synchronizer.cpp revision 13249:a2753984d2c1
1/*
2 * Copyright (c) 1998, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/vmSymbols.hpp"
27#include "logging/log.hpp"
28#include "memory/metaspaceShared.hpp"
29#include "memory/padded.hpp"
30#include "memory/resourceArea.hpp"
31#include "oops/markOop.hpp"
32#include "oops/oop.inline.hpp"
33#include "runtime/atomic.hpp"
34#include "runtime/biasedLocking.hpp"
35#include "runtime/handles.inline.hpp"
36#include "runtime/interfaceSupport.hpp"
37#include "runtime/mutexLocker.hpp"
38#include "runtime/objectMonitor.hpp"
39#include "runtime/objectMonitor.inline.hpp"
40#include "runtime/osThread.hpp"
41#include "runtime/stubRoutines.hpp"
42#include "runtime/synchronizer.hpp"
43#include "runtime/thread.inline.hpp"
44#include "runtime/vframe.hpp"
45#include "trace/traceMacros.hpp"
46#include "trace/tracing.hpp"
47#include "utilities/align.hpp"
48#include "utilities/dtrace.hpp"
49#include "utilities/events.hpp"
50#include "utilities/preserveException.hpp"
51
52// The "core" versions of monitor enter and exit reside in this file.
53// The interpreter and compilers contain specialized transliterated
54// variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
55// for instance.  If you make changes here, make sure to modify the
56// interpreter, and both C1 and C2 fast-path inline locking code emission.
57//
58// -----------------------------------------------------------------------------
59
60#ifdef DTRACE_ENABLED
61
62// Only bother with this argument setup if dtrace is available
63// TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
64
65#define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
66  char* bytes = NULL;                                                      \
67  int len = 0;                                                             \
68  jlong jtid = SharedRuntime::get_java_tid(thread);                        \
69  Symbol* klassname = ((oop)(obj))->klass()->name();                       \
70  if (klassname != NULL) {                                                 \
71    bytes = (char*)klassname->bytes();                                     \
72    len = klassname->utf8_length();                                        \
73  }
74
75#define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
76  {                                                                        \
77    if (DTraceMonitorProbes) {                                             \
78      DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
79      HOTSPOT_MONITOR_WAIT(jtid,                                           \
80                           (uintptr_t)(monitor), bytes, len, (millis));    \
81    }                                                                      \
82  }
83
84#define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
85#define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
86#define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
87
88#define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
89  {                                                                        \
90    if (DTraceMonitorProbes) {                                             \
91      DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
92      HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
93                                    (uintptr_t)(monitor), bytes, len);     \
94    }                                                                      \
95  }
96
97#else //  ndef DTRACE_ENABLED
98
99#define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
100#define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
101
102#endif // ndef DTRACE_ENABLED
103
104// This exists only as a workaround of dtrace bug 6254741
105int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
106  DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
107  return 0;
108}
109
110#define NINFLATIONLOCKS 256
111static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
112
113// global list of blocks of monitors
114// gBlockList is really PaddedEnd<ObjectMonitor> *, but we don't
115// want to expose the PaddedEnd template more than necessary.
116ObjectMonitor * volatile ObjectSynchronizer::gBlockList = NULL;
117// global monitor free list
118ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL;
119// global monitor in-use list, for moribund threads,
120// monitors they inflated need to be scanned for deflation
121ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL;
122// count of entries in gOmInUseList
123int ObjectSynchronizer::gOmInUseCount = 0;
124
125static volatile intptr_t gListLock = 0;      // protects global monitor lists
126static volatile int gMonitorFreeCount  = 0;  // # on gFreeList
127static volatile int gMonitorPopulation = 0;  // # Extant -- in circulation
128
129static void post_monitor_inflate_event(EventJavaMonitorInflate&,
130                                       const oop,
131                                       const ObjectSynchronizer::InflateCause);
132
133#define CHAINMARKER (cast_to_oop<intptr_t>(-1))
134
135
136// =====================> Quick functions
137
138// The quick_* forms are special fast-path variants used to improve
139// performance.  In the simplest case, a "quick_*" implementation could
140// simply return false, in which case the caller will perform the necessary
141// state transitions and call the slow-path form.
142// The fast-path is designed to handle frequently arising cases in an efficient
143// manner and is just a degenerate "optimistic" variant of the slow-path.
144// returns true  -- to indicate the call was satisfied.
145// returns false -- to indicate the call needs the services of the slow-path.
146// A no-loitering ordinance is in effect for code in the quick_* family
147// operators: safepoints or indefinite blocking (blocking that might span a
148// safepoint) are forbidden. Generally the thread_state() is _in_Java upon
149// entry.
150//
151// Consider: An interesting optimization is to have the JIT recognize the
152// following common idiom:
153//   synchronized (someobj) { .... ; notify(); }
154// That is, we find a notify() or notifyAll() call that immediately precedes
155// the monitorexit operation.  In that case the JIT could fuse the operations
156// into a single notifyAndExit() runtime primitive.
157
158bool ObjectSynchronizer::quick_notify(oopDesc * obj, Thread * self, bool all) {
159  assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
160  assert(self->is_Java_thread(), "invariant");
161  assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
162  NoSafepointVerifier nsv;
163  if (obj == NULL) return false;  // slow-path for invalid obj
164  const markOop mark = obj->mark();
165
166  if (mark->has_locker() && self->is_lock_owned((address)mark->locker())) {
167    // Degenerate notify
168    // stack-locked by caller so by definition the implied waitset is empty.
169    return true;
170  }
171
172  if (mark->has_monitor()) {
173    ObjectMonitor * const mon = mark->monitor();
174    assert(mon->object() == obj, "invariant");
175    if (mon->owner() != self) return false;  // slow-path for IMS exception
176
177    if (mon->first_waiter() != NULL) {
178      // We have one or more waiters. Since this is an inflated monitor
179      // that we own, we can transfer one or more threads from the waitset
180      // to the entrylist here and now, avoiding the slow-path.
181      if (all) {
182        DTRACE_MONITOR_PROBE(notifyAll, mon, obj, self);
183      } else {
184        DTRACE_MONITOR_PROBE(notify, mon, obj, self);
185      }
186      int tally = 0;
187      do {
188        mon->INotify(self);
189        ++tally;
190      } while (mon->first_waiter() != NULL && all);
191      OM_PERFDATA_OP(Notifications, inc(tally));
192    }
193    return true;
194  }
195
196  // biased locking and any other IMS exception states take the slow-path
197  return false;
198}
199
200
201// The LockNode emitted directly at the synchronization site would have
202// been too big if it were to have included support for the cases of inflated
203// recursive enter and exit, so they go here instead.
204// Note that we can't safely call AsyncPrintJavaStack() from within
205// quick_enter() as our thread state remains _in_Java.
206
207bool ObjectSynchronizer::quick_enter(oop obj, Thread * Self,
208                                     BasicLock * lock) {
209  assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
210  assert(Self->is_Java_thread(), "invariant");
211  assert(((JavaThread *) Self)->thread_state() == _thread_in_Java, "invariant");
212  NoSafepointVerifier nsv;
213  if (obj == NULL) return false;       // Need to throw NPE
214  const markOop mark = obj->mark();
215
216  if (mark->has_monitor()) {
217    ObjectMonitor * const m = mark->monitor();
218    assert(m->object() == obj, "invariant");
219    Thread * const owner = (Thread *) m->_owner;
220
221    // Lock contention and Transactional Lock Elision (TLE) diagnostics
222    // and observability
223    // Case: light contention possibly amenable to TLE
224    // Case: TLE inimical operations such as nested/recursive synchronization
225
226    if (owner == Self) {
227      m->_recursions++;
228      return true;
229    }
230
231    // This Java Monitor is inflated so obj's header will never be
232    // displaced to this thread's BasicLock. Make the displaced header
233    // non-NULL so this BasicLock is not seen as recursive nor as
234    // being locked. We do this unconditionally so that this thread's
235    // BasicLock cannot be mis-interpreted by any stack walkers. For
236    // performance reasons, stack walkers generally first check for
237    // Biased Locking in the object's header, the second check is for
238    // stack-locking in the object's header, the third check is for
239    // recursive stack-locking in the displaced header in the BasicLock,
240    // and last are the inflated Java Monitor (ObjectMonitor) checks.
241    lock->set_displaced_header(markOopDesc::unused_mark());
242
243    if (owner == NULL &&
244        Atomic::cmpxchg_ptr(Self, &(m->_owner), NULL) == NULL) {
245      assert(m->_recursions == 0, "invariant");
246      assert(m->_owner == Self, "invariant");
247      return true;
248    }
249  }
250
251  // Note that we could inflate in quick_enter.
252  // This is likely a useful optimization
253  // Critically, in quick_enter() we must not:
254  // -- perform bias revocation, or
255  // -- block indefinitely, or
256  // -- reach a safepoint
257
258  return false;        // revert to slow-path
259}
260
261// -----------------------------------------------------------------------------
262//  Fast Monitor Enter/Exit
263// This the fast monitor enter. The interpreter and compiler use
264// some assembly copies of this code. Make sure update those code
265// if the following function is changed. The implementation is
266// extremely sensitive to race condition. Be careful.
267
268void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock,
269                                    bool attempt_rebias, TRAPS) {
270  if (UseBiasedLocking) {
271    if (!SafepointSynchronize::is_at_safepoint()) {
272      BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
273      if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
274        return;
275      }
276    } else {
277      assert(!attempt_rebias, "can not rebias toward VM thread");
278      BiasedLocking::revoke_at_safepoint(obj);
279    }
280    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
281  }
282
283  slow_enter(obj, lock, THREAD);
284}
285
286void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
287  markOop mark = object->mark();
288  // We cannot check for Biased Locking if we are racing an inflation.
