sharedRuntime.cpp revision 5976:2b8e28fdf503
111819Sjulian/*
211819Sjulian * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
311819Sjulian * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
411819Sjulian *
511819Sjulian * This code is free software; you can redistribute it and/or modify it
611819Sjulian * under the terms of the GNU General Public License version 2 only, as
711819Sjulian * published by the Free Software Foundation.
811819Sjulian *
911819Sjulian * This code is distributed in the hope that it will be useful, but WITHOUT
1011819Sjulian * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
1111819Sjulian * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
1211819Sjulian * version 2 for more details (a copy is included in the LICENSE file that
1311819Sjulian * accompanied this code).
1411819Sjulian *
1511819Sjulian * You should have received a copy of the GNU General Public License version
1611819Sjulian * 2 along with this work; if not, write to the Free Software Foundation,
1711819Sjulian * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
1811819Sjulian *
1911819Sjulian * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
2011819Sjulian * or visit www.oracle.com if you need additional information or have any
2111819Sjulian * questions.
2211819Sjulian *
2311819Sjulian */
2411819Sjulian
2511819Sjulian#include "precompiled.hpp"
2611819Sjulian#include "classfile/systemDictionary.hpp"
2711819Sjulian#include "classfile/vmSymbols.hpp"
2811819Sjulian#include "code/compiledIC.hpp"
2911819Sjulian#include "code/scopeDesc.hpp"
3011819Sjulian#include "code/vtableStubs.hpp"
3111819Sjulian#include "compiler/abstractCompiler.hpp"
3211819Sjulian#include "compiler/compileBroker.hpp"
3311819Sjulian#include "compiler/compilerOracle.hpp"
3412057Sjulian#include "compiler/disassembler.hpp"
3512057Sjulian#include "interpreter/interpreter.hpp"
3631742Seivind#include "interpreter/interpreterRuntime.hpp"
3711819Sjulian#include "memory/gcLocker.inline.hpp"
3811819Sjulian#include "memory/universe.inline.hpp"
3931742Seivind#include "oops/oop.inline.hpp"
4031742Seivind#include "prims/forte.hpp"
4111819Sjulian#include "prims/jvmtiExport.hpp"
4211819Sjulian#include "prims/jvmtiRedefineClassesTrace.hpp"
4311819Sjulian#include "prims/methodHandles.hpp"
4411819Sjulian#include "prims/nativeLookup.hpp"
4511819Sjulian#include "runtime/arguments.hpp"
4613266Swollman#include "runtime/biasedLocking.hpp"
4711819Sjulian#include "runtime/handles.inline.hpp"
4811819Sjulian#include "runtime/init.hpp"
4911819Sjulian#include "runtime/interfaceSupport.hpp"
5011819Sjulian#include "runtime/javaCalls.hpp"
5125652Sjhay#include "runtime/sharedRuntime.hpp"
5211819Sjulian#include "runtime/stubRoutines.hpp"
5311819Sjulian#include "runtime/vframe.hpp"
5425652Sjhay#include "runtime/vframeArray.hpp"
5525652Sjhay#include "utilities/copy.hpp"
5625347Sjhay#include "utilities/dtrace.hpp"
5711819Sjulian#include "utilities/events.hpp"
5811819Sjulian#include "utilities/hashtable.inline.hpp"
5911819Sjulian#include "utilities/macros.hpp"
6011819Sjulian#include "utilities/xmlstream.hpp"
6126965Sjhay#ifdef TARGET_ARCH_x86
6211819Sjulian# include "nativeInst_x86.hpp"
6315682Sgpalmer# include "vmreg_x86.inline.hpp"
6411819Sjulian#endif
6524659Sjhay#ifdef TARGET_ARCH_sparc
6625347Sjhay# include "nativeInst_sparc.hpp"
6711819Sjulian# include "vmreg_sparc.inline.hpp"
6811819Sjulian#endif
6911819Sjulian#ifdef TARGET_ARCH_zero
7024659Sjhay# include "nativeInst_zero.hpp"
7124659Sjhay# include "vmreg_zero.inline.hpp"
7224659Sjhay#endif
7311819Sjulian#ifdef TARGET_ARCH_arm
7411819Sjulian# include "nativeInst_arm.hpp"
7515682Sgpalmer# include "vmreg_arm.inline.hpp"
7624659Sjhay#endif
7724659Sjhay#ifdef TARGET_ARCH_ppc
7824659Sjhay# include "nativeInst_ppc.hpp"
7911819Sjulian# include "vmreg_ppc.inline.hpp"
8011819Sjulian#endif
8115682Sgpalmer#ifdef COMPILER1
8224659Sjhay#include "c1/c1_Runtime1.hpp"
8324659Sjhay#endif
8424659Sjhay
8511819Sjulian// Shared stub locations
8611819SjulianRuntimeStub*        SharedRuntime::_wrong_method_blob;
8715682SgpalmerRuntimeStub*        SharedRuntime::_ic_miss_blob;
8824659SjhayRuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
8924659SjhayRuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
9024659SjhayRuntimeStub*        SharedRuntime::_resolve_static_call_blob;
9111819Sjulian
9211819SjulianDeoptimizationBlob* SharedRuntime::_deopt_blob;
9311819SjulianSafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
9411819SjulianSafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
9511819SjulianSafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
9624659Sjhay
9711819Sjulian#ifdef COMPILER2
9824659SjhayUncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
9911819Sjulian#endif // COMPILER2
10011819Sjulian
10111819Sjulian
10211819Sjulian//----------------------------generate_stubs-----------------------------------
10311819Sjulianvoid SharedRuntime::generate_stubs() {
10425652Sjhay  _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),         "wrong_method_stub");
10511819Sjulian  _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
10611819Sjulian  _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),  "resolve_opt_virtual_call");
10711819Sjulian  _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),      "resolve_virtual_call");
10811819Sjulian  _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),       "resolve_static_call");
10911819Sjulian
11013266Swollman#ifdef COMPILER2
11113266Swollman  // Vectors are generated only by C2.
11213266Swollman  if (is_wide_vector(MaxVectorSize)) {
11313266Swollman    _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
11413266Swollman  }
115#endif // COMPILER2
116  _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
117  _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
118
119  generate_deopt_blob();
120
121#ifdef COMPILER2
122  generate_uncommon_trap_blob();
123#endif // COMPILER2
124}
125
126#include <math.h>
127
128#ifndef USDT2
129HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
130HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
131                      char*, int, char*, int, char*, int);
132HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
133                      char*, int, char*, int, char*, int);
134#endif /* !USDT2 */
135
136// Implementation of SharedRuntime
137
138#ifndef PRODUCT
139// For statistics
140int SharedRuntime::_ic_miss_ctr = 0;
141int SharedRuntime::_wrong_method_ctr = 0;
142int SharedRuntime::_resolve_static_ctr = 0;
143int SharedRuntime::_resolve_virtual_ctr = 0;
144int SharedRuntime::_resolve_opt_virtual_ctr = 0;
145int SharedRuntime::_implicit_null_throws = 0;
146int SharedRuntime::_implicit_div0_throws = 0;
147int SharedRuntime::_throw_null_ctr = 0;
148
149int SharedRuntime::_nof_normal_calls = 0;
150int SharedRuntime::_nof_optimized_calls = 0;
151int SharedRuntime::_nof_inlined_calls = 0;
152int SharedRuntime::_nof_megamorphic_calls = 0;
153int SharedRuntime::_nof_static_calls = 0;
154int SharedRuntime::_nof_inlined_static_calls = 0;
155int SharedRuntime::_nof_interface_calls = 0;
156int SharedRuntime::_nof_optimized_interface_calls = 0;
157int SharedRuntime::_nof_inlined_interface_calls = 0;
158int SharedRuntime::_nof_megamorphic_interface_calls = 0;
159int SharedRuntime::_nof_removable_exceptions = 0;
160
161int SharedRuntime::_new_instance_ctr=0;
162int SharedRuntime::_new_array_ctr=0;
163int SharedRuntime::_multi1_ctr=0;
164int SharedRuntime::_multi2_ctr=0;
165int SharedRuntime::_multi3_ctr=0;
166int SharedRuntime::_multi4_ctr=0;
167int SharedRuntime::_multi5_ctr=0;
168int SharedRuntime::_mon_enter_stub_ctr=0;
169int SharedRuntime::_mon_exit_stub_ctr=0;
170int SharedRuntime::_mon_enter_ctr=0;
171int SharedRuntime::_mon_exit_ctr=0;
172int SharedRuntime::_partial_subtype_ctr=0;
173int SharedRuntime::_jbyte_array_copy_ctr=0;
174int SharedRuntime::_jshort_array_copy_ctr=0;
175int SharedRuntime::_jint_array_copy_ctr=0;
176int SharedRuntime::_jlong_array_copy_ctr=0;
177int SharedRuntime::_oop_array_copy_ctr=0;
178int SharedRuntime::_checkcast_array_copy_ctr=0;
179int SharedRuntime::_unsafe_array_copy_ctr=0;
180int SharedRuntime::_generic_array_copy_ctr=0;
181int SharedRuntime::_slow_array_copy_ctr=0;
182int SharedRuntime::_find_handler_ctr=0;
183int SharedRuntime::_rethrow_ctr=0;
184
185int     SharedRuntime::_ICmiss_index                    = 0;
186int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
187address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
188
189
190void SharedRuntime::trace_ic_miss(address at) {
191  for (int i = 0; i < _ICmiss_index; i++) {
192    if (_ICmiss_at[i] == at) {
193      _ICmiss_count[i]++;
194      return;
195    }
196  }
197  int index = _ICmiss_index++;
198  if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
199  _ICmiss_at[index] = at;
200  _ICmiss_count[index] = 1;
201}
202
203void SharedRuntime::print_ic_miss_histogram() {
204  if (ICMissHistogram) {
205    tty->print_cr ("IC Miss Histogram:");
206    int tot_misses = 0;
207    for (int i = 0; i < _ICmiss_index; i++) {
208      tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
209      tot_misses += _ICmiss_count[i];
210    }
211    tty->print_cr ("Total IC misses: %7d", tot_misses);
212  }
213}
214#endif // PRODUCT
215
216#if INCLUDE_ALL_GCS
217
218// G1 write-barrier pre: executed before a pointer store.
219JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
220  if (orig == NULL) {
221    assert(false, "should be optimized out");
222    return;
223  }
224  assert(orig->is_oop(true /* ignore mark word */), "Error");
225  // store the original value that was in the field reference
226  thread->satb_mark_queue().enqueue(orig);
227JRT_END
228
229// G1 write-barrier post: executed after a pointer store.
230JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
231  thread->dirty_card_queue().enqueue(card_addr);
232JRT_END
233
234#endif // INCLUDE_ALL_GCS
235
236
237JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
238  return x * y;
239JRT_END
240
241
242JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
243  if (x == min_jlong && y == CONST64(-1)) {
244    return x;
245  } else {
246    return x / y;
247  }
248JRT_END
249
250
251JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
252  if (x == min_jlong && y == CONST64(-1)) {
253    return 0;
254  } else {
255    return x % y;
256  }
257JRT_END
258
259
260const juint  float_sign_mask  = 0x7FFFFFFF;
261const juint  float_infinity   = 0x7F800000;
262const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
263const julong double_infinity  = CONST64(0x7FF0000000000000);
264
265JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
266#ifdef _WIN64
267  // 64-bit Windows on amd64 returns the wrong values for
268  // infinity operands.
