sharedRuntime.cpp revision 8413:92457dfb91bd
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "classfile/vmSymbols.hpp"
28#include "code/codeCache.hpp"
29#include "code/compiledIC.hpp"
30#include "code/scopeDesc.hpp"
31#include "code/vtableStubs.hpp"
32#include "compiler/abstractCompiler.hpp"
33#include "compiler/compileBroker.hpp"
34#include "compiler/compilerOracle.hpp"
35#include "compiler/disassembler.hpp"
36#include "gc/shared/gcLocker.inline.hpp"
37#include "interpreter/interpreter.hpp"
38#include "interpreter/interpreterRuntime.hpp"
39#include "memory/universe.inline.hpp"
40#include "oops/oop.inline.hpp"
41#include "prims/forte.hpp"
42#include "prims/jvmtiExport.hpp"
43#include "prims/jvmtiRedefineClassesTrace.hpp"
44#include "prims/methodHandles.hpp"
45#include "prims/nativeLookup.hpp"
46#include "runtime/arguments.hpp"
47#include "runtime/atomic.inline.hpp"
48#include "runtime/biasedLocking.hpp"
49#include "runtime/handles.inline.hpp"
50#include "runtime/init.hpp"
51#include "runtime/interfaceSupport.hpp"
52#include "runtime/javaCalls.hpp"
53#include "runtime/sharedRuntime.hpp"
54#include "runtime/stubRoutines.hpp"
55#include "runtime/vframe.hpp"
56#include "runtime/vframeArray.hpp"
57#include "utilities/copy.hpp"
58#include "utilities/dtrace.hpp"
59#include "utilities/events.hpp"
60#include "utilities/hashtable.inline.hpp"
61#include "utilities/macros.hpp"
62#include "utilities/xmlstream.hpp"
63#ifdef COMPILER1
64#include "c1/c1_Runtime1.hpp"
65#endif
66
67PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
68
69// Shared stub locations
70RuntimeStub*        SharedRuntime::_wrong_method_blob;
71RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
72RuntimeStub*        SharedRuntime::_ic_miss_blob;
73RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
74RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
75RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
76
77DeoptimizationBlob* SharedRuntime::_deopt_blob;
78SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
79SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
80SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
81
82#ifdef COMPILER2
83UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
84#endif // COMPILER2
85
86
87//----------------------------generate_stubs-----------------------------------
88void SharedRuntime::generate_stubs() {
89  _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
90  _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
91  _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
92  _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
93  _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
94  _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
95
96#ifdef COMPILER2
97  // Vectors are generated only by C2.
98  if (is_wide_vector(MaxVectorSize)) {
99    _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
100  }
101#endif // COMPILER2
102  _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
103  _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
104
105  generate_deopt_blob();
106
107#ifdef COMPILER2
108  generate_uncommon_trap_blob();
109#endif // COMPILER2
110}
111
112#include <math.h>
113
114// Implementation of SharedRuntime
115
116#ifndef PRODUCT
117// For statistics
118int SharedRuntime::_ic_miss_ctr = 0;
119int SharedRuntime::_wrong_method_ctr = 0;
120int SharedRuntime::_resolve_static_ctr = 0;
121int SharedRuntime::_resolve_virtual_ctr = 0;
122int SharedRuntime::_resolve_opt_virtual_ctr = 0;
123int SharedRuntime::_implicit_null_throws = 0;
124int SharedRuntime::_implicit_div0_throws = 0;
125int SharedRuntime::_throw_null_ctr = 0;
126
127int SharedRuntime::_nof_normal_calls = 0;
128int SharedRuntime::_nof_optimized_calls = 0;
129int SharedRuntime::_nof_inlined_calls = 0;
130int SharedRuntime::_nof_megamorphic_calls = 0;
131int SharedRuntime::_nof_static_calls = 0;
132int SharedRuntime::_nof_inlined_static_calls = 0;
133int SharedRuntime::_nof_interface_calls = 0;
134int SharedRuntime::_nof_optimized_interface_calls = 0;
135int SharedRuntime::_nof_inlined_interface_calls = 0;
136int SharedRuntime::_nof_megamorphic_interface_calls = 0;
137int SharedRuntime::_nof_removable_exceptions = 0;
138
139int SharedRuntime::_new_instance_ctr=0;
140int SharedRuntime::_new_array_ctr=0;
141int SharedRuntime::_multi1_ctr=0;
142int SharedRuntime::_multi2_ctr=0;
143int SharedRuntime::_multi3_ctr=0;
144int SharedRuntime::_multi4_ctr=0;
145int SharedRuntime::_multi5_ctr=0;
146int SharedRuntime::_mon_enter_stub_ctr=0;
147int SharedRuntime::_mon_exit_stub_ctr=0;
148int SharedRuntime::_mon_enter_ctr=0;
149int SharedRuntime::_mon_exit_ctr=0;
150int SharedRuntime::_partial_subtype_ctr=0;
151int SharedRuntime::_jbyte_array_copy_ctr=0;
152int SharedRuntime::_jshort_array_copy_ctr=0;
153int SharedRuntime::_jint_array_copy_ctr=0;
154int SharedRuntime::_jlong_array_copy_ctr=0;
155int SharedRuntime::_oop_array_copy_ctr=0;
156int SharedRuntime::_checkcast_array_copy_ctr=0;
157int SharedRuntime::_unsafe_array_copy_ctr=0;
158int SharedRuntime::_generic_array_copy_ctr=0;
159int SharedRuntime::_slow_array_copy_ctr=0;
160int SharedRuntime::_find_handler_ctr=0;
161int SharedRuntime::_rethrow_ctr=0;
162
163int     SharedRuntime::_ICmiss_index                    = 0;
164int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
165address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
166
167
168void SharedRuntime::trace_ic_miss(address at) {
169  for (int i = 0; i < _ICmiss_index; i++) {
170    if (_ICmiss_at[i] == at) {
171      _ICmiss_count[i]++;
172      return;
173    }
174  }
175  int index = _ICmiss_index++;
176  if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
177  _ICmiss_at[index] = at;
178  _ICmiss_count[index] = 1;
179}
180
181void SharedRuntime::print_ic_miss_histogram() {
182  if (ICMissHistogram) {
183    tty->print_cr("IC Miss Histogram:");
184    int tot_misses = 0;
185    for (int i = 0; i < _ICmiss_index; i++) {
186      tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
187      tot_misses += _ICmiss_count[i];
188    }
189    tty->print_cr("Total IC misses: %7d", tot_misses);
190  }
191}
192#endif // PRODUCT
193
194#if INCLUDE_ALL_GCS
195
196// G1 write-barrier pre: executed before a pointer store.
197JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
198  if (orig == NULL) {
199    assert(false, "should be optimized out");
200    return;
201  }
202  assert(orig->is_oop(true /* ignore mark word */), "Error");
203  // store the original value that was in the field reference
204  thread->satb_mark_queue().enqueue(orig);
205JRT_END
206
207// G1 write-barrier post: executed after a pointer store.
208JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
209  thread->dirty_card_queue().enqueue(card_addr);
210JRT_END
211
212#endif // INCLUDE_ALL_GCS
213
214
215JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
216  return x * y;
217JRT_END
218
219
220JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
221  if (x == min_jlong && y == CONST64(-1)) {
222    return x;
223  } else {
224    return x / y;
225  }
226JRT_END
227
228
229JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
230  if (x == min_jlong && y == CONST64(-1)) {
231    return 0;
232  } else {
233    return x % y;
234  }
235JRT_END
236
237
238const juint  float_sign_mask  = 0x7FFFFFFF;
239const juint  float_infinity   = 0x7F800000;
240const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
241const julong double_infinity  = CONST64(0x7FF0000000000000);
242
243JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
244#ifdef _WIN64
245  // 64-bit Windows on amd64 returns the wrong values for
246  // infinity operands.
247  union { jfloat f; juint i; } xbits, ybits;
248  xbits.f = x;
249  ybits.f = y;
250  // x Mod Infinity == x unless x is infinity
251  if (((xbits.i & float_sign_mask) != float_infinity) &&
252       ((ybits.i & float_sign_mask) == float_infinity) ) {
253    return x;
254  }
255#endif
256  return ((jfloat)fmod((double)x,(double)y));
257JRT_END
258
259
260JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
261#ifdef _WIN64
262  union { jdouble d; julong l; } xbits, ybits;
263  xbits.d = x;
264  ybits.d = y;
265  // x Mod Infinity == x unless x is infinity
266  if (((xbits.l & double_sign_mask) != double_infinity) &&
267       ((ybits.l & double_sign_mask) == double_infinity) ) {
268    return x;
269  }
270#endif
271  return ((jdouble)fmod((double)x,(double)y));
272JRT_END
273
274#ifdef __SOFTFP__
275JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
276  return x + y;
277JRT_END
278
279JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
280  return x - y;
281JRT_END
282
283JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
284  return x * y;
285JRT_END
286
287JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
288  return x / y;
289JRT_END
290
291JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
292  return x + y;
293JRT_END
294
295JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
296  return x - y;
297JRT_END
298
299JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
300  return x * y;
301JRT_END
302
303JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
304  return x / y;
305JRT_END
306
307JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
308  return (jfloat)x;
309JRT_END
310
311JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
312  return (jdouble)x;
313JRT_END
314
315JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
316  return (jdouble)x;
317JRT_END
318
319JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
320  return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
321JRT_END
322
323JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
324  return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
325JRT_END
326
327JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
328  return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
329JRT_END
330
331JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
332  return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
333JRT_END
334
335// Functions to return the opposite of the aeabi functions for nan.
336JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
337  return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
338JRT_END
339
340JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
341  return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
342JRT_END
343
344JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
345  return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
346JRT_END
347
348JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
349  return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
350JRT_END
351
352JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
353  return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
354JRT_END
355
356JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
357  return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
358JRT_END
359
360JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
361  return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
362JRT_END
363
364JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
365  return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
366JRT_END
367
368// Intrinsics make gcc generate code for these.
369float  SharedRuntime::fneg(float f)   {
370  return -f;
371}
372
373double SharedRuntime::dneg(double f)  {
374  return -f;
375}
376
377#endif // __SOFTFP__
378
379#if defined(__SOFTFP__) || defined(E500V2)
380// Intrinsics make gcc generate code for these.
381double SharedRuntime::dabs(double f)  {
382  return (f <= (double)0.0) ? (double)0.0 - f : f;
383}
384
385#endif
386
387#if defined(__SOFTFP__) || defined(PPC32)
388double SharedRuntime::dsqrt(double f) {
389  return sqrt(f);
390}
391#endif
392
393JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
394  if (g_isnan(x))
395    return 0;
396  if (x >= (jfloat) max_jint)
397    return max_jint;
398  if (x <= (jfloat) min_jint)
399    return min_jint;
400  return (jint) x;
401JRT_END
402
403
404JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
405  if (g_isnan(x))
406    return 0;
407  if (x >= (jfloat) max_jlong)
408    return max_jlong;
409  if (x <= (jfloat) min_jlong)
410    return min_jlong;
411  return (jlong) x;
412JRT_END
413
414
415JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
416  if (g_isnan(x))
417    return 0;
418  if (x >= (jdouble) max_jint)
419    return max_jint;
420  if (x <= (jdouble) min_jint)
421    return min_jint;
422  return (jint) x;
423JRT_END
424
425
426JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
427  if (g_isnan(x))
428    return 0;
429  if (x >= (jdouble) max_jlong)
430    return max_jlong;
431  if (x <= (jdouble) min_jlong)
432    return min_jlong;
433  return (jlong) x;
434JRT_END
435
436
437JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
438  return (jfloat)x;
439JRT_END
440
441
442JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
443  return (jfloat)x;
444JRT_END
445
446
447JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
448  return (jdouble)x;
449JRT_END
450
451// Exception handling across interpreter/compiler boundaries
452//
453// exception_handler_for_return_address(...) returns the continuation address.