289  assert(mark == markOopDesc::INFLATING() ||
290         !mark->has_bias_pattern(), "should not see bias pattern here");
291
292  markOop dhw = lock->displaced_header();
293  if (dhw == NULL) {
294    // If the displaced header is NULL, then this exit matches up with
295    // a recursive enter. No real work to do here except for diagnostics.
296#ifndef PRODUCT
297    if (mark != markOopDesc::INFLATING()) {
298      // Only do diagnostics if we are not racing an inflation. Simply
299      // exiting a recursive enter of a Java Monitor that is being
300      // inflated is safe; see the has_monitor() comment below.
301      assert(!mark->is_neutral(), "invariant");
302      assert(!mark->has_locker() ||
303             THREAD->is_lock_owned((address)mark->locker()), "invariant");
304      if (mark->has_monitor()) {
305        // The BasicLock's displaced_header is marked as a recursive
306        // enter and we have an inflated Java Monitor (ObjectMonitor).
307        // This is a special case where the Java Monitor was inflated
308        // after this thread entered the stack-lock recursively. When a
309        // Java Monitor is inflated, we cannot safely walk the Java
310        // Monitor owner's stack and update the BasicLocks because a
311        // Java Monitor can be asynchronously inflated by a thread that
312        // does not own the Java Monitor.
313        ObjectMonitor * m = mark->monitor();
314        assert(((oop)(m->object()))->mark() == mark, "invariant");
315        assert(m->is_entered(THREAD), "invariant");
316      }
317    }
318#endif
319    return;
320  }
321
322  if (mark == (markOop) lock) {
323    // If the object is stack-locked by the current thread, try to
324    // swing the displaced header from the BasicLock back to the mark.
325    assert(dhw->is_neutral(), "invariant");
326    if ((markOop) Atomic::cmpxchg_ptr(dhw, object->mark_addr(), mark) == mark) {
327      TEVENT(fast_exit: release stack-lock);
328      return;
329    }
330  }
331
332  // We have to take the slow-path of possible inflation and then exit.
333  ObjectSynchronizer::inflate(THREAD,
334                              object,
335                              inflate_cause_vm_internal)->exit(true, THREAD);
336}
337
338// -----------------------------------------------------------------------------
339// Interpreter/Compiler Slow Case
340// This routine is used to handle interpreter/compiler slow case
341// We don't need to use fast path here, because it must have been
342// failed in the interpreter/compiler code.
343void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
344  markOop mark = obj->mark();
345  assert(!mark->has_bias_pattern(), "should not see bias pattern here");
346
347  if (mark->is_neutral()) {
348    // Anticipate successful CAS -- the ST of the displaced mark must
349    // be visible <= the ST performed by the CAS.
350    lock->set_displaced_header(mark);
351    if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
352      TEVENT(slow_enter: release stacklock);
353      return;
354    }
355    // Fall through to inflate() ...
356  } else if (mark->has_locker() &&
357             THREAD->is_lock_owned((address)mark->locker())) {
358    assert(lock != mark->locker(), "must not re-lock the same lock");
359    assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
360    lock->set_displaced_header(NULL);
361    return;
362  }
363
364  // The object header will never be displaced to this lock,
365  // so it does not matter what the value is, except that it
366  // must be non-zero to avoid looking like a re-entrant lock,
367  // and must not look locked either.
368  lock->set_displaced_header(markOopDesc::unused_mark());
369  ObjectSynchronizer::inflate(THREAD,
370                              obj(),
371                              inflate_cause_monitor_enter)->enter(THREAD);
372}
373
374// This routine is used to handle interpreter/compiler slow case
375// We don't need to use fast path here, because it must have
376// failed in the interpreter/compiler code. Simply use the heavy
377// weight monitor should be ok, unless someone find otherwise.
378void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
379  fast_exit(object, lock, THREAD);
380}
381
382// -----------------------------------------------------------------------------
383// Class Loader  support to workaround deadlocks on the class loader lock objects
384// Also used by GC
385// complete_exit()/reenter() are used to wait on a nested lock
386// i.e. to give up an outer lock completely and then re-enter
387// Used when holding nested locks - lock acquisition order: lock1 then lock2
388//  1) complete_exit lock1 - saving recursion count
389//  2) wait on lock2
390//  3) when notified on lock2, unlock lock2
391//  4) reenter lock1 with original recursion count
392//  5) lock lock2
393// NOTE: must use heavy weight monitor to handle complete_exit/reenter()
394intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
395  TEVENT(complete_exit);
396  if (UseBiasedLocking) {
397    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
398    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
399  }
400
401  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD,
402                                                       obj(),
403                                                       inflate_cause_vm_internal);
404
405  return monitor->complete_exit(THREAD);
406}
407
408// NOTE: must use heavy weight monitor to handle complete_exit/reenter()
409void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
410  TEVENT(reenter);
411  if (UseBiasedLocking) {
412    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
413    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
414  }
415
416  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD,
417                                                       obj(),
418                                                       inflate_cause_vm_internal);
419
420  monitor->reenter(recursion, THREAD);
421}
422// -----------------------------------------------------------------------------
423// JNI locks on java objects
424// NOTE: must use heavy weight monitor to handle jni monitor enter
425void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) {
426  // the current locking is from JNI instead of Java code
427  TEVENT(jni_enter);
428  if (UseBiasedLocking) {
429    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
430    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
431  }
432  THREAD->set_current_pending_monitor_is_from_java(false);
433  ObjectSynchronizer::inflate(THREAD, obj(), inflate_cause_jni_enter)->enter(THREAD);
434  THREAD->set_current_pending_monitor_is_from_java(true);
435}
436
437// NOTE: must use heavy weight monitor to handle jni monitor exit
438void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
439  TEVENT(jni_exit);
440  if (UseBiasedLocking) {
441    Handle h_obj(THREAD, obj);
442    BiasedLocking::revoke_and_rebias(h_obj, false, THREAD);
443    obj = h_obj();
444  }
445  assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
446
447  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD,
448                                                       obj,
449                                                       inflate_cause_jni_exit);
450  // If this thread has locked the object, exit the monitor.  Note:  can't use
451  // monitor->check(CHECK); must exit even if an exception is pending.
452  if (monitor->check(THREAD)) {
453    monitor->exit(true, THREAD);
454  }
455}
456
457// -----------------------------------------------------------------------------
458// Internal VM locks on java objects
459// standard constructor, allows locking failures
460ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
461  _dolock = doLock;
462  _thread = thread;
463  debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
464  _obj = obj;
465
466  if (_dolock) {
467    TEVENT(ObjectLocker);
468
469    ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
470  }
471}
472
473ObjectLocker::~ObjectLocker() {
474  if (_dolock) {
475    ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
476  }
477}
478
479
480// -----------------------------------------------------------------------------
481//  Wait/Notify/NotifyAll
482// NOTE: must use heavy weight monitor to handle wait()
483int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
484  if (UseBiasedLocking) {
485    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
486    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
487  }
488  if (millis < 0) {
489    TEVENT(wait - throw IAX);
490    THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
491  }
492  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD,
493                                                       obj(),
494                                                       inflate_cause_wait);
495
496  DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
497  monitor->wait(millis, true, THREAD);
498
499  // This dummy call is in place to get around dtrace bug 6254741.  Once
500  // that's fixed we can uncomment the following line, remove the call
501  // and change this function back into a "void" func.
502  // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
503  return dtrace_waited_probe(monitor, obj, THREAD);
504}
505
506void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) {
507  if (UseBiasedLocking) {
508    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
509    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
510  }
511  if (millis < 0) {
512    TEVENT(wait - throw IAX);
513    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
514  }
515  ObjectSynchronizer::inflate(THREAD,
516                              obj(),
517                              inflate_cause_wait)->wait(millis, false, THREAD);
518}
519
520void ObjectSynchronizer::notify(Handle obj, TRAPS) {
521  if (UseBiasedLocking) {
522    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
523    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
524  }
525
526  markOop mark = obj->mark();
527  if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
528    return;
529  }
530  ObjectSynchronizer::inflate(THREAD,
531                              obj(),
532                              inflate_cause_notify)->notify(THREAD);
533}
534
535// NOTE: see comment of notify()
536void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
537  if (UseBiasedLocking) {
538    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
539    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
540  }
541
542  markOop mark = obj->mark();
543  if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
544    return;
545  }
546  ObjectSynchronizer::inflate(THREAD,
547                              obj(),
548                              inflate_cause_notify)->notifyAll(THREAD);
549}
550
551// -----------------------------------------------------------------------------
552// Hash Code handling
553//
554// Performance concern:
555// OrderAccess::storestore() calls release() which at one time stored 0
556// into the global volatile OrderAccess::dummy variable. This store was
557// unnecessary for correctness. Many threads storing into a common location
558// causes considerable cache migration or "sloshing" on large SMP systems.
559// As such, I avoided using OrderAccess::storestore(). In some cases
560// OrderAccess::fence() -- which incurs local latency on the executing
561// processor -- is a better choice as it scales on SMP systems.
562//
563// See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
564// a discussion of coherency costs. Note that all our current reference
565// platforms provide strong ST-ST order, so the issue is moot on IA32,
566// x64, and SPARC.
567//
568// As a general policy we use "volatile" to control compiler-based reordering
569// and explicit fences (barriers) to control for architectural reordering
570// performed by the CPU(s) or platform.