269  union { jfloat f; juint i; } xbits, ybits;
270  xbits.f = x;
271  ybits.f = y;
272  // x Mod Infinity == x unless x is infinity
273  if ( ((xbits.i & float_sign_mask) != float_infinity) &&
274       ((ybits.i & float_sign_mask) == float_infinity) ) {
275    return x;
276  }
277#endif
278  return ((jfloat)fmod((double)x,(double)y));
279JRT_END
280
281
282JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
283#ifdef _WIN64
284  union { jdouble d; julong l; } xbits, ybits;
285  xbits.d = x;
286  ybits.d = y;
287  // x Mod Infinity == x unless x is infinity
288  if ( ((xbits.l & double_sign_mask) != double_infinity) &&
289       ((ybits.l & double_sign_mask) == double_infinity) ) {
290    return x;
291  }
292#endif
293  return ((jdouble)fmod((double)x,(double)y));
294JRT_END
295
296#ifdef __SOFTFP__
297JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
298  return x + y;
299JRT_END
300
301JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
302  return x - y;
303JRT_END
304
305JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
306  return x * y;
307JRT_END
308
309JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
310  return x / y;
311JRT_END
312
313JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
314  return x + y;
315JRT_END
316
317JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
318  return x - y;
319JRT_END
320
321JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
322  return x * y;
323JRT_END
324
325JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
326  return x / y;
327JRT_END
328
329JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
330  return (jfloat)x;
331JRT_END
332
333JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
334  return (jdouble)x;
335JRT_END
336
337JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
338  return (jdouble)x;
339JRT_END
340
341JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
342  return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
343JRT_END
344
345JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
346  return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
347JRT_END
348
349JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
350  return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
351JRT_END
352
353JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
354  return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
355JRT_END
356
357// Functions to return the opposite of the aeabi functions for nan.
358JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
359  return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
360JRT_END
361
362JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
363  return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
364JRT_END
365
366JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
367  return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
368JRT_END
369
370JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
371  return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
372JRT_END
373
374JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
375  return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
376JRT_END
377
378JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
379  return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
380JRT_END
381
382JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
383  return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
384JRT_END
385
386JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
387  return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
388JRT_END
389
390// Intrinsics make gcc generate code for these.
391float  SharedRuntime::fneg(float f)   {
392  return -f;
393}
394
395double SharedRuntime::dneg(double f)  {
396  return -f;
397}
398
399#endif // __SOFTFP__
400
401#if defined(__SOFTFP__) || defined(E500V2)
402// Intrinsics make gcc generate code for these.
403double SharedRuntime::dabs(double f)  {
404  return (f <= (double)0.0) ? (double)0.0 - f : f;
405}
406
407#endif
408
409#if defined(__SOFTFP__) || defined(PPC32)
410double SharedRuntime::dsqrt(double f) {
411  return sqrt(f);
412}
413#endif
414
415JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
416  if (g_isnan(x))
417    return 0;
418  if (x >= (jfloat) max_jint)
419    return max_jint;
420  if (x <= (jfloat) min_jint)
421    return min_jint;
422  return (jint) x;
423JRT_END
424
425
426JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
427  if (g_isnan(x))
428    return 0;
429  if (x >= (jfloat) max_jlong)
430    return max_jlong;
431  if (x <= (jfloat) min_jlong)
432    return min_jlong;
433  return (jlong) x;
434JRT_END
435
436
437JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
438  if (g_isnan(x))
439    return 0;
440  if (x >= (jdouble) max_jint)
441    return max_jint;
442  if (x <= (jdouble) min_jint)
443    return min_jint;
444  return (jint) x;
445JRT_END
446
447
448JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
449  if (g_isnan(x))
450    return 0;
451  if (x >= (jdouble) max_jlong)
452    return max_jlong;
453  if (x <= (jdouble) min_jlong)
454    return min_jlong;
455  return (jlong) x;
456JRT_END
457
458
459JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
460  return (jfloat)x;
461JRT_END
462
463
464JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
465  return (jfloat)x;
466JRT_END
467
468
469JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
470  return (jdouble)x;
471JRT_END
472
473// Exception handling accross interpreter/compiler boundaries
474//
475// exception_handler_for_return_address(...) returns the continuation address.
476// The continuation address is the entry point of the exception handler of the
477// previous frame depending on the return address.
478
479address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
480  assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
481
482  // Reset method handle flag.
483  thread->set_is_method_handle_return(false);
484
485  // The fastest case first
486  CodeBlob* blob = CodeCache::find_blob(return_address);
487  nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
488  if (nm != NULL) {
489    // Set flag if return address is a method handle call site.
490    thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
491    // native nmethods don't have exception handlers
492    assert(!nm->is_native_method(), "no exception handler");
493    assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
494    if (nm->is_deopt_pc(return_address)) {
495      return SharedRuntime::deopt_blob()->unpack_with_exception();
496    } else {
497      return nm->exception_begin();
498    }
499  }
500
501  // Entry code
502  if (StubRoutines::returns_to_call_stub(return_address)) {
503    return StubRoutines::catch_exception_entry();
504  }
505  // Interpreted code
506  if (Interpreter::contains(return_address)) {
507    return Interpreter::rethrow_exception_entry();
508  }
509
510  guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
511  guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
512
513#ifndef PRODUCT
514  { ResourceMark rm;
515    tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
516    tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
517    tty->print_cr("b) other problem");
518  }
519#endif // PRODUCT
520
521  ShouldNotReachHere();
522  return NULL;
523}
524
525
526JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
527  return raw_exception_handler_for_return_address(thread, return_address);
528JRT_END
529
530
531address SharedRuntime::get_poll_stub(address pc) {
532  address stub;
533  // Look up the code blob
534  CodeBlob *cb = CodeCache::find_blob(pc);
535
536  // Should be an nmethod
537  assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
538
539  // Look up the relocation information
540  assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
541    "safepoint polling: type must be poll" );
542
543  assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
544    "Only polling locations are used for safepoint");
545
546  bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
547  bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
548  if (at_poll_return) {
549    assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
550           "polling page return stub not created yet");
551    stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
552  } else if (has_wide_vectors) {
553    assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
554           "polling page vectors safepoint stub not created yet");
555    stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
556  } else {
557    assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
558           "polling page safepoint stub not created yet");
559    stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
560  }
561#ifndef PRODUCT
562  if( TraceSafepoint ) {
563    char buf[256];
564    jio_snprintf(buf, sizeof(buf),
565                 "... found polling page %s exception at pc = "
566                 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
567                 at_poll_return ? "return" : "loop",
568                 (intptr_t)pc, (intptr_t)stub);
569    tty->print_raw_cr(buf);
570  }
571#endif // PRODUCT
572  return stub;
573}
574
575
576oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
577  assert(caller.is_interpreted_frame(), "");
578  int args_size = ArgumentSizeComputer(sig).size() + 1;
579  assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
580  oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
581  assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
582  return result;
583}
584
585
586void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
587  if (JvmtiExport::can_post_on_exceptions()) {
588    vframeStream vfst(thread, true);
589    methodHandle method = methodHandle(thread, vfst.method());
590    address bcp = method()->bcp_from(vfst.bci());
591    JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
592  }
593  Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
594}
595
596void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
597  Handle h_exception = Exceptions::new_exception(thread, name, message);
598  throw_and_post_jvmti_exception(thread, h_exception);
599}
600
601// The interpreter code to call this tracing function is only
602// called/generated when TraceRedefineClasses has the right bits
603// set. Since obsolete methods are never compiled, we don't have
604// to modify the compilers to generate calls to this function.
605//
606JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
607    JavaThread* thread, Method* method))
608  assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
609
610  if (method->is_obsolete()) {
611    // We are calling an obsolete method, but this is not necessarily
612    // an error. Our method could have been redefined just after we
613    // fetched the Method* from the constant pool.
614
615    // RC_TRACE macro has an embedded ResourceMark
616    RC_TRACE_WITH_THREAD(0x00001000, thread,
617                         ("calling obsolete method '%s'",
618                          method->name_and_sig_as_C_string()));
619    if (RC_TRACE_ENABLED(0x00002000)) {
620      // this option is provided to debug calls to obsolete methods
621      guarantee(false, "faulting at call to an obsolete method.");
622    }
623  }
624  return 0;
625JRT_END
626
627// ret_pc points into caller; we are returning caller's exception handler
628// for given exception
629address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
630                                                    bool force_unwind, bool top_frame_only) {
631  assert(nm != NULL, "must exist");
632  ResourceMark rm;
633
634  ScopeDesc* sd = nm->scope_desc_at(ret_pc);
635  // determine handler bci, if any
636  EXCEPTION_MARK;
637
638  int handler_bci = -1;
639  int scope_depth = 0;
640  if (!force_unwind) {
641    int bci = sd->bci();
642    bool recursive_exception = false;
643    do {
644      bool skip_scope_increment = false;
645      // exception handler lookup
646      KlassHandle ek (THREAD, exception->klass());
647      methodHandle mh(THREAD, sd->method());
648      handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
649      if (HAS_PENDING_EXCEPTION) {
650        recursive_exception = true;
651        // We threw an exception while trying to find the exception handler.
652        // Transfer the new exception to the exception handle which will
653        // be set into thread local storage, and do another lookup for an
654        // exception handler for this exception, this time starting at the
655        // BCI of the exception handler which caused the exception to be
656        // thrown (bugs 4307310 and 4546590). Set "exception" reference
657        // argument to ensure that the correct exception is thrown (4870175).
658        exception = Handle(THREAD, PENDING_EXCEPTION);
659        CLEAR_PENDING_EXCEPTION;
660        if (handler_bci >= 0) {
661          bci = handler_bci;
662          handler_bci = -1;
663          skip_scope_increment = true;
664        }
665      }
666      else {
667        recursive_exception = false;
668      }
669      if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
670        sd = sd->sender();
671        if (sd != NULL) {
672          bci = sd->bci();
673        }
674        ++scope_depth;
675      }
676    } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
677  }
678
679  // found handling method => lookup exception handler
680  int catch_pco = ret_pc - nm->code_begin();
681
682  ExceptionHandlerTable table(nm);
683  HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
684  if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
685    // Allow abbreviated catch tables.  The idea is to allow a method
686    // to materialize its exceptions without committing to the exact
687    // routing of exceptions.  In particular this is needed for adding
688    // a synthethic handler to unlock monitors when inlining
689    // synchonized methods since the unlock path isn't represented in
690    // the bytecodes.
691    t = table.entry_for(catch_pco, -1, 0);
692  }
693
694#ifdef COMPILER1
695  if (t == NULL && nm->is_compiled_by_c1()) {
696    assert(nm->unwind_handler_begin() != NULL, "");
697    return nm->unwind_handler_begin();
698  }
699#endif
700
701  if (t == NULL) {
702    tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
703    tty->print_cr("   Exception:");
704    exception->print();
705    tty->cr();
706    tty->print_cr(" Compiled exception table :");
707    table.print();
708    nm->print_code();
709    guarantee(false, "missing exception handler");
710    return NULL;
711  }
712
713  return nm->code_begin() + t->pco();
714}
715
716JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
717  // These errors occur only at call sites
718  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
719JRT_END
720
721JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
722  // These errors occur only at call sites
723  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
724JRT_END
725
726JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
727  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
728JRT_END
729
730JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
731  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
732JRT_END
733
734JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
735  // This entry point is effectively only used for NullPointerExceptions which occur at inline
736  // cache sites (when the callee activation is not yet set up) so we are at a call site
737  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
738JRT_END
739
740JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
741  // We avoid using the normal exception construction in this case because
742  // it performs an upcall to Java, and we're already out of stack space.