454// The continuation address is the entry point of the exception handler of the
455// previous frame depending on the return address.
456
457address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
458  assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
459  assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
460
461  // Reset method handle flag.
462  thread->set_is_method_handle_return(false);
463
464  // The fastest case first
465  CodeBlob* blob = CodeCache::find_blob(return_address);
466  nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
467  if (nm != NULL) {
468    // Set flag if return address is a method handle call site.
469    thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
470    // native nmethods don't have exception handlers
471    assert(!nm->is_native_method(), "no exception handler");
472    assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
473    if (nm->is_deopt_pc(return_address)) {
474      // If we come here because of a stack overflow, the stack may be
475      // unguarded. Reguard the stack otherwise if we return to the
476      // deopt blob and the stack bang causes a stack overflow we
477      // crash.
478      bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
479      if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
480      assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
481      return SharedRuntime::deopt_blob()->unpack_with_exception();
482    } else {
483      return nm->exception_begin();
484    }
485  }
486
487  // Entry code
488  if (StubRoutines::returns_to_call_stub(return_address)) {
489    return StubRoutines::catch_exception_entry();
490  }
491  // Interpreted code
492  if (Interpreter::contains(return_address)) {
493    return Interpreter::rethrow_exception_entry();
494  }
495
496  guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
497  guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
498
499#ifndef PRODUCT
500  { ResourceMark rm;
501    tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
502    tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
503    tty->print_cr("b) other problem");
504  }
505#endif // PRODUCT
506
507  ShouldNotReachHere();
508  return NULL;
509}
510
511
512JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
513  return raw_exception_handler_for_return_address(thread, return_address);
514JRT_END
515
516
517address SharedRuntime::get_poll_stub(address pc) {
518  address stub;
519  // Look up the code blob
520  CodeBlob *cb = CodeCache::find_blob(pc);
521
522  // Should be an nmethod
523  assert(cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
524
525  // Look up the relocation information
526  assert(((nmethod*)cb)->is_at_poll_or_poll_return(pc),
527    "safepoint polling: type must be poll");
528
529  assert(((NativeInstruction*)pc)->is_safepoint_poll(),
530    "Only polling locations are used for safepoint");
531
532  bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
533  bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
534  if (at_poll_return) {
535    assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
536           "polling page return stub not created yet");
537    stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
538  } else if (has_wide_vectors) {
539    assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
540           "polling page vectors safepoint stub not created yet");
541    stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
542  } else {
543    assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
544           "polling page safepoint stub not created yet");
545    stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
546  }
547#ifndef PRODUCT
548  if (TraceSafepoint) {
549    char buf[256];
550    jio_snprintf(buf, sizeof(buf),
551                 "... found polling page %s exception at pc = "
552                 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
553                 at_poll_return ? "return" : "loop",
554                 (intptr_t)pc, (intptr_t)stub);
555    tty->print_raw_cr(buf);
556  }
557#endif // PRODUCT
558  return stub;
559}
560
561
562oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
563  assert(caller.is_interpreted_frame(), "");
564  int args_size = ArgumentSizeComputer(sig).size() + 1;
565  assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
566  oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
567  assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
568  return result;
569}
570
571
572void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
573  if (JvmtiExport::can_post_on_exceptions()) {
574    vframeStream vfst(thread, true);
575    methodHandle method = methodHandle(thread, vfst.method());
576    address bcp = method()->bcp_from(vfst.bci());
577    JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
578  }
579  Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
580}
581
582void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
583  Handle h_exception = Exceptions::new_exception(thread, name, message);
584  throw_and_post_jvmti_exception(thread, h_exception);
585}
586
587// The interpreter code to call this tracing function is only
588// called/generated when TraceRedefineClasses has the right bits
589// set. Since obsolete methods are never compiled, we don't have
590// to modify the compilers to generate calls to this function.
591//
592JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
593    JavaThread* thread, Method* method))
594  assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
595
596  if (method->is_obsolete()) {
597    // We are calling an obsolete method, but this is not necessarily
598    // an error. Our method could have been redefined just after we
599    // fetched the Method* from the constant pool.
600
601    // RC_TRACE macro has an embedded ResourceMark
602    RC_TRACE_WITH_THREAD(0x00001000, thread,
603                         ("calling obsolete method '%s'",
604                          method->name_and_sig_as_C_string()));
605    if (RC_TRACE_ENABLED(0x00002000)) {
606      // this option is provided to debug calls to obsolete methods
607      guarantee(false, "faulting at call to an obsolete method.");
608    }
609  }
610  return 0;
611JRT_END
612
613// ret_pc points into caller; we are returning caller's exception handler
614// for given exception
615address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
616                                                    bool force_unwind, bool top_frame_only) {
617  assert(nm != NULL, "must exist");
618  ResourceMark rm;
619
620  ScopeDesc* sd = nm->scope_desc_at(ret_pc);
621  // determine handler bci, if any
622  EXCEPTION_MARK;
623
624  int handler_bci = -1;
625  int scope_depth = 0;
626  if (!force_unwind) {
627    int bci = sd->bci();
628    bool recursive_exception = false;
629    do {
630      bool skip_scope_increment = false;
631      // exception handler lookup
632      KlassHandle ek (THREAD, exception->klass());
633      methodHandle mh(THREAD, sd->method());
634      handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
635      if (HAS_PENDING_EXCEPTION) {
636        recursive_exception = true;
637        // We threw an exception while trying to find the exception handler.
638        // Transfer the new exception to the exception handle which will
639        // be set into thread local storage, and do another lookup for an
640        // exception handler for this exception, this time starting at the
641        // BCI of the exception handler which caused the exception to be
642        // thrown (bugs 4307310 and 4546590). Set "exception" reference
643        // argument to ensure that the correct exception is thrown (4870175).
644        exception = Handle(THREAD, PENDING_EXCEPTION);
645        CLEAR_PENDING_EXCEPTION;
646        if (handler_bci >= 0) {
647          bci = handler_bci;
648          handler_bci = -1;
649          skip_scope_increment = true;
650        }
651      }
652      else {
653        recursive_exception = false;
654      }
655      if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
656        sd = sd->sender();
657        if (sd != NULL) {
658          bci = sd->bci();
659        }
660        ++scope_depth;
661      }
662    } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
663  }
664
665  // found handling method => lookup exception handler
666  int catch_pco = ret_pc - nm->code_begin();
667
668  ExceptionHandlerTable table(nm);
669  HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
670  if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
671    // Allow abbreviated catch tables.  The idea is to allow a method
672    // to materialize its exceptions without committing to the exact
673    // routing of exceptions.  In particular this is needed for adding
674    // a synthetic handler to unlock monitors when inlining
675    // synchronized methods since the unlock path isn't represented in
676    // the bytecodes.
677    t = table.entry_for(catch_pco, -1, 0);
678  }
679
680#ifdef COMPILER1
681  if (t == NULL && nm->is_compiled_by_c1()) {
682    assert(nm->unwind_handler_begin() != NULL, "");
683    return nm->unwind_handler_begin();
684  }
685#endif
686
687  if (t == NULL) {
688    tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
689    tty->print_cr("   Exception:");
690    exception->print();
691    tty->cr();
692    tty->print_cr(" Compiled exception table :");
693    table.print();
694    nm->print_code();
695    guarantee(false, "missing exception handler");
696    return NULL;
697  }
698
699  return nm->code_begin() + t->pco();
700}
701
702JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
703  // These errors occur only at call sites
704  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
705JRT_END
706
707JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
708  // These errors occur only at call sites
709  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
710JRT_END
711
712JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
713  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
714JRT_END
715
716JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
717  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
718JRT_END
719
720JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
721  // This entry point is effectively only used for NullPointerExceptions which occur at inline
722  // cache sites (when the callee activation is not yet set up) so we are at a call site
723  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
724JRT_END
725
726JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
727  // We avoid using the normal exception construction in this case because
728  // it performs an upcall to Java, and we're already out of stack space.
729  Klass* k = SystemDictionary::StackOverflowError_klass();
730  oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
731  Handle exception (thread, exception_oop);
732  if (StackTraceInThrowable) {
733    java_lang_Throwable::fill_in_stack_trace(exception);
734  }
735  throw_and_post_jvmti_exception(thread, exception);
736JRT_END
737
738address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
739                                                           address pc,
740                                                           SharedRuntime::ImplicitExceptionKind exception_kind)
741{
742  address target_pc = NULL;
743
744  if (Interpreter::contains(pc)) {
745#ifdef CC_INTERP
746    // C++ interpreter doesn't throw implicit exceptions
747    ShouldNotReachHere();
748#else
749    switch (exception_kind) {
750      case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
751      case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
752      case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
753      default:                      ShouldNotReachHere();
754    }
755#endif // !CC_INTERP
756  } else {
757    switch (exception_kind) {
758      case STACK_OVERFLOW: {
759        // Stack overflow only occurs upon frame setup; the callee is
760        // going to be unwound. Dispatch to a shared runtime stub
761        // which will cause the StackOverflowError to be fabricated
762        // and processed.
763        // Stack overflow should never occur during deoptimization:
764        // the compiled method bangs the stack by as much as the
765        // interpreter would need in case of a deoptimization. The
766        // deoptimization blob and uncommon trap blob bang the stack
767        // in a debug VM to verify the correctness of the compiled
768        // method stack banging.
769        assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
770        Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
771        return StubRoutines::throw_StackOverflowError_entry();
772      }
773
774      case IMPLICIT_NULL: {
775        if (VtableStubs::contains(pc)) {
776          // We haven't yet entered the callee frame. Fabricate an
777          // exception and begin dispatching it in the caller. Since
778          // the caller was at a call site, it's safe to destroy all
779          // caller-saved registers, as these entry points do.
780          VtableStub* vt_stub = VtableStubs::stub_containing(pc);
781
782          // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
783          if (vt_stub == NULL) return NULL;
784
785          if (vt_stub->is_abstract_method_error(pc)) {
786            assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
787            Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
788            return StubRoutines::throw_AbstractMethodError_entry();
789          } else {
790            Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
791            return StubRoutines::throw_NullPointerException_at_call_entry();
792          }
793        } else {
794          CodeBlob* cb = CodeCache::find_blob(pc);
795
796          // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
797          if (cb == NULL) return NULL;
798
799          // Exception happened in CodeCache. Must be either:
800          // 1. Inline-cache check in C2I handler blob,
801          // 2. Inline-cache check in nmethod, or
802          // 3. Implicit null exception in nmethod
803
804          if (!cb->is_nmethod()) {
805            bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
806            if (!is_in_blob) {
807              cb->print();
808              fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc));
809            }
810            Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
811            // There is no handler here, so we will simply unwind.