571
572struct SharedGlobals {
573  char         _pad_prefix[DEFAULT_CACHE_LINE_SIZE];
574  // These are highly shared mostly-read variables.
575  // To avoid false-sharing they need to be the sole occupants of a cache line.
576  volatile int stwRandom;
577  volatile int stwCycle;
578  DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int) * 2);
579  // Hot RW variable -- Sequester to avoid false-sharing
580  volatile int hcSequence;
581  DEFINE_PAD_MINUS_SIZE(2, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int));
582};
583
584static SharedGlobals GVars;
585static int MonitorScavengeThreshold = 1000000;
586static volatile int ForceMonitorScavenge = 0; // Scavenge required and pending
587
588static markOop ReadStableMark(oop obj) {
589  markOop mark = obj->mark();
590  if (!mark->is_being_inflated()) {
591    return mark;       // normal fast-path return
592  }
593
594  int its = 0;
595  for (;;) {
596    markOop mark = obj->mark();
597    if (!mark->is_being_inflated()) {
598      return mark;    // normal fast-path return
599    }
600
601    // The object is being inflated by some other thread.
602    // The caller of ReadStableMark() must wait for inflation to complete.
603    // Avoid live-lock
604    // TODO: consider calling SafepointSynchronize::do_call_back() while
605    // spinning to see if there's a safepoint pending.  If so, immediately
606    // yielding or blocking would be appropriate.  Avoid spinning while
607    // there is a safepoint pending.
608    // TODO: add inflation contention performance counters.
609    // TODO: restrict the aggregate number of spinners.
610
611    ++its;
612    if (its > 10000 || !os::is_MP()) {
613      if (its & 1) {
614        os::naked_yield();
615        TEVENT(Inflate: INFLATING - yield);
616      } else {
617        // Note that the following code attenuates the livelock problem but is not
618        // a complete remedy.  A more complete solution would require that the inflating
619        // thread hold the associated inflation lock.  The following code simply restricts
620        // the number of spinners to at most one.  We'll have N-2 threads blocked
621        // on the inflationlock, 1 thread holding the inflation lock and using
622        // a yield/park strategy, and 1 thread in the midst of inflation.
623        // A more refined approach would be to change the encoding of INFLATING
624        // to allow encapsulation of a native thread pointer.  Threads waiting for
625        // inflation to complete would use CAS to push themselves onto a singly linked
626        // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
627        // and calling park().  When inflation was complete the thread that accomplished inflation
628        // would detach the list and set the markword to inflated with a single CAS and
629        // then for each thread on the list, set the flag and unpark() the thread.
630        // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
631        // wakes at most one thread whereas we need to wake the entire list.
632        int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1);
633        int YieldThenBlock = 0;
634        assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant");
635        assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant");
636        Thread::muxAcquire(gInflationLocks + ix, "gInflationLock");
637        while (obj->mark() == markOopDesc::INFLATING()) {
638          // Beware: NakedYield() is advisory and has almost no effect on some platforms
639          // so we periodically call Self->_ParkEvent->park(1).
640          // We use a mixed spin/yield/block mechanism.
641          if ((YieldThenBlock++) >= 16) {
642            Thread::current()->_ParkEvent->park(1);
643          } else {
644            os::naked_yield();
645          }
646        }
647        Thread::muxRelease(gInflationLocks + ix);
648        TEVENT(Inflate: INFLATING - yield/park);
649      }
650    } else {
651      SpinPause();       // SMP-polite spinning
652    }
653  }
654}
655
656// hashCode() generation :
657//
658// Possibilities:
659// * MD5Digest of {obj,stwRandom}
660// * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
661// * A DES- or AES-style SBox[] mechanism
662// * One of the Phi-based schemes, such as:
663//   2654435761 = 2^32 * Phi (golden ratio)
664//   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
665// * A variation of Marsaglia's shift-xor RNG scheme.
666// * (obj ^ stwRandom) is appealing, but can result
667//   in undesirable regularity in the hashCode values of adjacent objects
668//   (objects allocated back-to-back, in particular).  This could potentially
669//   result in hashtable collisions and reduced hashtable efficiency.
670//   There are simple ways to "diffuse" the middle address bits over the
671//   generated hashCode values:
672
673static inline intptr_t get_next_hash(Thread * Self, oop obj) {
674  intptr_t value = 0;
675  if (hashCode == 0) {
676    // This form uses global Park-Miller RNG.
677    // On MP system we'll have lots of RW access to a global, so the
678    // mechanism induces lots of coherency traffic.
679    value = os::random();
680  } else if (hashCode == 1) {
681    // This variation has the property of being stable (idempotent)
682    // between STW operations.  This can be useful in some of the 1-0
683    // synchronization schemes.
684    intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3;
685    value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom;
686  } else if (hashCode == 2) {
687    value = 1;            // for sensitivity testing
688  } else if (hashCode == 3) {
689    value = ++GVars.hcSequence;
690  } else if (hashCode == 4) {
691    value = cast_from_oop<intptr_t>(obj);
692  } else {
693    // Marsaglia's xor-shift scheme with thread-specific state
694    // This is probably the best overall implementation -- we'll
695    // likely make this the default in future releases.
696    unsigned t = Self->_hashStateX;
697    t ^= (t << 11);
698    Self->_hashStateX = Self->_hashStateY;
699    Self->_hashStateY = Self->_hashStateZ;
700    Self->_hashStateZ = Self->_hashStateW;
701    unsigned v = Self->_hashStateW;
702    v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
703    Self->_hashStateW = v;
704    value = v;
705  }
706
707  value &= markOopDesc::hash_mask;
708  if (value == 0) value = 0xBAD;
709  assert(value != markOopDesc::no_hash, "invariant");
710  TEVENT(hashCode: GENERATE);
711  return value;
712}
713
714intptr_t ObjectSynchronizer::FastHashCode(Thread * Self, oop obj) {
715  if (UseBiasedLocking) {
716    // NOTE: many places throughout the JVM do not expect a safepoint
717    // to be taken here, in particular most operations on perm gen
718    // objects. However, we only ever bias Java instances and all of
719    // the call sites of identity_hash that might revoke biases have
720    // been checked to make sure they can handle a safepoint. The
721    // added check of the bias pattern is to avoid useless calls to
722    // thread-local storage.
723    if (obj->mark()->has_bias_pattern()) {
724      // Handle for oop obj in case of STW safepoint
725      Handle hobj(Self, obj);
726      // Relaxing assertion for bug 6320749.
727      assert(Universe::verify_in_progress() ||
728             !SafepointSynchronize::is_at_safepoint(),
729             "biases should not be seen by VM thread here");
730      BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
731      obj = hobj();
732      assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
733    }
734  }
735
736  // hashCode() is a heap mutator ...
737  // Relaxing assertion for bug 6320749.
738  assert(Universe::verify_in_progress() || DumpSharedSpaces ||
739         !SafepointSynchronize::is_at_safepoint(), "invariant");
740  assert(Universe::verify_in_progress() || DumpSharedSpaces ||
741         Self->is_Java_thread() , "invariant");
742  assert(Universe::verify_in_progress() || DumpSharedSpaces ||
743         ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
744
745  ObjectMonitor* monitor = NULL;
746  markOop temp, test;
747  intptr_t hash;
748  markOop mark = ReadStableMark(obj);
749
750  // object should remain ineligible for biased locking
751  assert(!mark->has_bias_pattern(), "invariant");
752
753  if (mark->is_neutral()) {
754    hash = mark->hash();              // this is a normal header
755    if (hash) {                       // if it has hash, just return it
756      return hash;
757    }
758    hash = get_next_hash(Self, obj);  // allocate a new hash code
759    temp = mark->copy_set_hash(hash); // merge the hash code into header
760    // use (machine word version) atomic operation to install the hash
761    test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
762    if (test == mark) {
763      return hash;
764    }
765    // If atomic operation failed, we must inflate the header
766    // into heavy weight monitor. We could add more code here
767    // for fast path, but it does not worth the complexity.
768  } else if (mark->has_monitor()) {
769    monitor = mark->monitor();
770    temp = monitor->header();
771    assert(temp->is_neutral(), "invariant");
772    hash = temp->hash();
773    if (hash) {
774      return hash;
775    }
776    // Skip to the following code to reduce code size
777  } else if (Self->is_lock_owned((address)mark->locker())) {
778    temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
779    assert(temp->is_neutral(), "invariant");
780    hash = temp->hash();              // by current thread, check if the displaced
781    if (hash) {                       // header contains hash code
782      return hash;
783    }
784    // WARNING:
785    //   The displaced header is strictly immutable.
786    // It can NOT be changed in ANY cases. So we have
787    // to inflate the header into heavyweight monitor
788    // even the current thread owns the lock. The reason
789    // is the BasicLock (stack slot) will be asynchronously
790    // read by other threads during the inflate() function.
791    // Any change to stack may not propagate to other threads
792    // correctly.
793  }
794
795  // Inflate the monitor to set hash code
796  monitor = ObjectSynchronizer::inflate(Self, obj, inflate_cause_hash_code);
797  // Load displaced header and check it has hash code
798  mark = monitor->header();
799  assert(mark->is_neutral(), "invariant");
800  hash = mark->hash();
801  if (hash == 0) {
802    hash = get_next_hash(Self, obj);
803    temp = mark->copy_set_hash(hash); // merge hash code into header
804    assert(temp->is_neutral(), "invariant");
805    test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
806    if (test != mark) {
807      // The only update to the header in the monitor (outside GC)
808      // is install the hash code. If someone add new usage of
809      // displaced header, please update this code
810      hash = test->hash();
811      assert(test->is_neutral(), "invariant");
812      assert(hash != 0, "Trivial unexpected object/monitor header usage.");
813    }
814  }
815  // We finally get the hash
816  return hash;
817}
818
819// Deprecated -- use FastHashCode() instead.