743  Klass* k = SystemDictionary::StackOverflowError_klass();
744  oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
745  Handle exception (thread, exception_oop);
746  if (StackTraceInThrowable) {
747    java_lang_Throwable::fill_in_stack_trace(exception);
748  }
749  throw_and_post_jvmti_exception(thread, exception);
750JRT_END
751
752address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
753                                                           address pc,
754                                                           SharedRuntime::ImplicitExceptionKind exception_kind)
755{
756  address target_pc = NULL;
757
758  if (Interpreter::contains(pc)) {
759#ifdef CC_INTERP
760    // C++ interpreter doesn't throw implicit exceptions
761    ShouldNotReachHere();
762#else
763    switch (exception_kind) {
764      case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
765      case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
766      case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
767      default:                      ShouldNotReachHere();
768    }
769#endif // !CC_INTERP
770  } else {
771    switch (exception_kind) {
772      case STACK_OVERFLOW: {
773        // Stack overflow only occurs upon frame setup; the callee is
774        // going to be unwound. Dispatch to a shared runtime stub
775        // which will cause the StackOverflowError to be fabricated
776        // and processed.
777        // For stack overflow in deoptimization blob, cleanup thread.
778        if (thread->deopt_mark() != NULL) {
779          Deoptimization::cleanup_deopt_info(thread, NULL);
780        }
781        Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
782        return StubRoutines::throw_StackOverflowError_entry();
783      }
784
785      case IMPLICIT_NULL: {
786        if (VtableStubs::contains(pc)) {
787          // We haven't yet entered the callee frame. Fabricate an
788          // exception and begin dispatching it in the caller. Since
789          // the caller was at a call site, it's safe to destroy all
790          // caller-saved registers, as these entry points do.
791          VtableStub* vt_stub = VtableStubs::stub_containing(pc);
792
793          // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
794          if (vt_stub == NULL) return NULL;
795
796          if (vt_stub->is_abstract_method_error(pc)) {
797            assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
798            Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
799            return StubRoutines::throw_AbstractMethodError_entry();
800          } else {
801            Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
802            return StubRoutines::throw_NullPointerException_at_call_entry();
803          }
804        } else {
805          CodeBlob* cb = CodeCache::find_blob(pc);
806
807          // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
808          if (cb == NULL) return NULL;
809
810          // Exception happened in CodeCache. Must be either:
811          // 1. Inline-cache check in C2I handler blob,
812          // 2. Inline-cache check in nmethod, or
813          // 3. Implict null exception in nmethod
814
815          if (!cb->is_nmethod()) {
816            bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
817            if (!is_in_blob) {
818              cb->print();
819              fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc));
820            }
821            Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
822            // There is no handler here, so we will simply unwind.
823            return StubRoutines::throw_NullPointerException_at_call_entry();
824          }
825
826          // Otherwise, it's an nmethod.  Consult its exception handlers.
827          nmethod* nm = (nmethod*)cb;
828          if (nm->inlinecache_check_contains(pc)) {
829            // exception happened inside inline-cache check code
830            // => the nmethod is not yet active (i.e., the frame
831            // is not set up yet) => use return address pushed by
832            // caller => don't push another return address
833            Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
834            return StubRoutines::throw_NullPointerException_at_call_entry();
835          }
836
837          if (nm->method()->is_method_handle_intrinsic()) {
838            // exception happened inside MH dispatch code, similar to a vtable stub
839            Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
840            return StubRoutines::throw_NullPointerException_at_call_entry();
841          }
842
843#ifndef PRODUCT
844          _implicit_null_throws++;
845#endif
846          target_pc = nm->continuation_for_implicit_exception(pc);
847          // If there's an unexpected fault, target_pc might be NULL,
848          // in which case we want to fall through into the normal
849          // error handling code.
850        }
851
852        break; // fall through
853      }
854
855
856      case IMPLICIT_DIVIDE_BY_ZERO: {
857        nmethod* nm = CodeCache::find_nmethod(pc);
858        guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
859#ifndef PRODUCT
860        _implicit_div0_throws++;
861#endif
862        target_pc = nm->continuation_for_implicit_exception(pc);
863        // If there's an unexpected fault, target_pc might be NULL,
864        // in which case we want to fall through into the normal
865        // error handling code.
866        break; // fall through
867      }
868
869      default: ShouldNotReachHere();
870    }
871
872    assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
873
874    // for AbortVMOnException flag
875    NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
876    if (exception_kind == IMPLICIT_NULL) {
877      Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
878    } else {
879      Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
880    }
881    return target_pc;
882  }
883
884  ShouldNotReachHere();
885  return NULL;
886}
887
888
889/**
890 * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
891 * installed in the native function entry of all native Java methods before
892 * they get linked to their actual native methods.
893 *
894 * \note
895 * This method actually never gets called!  The reason is because
896 * the interpreter's native entries call NativeLookup::lookup() which
897 * throws the exception when the lookup fails.  The exception is then
898 * caught and forwarded on the return from NativeLookup::lookup() call
899 * before the call to the native function.  This might change in the future.
900 */
901JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
902{
903  // We return a bad value here to make sure that the exception is
904  // forwarded before we look at the return value.
905  THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
906}
907JNI_END
908
909address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
910  return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
911}
912
913
914#ifndef PRODUCT
915JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
916  const frame f = thread->last_frame();
917  assert(f.is_interpreted_frame(), "must be an interpreted frame");
918#ifndef PRODUCT
919  methodHandle mh(THREAD, f.interpreter_frame_method());
920  BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
921#endif // !PRODUCT
922  return preserve_this_value;
923JRT_END
924#endif // !PRODUCT
925
926
927JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
928  os::yield_all(attempts);
929JRT_END
930
931
932JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
933  assert(obj->is_oop(), "must be a valid oop");
934  assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
935  InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
936JRT_END
937
938
939jlong SharedRuntime::get_java_tid(Thread* thread) {
940  if (thread != NULL) {
941    if (thread->is_Java_thread()) {
942      oop obj = ((JavaThread*)thread)->threadObj();
943      return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
944    }
945  }
946  return 0;
947}
948
949/**
950 * This function ought to be a void function, but cannot be because
951 * it gets turned into a tail-call on sparc, which runs into dtrace bug
952 * 6254741.  Once that is fixed we can remove the dummy return value.
953 */
954int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
955  return dtrace_object_alloc_base(Thread::current(), o);
956}
957
958int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
959  assert(DTraceAllocProbes, "wrong call");
960  Klass* klass = o->klass();
961  int size = o->size();
962  Symbol* name = klass->name();
963#ifndef USDT2
964  HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
965                   name->bytes(), name->utf8_length(), size * HeapWordSize);
966#else /* USDT2 */
967  HOTSPOT_OBJECT_ALLOC(
968                   get_java_tid(thread),
969                   (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
970#endif /* USDT2 */
971  return 0;
972}
973
974JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
975    JavaThread* thread, Method* method))
976  assert(DTraceMethodProbes, "wrong call");
977  Symbol* kname = method->klass_name();
978  Symbol* name = method->name();
979  Symbol* sig = method->signature();
980#ifndef USDT2
981  HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
982      kname->bytes(), kname->utf8_length(),
983      name->bytes(), name->utf8_length(),
984      sig->bytes(), sig->utf8_length());
985#else /* USDT2 */
986  HOTSPOT_METHOD_ENTRY(
987      get_java_tid(thread),
988      (char *) kname->bytes(), kname->utf8_length(),
989      (char *) name->bytes(), name->utf8_length(),
990      (char *) sig->bytes(), sig->utf8_length());
991#endif /* USDT2 */
992  return 0;
993JRT_END
994
995JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
996    JavaThread* thread, Method* method))
997  assert(DTraceMethodProbes, "wrong call");
998  Symbol* kname = method->klass_name();
999  Symbol* name = method->name();
1000  Symbol* sig = method->signature();
1001#ifndef USDT2
1002  HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
1003      kname->bytes(), kname->utf8_length(),
1004      name->bytes(), name->utf8_length(),
1005      sig->bytes(), sig->utf8_length());
1006#else /* USDT2 */
1007  HOTSPOT_METHOD_RETURN(
1008      get_java_tid(thread),
1009      (char *) kname->bytes(), kname->utf8_length(),
1010      (char *) name->bytes(), name->utf8_length(),
1011      (char *) sig->bytes(), sig->utf8_length());
1012#endif /* USDT2 */
1013  return 0;
1014JRT_END
1015
1016
1017// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1018// for a call current in progress, i.e., arguments has been pushed on stack
1019// put callee has not been invoked yet.  Used by: resolve virtual/static,
1020// vtable updates, etc.  Caller frame must be compiled.
1021Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1022  ResourceMark rm(THREAD);
1023
1024  // last java frame on stack (which includes native call frames)
1025  vframeStream vfst(thread, true);  // Do not skip and javaCalls
1026
1027  return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
1028}
1029
1030
1031// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1032// for a call current in progress, i.e., arguments has been pushed on stack
1033// but callee has not been invoked yet.  Caller frame must be compiled.
1034Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1035                                              vframeStream& vfst,
1036                                              Bytecodes::Code& bc,
1037                                              CallInfo& callinfo, TRAPS) {
1038  Handle receiver;
1039  Handle nullHandle;  //create a handy null handle for exception returns
1040
1041  assert(!vfst.at_end(), "Java frame must exist");
1042
1043  // Find caller and bci from vframe
1044  methodHandle caller(THREAD, vfst.method());
1045  int          bci   = vfst.bci();
1046
1047  // Find bytecode
1048  Bytecode_invoke bytecode(caller, bci);
1049  bc = bytecode.invoke_code();
1050  int bytecode_index = bytecode.index();
1051
1052  // Find receiver for non-static call
1053  if (bc != Bytecodes::_invokestatic &&
1054      bc != Bytecodes::_invokedynamic &&
1055      bc != Bytecodes::_invokehandle) {
1056    // This register map must be update since we need to find the receiver for
1057    // compiled frames. The receiver might be in a register.
1058    RegisterMap reg_map2(thread);
1059    frame stubFrame   = thread->last_frame();
1060    // Caller-frame is a compiled frame
1061    frame callerFrame = stubFrame.sender(&reg_map2);
1062
1063    methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1064    if (callee.is_null()) {
1065      THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1066    }
1067    // Retrieve from a compiled argument list
1068    receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1069
1070    if (receiver.is_null()) {
1071      THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1072    }
1073  }
1074
1075  // Resolve method. This is parameterized by bytecode.
1076  constantPoolHandle constants(THREAD, caller->constants());
1077  assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1078  LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1079
1080#ifdef ASSERT
1081  // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1082  if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
1083    assert(receiver.not_null(), "should have thrown exception");
1084    KlassHandle receiver_klass(THREAD, receiver->klass());
1085    Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1086                            // klass is already loaded
1087    KlassHandle static_receiver_klass(THREAD, rk);
1088    // Method handle invokes might have been optimized to a direct call
1089    // so don't check for the receiver class.