812            return StubRoutines::throw_NullPointerException_at_call_entry();
813          }
814
815          // Otherwise, it's an nmethod.  Consult its exception handlers.
816          nmethod* nm = (nmethod*)cb;
817          if (nm->inlinecache_check_contains(pc)) {
818            // exception happened inside inline-cache check code
819            // => the nmethod is not yet active (i.e., the frame
820            // is not set up yet) => use return address pushed by
821            // caller => don't push another return address
822            Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
823            return StubRoutines::throw_NullPointerException_at_call_entry();
824          }
825
826          if (nm->method()->is_method_handle_intrinsic()) {
827            // exception happened inside MH dispatch code, similar to a vtable stub
828            Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
829            return StubRoutines::throw_NullPointerException_at_call_entry();
830          }
831
832#ifndef PRODUCT
833          _implicit_null_throws++;
834#endif
835          target_pc = nm->continuation_for_implicit_exception(pc);
836          // If there's an unexpected fault, target_pc might be NULL,
837          // in which case we want to fall through into the normal
838          // error handling code.
839        }
840
841        break; // fall through
842      }
843
844
845      case IMPLICIT_DIVIDE_BY_ZERO: {
846        nmethod* nm = CodeCache::find_nmethod(pc);
847        guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
848#ifndef PRODUCT
849        _implicit_div0_throws++;
850#endif
851        target_pc = nm->continuation_for_implicit_exception(pc);
852        // If there's an unexpected fault, target_pc might be NULL,
853        // in which case we want to fall through into the normal
854        // error handling code.
855        break; // fall through
856      }
857
858      default: ShouldNotReachHere();
859    }
860
861    assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
862
863    // for AbortVMOnException flag
864    NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
865    if (exception_kind == IMPLICIT_NULL) {
866      Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
867    } else {
868      Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
869    }
870    return target_pc;
871  }
872
873  ShouldNotReachHere();
874  return NULL;
875}
876
877
878/**
879 * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
880 * installed in the native function entry of all native Java methods before
881 * they get linked to their actual native methods.
882 *
883 * \note
884 * This method actually never gets called!  The reason is because
885 * the interpreter's native entries call NativeLookup::lookup() which
886 * throws the exception when the lookup fails.  The exception is then
887 * caught and forwarded on the return from NativeLookup::lookup() call
888 * before the call to the native function.  This might change in the future.
889 */
890JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
891{
892  // We return a bad value here to make sure that the exception is
893  // forwarded before we look at the return value.
894  THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
895}
896JNI_END
897
898address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
899  return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
900}
901
902
903#ifndef PRODUCT
904JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
905  const frame f = thread->last_frame();
906  assert(f.is_interpreted_frame(), "must be an interpreted frame");
907#ifndef PRODUCT
908  methodHandle mh(THREAD, f.interpreter_frame_method());
909  BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
910#endif // !PRODUCT
911  return preserve_this_value;
912JRT_END
913#endif // !PRODUCT
914
915JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
916  assert(obj->is_oop(), "must be a valid oop");
917  assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
918  InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
919JRT_END
920
921
922jlong SharedRuntime::get_java_tid(Thread* thread) {
923  if (thread != NULL) {
924    if (thread->is_Java_thread()) {
925      oop obj = ((JavaThread*)thread)->threadObj();
926      return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
927    }
928  }
929  return 0;
930}
931
932/**
933 * This function ought to be a void function, but cannot be because
934 * it gets turned into a tail-call on sparc, which runs into dtrace bug
935 * 6254741.  Once that is fixed we can remove the dummy return value.
936 */
937int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
938  return dtrace_object_alloc_base(Thread::current(), o, size);
939}
940
941int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
942  assert(DTraceAllocProbes, "wrong call");
943  Klass* klass = o->klass();
944  Symbol* name = klass->name();
945  HOTSPOT_OBJECT_ALLOC(
946                   get_java_tid(thread),
947                   (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
948  return 0;
949}
950
951JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
952    JavaThread* thread, Method* method))
953  assert(DTraceMethodProbes, "wrong call");
954  Symbol* kname = method->klass_name();
955  Symbol* name = method->name();
956  Symbol* sig = method->signature();
957  HOTSPOT_METHOD_ENTRY(
958      get_java_tid(thread),
959      (char *) kname->bytes(), kname->utf8_length(),
960      (char *) name->bytes(), name->utf8_length(),
961      (char *) sig->bytes(), sig->utf8_length());
962  return 0;
963JRT_END
964
965JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
966    JavaThread* thread, Method* method))
967  assert(DTraceMethodProbes, "wrong call");
968  Symbol* kname = method->klass_name();
969  Symbol* name = method->name();
970  Symbol* sig = method->signature();
971  HOTSPOT_METHOD_RETURN(
972      get_java_tid(thread),
973      (char *) kname->bytes(), kname->utf8_length(),
974      (char *) name->bytes(), name->utf8_length(),
975      (char *) sig->bytes(), sig->utf8_length());
976  return 0;
977JRT_END
978
979
980// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
981// for a call current in progress, i.e., arguments has been pushed on stack
982// put callee has not been invoked yet.  Used by: resolve virtual/static,
983// vtable updates, etc.  Caller frame must be compiled.
984Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
985  ResourceMark rm(THREAD);
986
987  // last java frame on stack (which includes native call frames)
988  vframeStream vfst(thread, true);  // Do not skip and javaCalls
989
990  return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
991}
992
993
994// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
995// for a call current in progress, i.e., arguments has been pushed on stack
996// but callee has not been invoked yet.  Caller frame must be compiled.
997Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
998                                              vframeStream& vfst,
999                                              Bytecodes::Code& bc,
1000                                              CallInfo& callinfo, TRAPS) {
1001  Handle receiver;
1002  Handle nullHandle;  //create a handy null handle for exception returns
1003
1004  assert(!vfst.at_end(), "Java frame must exist");
1005
1006  // Find caller and bci from vframe
1007  methodHandle caller(THREAD, vfst.method());
1008  int          bci   = vfst.bci();
1009
1010  // Find bytecode
1011  Bytecode_invoke bytecode(caller, bci);
1012  bc = bytecode.invoke_code();
1013  int bytecode_index = bytecode.index();
1014
1015  // Find receiver for non-static call
1016  if (bc != Bytecodes::_invokestatic &&
1017      bc != Bytecodes::_invokedynamic &&
1018      bc != Bytecodes::_invokehandle) {
1019    // This register map must be update since we need to find the receiver for
1020    // compiled frames. The receiver might be in a register.
1021    RegisterMap reg_map2(thread);
1022    frame stubFrame   = thread->last_frame();
1023    // Caller-frame is a compiled frame
1024    frame callerFrame = stubFrame.sender(&reg_map2);
1025
1026    methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1027    if (callee.is_null()) {
1028      THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1029    }
1030    // Retrieve from a compiled argument list
1031    receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1032
1033    if (receiver.is_null()) {
1034      THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1035    }
1036  }
1037
1038  // Resolve method. This is parameterized by bytecode.
1039  constantPoolHandle constants(THREAD, caller->constants());
1040  assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1041  LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1042
1043#ifdef ASSERT
1044  // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1045  if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
1046    assert(receiver.not_null(), "should have thrown exception");
1047    KlassHandle receiver_klass(THREAD, receiver->klass());
1048    Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1049                            // klass is already loaded
1050    KlassHandle static_receiver_klass(THREAD, rk);
1051    // Method handle invokes might have been optimized to a direct call
1052    // so don't check for the receiver class.
1053    // FIXME this weakens the assert too much
1054    methodHandle callee = callinfo.selected_method();
1055    assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1056           callee->is_method_handle_intrinsic() ||
1057           callee->is_compiled_lambda_form(),
1058           "actual receiver must be subclass of static receiver klass");
1059    if (receiver_klass->oop_is_instance()) {
1060      if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1061        tty->print_cr("ERROR: Klass not yet initialized!!");
1062        receiver_klass()->print();
1063      }
1064      assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1065    }
1066  }
1067#endif
1068
1069  return receiver;
1070}
1071
1072methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1073  ResourceMark rm(THREAD);
1074  // We need first to check if any Java activations (compiled, interpreted)
1075  // exist on the stack since last JavaCall.  If not, we need
1076  // to get the target method from the JavaCall wrapper.
1077  vframeStream vfst(thread, true);  // Do not skip any javaCalls
1078  methodHandle callee_method;
1079  if (vfst.at_end()) {
1080    // No Java frames were found on stack since we did the JavaCall.
1081    // Hence the stack can only contain an entry_frame.  We need to
1082    // find the target method from the stub frame.
1083    RegisterMap reg_map(thread, false);
1084    frame fr = thread->last_frame();
1085    assert(fr.is_runtime_frame(), "must be a runtimeStub");
1086    fr = fr.sender(&reg_map);
1087    assert(fr.is_entry_frame(), "must be");
1088    // fr is now pointing to the entry frame.
1089    callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1090    assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1091  } else {
1092    Bytecodes::Code bc;
1093    CallInfo callinfo;
1094    find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1095    callee_method = callinfo.selected_method();
1096  }
1097  assert(callee_method()->is_method(), "must be");
1098  return callee_method;
1099}
1100
1101// Resolves a call.
1102methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1103                                           bool is_virtual,
1104                                           bool is_optimized, TRAPS) {
1105  methodHandle callee_method;
1106  callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1107  if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1108    int retry_count = 0;
1109    while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1110           callee_method->method_holder() != SystemDictionary::Object_klass()) {
1111      // If has a pending exception then there is no need to re-try to
1112      // resolve this method.
1113      // If the method has been redefined, we need to try again.
1114      // Hack: we have no way to update the vtables of arrays, so don't
1115      // require that java.lang.Object has been updated.
1116
1117      // It is very unlikely that method is redefined more than 100 times
1118      // in the middle of resolve. If it is looping here more than 100 times
1119      // means then there could be a bug here.
1120      guarantee((retry_count++ < 100),
1121                "Could not resolve to latest version of redefined method");
1122      // method is redefined in the middle of resolve so re-try.
1123      callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1124    }
1125  }
1126  return callee_method;
1127}
1128
1129// Resolves a call.  The compilers generate code for calls that go here
1130// and are patched with the real destination of the call.
1131methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1132                                           bool is_virtual,
1133                                           bool is_optimized, TRAPS) {
1134
1135  ResourceMark rm(thread);
1136  RegisterMap cbl_map(thread, false);
1137  frame caller_frame = thread->last_frame().sender(&cbl_map);
1138
1139  CodeBlob* caller_cb = caller_frame.cb();
1140  guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1141  nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1142
1143  // make sure caller is not getting deoptimized
1144  // and removed before we are done with it.