820
821intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
822  return FastHashCode(Thread::current(), obj());
823}
824
825
826bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
827                                                   Handle h_obj) {
828  if (UseBiasedLocking) {
829    BiasedLocking::revoke_and_rebias(h_obj, false, thread);
830    assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
831  }
832
833  assert(thread == JavaThread::current(), "Can only be called on current thread");
834  oop obj = h_obj();
835
836  markOop mark = ReadStableMark(obj);
837
838  // Uncontended case, header points to stack
839  if (mark->has_locker()) {
840    return thread->is_lock_owned((address)mark->locker());
841  }
842  // Contended case, header points to ObjectMonitor (tagged pointer)
843  if (mark->has_monitor()) {
844    ObjectMonitor* monitor = mark->monitor();
845    return monitor->is_entered(thread) != 0;
846  }
847  // Unlocked case, header in place
848  assert(mark->is_neutral(), "sanity check");
849  return false;
850}
851
852// Be aware of this method could revoke bias of the lock object.
853// This method queries the ownership of the lock handle specified by 'h_obj'.
854// If the current thread owns the lock, it returns owner_self. If no
855// thread owns the lock, it returns owner_none. Otherwise, it will return
856// owner_other.
857ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
858(JavaThread *self, Handle h_obj) {
859  // The caller must beware this method can revoke bias, and
860  // revocation can result in a safepoint.
861  assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
862  assert(self->thread_state() != _thread_blocked, "invariant");
863
864  // Possible mark states: neutral, biased, stack-locked, inflated
865
866  if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
867    // CASE: biased
868    BiasedLocking::revoke_and_rebias(h_obj, false, self);
869    assert(!h_obj->mark()->has_bias_pattern(),
870           "biases should be revoked by now");
871  }
872
873  assert(self == JavaThread::current(), "Can only be called on current thread");
874  oop obj = h_obj();
875  markOop mark = ReadStableMark(obj);
876
877  // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
878  if (mark->has_locker()) {
879    return self->is_lock_owned((address)mark->locker()) ?
880      owner_self : owner_other;
881  }
882
883  // CASE: inflated. Mark (tagged pointer) points to an objectMonitor.
884  // The Object:ObjectMonitor relationship is stable as long as we're
885  // not at a safepoint.
886  if (mark->has_monitor()) {
887    void * owner = mark->monitor()->_owner;
888    if (owner == NULL) return owner_none;
889    return (owner == self ||
890            self->is_lock_owned((address)owner)) ? owner_self : owner_other;
891  }
892
893  // CASE: neutral
894  assert(mark->is_neutral(), "sanity check");
895  return owner_none;           // it's unlocked
896}
897
898// FIXME: jvmti should call this
899JavaThread* ObjectSynchronizer::get_lock_owner(Handle h_obj, bool doLock) {
900  if (UseBiasedLocking) {
901    if (SafepointSynchronize::is_at_safepoint()) {
902      BiasedLocking::revoke_at_safepoint(h_obj);
903    } else {
904      BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
905    }
906    assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
907  }
908
909  oop obj = h_obj();
910  address owner = NULL;
911
912  markOop mark = ReadStableMark(obj);
913
914  // Uncontended case, header points to stack
915  if (mark->has_locker()) {
916    owner = (address) mark->locker();
917  }
918
919  // Contended case, header points to ObjectMonitor (tagged pointer)
920  if (mark->has_monitor()) {
921    ObjectMonitor* monitor = mark->monitor();
922    assert(monitor != NULL, "monitor should be non-null");
923    owner = (address) monitor->owner();
924  }
925
926  if (owner != NULL) {
927    // owning_thread_from_monitor_owner() may also return NULL here
928    return Threads::owning_thread_from_monitor_owner(owner, doLock);
929  }
930
931  // Unlocked case, header in place
932  // Cannot have assertion since this object may have been
933  // locked by another thread when reaching here.
934  // assert(mark->is_neutral(), "sanity check");
935
936  return NULL;
937}
938
939// Visitors ...
940
941void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
942  PaddedEnd<ObjectMonitor> * block =
943    (PaddedEnd<ObjectMonitor> *)OrderAccess::load_ptr_acquire(&gBlockList);
944  while (block != NULL) {
945    assert(block->object() == CHAINMARKER, "must be a block header");
946    for (int i = _BLOCKSIZE - 1; i > 0; i--) {
947      ObjectMonitor* mid = (ObjectMonitor *)(block + i);
948      oop object = (oop)mid->object();
949      if (object != NULL) {
950        closure->do_monitor(mid);
951      }
952    }
953    block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
954  }
955}
956
957// Get the next block in the block list.
958static inline ObjectMonitor* next(ObjectMonitor* block) {
959  assert(block->object() == CHAINMARKER, "must be a block header");
960  block = block->FreeNext;
961  assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
962  return block;
963}
964
965static bool monitors_used_above_threshold() {
966  if (gMonitorPopulation == 0) {
967    return false;
968  }
969  int monitors_used = gMonitorPopulation - gMonitorFreeCount;
970  int monitor_usage = (monitors_used * 100LL) / gMonitorPopulation;
971  return monitor_usage > MonitorUsedDeflationThreshold;
972}
973
974bool ObjectSynchronizer::is_cleanup_needed() {
975  if (MonitorUsedDeflationThreshold > 0) {
976    return monitors_used_above_threshold();
977  }
978  return false;
979}
980
981void ObjectSynchronizer::oops_do(OopClosure* f) {
982  if (MonitorInUseLists) {
983    // When using thread local monitor lists, we only scan the
984    // global used list here (for moribund threads), and
985    // the thread-local monitors in Thread::oops_do().
986    global_used_oops_do(f);
987  } else {
988    global_oops_do(f);
989  }
990}
991
992void ObjectSynchronizer::global_oops_do(OopClosure* f) {
993  assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
994  PaddedEnd<ObjectMonitor> * block =
995    (PaddedEnd<ObjectMonitor> *)OrderAccess::load_ptr_acquire(&gBlockList);
996  for (; block != NULL; block = (PaddedEnd<ObjectMonitor> *)next(block)) {
997    assert(block->object() == CHAINMARKER, "must be a block header");
998    for (int i = 1; i < _BLOCKSIZE; i++) {
999      ObjectMonitor* mid = (ObjectMonitor *)&block[i];
1000      if (mid->object() != NULL) {
1001        f->do_oop((oop*)mid->object_addr());
1002      }
1003    }
1004  }
1005}
1006
1007void ObjectSynchronizer::global_used_oops_do(OopClosure* f) {
1008  assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1009  list_oops_do(gOmInUseList, f);
1010}
1011
1012void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) {
1013  assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1014  list_oops_do(thread->omInUseList, f);
1015}
1016
1017void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, OopClosure* f) {
1018  assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1019  ObjectMonitor* mid;
1020  for (mid = list; mid != NULL; mid = mid->FreeNext) {
1021    if (mid->object() != NULL) {
1022      f->do_oop((oop*)mid->object_addr());
1023    }
1024  }
1025}
1026
1027
1028// -----------------------------------------------------------------------------
1029// ObjectMonitor Lifecycle
1030// -----------------------
1031// Inflation unlinks monitors from the global gFreeList and
1032// associates them with objects.  Deflation -- which occurs at
1033// STW-time -- disassociates idle monitors from objects.  Such
1034// scavenged monitors are returned to the gFreeList.
1035//
1036// The global list is protected by gListLock.  All the critical sections
1037// are short and operate in constant-time.
1038//
1039// ObjectMonitors reside in type-stable memory (TSM) and are immortal.
1040//
1041// Lifecycle:
1042// --   unassigned and on the global free list
1043// --   unassigned and on a thread's private omFreeList
1044// --   assigned to an object.  The object is inflated and the mark refers
1045//      to the objectmonitor.
1046
1047
1048// Constraining monitor pool growth via MonitorBound ...
1049//
1050// The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
1051// the rate of scavenging is driven primarily by GC.  As such,  we can find
1052// an inordinate number of monitors in circulation.
1053// To avoid that scenario we can artificially induce a STW safepoint
1054// if the pool appears to be growing past some reasonable bound.
1055// Generally we favor time in space-time tradeoffs, but as there's no
1056// natural back-pressure on the # of extant monitors we need to impose some
1057// type of limit.  Beware that if MonitorBound is set to too low a value
1058// we could just loop. In addition, if MonitorBound is set to a low value
1059// we'll incur more safepoints, which are harmful to performance.
1060// See also: GuaranteedSafepointInterval
1061//
1062// The current implementation uses asynchronous VM operations.
1063
1064static void InduceScavenge(Thread * Self, const char * Whence) {
1065  // Induce STW safepoint to trim monitors
1066  // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
1067  // More precisely, trigger an asynchronous STW safepoint as the number
1068  // of active monitors passes the specified threshold.
1069  // TODO: assert thread state is reasonable
1070
1071  if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
1072    if (ObjectMonitor::Knob_Verbose) {
1073      tty->print_cr("INFO: Monitor scavenge - Induced STW @%s (%d)",
1074                    Whence, ForceMonitorScavenge) ;
1075      tty->flush();
1076    }
1077    // Induce a 'null' safepoint to scavenge monitors
1078    // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
1079    // to the VMthread and have a lifespan longer than that of this activation record.
1080    // The VMThread will delete the op when completed.