1090    // FIXME this weakens the assert too much
1091    methodHandle callee = callinfo.selected_method();
1092    assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1093           callee->is_method_handle_intrinsic() ||
1094           callee->is_compiled_lambda_form(),
1095           "actual receiver must be subclass of static receiver klass");
1096    if (receiver_klass->oop_is_instance()) {
1097      if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1098        tty->print_cr("ERROR: Klass not yet initialized!!");
1099        receiver_klass()->print();
1100      }
1101      assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1102    }
1103  }
1104#endif
1105
1106  return receiver;
1107}
1108
1109methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1110  ResourceMark rm(THREAD);
1111  // We need first to check if any Java activations (compiled, interpreted)
1112  // exist on the stack since last JavaCall.  If not, we need
1113  // to get the target method from the JavaCall wrapper.
1114  vframeStream vfst(thread, true);  // Do not skip any javaCalls
1115  methodHandle callee_method;
1116  if (vfst.at_end()) {
1117    // No Java frames were found on stack since we did the JavaCall.
1118    // Hence the stack can only contain an entry_frame.  We need to
1119    // find the target method from the stub frame.
1120    RegisterMap reg_map(thread, false);
1121    frame fr = thread->last_frame();
1122    assert(fr.is_runtime_frame(), "must be a runtimeStub");
1123    fr = fr.sender(&reg_map);
1124    assert(fr.is_entry_frame(), "must be");
1125    // fr is now pointing to the entry frame.
1126    callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1127    assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1128  } else {
1129    Bytecodes::Code bc;
1130    CallInfo callinfo;
1131    find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1132    callee_method = callinfo.selected_method();
1133  }
1134  assert(callee_method()->is_method(), "must be");
1135  return callee_method;
1136}
1137
1138// Resolves a call.
1139methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1140                                           bool is_virtual,
1141                                           bool is_optimized, TRAPS) {
1142  methodHandle callee_method;
1143  callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1144  if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1145    int retry_count = 0;
1146    while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1147           callee_method->method_holder() != SystemDictionary::Object_klass()) {
1148      // If has a pending exception then there is no need to re-try to
1149      // resolve this method.
1150      // If the method has been redefined, we need to try again.
1151      // Hack: we have no way to update the vtables of arrays, so don't
1152      // require that java.lang.Object has been updated.
1153
1154      // It is very unlikely that method is redefined more than 100 times
1155      // in the middle of resolve. If it is looping here more than 100 times
1156      // means then there could be a bug here.
1157      guarantee((retry_count++ < 100),
1158                "Could not resolve to latest version of redefined method");
1159      // method is redefined in the middle of resolve so re-try.
1160      callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1161    }
1162  }
1163  return callee_method;
1164}
1165
1166// Resolves a call.  The compilers generate code for calls that go here
1167// and are patched with the real destination of the call.
1168methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1169                                           bool is_virtual,
1170                                           bool is_optimized, TRAPS) {
1171
1172  ResourceMark rm(thread);
1173  RegisterMap cbl_map(thread, false);
1174  frame caller_frame = thread->last_frame().sender(&cbl_map);
1175
1176  CodeBlob* caller_cb = caller_frame.cb();
1177  guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1178  nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1179  // make sure caller is not getting deoptimized
1180  // and removed before we are done with it.
1181  // CLEANUP - with lazy deopt shouldn't need this lock
1182  nmethodLocker caller_lock(caller_nm);
1183
1184
1185  // determine call info & receiver
1186  // note: a) receiver is NULL for static calls
1187  //       b) an exception is thrown if receiver is NULL for non-static calls
1188  CallInfo call_info;
1189  Bytecodes::Code invoke_code = Bytecodes::_illegal;
1190  Handle receiver = find_callee_info(thread, invoke_code,
1191                                     call_info, CHECK_(methodHandle()));
1192  methodHandle callee_method = call_info.selected_method();
1193
1194  assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1195         (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1196         (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1197         ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1198
1199#ifndef PRODUCT
1200  // tracing/debugging/statistics
1201  int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1202                (is_virtual) ? (&_resolve_virtual_ctr) :
1203                               (&_resolve_static_ctr);
1204  Atomic::inc(addr);
1205
1206  if (TraceCallFixup) {
1207    ResourceMark rm(thread);
1208    tty->print("resolving %s%s (%s) call to",
1209      (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1210      Bytecodes::name(invoke_code));
1211    callee_method->print_short_name(tty);
1212    tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
1213  }
1214#endif
1215
1216  // JSR 292 key invariant:
1217  // If the resolved method is a MethodHandle invoke target the call
1218  // site must be a MethodHandle call site, because the lambda form might tail-call
1219  // leaving the stack in a state unknown to either caller or callee
1220  // TODO detune for now but we might need it again
1221//  assert(!callee_method->is_compiled_lambda_form() ||
1222//         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1223
1224  // Compute entry points. This might require generation of C2I converter
1225  // frames, so we cannot be holding any locks here. Furthermore, the
1226  // computation of the entry points is independent of patching the call.  We
1227  // always return the entry-point, but we only patch the stub if the call has
1228  // not been deoptimized.  Return values: For a virtual call this is an
1229  // (cached_oop, destination address) pair. For a static call/optimized
1230  // virtual this is just a destination address.
1231
1232  StaticCallInfo static_call_info;
1233  CompiledICInfo virtual_call_info;
1234
1235  // Make sure the callee nmethod does not get deoptimized and removed before
1236  // we are done patching the code.
1237  nmethod* callee_nm = callee_method->code();
1238  nmethodLocker nl_callee(callee_nm);
1239#ifdef ASSERT
1240  address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1241#endif
1242
1243  if (is_virtual) {
1244    assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1245    bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1246    KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1247    CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1248                     is_optimized, static_bound, virtual_call_info,
1249                     CHECK_(methodHandle()));
1250  } else {
1251    // static call
1252    CompiledStaticCall::compute_entry(callee_method, static_call_info);
1253  }
1254
1255  // grab lock, check for deoptimization and potentially patch caller
1256  {
1257    MutexLocker ml_patch(CompiledIC_lock);
1258
1259    // Now that we are ready to patch if the Method* was redefined then
1260    // don't update call site and let the caller retry.
1261
1262    if (!callee_method->is_old()) {
1263#ifdef ASSERT
1264      // We must not try to patch to jump to an already unloaded method.
1265      if (dest_entry_point != 0) {
1266        assert(CodeCache::find_blob(dest_entry_point) != NULL,
1267               "should not unload nmethod while locked");
1268      }
1269#endif
1270      if (is_virtual) {
1271        nmethod* nm = callee_nm;
1272        if (nm == NULL) CodeCache::find_blob(caller_frame.pc());
1273        CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1274        if (inline_cache->is_clean()) {
1275          inline_cache->set_to_monomorphic(virtual_call_info);
1276        }
1277      } else {
1278        CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1279        if (ssc->is_clean()) ssc->set(static_call_info);
1280      }
1281    }
1282
1283  } // unlock CompiledIC_lock
1284
1285  return callee_method;
1286}
1287
1288
1289// Inline caches exist only in compiled code
1290JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1291#ifdef ASSERT
1292  RegisterMap reg_map(thread, false);
1293  frame stub_frame = thread->last_frame();
1294  assert(stub_frame.is_runtime_frame(), "sanity check");
1295  frame caller_frame = stub_frame.sender(&reg_map);
1296  assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1297#endif /* ASSERT */
1298
1299  methodHandle callee_method;
1300  JRT_BLOCK
1301    callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1302    // Return Method* through TLS
1303    thread->set_vm_result_2(callee_method());
1304  JRT_BLOCK_END
1305  // return compiled code entry point after potential safepoints
1306  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1307  return callee_method->verified_code_entry();
1308JRT_END
1309
1310
1311// Handle call site that has been made non-entrant
1312JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1313  // 6243940 We might end up in here if the callee is deoptimized
1314  // as we race to call it.  We don't want to take a safepoint if
1315  // the caller was interpreted because the caller frame will look
1316  // interpreted to the stack walkers and arguments are now
1317  // "compiled" so it is much better to make this transition
1318  // invisible to the stack walking code. The i2c path will
1319  // place the callee method in the callee_target. It is stashed
1320  // there because if we try and find the callee by normal means a
1321  // safepoint is possible and have trouble gc'ing the compiled args.
1322  RegisterMap reg_map(thread, false);
1323  frame stub_frame = thread->last_frame();
1324  assert(stub_frame.is_runtime_frame(), "sanity check");
1325  frame caller_frame = stub_frame.sender(&reg_map);
1326
1327  if (caller_frame.is_interpreted_frame() ||
1328      caller_frame.is_entry_frame()) {
1329    Method* callee = thread->callee_target();
1330    guarantee(callee != NULL && callee->is_method(), "bad handshake");
1331    thread->set_vm_result_2(callee);
1332    thread->set_callee_target(NULL);
1333    return callee->get_c2i_entry();
1334  }
1335
1336  // Must be compiled to compiled path which is safe to stackwalk
1337  methodHandle callee_method;
1338  JRT_BLOCK
1339    // Force resolving of caller (if we called from compiled frame)
1340    callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1341    thread->set_vm_result_2(callee_method());
1342  JRT_BLOCK_END
1343  // return compiled code entry point after potential safepoints
1344  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1345  return callee_method->verified_code_entry();
1346JRT_END
1347
1348
1349// resolve a static call and patch code
1350JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1351  methodHandle callee_method;
1352  JRT_BLOCK
1353    callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1354    thread->set_vm_result_2(callee_method());
1355  JRT_BLOCK_END
1356  // return compiled code entry point after potential safepoints
1357  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1358  return callee_method->verified_code_entry();
1359JRT_END
1360
1361
1362// resolve virtual call and update inline cache to monomorphic
1363JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1364  methodHandle callee_method;
1365  JRT_BLOCK
1366    callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1367    thread->set_vm_result_2(callee_method());
1368  JRT_BLOCK_END
1369  // return compiled code entry point after potential safepoints
1370  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1371  return callee_method->verified_code_entry();
1372JRT_END
1373
1374
1375// Resolve a virtual call that can be statically bound (e.g., always
1376// monomorphic, so it has no inline cache).  Patch code to resolved target.
1377JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1378  methodHandle callee_method;
1379  JRT_BLOCK
1380    callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1381    thread->set_vm_result_2(callee_method());
1382  JRT_BLOCK_END
1383  // return compiled code entry point after potential safepoints
1384  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1385  return callee_method->verified_code_entry();
1386JRT_END
1387
1388
1389
1390
1391
1392methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1393  ResourceMark rm(thread);
1394  CallInfo call_info;
1395  Bytecodes::Code bc;
1396
1397  // receiver is NULL for static calls. An exception is thrown for NULL
1398  // receivers for non-static calls
1399  Handle receiver = find_callee_info(thread, bc, call_info,
1400                                     CHECK_(methodHandle()));
1401  // Compiler1 can produce virtual call sites that can actually be statically bound
1402  // If we fell thru to below we would think that the site was going megamorphic
1403  // when in fact the site can never miss. Worse because we'd think it was megamorphic
1404  // we'd try and do a vtable dispatch however methods that can be statically bound
1405  // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1406  // reresolution of the  call site (as if we did a handle_wrong_method and not an
1407  // plain ic_miss) and the site will be converted to an optimized virtual call site
1408  // never to miss again. I don't believe C2 will produce code like this but if it
1409  // did this would still be the correct thing to do for it too, hence no ifdef.
