back-links so dequeueing from the interior will normally operate
2054        // in constant-time.
2055        // Dequeue Self from either the head (with CAS) or from the interior
2056        // with a linear-time scan and normal non-atomic memory operations.
2057        // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
2058        // and then unlink Self from EntryList.  We have to drain eventually,
2059        // so it might as well be now.
2060
2061        ObjectWaiter * v = _cxq ;
2062        assert (v != NULL, "invariant") ;
2063        if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
2064            // The CAS above can fail from interference IFF a "RAT" arrived.
2065            // In that case Self must be in the interior and can no longer be
2066            // at the head of cxq.
2067            if (v == SelfNode) {
2068                assert (_cxq != v, "invariant") ;
2069                v = _cxq ;          // CAS above failed - start scan at head of list
2070            }
2071            ObjectWaiter * p ;
2072            ObjectWaiter * q = NULL ;
2073            for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
2074                q = p ;
2075                assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
2076            }
2077            assert (v != SelfNode,  "invariant") ;
2078            assert (p == SelfNode,  "Node not found on cxq") ;
2079            assert (p != _cxq,      "invariant") ;
2080            assert (q != NULL,      "invariant") ;
2081            assert (q->_next == p,  "invariant") ;
2082            q->_next = p->_next ;
2083        }
2084        TEVENT (Unlink from cxq) ;
2085    }
2086
2087    // Diagnostic hygiene ...
2088    SelfNode->_prev  = (ObjectWaiter *) 0xBAD ;
2089    SelfNode->_next  = (ObjectWaiter *) 0xBAD ;
2090    SelfNode->TState = ObjectWaiter::TS_RUN ;
2091}
2092
2093// Caveat: TryLock() is not necessarily serializing if it returns failure.
2094// Callers must compensate as needed.
2095
2096int ObjectMonitor::TryLock (Thread * Self) {
2097   for (;;) {
2098      void * own = _owner ;
2099      if (own != NULL) return 0 ;
2100      if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
2101         // Either guarantee _recursions == 0 or set _recursions = 0.
2102         assert (_recursions == 0, "invariant") ;
2103         assert (_owner == Self, "invariant") ;
2104         // CONSIDER: set or assert that OwnerIsThread == 1
2105         return 1 ;
2106      }
2107      // The lock had been free momentarily, but we lost the race to the lock.
2108      // Interference -- the CAS failed.
2109      // We can either return -1 or retry.
2110      // Retry doesn't make as much sense because the lock was just acquired.
2111      if (true) return -1 ;
2112   }
2113}
2114
2115// NotRunnable() -- informed spinning
2116//
2117// Don't bother spinning if the owner is not eligible to drop the lock.
2118// Peek at the owner's schedctl.sc_state and Thread._thread_values and
2119// spin only if the owner thread is _thread_in_Java or _thread_in_vm.
2120// The thread must be runnable in order to drop the lock in timely fashion.
2121// If the _owner is not runnable then spinning will not likely be
2122// successful (profitable).
2123//
2124// Beware -- the thread referenced by _owner could have died
2125// so a simply fetch from _owner->_thread_state might trap.
2126// Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
2127// Because of the lifecycle issues the schedctl and _thread_state values
2128// observed by NotRunnable() might be garbage.  NotRunnable must
2129// tolerate this and consider the observed _thread_state value
2130// as advisory.
2131//
2132// Beware too, that _owner is sometimes a BasicLock address and sometimes
2133// a thread pointer.  We differentiate the two cases with OwnerIsThread.
2134// Alternately, we might tag the type (thread pointer vs basiclock pointer)
2135// with the LSB of _owner.  Another option would be to probablistically probe
2136// the putative _owner->TypeTag value.
2137//
2138// Checking _thread_state isn't perfect.  Even if the thread is
2139// in_java it might be blocked on a page-fault or have been preempted
2140// and sitting on a ready/dispatch queue.  _thread state in conjunction
2141// with schedctl.sc_state gives us a good picture of what the
2142// thread is doing, however.
2143//
2144// TODO: check schedctl.sc_state.
2145// We'll need to use SafeFetch32() to read from the schedctl block.
2146// See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
2147//
2148// The return value from NotRunnable() is *advisory* -- the
2149// result is based on sampling and is not necessarily coherent.
2150// The caller must tolerate false-negative and false-positive errors.
2151// Spinning, in general, is probabilistic anyway.
2152
2153
2154int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
2155    // Check either OwnerIsThread or ox->TypeTag == 2BAD.
2156    if (!OwnerIsThread) return 0 ;
2157
2158    if (ox == NULL) return 0 ;
2159
2160    // Avoid transitive spinning ...
2161    // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2162    // Immediately after T1 acquires L it's possible that T2, also
2163    // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2164    // This occurs transiently after T1 acquired L but before
2165    // T1 managed to clear T1.Stalled.  T2 does not need to abort
2166    // its spin in this circumstance.
2167    intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
2168
2169    if (BlockedOn == 1) return 1 ;
2170    if (BlockedOn != 0) {
2171      return BlockedOn != intptr_t(this) && _owner == ox ;
2172    }
2173
2174    assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
2175    int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
2176    // consider also: jst != _thread_in_Java -- but that's overspecific.
2177    return jst == _thread_blocked || jst == _thread_in_native ;
2178}
2179
2180
2181// Adaptive spin-then-block - rational spinning
2182//
2183// Note that we spin "globally" on _owner with a classic SMP-polite TATAS
2184// algorithm.  On high order SMP systems it would be better to start with
2185// a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
2186// a contending thread could enqueue itself on the cxq and then spin locally
2187// on a thread-specific variable such as its ParkEvent._Event flag.
2188// That's left as an exercise for the reader.  Note that global spinning is
2189// not problematic on Niagara, as the L2$ serves the interconnect and has both
2190// low latency and massive bandwidth.
2191//
2192// Broadly, we can fix the spin frequency -- that is, the % of contended lock
2193// acquisition attempts where we opt to spin --  at 100% and vary the spin count
2194// (duration) or we can fix the count at approximately the duration of
2195// a context switch and vary the frequency.   Of course we could also
2196// vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
2197// See http://j2se.east/~dice/PERSIST/040824-AdaptiveSpinning.html.
2198//
2199// This implementation varies the duration "D", where D varies with
2200// the success rate of recent spin attempts. (D is capped at approximately
2201// length of a round-trip context switch).  The success rate for recent
2202// spin attempts is a good predictor of the success rate of future spin
2203// attempts.  The mechanism adapts automatically to varying critical
2204// section length (lock modality), system load and degree of parallelism.
2205// D is maintained per-monitor in _SpinDuration and is initialized
2206// optimistically.  Spin frequency is fixed at 100%.
2207//
2208// Note that _SpinDuration is volatile, but we update it without locks
2209// or atomics.  The code is designed so that _SpinDuration stays within
2210// a reasonable range even in the presence of races.  The arithmetic
2211// operations on _SpinDuration are closed over the domain of legal values,
2212// so at worst a race will install and older but still legal value.
2213// At the very worst this introduces some apparent non-determinism.
2214// We might spin when we shouldn't or vice-versa, but since the spin
2215// count are relatively short, even in the worst case, the effect is harmless.
2216//
2217// Care must be taken that a low "D" value does not become an
2218// an absorbing state.  Transient spinning failures -- when spinning
2219// is overall profitable -- should not cause the system to converge
2220// on low "D" values.  We want spinning to be stable and predictable
2221// and fairly responsive to change and at the same time we don't want
2222// it to oscillate, become metastable, be "too" non-deterministic,
2223// or converge on or enter undesirable stable absorbing states.
2224//
2225// We implement a feedback-based control system -- using past behavior
2226// to predict future behavior.  We face two issues: (a) if the
2227// input signal is random then the spin predictor won't provide optimal
2228// results, and (b) if the signal frequency is too high then the control
2229// system, which has some natural response lag, will "chase" the signal.
2230// (b) can arise from multimodal lock hold times.  Transient preemption
2231// can also result in apparent bimodal lock hold times.
2232// Although sub-optimal, neither condition is particularly harmful, as
2233// in the worst-case we'll spin when we shouldn't or vice-versa.
2234// The maximum spin duration is rather short so the failure modes aren't bad.
2235// To be conservative, I've tuned the gain in system to bias toward
2236// _not spinning.  Relatedly, the system can sometimes enter a mode where it
2237// "rings" or oscillates between spinning and not spinning.  This happens
2238// when spinning is just on the cusp of profitability, however, so the
2239// situation is not dire.  The state is benign -- there's no need to add
2240// hysteresis control to damp the transition rate between spinning and
2241// not spinning.
2242//
2243// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2244//
2245// Spin-then-block strategies ...
2246//
2247// Thoughts on ways to improve spinning :
2248//
2249// *  Periodically call {psr_}getloadavg() while spinning, and
2250//    permit unbounded spinning if the load average is <
2251//    the number of processors.  Beware, however, that getloadavg()
2252//    is exceptionally fast on solaris (about 1/10 the cost of a full
2253//    spin cycle, but quite expensive on linux.  Beware also, that
2254//    multiple JVMs could "ring" or oscillate in a feedback loop.
2255//    Sufficient damping would solve that problem.
2256//
2257// *  We currently use spin loops with iteration counters to approximate
2258//    spinning for some interval.  Given the availability of high-precision
2259//    time sources such as gethrtime(), %TICK, %STICK, RDTSC, etc., we should
2260//    someday reimplement the spin loops to duration-based instead of iteration-based.
2261//
2262// *  Don't spin if there are more than N = (CPUs/2) threads
2263//        currently spinning on the monitor (or globally).
2264//    That is, limit the number of concurrent spinners.
2265//    We might also limit the # of spinners in the JVM, globally.
2266//
2267// *  If a spinning thread observes _owner change hands it should
2268//    abort the spin (and park immediately) or at least debit
2269//    the spin counter by a large "penalty".
2270//
2271// *  Classically, the spin count is either K*(CPUs-1) or is a
2272//        simple constant that approximates the length of a context switch.
2273//    We currently use a value -- computed by a special utility -- that
2274//    approximates round-trip context switch times.
2275//
2276// *  Normally schedctl_start()/_stop() is used to advise the kernel
2277//    to avoid preempting threads that are running in short, bounded
2278//    critical sections.  We could use the schedctl hooks in an inverted
2279//    sense -- spinners would set the nopreempt flag, but poll the preempt
2280//    pending flag.  If a spinner observed a pending preemption it'd immediately
2281//    abort the spin and park.   As such, the schedctl service acts as
2282//    a preemption warning mechanism.
2283//
2284// *  In lieu of spinning, if the system is running below saturation
2285//    (that is, loadavg() << #cpus), we can instead suppress futile
2286//    wakeup throttling, or even wake more than one successor at exit-time.
2287//    The net effect is largely equivalent to spinning.  In both cases,
2288//    contending threads go ONPROC and opportunistically attempt to acquire
2289//    the lock, decreasing lock handover latency at the expense of wasted
2290//    cycles and context switching.
2291//
2292// *  We might to spin less after we've parked as the thread will
2293//    have less $ and TLB affinity with the processor.
2294//    Likewise, we might spin less if we come ONPROC on a different
2295//    processor or after a long period (>> rechose_interval).
2296//
2297// *  A table-driven state machine similar to Solaris' dispadmin scheduling
2298//    tables might be a better design.  Instead of encoding information in
2299//    _SpinDuration, _SpinFreq and _SpinClock we'd just use explicit,
2300//    discrete states.   Success or failure during a spin would drive
2301//    state transitions, and each state node would contain a spin count.
2302//
2303// *  If the processor is operating in a mode intended to conserve power
2304//    (such as Intel's SpeedStep) or to reduce thermal output (thermal
2305//    step-down mode) then the Java synchronization subsystem should
2306//    forgo spinning.
2307//
2308// *  The minimum spin duration should be approximately the worst-case
2309//    store propagation latency on the platform.  That is, the time
2310//    it takes a store on CPU A to become visible on CPU B, where A and
2311//    B are "distant".
2312//
2313// *  We might want to factor a thread's priority in the spin policy.
2314//    Threads with a higher priority might spin for slightly longer.
2315//    Similarly, if we use back-off in the TATAS loop, lower priority
2316//    threads might back-off longer.  We don't currently use a
2317//    thread's priority when placing it on the entry queue.  We may
2318//    want to consider doing so in future releases.
2319//
2320// *  We might transiently drop a thread's scheduling priority while it spins.
2321//    SCHED_BATCH on linux and FX scheduling class at priority=0 on Solaris
2322//    would suffice.  We could even consider letting the thread spin indefinitely at
2323//    a depressed or "idle" priority.  This brings up fairness issues, however --
2324//    in a saturated system a thread would with a reduced priority could languish
2325//    for extended periods on the ready queue.
2326//
2327// *  While spinning try to use the otherwise wasted time to help the VM make
2328//    progress:
2329//
2330//    -- YieldTo() the owner, if the owner is OFFPROC but ready
2331//       Done our remaining quantum directly to the ready thread.
2332//       This helps "push" the lock owner through the critical section.
2333//       It also tends to improve affinity/locality as the lock
2334//       "migrates" less frequently between CPUs.
2335//    -- Walk our own stack in anticipation of blocking.  Memoize the roots.
2336//    -- Perform strand checking for other thread.  Unpark potential strandees.
2337//    -- Help GC: trace or mark -- this would need to be a bounded unit of work.
2338//       Unfortunately this will pollute our $ and TLBs.  Recall that we
2339//       spin to avoid context switching -- context switching has an
2340//       immediate cost in latency, a disruptive cost to other strands on a CMT
2341//       processor, and an amortized cost because of the D$ and TLB cache
2342//       reload transient when the thread comes back ONPROC and repopulates
2343//       $s and TLBs.