1081    VMThread::execute(new VM_ScavengeMonitors());
1082
1083    if (ObjectMonitor::Knob_Verbose) {
1084      tty->print_cr("INFO: Monitor scavenge - STW posted @%s (%d)",
1085                    Whence, ForceMonitorScavenge) ;
1086      tty->flush();
1087    }
1088  }
1089}
1090
1091void ObjectSynchronizer::verifyInUse(Thread *Self) {
1092  ObjectMonitor* mid;
1093  int in_use_tally = 0;
1094  for (mid = Self->omInUseList; mid != NULL; mid = mid->FreeNext) {
1095    in_use_tally++;
1096  }
1097  assert(in_use_tally == Self->omInUseCount, "in-use count off");
1098
1099  int free_tally = 0;
1100  for (mid = Self->omFreeList; mid != NULL; mid = mid->FreeNext) {
1101    free_tally++;
1102  }
1103  assert(free_tally == Self->omFreeCount, "free count off");
1104}
1105
1106ObjectMonitor* ObjectSynchronizer::omAlloc(Thread * Self) {
1107  // A large MAXPRIVATE value reduces both list lock contention
1108  // and list coherency traffic, but also tends to increase the
1109  // number of objectMonitors in circulation as well as the STW
1110  // scavenge costs.  As usual, we lean toward time in space-time
1111  // tradeoffs.
1112  const int MAXPRIVATE = 1024;
1113  for (;;) {
1114    ObjectMonitor * m;
1115
1116    // 1: try to allocate from the thread's local omFreeList.
1117    // Threads will attempt to allocate first from their local list, then
1118    // from the global list, and only after those attempts fail will the thread
1119    // attempt to instantiate new monitors.   Thread-local free lists take
1120    // heat off the gListLock and improve allocation latency, as well as reducing
1121    // coherency traffic on the shared global list.
1122    m = Self->omFreeList;
1123    if (m != NULL) {
1124      Self->omFreeList = m->FreeNext;
1125      Self->omFreeCount--;
1126      // CONSIDER: set m->FreeNext = BAD -- diagnostic hygiene
1127      guarantee(m->object() == NULL, "invariant");
1128      if (MonitorInUseLists) {
1129        m->FreeNext = Self->omInUseList;
1130        Self->omInUseList = m;
1131        Self->omInUseCount++;
1132        if (ObjectMonitor::Knob_VerifyInUse) {
1133          verifyInUse(Self);
1134        }
1135      } else {
1136        m->FreeNext = NULL;
1137      }
1138      return m;
1139    }
1140
1141    // 2: try to allocate from the global gFreeList
1142    // CONSIDER: use muxTry() instead of muxAcquire().
1143    // If the muxTry() fails then drop immediately into case 3.
1144    // If we're using thread-local free lists then try
1145    // to reprovision the caller's free list.
1146    if (gFreeList != NULL) {
1147      // Reprovision the thread's omFreeList.
1148      // Use bulk transfers to reduce the allocation rate and heat
1149      // on various locks.
1150      Thread::muxAcquire(&gListLock, "omAlloc");
1151      for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL;) {
1152        gMonitorFreeCount--;
1153        ObjectMonitor * take = gFreeList;
1154        gFreeList = take->FreeNext;
1155        guarantee(take->object() == NULL, "invariant");
1156        guarantee(!take->is_busy(), "invariant");
1157        take->Recycle();
1158        omRelease(Self, take, false);
1159      }
1160      Thread::muxRelease(&gListLock);
1161      Self->omFreeProvision += 1 + (Self->omFreeProvision/2);
1162      if (Self->omFreeProvision > MAXPRIVATE) Self->omFreeProvision = MAXPRIVATE;
1163      TEVENT(omFirst - reprovision);
1164
1165      const int mx = MonitorBound;
1166      if (mx > 0 && (gMonitorPopulation-gMonitorFreeCount) > mx) {
1167        // We can't safely induce a STW safepoint from omAlloc() as our thread
1168        // state may not be appropriate for such activities and callers may hold
1169        // naked oops, so instead we defer the action.
1170        InduceScavenge(Self, "omAlloc");
1171      }
1172      continue;
1173    }
1174
1175    // 3: allocate a block of new ObjectMonitors
1176    // Both the local and global free lists are empty -- resort to malloc().
1177    // In the current implementation objectMonitors are TSM - immortal.
1178    // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1179    // each ObjectMonitor to start at the beginning of a cache line,
1180    // so we use align_up().
1181    // A better solution would be to use C++ placement-new.
1182    // BEWARE: As it stands currently, we don't run the ctors!
1183    assert(_BLOCKSIZE > 1, "invariant");
1184    size_t neededsize = sizeof(PaddedEnd<ObjectMonitor>) * _BLOCKSIZE;
1185    PaddedEnd<ObjectMonitor> * temp;
1186    size_t aligned_size = neededsize + (DEFAULT_CACHE_LINE_SIZE - 1);
1187    void* real_malloc_addr = (void *)NEW_C_HEAP_ARRAY(char, aligned_size,
1188                                                      mtInternal);
1189    temp = (PaddedEnd<ObjectMonitor> *)
1190             align_up(real_malloc_addr, DEFAULT_CACHE_LINE_SIZE);
1191
1192    // NOTE: (almost) no way to recover if allocation failed.
1193    // We might be able to induce a STW safepoint and scavenge enough
1194    // objectMonitors to permit progress.
1195    if (temp == NULL) {
1196      vm_exit_out_of_memory(neededsize, OOM_MALLOC_ERROR,
1197                            "Allocate ObjectMonitors");
1198    }
1199    (void)memset((void *) temp, 0, neededsize);
1200
1201    // Format the block.
1202    // initialize the linked list, each monitor points to its next
1203    // forming the single linked free list, the very first monitor
1204    // will points to next block, which forms the block list.
1205    // The trick of using the 1st element in the block as gBlockList
1206    // linkage should be reconsidered.  A better implementation would
1207    // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1208
1209    for (int i = 1; i < _BLOCKSIZE; i++) {
1210      temp[i].FreeNext = (ObjectMonitor *)&temp[i+1];
1211    }
1212
1213    // terminate the last monitor as the end of list
1214    temp[_BLOCKSIZE - 1].FreeNext = NULL;
1215
1216    // Element [0] is reserved for global list linkage
1217    temp[0].set_object(CHAINMARKER);
1218
1219    // Consider carving out this thread's current request from the
1220    // block in hand.  This avoids some lock traffic and redundant
1221    // list activity.
1222
1223    // Acquire the gListLock to manipulate gBlockList and gFreeList.
1224    // An Oyama-Taura-Yonezawa scheme might be more efficient.
1225    Thread::muxAcquire(&gListLock, "omAlloc [2]");
1226    gMonitorPopulation += _BLOCKSIZE-1;
1227    gMonitorFreeCount += _BLOCKSIZE-1;
1228
1229    // Add the new block to the list of extant blocks (gBlockList).
1230    // The very first objectMonitor in a block is reserved and dedicated.
1231    // It serves as blocklist "next" linkage.
1232    temp[0].FreeNext = gBlockList;
1233    // There are lock-free uses of gBlockList so make sure that
1234    // the previous stores happen before we update gBlockList.
1235    OrderAccess::release_store_ptr(&gBlockList, temp);
1236
1237    // Add the new string of objectMonitors to the global free list
1238    temp[_BLOCKSIZE - 1].FreeNext = gFreeList;
1239    gFreeList = temp + 1;
1240    Thread::muxRelease(&gListLock);
1241    TEVENT(Allocate block of monitors);
1242  }
1243}
1244
1245// Place "m" on the caller's private per-thread omFreeList.
1246// In practice there's no need to clamp or limit the number of
1247// monitors on a thread's omFreeList as the only time we'll call
1248// omRelease is to return a monitor to the free list after a CAS
1249// attempt failed.  This doesn't allow unbounded #s of monitors to
1250// accumulate on a thread's free list.
1251//
1252// Key constraint: all ObjectMonitors on a thread's free list and the global
1253// free list must have their object field set to null. This prevents the
1254// scavenger -- deflate_idle_monitors -- from reclaiming them.
1255
1256void ObjectSynchronizer::omRelease(Thread * Self, ObjectMonitor * m,
1257                                   bool fromPerThreadAlloc) {
1258  guarantee(m->object() == NULL, "invariant");
1259  guarantee(((m->is_busy()|m->_recursions) == 0), "freeing in-use monitor");
1260  // Remove from omInUseList
1261  if (MonitorInUseLists && fromPerThreadAlloc) {
1262    ObjectMonitor* cur_mid_in_use = NULL;
1263    bool extracted = false;
1264    for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; cur_mid_in_use = mid, mid = mid->FreeNext) {
1265      if (m == mid) {
1266        // extract from per-thread in-use list
1267        if (mid == Self->omInUseList) {
1268          Self->omInUseList = mid->FreeNext;
1269        } else if (cur_mid_in_use != NULL) {
1270          cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1271        }
1272        extracted = true;
1273        Self->omInUseCount--;
1274        if (ObjectMonitor::Knob_VerifyInUse) {
1275          verifyInUse(Self);
1276        }
1277        break;
1278      }
1279    }
1280    assert(extracted, "Should have extracted from in-use list");
1281  }
1282
1283  // FreeNext is used for both omInUseList and omFreeList, so clear old before setting new
1284  m->FreeNext = Self->omFreeList;
1285  Self->omFreeList = m;
1286  Self->omFreeCount++;
1287}
1288
1289// Return the monitors of a moribund thread's local free list to
1290// the global free list.  Typically a thread calls omFlush() when
1291// it's dying.  We could also consider having the VM thread steal
1292// monitors from threads that have not run java code over a few
1293// consecutive STW safepoints.  Relatedly, we might decay
1294// omFreeProvision at STW safepoints.