1410  //
1411  if (call_info.resolved_method()->can_be_statically_bound()) {
1412    methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1413    if (TraceCallFixup) {
1414      RegisterMap reg_map(thread, false);
1415      frame caller_frame = thread->last_frame().sender(&reg_map);
1416      ResourceMark rm(thread);
1417      tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1418      callee_method->print_short_name(tty);
1419      tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1420      tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1421    }
1422    return callee_method;
1423  }
1424
1425  methodHandle callee_method = call_info.selected_method();
1426
1427  bool should_be_mono = false;
1428
1429#ifndef PRODUCT
1430  Atomic::inc(&_ic_miss_ctr);
1431
1432  // Statistics & Tracing
1433  if (TraceCallFixup) {
1434    ResourceMark rm(thread);
1435    tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1436    callee_method->print_short_name(tty);
1437    tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1438  }
1439
1440  if (ICMissHistogram) {
1441    MutexLocker m(VMStatistic_lock);
1442    RegisterMap reg_map(thread, false);
1443    frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1444    // produce statistics under the lock
1445    trace_ic_miss(f.pc());
1446  }
1447#endif
1448
1449  // install an event collector so that when a vtable stub is created the
1450  // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1451  // event can't be posted when the stub is created as locks are held
1452  // - instead the event will be deferred until the event collector goes
1453  // out of scope.
1454  JvmtiDynamicCodeEventCollector event_collector;
1455
1456  // Update inline cache to megamorphic. Skip update if caller has been
1457  // made non-entrant or we are called from interpreted.
1458  { MutexLocker ml_patch (CompiledIC_lock);
1459    RegisterMap reg_map(thread, false);
1460    frame caller_frame = thread->last_frame().sender(&reg_map);
1461    CodeBlob* cb = caller_frame.cb();
1462    if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1463      // Not a non-entrant nmethod, so find inline_cache
1464      CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1465      bool should_be_mono = false;
1466      if (inline_cache->is_optimized()) {
1467        if (TraceCallFixup) {
1468          ResourceMark rm(thread);
1469          tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1470          callee_method->print_short_name(tty);
1471          tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1472        }
1473        should_be_mono = true;
1474      } else if (inline_cache->is_icholder_call()) {
1475        CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1476        if ( ic_oop != NULL) {
1477
1478          if (receiver()->klass() == ic_oop->holder_klass()) {
1479            // This isn't a real miss. We must have seen that compiled code
1480            // is now available and we want the call site converted to a
1481            // monomorphic compiled call site.
1482            // We can't assert for callee_method->code() != NULL because it
1483            // could have been deoptimized in the meantime
1484            if (TraceCallFixup) {
1485              ResourceMark rm(thread);
1486              tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1487              callee_method->print_short_name(tty);
1488              tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1489            }
1490            should_be_mono = true;
1491          }
1492        }
1493      }
1494
1495      if (should_be_mono) {
1496
1497        // We have a path that was monomorphic but was going interpreted
1498        // and now we have (or had) a compiled entry. We correct the IC
1499        // by using a new icBuffer.
1500        CompiledICInfo info;
1501        KlassHandle receiver_klass(THREAD, receiver()->klass());
1502        inline_cache->compute_monomorphic_entry(callee_method,
1503                                                receiver_klass,
1504                                                inline_cache->is_optimized(),
1505                                                false,
1506                                                info, CHECK_(methodHandle()));
1507        inline_cache->set_to_monomorphic(info);
1508      } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1509        // Potential change to megamorphic
1510        bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1511        if (!successful) {
1512          inline_cache->set_to_clean();
1513        }
1514      } else {
1515        // Either clean or megamorphic
1516      }
1517    }
1518  } // Release CompiledIC_lock
1519
1520  return callee_method;
1521}
1522
1523//
1524// Resets a call-site in compiled code so it will get resolved again.
1525// This routines handles both virtual call sites, optimized virtual call
1526// sites, and static call sites. Typically used to change a call sites
1527// destination from compiled to interpreted.
1528//
1529methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1530  ResourceMark rm(thread);
1531  RegisterMap reg_map(thread, false);
1532  frame stub_frame = thread->last_frame();
1533  assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1534  frame caller = stub_frame.sender(&reg_map);
1535
1536  // Do nothing if the frame isn't a live compiled frame.
1537  // nmethod could be deoptimized by the time we get here
1538  // so no update to the caller is needed.
1539
1540  if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1541
1542    address pc = caller.pc();
1543
1544    // Default call_addr is the location of the "basic" call.
1545    // Determine the address of the call we a reresolving. With
1546    // Inline Caches we will always find a recognizable call.
1547    // With Inline Caches disabled we may or may not find a
1548    // recognizable call. We will always find a call for static
1549    // calls and for optimized virtual calls. For vanilla virtual
1550    // calls it depends on the state of the UseInlineCaches switch.
1551    //
1552    // With Inline Caches disabled we can get here for a virtual call
1553    // for two reasons:
1554    //   1 - calling an abstract method. The vtable for abstract methods
1555    //       will run us thru handle_wrong_method and we will eventually
1556    //       end up in the interpreter to throw the ame.
1557    //   2 - a racing deoptimization. We could be doing a vanilla vtable
1558    //       call and between the time we fetch the entry address and
1559    //       we jump to it the target gets deoptimized. Similar to 1
1560    //       we will wind up in the interprter (thru a c2i with c2).
1561    //
1562    address call_addr = NULL;
1563    {
1564      // Get call instruction under lock because another thread may be
1565      // busy patching it.
1566      MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1567      // Location of call instruction
1568      if (NativeCall::is_call_before(pc)) {
1569        NativeCall *ncall = nativeCall_before(pc);
1570        call_addr = ncall->instruction_address();
1571      }
1572    }
1573
1574    // Check for static or virtual call
1575    bool is_static_call = false;
1576    nmethod* caller_nm = CodeCache::find_nmethod(pc);
1577    // Make sure nmethod doesn't get deoptimized and removed until
1578    // this is done with it.
1579    // CLEANUP - with lazy deopt shouldn't need this lock
1580    nmethodLocker nmlock(caller_nm);
1581
1582    if (call_addr != NULL) {
1583      RelocIterator iter(caller_nm, call_addr, call_addr+1);
1584      int ret = iter.next(); // Get item
1585      if (ret) {
1586        assert(iter.addr() == call_addr, "must find call");
1587        if (iter.type() == relocInfo::static_call_type) {
1588          is_static_call = true;
1589        } else {
1590          assert(iter.type() == relocInfo::virtual_call_type ||
1591                 iter.type() == relocInfo::opt_virtual_call_type
1592                , "unexpected relocInfo. type");
1593        }
1594      } else {
1595        assert(!UseInlineCaches, "relocation info. must exist for this address");
1596      }
1597
1598      // Cleaning the inline cache will force a new resolve. This is more robust
1599      // than directly setting it to the new destination, since resolving of calls
1600      // is always done through the same code path. (experience shows that it
1601      // leads to very hard to track down bugs, if an inline cache gets updated
1602      // to a wrong method). It should not be performance critical, since the
1603      // resolve is only done once.
1604
1605      MutexLocker ml(CompiledIC_lock);
1606      //
1607      // We do not patch the call site if the nmethod has been made non-entrant
1608      // as it is a waste of time
1609      //
1610      if (caller_nm->is_in_use()) {
1611        if (is_static_call) {
1612          CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1613          ssc->set_to_clean();
1614        } else {
1615          // compiled, dispatched call (which used to call an interpreted method)
1616          CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1617          inline_cache->set_to_clean();
1618        }
1619      }
1620    }
1621
1622  }
1623
1624  methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1625
1626
1627#ifndef PRODUCT
1628  Atomic::inc(&_wrong_method_ctr);
1629
1630  if (TraceCallFixup) {
1631    ResourceMark rm(thread);
1632    tty->print("handle_wrong_method reresolving call to");
1633    callee_method->print_short_name(tty);
1634    tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1635  }
1636#endif
1637
1638  return callee_method;
1639}
1640
1641#ifdef ASSERT
1642void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
1643                                                                const BasicType* sig_bt,
1644                                                                const VMRegPair* regs) {
1645  ResourceMark rm;
1646  const int total_args_passed = method->size_of_parameters();
1647  const VMRegPair*    regs_with_member_name = regs;
1648        VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1649
1650  const int member_arg_pos = total_args_passed - 1;
1651  assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1652  assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1653
1654  const bool is_outgoing = method->is_method_handle_intrinsic();
1655  int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1656
1657  for (int i = 0; i < member_arg_pos; i++) {
1658    VMReg a =    regs_with_member_name[i].first();
1659    VMReg b = regs_without_member_name[i].first();
1660    assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
1661  }
1662  assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1663}
1664#endif
1665
1666// ---------------------------------------------------------------------------
1667// We are calling the interpreter via a c2i. Normally this would mean that
1668// we were called by a compiled method. However we could have lost a race
1669// where we went int -> i2c -> c2i and so the caller could in fact be
1670// interpreted. If the caller is compiled we attempt to patch the caller
1671// so he no longer calls into the interpreter.
1672IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1673  Method* moop(method);
1674
1675  address entry_point = moop->from_compiled_entry();
1676
1677  // It's possible that deoptimization can occur at a call site which hasn't
1678  // been resolved yet, in which case this function will be called from
1679  // an nmethod that has been patched for deopt and we can ignore the
1680  // request for a fixup.
1681  // Also it is possible that we lost a race in that from_compiled_entry
1682  // is now back to the i2c in that case we don't need to patch and if
1683  // we did we'd leap into space because the callsite needs to use
1684  // "to interpreter" stub in order to load up the Method*. Don't
1685  // ask me how I know this...
1686
1687  CodeBlob* cb = CodeCache::find_blob(caller_pc);
1688  if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1689    return;
1690  }
1691
1692  // The check above makes sure this is a nmethod.
1693  nmethod* nm = cb->as_nmethod_or_null();
1694  assert(nm, "must be");
1695
1696  // Get the return PC for the passed caller PC.
1697  address return_pc = caller_pc + frame::pc_return_offset;
1698
1699  // There is a benign race here. We could be attempting to patch to a compiled
1700  // entry point at the same time the callee is being deoptimized. If that is
1701  // the case then entry_point may in fact point to a c2i and we'd patch the
1702  // call site with the same old data. clear_code will set code() to NULL
1703  // at the end of it. If we happen to see that NULL then we can skip trying
1704  // to patch. If we hit the window where the callee has a c2i in the
1705  // from_compiled_entry and the NULL isn't present yet then we lose the race
1706  // and patch the code with the same old data. Asi es la vida.
1707
1708  if (moop->code() == NULL) return;
1709
1710  if (nm->is_in_use()) {
1711
1712    // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1713    MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1714    if (NativeCall::is_call_before(return_pc)) {
1715      NativeCall *call = nativeCall_before(return_pc);
1716      //
1717      // bug 6281185. We might get here after resolving a call site to a vanilla
1718      // virtual call. Because the resolvee uses the verified entry it may then
1719      // see compiled code and attempt to patch the site by calling us. This would
1720      // then incorrectly convert the call site to optimized and its downhill from
1721      // there. If you're lucky you'll get the assert in the bugid, if not you've
1722      // just made a call site that could be megamorphic into a monomorphic site
1723      // for the rest of its life! Just another racing bug in the life of
1724      // fixup_callers_callsite ...
1725      //
1726      RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1727      iter.next();
1728      assert(iter.has_current(), "must have a reloc at java call site");
1729      relocInfo::relocType typ = iter.reloc()->type();
1730      if ( typ != relocInfo::static_call_type &&
1731           typ != relocInfo::opt_virtual_call_type &&
1732           typ != relocInfo::static_stub_type) {
1733        return;
1734      }
1735      address destination = call->destination();
1736      if (destination != entry_point) {
1737        CodeBlob* callee = CodeCache::find_blob(destination);
1738        // callee == cb seems weird. It means calling interpreter thru stub.