2344//    -- call getloadavg() to see if the system is saturated.  It'd probably
2345//       make sense to call getloadavg() half way through the spin.
2346//       If the system isn't at full capacity the we'd simply reset
2347//       the spin counter to and extend the spin attempt.
2348//    -- Doug points out that we should use the same "helping" policy
2349//       in thread.yield().
2350//
2351// *  Try MONITOR-MWAIT on systems that support those instructions.
2352//
2353// *  The spin statistics that drive spin decisions & frequency are
2354//    maintained in the objectmonitor structure so if we deflate and reinflate
2355//    we lose spin state.  In practice this is not usually a concern
2356//    as the default spin state after inflation is aggressive (optimistic)
2357//    and tends toward spinning.  So in the worst case for a lock where
2358//    spinning is not profitable we may spin unnecessarily for a brief
2359//    period.  But then again, if a lock is contended it'll tend not to deflate
2360//    in the first place.
2361
2362
2363intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
2364int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
2365
2366// Spinning: Fixed frequency (100%), vary duration
2367
2368int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
2369
2370    // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
2371    int ctr = Knob_FixedSpin ;
2372    if (ctr != 0) {
2373        while (--ctr >= 0) {
2374            if (TryLock (Self) > 0) return 1 ;
2375            SpinPause () ;
2376        }
2377        return 0 ;
2378    }
2379
2380    for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
2381      if (TryLock(Self) > 0) {
2382        // Increase _SpinDuration ...
2383        // Note that we don't clamp SpinDuration precisely at SpinLimit.
2384        // Raising _SpurDuration to the poverty line is key.
2385        int x = _SpinDuration ;
2386        if (x < Knob_SpinLimit) {
2387           if (x < Knob_Poverty) x = Knob_Poverty ;
2388           _SpinDuration = x + Knob_BonusB ;
2389        }
2390        return 1 ;
2391      }
2392      SpinPause () ;
2393    }
2394
2395    // Admission control - verify preconditions for spinning
2396    //
2397    // We always spin a little bit, just to prevent _SpinDuration == 0 from
2398    // becoming an absorbing state.  Put another way, we spin briefly to
2399    // sample, just in case the system load, parallelism, contention, or lock
2400    // modality changed.
2401    //
2402    // Consider the following alternative:
2403    // Periodically set _SpinDuration = _SpinLimit and try a long/full
2404    // spin attempt.  "Periodically" might mean after a tally of
2405    // the # of failed spin attempts (or iterations) reaches some threshold.
2406    // This takes us into the realm of 1-out-of-N spinning, where we
2407    // hold the duration constant but vary the frequency.
2408
2409    ctr = _SpinDuration  ;
2410    if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
2411    if (ctr <= 0) return 0 ;
2412
2413    if (Knob_SuccRestrict && _succ != NULL) return 0 ;
2414    if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
2415       TEVENT (Spin abort - notrunnable [TOP]);
2416       return 0 ;
2417    }
2418
2419    int MaxSpin = Knob_MaxSpinners ;
2420    if (MaxSpin >= 0) {
2421       if (_Spinner > MaxSpin) {
2422          TEVENT (Spin abort -- too many spinners) ;
2423          return 0 ;
2424       }
2425       // Slighty racy, but benign ...
2426       Adjust (&_Spinner, 1) ;
2427    }
2428
2429    // We're good to spin ... spin ingress.
2430    // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
2431    // when preparing to LD...CAS _owner, etc and the CAS is likely
2432    // to succeed.
2433    int hits    = 0 ;
2434    int msk     = 0 ;
2435    int caspty  = Knob_CASPenalty ;
2436    int oxpty   = Knob_OXPenalty ;
2437    int sss     = Knob_SpinSetSucc ;
2438    if (sss && _succ == NULL ) _succ = Self ;
2439    Thread * prv = NULL ;
2440
2441    // There are three ways to exit the following loop:
2442    // 1.  A successful spin where this thread has acquired the lock.
2443    // 2.  Spin failure with prejudice
2444    // 3.  Spin failure without prejudice
2445
2446    while (--ctr >= 0) {
2447
2448      // Periodic polling -- Check for pending GC
2449      // Threads may spin while they're unsafe.
2450      // We don't want spinning threads to delay the JVM from reaching
2451      // a stop-the-world safepoint or to steal cycles from GC.
2452      // If we detect a pending safepoint we abort in order that
2453      // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
2454      // this thread, if safe, doesn't steal cycles from GC.
2455      // This is in keeping with the "no loitering in runtime" rule.
2456      // We periodically check to see if there's a safepoint pending.
2457      if ((ctr & 0xFF) == 0) {
2458         if (SafepointSynchronize::do_call_back()) {
2459            TEVENT (Spin: safepoint) ;
2460            goto Abort ;           // abrupt spin egress
2461         }
2462         if (Knob_UsePause & 1) SpinPause () ;
2463
2464         int (*scb)(intptr_t,int) = SpinCallbackFunction ;
2465         if (hits > 50 && scb != NULL) {
2466            int abend = (*scb)(SpinCallbackArgument, 0) ;
2467         }
2468      }
2469
2470      if (Knob_UsePause & 2) SpinPause() ;
2471
2472      // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
2473      // This is useful on classic SMP systems, but is of less utility on
2474      // N1-style CMT platforms.
2475      //
2476      // Trade-off: lock acquisition latency vs coherency bandwidth.
2477      // Lock hold times are typically short.  A histogram
2478      // of successful spin attempts shows that we usually acquire
2479      // the lock early in the spin.  That suggests we want to
2480      // sample _owner frequently in the early phase of the spin,
2481      // but then back-off and sample less frequently as the spin
2482      // progresses.  The back-off makes a good citizen on SMP big
2483      // SMP systems.  Oversampling _owner can consume excessive
2484      // coherency bandwidth.  Relatedly, if we _oversample _owner we
2485      // can inadvertently interfere with the the ST m->owner=null.
2486      // executed by the lock owner.
2487      if (ctr & msk) continue ;
2488      ++hits ;
2489      if ((hits & 0xF) == 0) {
2490        // The 0xF, above, corresponds to the exponent.
2491        // Consider: (msk+1)|msk
2492        msk = ((msk << 2)|3) & BackOffMask ;
2493      }
2494
2495      // Probe _owner with TATAS
2496      // If this thread observes the monitor transition or flicker
2497      // from locked to unlocked to locked, then the odds that this
2498      // thread will acquire the lock in this spin attempt go down
2499      // considerably.  The same argument applies if the CAS fails
2500      // or if we observe _owner change from one non-null value to
2501      // another non-null value.   In such cases we might abort
2502      // the spin without prejudice or apply a "penalty" to the
2503      // spin count-down variable "ctr", reducing it by 100, say.
2504
2505      Thread * ox = (Thread *) _owner ;
2506      if (ox == NULL) {
2507         ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
2508         if (ox == NULL) {
2509            // The CAS succeeded -- this thread acquired ownership
2510            // Take care of some bookkeeping to exit spin state.
2511            if (sss && _succ == Self) {
2512               _succ = NULL ;
2513            }
2514            if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
2515
2516            // Increase _SpinDuration :
2517            // The spin was successful (profitable) so we tend toward
2518            // longer spin attempts in the future.
2519            // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
2520            // If we acquired the lock early in the spin cycle it
2521            // makes sense to increase _SpinDuration proportionally.
2522            // Note that we don't clamp SpinDuration precisely at SpinLimit.
2523            int x = _SpinDuration ;
2524            if (x < Knob_SpinLimit) {
2525                if (x < Knob_Poverty) x = Knob_Poverty ;
2526                _SpinDuration = x + Knob_Bonus ;
2527            }
2528            return 1 ;
2529         }
2530
2531         // The CAS failed ... we can take any of the following actions:
2532         // * penalize: ctr -= Knob_CASPenalty
2533         // * exit spin with prejudice -- goto Abort;
2534         // * exit spin without prejudice.
2535         // * Since CAS is high-latency, retry again immediately.
2536         prv = ox ;
2537         TEVENT (Spin: cas failed) ;
2538         if (caspty == -2) break ;
2539         if (caspty == -1) goto Abort ;
2540         ctr -= caspty ;
2541         continue ;
2542      }
2543
2544      // Did lock ownership change hands ?
2545      if (ox != prv && prv != NULL ) {
2546          TEVENT (spin: Owner changed)
2547          if (oxpty == -2) break ;
2548          if (oxpty == -1) goto Abort ;
2549          ctr -= oxpty ;
2550      }
2551      prv = ox ;
2552
2553      // Abort the spin if the owner is not executing.
2554      // The owner must be executing in order to drop the lock.
2555      // Spinning while the owner is OFFPROC is idiocy.
2556      // Consider: ctr -= RunnablePenalty ;
2557      if (Knob_OState && NotRunnable (Self, ox)) {
2558         TEVENT (Spin abort - notrunnable);
2559         goto Abort ;
2560      }
2561      if (sss && _succ == NULL ) _succ = Self ;
2562   }
2563
2564   // Spin failed with prejudice -- reduce _SpinDuration.
2565   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
2566   // AIMD is globally stable.
2567   TEVENT (Spin failure) ;
2568   {
2569     int x = _SpinDuration ;
2570     if (x > 0) {
2571        // Consider an AIMD scheme like: x -= (x >> 3) + 100
2572        // This is globally sample and tends to damp the response.
2573        x -= Knob_Penalty ;
2574        if (x < 0) x = 0 ;
2575        _SpinDuration = x ;
2576     }
2577   }
2578
2579 Abort:
2580   if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
2581   if (sss && _succ == Self) {
2582      _succ = NULL ;
2583      // Invariant: after setting succ=null a contending thread
2584      // must recheck-retry _owner before parking.  This usually happens
2585      // in the normal usage of TrySpin(), but it's safest
2586      // to make TrySpin() as foolproof as possible.
2587      OrderAccess::fence() ;
2588      if (TryLock(Self) > 0) return 1 ;
2589   }
2590   return 0 ;
2591}
2592
2593#define TrySpin TrySpin_VaryDuration
2594
2595static void DeferredInitialize () {
2596  if (InitDone > 0) return ;
2597  if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2598      while (InitDone != 1) ;
2599      return ;
2600  }
2601
2602  // One-shot global initialization ...
2603  // The initialization is idempotent, so we don't need locks.
2604  // In the future consider doing this via os::init_2().
2605  // SyncKnobs consist of <Key>=<Value> pairs in the style
2606  // of environment variables.  Start by converting ':' to NUL.
2607
2608  if (SyncKnobs == NULL) SyncKnobs = "" ;
2609
2610  size_t sz = strlen (SyncKnobs) ;
2611  char * knobs = (char *) malloc (sz + 2) ;
2612  if (knobs == NULL) {
2613     vm_exit_out_of_memory (sz + 2, "Parse SyncKnobs") ;
2614     guarantee (0, "invariant") ;
2615  }
2616  strcpy (knobs, SyncKnobs) ;
2617  knobs[sz+1] = 0 ;
2618  for (char * p = knobs ; *p ; p++) {
2619     if (*p == ':') *p = 0 ;
2620  }
2621
2622  #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
2623  SETKNOB(ReportSettings) ;
2624  SETKNOB(Verbose) ;
2625  SETKNOB(FixedSpin) ;
2626  SETKNOB(SpinLimit) ;
2627  SETKNOB(SpinBase) ;
2628  SETKNOB(SpinBackOff);
2629  SETKNOB(CASPenalty) ;
2630  SETKNOB(OXPenalty) ;
2631  SETKNOB(LogSpins) ;
2632  SETKNOB(SpinSetSucc) ;
2633  SETKNOB(SuccEnabled) ;
2634  SETKNOB(SuccRestrict) ;
2635  SETKNOB(Penalty) ;
2636  SETKNOB(Bonus) ;
2637  SETKNOB(BonusB) ;
2638  SETKNOB(Poverty) ;
2639  SETKNOB(SpinAfterFutile) ;
2640  SETKNOB(UsePause) ;
2641  SETKNOB(SpinEarly) ;
2642  SETKNOB(OState) ;
2643  SETKNOB(MaxSpinners) ;
2644  SETKNOB(PreSpin) ;
2645  SETKNOB(ExitPolicy) ;
2646  SETKNOB(QMode);
2647  SETKNOB(ResetEvent) ;
2648  SETKNOB(MoveNotifyee) ;
2649  SETKNOB(FastHSSEC) ;
2650  #undef SETKNOB
2651
2652  if (os::is_MP()) {
2653     BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
2654     if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
2655     // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
2656  } else {
2657     Knob_SpinLimit = 0 ;
2658     Knob_SpinBase  = 0 ;
2659     Knob_PreSpin   = 0 ;
2660     Knob_FixedSpin = -1 ;
2661  }
2662
2663  if (Knob_LogSpins == 0) {
2664     ObjectSynchronizer::_sync_FailedSpins = NULL ;
2665  }
2666
2667  free (knobs) ;
2668  OrderAccess::fence() ;
2669  InitDone = 1 ;
2670}
2671
2672// Theory of operations -- Monitors lists, thread residency, etc:
2673//
2674// * A thread acquires ownership of a monitor by successfully
2675//   CAS()ing the _owner field from null to non-null.
2676//
2677// * Invariant: A thread appears on at most one monitor list --
2678//   cxq, EntryList or WaitSet -- at any one time.
2679//
2680// * Contending threads "push" themselves onto the cxq with CAS
2681//   and then spin/park.