1295//
1296// Also return the monitors of a moribund thread's omInUseList to
1297// a global gOmInUseList under the global list lock so these
1298// will continue to be scanned.
1299//
1300// We currently call omFlush() from Threads::remove() _before the thread
1301// has been excised from the thread list and is no longer a mutator.
1302// This means that omFlush() can not run concurrently with a safepoint and
1303// interleave with the scavenge operator. In particular, this ensures that
1304// the thread's monitors are scanned by a GC safepoint, either via
1305// Thread::oops_do() (if safepoint happens before omFlush()) or via
1306// ObjectSynchronizer::oops_do() (if it happens after omFlush() and the thread's
1307// monitors have been transferred to the global in-use list).
1308
1309void ObjectSynchronizer::omFlush(Thread * Self) {
1310  ObjectMonitor * list = Self->omFreeList;  // Null-terminated SLL
1311  Self->omFreeList = NULL;
1312  ObjectMonitor * tail = NULL;
1313  int tally = 0;
1314  if (list != NULL) {
1315    ObjectMonitor * s;
1316    // The thread is going away, the per-thread free monitors
1317    // are freed via set_owner(NULL)
1318    // Link them to tail, which will be linked into the global free list
1319    // gFreeList below, under the gListLock
1320    for (s = list; s != NULL; s = s->FreeNext) {
1321      tally++;
1322      tail = s;
1323      guarantee(s->object() == NULL, "invariant");
1324      guarantee(!s->is_busy(), "invariant");
1325      s->set_owner(NULL);   // redundant but good hygiene
1326      TEVENT(omFlush - Move one);
1327    }
1328    guarantee(tail != NULL && list != NULL, "invariant");
1329  }
1330
1331  ObjectMonitor * inUseList = Self->omInUseList;
1332  ObjectMonitor * inUseTail = NULL;
1333  int inUseTally = 0;
1334  if (inUseList != NULL) {
1335    Self->omInUseList = NULL;
1336    ObjectMonitor *cur_om;
1337    // The thread is going away, however the omInUseList inflated
1338    // monitors may still be in-use by other threads.
1339    // Link them to inUseTail, which will be linked into the global in-use list
1340    // gOmInUseList below, under the gListLock
1341    for (cur_om = inUseList; cur_om != NULL; cur_om = cur_om->FreeNext) {
1342      inUseTail = cur_om;
1343      inUseTally++;
1344    }
1345    assert(Self->omInUseCount == inUseTally, "in-use count off");
1346    Self->omInUseCount = 0;
1347    guarantee(inUseTail != NULL && inUseList != NULL, "invariant");
1348  }
1349
1350  Thread::muxAcquire(&gListLock, "omFlush");
1351  if (tail != NULL) {
1352    tail->FreeNext = gFreeList;
1353    gFreeList = list;
1354    gMonitorFreeCount += tally;
1355    assert(Self->omFreeCount == tally, "free-count off");
1356    Self->omFreeCount = 0;
1357  }
1358
1359  if (inUseTail != NULL) {
1360    inUseTail->FreeNext = gOmInUseList;
1361    gOmInUseList = inUseList;
1362    gOmInUseCount += inUseTally;
1363  }
1364
1365  Thread::muxRelease(&gListLock);
1366  TEVENT(omFlush);
1367}
1368
1369// Fast path code shared by multiple functions
1370ObjectMonitor* ObjectSynchronizer::inflate_helper(oop obj) {
1371  markOop mark = obj->mark();
1372  if (mark->has_monitor()) {
1373    assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid");
1374    assert(mark->monitor()->header()->is_neutral(), "monitor must record a good object header");
1375    return mark->monitor();
1376  }
1377  return ObjectSynchronizer::inflate(Thread::current(),
1378                                     obj,
1379                                     inflate_cause_vm_internal);
1380}
1381
1382ObjectMonitor* ObjectSynchronizer::inflate(Thread * Self,
1383                                                     oop object,
1384                                                     const InflateCause cause) {
1385
1386  // Inflate mutates the heap ...
1387  // Relaxing assertion for bug 6320749.
1388  assert(Universe::verify_in_progress() ||
1389         !SafepointSynchronize::is_at_safepoint(), "invariant");
1390
1391  EventJavaMonitorInflate event;
1392
1393  for (;;) {
1394    const markOop mark = object->mark();
1395    assert(!mark->has_bias_pattern(), "invariant");
1396
1397    // The mark can be in one of the following states:
1398    // *  Inflated     - just return
1399    // *  Stack-locked - coerce it to inflated
1400    // *  INFLATING    - busy wait for conversion to complete
1401    // *  Neutral      - aggressively inflate the object.
1402    // *  BIASED       - Illegal.  We should never see this
1403
1404    // CASE: inflated
1405    if (mark->has_monitor()) {
1406      ObjectMonitor * inf = mark->monitor();
1407      assert(inf->header()->is_neutral(), "invariant");
1408      assert(inf->object() == object, "invariant");
1409      assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1410      event.cancel(); // let's not post an inflation event, unless we did the deed ourselves
1411      return inf;
1412    }
1413
1414    // CASE: inflation in progress - inflating over a stack-lock.
1415    // Some other thread is converting from stack-locked to inflated.
1416    // Only that thread can complete inflation -- other threads must wait.
1417    // The INFLATING value is transient.
1418    // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1419    // We could always eliminate polling by parking the thread on some auxiliary list.
1420    if (mark == markOopDesc::INFLATING()) {
1421      TEVENT(Inflate: spin while INFLATING);
1422      ReadStableMark(object);
1423      continue;
1424    }
1425
1426    // CASE: stack-locked
1427    // Could be stack-locked either by this thread or by some other thread.
1428    //
1429    // Note that we allocate the objectmonitor speculatively, _before_ attempting
1430    // to install INFLATING into the mark word.  We originally installed INFLATING,
1431    // allocated the objectmonitor, and then finally STed the address of the
1432    // objectmonitor into the mark.  This was correct, but artificially lengthened
1433    // the interval in which INFLATED appeared in the mark, thus increasing
1434    // the odds of inflation contention.
1435    //
1436    // We now use per-thread private objectmonitor free lists.
1437    // These list are reprovisioned from the global free list outside the
1438    // critical INFLATING...ST interval.  A thread can transfer
1439    // multiple objectmonitors en-mass from the global free list to its local free list.
1440    // This reduces coherency traffic and lock contention on the global free list.
1441    // Using such local free lists, it doesn't matter if the omAlloc() call appears
1442    // before or after the CAS(INFLATING) operation.
1443    // See the comments in omAlloc().
1444
1445    if (mark->has_locker()) {
1446      ObjectMonitor * m = omAlloc(Self);
1447      // Optimistically prepare the objectmonitor - anticipate successful CAS
1448      // We do this before the CAS in order to minimize the length of time
1449      // in which INFLATING appears in the mark.
1450      m->Recycle();
1451      m->_Responsible  = NULL;
1452      m->_recursions   = 0;
1453      m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1454
1455      markOop cmp = (markOop) Atomic::cmpxchg_ptr(markOopDesc::INFLATING(), object->mark_addr(), mark);
1456      if (cmp != mark) {
1457        omRelease(Self, m, true);
1458        continue;       // Interference -- just retry
1459      }
1460
1461      // We've successfully installed INFLATING (0) into the mark-word.
1462      // This is the only case where 0 will appear in a mark-word.
1463      // Only the singular thread that successfully swings the mark-word
1464      // to 0 can perform (or more precisely, complete) inflation.
1465      //
1466      // Why do we CAS a 0 into the mark-word instead of just CASing the
1467      // mark-word from the stack-locked value directly to the new inflated state?
1468      // Consider what happens when a thread unlocks a stack-locked object.
1469      // It attempts to use CAS to swing the displaced header value from the
1470      // on-stack basiclock back into the object header.  Recall also that the
1471      // header value (hashcode, etc) can reside in (a) the object header, or
1472      // (b) a displaced header associated with the stack-lock, or (c) a displaced
1473      // header in an objectMonitor.  The inflate() routine must copy the header
1474      // value from the basiclock on the owner's stack to the objectMonitor, all
1475      // the while preserving the hashCode stability invariants.  If the owner
1476      // decides to release the lock while the value is 0, the unlock will fail
1477      // and control will eventually pass from slow_exit() to inflate.  The owner
1478      // will then spin, waiting for the 0 value to disappear.   Put another way,
1479      // the 0 causes the owner to stall if the owner happens to try to
1480      // drop the lock (restoring the header from the basiclock to the object)
1481      // while inflation is in-progress.  This protocol avoids races that might
1482      // would otherwise permit hashCode values to change or "flicker" for an object.
1483      // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
1484      // 0 serves as a "BUSY" inflate-in-progress indicator.
1485
1486
1487      // fetch the displaced mark from the owner's stack.
1488      // The owner can't die or unwind past the lock while our INFLATING
1489      // object is in the mark.  Furthermore the owner can't complete
1490      // an unlock on the object, either.
1491      markOop dmw = mark->displaced_mark_helper();
1492      assert(dmw->is_neutral(), "invariant");
1493
1494      // Setup monitor fields to proper values -- prepare the monitor
1495      m->set_header(dmw);
1496
1497      // Optimization: if the mark->locker stack address is associated
1498      // with this thread we could simply set m->_owner = Self.
1499      // Note that a thread can inflate an object
1500      // that it has stack-locked -- as might happen in wait() -- directly
1501      // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1502      m->set_owner(mark->locker());
1503      m->set_object(object);
1504      // TODO-FIXME: assert BasicLock->dhw != 0.