1739        if (callee == cb || callee->is_adapter_blob()) {
1740          // static call or optimized virtual
1741          if (TraceCallFixup) {
1742            tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1743            moop->print_short_name(tty);
1744            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1745          }
1746          call->set_destination_mt_safe(entry_point);
1747        } else {
1748          if (TraceCallFixup) {
1749            tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1750            moop->print_short_name(tty);
1751            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1752          }
1753          // assert is too strong could also be resolve destinations.
1754          // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1755        }
1756      } else {
1757          if (TraceCallFixup) {
1758            tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1759            moop->print_short_name(tty);
1760            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1761          }
1762      }
1763    }
1764  }
1765IRT_END
1766
1767
1768// same as JVM_Arraycopy, but called directly from compiled code
1769JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1770                                                oopDesc* dest, jint dest_pos,
1771                                                jint length,
1772                                                JavaThread* thread)) {
1773#ifndef PRODUCT
1774  _slow_array_copy_ctr++;
1775#endif
1776  // Check if we have null pointers
1777  if (src == NULL || dest == NULL) {
1778    THROW(vmSymbols::java_lang_NullPointerException());
1779  }
1780  // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1781  // even though the copy_array API also performs dynamic checks to ensure
1782  // that src and dest are truly arrays (and are conformable).
1783  // The copy_array mechanism is awkward and could be removed, but
1784  // the compilers don't call this function except as a last resort,
1785  // so it probably doesn't matter.
1786  src->klass()->copy_array((arrayOopDesc*)src,  src_pos,
1787                                        (arrayOopDesc*)dest, dest_pos,
1788                                        length, thread);
1789}
1790JRT_END
1791
1792char* SharedRuntime::generate_class_cast_message(
1793    JavaThread* thread, const char* objName) {
1794
1795  // Get target class name from the checkcast instruction
1796  vframeStream vfst(thread, true);
1797  assert(!vfst.at_end(), "Java frame must exist");
1798  Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1799  Klass* targetKlass = vfst.method()->constants()->klass_at(
1800    cc.index(), thread);
1801  return generate_class_cast_message(objName, targetKlass->external_name());
1802}
1803
1804char* SharedRuntime::generate_class_cast_message(
1805    const char* objName, const char* targetKlassName, const char* desc) {
1806  size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1807
1808  char* message = NEW_RESOURCE_ARRAY(char, msglen);
1809  if (NULL == message) {
1810    // Shouldn't happen, but don't cause even more problems if it does
1811    message = const_cast<char*>(objName);
1812  } else {
1813    jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1814  }
1815  return message;
1816}
1817
1818JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1819  (void) JavaThread::current()->reguard_stack();
1820JRT_END
1821
1822
1823// Handles the uncommon case in locking, i.e., contention or an inflated lock.
1824#ifndef PRODUCT
1825int SharedRuntime::_monitor_enter_ctr=0;
1826#endif
1827JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1828  oop obj(_obj);
1829#ifndef PRODUCT
1830  _monitor_enter_ctr++;             // monitor enter slow
1831#endif
1832  if (PrintBiasedLockingStatistics) {
1833    Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1834  }
1835  Handle h_obj(THREAD, obj);
1836  if (UseBiasedLocking) {
1837    // Retry fast entry if bias is revoked to avoid unnecessary inflation
1838    ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1839  } else {
1840    ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1841  }
1842  assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1843JRT_END
1844
1845#ifndef PRODUCT
1846int SharedRuntime::_monitor_exit_ctr=0;
1847#endif
1848// Handles the uncommon cases of monitor unlocking in compiled code
1849JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1850   oop obj(_obj);
1851#ifndef PRODUCT
1852  _monitor_exit_ctr++;              // monitor exit slow
1853#endif
1854  Thread* THREAD = JavaThread::current();
1855  // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1856  // testing was unable to ever fire the assert that guarded it so I have removed it.
1857  assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1858#undef MIGHT_HAVE_PENDING
1859#ifdef MIGHT_HAVE_PENDING
1860  // Save and restore any pending_exception around the exception mark.
1861  // While the slow_exit must not throw an exception, we could come into
1862  // this routine with one set.
1863  oop pending_excep = NULL;
1864  const char* pending_file;
1865  int pending_line;
1866  if (HAS_PENDING_EXCEPTION) {
1867    pending_excep = PENDING_EXCEPTION;
1868    pending_file  = THREAD->exception_file();
1869    pending_line  = THREAD->exception_line();
1870    CLEAR_PENDING_EXCEPTION;
1871  }
1872#endif /* MIGHT_HAVE_PENDING */
1873
1874  {
1875    // Exit must be non-blocking, and therefore no exceptions can be thrown.
1876    EXCEPTION_MARK;
1877    ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1878  }
1879
1880#ifdef MIGHT_HAVE_PENDING
1881  if (pending_excep != NULL) {
1882    THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1883  }
1884#endif /* MIGHT_HAVE_PENDING */
1885JRT_END
1886
1887#ifndef PRODUCT
1888
1889void SharedRuntime::print_statistics() {
1890  ttyLocker ttyl;
1891  if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1892
1893  if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1894  if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1895  if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1896
1897  SharedRuntime::print_ic_miss_histogram();
1898
1899  if (CountRemovableExceptions) {
1900    if (_nof_removable_exceptions > 0) {
1901      Unimplemented(); // this counter is not yet incremented
1902      tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1903    }
1904  }
1905
1906  // Dump the JRT_ENTRY counters
1907  if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1908  if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1909  if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1910  if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1911  if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1912  if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1913  if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1914
1915  tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1916  tty->print_cr("%5d wrong method", _wrong_method_ctr );
1917  tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1918  tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1919  tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1920
1921  if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1922  if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1923  if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1924  if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1925  if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1926  if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1927  if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1928  if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1929  if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1930  if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1931  if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1932  if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1933  if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1934  if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1935  if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1936  if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1937
1938  AdapterHandlerLibrary::print_statistics();
1939
1940  if (xtty != NULL)  xtty->tail("statistics");
1941}
1942
1943inline double percent(int x, int y) {
1944  return 100.0 * x / MAX2(y, 1);
1945}
1946
1947class MethodArityHistogram {
1948 public:
1949  enum { MAX_ARITY = 256 };
1950 private:
1951  static int _arity_histogram[MAX_ARITY];     // histogram of #args
1952  static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1953  static int _max_arity;                      // max. arity seen
1954  static int _max_size;                       // max. arg size seen
1955
1956  static void add_method_to_histogram(nmethod* nm) {
1957    Method* m = nm->method();
1958    ArgumentCount args(m->signature());
1959    int arity   = args.size() + (m->is_static() ? 0 : 1);
1960    int argsize = m->size_of_parameters();
1961    arity   = MIN2(arity, MAX_ARITY-1);
1962    argsize = MIN2(argsize, MAX_ARITY-1);
1963    int count = nm->method()->compiled_invocation_count();
1964    _arity_histogram[arity]  += count;
1965    _size_histogram[argsize] += count;
1966    _max_arity = MAX2(_max_arity, arity);
1967    _max_size  = MAX2(_max_size, argsize);
1968  }
1969
1970  void print_histogram_helper(int n, int* histo, const char* name) {
1971    const int N = MIN2(5, n);
1972    tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1973    double sum = 0;
1974    double weighted_sum = 0;
1975    int i;
1976    for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1977    double rest = sum;
1978    double percent = sum / 100;
1979    for (i = 0; i <= N; i++) {
1980      rest -= histo[i];
1981      tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1982    }
1983    tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1984    tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1985  }
1986
1987  void print_histogram() {
1988    tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1989    print_histogram_helper(_max_arity, _arity_histogram, "arity");
1990    tty->print_cr("\nSame for parameter size (in words):");
1991    print_histogram_helper(_max_size, _size_histogram, "size");
1992    tty->cr();
1993  }
1994
1995 public:
1996  MethodArityHistogram() {
1997    MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1998    _max_arity = _max_size = 0;
1999    for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
2000    CodeCache::nmethods_do(add_method_to_histogram);
2001    print_histogram();
2002  }
2003};
2004
2005int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2006int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2007int MethodArityHistogram::_max_arity;
2008int MethodArityHistogram::_max_size;
2009
2010void SharedRuntime::print_call_statistics(int comp_total) {
2011  tty->print_cr("Calls from compiled code:");
2012  int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2013  int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2014  int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2015  tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2016  tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2017  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2018  tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2019  tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2020  tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2021  tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2022  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2023  tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2024  tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2025  tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2026  tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2027  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2028  tty->cr();
2029  tty->print_cr("Note 1: counter updates are not MT-safe.");
2030  tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2031  tty->print_cr("        %% in nested categories are relative to their category");
2032  tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2033  tty->cr();
2034
2035  MethodArityHistogram h;
2036}
2037#endif
2038
2039
2040// A simple wrapper class around the calling convention information
2041// that allows sharing of adapters for the same calling convention.
2042class AdapterFingerPrint : public CHeapObj<mtCode> {
2043 private:
2044  enum {
2045    _basic_type_bits = 4,
2046    _basic_type_mask = right_n_bits(_basic_type_bits),
2047    _basic_types_per_int = BitsPerInt / _basic_type_bits,
2048    _compact_int_count = 3
2049  };
2050  // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2051  // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2052
2053  union {
2054    int  _compact[_compact_int_count];
2055    int* _fingerprint;
2056  } _value;
2057  int _length; // A negative length indicates the fingerprint is in the compact form,
2058               // Otherwise _value._fingerprint is the array.
2059
2060  // Remap BasicTypes that are handled equivalently by the adapters.
2061  // These are correct for the current system but someday it might be
2062  // necessary to make this mapping platform dependent.
2063  static int adapter_encoding(BasicType in) {
2064    switch(in) {
2065      case T_BOOLEAN:
2066      case T_BYTE:
2067      case T_SHORT:
2068      case T_CHAR:
2069        // There are all promoted to T_INT in the calling convention
2070        return T_INT;
2071
2072      case T_OBJECT:
2073      case T_ARRAY:
2074        // In other words, we assume that any register good enough for
2075        // an int or long is good enough for a managed pointer.
2076#ifdef _LP64
2077        return T_LONG;
2078#else
2079        return T_INT;
2080#endif
2081
2082      case T_INT:
2083      case T_LONG:
2084      case T_FLOAT:
2085      case T_DOUBLE:
2086      case T_VOID:
2087        return in;
2088
2089      default:
2090        ShouldNotReachHere();
2091        return T_CONFLICT;
2092    }
2093  }
2094
2095 public:
2096  AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2097    // The fingerprint is based on the BasicType signature encoded
2098    // into an array of ints with eight entries per int.
2099    int* ptr;
2100    int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2101    if (len <= _compact_int_count) {
2102      assert(_compact_int_count == 3, "else change next line");
2103      _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2104      // Storing the signature encoded as signed chars hits about 98%
2105      // of the time.