1145  // CLEANUP - with lazy deopt shouldn't need this lock
1146  nmethodLocker caller_lock(caller_nm);
1147
1148  // determine call info & receiver
1149  // note: a) receiver is NULL for static calls
1150  //       b) an exception is thrown if receiver is NULL for non-static calls
1151  CallInfo call_info;
1152  Bytecodes::Code invoke_code = Bytecodes::_illegal;
1153  Handle receiver = find_callee_info(thread, invoke_code,
1154                                     call_info, CHECK_(methodHandle()));
1155  methodHandle callee_method = call_info.selected_method();
1156
1157  assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1158         (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1159         (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1160         ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1161
1162  assert(caller_nm->is_alive(), "It should be alive");
1163
1164#ifndef PRODUCT
1165  // tracing/debugging/statistics
1166  int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1167                (is_virtual) ? (&_resolve_virtual_ctr) :
1168                               (&_resolve_static_ctr);
1169  Atomic::inc(addr);
1170
1171  if (TraceCallFixup) {
1172    ResourceMark rm(thread);
1173    tty->print("resolving %s%s (%s) call to",
1174      (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1175      Bytecodes::name(invoke_code));
1176    callee_method->print_short_name(tty);
1177    tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
1178  }
1179#endif
1180
1181  // JSR 292 key invariant:
1182  // If the resolved method is a MethodHandle invoke target, the call
1183  // site must be a MethodHandle call site, because the lambda form might tail-call
1184  // leaving the stack in a state unknown to either caller or callee
1185  // TODO detune for now but we might need it again
1186//  assert(!callee_method->is_compiled_lambda_form() ||
1187//         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1188
1189  // Compute entry points. This might require generation of C2I converter
1190  // frames, so we cannot be holding any locks here. Furthermore, the
1191  // computation of the entry points is independent of patching the call.  We
1192  // always return the entry-point, but we only patch the stub if the call has
1193  // not been deoptimized.  Return values: For a virtual call this is an
1194  // (cached_oop, destination address) pair. For a static call/optimized
1195  // virtual this is just a destination address.
1196
1197  StaticCallInfo static_call_info;
1198  CompiledICInfo virtual_call_info;
1199
1200  // Make sure the callee nmethod does not get deoptimized and removed before
1201  // we are done patching the code.
1202  nmethod* callee_nm = callee_method->code();
1203  if (callee_nm != NULL && !callee_nm->is_in_use()) {
1204    // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1205    callee_nm = NULL;
1206  }
1207  nmethodLocker nl_callee(callee_nm);
1208#ifdef ASSERT
1209  address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1210#endif
1211
1212  if (is_virtual) {
1213    assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1214    bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1215    KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1216    CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1217                     is_optimized, static_bound, virtual_call_info,
1218                     CHECK_(methodHandle()));
1219  } else {
1220    // static call
1221    CompiledStaticCall::compute_entry(callee_method, static_call_info);
1222  }
1223
1224  // grab lock, check for deoptimization and potentially patch caller
1225  {
1226    MutexLocker ml_patch(CompiledIC_lock);
1227
1228    // Lock blocks for safepoint during which both nmethods can change state.
1229
1230    // Now that we are ready to patch if the Method* was redefined then
1231    // don't update call site and let the caller retry.
1232    // Don't update call site if callee nmethod was unloaded or deoptimized.
1233    // Don't update call site if callee nmethod was replaced by an other nmethod
1234    // which may happen when multiply alive nmethod (tiered compilation)
1235    // will be supported.
1236    if (!callee_method->is_old() &&
1237        (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
1238#ifdef ASSERT
1239      // We must not try to patch to jump to an already unloaded method.
1240      if (dest_entry_point != 0) {
1241        CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1242        assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
1243               "should not call unloaded nmethod");
1244      }
1245#endif
1246      if (is_virtual) {
1247        CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1248        if (inline_cache->is_clean()) {
1249          inline_cache->set_to_monomorphic(virtual_call_info);
1250        }
1251      } else {
1252        CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1253        if (ssc->is_clean()) ssc->set(static_call_info);
1254      }
1255    }
1256
1257  } // unlock CompiledIC_lock
1258
1259  return callee_method;
1260}
1261
1262
1263// Inline caches exist only in compiled code
1264JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1265#ifdef ASSERT
1266  RegisterMap reg_map(thread, false);
1267  frame stub_frame = thread->last_frame();
1268  assert(stub_frame.is_runtime_frame(), "sanity check");
1269  frame caller_frame = stub_frame.sender(&reg_map);
1270  assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1271#endif /* ASSERT */
1272
1273  methodHandle callee_method;
1274  JRT_BLOCK
1275    callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1276    // Return Method* through TLS
1277    thread->set_vm_result_2(callee_method());
1278  JRT_BLOCK_END
1279  // return compiled code entry point after potential safepoints
1280  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1281  return callee_method->verified_code_entry();
1282JRT_END
1283
1284
1285// Handle call site that has been made non-entrant
1286JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1287  // 6243940 We might end up in here if the callee is deoptimized
1288  // as we race to call it.  We don't want to take a safepoint if
1289  // the caller was interpreted because the caller frame will look
1290  // interpreted to the stack walkers and arguments are now
1291  // "compiled" so it is much better to make this transition
1292  // invisible to the stack walking code. The i2c path will
1293  // place the callee method in the callee_target. It is stashed
1294  // there because if we try and find the callee by normal means a
1295  // safepoint is possible and have trouble gc'ing the compiled args.
1296  RegisterMap reg_map(thread, false);
1297  frame stub_frame = thread->last_frame();
1298  assert(stub_frame.is_runtime_frame(), "sanity check");
1299  frame caller_frame = stub_frame.sender(&reg_map);
1300
1301  if (caller_frame.is_interpreted_frame() ||
1302      caller_frame.is_entry_frame()) {
1303    Method* callee = thread->callee_target();
1304    guarantee(callee != NULL && callee->is_method(), "bad handshake");
1305    thread->set_vm_result_2(callee);
1306    thread->set_callee_target(NULL);
1307    return callee->get_c2i_entry();
1308  }
1309
1310  // Must be compiled to compiled path which is safe to stackwalk
1311  methodHandle callee_method;
1312  JRT_BLOCK
1313    // Force resolving of caller (if we called from compiled frame)
1314    callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1315    thread->set_vm_result_2(callee_method());
1316  JRT_BLOCK_END
1317  // return compiled code entry point after potential safepoints
1318  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1319  return callee_method->verified_code_entry();
1320JRT_END
1321
1322// Handle abstract method call
1323JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1324  return StubRoutines::throw_AbstractMethodError_entry();
1325JRT_END
1326
1327
1328// resolve a static call and patch code
1329JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1330  methodHandle callee_method;
1331  JRT_BLOCK
1332    callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1333    thread->set_vm_result_2(callee_method());
1334  JRT_BLOCK_END
1335  // return compiled code entry point after potential safepoints
1336  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1337  return callee_method->verified_code_entry();
1338JRT_END
1339
1340
1341// resolve virtual call and update inline cache to monomorphic
1342JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1343  methodHandle callee_method;
1344  JRT_BLOCK
1345    callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1346    thread->set_vm_result_2(callee_method());
1347  JRT_BLOCK_END
1348  // return compiled code entry point after potential safepoints
1349  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1350  return callee_method->verified_code_entry();
1351JRT_END
1352
1353
1354// Resolve a virtual call that can be statically bound (e.g., always
1355// monomorphic, so it has no inline cache).  Patch code to resolved target.
1356JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1357  methodHandle callee_method;
1358  JRT_BLOCK
1359    callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1360    thread->set_vm_result_2(callee_method());
1361  JRT_BLOCK_END
1362  // return compiled code entry point after potential safepoints
1363  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1364  return callee_method->verified_code_entry();
1365JRT_END
1366
1367
1368
1369
1370
1371methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1372  ResourceMark rm(thread);
1373  CallInfo call_info;
1374  Bytecodes::Code bc;
1375
1376  // receiver is NULL for static calls. An exception is thrown for NULL
1377  // receivers for non-static calls
1378  Handle receiver = find_callee_info(thread, bc, call_info,
1379                                     CHECK_(methodHandle()));
1380  // Compiler1 can produce virtual call sites that can actually be statically bound
1381  // If we fell thru to below we would think that the site was going megamorphic
1382  // when in fact the site can never miss. Worse because we'd think it was megamorphic
1383  // we'd try and do a vtable dispatch however methods that can be statically bound
1384  // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1385  // reresolution of the  call site (as if we did a handle_wrong_method and not an
1386  // plain ic_miss) and the site will be converted to an optimized virtual call site
1387  // never to miss again. I don't believe C2 will produce code like this but if it
1388  // did this would still be the correct thing to do for it too, hence no ifdef.
1389  //
1390  if (call_info.resolved_method()->can_be_statically_bound()) {
1391    methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1392    if (TraceCallFixup) {
1393      RegisterMap reg_map(thread, false);
1394      frame caller_frame = thread->last_frame().sender(&reg_map);
1395      ResourceMark rm(thread);
1396      tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1397      callee_method->print_short_name(tty);
1398      tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1399      tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1400    }
1401    return callee_method;
1402  }
1403
1404  methodHandle callee_method = call_info.selected_method();
1405
1406  bool should_be_mono = false;
1407
1408#ifndef PRODUCT
1409  Atomic::inc(&_ic_miss_ctr);
1410
1411  // Statistics & Tracing
1412  if (TraceCallFixup) {
1413    ResourceMark rm(thread);
1414    tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1415    callee_method->print_short_name(tty);
1416    tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1417  }
1418
1419  if (ICMissHistogram) {
1420    MutexLocker m(VMStatistic_lock);
1421    RegisterMap reg_map(thread, false);
1422    frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1423    // produce statistics under the lock
1424    trace_ic_miss(f.pc());
1425  }
1426#endif
1427
1428  // install an event collector so that when a vtable stub is created the
1429  // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1430  // event can't be posted when the stub is created as locks are held
1431  // - instead the event will be deferred until the event collector goes
1432  // out of scope.
1433  JvmtiDynamicCodeEventCollector event_collector;
1434
1435  // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1436  { MutexLocker ml_patch (CompiledIC_lock);
1437    RegisterMap reg_map(thread, false);
1438    frame caller_frame = thread->last_frame().sender(&reg_map);
1439    CodeBlob* cb = caller_frame.cb();
1440    if (cb->is_nmethod()) {
1441      CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1442      bool should_be_mono = false;
1443      if (inline_cache->is_optimized()) {
1444        if (TraceCallFixup) {
1445          ResourceMark rm(thread);
1446          tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1447          callee_method->print_short_name(tty);
1448          tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1449        }
1450        should_be_mono = true;
1451      } else if (inline_cache->is_icholder_call()) {
1452        CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1453        if (ic_oop != NULL) {
1454
1455          if (receiver()->klass() == ic_oop->holder_klass()) {
1456            // This isn't a real miss. We must have seen that compiled code
1457            // is now available and we want the call site converted to a
1458            // monomorphic compiled call site.
1459            // We can't assert for callee_method->code() != NULL because it
1460            // could have been deoptimized in the meantime
1461            if (TraceCallFixup) {
1462              ResourceMark rm(thread);
1463              tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1464              callee_method->print_short_name(tty);
1465              tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1466            }
1467            should_be_mono = true;
1468          }
1469        }
1470      }
1471
1472      if (should_be_mono) {
1473
1474        // We have a path that was monomorphic but was going interpreted
1475        // and now we have (or had) a compiled entry. We correct the IC
1476        // by using a new icBuffer.
1477        CompiledICInfo info;
1478        KlassHandle receiver_klass(THREAD, receiver()->klass());
1479        inline_cache->compute_monomorphic_entry(callee_method,
1480                                                receiver_klass,
1481                                                inline_cache->is_optimized(),
1482                                                false,
1483                                                info, CHECK_(methodHandle()));
1484        inline_cache->set_to_monomorphic(info);
1485      } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1486        // Potential change to megamorphic
1487        bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1488        if (!successful) {
1489          inline_cache->set_to_clean();
1490        }
1491      } else {
1492        // Either clean or megamorphic
1493      }
1494    }
1495  } // Release CompiledIC_lock
1496
1497  return callee_method;
1498}
1499
1500//
1501// Resets a call-site in compiled code so it will get resolved again.