2682//
2683// * After a contending thread eventually acquires the lock it must
2684//   dequeue itself from either the EntryList or the cxq.
2685//
2686// * The exiting thread identifies and unparks an "heir presumptive"
2687//   tentative successor thread on the EntryList.  Critically, the
2688//   exiting thread doesn't unlink the successor thread from the EntryList.
2689//   After having been unparked, the wakee will recontend for ownership of
2690//   the monitor.   The successor (wakee) will either acquire the lock or
2691//   re-park itself.
2692//
2693//   Succession is provided for by a policy of competitive handoff.
2694//   The exiting thread does _not_ grant or pass ownership to the
2695//   successor thread.  (This is also referred to as "handoff" succession").
2696//   Instead the exiting thread releases ownership and possibly wakes
2697//   a successor, so the successor can (re)compete for ownership of the lock.
2698//   If the EntryList is empty but the cxq is populated the exiting
2699//   thread will drain the cxq into the EntryList.  It does so by
2700//   by detaching the cxq (installing null with CAS) and folding
2701//   the threads from the cxq into the EntryList.  The EntryList is
2702//   doubly linked, while the cxq is singly linked because of the
2703//   CAS-based "push" used to enqueue recently arrived threads (RATs).
2704//
2705// * Concurrency invariants:
2706//
2707//   -- only the monitor owner may access or mutate the EntryList.
2708//      The mutex property of the monitor itself protects the EntryList
2709//      from concurrent interference.
2710//   -- Only the monitor owner may detach the cxq.
2711//
2712// * The monitor entry list operations avoid locks, but strictly speaking
2713//   they're not lock-free.  Enter is lock-free, exit is not.
2714//   See http://j2se.east/~dice/PERSIST/040825-LockFreeQueues.html
2715//
2716// * The cxq can have multiple concurrent "pushers" but only one concurrent
2717//   detaching thread.  This mechanism is immune from the ABA corruption.
2718//   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
2719//
2720// * Taken together, the cxq and the EntryList constitute or form a
2721//   single logical queue of threads stalled trying to acquire the lock.
2722//   We use two distinct lists to improve the odds of a constant-time
2723//   dequeue operation after acquisition (in the ::enter() epilog) and
2724//   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
2725//   A key desideratum is to minimize queue & monitor metadata manipulation
2726//   that occurs while holding the monitor lock -- that is, we want to
2727//   minimize monitor lock holds times.  Note that even a small amount of
2728//   fixed spinning will greatly reduce the # of enqueue-dequeue operations
2729//   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
2730//   locks and monitor metadata.
2731//
2732//   Cxq points to the the set of Recently Arrived Threads attempting entry.
2733//   Because we push threads onto _cxq with CAS, the RATs must take the form of
2734//   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
2735//   the unlocking thread notices that EntryList is null but _cxq is != null.
2736//
2737//   The EntryList is ordered by the prevailing queue discipline and
2738//   can be organized in any convenient fashion, such as a doubly-linked list or
2739//   a circular doubly-linked list.  Critically, we want insert and delete operations
2740//   to operate in constant-time.  If we need a priority queue then something akin
2741//   to Solaris' sleepq would work nicely.  Viz.,
2742//   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
2743//   Queue discipline is enforced at ::exit() time, when the unlocking thread
2744//   drains the cxq into the EntryList, and orders or reorders the threads on the
2745//   EntryList accordingly.
2746//
2747//   Barring "lock barging", this mechanism provides fair cyclic ordering,
2748//   somewhat similar to an elevator-scan.
2749//
2750// * The monitor synchronization subsystem avoids the use of native
2751//   synchronization primitives except for the narrow platform-specific
2752//   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
2753//   the semantics of park-unpark.  Put another way, this monitor implementation
2754//   depends only on atomic operations and park-unpark.  The monitor subsystem
2755//   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
2756//   underlying OS manages the READY<->RUN transitions.
2757//
2758// * Waiting threads reside on the WaitSet list -- wait() puts
2759//   the caller onto the WaitSet.
2760//
2761// * notify() or notifyAll() simply transfers threads from the WaitSet to
2762//   either the EntryList or cxq.  Subsequent exit() operations will
2763//   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
2764//   it's likely the notifyee would simply impale itself on the lock held
2765//   by the notifier.
2766//
2767// * An interesting alternative is to encode cxq as (List,LockByte) where
2768//   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
2769//   variable, like _recursions, in the scheme.  The threads or Events that form
2770//   the list would have to be aligned in 256-byte addresses.  A thread would
2771//   try to acquire the lock or enqueue itself with CAS, but exiting threads
2772//   could use a 1-0 protocol and simply STB to set the LockByte to 0.
2773//   Note that is is *not* word-tearing, but it does presume that full-word
2774//   CAS operations are coherent with intermix with STB operations.  That's true
2775//   on most common processors.
2776//
2777// * See also http://blogs.sun.com/dave
2778
2779
2780void ATTR ObjectMonitor::EnterI (TRAPS) {
2781    Thread * Self = THREAD ;
2782    assert (Self->is_Java_thread(), "invariant") ;
2783    assert (((JavaThread *) Self)->thread_state() == _thread_blocked   , "invariant") ;
2784
2785    // Try the lock - TATAS
2786    if (TryLock (Self) > 0) {
2787        assert (_succ != Self              , "invariant") ;
2788        assert (_owner == Self             , "invariant") ;
2789        assert (_Responsible != Self       , "invariant") ;
2790        return ;
2791    }
2792
2793    DeferredInitialize () ;
2794
2795    // We try one round of spinning *before* enqueueing Self.
2796    //
2797    // If the _owner is ready but OFFPROC we could use a YieldTo()
2798    // operation to donate the remainder of this thread's quantum
2799    // to the owner.  This has subtle but beneficial affinity
2800    // effects.
2801
2802    if (TrySpin (Self) > 0) {
2803        assert (_owner == Self        , "invariant") ;
2804        assert (_succ != Self         , "invariant") ;
2805        assert (_Responsible != Self  , "invariant") ;
2806        return ;
2807    }
2808
2809    // The Spin failed -- Enqueue and park the thread ...
2810    assert (_succ  != Self            , "invariant") ;
2811    assert (_owner != Self            , "invariant") ;
2812    assert (_Responsible != Self      , "invariant") ;
2813
2814    // Enqueue "Self" on ObjectMonitor's _cxq.
2815    //
2816    // Node acts as a proxy for Self.
2817    // As an aside, if were to ever rewrite the synchronization code mostly
2818    // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
2819    // Java objects.  This would avoid awkward lifecycle and liveness issues,
2820    // as well as eliminate a subset of ABA issues.
2821    // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
2822    //
2823
2824    ObjectWaiter node(Self) ;
2825    Self->_ParkEvent->reset() ;
2826    node._prev   = (ObjectWaiter *) 0xBAD ;
2827    node.TState  = ObjectWaiter::TS_CXQ ;
2828
2829    // Push "Self" onto the front of the _cxq.
2830    // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
2831    // Note that spinning tends to reduce the rate at which threads
2832    // enqueue and dequeue on EntryList|cxq.
2833    ObjectWaiter * nxt ;
2834    for (;;) {
2835        node._next = nxt = _cxq ;
2836        if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
2837
2838        // Interference - the CAS failed because _cxq changed.  Just retry.
2839        // As an optional optimization we retry the lock.
2840        if (TryLock (Self) > 0) {
2841            assert (_succ != Self         , "invariant") ;
2842            assert (_owner == Self        , "invariant") ;
2843            assert (_Responsible != Self  , "invariant") ;
2844            return ;
2845        }
2846    }
2847
2848    // Check for cxq|EntryList edge transition to non-null.  This indicates
2849    // the onset of contention.  While contention persists exiting threads
2850    // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
2851    // operations revert to the faster 1-0 mode.  This enter operation may interleave
2852    // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
2853    // arrange for one of the contending thread to use a timed park() operations
2854    // to detect and recover from the race.  (Stranding is form of progress failure
2855    // where the monitor is unlocked but all the contending threads remain parked).
2856    // That is, at least one of the contended threads will periodically poll _owner.
2857    // One of the contending threads will become the designated "Responsible" thread.
2858    // The Responsible thread uses a timed park instead of a normal indefinite park
2859    // operation -- it periodically wakes and checks for and recovers from potential
2860    // strandings admitted by 1-0 exit operations.   We need at most one Responsible
2861    // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
2862    // be responsible for a monitor.
2863    //
2864    // Currently, one of the contended threads takes on the added role of "Responsible".
2865    // A viable alternative would be to use a dedicated "stranding checker" thread
2866    // that periodically iterated over all the threads (or active monitors) and unparked
2867    // successors where there was risk of stranding.  This would help eliminate the
2868    // timer scalability issues we see on some platforms as we'd only have one thread
2869    // -- the checker -- parked on a timer.
2870
2871    if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
2872        // Try to assume the role of responsible thread for the monitor.
2873        // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
2874        Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
2875    }
2876
2877    // The lock have been released while this thread was occupied queueing
2878    // itself onto _cxq.  To close the race and avoid "stranding" and
2879    // progress-liveness failure we must resample-retry _owner before parking.
2880    // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
2881    // In this case the ST-MEMBAR is accomplished with CAS().
2882    //
2883    // TODO: Defer all thread state transitions until park-time.
2884    // Since state transitions are heavy and inefficient we'd like
2885    // to defer the state transitions until absolutely necessary,
2886    // and in doing so avoid some transitions ...
2887
2888    TEVENT (Inflated enter - Contention) ;
2889    int nWakeups = 0 ;
2890    int RecheckInterval = 1 ;
2891
2892    for (;;) {
2893
2894        if (TryLock (Self) > 0) break ;
2895        assert (_owner != Self, "invariant") ;
2896
2897        if ((SyncFlags & 2) && _Responsible == NULL) {
2898           Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
2899        }
2900
2901        // park self
2902        if (_Responsible == Self || (SyncFlags & 1)) {
2903            TEVENT (Inflated enter - park TIMED) ;
2904            Self->_ParkEvent->park ((jlong) RecheckInterval) ;
2905            // Increase the RecheckInterval, but clamp the value.
2906            RecheckInterval *= 8 ;
2907            if (RecheckInterval > 1000) RecheckInterval = 1000 ;
2908        } else {
2909            TEVENT (Inflated enter - park UNTIMED) ;
2910            Self->_ParkEvent->park() ;
2911        }
2912
2913        if (TryLock(Self) > 0) break ;
2914
2915        // The lock is still contested.
2916        // Keep a tally of the # of futile wakeups.
2917        // Note that the counter is not protected by a lock or updated by atomics.
2918        // That is by design - we trade "lossy" counters which are exposed to
2919        // races during updates for a lower probe effect.
2920        TEVENT (Inflated enter - Futile wakeup) ;
2921        if (ObjectSynchronizer::_sync_FutileWakeups != NULL) {
2922           ObjectSynchronizer::_sync_FutileWakeups->inc() ;
2923        }
2924        ++ nWakeups ;
2925
2926        // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
2927        // We can defer clearing _succ until after the spin completes
2928        // TrySpin() must tolerate being called with _succ == Self.
2929        // Try yet another round of adaptive spinning.
2930        if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
2931
2932        // We can find that we were unpark()ed and redesignated _succ while
2933        // we were spinning.  That's harmless.  If we iterate and call park(),
2934        // park() will consume the event and return immediately and we'll
2935        // just spin again.  This pattern can repeat, leaving _succ to simply
2936        // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
2937        // Alternately, we can sample fired() here, and if set, forgo spinning
2938        // in the next iteration.
2939
2940        if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
2941           Self->_ParkEvent->reset() ;
2942           OrderAccess::fence() ;
2943        }
2944        if (_succ == Self) _succ = NULL ;
2945
2946        // Invariant: after clearing _succ a thread *must* retry _owner before parking.
2947        OrderAccess::fence() ;
2948    }
2949
2950    // Egress :
2951    // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
2952    // Normally we'll find Self on the EntryList .
2953    // From the perspective of the lock owner (this thread), the
2954    // EntryList is stable and cxq is prepend-only.
2955    // The head of cxq is volatile but the interior is stable.
2956    // In addition, Self.TState is stable.
2957
2958    assert (_owner == Self      , "invariant") ;
2959    assert (object() != NULL    , "invariant") ;
2960    // I'd like to write:
2961    //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
2962    // but as we're at a safepoint that's not safe.
2963
2964    UnlinkAfterAcquire (Self, &node) ;
2965    if (_succ == Self) _succ = NULL ;
2966
2967    assert (_succ != Self, "invariant") ;
2968    if (_Responsible == Self) {
2969        _Responsible = NULL ;
2970        // Dekker pivot-point.
2971        // Consider OrderAccess::storeload() here
2972
2973        // We may leave threads on cxq|EntryList without a designated
2974        // "Responsible" thread.  This is benign.  When this thread subsequently
2975        // exits the monitor it can "see" such preexisting "old" threads --
2976        // threads that arrived on the cxq|EntryList before the fence, above --
2977        // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
2978        // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
2979        // non-null and elect a new "Responsible" timer thread.
2980        //
2981        // This thread executes:
2982        //    ST Responsible=null; MEMBAR    (in enter epilog - here)
2983        //    LD cxq|EntryList               (in subsequent exit)
2984        //
2985        // Entering threads in the slow/contended path execute:
2986        //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
2987        //    The (ST cxq; MEMBAR) is accomplished with CAS().
2988        //
2989        // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
2990        // exit operation from floating above the ST Responsible=null.
2991        //
2992        // In *practice* however, EnterI() is always followed by some atomic
2993        // operation such as the decrement of _count in ::enter().  Those atomics
2994        // obviate the need for the explicit MEMBAR, above.