2106      _length = -len;
2107      ptr = _value._compact;
2108    } else {
2109      _length = len;
2110      _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2111      ptr = _value._fingerprint;
2112    }
2113
2114    // Now pack the BasicTypes with 8 per int
2115    int sig_index = 0;
2116    for (int index = 0; index < len; index++) {
2117      int value = 0;
2118      for (int byte = 0; byte < _basic_types_per_int; byte++) {
2119        int bt = ((sig_index < total_args_passed)
2120                  ? adapter_encoding(sig_bt[sig_index++])
2121                  : 0);
2122        assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2123        value = (value << _basic_type_bits) | bt;
2124      }
2125      ptr[index] = value;
2126    }
2127  }
2128
2129  ~AdapterFingerPrint() {
2130    if (_length > 0) {
2131      FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
2132    }
2133  }
2134
2135  int value(int index) {
2136    if (_length < 0) {
2137      return _value._compact[index];
2138    }
2139    return _value._fingerprint[index];
2140  }
2141  int length() {
2142    if (_length < 0) return -_length;
2143    return _length;
2144  }
2145
2146  bool is_compact() {
2147    return _length <= 0;
2148  }
2149
2150  unsigned int compute_hash() {
2151    int hash = 0;
2152    for (int i = 0; i < length(); i++) {
2153      int v = value(i);
2154      hash = (hash << 8) ^ v ^ (hash >> 5);
2155    }
2156    return (unsigned int)hash;
2157  }
2158
2159  const char* as_string() {
2160    stringStream st;
2161    st.print("0x");
2162    for (int i = 0; i < length(); i++) {
2163      st.print("%08x", value(i));
2164    }
2165    return st.as_string();
2166  }
2167
2168  bool equals(AdapterFingerPrint* other) {
2169    if (other->_length != _length) {
2170      return false;
2171    }
2172    if (_length < 0) {
2173      assert(_compact_int_count == 3, "else change next line");
2174      return _value._compact[0] == other->_value._compact[0] &&
2175             _value._compact[1] == other->_value._compact[1] &&
2176             _value._compact[2] == other->_value._compact[2];
2177    } else {
2178      for (int i = 0; i < _length; i++) {
2179        if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2180          return false;
2181        }
2182      }
2183    }
2184    return true;
2185  }
2186};
2187
2188
2189// A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2190class AdapterHandlerTable : public BasicHashtable<mtCode> {
2191  friend class AdapterHandlerTableIterator;
2192
2193 private:
2194
2195#ifndef PRODUCT
2196  static int _lookups; // number of calls to lookup
2197  static int _buckets; // number of buckets checked
2198  static int _equals;  // number of buckets checked with matching hash
2199  static int _hits;    // number of successful lookups
2200  static int _compact; // number of equals calls with compact signature
2201#endif
2202
2203  AdapterHandlerEntry* bucket(int i) {
2204    return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2205  }
2206
2207 public:
2208  AdapterHandlerTable()
2209    : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2210
2211  // Create a new entry suitable for insertion in the table
2212  AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2213    AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2214    entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2215    return entry;
2216  }
2217
2218  // Insert an entry into the table
2219  void add(AdapterHandlerEntry* entry) {
2220    int index = hash_to_index(entry->hash());
2221    add_entry(index, entry);
2222  }
2223
2224  void free_entry(AdapterHandlerEntry* entry) {
2225    entry->deallocate();
2226    BasicHashtable<mtCode>::free_entry(entry);
2227  }
2228
2229  // Find a entry with the same fingerprint if it exists
2230  AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2231    NOT_PRODUCT(_lookups++);
2232    AdapterFingerPrint fp(total_args_passed, sig_bt);
2233    unsigned int hash = fp.compute_hash();
2234    int index = hash_to_index(hash);
2235    for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2236      NOT_PRODUCT(_buckets++);
2237      if (e->hash() == hash) {
2238        NOT_PRODUCT(_equals++);
2239        if (fp.equals(e->fingerprint())) {
2240#ifndef PRODUCT
2241          if (fp.is_compact()) _compact++;
2242          _hits++;
2243#endif
2244          return e;
2245        }
2246      }
2247    }
2248    return NULL;
2249  }
2250
2251#ifndef PRODUCT
2252  void print_statistics() {
2253    ResourceMark rm;
2254    int longest = 0;
2255    int empty = 0;
2256    int total = 0;
2257    int nonempty = 0;
2258    for (int index = 0; index < table_size(); index++) {
2259      int count = 0;
2260      for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2261        count++;
2262      }
2263      if (count != 0) nonempty++;
2264      if (count == 0) empty++;
2265      if (count > longest) longest = count;
2266      total += count;
2267    }
2268    tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2269                  empty, longest, total, total / (double)nonempty);
2270    tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2271                  _lookups, _buckets, _equals, _hits, _compact);
2272  }
2273#endif
2274};
2275
2276
2277#ifndef PRODUCT
2278
2279int AdapterHandlerTable::_lookups;
2280int AdapterHandlerTable::_buckets;
2281int AdapterHandlerTable::_equals;
2282int AdapterHandlerTable::_hits;
2283int AdapterHandlerTable::_compact;
2284
2285#endif
2286
2287class AdapterHandlerTableIterator : public StackObj {
2288 private:
2289  AdapterHandlerTable* _table;
2290  int _index;
2291  AdapterHandlerEntry* _current;
2292
2293  void scan() {
2294    while (_index < _table->table_size()) {
2295      AdapterHandlerEntry* a = _table->bucket(_index);
2296      _index++;
2297      if (a != NULL) {
2298        _current = a;
2299        return;
2300      }
2301    }
2302  }
2303
2304 public:
2305  AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2306    scan();
2307  }
2308  bool has_next() {
2309    return _current != NULL;
2310  }
2311  AdapterHandlerEntry* next() {
2312    if (_current != NULL) {
2313      AdapterHandlerEntry* result = _current;
2314      _current = _current->next();
2315      if (_current == NULL) scan();
2316      return result;
2317    } else {
2318      return NULL;
2319    }
2320  }
2321};
2322
2323
2324// ---------------------------------------------------------------------------
2325// Implementation of AdapterHandlerLibrary
2326AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2327AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2328const int AdapterHandlerLibrary_size = 16*K;
2329BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2330
2331BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2332  // Should be called only when AdapterHandlerLibrary_lock is active.
2333  if (_buffer == NULL) // Initialize lazily
2334      _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2335  return _buffer;
2336}
2337
2338void AdapterHandlerLibrary::initialize() {
2339  if (_adapters != NULL) return;
2340  _adapters = new AdapterHandlerTable();
2341
2342  // Create a special handler for abstract methods.  Abstract methods
2343  // are never compiled so an i2c entry is somewhat meaningless, but
2344  // fill it in with something appropriate just in case.  Pass handle
2345  // wrong method for the c2i transitions.
2346  address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
2347  _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2348                                                              StubRoutines::throw_AbstractMethodError_entry(),
2349                                                              wrong_method, wrong_method);
2350}
2351
2352AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2353                                                      address i2c_entry,
2354                                                      address c2i_entry,
2355                                                      address c2i_unverified_entry) {
2356  return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2357}
2358
2359AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2360  // Use customized signature handler.  Need to lock around updates to
2361  // the AdapterHandlerTable (it is not safe for concurrent readers
2362  // and a single writer: this could be fixed if it becomes a
2363  // problem).
2364
2365  // Get the address of the ic_miss handlers before we grab the
2366  // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2367  // was caused by the initialization of the stubs happening
2368  // while we held the lock and then notifying jvmti while
2369  // holding it. This just forces the initialization to be a little
2370  // earlier.
2371  address ic_miss = SharedRuntime::get_ic_miss_stub();
2372  assert(ic_miss != NULL, "must have handler");
2373
2374  ResourceMark rm;
2375
2376  NOT_PRODUCT(int insts_size);
2377  AdapterBlob* B = NULL;
2378  AdapterHandlerEntry* entry = NULL;
2379  AdapterFingerPrint* fingerprint = NULL;
2380  {
2381    MutexLocker mu(AdapterHandlerLibrary_lock);
2382    // make sure data structure is initialized
2383    initialize();
2384
2385    if (method->is_abstract()) {
2386      return _abstract_method_handler;
2387    }
2388
2389    // Fill in the signature array, for the calling-convention call.
2390    int total_args_passed = method->size_of_parameters(); // All args on stack
2391
2392    BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2393    VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2394    int i = 0;
2395    if (!method->is_static())  // Pass in receiver first
2396      sig_bt[i++] = T_OBJECT;
2397    for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2398      sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2399      if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2400        sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2401    }
2402    assert(i == total_args_passed, "");
2403
2404    // Lookup method signature's fingerprint
2405    entry = _adapters->lookup(total_args_passed, sig_bt);
2406
2407#ifdef ASSERT
2408    AdapterHandlerEntry* shared_entry = NULL;
2409    if (VerifyAdapterSharing && entry != NULL) {
2410      shared_entry = entry;
2411      entry = NULL;
2412    }
2413#endif
2414
2415    if (entry != NULL) {
2416      return entry;
2417    }
2418
2419    // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2420    int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2421
2422    // Make a C heap allocated version of the fingerprint to store in the adapter
2423    fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2424
2425    // Create I2C & C2I handlers
2426
2427    BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2428    if (buf != NULL) {
2429      CodeBuffer buffer(buf);
2430      short buffer_locs[20];
2431      buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2432                                             sizeof(buffer_locs)/sizeof(relocInfo));
2433      MacroAssembler _masm(&buffer);
2434
2435      entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2436                                                     total_args_passed,
2437                                                     comp_args_on_stack,
2438                                                     sig_bt,
2439                                                     regs,
2440                                                     fingerprint);
2441
2442#ifdef ASSERT
2443      if (VerifyAdapterSharing) {
2444        if (shared_entry != NULL) {
2445          assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
2446                 "code must match");
2447          // Release the one just created and return the original
2448          _adapters->free_entry(entry);
2449          return shared_entry;
2450        } else  {
2451          entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
2452        }
2453      }
2454#endif
2455
2456      B = AdapterBlob::create(&buffer);
2457      NOT_PRODUCT(insts_size = buffer.insts_size());
2458    }
2459    if (B == NULL) {
2460      // CodeCache is full, disable compilation
2461      // Ought to log this but compile log is only per compile thread
2462      // and we're some non descript Java thread.
2463      MutexUnlocker mu(AdapterHandlerLibrary_lock);
2464      CompileBroker::handle_full_code_cache();
2465      return NULL; // Out of CodeCache space
2466    }
2467    entry->relocate(B->content_begin());
2468#ifndef PRODUCT
2469    // debugging suppport
2470    if (PrintAdapterHandlers || PrintStubCode) {
2471      ttyLocker ttyl;
2472      entry->print_adapter_on(tty);
2473      tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
2474                    _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2475                    method->signature()->as_C_string(), insts_size);
2476      tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2477      if (Verbose || PrintStubCode) {
2478        address first_pc = entry->base_address();
2479        if (first_pc != NULL) {
2480          Disassembler::decode(first_pc, first_pc + insts_size);
2481          tty->cr();
2482        }
2483      }
2484    }
2485#endif
2486
2487    _adapters->add(entry);
2488  }
2489  // Outside of the lock
2490  if (B != NULL) {
2491    char blob_id[256];
2492    jio_snprintf(blob_id,
2493                 sizeof(blob_id),
2494                 "%s(%s)@" PTR_FORMAT,
2495                 B->name(),
2496                 fingerprint->as_string(),
2497                 B->content_begin());
2498    Forte::register_stub(blob_id, B->content_begin(), B->content_end());
2499
2500    if (JvmtiExport::should_post_dynamic_code_generated()) {
2501      JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
2502    }
2503  }
2504  return entry;
2505}
2506
2507address AdapterHandlerEntry::base_address() {
2508  address base = _i2c_entry;
2509  if (base == NULL)  base = _c2i_entry;
2510  assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2511  assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2512  return base;
2513}
2514
2515void AdapterHandlerEntry::relocate(address new_base) {
2516  address old_base = base_address();
2517  assert(old_base != NULL, "");
2518  ptrdiff_t delta = new_base - old_base;
2519  if (_i2c_entry != NULL)
2520    _i2c_entry += delta;
2521  if (_c2i_entry != NULL)
2522    _c2i_entry += delta;
2523  if (_c2i_unverified_entry != NULL)
2524    _c2i_unverified_entry += delta;
2525  assert(base_address() == new_base, "");
2526}
2527
2528
2529void AdapterHandlerEntry::deallocate() {
2530  delete _fingerprint;
2531#ifdef ASSERT
2532  if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
2533  if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig, mtCode);
2534#endif
2535}
2536
2537
2538#ifdef ASSERT
2539// Capture the code before relocation so that it can be compared
2540// against other versions.  If the code is captured after relocation
2541// then relative instructions won't be equivalent.