1505
1506      // Must preserve store ordering. The monitor state must
1507      // be stable at the time of publishing the monitor address.
1508      guarantee(object->mark() == markOopDesc::INFLATING(), "invariant");
1509      object->release_set_mark(markOopDesc::encode(m));
1510
1511      // Hopefully the performance counters are allocated on distinct cache lines
1512      // to avoid false sharing on MP systems ...
1513      OM_PERFDATA_OP(Inflations, inc());
1514      TEVENT(Inflate: overwrite stacklock);
1515      if (log_is_enabled(Debug, monitorinflation)) {
1516        if (object->is_instance()) {
1517          ResourceMark rm;
1518          log_debug(monitorinflation)("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1519                                      p2i(object), p2i(object->mark()),
1520                                      object->klass()->external_name());
1521        }
1522      }
1523      if (event.should_commit()) {
1524        post_monitor_inflate_event(event, object, cause);
1525      }
1526      return m;
1527    }
1528
1529    // CASE: neutral
1530    // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1531    // If we know we're inflating for entry it's better to inflate by swinging a
1532    // pre-locked objectMonitor pointer into the object header.   A successful
1533    // CAS inflates the object *and* confers ownership to the inflating thread.
1534    // In the current implementation we use a 2-step mechanism where we CAS()
1535    // to inflate and then CAS() again to try to swing _owner from NULL to Self.
1536    // An inflateTry() method that we could call from fast_enter() and slow_enter()
1537    // would be useful.
1538
1539    assert(mark->is_neutral(), "invariant");
1540    ObjectMonitor * m = omAlloc(Self);
1541    // prepare m for installation - set monitor to initial state
1542    m->Recycle();
1543    m->set_header(mark);
1544    m->set_owner(NULL);
1545    m->set_object(object);
1546    m->_recursions   = 0;
1547    m->_Responsible  = NULL;
1548    m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
1549
1550    if (Atomic::cmpxchg_ptr (markOopDesc::encode(m), object->mark_addr(), mark) != mark) {
1551      m->set_object(NULL);
1552      m->set_owner(NULL);
1553      m->Recycle();
1554      omRelease(Self, m, true);
1555      m = NULL;
1556      continue;
1557      // interference - the markword changed - just retry.
1558      // The state-transitions are one-way, so there's no chance of
1559      // live-lock -- "Inflated" is an absorbing state.
1560    }
1561
1562    // Hopefully the performance counters are allocated on distinct
1563    // cache lines to avoid false sharing on MP systems ...
1564    OM_PERFDATA_OP(Inflations, inc());
1565    TEVENT(Inflate: overwrite neutral);
1566    if (log_is_enabled(Debug, monitorinflation)) {
1567      if (object->is_instance()) {
1568        ResourceMark rm;
1569        log_debug(monitorinflation)("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1570                                    p2i(object), p2i(object->mark()),
1571                                    object->klass()->external_name());
1572      }
1573    }
1574    if (event.should_commit()) {
1575      post_monitor_inflate_event(event, object, cause);
1576    }
1577    return m;
1578  }
1579}
1580
1581
1582// Deflate_idle_monitors() is called at all safepoints, immediately
1583// after all mutators are stopped, but before any objects have moved.
1584// It traverses the list of known monitors, deflating where possible.
1585// The scavenged monitor are returned to the monitor free list.
1586//
1587// Beware that we scavenge at *every* stop-the-world point.
1588// Having a large number of monitors in-circulation negatively
1589// impacts the performance of some applications (e.g., PointBase).
1590// Broadly, we want to minimize the # of monitors in circulation.
1591//
1592// We have added a flag, MonitorInUseLists, which creates a list
1593// of active monitors for each thread. deflate_idle_monitors()
1594// only scans the per-thread in-use lists. omAlloc() puts all
1595// assigned monitors on the per-thread list. deflate_idle_monitors()
1596// returns the non-busy monitors to the global free list.
1597// When a thread dies, omFlush() adds the list of active monitors for
1598// that thread to a global gOmInUseList acquiring the
1599// global list lock. deflate_idle_monitors() acquires the global
1600// list lock to scan for non-busy monitors to the global free list.
1601// An alternative could have used a single global in-use list. The
1602// downside would have been the additional cost of acquiring the global list lock
1603// for every omAlloc().
1604//
1605// Perversely, the heap size -- and thus the STW safepoint rate --
1606// typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1607// which in turn can mean large(r) numbers of objectmonitors in circulation.
1608// This is an unfortunate aspect of this design.
1609
1610enum ManifestConstants {
1611  ClearResponsibleAtSTW = 0
1612};
1613
1614// Deflate a single monitor if not in-use
1615// Return true if deflated, false if in-use
1616bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
1617                                         ObjectMonitor** freeHeadp,
1618                                         ObjectMonitor** freeTailp) {
1619  bool deflated;
1620  // Normal case ... The monitor is associated with obj.
1621  guarantee(obj->mark() == markOopDesc::encode(mid), "invariant");
1622  guarantee(mid == obj->mark()->monitor(), "invariant");
1623  guarantee(mid->header()->is_neutral(), "invariant");
1624
1625  if (mid->is_busy()) {
1626    if (ClearResponsibleAtSTW) mid->_Responsible = NULL;
1627    deflated = false;
1628  } else {
1629    // Deflate the monitor if it is no longer being used
1630    // It's idle - scavenge and return to the global free list
1631    // plain old deflation ...
1632    TEVENT(deflate_idle_monitors - scavenge1);
1633    if (log_is_enabled(Debug, monitorinflation)) {
1634      if (obj->is_instance()) {
1635        ResourceMark rm;
1636        log_debug(monitorinflation)("Deflating object " INTPTR_FORMAT " , "
1637                                    "mark " INTPTR_FORMAT " , type %s",
1638                                    p2i(obj), p2i(obj->mark()),
1639                                    obj->klass()->external_name());
1640      }
1641    }
1642
1643    // Restore the header back to obj
1644    obj->release_set_mark(mid->header());
1645    mid->clear();
1646
1647    assert(mid->object() == NULL, "invariant");
1648
1649    // Move the object to the working free list defined by freeHeadp, freeTailp
1650    if (*freeHeadp == NULL) *freeHeadp = mid;
1651    if (*freeTailp != NULL) {
1652      ObjectMonitor * prevtail = *freeTailp;
1653      assert(prevtail->FreeNext == NULL, "cleaned up deflated?");
1654      prevtail->FreeNext = mid;
1655    }
1656    *freeTailp = mid;
1657    deflated = true;
1658  }
1659  return deflated;
1660}
1661
1662// Walk a given monitor list, and deflate idle monitors
1663// The given list could be a per-thread list or a global list
1664// Caller acquires gListLock
1665int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** listHeadp,
1666                                             ObjectMonitor** freeHeadp,
1667                                             ObjectMonitor** freeTailp) {
1668  ObjectMonitor* mid;
1669  ObjectMonitor* next;
1670  ObjectMonitor* cur_mid_in_use = NULL;
1671  int deflated_count = 0;
1672
1673  for (mid = *listHeadp; mid != NULL;) {
1674    oop obj = (oop) mid->object();
1675    if (obj != NULL && deflate_monitor(mid, obj, freeHeadp, freeTailp)) {
1676      // if deflate_monitor succeeded,
1677      // extract from per-thread in-use list
1678      if (mid == *listHeadp) {
1679        *listHeadp = mid->FreeNext;
1680      } else if (cur_mid_in_use != NULL) {
1681        cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1682      }
1683      next = mid->FreeNext;
1684      mid->FreeNext = NULL;  // This mid is current tail in the freeHeadp list
1685      mid = next;
1686      deflated_count++;
1687    } else {
1688      cur_mid_in_use = mid;
1689      mid = mid->FreeNext;
1690    }
1691  }
1692  return deflated_count;
1693}
1694
1695void ObjectSynchronizer::deflate_idle_monitors() {
1696  assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1697  int nInuse = 0;              // currently associated with objects
1698  int nInCirculation = 0;      // extant
1699  int nScavenged = 0;          // reclaimed
1700  bool deflated = false;
1701
1702  ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
1703  ObjectMonitor * freeTailp = NULL;
1704
1705  TEVENT(deflate_idle_monitors);
1706  // Prevent omFlush from changing mids in Thread dtor's during deflation
1707  // And in case the vm thread is acquiring a lock during a safepoint
1708  // See e.g. 6320749
1709  Thread::muxAcquire(&gListLock, "scavenge - return");
1710
1711  if (MonitorInUseLists) {
1712    int inUse = 0;
1713    for (JavaThread* cur = Threads::first(); cur != NULL; cur = cur->next()) {
1714      nInCirculation+= cur->omInUseCount;
1715      int deflated_count = deflate_monitor_list(cur->omInUseList_addr(), &freeHeadp, &freeTailp);
1716      cur->omInUseCount-= deflated_count;
1717      if (ObjectMonitor::Knob_VerifyInUse) {
1718        verifyInUse(cur);
1719      }
1720      nScavenged += deflated_count;
1721      nInuse += cur->omInUseCount;
1722    }
1723
1724    // For moribund threads, scan gOmInUseList
1725    if (gOmInUseList) {
1726      nInCirculation += gOmInUseCount;
1727      int deflated_count = deflate_monitor_list((ObjectMonitor **)&gOmInUseList, &freeHeadp, &freeTailp);
1728      gOmInUseCount-= deflated_count;
1729      nScavenged += deflated_count;
1730      nInuse += gOmInUseCount;
1731    }
1732
1733  } else {
1734    PaddedEnd<ObjectMonitor> * block =
1735      (PaddedEnd<ObjectMonitor> *)OrderAccess::load_ptr_acquire(&gBlockList);
1736    for (; block != NULL; block = (PaddedEnd<ObjectMonitor> *)next(block)) {
1737      // Iterate over all extant monitors - Scavenge all idle monitors.