2995    }
2996
2997    // We've acquired ownership with CAS().
2998    // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
2999    // But since the CAS() this thread may have also stored into _succ,
3000    // EntryList, cxq or Responsible.  These meta-data updates must be
3001    // visible __before this thread subsequently drops the lock.
3002    // Consider what could occur if we didn't enforce this constraint --
3003    // STs to monitor meta-data and user-data could reorder with (become
3004    // visible after) the ST in exit that drops ownership of the lock.
3005    // Some other thread could then acquire the lock, but observe inconsistent
3006    // or old monitor meta-data and heap data.  That violates the JMM.
3007    // To that end, the 1-0 exit() operation must have at least STST|LDST
3008    // "release" barrier semantics.  Specifically, there must be at least a
3009    // STST|LDST barrier in exit() before the ST of null into _owner that drops
3010    // the lock.   The barrier ensures that changes to monitor meta-data and data
3011    // protected by the lock will be visible before we release the lock, and
3012    // therefore before some other thread (CPU) has a chance to acquire the lock.
3013    // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
3014    //
3015    // Critically, any prior STs to _succ or EntryList must be visible before
3016    // the ST of null into _owner in the *subsequent* (following) corresponding
3017    // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
3018    // execute a serializing instruction.
3019
3020    if (SyncFlags & 8) {
3021       OrderAccess::fence() ;
3022    }
3023    return ;
3024}
3025
3026// ExitSuspendEquivalent:
3027// A faster alternate to handle_special_suspend_equivalent_condition()
3028//
3029// handle_special_suspend_equivalent_condition() unconditionally
3030// acquires the SR_lock.  On some platforms uncontended MutexLocker()
3031// operations have high latency.  Note that in ::enter() we call HSSEC
3032// while holding the monitor, so we effectively lengthen the critical sections.
3033//
3034// There are a number of possible solutions:
3035//
3036// A.  To ameliorate the problem we might also defer state transitions
3037//     to as late as possible -- just prior to parking.
3038//     Given that, we'd call HSSEC after having returned from park(),
3039//     but before attempting to acquire the monitor.  This is only a
3040//     partial solution.  It avoids calling HSSEC while holding the
3041//     monitor (good), but it still increases successor reacquisition latency --
3042//     the interval between unparking a successor and the time the successor
3043//     resumes and retries the lock.  See ReenterI(), which defers state transitions.
3044//     If we use this technique we can also avoid EnterI()-exit() loop
3045//     in ::enter() where we iteratively drop the lock and then attempt
3046//     to reacquire it after suspending.
3047//
3048// B.  In the future we might fold all the suspend bits into a
3049//     composite per-thread suspend flag and then update it with CAS().
3050//     Alternately, a Dekker-like mechanism with multiple variables
3051//     would suffice:
3052//       ST Self->_suspend_equivalent = false
3053//       MEMBAR
3054//       LD Self_>_suspend_flags
3055//
3056
3057
3058bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
3059   int Mode = Knob_FastHSSEC ;
3060   if (Mode && !jSelf->is_external_suspend()) {
3061      assert (jSelf->is_suspend_equivalent(), "invariant") ;
3062      jSelf->clear_suspend_equivalent() ;
3063      if (2 == Mode) OrderAccess::storeload() ;
3064      if (!jSelf->is_external_suspend()) return false ;
3065      // We raced a suspension -- fall thru into the slow path
3066      TEVENT (ExitSuspendEquivalent - raced) ;
3067      jSelf->set_suspend_equivalent() ;
3068   }
3069   return jSelf->handle_special_suspend_equivalent_condition() ;
3070}
3071
3072
3073// ReenterI() is a specialized inline form of the latter half of the
3074// contended slow-path from EnterI().  We use ReenterI() only for
3075// monitor reentry in wait().
3076//
3077// In the future we should reconcile EnterI() and ReenterI(), adding
3078// Knob_Reset and Knob_SpinAfterFutile support and restructuring the
3079// loop accordingly.
3080
3081void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
3082    assert (Self != NULL                , "invariant") ;
3083    assert (SelfNode != NULL            , "invariant") ;
3084    assert (SelfNode->_thread == Self   , "invariant") ;
3085    assert (_waiters > 0                , "invariant") ;
3086    assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
3087    assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
3088    JavaThread * jt = (JavaThread *) Self ;
3089
3090    int nWakeups = 0 ;
3091    for (;;) {
3092        ObjectWaiter::TStates v = SelfNode->TState ;
3093        guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
3094        assert    (_owner != Self, "invariant") ;
3095
3096        if (TryLock (Self) > 0) break ;
3097        if (TrySpin (Self) > 0) break ;
3098
3099        TEVENT (Wait Reentry - parking) ;
3100
3101        // State transition wrappers around park() ...
3102        // ReenterI() wisely defers state transitions until
3103        // it's clear we must park the thread.
3104        {
3105           OSThreadContendState osts(Self->osthread());
3106           ThreadBlockInVM tbivm(jt);
3107
3108           // cleared by handle_special_suspend_equivalent_condition()
3109           // or java_suspend_self()
3110           jt->set_suspend_equivalent();
3111           if (SyncFlags & 1) {
3112              Self->_ParkEvent->park ((jlong)1000) ;
3113           } else {
3114              Self->_ParkEvent->park () ;
3115           }
3116
3117           // were we externally suspended while we were waiting?
3118           for (;;) {
3119              if (!ExitSuspendEquivalent (jt)) break ;
3120              if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
3121              jt->java_suspend_self();
3122              jt->set_suspend_equivalent();
3123           }
3124        }
3125
3126        // Try again, but just so we distinguish between futile wakeups and
3127        // successful wakeups.  The following test isn't algorithmically
3128        // necessary, but it helps us maintain sensible statistics.
3129        if (TryLock(Self) > 0) break ;
3130
3131        // The lock is still contested.
3132        // Keep a tally of the # of futile wakeups.
3133        // Note that the counter is not protected by a lock or updated by atomics.
3134        // That is by design - we trade "lossy" counters which are exposed to
3135        // races during updates for a lower probe effect.
3136        TEVENT (Wait Reentry - futile wakeup) ;
3137        ++ nWakeups ;
3138
3139        // Assuming this is not a spurious wakeup we'll normally
3140        // find that _succ == Self.
3141        if (_succ == Self) _succ = NULL ;
3142
3143        // Invariant: after clearing _succ a contending thread
3144        // *must* retry  _owner before parking.
3145        OrderAccess::fence() ;
3146
3147        if (ObjectSynchronizer::_sync_FutileWakeups != NULL) {
3148          ObjectSynchronizer::_sync_FutileWakeups->inc() ;
3149        }
3150    }
3151
3152    // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
3153    // Normally we'll find Self on the EntryList.
3154    // Unlinking from the EntryList is constant-time and atomic-free.
3155    // From the perspective of the lock owner (this thread), the
3156    // EntryList is stable and cxq is prepend-only.
3157    // The head of cxq is volatile but the interior is stable.
3158    // In addition, Self.TState is stable.
3159
3160    assert (_owner == Self, "invariant") ;
3161    assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
3162    UnlinkAfterAcquire (Self, SelfNode) ;
3163    if (_succ == Self) _succ = NULL ;
3164    assert (_succ != Self, "invariant") ;
3165    SelfNode->TState = ObjectWaiter::TS_RUN ;
3166    OrderAccess::fence() ;      // see comments at the end of EnterI()
3167}
3168
3169bool ObjectMonitor::try_enter(Thread* THREAD) {
3170  if (THREAD != _owner) {
3171    if (THREAD->is_lock_owned ((address)_owner)) {
3172       assert(_recursions == 0, "internal state error");
3173       _owner = THREAD ;
3174       _recursions = 1 ;
3175       OwnerIsThread = 1 ;
3176       return true;
3177    }
3178    if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
3179      return false;
3180    }
3181    return true;
3182  } else {
3183    _recursions++;
3184    return true;
3185  }
3186}
3187
3188void ATTR ObjectMonitor::enter(TRAPS) {
3189  // The following code is ordered to check the most common cases first
3190  // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
3191  Thread * const Self = THREAD ;
3192  void * cur ;
3193
3194  cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
3195  if (cur == NULL) {
3196     // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
3197     assert (_recursions == 0   , "invariant") ;
3198     assert (_owner      == Self, "invariant") ;
3199     // CONSIDER: set or assert OwnerIsThread == 1
3200     return ;
3201  }
3202
3203  if (cur == Self) {
3204     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
3205     _recursions ++ ;
3206     return ;
3207  }
3208
3209  if (Self->is_lock_owned ((address)cur)) {
3210    assert (_recursions == 0, "internal state error");
3211    _recursions = 1 ;
3212    // Commute owner from a thread-specific on-stack BasicLockObject address to
3213    // a full-fledged "Thread *".
3214    _owner = Self ;
3215    OwnerIsThread = 1 ;
3216    return ;
3217  }
3218
3219  // We've encountered genuine contention.
3220  assert (Self->_Stalled == 0, "invariant") ;
3221  Self->_Stalled = intptr_t(this) ;
3222
3223  // Try one round of spinning *before* enqueueing Self
3224  // and before going through the awkward and expensive state
3225  // transitions.  The following spin is strictly optional ...
3226  // Note that if we acquire the monitor from an initial spin
3227  // we forgo posting JVMTI events and firing DTRACE probes.
3228  if (Knob_SpinEarly && TrySpin (Self) > 0) {
3229     assert (_owner == Self      , "invariant") ;
3230     assert (_recursions == 0    , "invariant") ;
3231     assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
3232     Self->_Stalled = 0 ;
3233     return ;
3234  }
3235
3236  assert (_owner != Self          , "invariant") ;
3237  assert (_succ  != Self          , "invariant") ;
3238  assert (Self->is_Java_thread()  , "invariant") ;
3239  JavaThread * jt = (JavaThread *) Self ;
3240  assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
3241  assert (jt->thread_state() != _thread_blocked   , "invariant") ;
3242  assert (this->object() != NULL  , "invariant") ;
3243  assert (_count >= 0, "invariant") ;
3244
3245  // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
3246  // Ensure the object-monitor relationship remains stable while there's contention.
3247  Atomic::inc_ptr(&_count);
3248
3249  { // Change java thread status to indicate blocked on monitor enter.
3250    JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
3251
3252    DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
3253    if (JvmtiExport::should_post_monitor_contended_enter()) {
3254      JvmtiExport::post_monitor_contended_enter(jt, this);
3255    }
3256
3257    OSThreadContendState osts(Self->osthread());
3258    ThreadBlockInVM tbivm(jt);
3259
3260    Self->set_current_pending_monitor(this);
3261
3262    // TODO-FIXME: change the following for(;;) loop to straight-line code.
3263    for (;;) {
3264      jt->set_suspend_equivalent();
3265      // cleared by handle_special_suspend_equivalent_condition()
3266      // or java_suspend_self()
3267
3268      EnterI (THREAD) ;
3269
3270      if (!ExitSuspendEquivalent(jt)) break ;
3271
3272      //
3273      // We have acquired the contended monitor, but while we were
3274      // waiting another thread suspended us. We don't want to enter
3275      // the monitor while suspended because that would surprise the
3276      // thread that suspended us.
3277      //
3278          _recursions = 0 ;
3279      _succ = NULL ;
3280      exit (Self) ;
3281
3282      jt->java_suspend_self();
3283    }
3284    Self->set_current_pending_monitor(NULL);
3285  }
3286
3287  Atomic::dec_ptr(&_count);
3288  assert (_count >= 0, "invariant") ;
3289  Self->_Stalled = 0 ;
3290
3291  // Must either set _recursions = 0 or ASSERT _recursions == 0.
3292  assert (_recursions == 0     , "invariant") ;
3293  assert (_owner == Self       , "invariant") ;
3294  assert (_succ  != Self       , "invariant") ;
3295  assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
3296
3297  // The thread -- now the owner -- is back in vm mode.
3298  // Report the glorious news via TI,DTrace and jvmstat.
3299  // The probe effect is non-trivial.  All the reportage occurs
3300  // while we hold the monitor, increasing the length of the critical
3301  // section.  Amdahl's parallel speedup law comes vividly into play.
3302  //
3303  // Another option might be to aggregate the events (thread local or
3304  // per-monitor aggregation) and defer reporting until a more opportune
3305  // time -- such as next time some thread encounters contention but has
3306  // yet to acquire the lock.  While spinning that thread could
3307  // spinning we could increment JVMStat counters, etc.
3308
3309  DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
3310  if (JvmtiExport::should_post_monitor_contended_entered()) {
3311    JvmtiExport::post_monitor_contended_entered(jt, this);
3312  }
3313  if (ObjectSynchronizer::_sync_ContendedLockAttempts != NULL) {
3314     ObjectSynchronizer::_sync_ContendedLockAttempts->inc() ;
3315  }
3316}
3317
3318void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
3319   assert (_owner == Self, "invariant") ;
3320
3321   // Exit protocol:
3322   // 1. ST _succ = wakee
3323   // 2. membar #loadstore|#storestore;
3324   // 2. ST _owner = NULL
3325   // 3. unpark(wakee)
3326
3327   _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
3328   ParkEvent * Trigger = Wakee->_event ;
3329
3330   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
3331   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
3332   // out-of-scope (non-extant).
3333   Wakee  = NULL ;
3334
3335   // Drop the lock
3336   OrderAccess::release_store_ptr (&_owner, NULL) ;
3337   OrderAccess::fence() ;                               // ST _owner vs LD in unpark()
3338
3339   // TODO-FIXME:
3340   // If there's a safepoint pending the best policy would be to
3341   // get _this thread to a safepoint and only wake the successor
3342   // after the safepoint completed.  monitorexit uses a "leaf"
3343   // state transition, however, so this thread can't become
3344   // safe at this point in time.  (Its stack isn't walkable).