1502// This routines handles both virtual call sites, optimized virtual call
1503// sites, and static call sites. Typically used to change a call sites
1504// destination from compiled to interpreted.
1505//
1506methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1507  ResourceMark rm(thread);
1508  RegisterMap reg_map(thread, false);
1509  frame stub_frame = thread->last_frame();
1510  assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1511  frame caller = stub_frame.sender(&reg_map);
1512
1513  // Do nothing if the frame isn't a live compiled frame.
1514  // nmethod could be deoptimized by the time we get here
1515  // so no update to the caller is needed.
1516
1517  if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1518
1519    address pc = caller.pc();
1520
1521    // Default call_addr is the location of the "basic" call.
1522    // Determine the address of the call we a reresolving. With
1523    // Inline Caches we will always find a recognizable call.
1524    // With Inline Caches disabled we may or may not find a
1525    // recognizable call. We will always find a call for static
1526    // calls and for optimized virtual calls. For vanilla virtual
1527    // calls it depends on the state of the UseInlineCaches switch.
1528    //
1529    // With Inline Caches disabled we can get here for a virtual call
1530    // for two reasons:
1531    //   1 - calling an abstract method. The vtable for abstract methods
1532    //       will run us thru handle_wrong_method and we will eventually
1533    //       end up in the interpreter to throw the ame.
1534    //   2 - a racing deoptimization. We could be doing a vanilla vtable
1535    //       call and between the time we fetch the entry address and
1536    //       we jump to it the target gets deoptimized. Similar to 1
1537    //       we will wind up in the interprter (thru a c2i with c2).
1538    //
1539    address call_addr = NULL;
1540    {
1541      // Get call instruction under lock because another thread may be
1542      // busy patching it.
1543      MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1544      // Location of call instruction
1545      if (NativeCall::is_call_before(pc)) {
1546        NativeCall *ncall = nativeCall_before(pc);
1547        call_addr = ncall->instruction_address();
1548      }
1549    }
1550
1551    // Check for static or virtual call
1552    bool is_static_call = false;
1553    nmethod* caller_nm = CodeCache::find_nmethod(pc);
1554    // Make sure nmethod doesn't get deoptimized and removed until
1555    // this is done with it.
1556    // CLEANUP - with lazy deopt shouldn't need this lock
1557    nmethodLocker nmlock(caller_nm);
1558
1559    if (call_addr != NULL) {
1560      RelocIterator iter(caller_nm, call_addr, call_addr+1);
1561      int ret = iter.next(); // Get item
1562      if (ret) {
1563        assert(iter.addr() == call_addr, "must find call");
1564        if (iter.type() == relocInfo::static_call_type) {
1565          is_static_call = true;
1566        } else {
1567          assert(iter.type() == relocInfo::virtual_call_type ||
1568                 iter.type() == relocInfo::opt_virtual_call_type
1569                , "unexpected relocInfo. type");
1570        }
1571      } else {
1572        assert(!UseInlineCaches, "relocation info. must exist for this address");
1573      }
1574
1575      // Cleaning the inline cache will force a new resolve. This is more robust
1576      // than directly setting it to the new destination, since resolving of calls
1577      // is always done through the same code path. (experience shows that it
1578      // leads to very hard to track down bugs, if an inline cache gets updated
1579      // to a wrong method). It should not be performance critical, since the
1580      // resolve is only done once.
1581
1582      MutexLocker ml(CompiledIC_lock);
1583      if (is_static_call) {
1584        CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1585        ssc->set_to_clean();
1586      } else {
1587        // compiled, dispatched call (which used to call an interpreted method)
1588        CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1589        inline_cache->set_to_clean();
1590      }
1591    }
1592
1593  }
1594
1595  methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1596
1597
1598#ifndef PRODUCT
1599  Atomic::inc(&_wrong_method_ctr);
1600
1601  if (TraceCallFixup) {
1602    ResourceMark rm(thread);
1603    tty->print("handle_wrong_method reresolving call to");
1604    callee_method->print_short_name(tty);
1605    tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1606  }
1607#endif
1608
1609  return callee_method;
1610}
1611
1612#ifdef ASSERT
1613void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
1614                                                                const BasicType* sig_bt,
1615                                                                const VMRegPair* regs) {
1616  ResourceMark rm;
1617  const int total_args_passed = method->size_of_parameters();
1618  const VMRegPair*    regs_with_member_name = regs;
1619        VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1620
1621  const int member_arg_pos = total_args_passed - 1;
1622  assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1623  assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1624
1625  const bool is_outgoing = method->is_method_handle_intrinsic();
1626  int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1627
1628  for (int i = 0; i < member_arg_pos; i++) {
1629    VMReg a =    regs_with_member_name[i].first();
1630    VMReg b = regs_without_member_name[i].first();
1631    assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
1632  }
1633  assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1634}
1635#endif
1636
1637// ---------------------------------------------------------------------------
1638// We are calling the interpreter via a c2i. Normally this would mean that
1639// we were called by a compiled method. However we could have lost a race
1640// where we went int -> i2c -> c2i and so the caller could in fact be
1641// interpreted. If the caller is compiled we attempt to patch the caller
1642// so he no longer calls into the interpreter.
1643IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1644  Method* moop(method);
1645
1646  address entry_point = moop->from_compiled_entry();
1647
1648  // It's possible that deoptimization can occur at a call site which hasn't
1649  // been resolved yet, in which case this function will be called from
1650  // an nmethod that has been patched for deopt and we can ignore the
1651  // request for a fixup.
1652  // Also it is possible that we lost a race in that from_compiled_entry
1653  // is now back to the i2c in that case we don't need to patch and if
1654  // we did we'd leap into space because the callsite needs to use
1655  // "to interpreter" stub in order to load up the Method*. Don't
1656  // ask me how I know this...
1657
1658  CodeBlob* cb = CodeCache::find_blob(caller_pc);
1659  if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1660    return;
1661  }
1662
1663  // The check above makes sure this is a nmethod.
1664  nmethod* nm = cb->as_nmethod_or_null();
1665  assert(nm, "must be");
1666
1667  // Get the return PC for the passed caller PC.
1668  address return_pc = caller_pc + frame::pc_return_offset;
1669
1670  // There is a benign race here. We could be attempting to patch to a compiled
1671  // entry point at the same time the callee is being deoptimized. If that is
1672  // the case then entry_point may in fact point to a c2i and we'd patch the
1673  // call site with the same old data. clear_code will set code() to NULL
1674  // at the end of it. If we happen to see that NULL then we can skip trying
1675  // to patch. If we hit the window where the callee has a c2i in the
1676  // from_compiled_entry and the NULL isn't present yet then we lose the race
1677  // and patch the code with the same old data. Asi es la vida.
1678
1679  if (moop->code() == NULL) return;
1680
1681  if (nm->is_in_use()) {
1682
1683    // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1684    MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1685    if (NativeCall::is_call_before(return_pc)) {
1686      NativeCall *call = nativeCall_before(return_pc);
1687      //
1688      // bug 6281185. We might get here after resolving a call site to a vanilla
1689      // virtual call. Because the resolvee uses the verified entry it may then
1690      // see compiled code and attempt to patch the site by calling us. This would
1691      // then incorrectly convert the call site to optimized and its downhill from
1692      // there. If you're lucky you'll get the assert in the bugid, if not you've
1693      // just made a call site that could be megamorphic into a monomorphic site
1694      // for the rest of its life! Just another racing bug in the life of
1695      // fixup_callers_callsite ...
1696      //
1697      RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1698      iter.next();
1699      assert(iter.has_current(), "must have a reloc at java call site");
1700      relocInfo::relocType typ = iter.reloc()->type();
1701      if (typ != relocInfo::static_call_type &&
1702           typ != relocInfo::opt_virtual_call_type &&
1703           typ != relocInfo::static_stub_type) {
1704        return;
1705      }
1706      address destination = call->destination();
1707      if (destination != entry_point) {
1708        CodeBlob* callee = CodeCache::find_blob(destination);
1709        // callee == cb seems weird. It means calling interpreter thru stub.
1710        if (callee == cb || callee->is_adapter_blob()) {
1711          // static call or optimized virtual
1712          if (TraceCallFixup) {
1713            tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1714            moop->print_short_name(tty);
1715            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1716          }
1717          call->set_destination_mt_safe(entry_point);
1718        } else {
1719          if (TraceCallFixup) {
1720            tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1721            moop->print_short_name(tty);
1722            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1723          }
1724          // assert is too strong could also be resolve destinations.
1725          // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1726        }
1727      } else {
1728          if (TraceCallFixup) {
1729            tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1730            moop->print_short_name(tty);
1731            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1732          }
1733      }
1734    }
1735  }
1736IRT_END
1737
1738
1739// same as JVM_Arraycopy, but called directly from compiled code
1740JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1741                                                oopDesc* dest, jint dest_pos,
1742                                                jint length,
1743                                                JavaThread* thread)) {
1744#ifndef PRODUCT
1745  _slow_array_copy_ctr++;
1746#endif
1747  // Check if we have null pointers
1748  if (src == NULL || dest == NULL) {
1749    THROW(vmSymbols::java_lang_NullPointerException());
1750  }
1751  // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1752  // even though the copy_array API also performs dynamic checks to ensure
1753  // that src and dest are truly arrays (and are conformable).
1754  // The copy_array mechanism is awkward and could be removed, but
1755  // the compilers don't call this function except as a last resort,
1756  // so it probably doesn't matter.
1757  src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1758                                        (arrayOopDesc*)dest, dest_pos,
1759                                        length, thread);
1760}
1761JRT_END
1762
1763char* SharedRuntime::generate_class_cast_message(
1764    JavaThread* thread, const char* objName) {
1765
1766  // Get target class name from the checkcast instruction
1767  vframeStream vfst(thread, true);
1768  assert(!vfst.at_end(), "Java frame must exist");
1769  Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1770  Klass* targetKlass = vfst.method()->constants()->klass_at(
1771    cc.index(), thread);
1772  return generate_class_cast_message(objName, targetKlass->external_name());
1773}
1774
1775char* SharedRuntime::generate_class_cast_message(
1776    const char* objName, const char* targetKlassName, const char* desc) {
1777  size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1778
1779  char* message = NEW_RESOURCE_ARRAY(char, msglen);
1780  if (NULL == message) {
1781    // Shouldn't happen, but don't cause even more problems if it does
1782    message = const_cast<char*>(objName);
1783  } else {
1784    jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1785  }
1786  return message;
1787}
1788
1789JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1790  (void) JavaThread::current()->reguard_stack();
1791JRT_END
1792
1793
1794// Handles the uncommon case in locking, i.e., contention or an inflated lock.
1795JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1796  // Disable ObjectSynchronizer::quick_enter() in default config
1797  // until JDK-8077392 is resolved.
1798  if ((SyncFlags & 256) != 0 && !SafepointSynchronize::is_synchronizing()) {
1799    // Only try quick_enter() if we're not trying to reach a safepoint
1800    // so that the calling thread reaches the safepoint more quickly.