1738      assert(block->object() == CHAINMARKER, "must be a block header");
1739      nInCirculation += _BLOCKSIZE;
1740      for (int i = 1; i < _BLOCKSIZE; i++) {
1741        ObjectMonitor* mid = (ObjectMonitor*)&block[i];
1742        oop obj = (oop)mid->object();
1743
1744        if (obj == NULL) {
1745          // The monitor is not associated with an object.
1746          // The monitor should either be a thread-specific private
1747          // free list or the global free list.
1748          // obj == NULL IMPLIES mid->is_busy() == 0
1749          guarantee(!mid->is_busy(), "invariant");
1750          continue;
1751        }
1752        deflated = deflate_monitor(mid, obj, &freeHeadp, &freeTailp);
1753
1754        if (deflated) {
1755          mid->FreeNext = NULL;
1756          nScavenged++;
1757        } else {
1758          nInuse++;
1759        }
1760      }
1761    }
1762  }
1763
1764  gMonitorFreeCount += nScavenged;
1765
1766  // Consider: audit gFreeList to ensure that gMonitorFreeCount and list agree.
1767
1768  if (ObjectMonitor::Knob_Verbose) {
1769    tty->print_cr("INFO: Deflate: InCirc=%d InUse=%d Scavenged=%d "
1770                  "ForceMonitorScavenge=%d : pop=%d free=%d",
1771                  nInCirculation, nInuse, nScavenged, ForceMonitorScavenge,
1772                  gMonitorPopulation, gMonitorFreeCount);
1773    tty->flush();
1774  }
1775
1776  ForceMonitorScavenge = 0;    // Reset
1777
1778  // Move the scavenged monitors back to the global free list.
1779  if (freeHeadp != NULL) {
1780    guarantee(freeTailp != NULL && nScavenged > 0, "invariant");
1781    assert(freeTailp->FreeNext == NULL, "invariant");
1782    // constant-time list splice - prepend scavenged segment to gFreeList
1783    freeTailp->FreeNext = gFreeList;
1784    gFreeList = freeHeadp;
1785  }
1786  Thread::muxRelease(&gListLock);
1787
1788  OM_PERFDATA_OP(Deflations, inc(nScavenged));
1789  OM_PERFDATA_OP(MonExtant, set_value(nInCirculation));
1790
1791  // TODO: Add objectMonitor leak detection.
1792  // Audit/inventory the objectMonitors -- make sure they're all accounted for.
1793  GVars.stwRandom = os::random();
1794  GVars.stwCycle++;
1795}
1796
1797// Monitor cleanup on JavaThread::exit
1798
1799// Iterate through monitor cache and attempt to release thread's monitors
1800// Gives up on a particular monitor if an exception occurs, but continues
1801// the overall iteration, swallowing the exception.
1802class ReleaseJavaMonitorsClosure: public MonitorClosure {
1803 private:
1804  TRAPS;
1805
1806 public:
1807  ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
1808  void do_monitor(ObjectMonitor* mid) {
1809    if (mid->owner() == THREAD) {
1810      if (ObjectMonitor::Knob_VerifyMatch != 0) {
1811        ResourceMark rm;
1812        Handle obj(THREAD, (oop) mid->object());
1813        tty->print("INFO: unexpected locked object:");
1814        javaVFrame::print_locked_object_class_name(tty, obj, "locked");
1815        fatal("exiting JavaThread=" INTPTR_FORMAT
1816              " unexpectedly owns ObjectMonitor=" INTPTR_FORMAT,
1817              p2i(THREAD), p2i(mid));
1818      }
1819      (void)mid->complete_exit(CHECK);
1820    }
1821  }
1822};
1823
1824// Release all inflated monitors owned by THREAD.  Lightweight monitors are
1825// ignored.  This is meant to be called during JNI thread detach which assumes
1826// all remaining monitors are heavyweight.  All exceptions are swallowed.
1827// Scanning the extant monitor list can be time consuming.
1828// A simple optimization is to add a per-thread flag that indicates a thread
1829// called jni_monitorenter() during its lifetime.
1830//
1831// Instead of No_Savepoint_Verifier it might be cheaper to
1832// use an idiom of the form:
1833//   auto int tmp = SafepointSynchronize::_safepoint_counter ;
1834//   <code that must not run at safepoint>
1835//   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
1836// Since the tests are extremely cheap we could leave them enabled
1837// for normal product builds.
1838
1839void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
1840  assert(THREAD == JavaThread::current(), "must be current Java thread");
1841  NoSafepointVerifier nsv;
1842  ReleaseJavaMonitorsClosure rjmc(THREAD);
1843  Thread::muxAcquire(&gListLock, "release_monitors_owned_by_thread");
1844  ObjectSynchronizer::monitors_iterate(&rjmc);
1845  Thread::muxRelease(&gListLock);
1846  THREAD->clear_pending_exception();
1847}
1848
1849const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
1850  switch (cause) {
1851    case inflate_cause_vm_internal:    return "VM Internal";
1852    case inflate_cause_monitor_enter:  return "Monitor Enter";
1853    case inflate_cause_wait:           return "Monitor Wait";
1854    case inflate_cause_notify:         return "Monitor Notify";
1855    case inflate_cause_hash_code:      return "Monitor Hash Code";
1856    case inflate_cause_jni_enter:      return "JNI Monitor Enter";
1857    case inflate_cause_jni_exit:       return "JNI Monitor Exit";
1858    default:
1859      ShouldNotReachHere();
1860  }
1861  return "Unknown";
1862}
1863
1864static void post_monitor_inflate_event(EventJavaMonitorInflate& event,
1865                                       const oop obj,
1866                                       const ObjectSynchronizer::InflateCause cause) {
1867#if INCLUDE_TRACE
1868  assert(event.should_commit(), "check outside");
1869  event.set_monitorClass(obj->klass());
1870  event.set_address((TYPE_ADDRESS)(uintptr_t)(void*)obj);
1871  event.set_cause((u1)cause);
1872  event.commit();
1873#endif
1874}
1875
1876//------------------------------------------------------------------------------
1877// Debugging code
1878
1879void ObjectSynchronizer::sanity_checks(const bool verbose,
1880                                       const uint cache_line_size,
1881                                       int *error_cnt_ptr,
1882                                       int *warning_cnt_ptr) {
1883  u_char *addr_begin      = (u_char*)&GVars;
1884  u_char *addr_stwRandom  = (u_char*)&GVars.stwRandom;
1885  u_char *addr_hcSequence = (u_char*)&GVars.hcSequence;
1886
1887  if (verbose) {
1888    tty->print_cr("INFO: sizeof(SharedGlobals)=" SIZE_FORMAT,
1889                  sizeof(SharedGlobals));
1890  }
1891
1892  uint offset_stwRandom = (uint)(addr_stwRandom - addr_begin);
1893  if (verbose) tty->print_cr("INFO: offset(stwRandom)=%u", offset_stwRandom);
1894
1895  uint offset_hcSequence = (uint)(addr_hcSequence - addr_begin);
1896  if (verbose) {
1897    tty->print_cr("INFO: offset(_hcSequence)=%u", offset_hcSequence);
1898  }
1899
1900  if (cache_line_size != 0) {
1901    // We were able to determine the L1 data cache line size so
1902    // do some cache line specific sanity checks
1903
1904    if (offset_stwRandom < cache_line_size) {
1905      tty->print_cr("WARNING: the SharedGlobals.stwRandom field is closer "
1906                    "to the struct beginning than a cache line which permits "
1907                    "false sharing.");
1908      (*warning_cnt_ptr)++;
1909    }
1910
1911    if ((offset_hcSequence - offset_stwRandom) < cache_line_size) {
1912      tty->print_cr("WARNING: the SharedGlobals.stwRandom and "
1913                    "SharedGlobals.hcSequence fields are closer than a cache "
1914                    "line which permits false sharing.");
1915      (*warning_cnt_ptr)++;
1916    }
1917
1918    if ((sizeof(SharedGlobals) - offset_hcSequence) < cache_line_size) {
1919      tty->print_cr("WARNING: the SharedGlobals.hcSequence field is closer "
1920                    "to the struct end than a cache line which permits false "
1921                    "sharing.");
1922      (*warning_cnt_ptr)++;
1923    }
1924  }
1925}
1926
1927#ifndef PRODUCT
1928
1929// Check if monitor belongs to the monitor cache
1930// The list is grow-only so it's *relatively* safe to traverse
1931// the list of extant blocks without taking a lock.
1932
1933int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
1934  PaddedEnd<ObjectMonitor> * block =
1935    (PaddedEnd<ObjectMonitor> *)OrderAccess::load_ptr_acquire(&gBlockList);
1936  while (block != NULL) {
1937    assert(block->object() == CHAINMARKER, "must be a block header");
1938    if (monitor > (ObjectMonitor *)&block[0] &&
1939        monitor < (ObjectMonitor *)&block[_BLOCKSIZE]) {
1940      address mon = (address)monitor;
1941      address blk = (address)block;
1942      size_t diff = mon - blk;
1943      assert((diff % sizeof(PaddedEnd<ObjectMonitor>)) == 0, "must be aligned");
1944      return 1;
1945    }
1946    block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
1947  }
1948  return 0;
1949}
1950
1951#endif
1952