3345   // The next best thing is to defer waking the successor by
3346   // adding to a list of thread to be unparked after at the
3347   // end of the forthcoming STW).
3348   if (SafepointSynchronize::do_call_back()) {
3349      TEVENT (unpark before SAFEPOINT) ;
3350   }
3351
3352   // Possible optimizations ...
3353   //
3354   // * Consider: set Wakee->UnparkTime = timeNow()
3355   //   When the thread wakes up it'll compute (timeNow() - Self->UnparkTime()).
3356   //   By measuring recent ONPROC latency we can approximate the
3357   //   system load.  In turn, we can feed that information back
3358   //   into the spinning & succession policies.
3359   //   (ONPROC latency correlates strongly with load).
3360   //
3361   // * Pull affinity:
3362   //   If the wakee is cold then transiently setting it's affinity
3363   //   to the current CPU is a good idea.
3364   //   See http://j2se.east/~dice/PERSIST/050624-PullAffinity.txt
3365   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
3366   Trigger->unpark() ;
3367
3368   // Maintain stats and report events to JVMTI
3369   if (ObjectSynchronizer::_sync_Parks != NULL) {
3370      ObjectSynchronizer::_sync_Parks->inc() ;
3371   }
3372}
3373
3374
3375// exit()
3376// ~~~~~~
3377// Note that the collector can't reclaim the objectMonitor or deflate
3378// the object out from underneath the thread calling ::exit() as the
3379// thread calling ::exit() never transitions to a stable state.
3380// This inhibits GC, which in turn inhibits asynchronous (and
3381// inopportune) reclamation of "this".
3382//
3383// We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
3384// There's one exception to the claim above, however.  EnterI() can call
3385// exit() to drop a lock if the acquirer has been externally suspended.
3386// In that case exit() is called with _thread_state as _thread_blocked,
3387// but the monitor's _count field is > 0, which inhibits reclamation.
3388//
3389// 1-0 exit
3390// ~~~~~~~~
3391// ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
3392// the fast-path operators have been optimized so the common ::exit()
3393// operation is 1-0.  See i486.ad fast_unlock(), for instance.
3394// The code emitted by fast_unlock() elides the usual MEMBAR.  This
3395// greatly improves latency -- MEMBAR and CAS having considerable local
3396// latency on modern processors -- but at the cost of "stranding".  Absent the
3397// MEMBAR, a thread in fast_unlock() can race a thread in the slow
3398// ::enter() path, resulting in the entering thread being stranding
3399// and a progress-liveness failure.   Stranding is extremely rare.
3400// We use timers (timed park operations) & periodic polling to detect
3401// and recover from stranding.  Potentially stranded threads periodically
3402// wake up and poll the lock.  See the usage of the _Responsible variable.
3403//
3404// The CAS() in enter provides for safety and exclusion, while the CAS or
3405// MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
3406// eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
3407// We detect and recover from stranding with timers.
3408//
3409// If a thread transiently strands it'll park until (a) another
3410// thread acquires the lock and then drops the lock, at which time the
3411// exiting thread will notice and unpark the stranded thread, or, (b)
3412// the timer expires.  If the lock is high traffic then the stranding latency
3413// will be low due to (a).  If the lock is low traffic then the odds of
3414// stranding are lower, although the worst-case stranding latency
3415// is longer.  Critically, we don't want to put excessive load in the
3416// platform's timer subsystem.  We want to minimize both the timer injection
3417// rate (timers created/sec) as well as the number of timers active at
3418// any one time.  (more precisely, we want to minimize timer-seconds, which is
3419// the integral of the # of active timers at any instant over time).
3420// Both impinge on OS scalability.  Given that, at most one thread parked on
3421// a monitor will use a timer.
3422
3423void ATTR ObjectMonitor::exit(TRAPS) {
3424   Thread * Self = THREAD ;
3425   if (THREAD != _owner) {
3426     if (THREAD->is_lock_owned((address) _owner)) {
3427       // Transmute _owner from a BasicLock pointer to a Thread address.
3428       // We don't need to hold _mutex for this transition.
3429       // Non-null to Non-null is safe as long as all readers can
3430       // tolerate either flavor.
3431       assert (_recursions == 0, "invariant") ;
3432       _owner = THREAD ;
3433       _recursions = 0 ;
3434       OwnerIsThread = 1 ;
3435     } else {
3436       // NOTE: we need to handle unbalanced monitor enter/exit
3437       // in native code by throwing an exception.
3438       // TODO: Throw an IllegalMonitorStateException ?
3439       TEVENT (Exit - Throw IMSX) ;
3440       assert(false, "Non-balanced monitor enter/exit!");
3441       if (false) {
3442          THROW(vmSymbols::java_lang_IllegalMonitorStateException());
3443       }
3444       return;
3445     }
3446   }
3447
3448   if (_recursions != 0) {
3449     _recursions--;        // this is simple recursive enter
3450     TEVENT (Inflated exit - recursive) ;
3451     return ;
3452   }
3453
3454   // Invariant: after setting Responsible=null an thread must execute
3455   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
3456   if ((SyncFlags & 4) == 0) {
3457      _Responsible = NULL ;
3458   }
3459
3460   for (;;) {
3461      assert (THREAD == _owner, "invariant") ;
3462
3463      // Fast-path monitor exit:
3464      //
3465      // Observe the Dekker/Lamport duality:
3466      // A thread in ::exit() executes:
3467      //   ST Owner=null; MEMBAR; LD EntryList|cxq.
3468      // A thread in the contended ::enter() path executes the complementary:
3469      //   ST EntryList|cxq = nonnull; MEMBAR; LD Owner.
3470      //
3471      // Note that there's a benign race in the exit path.  We can drop the
3472      // lock, another thread can reacquire the lock immediately, and we can
3473      // then wake a thread unnecessarily (yet another flavor of futile wakeup).
3474      // This is benign, and we've structured the code so the windows are short
3475      // and the frequency of such futile wakeups is low.
3476      //
3477      // We could eliminate the race by encoding both the "LOCKED" state and
3478      // the queue head in a single word.  Exit would then use either CAS to
3479      // clear the LOCKED bit/byte.  This precludes the desirable 1-0 optimization,
3480      // however.
3481      //
3482      // Possible fast-path ::exit() optimization:
3483      // The current fast-path exit implementation fetches both cxq and EntryList.
3484      // See also i486.ad fast_unlock().  Testing has shown that two LDs
3485      // isn't measurably slower than a single LD on any platforms.
3486      // Still, we could reduce the 2 LDs to one or zero by one of the following:
3487      //
3488      // - Use _count instead of cxq|EntryList
3489      //   We intend to eliminate _count, however, when we switch
3490      //   to on-the-fly deflation in ::exit() as is used in
3491      //   Metalocks and RelaxedLocks.
3492      //
3493      // - Establish the invariant that cxq == null implies EntryList == null.
3494      //   set cxq == EMPTY (1) to encode the state where cxq is empty
3495      //   by EntryList != null.  EMPTY is a distinguished value.
3496      //   The fast-path exit() would fetch cxq but not EntryList.
3497      //
3498      // - Encode succ as follows:
3499      //   succ = t :  Thread t is the successor -- t is ready or is spinning.
3500      //               Exiting thread does not need to wake a successor.
3501      //   succ = 0 :  No successor required -> (EntryList|cxq) == null
3502      //               Exiting thread does not need to wake a successor
3503      //   succ = 1 :  Successor required    -> (EntryList|cxq) != null and
3504      //               logically succ == null.
3505      //               Exiting thread must wake a successor.
3506      //
3507      //   The 1-1 fast-exit path would appear as :
3508      //     _owner = null ; membar ;
3509      //     if (_succ == 1 && CAS (&_owner, null, Self) == null) goto SlowPath
3510      //     goto FastPathDone ;
3511      //
3512      //   and the 1-0 fast-exit path would appear as:
3513      //      if (_succ == 1) goto SlowPath
3514      //      Owner = null ;
3515      //      goto FastPathDone
3516      //
3517      // - Encode the LSB of _owner as 1 to indicate that exit()
3518      //   must use the slow-path and make a successor ready.
3519      //   (_owner & 1) == 0 IFF succ != null || (EntryList|cxq) == null
3520      //   (_owner & 1) == 0 IFF succ == null && (EntryList|cxq) != null (obviously)
3521      //   The 1-0 fast exit path would read:
3522      //      if (_owner != Self) goto SlowPath
3523      //      _owner = null
3524      //      goto FastPathDone
3525
3526      if (Knob_ExitPolicy == 0) {
3527         // release semantics: prior loads and stores from within the critical section
3528         // must not float (reorder) past the following store that drops the lock.
3529         // On SPARC that requires MEMBAR #loadstore|#storestore.
3530         // But of course in TSO #loadstore|#storestore is not required.
3531         // I'd like to write one of the following:
3532         // A.  OrderAccess::release() ; _owner = NULL
3533         // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
3534         // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
3535         // store into a _dummy variable.  That store is not needed, but can result
3536         // in massive wasteful coherency traffic on classic SMP systems.
3537         // Instead, I use release_store(), which is implemented as just a simple
3538         // ST on x64, x86 and SPARC.
3539         OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
3540         OrderAccess::storeload() ;                         // See if we need to wake a successor
3541         if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
3542            TEVENT (Inflated exit - simple egress) ;
3543            return ;
3544         }
3545         TEVENT (Inflated exit - complex egress) ;
3546
3547         // Normally the exiting thread is responsible for ensuring succession,
3548         // but if other successors are ready or other entering threads are spinning
3549         // then this thread can simply store NULL into _owner and exit without
3550         // waking a successor.  The existence of spinners or ready successors
3551         // guarantees proper succession (liveness).  Responsibility passes to the
3552         // ready or running successors.  The exiting thread delegates the duty.
3553         // More precisely, if a successor already exists this thread is absolved
3554         // of the responsibility of waking (unparking) one.
3555         //
3556         // The _succ variable is critical to reducing futile wakeup frequency.
3557         // _succ identifies the "heir presumptive" thread that has been made
3558         // ready (unparked) but that has not yet run.  We need only one such
3559         // successor thread to guarantee progress.
3560         // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
3561         // section 3.3 "Futile Wakeup Throttling" for details.
3562         //
3563         // Note that spinners in Enter() also set _succ non-null.
3564         // In the current implementation spinners opportunistically set
3565         // _succ so that exiting threads might avoid waking a successor.
3566         // Another less appealing alternative would be for the exiting thread
3567         // to drop the lock and then spin briefly to see if a spinner managed
3568         // to acquire the lock.  If so, the exiting thread could exit
3569         // immediately without waking a successor, otherwise the exiting
3570         // thread would need to dequeue and wake a successor.
3571         // (Note that we'd need to make the post-drop spin short, but no
3572         // shorter than the worst-case round-trip cache-line migration time.
3573         // The dropped lock needs to become visible to the spinner, and then
3574         // the acquisition of the lock by the spinner must become visible to
3575         // the exiting thread).
3576         //
3577
3578         // It appears that an heir-presumptive (successor) must be made ready.
3579         // Only the current lock owner can manipulate the EntryList or
3580         // drain _cxq, so we need to reacquire the lock.  If we fail
3581         // to reacquire the lock the responsibility for ensuring succession
3582         // falls to the new owner.
3583         //
3584         if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
3585            return ;
3586         }
3587         TEVENT (Exit - Reacquired) ;
3588      } else {
3589         if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
3590            OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
3591            OrderAccess::storeload() ;
3592            // Ratify the previously observed values.
3593            if (_cxq == NULL || _succ != NULL) {
3594                TEVENT (Inflated exit - simple egress) ;
3595                return ;
3596            }
3597
3598            // inopportune interleaving -- the exiting thread (this thread)
3599            // in the fast-exit path raced an entering thread in the slow-enter
3600            // path.
3601            // We have two choices:
3602            // A.  Try to reacquire the lock.
3603            //     If the CAS() fails return immediately, otherwise
3604            //     we either restart/rerun the exit operation, or simply
3605            //     fall-through into the code below which wakes a successor.
3606            // B.  If the elements forming the EntryList|cxq are TSM
3607            //     we could simply unpark() the lead thread and return
3608            //     without having set _succ.
3609            if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
3610               TEVENT (Inflated exit - reacquired succeeded) ;
3611               return ;
3612            }
3613            TEVENT (Inflated exit - reacquired failed) ;
3614         } else {
3615            TEVENT (Inflated exit - complex egress) ;
3616         }
3617      }
3618
3619      guarantee (_owner == THREAD, "invariant") ;
3620
3621      // Select an appropriate successor ("heir presumptive") from the EntryList
3622      // and make it ready.  Generally we just wake the head of EntryList .
3623      // There's no algorithmic constraint that we use the head - it's just
3624      // a policy decision.   Note that the thread at head of the EntryList
3625      // remains at the head until it acquires the lock.  This means we'll
3626      // repeatedly wake the same thread until it manages to grab the lock.
3627      // This is generally a good policy - if we're seeing lots of futile wakeups
3628      // at least we're waking/rewaking a thread that's like to be hot or warm
3629      // (have residual D$ and TLB affinity).
3630      //
3631      // "Wakeup locality" optimization:
3632      // http://j2se.east/~dice/PERSIST/040825-WakeLocality.txt
3633      // In the future we'll try to bias the selection mechanism
3634      // to preferentially pick a thread that recently ran on
3635      // a processor element that shares cache with the CPU on which
3636      // the exiting thread is running.   We need access to Solaris'
3637      // schedctl.sc_cpu to make that work.