1801    if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
1802  }
1803  // NO_ASYNC required because an async exception on the state transition destructor
1804  // would leave you with the lock held and it would never be released.
1805  // The normal monitorenter NullPointerException is thrown without acquiring a lock
1806  // and the model is that an exception implies the method failed.
1807  JRT_BLOCK_NO_ASYNC
1808  oop obj(_obj);
1809  if (PrintBiasedLockingStatistics) {
1810    Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1811  }
1812  Handle h_obj(THREAD, obj);
1813  if (UseBiasedLocking) {
1814    // Retry fast entry if bias is revoked to avoid unnecessary inflation
1815    ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1816  } else {
1817    ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1818  }
1819  assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1820  JRT_BLOCK_END
1821JRT_END
1822
1823// Handles the uncommon cases of monitor unlocking in compiled code
1824JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
1825   oop obj(_obj);
1826  assert(JavaThread::current() == THREAD, "invariant");
1827  // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1828  // testing was unable to ever fire the assert that guarded it so I have removed it.
1829  assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1830#undef MIGHT_HAVE_PENDING
1831#ifdef MIGHT_HAVE_PENDING
1832  // Save and restore any pending_exception around the exception mark.
1833  // While the slow_exit must not throw an exception, we could come into
1834  // this routine with one set.
1835  oop pending_excep = NULL;
1836  const char* pending_file;
1837  int pending_line;
1838  if (HAS_PENDING_EXCEPTION) {
1839    pending_excep = PENDING_EXCEPTION;
1840    pending_file  = THREAD->exception_file();
1841    pending_line  = THREAD->exception_line();
1842    CLEAR_PENDING_EXCEPTION;
1843  }
1844#endif /* MIGHT_HAVE_PENDING */
1845
1846  {
1847    // Exit must be non-blocking, and therefore no exceptions can be thrown.
1848    EXCEPTION_MARK;
1849    ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1850  }
1851
1852#ifdef MIGHT_HAVE_PENDING
1853  if (pending_excep != NULL) {
1854    THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1855  }
1856#endif /* MIGHT_HAVE_PENDING */
1857JRT_END
1858
1859#ifndef PRODUCT
1860
1861void SharedRuntime::print_statistics() {
1862  ttyLocker ttyl;
1863  if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1864
1865  if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1866
1867  SharedRuntime::print_ic_miss_histogram();
1868
1869  if (CountRemovableExceptions) {
1870    if (_nof_removable_exceptions > 0) {
1871      Unimplemented(); // this counter is not yet incremented
1872      tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1873    }
1874  }
1875
1876  // Dump the JRT_ENTRY counters
1877  if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1878  if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1879  if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1880  if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1881  if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1882  if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1883  if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1884
1885  tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
1886  tty->print_cr("%5d wrong method", _wrong_method_ctr);
1887  tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
1888  tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
1889  tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
1890
1891  if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
1892  if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
1893  if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
1894  if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
1895  if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
1896  if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
1897  if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
1898  if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
1899  if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
1900  if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
1901  if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
1902  if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
1903  if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
1904  if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
1905  if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
1906  if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
1907
1908  AdapterHandlerLibrary::print_statistics();
1909
1910  if (xtty != NULL)  xtty->tail("statistics");
1911}
1912
1913inline double percent(int x, int y) {
1914  return 100.0 * x / MAX2(y, 1);
1915}
1916
1917class MethodArityHistogram {
1918 public:
1919  enum { MAX_ARITY = 256 };
1920 private:
1921  static int _arity_histogram[MAX_ARITY];     // histogram of #args
1922  static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1923  static int _max_arity;                      // max. arity seen
1924  static int _max_size;                       // max. arg size seen
1925
1926  static void add_method_to_histogram(nmethod* nm) {
1927    Method* m = nm->method();
1928    ArgumentCount args(m->signature());
1929    int arity   = args.size() + (m->is_static() ? 0 : 1);
1930    int argsize = m->size_of_parameters();
1931    arity   = MIN2(arity, MAX_ARITY-1);
1932    argsize = MIN2(argsize, MAX_ARITY-1);
1933    int count = nm->method()->compiled_invocation_count();
1934    _arity_histogram[arity]  += count;
1935    _size_histogram[argsize] += count;
1936    _max_arity = MAX2(_max_arity, arity);
1937    _max_size  = MAX2(_max_size, argsize);
1938  }
1939
1940  void print_histogram_helper(int n, int* histo, const char* name) {
1941    const int N = MIN2(5, n);
1942    tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1943    double sum = 0;
1944    double weighted_sum = 0;
1945    int i;
1946    for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1947    double rest = sum;
1948    double percent = sum / 100;
1949    for (i = 0; i <= N; i++) {
1950      rest -= histo[i];
1951      tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1952    }
1953    tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1954    tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1955  }
1956
1957  void print_histogram() {
1958    tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1959    print_histogram_helper(_max_arity, _arity_histogram, "arity");
1960    tty->print_cr("\nSame for parameter size (in words):");
1961    print_histogram_helper(_max_size, _size_histogram, "size");
1962    tty->cr();
1963  }
1964
1965 public:
1966  MethodArityHistogram() {
1967    MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1968    _max_arity = _max_size = 0;
1969    for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
1970    CodeCache::nmethods_do(add_method_to_histogram);
1971    print_histogram();
1972  }
1973};
1974
1975int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
1976int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
1977int MethodArityHistogram::_max_arity;
1978int MethodArityHistogram::_max_size;
1979
1980void SharedRuntime::print_call_statistics(int comp_total) {
1981  tty->print_cr("Calls from compiled code:");
1982  int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
1983  int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
1984  int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
1985  tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
1986  tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
1987  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
1988  tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
1989  tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
1990  tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
1991  tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
1992  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
1993  tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
1994  tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
1995  tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
1996  tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
1997  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
1998  tty->cr();
1999  tty->print_cr("Note 1: counter updates are not MT-safe.");
2000  tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2001  tty->print_cr("        %% in nested categories are relative to their category");
2002  tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2003  tty->cr();
2004
2005  MethodArityHistogram h;
2006}
2007#endif
2008
2009
2010// A simple wrapper class around the calling convention information
2011// that allows sharing of adapters for the same calling convention.
2012class AdapterFingerPrint : public CHeapObj<mtCode> {
2013 private:
2014  enum {
2015    _basic_type_bits = 4,
2016    _basic_type_mask = right_n_bits(_basic_type_bits),
2017    _basic_types_per_int = BitsPerInt / _basic_type_bits,
2018    _compact_int_count = 3
2019  };
2020  // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2021  // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2022
2023  union {
2024    int  _compact[_compact_int_count];
2025    int* _fingerprint;
2026  } _value;
2027  int _length; // A negative length indicates the fingerprint is in the compact form,
2028               // Otherwise _value._fingerprint is the array.
2029
2030  // Remap BasicTypes that are handled equivalently by the adapters.
2031  // These are correct for the current system but someday it might be
2032  // necessary to make this mapping platform dependent.
2033  static int adapter_encoding(BasicType in) {
2034    switch (in) {
2035      case T_BOOLEAN:
2036      case T_BYTE:
2037      case T_SHORT:
2038      case T_CHAR:
2039        // There are all promoted to T_INT in the calling convention
2040        return T_INT;
2041
2042      case T_OBJECT:
2043      case T_ARRAY:
2044        // In other words, we assume that any register good enough for
2045        // an int or long is good enough for a managed pointer.
2046#ifdef _LP64
2047        return T_LONG;
2048#else
2049        return T_INT;
2050#endif
2051
2052      case T_INT:
2053      case T_LONG:
2054      case T_FLOAT:
2055      case T_DOUBLE:
2056      case T_VOID:
2057        return in;
2058
2059      default:
2060        ShouldNotReachHere();
2061        return T_CONFLICT;
2062    }
2063  }
2064
2065 public:
2066  AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2067    // The fingerprint is based on the BasicType signature encoded
2068    // into an array of ints with eight entries per int.
2069    int* ptr;
2070    int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2071    if (len <= _compact_int_count) {
2072      assert(_compact_int_count == 3, "else change next line");
2073      _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2074      // Storing the signature encoded as signed chars hits about 98%
2075      // of the time.