3638      //
3639      ObjectWaiter * w = NULL ;
3640      int QMode = Knob_QMode ;
3641
3642      if (QMode == 2 && _cxq != NULL) {
3643          // QMode == 2 : cxq has precedence over EntryList.
3644          // Try to directly wake a successor from the cxq.
3645          // If successful, the successor will need to unlink itself from cxq.
3646          w = _cxq ;
3647          assert (w != NULL, "invariant") ;
3648          assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
3649          ExitEpilog (Self, w) ;
3650          return ;
3651      }
3652
3653      if (QMode == 3 && _cxq != NULL) {
3654          // Aggressively drain cxq into EntryList at the first opportunity.
3655          // This policy ensure that recently-run threads live at the head of EntryList.
3656          // Drain _cxq into EntryList - bulk transfer.
3657          // First, detach _cxq.
3658          // The following loop is tantamount to: w = swap (&cxq, NULL)
3659          w = _cxq ;
3660          for (;;) {
3661             assert (w != NULL, "Invariant") ;
3662             ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
3663             if (u == w) break ;
3664             w = u ;
3665          }
3666          assert (w != NULL              , "invariant") ;
3667
3668          ObjectWaiter * q = NULL ;
3669          ObjectWaiter * p ;
3670          for (p = w ; p != NULL ; p = p->_next) {
3671              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
3672              p->TState = ObjectWaiter::TS_ENTER ;
3673              p->_prev = q ;
3674              q = p ;
3675          }
3676
3677          // Append the RATs to the EntryList
3678          // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
3679          ObjectWaiter * Tail ;
3680          for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
3681          if (Tail == NULL) {
3682              _EntryList = w ;
3683          } else {
3684              Tail->_next = w ;
3685              w->_prev = Tail ;
3686          }
3687
3688          // Fall thru into code that tries to wake a successor from EntryList
3689      }
3690
3691      if (QMode == 4 && _cxq != NULL) {
3692          // Aggressively drain cxq into EntryList at the first opportunity.
3693          // This policy ensure that recently-run threads live at the head of EntryList.
3694
3695          // Drain _cxq into EntryList - bulk transfer.
3696          // First, detach _cxq.
3697          // The following loop is tantamount to: w = swap (&cxq, NULL)
3698          w = _cxq ;
3699          for (;;) {
3700             assert (w != NULL, "Invariant") ;
3701             ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
3702             if (u == w) break ;
3703             w = u ;
3704          }
3705          assert (w != NULL              , "invariant") ;
3706
3707          ObjectWaiter * q = NULL ;
3708          ObjectWaiter * p ;
3709          for (p = w ; p != NULL ; p = p->_next) {
3710              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
3711              p->TState = ObjectWaiter::TS_ENTER ;
3712              p->_prev = q ;
3713              q = p ;
3714          }
3715
3716          // Prepend the RATs to the EntryList
3717          if (_EntryList != NULL) {
3718              q->_next = _EntryList ;
3719              _EntryList->_prev = q ;
3720          }
3721          _EntryList = w ;
3722
3723          // Fall thru into code that tries to wake a successor from EntryList
3724      }
3725
3726      w = _EntryList  ;
3727      if (w != NULL) {
3728          // I'd like to write: guarantee (w->_thread != Self).
3729          // But in practice an exiting thread may find itself on the EntryList.
3730          // Lets say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
3731          // then calls exit().  Exit release the lock by setting O._owner to NULL.
3732          // Lets say T1 then stalls.  T2 acquires O and calls O.notify().  The
3733          // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
3734          // release the lock "O".  T2 resumes immediately after the ST of null into
3735          // _owner, above.  T2 notices that the EntryList is populated, so it
3736          // reacquires the lock and then finds itself on the EntryList.
3737          // Given all that, we have to tolerate the circumstance where "w" is
3738          // associated with Self.
3739          assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
3740          ExitEpilog (Self, w) ;
3741          return ;
3742      }
3743
3744      // If we find that both _cxq and EntryList are null then just
3745      // re-run the exit protocol from the top.
3746      w = _cxq ;
3747      if (w == NULL) continue ;
3748
3749      // Drain _cxq into EntryList - bulk transfer.
3750      // First, detach _cxq.
3751      // The following loop is tantamount to: w = swap (&cxq, NULL)
3752      for (;;) {
3753          assert (w != NULL, "Invariant") ;
3754          ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
3755          if (u == w) break ;
3756          w = u ;
3757      }
3758      TEVENT (Inflated exit - drain cxq into EntryList) ;
3759
3760      assert (w != NULL              , "invariant") ;
3761      assert (_EntryList  == NULL    , "invariant") ;
3762
3763      // Convert the LIFO SLL anchored by _cxq into a DLL.
3764      // The list reorganization step operates in O(LENGTH(w)) time.
3765      // It's critical that this step operate quickly as
3766      // "Self" still holds the outer-lock, restricting parallelism
3767      // and effectively lengthening the critical section.
3768      // Invariant: s chases t chases u.
3769      // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
3770      // we have faster access to the tail.
3771
3772      if (QMode == 1) {
3773         // QMode == 1 : drain cxq to EntryList, reversing order
3774         // We also reverse the order of the list.
3775         ObjectWaiter * s = NULL ;
3776         ObjectWaiter * t = w ;
3777         ObjectWaiter * u = NULL ;
3778         while (t != NULL) {
3779             guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
3780             t->TState = ObjectWaiter::TS_ENTER ;
3781             u = t->_next ;
3782             t->_prev = u ;
3783             t->_next = s ;
3784             s = t;
3785             t = u ;
3786         }
3787         _EntryList  = s ;
3788         assert (s != NULL, "invariant") ;
3789      } else {
3790         // QMode == 0 or QMode == 2
3791         _EntryList = w ;
3792         ObjectWaiter * q = NULL ;
3793         ObjectWaiter * p ;
3794         for (p = w ; p != NULL ; p = p->_next) {
3795             guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
3796             p->TState = ObjectWaiter::TS_ENTER ;
3797             p->_prev = q ;
3798             q = p ;
3799         }
3800      }
3801
3802      // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
3803      // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
3804
3805      // See if we can abdicate to a spinner instead of waking a thread.
3806      // A primary goal of the implementation is to reduce the
3807      // context-switch rate.
3808      if (_succ != NULL) continue;
3809
3810      w = _EntryList  ;
3811      if (w != NULL) {
3812          guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
3813          ExitEpilog (Self, w) ;
3814          return ;
3815      }
3816   }
3817}
3818// complete_exit exits a lock returning recursion count
3819// complete_exit/reenter operate as a wait without waiting
3820// complete_exit requires an inflated monitor
3821// The _owner field is not always the Thread addr even with an
3822// inflated monitor, e.g. the monitor can be inflated by a non-owning
3823// thread due to contention.
3824intptr_t ObjectMonitor::complete_exit(TRAPS) {
3825   Thread * const Self = THREAD;
3826   assert(Self->is_Java_thread(), "Must be Java thread!");
3827   JavaThread *jt = (JavaThread *)THREAD;
3828
3829   DeferredInitialize();
3830
3831   if (THREAD != _owner) {
3832    if (THREAD->is_lock_owned ((address)_owner)) {
3833       assert(_recursions == 0, "internal state error");
3834       _owner = THREAD ;   /* Convert from basiclock addr to Thread addr */
3835       _recursions = 0 ;
3836       OwnerIsThread = 1 ;
3837    }
3838   }
3839
3840   guarantee(Self == _owner, "complete_exit not owner");
3841   intptr_t save = _recursions; // record the old recursion count
3842   _recursions = 0;        // set the recursion level to be 0
3843   exit (Self) ;           // exit the monitor
3844   guarantee (_owner != Self, "invariant");
3845   return save;
3846}
3847
3848// reenter() enters a lock and sets recursion count
3849// complete_exit/reenter operate as a wait without waiting
3850void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
3851   Thread * const Self = THREAD;
3852   assert(Self->is_Java_thread(), "Must be Java thread!");
3853   JavaThread *jt = (JavaThread *)THREAD;
3854
3855   guarantee(_owner != Self, "reenter already owner");
3856   enter (THREAD);       // enter the monitor
3857   guarantee (_recursions == 0, "reenter recursion");
3858   _recursions = recursions;
3859   return;
3860}
3861
3862// Note: a subset of changes to ObjectMonitor::wait()
3863// will need to be replicated in complete_exit above
3864void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
3865   Thread * const Self = THREAD ;
3866   assert(Self->is_Java_thread(), "Must be Java thread!");
3867   JavaThread *jt = (JavaThread *)THREAD;
3868
3869   DeferredInitialize () ;
3870
3871   // Throw IMSX or IEX.
3872   CHECK_OWNER();
3873
3874   // check for a pending interrupt
3875   if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
3876     // post monitor waited event.  Note that this is past-tense, we are done waiting.
3877     if (JvmtiExport::should_post_monitor_waited()) {
3878        // Note: 'false' parameter is passed here because the
3879        // wait was not timed out due to thread interrupt.
3880        JvmtiExport::post_monitor_waited(jt, this, false);
3881     }
3882     TEVENT (Wait - Throw IEX) ;
3883     THROW(vmSymbols::java_lang_InterruptedException());
3884     return ;
3885   }
3886   TEVENT (Wait) ;
3887
3888   assert (Self->_Stalled == 0, "invariant") ;
3889   Self->_Stalled = intptr_t(this) ;
3890   jt->set_current_waiting_monitor(this);
3891
3892   // create a node to be put into the queue
3893   // Critically, after we reset() the event but prior to park(), we must check
3894   // for a pending interrupt.
3895   ObjectWaiter node(Self);
3896   node.TState = ObjectWaiter::TS_WAIT ;
3897   Self->_ParkEvent->reset() ;
3898   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
3899
3900   // Enter the waiting queue, which is a circular doubly linked list in this case
3901   // but it could be a priority queue or any data structure.
3902   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
3903   // by the the owner of the monitor *except* in the case where park()
3904   // returns because of a timeout of interrupt.  Contention is exceptionally rare
3905   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
3906
3907   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
3908   AddWaiter (&node) ;
3909   Thread::SpinRelease (&_WaitSetLock) ;
3910
3911   if ((SyncFlags & 4) == 0) {
3912      _Responsible = NULL ;
3913   }
3914   intptr_t save = _recursions; // record the old recursion count
3915   _waiters++;                  // increment the number of waiters
3916   _recursions = 0;             // set the recursion level to be 1
3917   exit (Self) ;                    // exit the monitor
3918   guarantee (_owner != Self, "invariant") ;
3919
3920   // As soon as the ObjectMonitor's ownership is dropped in the exit()
3921   // call above, another thread can enter() the ObjectMonitor, do the
3922   // notify(), and exit() the ObjectMonitor. If the other thread's
3923   // exit() call chooses this thread as the successor and the unpark()
3924   // call happens to occur while this thread is posting a
3925   // MONITOR_CONTENDED_EXIT event, then we run the risk of the event
3926   // handler using RawMonitors and consuming the unpark().
3927   //
3928   // To avoid the problem, we re-post the event. This does no harm
3929   // even if the original unpark() was not consumed because we are the
3930   // chosen successor for this monitor.
3931   if (node._notified != 0 && _succ == Self) {
3932      node._event->unpark();
3933   }
3934
3935   // The thread is on the WaitSet list - now park() it.
3936   // On MP systems it's conceivable that a brief spin before we park
3937   // could be profitable.
3938   //
3939   // TODO-FIXME: change the following logic to a loop of the form
3940   //   while (!timeout && !interrupted && _notified == 0) park()
3941
3942   int ret = OS_OK ;
3943   int WasNotified = 0 ;
3944   { // State transition wrappers
3945     OSThread* osthread = Self->osthread();
3946     OSThreadWaitState osts(osthread, true);
3947     {
3948       ThreadBlockInVM tbivm(jt);
3949       // Thread is in thread_blocked state and oop access is unsafe.
3950       jt->set_suspend_equivalent();
3951
3952       if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
3953           // Intentionally empty
3954       } else
3955       if (node._notified == 0) {
3956         if (millis <= 0) {
3957            Self->_ParkEvent->park () ;
3958         } else {
3959            ret = Self->_ParkEvent->park (millis) ;
3960         }
3961       }
3962
3963       // were we externally suspended while we were waiting?
3964       if (ExitSuspendEquivalent (jt)) {
3965          // TODO-FIXME: add -- if succ == Self then succ = null.
3966          jt->java_suspend_self();
3967       }
3968
3969     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
3970
3971
3972     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
3973     // from the WaitSet to the EntryList.
3974     // See if we need to remove Node from the WaitSet.
3975     // We use double-checked locking to avoid grabbing _WaitSetLock
3976     // if the thread is not on the wait queue.
3977     //
3978     // Note that we don't need a fence before the fetch of TState.
3979     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
3980     // written by the is thread. (perhaps the fetch might even be satisfied
3981     // by a look-aside into the processor's own store buffer, although given
3982     // the length of the code path between the prior ST and this load that's
3983     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
3984     // then we'll acquire the lock and then re-fetch a fresh TState value.
3985     // That is, we fail toward safety.
3986
3987     if (node.TState == ObjectWaiter::TS_WAIT) {
3988         Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
3989         if (node.TState == ObjectWaiter::TS_WAIT) {
3990            DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
3991            assert(node._notified == 0, "invariant");
3992            node.TState = ObjectWaiter::TS_RUN ;
3993         }
3994         Thread::SpinRelease (&_WaitSetLock) ;
3995     }
3996
3997     // The thread is now either on off-list (TS_RUN),
3998     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
3999     // The Node's TState variable is stable from the perspective of this thread.