2076      _length = -len;
2077      ptr = _value._compact;
2078    } else {
2079      _length = len;
2080      _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2081      ptr = _value._fingerprint;
2082    }
2083
2084    // Now pack the BasicTypes with 8 per int
2085    int sig_index = 0;
2086    for (int index = 0; index < len; index++) {
2087      int value = 0;
2088      for (int byte = 0; byte < _basic_types_per_int; byte++) {
2089        int bt = ((sig_index < total_args_passed)
2090                  ? adapter_encoding(sig_bt[sig_index++])
2091                  : 0);
2092        assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2093        value = (value << _basic_type_bits) | bt;
2094      }
2095      ptr[index] = value;
2096    }
2097  }
2098
2099  ~AdapterFingerPrint() {
2100    if (_length > 0) {
2101      FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2102    }
2103  }
2104
2105  int value(int index) {
2106    if (_length < 0) {
2107      return _value._compact[index];
2108    }
2109    return _value._fingerprint[index];
2110  }
2111  int length() {
2112    if (_length < 0) return -_length;
2113    return _length;
2114  }
2115
2116  bool is_compact() {
2117    return _length <= 0;
2118  }
2119
2120  unsigned int compute_hash() {
2121    int hash = 0;
2122    for (int i = 0; i < length(); i++) {
2123      int v = value(i);
2124      hash = (hash << 8) ^ v ^ (hash >> 5);
2125    }
2126    return (unsigned int)hash;
2127  }
2128
2129  const char* as_string() {
2130    stringStream st;
2131    st.print("0x");
2132    for (int i = 0; i < length(); i++) {
2133      st.print("%08x", value(i));
2134    }
2135    return st.as_string();
2136  }
2137
2138  bool equals(AdapterFingerPrint* other) {
2139    if (other->_length != _length) {
2140      return false;
2141    }
2142    if (_length < 0) {
2143      assert(_compact_int_count == 3, "else change next line");
2144      return _value._compact[0] == other->_value._compact[0] &&
2145             _value._compact[1] == other->_value._compact[1] &&
2146             _value._compact[2] == other->_value._compact[2];
2147    } else {
2148      for (int i = 0; i < _length; i++) {
2149        if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2150          return false;
2151        }
2152      }
2153    }
2154    return true;
2155  }
2156};
2157
2158
2159// A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2160class AdapterHandlerTable : public BasicHashtable<mtCode> {
2161  friend class AdapterHandlerTableIterator;
2162
2163 private:
2164
2165#ifndef PRODUCT
2166  static int _lookups; // number of calls to lookup
2167  static int _buckets; // number of buckets checked
2168  static int _equals;  // number of buckets checked with matching hash
2169  static int _hits;    // number of successful lookups
2170  static int _compact; // number of equals calls with compact signature
2171#endif
2172
2173  AdapterHandlerEntry* bucket(int i) {
2174    return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2175  }
2176
2177 public:
2178  AdapterHandlerTable()
2179    : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2180
2181  // Create a new entry suitable for insertion in the table
2182  AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2183    AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2184    entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2185    return entry;
2186  }
2187
2188  // Insert an entry into the table
2189  void add(AdapterHandlerEntry* entry) {
2190    int index = hash_to_index(entry->hash());
2191    add_entry(index, entry);
2192  }
2193
2194  void free_entry(AdapterHandlerEntry* entry) {
2195    entry->deallocate();
2196    BasicHashtable<mtCode>::free_entry(entry);
2197  }
2198
2199  // Find a entry with the same fingerprint if it exists
2200  AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2201    NOT_PRODUCT(_lookups++);
2202    AdapterFingerPrint fp(total_args_passed, sig_bt);
2203    unsigned int hash = fp.compute_hash();
2204    int index = hash_to_index(hash);
2205    for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2206      NOT_PRODUCT(_buckets++);
2207      if (e->hash() == hash) {
2208        NOT_PRODUCT(_equals++);
2209        if (fp.equals(e->fingerprint())) {
2210#ifndef PRODUCT
2211          if (fp.is_compact()) _compact++;
2212          _hits++;
2213#endif
2214          return e;
2215        }
2216      }
2217    }
2218    return NULL;
2219  }
2220
2221#ifndef PRODUCT
2222  void print_statistics() {
2223    ResourceMark rm;
2224    int longest = 0;
2225    int empty = 0;
2226    int total = 0;
2227    int nonempty = 0;
2228    for (int index = 0; index < table_size(); index++) {
2229      int count = 0;
2230      for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2231        count++;
2232      }
2233      if (count != 0) nonempty++;
2234      if (count == 0) empty++;
2235      if (count > longest) longest = count;
2236      total += count;
2237    }
2238    tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2239                  empty, longest, total, total / (double)nonempty);
2240    tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2241                  _lookups, _buckets, _equals, _hits, _compact);
2242  }
2243#endif
2244};
2245
2246
2247#ifndef PRODUCT
2248
2249int AdapterHandlerTable::_lookups;
2250int AdapterHandlerTable::_buckets;
2251int AdapterHandlerTable::_equals;
2252int AdapterHandlerTable::_hits;
2253int AdapterHandlerTable::_compact;
2254
2255#endif
2256
2257class AdapterHandlerTableIterator : public StackObj {
2258 private:
2259  AdapterHandlerTable* _table;
2260  int _index;
2261  AdapterHandlerEntry* _current;
2262
2263  void scan() {
2264    while (_index < _table->table_size()) {
2265      AdapterHandlerEntry* a = _table->bucket(_index);
2266      _index++;
2267      if (a != NULL) {
2268        _current = a;
2269        return;
2270      }
2271    }
2272  }
2273
2274 public:
2275  AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2276    scan();
2277  }
2278  bool has_next() {
2279    return _current != NULL;
2280  }
2281  AdapterHandlerEntry* next() {
2282    if (_current != NULL) {
2283      AdapterHandlerEntry* result = _current;
2284      _current = _current->next();
2285      if (_current == NULL) scan();
2286      return result;
2287    } else {
2288      return NULL;
2289    }
2290  }
2291};
2292
2293
2294// ---------------------------------------------------------------------------
2295// Implementation of AdapterHandlerLibrary
2296AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2297AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2298const int AdapterHandlerLibrary_size = 16*K;
2299BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2300
2301BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2302  // Should be called only when AdapterHandlerLibrary_lock is active.
2303  if (_buffer == NULL) // Initialize lazily
2304      _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2305  return _buffer;
2306}
2307
2308void AdapterHandlerLibrary::initialize() {
2309  if (_adapters != NULL) return;
2310  _adapters = new AdapterHandlerTable();
2311
2312  // Create a special handler for abstract methods.  Abstract methods
2313  // are never compiled so an i2c entry is somewhat meaningless, but
2314  // throw AbstractMethodError just in case.
2315  // Pass wrong_method_abstract for the c2i transitions to return
2316  // AbstractMethodError for invalid invocations.
2317  address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2318  _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2319                                                              StubRoutines::throw_AbstractMethodError_entry(),
2320                                                              wrong_method_abstract, wrong_method_abstract);
2321}
2322
2323AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2324                                                      address i2c_entry,
2325                                                      address c2i_entry,
2326                                                      address c2i_unverified_entry) {
2327  return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2328}
2329
2330AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2331  // Use customized signature handler.  Need to lock around updates to
2332  // the AdapterHandlerTable (it is not safe for concurrent readers
2333  // and a single writer: this could be fixed if it becomes a
2334  // problem).
2335
2336  // Get the address of the ic_miss handlers before we grab the
2337  // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2338  // was caused by the initialization of the stubs happening
2339  // while we held the lock and then notifying jvmti while
2340  // holding it. This just forces the initialization to be a little
2341  // earlier.
2342  address ic_miss = SharedRuntime::get_ic_miss_stub();
2343  assert(ic_miss != NULL, "must have handler");
2344
2345  ResourceMark rm;
2346
2347  NOT_PRODUCT(int insts_size);
2348  AdapterBlob* new_adapter = NULL;
2349  AdapterHandlerEntry* entry = NULL;
2350  AdapterFingerPrint* fingerprint = NULL;
2351  {
2352    MutexLocker mu(AdapterHandlerLibrary_lock);
2353    // make sure data structure is initialized
2354    initialize();
2355
2356    if (method->is_abstract()) {
2357      return _abstract_method_handler;
2358    }
2359
2360    // Fill in the signature array, for the calling-convention call.
2361    int total_args_passed = method->size_of_parameters(); // All args on stack
2362
2363    BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2364    VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2365    int i = 0;
2366    if (!method->is_static())  // Pass in receiver first
2367      sig_bt[i++] = T_OBJECT;
2368    for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2369      sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2370      if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2371        sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2372    }
2373    assert(i == total_args_passed, "");
2374
2375    // Lookup method signature's fingerprint
2376    entry = _adapters->lookup(total_args_passed, sig_bt);
2377
2378#ifdef ASSERT
2379    AdapterHandlerEntry* shared_entry = NULL;
2380    // Start adapter sharing verification only after the VM is booted.
2381    if (VerifyAdapterSharing && (entry != NULL)) {
2382      shared_entry = entry;
2383      entry = NULL;
2384    }
2385#endif
2386
2387    if (entry != NULL) {
2388      return entry;
2389    }
2390
2391    // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2392    int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2393
2394    // Make a C heap allocated version of the fingerprint to store in the adapter
2395    fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2396
2397    // StubRoutines::code2() is initialized after this function can be called. As a result,
2398    // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2399    // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2400    // stub that ensure that an I2C stub is called from an interpreter frame.
2401    bool contains_all_checks = StubRoutines::code2() != NULL;
2402
2403    // Create I2C & C2I handlers
2404    BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2405    if (buf != NULL) {
2406      CodeBuffer buffer(buf);
2407      short buffer_locs[20];
2408      buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2409                                             sizeof(buffer_locs)/sizeof(relocInfo));
2410
2411      MacroAssembler _masm(&buffer);
2412      entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2413                                                     total_args_passed,
2414                                                     comp_args_on_stack,
2415                                                     sig_bt,
2416                                                     regs,
2417                                                     fingerprint);
2418#ifdef ASSERT
2419      if (VerifyAdapterSharing) {
2420        if (shared_entry != NULL) {
2421          assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2422          // Release the one just created and return the original
2423          _adapters->free_entry(entry);
2424          return shared_entry;
2425        } else  {
2426          entry->save_code(buf->code_begin(), buffer.insts_size());
2427        }
2428      }
2429#endif
2430
2431      new_adapter = AdapterBlob::create(&buffer);
2432      NOT_PRODUCT(insts_size = buffer.insts_size());
2433    }
2434    if (new_adapter == NULL) {
2435      // CodeCache is full, disable compilation
2436      // Ought to log this but compile log is only per compile thread
2437      // and we're some non descript Java thread.
2438      return NULL; // Out of CodeCache space
2439    }
2440    entry->relocate(new_adapter->content_begin());
2441#ifndef PRODUCT
2442    // debugging suppport
2443    if (PrintAdapterHandlers || PrintStubCode) {
2444      ttyLocker ttyl;
2445      entry->print_adapter_on(tty);
2446      tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2447                    _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2448                    method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2449      tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2450      if (Verbose || PrintStubCode) {
2451        address first_pc = entry->base_address();
2452        if (first_pc != NULL) {
2453          Disassembler::decode(first_pc, first_pc + insts_size);
2454          tty->cr();
2455        }
2456      }
2457    }
2458#endif
2459    // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2460    // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2461    if (contains_all_checks || !VerifyAdapterCalls) {
2462      _adapters->add(entry);
2463    }
2464  }
2465  // Outside of the lock
2466  if (new_adapter != NULL) {
2467    char blob_id[256];
2468    jio_snprintf(blob_id,
2469                 sizeof(blob_id),
2470                 "%s(%s)@" PTR_FORMAT,
2471                 new_adapter->name(),
2472                 fingerprint->as_string(),
2473                 new_adapter->content_begin());
2474    Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2475
2476    if (JvmtiExport::should_post_dynamic_code_generated()) {
2477      JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2478    }
2479  }
2480  return entry;
2481}
2482
2483address AdapterHandlerEntry::base_address() {
2484  address base = _i2c_entry;
2485  if (base == NULL)  base = _c2i_entry;
2486  assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2487  assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2488  return base;
2489}
2490
2491void AdapterHandlerEntry::relocate(address new_base) {
2492  address old_base = base_address();
2493  assert(old_base != NULL, "");
2494  ptrdiff_t delta = new_base - old_base;
2495  if (_i2c_entry != NULL)
2496    _i2c_entry += delta;
2497  if (_c2i_entry != NULL)
2498    _c2i_entry += delta;
2499  if (_c2i_unverified_entry != NULL)
2500    _c2i_unverified_entry += delta;
2501  assert(base_address() == new_base, "");
2502}
2503
2504
2505void AdapterHandlerEntry::deallocate() {
2506  delete _fingerprint;
2507#ifdef ASSERT
2508  if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2509#endif
2510}
2511
2512
2513#ifdef ASSERT
2514// Capture the code before relocation so that it can be compared
2515// against other versions.  If the code is captured after relocation
2516// then relative instructions won't be equivalent.
2517void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2518  _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2519  _saved_code_length = length;
2520  memcpy(_saved_code, buffer, length);
2521}
2522
2523
2524bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2525  if (length != _saved_code_length) {
2526    return false;
2527  }
2528
2529  return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2530}
2531#endif
2532
2533
2534/**
2535 * Create a native wrapper for this native method.  The wrapper converts the
2536 * Java-compiled calling convention to the native convention, handles
2537 * arguments, and transitions to native.  On return from the native we transition
2538 * back to java blocking if a safepoint is in progress.
2539 */
2540void AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
2541  ResourceMark rm;
2542  nmethod* nm = NULL;
2543
2544  assert(method->is_native(), "must be native");
2545  assert(method->is_method_handle_intrinsic() ||
2546         method->has_native_function(), "must have something valid to call!");
2547
2548  {
2549    // Perform the work while holding the lock, but perform any printing outside the lock
2550    MutexLocker mu(AdapterHandlerLibrary_lock);
2551    // See if somebody beat us to it
2552    nm = method->code();
2553    if (nm != NULL) {
2554      return;
2555    }
2556
2557    const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2558    assert(compile_id > 0, "Must generate native wrapper");
2559
2560
2561    ResourceMark rm;
2562    BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2563    if (buf != NULL) {
2564      CodeBuffer buffer(buf);
2565      double locs_buf[20];
2566      buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2567      MacroAssembler _masm(&buffer);
2568
2569      // Fill in the signature array, for the calling-convention call.