4000     // No other threads will asynchronously modify TState.
4001     guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
4002     OrderAccess::loadload() ;
4003     if (_succ == Self) _succ = NULL ;
4004     WasNotified = node._notified ;
4005
4006     // Reentry phase -- reacquire the monitor.
4007     // re-enter contended monitor after object.wait().
4008     // retain OBJECT_WAIT state until re-enter successfully completes
4009     // Thread state is thread_in_vm and oop access is again safe,
4010     // although the raw address of the object may have changed.
4011     // (Don't cache naked oops over safepoints, of course).
4012
4013     // post monitor waited event. Note that this is past-tense, we are done waiting.
4014     if (JvmtiExport::should_post_monitor_waited()) {
4015       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
4016     }
4017     OrderAccess::fence() ;
4018
4019     assert (Self->_Stalled != 0, "invariant") ;
4020     Self->_Stalled = 0 ;
4021
4022     assert (_owner != Self, "invariant") ;
4023     ObjectWaiter::TStates v = node.TState ;
4024     if (v == ObjectWaiter::TS_RUN) {
4025         enter (Self) ;
4026     } else {
4027         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
4028         ReenterI (Self, &node) ;
4029         node.wait_reenter_end(this);
4030     }
4031
4032     // Self has reacquired the lock.
4033     // Lifecycle - the node representing Self must not appear on any queues.
4034     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
4035     // want residual elements associated with this thread left on any lists.
4036     guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
4037     assert    (_owner == Self, "invariant") ;
4038     assert    (_succ != Self , "invariant") ;
4039   } // OSThreadWaitState()
4040
4041   jt->set_current_waiting_monitor(NULL);
4042
4043   guarantee (_recursions == 0, "invariant") ;
4044   _recursions = save;     // restore the old recursion count
4045   _waiters--;             // decrement the number of waiters
4046
4047   // Verify a few postconditions
4048   assert (_owner == Self       , "invariant") ;
4049   assert (_succ  != Self       , "invariant") ;
4050   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
4051
4052   if (SyncFlags & 32) {
4053      OrderAccess::fence() ;
4054   }
4055
4056   // check if the notification happened
4057   if (!WasNotified) {
4058     // no, it could be timeout or Thread.interrupt() or both
4059     // check for interrupt event, otherwise it is timeout
4060     if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
4061       TEVENT (Wait - throw IEX from epilog) ;
4062       THROW(vmSymbols::java_lang_InterruptedException());
4063     }
4064   }
4065
4066   // NOTE: Spurious wake up will be consider as timeout.
4067   // Monitor notify has precedence over thread interrupt.
4068}
4069
4070
4071// Consider:
4072// If the lock is cool (cxq == null && succ == null) and we're on an MP system
4073// then instead of transferring a thread from the WaitSet to the EntryList
4074// we might just dequeue a thread from the WaitSet and directly unpark() it.
4075
4076void ObjectMonitor::notify(TRAPS) {
4077  CHECK_OWNER();
4078  if (_WaitSet == NULL) {
4079     TEVENT (Empty-Notify) ;
4080     return ;
4081  }
4082  DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
4083
4084  int Policy = Knob_MoveNotifyee ;
4085
4086  Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
4087  ObjectWaiter * iterator = DequeueWaiter() ;
4088  if (iterator != NULL) {
4089     TEVENT (Notify1 - Transfer) ;
4090     guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
4091     guarantee (iterator->_notified == 0, "invariant") ;
4092     // Disposition - what might we do with iterator ?
4093     // a.  add it directly to the EntryList - either tail or head.
4094     // b.  push it onto the front of the _cxq.
4095     // For now we use (a).
4096     if (Policy != 4) {
4097        iterator->TState = ObjectWaiter::TS_ENTER ;
4098     }
4099     iterator->_notified = 1 ;
4100
4101     ObjectWaiter * List = _EntryList ;
4102     if (List != NULL) {
4103        assert (List->_prev == NULL, "invariant") ;
4104        assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
4105        assert (List != iterator, "invariant") ;
4106     }
4107
4108     if (Policy == 0) {       // prepend to EntryList
4109         if (List == NULL) {
4110             iterator->_next = iterator->_prev = NULL ;
4111             _EntryList = iterator ;
4112         } else {
4113             List->_prev = iterator ;
4114             iterator->_next = List ;
4115             iterator->_prev = NULL ;
4116             _EntryList = iterator ;
4117        }
4118     } else
4119     if (Policy == 1) {      // append to EntryList
4120         if (List == NULL) {
4121             iterator->_next = iterator->_prev = NULL ;
4122             _EntryList = iterator ;
4123         } else {
4124            // CONSIDER:  finding the tail currently requires a linear-time walk of
4125            // the EntryList.  We can make tail access constant-time by converting to
4126            // a CDLL instead of using our current DLL.
4127            ObjectWaiter * Tail ;
4128            for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
4129            assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
4130            Tail->_next = iterator ;
4131            iterator->_prev = Tail ;
4132            iterator->_next = NULL ;
4133        }
4134     } else
4135     if (Policy == 2) {      // prepend to cxq
4136         // prepend to cxq
4137         if (List == NULL) {
4138             iterator->_next = iterator->_prev = NULL ;
4139             _EntryList = iterator ;
4140         } else {
4141            iterator->TState = ObjectWaiter::TS_CXQ ;
4142            for (;;) {
4143                ObjectWaiter * Front = _cxq ;
4144                iterator->_next = Front ;
4145                if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
4146                    break ;
4147                }
4148            }
4149         }
4150     } else
4151     if (Policy == 3) {      // append to cxq
4152        iterator->TState = ObjectWaiter::TS_CXQ ;
4153        for (;;) {
4154            ObjectWaiter * Tail ;
4155            Tail = _cxq ;
4156            if (Tail == NULL) {
4157                iterator->_next = NULL ;
4158                if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
4159                   break ;
4160                }
4161            } else {
4162                while (Tail->_next != NULL) Tail = Tail->_next ;
4163                Tail->_next = iterator ;
4164                iterator->_prev = Tail ;
4165                iterator->_next = NULL ;
4166                break ;
4167            }
4168        }
4169     } else {
4170        ParkEvent * ev = iterator->_event ;
4171        iterator->TState = ObjectWaiter::TS_RUN ;
4172        OrderAccess::fence() ;
4173        ev->unpark() ;
4174     }
4175
4176     if (Policy < 4) {
4177       iterator->wait_reenter_begin(this);
4178     }
4179
4180     // _WaitSetLock protects the wait queue, not the EntryList.  We could
4181     // move the add-to-EntryList operation, above, outside the critical section
4182     // protected by _WaitSetLock.  In practice that's not useful.  With the
4183     // exception of  wait() timeouts and interrupts the monitor owner
4184     // is the only thread that grabs _WaitSetLock.  There's almost no contention
4185     // on _WaitSetLock so it's not profitable to reduce the length of the
4186     // critical section.
4187  }
4188
4189  Thread::SpinRelease (&_WaitSetLock) ;
4190
4191  if (iterator != NULL && ObjectSynchronizer::_sync_Notifications != NULL) {
4192     ObjectSynchronizer::_sync_Notifications->inc() ;
4193  }
4194}
4195
4196
4197void ObjectMonitor::notifyAll(TRAPS) {
4198  CHECK_OWNER();
4199  ObjectWaiter* iterator;
4200  if (_WaitSet == NULL) {
4201      TEVENT (Empty-NotifyAll) ;
4202      return ;
4203  }
4204  DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
4205
4206  int Policy = Knob_MoveNotifyee ;
4207  int Tally = 0 ;
4208  Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
4209
4210  for (;;) {
4211     iterator = DequeueWaiter () ;
4212     if (iterator == NULL) break ;
4213     TEVENT (NotifyAll - Transfer1) ;
4214     ++Tally ;
4215
4216     // Disposition - what might we do with iterator ?
4217     // a.  add it directly to the EntryList - either tail or head.
4218     // b.  push it onto the front of the _cxq.
4219     // For now we use (a).
4220     //
4221     // TODO-FIXME: currently notifyAll() transfers the waiters one-at-a-time from the waitset
4222     // to the EntryList.  This could be done more efficiently with a single bulk transfer,
4223     // but in practice it's not time-critical.  Beware too, that in prepend-mode we invert the
4224     // order of the waiters.  Lets say that the waitset is "ABCD" and the EntryList is "XYZ".
4225     // After a notifyAll() in prepend mode the waitset will be empty and the EntryList will
4226     // be "DCBAXYZ".
4227
4228     guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
4229     guarantee (iterator->_notified == 0, "invariant") ;
4230     iterator->_notified = 1 ;
4231     if (Policy != 4) {
4232        iterator->TState = ObjectWaiter::TS_ENTER ;
4233     }
4234
4235     ObjectWaiter * List = _EntryList ;
4236     if (List != NULL) {
4237        assert (List->_prev == NULL, "invariant") ;
4238        assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
4239        assert (List != iterator, "invariant") ;
4240     }
4241
4242     if (Policy == 0) {       // prepend to EntryList
4243         if (List == NULL) {
4244             iterator->_next = iterator->_prev = NULL ;
4245             _EntryList = iterator ;
4246         } else {
4247             List->_prev = iterator ;
4248             iterator->_next = List ;
4249             iterator->_prev = NULL ;
4250             _EntryList = iterator ;
4251        }
4252     } else
4253     if (Policy == 1) {      // append to EntryList
4254         if (List == NULL) {
4255             iterator->_next = iterator->_prev = NULL ;
4256             _EntryList = iterator ;
4257         } else {
4258            // CONSIDER:  finding the tail currently requires a linear-time walk of
4259            // the EntryList.  We can make tail access constant-time by converting to
4260            // a CDLL instead of using our current DLL.
4261            ObjectWaiter * Tail ;
4262            for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
4263            assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
4264            Tail->_next = iterator ;
4265            iterator->_prev = Tail ;
4266            iterator->_next = NULL ;
4267        }
4268     } else
4269     if (Policy == 2) {      // prepend to cxq
4270         // prepend to cxq
4271         iterator->TState = ObjectWaiter::TS_CXQ ;
4272         for (;;) {
4273             ObjectWaiter * Front = _cxq ;
4274             iterator->_next = Front ;
4275             if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
4276                 break ;
4277             }
4278         }
4279     } else
4280     if (Policy == 3) {      // append to cxq
4281        iterator->TState = ObjectWaiter::TS_CXQ ;
4282        for (;;) {
4283            ObjectWaiter * Tail ;
4284            Tail = _cxq ;
4285            if (Tail == NULL) {
4286                iterator->_next = NULL ;
4287                if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
4288                   break ;
4289                }
4290            } else {
4291                while (Tail->_next != NULL) Tail = Tail->_next ;
4292                Tail->_next = iterator ;
4293                iterator->_prev = Tail ;
4294                iterator->_next = NULL ;
4295                break ;
4296            }
4297        }
4298     } else {
4299        ParkEvent * ev = iterator->_event ;
4300        iterator->TState = ObjectWaiter::TS_RUN ;
4301        OrderAccess::fence() ;
4302        ev->unpark() ;
4303     }
4304
4305     if (Policy < 4) {
4306       iterator->wait_reenter_begin(this);
4307     }
4308
4309     // _WaitSetLock protects the wait queue, not the EntryList.  We could
4310     // move the add-to-EntryList operation, above, outside the critical section
4311     // protected by _WaitSetLock.  In practice that's not useful.  With the
4312     // exception of  wait() timeouts and interrupts the monitor owner
4313     // is the only thread that grabs _WaitSetLock.  There's almost no contention
4314     // on _WaitSetLock so it's not profitable to reduce the length of the
4315     // critical section.
4316  }
4317
4318  Thread::SpinRelease (&_WaitSetLock) ;
4319
4320  if (Tally != 0 && ObjectSynchronizer::_sync_Notifications != NULL) {
4321     ObjectSynchronizer::_sync_Notifications->inc(Tally) ;
4322  }
4323}
4324
4325// check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
4326// TODO-FIXME: remove check_slow() -- it's likely dead.
4327
4328void ObjectMonitor::check_slow(TRAPS) {
4329  TEVENT (check_slow - throw IMSX) ;
4330  assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
4331  THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
4332}
4333
4334
4335// -------------------------------------------------------------------------
4336// The raw monitor subsystem is entirely distinct from normal
4337// java-synchronization or jni-synchronization.  raw monitors are not
4338// associated with objects.  They can be implemented in any manner
4339// that makes sense.  The original implementors decided to piggy-back
4340// the raw-monitor implementation on the existing Java objectMonitor mechanism.
4341// This flaw needs to fixed.  We should reimplement raw monitors as sui-generis.
4342// Specifically, we should not implement raw monitors via java monitors.
4343// Time permitting, we should disentangle and deconvolve the two implementations
4344// and move the resulting raw monitor implementation over to the JVMTI directories.
4345// Ideally, the raw monitor implementation would be built on top of
4346// park-unpark and nothing else.
4347//
4348// raw monitors are used mainly by JVMTI
4349// The raw monitor implementation borrows the ObjectMonitor structure,
4350// but the operators are degenerate and extremely simple.
4351//
4352// Mixed use of a single objectMonitor instance -- as both a raw monitor
4353// and a normal java monitor -- is not permissible.
4354//
4355// Note that we use the single RawMonitor_lock to protect queue operations for
4356// _all_ raw monitors.  This is a scalability impediment, but since raw monitor usage
4357// is deprecated and rare, this is not of concern.  The RawMonitor_lock can not
4358// be held indefinitely.  The critical sections must be short and bounded.
4359//
4360// -------------------------------------------------------------------------
4361
4362int ObjectMonitor::SimpleEnter (Thread * Self) {
4363  for (;;) {
4364    if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
4365       return OS_OK ;
4366    }
4367
4368    ObjectWaiter Node (Self) ;
4369    Self->_ParkEvent->reset() ;     // strictly optional
4370    Node.TState = ObjectWaiter::TS_ENTER ;
4371
4372    RawMonitor_lock->lock_without_safepoint_check() ;
4373    Node._next  = _EntryList ;
4374    _EntryList  = &Node ;
4375    OrderAccess::fence() ;
4376    if (_owner == NULL && Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
4377        _EntryList = Node._next ;
4378        RawMonitor_lock->unlock() ;
4379        return OS_OK ;
4380    }
4381    RawMonitor_lock->unlock() ;
4382    while (Node.TState == ObjectWaiter::TS_ENTER) {
4383       Self->_ParkEvent->park() ;
4384    }
4385  }
4386}
4387
4388int ObjectMonitor::SimpleExit (Thread * Self) {
4389  guarantee (_owner == Self, "invariant") ;
4390  OrderAccess::release_store_ptr (&_owner, NULL) ;
4391  OrderAccess::fence() ;
4392  if (_EntryList == NULL) return OS_OK ;
4393  ObjectWaiter * w ;
4394
4395  RawMonitor_lock->lock_without_safepoint_check() ;
4396  w = _EntryList ;
4397  if (w != NULL) {
4398      _EntryList = w->_next ;
4399  }
4400  RawMonitor_lock->unlock() ;
4401  if (w != NULL) {
4402      guarantee (w ->TState == ObjectWaiter::TS_ENTER, "invariant") ;
4403      ParkEvent * ev = w->_event ;
4404      w->TState = ObjectWaiter::TS_RUN ;
4405      OrderAccess::fence() ;
4406      ev->unpark() ;
4407  }
4408  return OS_OK ;
4409}
4410
4411int ObjectMonitor::SimpleWait (Thread * Self, jlong millis) {
4412  guarantee (_owner == Self  , "invariant") ;
4413  guarantee (_recursions == 0, "invariant") ;
4414
4415  ObjectWaiter Node (Self) ;
4416  Node._notified = 0 ;
4417  Node.TState    = ObjectWaiter::TS_WAIT ;
4418
4419  RawMonitor_lock->lock_without_safepoint_check() ;
4420  Node._next     = _WaitSet ;
4421  _WaitSet       = &Node ;
4422  RawMonitor_lock->unlock() ;
4423
4424  SimpleExit (Self) ;
4425  guarantee (_owner != Self, "invariant") ;
4426
4427  int ret = OS_OK ;
4428  if (millis <= 0) {
4429    Self->_ParkEvent->park();
4430  } else {
4431    ret = Self->_ParkEvent->park(millis);
4432  }
4433
4434  // If thread still resides on the waitset then unlink it.
4435  // Double-checked locking -- the usage is safe in this context
4436  // as we TState is volatile and the lock-unlock operators are
4437  // serializing (barrier-equivalent).
4438
4439  if (Node.TState == ObjectWaiter::TS_WAIT) {
4440    RawMonitor_lock->lock_without_safepoint_check() ;
4441    if (Node.TState == ObjectWaiter::TS_WAIT) {
4442      // Simple O(n) unlink, but performance isn't critical here.
4443      ObjectWaiter * p ;
4444      ObjectWaiter * q = NULL ;
4445      for (p = _WaitSet ; p != &Node; p = p->_next) {
4446         q = p ;
4447      }
4448      guarantee (p == &Node, "invariant") ;
4449      if (q == NULL) {
4450        guarantee (p == _WaitSet, "invariant") ;
4451        _WaitSet = p->_next ;
4452      } else {
4453        guarantee (p == q->_next, "invariant") ;
4454        q->_next = p->_next ;
4455      }
4456      Node.TState = ObjectWaiter::TS_RUN ;
4457    }
4458    RawMonitor_lock->unlock() ;
4459  }
4460
4461  guarantee (Node.TState == ObjectWaiter::TS_RUN, "invariant") ;
4462  SimpleEnter (Self) ;
4463
4464  guarantee (_owner == Self, "invariant") ;
4465  guarantee (_recursions == 0, "invariant") ;
4466  return ret ;
4467}
4468
4469int ObjectMonitor::SimpleNotify (Thread * Self, bool All) {
4470  guarantee (_owner == Self, "invariant") ;
4471  if (_WaitSet == NULL) return OS_OK ;
4472
4473  // We have two options:
4474  // A. Transfer the threads from the WaitSet to the EntryList
4475  // B. Remove the thread from the WaitSet and unpark() it.
4476  //
4477  // We use (B), which is crude and results in lots of futile
4478  // context switching.  In particular (B) induces lots of contention.
4479
4480  ParkEvent * ev = NULL ;       // consider using a small auto array ...
4481  RawMonitor_lock->lock_without_safepoint_check() ;
4482  for (;;) {
4483      ObjectWaiter * w = _WaitSet ;
4484      if (w == NULL) break ;
4485      _WaitSet = w->_next ;
4486      if (ev != NULL) { ev->unpark(); ev = NULL; }
4487      ev = w->_event ;
4488      OrderAccess::loadstore() ;
4489      w->TState = ObjectWaiter::TS_RUN ;
4490      OrderAccess::storeload();
4491      if (!All) break ;
4492  }
4493  RawMonitor_lock->unlock() ;
4494  if (ev != NULL) ev->unpark();
4495  return OS_OK ;
4496}
4497
4498// Any JavaThread will enter here with state _thread_blocked
4499int ObjectMonitor::raw_enter(TRAPS) {
4500  TEVENT (raw_enter) ;
4501  void * Contended ;
4502
4503  // don't enter raw monitor if thread is being externally suspended, it will
4504  // surprise the suspender if a "suspended" thread can still enter monitor
4505  JavaThread * jt = (JavaThread *)THREAD;
4506  if (THREAD->is_Java_thread()) {
4507    jt->SR_lock()->lock_without_safepoint_check();
4508    while (jt->is_external_suspend()) {
4509      jt->SR_lock()->unlock();
4510      jt->java_suspend_self();
4511      jt->SR_lock()->lock_without_safepoint_check();
4512    }
4513    // guarded by SR_lock to avoid racing with new external suspend requests.
4514    Contended = Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) ;
4515    jt->SR_lock()->unlock();
4516  } else {
4517    Contended = Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) ;
4518  }
4519
4520  if (Contended == THREAD) {
4521     _recursions ++ ;
4522     return OM_OK ;
4523  }
4524
4525  if (Contended == NULL) {
4526     guarantee (_owner == THREAD, "invariant") ;
4527     guarantee (_recursions == 0, "invariant") ;
4528     return OM_OK ;
4529  }
4530
4531  THREAD->set_current_pending_monitor(this);
4532
4533  if (!THREAD->is_Java_thread()) {
4534     // No other non-Java threads besides VM thread would acquire
4535     // a raw monitor.
4536     assert(THREAD->is_VM_thread(), "must be VM thread");
4537     SimpleEnter (THREAD) ;
4538   } else {
4539     guarantee (jt->thread_state() == _thread_blocked, "invariant") ;
4540     for (;;) {
4541       jt->set_suspend_equivalent();
4542       // cleared by handle_special_suspend_equivalent_condition() or
4543       // java_suspend_self()
4544       SimpleEnter (THREAD) ;
4545
4546       // were we externally suspended while we were waiting?
4547       if (!jt->handle_special_suspend_equivalent_condition()) break ;
4548
4549       // This thread was externally suspended
4550       //
4551       // This logic isn't needed for JVMTI raw monitors,
4552       // but doesn't hurt just in case the suspend rules change. This
4553           // logic is needed for the ObjectMonitor.wait() reentry phase.
4554           // We have reentered the contended monitor, but while we were
4555           // waiting another thread suspended us. We don't want to reenter
4556           // the monitor while suspended because that would surprise the
4557           // thread that suspended us.
4558           //
4559           // Drop the lock -
4560       SimpleExit (THREAD) ;
4561
4562           jt->java_suspend_self();
4563         }
4564
4565     assert(_owner == THREAD, "Fatal error with monitor owner!");
4566     assert(_recursions == 0, "Fatal error with monitor recursions!");
4567  }
4568
4569  THREAD->set_current_pending_monitor(NULL);
4570  guarantee (_recursions == 0, "invariant") ;
4571  return OM_OK;
4572}
4573
4574// Used mainly for JVMTI raw monitor implementation
4575// Also used for ObjectMonitor::wait().
4576int ObjectMonitor::raw_exit(TRAPS) {
4577  TEVENT (raw_exit) ;
4578  if (THREAD != _owner) {
4579    return OM_ILLEGAL_MONITOR_STATE;
4580  }
4581  if (_recursions > 0) {
4582    --_recursions ;
4583    return OM_OK ;
4584  }
4585
4586  void * List = _EntryList ;
4587  SimpleExit (THREAD) ;
4588
4589  return OM_OK;
4590}
4591
4592// Used for JVMTI raw monitor implementation.
4593// All JavaThreads will enter here with state _thread_blocked
4594
4595int ObjectMonitor::raw_wait(jlong millis, bool interruptible, TRAPS) {
4596  TEVENT (raw_wait) ;
4597  if (THREAD != _owner) {
4598    return OM_ILLEGAL_MONITOR_STATE;
4599  }
4600
4601  // To avoid spurious wakeups we reset the parkevent -- This is strictly optional.
4602  // The caller must be able to tolerate spurious returns from raw_wait().
4603  THREAD->_ParkEvent->reset() ;
4604  OrderAccess::fence() ;
4605
4606  // check interrupt event
4607  if (interruptible && Thread::is_interrupted(THREAD, true)) {
4608    return OM_INTERRUPTED;
4609  }
4610
4611  intptr_t save = _recursions ;
4612  _recursions = 0 ;
4613  _waiters ++ ;
4614  if (THREAD->is_Java_thread()) {
4615    guarantee (((JavaThread *) THREAD)->thread_state() == _thread_blocked, "invariant") ;
4616    ((JavaThread *)THREAD)->set_suspend_equivalent();
4617  }
4618  int rv = SimpleWait (THREAD, millis) ;
4619  _recursions = save ;
4620  _waiters -- ;
4621
4622  guarantee (THREAD == _owner, "invariant") ;
4623  if (THREAD->is_Java_thread()) {
4624     JavaThread * jSelf = (JavaThread *) THREAD ;
4625     for (;;) {
4626        if (!jSelf->handle_special_suspend_equivalent_condition()) break ;
4627        SimpleExit (THREAD) ;
4628        jSelf->java_suspend_self();
4629        SimpleEnter (THREAD) ;
4630        jSelf->set_suspend_equivalent() ;
4631     }
4632  }
4633  guarantee (THREAD == _owner, "invariant") ;
4634
4635  if (interruptible && Thread::is_interrupted(THREAD, true)) {
4636    return OM_INTERRUPTED;
4637  }
4638  return OM_OK ;
4639}
4640
4641int ObjectMonitor::raw_notify(TRAPS) {
4642  TEVENT (raw_notify) ;
4643  if (THREAD != _owner) {
4644    return OM_ILLEGAL_MONITOR_STATE;
4645  }
4646  SimpleNotify (THREAD, false) ;
4647  return OM_OK;
4648}
4649
4650int ObjectMonitor::raw_notifyAll(TRAPS) {
4651  TEVENT (raw_notifyAll) ;
4652  if (THREAD != _owner) {
4653    return OM_ILLEGAL_MONITOR_STATE;
4654  }
4655  SimpleNotify (THREAD, true) ;
4656  return OM_OK;
4657}
4658
4659#ifndef PRODUCT
4660void ObjectMonitor::verify() {
4661}
4662
4663void ObjectMonitor::print() {
4664}
4665#endif
4666
4667//------------------------------------------------------------------------------
4668// Non-product code
4669
4670#ifndef PRODUCT
4671
4672void ObjectSynchronizer::trace_locking(Handle locking_obj, bool is_compiled,
4673                                       bool is_method, bool is_locking) {
4674  // Don't know what to do here
4675}
4676
4677// Verify all monitors in the monitor cache, the verification is weak.
4678void ObjectSynchronizer::verify() {
4679  ObjectMonitor* block = gBlockList;
4680  ObjectMonitor* mid;
4681  while (block) {
4682    assert(block->object() == CHAINMARKER, "must be a block header");
4683    for (int i = 1; i < _BLOCKSIZE; i++) {
4684      mid = block + i;
4685      oop object = (oop) mid->object();
4686      if (object != NULL) {
4687        mid->verify();
4688      }
4689    }
4690    block = (ObjectMonitor*) block->FreeNext;
4691  }
4692}
4693
4694// Check if monitor belongs to the monitor cache
4695// The list is grow-only so it's *relatively* safe to traverse
4696// the list of extant blocks without taking a lock.
4697
4698int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
4699  ObjectMonitor* block = gBlockList;
4700
4701  while (block) {
4702    assert(block->object() == CHAINMARKER, "must be a block header");
4703    if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
4704      address mon = (address) monitor;
4705      address blk = (address) block;
4706      size_t diff = mon - blk;
4707      assert((diff % sizeof(ObjectMonitor)) == 0, "check");
4708      return 1;
4709    }
4710    block = (ObjectMonitor*) block->FreeNext;
4711  }
4712  return 0;
4713}
4714
4715#endif
4716