2570      const int total_args_passed = method->size_of_parameters();
2571
2572      BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2573      VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2574      int i=0;
2575      if (!method->is_static())  // Pass in receiver first
2576        sig_bt[i++] = T_OBJECT;
2577      SignatureStream ss(method->signature());
2578      for (; !ss.at_return_type(); ss.next()) {
2579        sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2580        if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2581          sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2582      }
2583      assert(i == total_args_passed, "");
2584      BasicType ret_type = ss.type();
2585
2586      // Now get the compiled-Java layout as input (or output) arguments.
2587      // NOTE: Stubs for compiled entry points of method handle intrinsics
2588      // are just trampolines so the argument registers must be outgoing ones.
2589      const bool is_outgoing = method->is_method_handle_intrinsic();
2590      int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2591
2592      // Generate the compiled-to-native wrapper code
2593      nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2594
2595      if (nm != NULL) {
2596        method->set_code(method, nm);
2597      }
2598    }
2599  } // Unlock AdapterHandlerLibrary_lock
2600
2601
2602  // Install the generated code.
2603  if (nm != NULL) {
2604    if (PrintCompilation) {
2605      ttyLocker ttyl;
2606      CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2607    }
2608    nm->post_compiled_method_load_event();
2609  }
2610}
2611
2612JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2613  assert(thread == JavaThread::current(), "must be");
2614  // The code is about to enter a JNI lazy critical native method and
2615  // _needs_gc is true, so if this thread is already in a critical
2616  // section then just return, otherwise this thread should block
2617  // until needs_gc has been cleared.
2618  if (thread->in_critical()) {
2619    return;
2620  }
2621  // Lock and unlock a critical section to give the system a chance to block
2622  GC_locker::lock_critical(thread);
2623  GC_locker::unlock_critical(thread);
2624JRT_END
2625
2626int SharedRuntime::convert_ints_to_longints_argcnt(int in_args_count, BasicType* in_sig_bt) {
2627  int argcnt = in_args_count;
2628  if (CCallingConventionRequiresIntsAsLongs) {
2629    for (int in = 0; in < in_args_count; in++) {
2630      BasicType bt = in_sig_bt[in];
2631      switch (bt) {
2632        case T_BOOLEAN:
2633        case T_CHAR:
2634        case T_BYTE:
2635        case T_SHORT:
2636        case T_INT:
2637          argcnt++;
2638          break;
2639        default:
2640          break;
2641      }
2642    }
2643  } else {
2644    assert(0, "This should not be needed on this platform");
2645  }
2646
2647  return argcnt;
2648}
2649
2650void SharedRuntime::convert_ints_to_longints(int i2l_argcnt, int& in_args_count,
2651                                             BasicType*& in_sig_bt, VMRegPair*& in_regs) {
2652  if (CCallingConventionRequiresIntsAsLongs) {
2653    VMRegPair *new_in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, i2l_argcnt);
2654    BasicType *new_in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, i2l_argcnt);
2655
2656    int argcnt = 0;
2657    for (int in = 0; in < in_args_count; in++, argcnt++) {
2658      BasicType bt  = in_sig_bt[in];
2659      VMRegPair reg = in_regs[in];
2660      switch (bt) {
2661        case T_BOOLEAN:
2662        case T_CHAR:
2663        case T_BYTE:
2664        case T_SHORT:
2665        case T_INT:
2666          // Convert (bt) to (T_LONG,bt).
2667          new_in_sig_bt[argcnt] = T_LONG;
2668          new_in_sig_bt[argcnt+1] = bt;
2669          assert(reg.first()->is_valid() && !reg.second()->is_valid(), "");
2670          new_in_regs[argcnt].set2(reg.first());
2671          new_in_regs[argcnt+1].set_bad();
2672          argcnt++;
2673          break;
2674        default:
2675          // No conversion needed.
2676          new_in_sig_bt[argcnt] = bt;
2677          new_in_regs[argcnt]   = reg;
2678          break;
2679      }
2680    }
2681    assert(argcnt == i2l_argcnt, "must match");
2682
2683    in_regs = new_in_regs;
2684    in_sig_bt = new_in_sig_bt;
2685    in_args_count = i2l_argcnt;
2686  } else {
2687    assert(0, "This should not be needed on this platform");
2688  }
2689}
2690
2691// -------------------------------------------------------------------------
2692// Java-Java calling convention
2693// (what you use when Java calls Java)
2694
2695//------------------------------name_for_receiver----------------------------------
2696// For a given signature, return the VMReg for parameter 0.
2697VMReg SharedRuntime::name_for_receiver() {
2698  VMRegPair regs;
2699  BasicType sig_bt = T_OBJECT;
2700  (void) java_calling_convention(&sig_bt, &regs, 1, true);
2701  // Return argument 0 register.  In the LP64 build pointers
2702  // take 2 registers, but the VM wants only the 'main' name.
2703  return regs.first();
2704}
2705
2706VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2707  // This method is returning a data structure allocating as a
2708  // ResourceObject, so do not put any ResourceMarks in here.
2709  char *s = sig->as_C_string();
2710  int len = (int)strlen(s);
2711  s++; len--;                   // Skip opening paren
2712  char *t = s+len;
2713  while (*(--t) != ')');      // Find close paren
2714
2715  BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2716  VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2717  int cnt = 0;
2718  if (has_receiver) {
2719    sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2720  }
2721
2722  while (s < t) {
2723    switch (*s++) {            // Switch on signature character
2724    case 'B': sig_bt[cnt++] = T_BYTE;    break;
2725    case 'C': sig_bt[cnt++] = T_CHAR;    break;
2726    case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2727    case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2728    case 'I': sig_bt[cnt++] = T_INT;     break;
2729    case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2730    case 'S': sig_bt[cnt++] = T_SHORT;   break;
2731    case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2732    case 'V': sig_bt[cnt++] = T_VOID;    break;
2733    case 'L':                   // Oop
2734      while (*s++ != ';');   // Skip signature
2735      sig_bt[cnt++] = T_OBJECT;
2736      break;
2737    case '[': {                 // Array
2738      do {                      // Skip optional size
2739        while (*s >= '0' && *s <= '9') s++;
2740      } while (*s++ == '[');   // Nested arrays?
2741      // Skip element type
2742      if (s[-1] == 'L')
2743        while (*s++ != ';'); // Skip signature
2744      sig_bt[cnt++] = T_ARRAY;
2745      break;
2746    }
2747    default : ShouldNotReachHere();
2748    }
2749  }
2750
2751  if (has_appendix) {
2752    sig_bt[cnt++] = T_OBJECT;
2753  }
2754
2755  assert(cnt < 256, "grow table size");
2756
2757  int comp_args_on_stack;
2758  comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2759
2760  // the calling convention doesn't count out_preserve_stack_slots so
2761  // we must add that in to get "true" stack offsets.
2762
2763  if (comp_args_on_stack) {
2764    for (int i = 0; i < cnt; i++) {
2765      VMReg reg1 = regs[i].first();
2766      if (reg1->is_stack()) {
2767        // Yuck
2768        reg1 = reg1->bias(out_preserve_stack_slots());
2769      }
2770      VMReg reg2 = regs[i].second();
2771      if (reg2->is_stack()) {
2772        // Yuck
2773        reg2 = reg2->bias(out_preserve_stack_slots());
2774      }
2775      regs[i].set_pair(reg2, reg1);
2776    }
2777  }
2778
2779  // results
2780  *arg_size = cnt;
2781  return regs;
2782}
2783
2784// OSR Migration Code
2785//
2786// This code is used convert interpreter frames into compiled frames.  It is
2787// called from very start of a compiled OSR nmethod.  A temp array is
2788// allocated to hold the interesting bits of the interpreter frame.  All
2789// active locks are inflated to allow them to move.  The displaced headers and
2790// active interpreter locals are copied into the temp buffer.  Then we return
2791// back to the compiled code.  The compiled code then pops the current
2792// interpreter frame off the stack and pushes a new compiled frame.  Then it
2793// copies the interpreter locals and displaced headers where it wants.
2794// Finally it calls back to free the temp buffer.
2795//
2796// All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2797
2798JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2799
2800  //
2801  // This code is dependent on the memory layout of the interpreter local
2802  // array and the monitors. On all of our platforms the layout is identical
2803  // so this code is shared. If some platform lays the their arrays out
2804  // differently then this code could move to platform specific code or
2805  // the code here could be modified to copy items one at a time using
2806  // frame accessor methods and be platform independent.
2807
2808  frame fr = thread->last_frame();
2809  assert(fr.is_interpreted_frame(), "");
2810  assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
2811
2812  // Figure out how many monitors are active.
2813  int active_monitor_count = 0;
2814  for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2815       kptr < fr.interpreter_frame_monitor_begin();
2816       kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2817    if (kptr->obj() != NULL) active_monitor_count++;
2818  }
2819
2820  // QQQ we could place number of active monitors in the array so that compiled code
2821  // could double check it.
2822
2823  Method* moop = fr.interpreter_frame_method();
2824  int max_locals = moop->max_locals();
2825  // Allocate temp buffer, 1 word per local & 2 per active monitor
2826  int buf_size_words = max_locals + active_monitor_count*2;
2827  intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2828
2829  // Copy the locals.  Order is preserved so that loading of longs works.
2830  // Since there's no GC I can copy the oops blindly.
2831  assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2832  Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2833                       (HeapWord*)&buf[0],
2834                       max_locals);
2835
2836  // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2837  int i = max_locals;
2838  for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2839       kptr2 < fr.interpreter_frame_monitor_begin();
2840       kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2841    if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2842      BasicLock *lock = kptr2->lock();
2843      // Inflate so the displaced header becomes position-independent
2844      if (lock->displaced_header()->is_unlocked())
2845        ObjectSynchronizer::inflate_helper(kptr2->obj());
2846      // Now the displaced header is free to move
2847      buf[i++] = (intptr_t)lock->displaced_header();
2848      buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
2849    }
2850  }
2851  assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
2852
2853  return buf;
2854JRT_END
2855
2856JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2857  FREE_C_HEAP_ARRAY(intptr_t, buf);
2858JRT_END
2859
2860bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2861  AdapterHandlerTableIterator iter(_adapters);
2862  while (iter.has_next()) {
2863    AdapterHandlerEntry* a = iter.next();
2864    if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
2865  }
2866  return false;
2867}
2868
2869void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2870  AdapterHandlerTableIterator iter(_adapters);
2871  while (iter.has_next()) {
2872    AdapterHandlerEntry* a = iter.next();
2873    if (b == CodeCache::find_blob(a->get_i2c_entry())) {
2874      st->print("Adapter for signature: ");
2875      a->print_adapter_on(tty);
2876      return;
2877    }
2878  }
2879  assert(false, "Should have found handler");
2880}
2881
2882void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
2883  st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2884               (intptr_t) this, fingerprint()->as_string(),
2885               get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
2886
2887}
2888
2889#ifndef PRODUCT
2890
2891void AdapterHandlerLibrary::print_statistics() {
2892  _adapters->print_statistics();
2893}
2894
2895#endif /* PRODUCT */
2896