2542void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2543  _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2544  _code_length = length;
2545  memcpy(_saved_code, buffer, length);
2546  _total_args_passed = total_args_passed;
2547  _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed, mtCode);
2548  memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
2549}
2550
2551
2552bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2553  if (length != _code_length) {
2554    return false;
2555  }
2556  for (int i = 0; i < length; i++) {
2557    if (buffer[i] != _saved_code[i]) {
2558      return false;
2559    }
2560  }
2561  return true;
2562}
2563#endif
2564
2565
2566// Create a native wrapper for this native method.  The wrapper converts the
2567// java compiled calling convention to the native convention, handlizes
2568// arguments, and transitions to native.  On return from the native we transition
2569// back to java blocking if a safepoint is in progress.
2570nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
2571  ResourceMark rm;
2572  nmethod* nm = NULL;
2573
2574  assert(method->is_native(), "must be native");
2575  assert(method->is_method_handle_intrinsic() ||
2576         method->has_native_function(), "must have something valid to call!");
2577
2578  {
2579    // perform the work while holding the lock, but perform any printing outside the lock
2580    MutexLocker mu(AdapterHandlerLibrary_lock);
2581    // See if somebody beat us to it
2582    nm = method->code();
2583    if (nm) {
2584      return nm;
2585    }
2586
2587    ResourceMark rm;
2588
2589    BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2590    if (buf != NULL) {
2591      CodeBuffer buffer(buf);
2592      double locs_buf[20];
2593      buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2594      MacroAssembler _masm(&buffer);
2595
2596      // Fill in the signature array, for the calling-convention call.
2597      const int total_args_passed = method->size_of_parameters();
2598
2599      BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2600      VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2601      int i=0;
2602      if( !method->is_static() )  // Pass in receiver first
2603        sig_bt[i++] = T_OBJECT;
2604      SignatureStream ss(method->signature());
2605      for( ; !ss.at_return_type(); ss.next()) {
2606        sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2607        if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2608          sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2609      }
2610      assert(i == total_args_passed, "");
2611      BasicType ret_type = ss.type();
2612
2613      // Now get the compiled-Java layout as input (or output) arguments.
2614      // NOTE: Stubs for compiled entry points of method handle intrinsics
2615      // are just trampolines so the argument registers must be outgoing ones.
2616      const bool is_outgoing = method->is_method_handle_intrinsic();
2617      int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2618
2619      // Generate the compiled-to-native wrapper code
2620      nm = SharedRuntime::generate_native_wrapper(&_masm,
2621                                                  method,
2622                                                  compile_id,
2623                                                  sig_bt,
2624                                                  regs,
2625                                                  ret_type);
2626    }
2627  }
2628
2629  // Must unlock before calling set_code
2630
2631  // Install the generated code.
2632  if (nm != NULL) {
2633    if (PrintCompilation) {
2634      ttyLocker ttyl;
2635      CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2636    }
2637    method->set_code(method, nm);
2638    nm->post_compiled_method_load_event();
2639  } else {
2640    // CodeCache is full, disable compilation
2641    CompileBroker::handle_full_code_cache();
2642  }
2643  return nm;
2644}
2645
2646JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2647  assert(thread == JavaThread::current(), "must be");
2648  // The code is about to enter a JNI lazy critical native method and
2649  // _needs_gc is true, so if this thread is already in a critical
2650  // section then just return, otherwise this thread should block
2651  // until needs_gc has been cleared.
2652  if (thread->in_critical()) {
2653    return;
2654  }
2655  // Lock and unlock a critical section to give the system a chance to block
2656  GC_locker::lock_critical(thread);
2657  GC_locker::unlock_critical(thread);
2658JRT_END
2659
2660#ifdef HAVE_DTRACE_H
2661// Create a dtrace nmethod for this method.  The wrapper converts the
2662// java compiled calling convention to the native convention, makes a dummy call
2663// (actually nops for the size of the call instruction, which become a trap if
2664// probe is enabled). The returns to the caller. Since this all looks like a
2665// leaf no thread transition is needed.
2666
2667nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2668  ResourceMark rm;
2669  nmethod* nm = NULL;
2670
2671  if (PrintCompilation) {
2672    ttyLocker ttyl;
2673    tty->print("---   n%s  ");
2674    method->print_short_name(tty);
2675    if (method->is_static()) {
2676      tty->print(" (static)");
2677    }
2678    tty->cr();
2679  }
2680
2681  {
2682    // perform the work while holding the lock, but perform any printing
2683    // outside the lock
2684    MutexLocker mu(AdapterHandlerLibrary_lock);
2685    // See if somebody beat us to it
2686    nm = method->code();
2687    if (nm) {
2688      return nm;
2689    }
2690
2691    ResourceMark rm;
2692
2693    BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2694    if (buf != NULL) {
2695      CodeBuffer buffer(buf);
2696      // Need a few relocation entries
2697      double locs_buf[20];
2698      buffer.insts()->initialize_shared_locs(
2699        (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2700      MacroAssembler _masm(&buffer);
2701
2702      // Generate the compiled-to-native wrapper code
2703      nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2704    }
2705  }
2706  return nm;
2707}
2708
2709// the dtrace method needs to convert java lang string to utf8 string.
2710void SharedRuntime::get_utf(oopDesc* src, address dst) {
2711  typeArrayOop jlsValue  = java_lang_String::value(src);
2712  int          jlsOffset = java_lang_String::offset(src);
2713  int          jlsLen    = java_lang_String::length(src);
2714  jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2715                                           jlsValue->char_at_addr(jlsOffset);
2716  assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2717  (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2718}
2719#endif // ndef HAVE_DTRACE_H
2720
2721int SharedRuntime::convert_ints_to_longints_argcnt(int in_args_count, BasicType* in_sig_bt) {
2722  int argcnt = in_args_count;
2723  if (CCallingConventionRequiresIntsAsLongs) {
2724    for (int in = 0; in < in_args_count; in++) {
2725      BasicType bt = in_sig_bt[in];
2726      switch (bt) {
2727        case T_BOOLEAN:
2728        case T_CHAR:
2729        case T_BYTE:
2730        case T_SHORT:
2731        case T_INT:
2732          argcnt++;
2733          break;
2734        default:
2735          break;
2736      }
2737    }
2738  } else {
2739    assert(0, "This should not be needed on this platform");
2740  }
2741
2742  return argcnt;
2743}
2744
2745void SharedRuntime::convert_ints_to_longints(int i2l_argcnt, int& in_args_count,
2746                                             BasicType*& in_sig_bt, VMRegPair*& in_regs) {
2747  if (CCallingConventionRequiresIntsAsLongs) {
2748    VMRegPair *new_in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, i2l_argcnt);
2749    BasicType *new_in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, i2l_argcnt);
2750
2751    int argcnt = 0;
2752    for (int in = 0; in < in_args_count; in++, argcnt++) {
2753      BasicType bt  = in_sig_bt[in];
2754      VMRegPair reg = in_regs[in];
2755      switch (bt) {
2756        case T_BOOLEAN:
2757        case T_CHAR:
2758        case T_BYTE:
2759        case T_SHORT:
2760        case T_INT:
2761          // Convert (bt) to (T_LONG,bt).
2762          new_in_sig_bt[argcnt  ] = T_LONG;
2763          new_in_sig_bt[argcnt+1] = bt;
2764          assert(reg.first()->is_valid() && !reg.second()->is_valid(), "");
2765          new_in_regs[argcnt  ].set2(reg.first());
2766          new_in_regs[argcnt+1].set_bad();
2767          argcnt++;
2768          break;
2769        default:
2770          // No conversion needed.
2771          new_in_sig_bt[argcnt] = bt;
2772          new_in_regs[argcnt]   = reg;
2773          break;
2774      }
2775    }
2776    assert(argcnt == i2l_argcnt, "must match");
2777
2778    in_regs = new_in_regs;
2779    in_sig_bt = new_in_sig_bt;
2780    in_args_count = i2l_argcnt;
2781  } else {
2782    assert(0, "This should not be needed on this platform");
2783  }
2784}
2785
2786// -------------------------------------------------------------------------
2787// Java-Java calling convention
2788// (what you use when Java calls Java)
2789
2790//------------------------------name_for_receiver----------------------------------
2791// For a given signature, return the VMReg for parameter 0.
2792VMReg SharedRuntime::name_for_receiver() {
2793  VMRegPair regs;
2794  BasicType sig_bt = T_OBJECT;
2795  (void) java_calling_convention(&sig_bt, &regs, 1, true);
2796  // Return argument 0 register.  In the LP64 build pointers
2797  // take 2 registers, but the VM wants only the 'main' name.
2798  return regs.first();
2799}
2800
2801VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2802  // This method is returning a data structure allocating as a
2803  // ResourceObject, so do not put any ResourceMarks in here.
2804  char *s = sig->as_C_string();
2805  int len = (int)strlen(s);
2806  s++; len--;                   // Skip opening paren
2807  char *t = s+len;
2808  while( *(--t) != ')' ) ;      // Find close paren
2809
2810  BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2811  VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2812  int cnt = 0;
2813  if (has_receiver) {
2814    sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2815  }
2816
2817  while( s < t ) {
2818    switch( *s++ ) {            // Switch on signature character
2819    case 'B': sig_bt[cnt++] = T_BYTE;    break;
2820    case 'C': sig_bt[cnt++] = T_CHAR;    break;
2821    case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2822    case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2823    case 'I': sig_bt[cnt++] = T_INT;     break;
2824    case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2825    case 'S': sig_bt[cnt++] = T_SHORT;   break;
2826    case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2827    case 'V': sig_bt[cnt++] = T_VOID;    break;
2828    case 'L':                   // Oop
2829      while( *s++ != ';'  ) ;   // Skip signature
2830      sig_bt[cnt++] = T_OBJECT;
2831      break;
2832    case '[': {                 // Array
2833      do {                      // Skip optional size
2834        while( *s >= '0' && *s <= '9' ) s++;
2835      } while( *s++ == '[' );   // Nested arrays?
2836      // Skip element type
2837      if( s[-1] == 'L' )
2838        while( *s++ != ';'  ) ; // Skip signature
2839      sig_bt[cnt++] = T_ARRAY;
2840      break;
2841    }
2842    default : ShouldNotReachHere();
2843    }
2844  }
2845
2846  if (has_appendix) {
2847    sig_bt[cnt++] = T_OBJECT;
2848  }
2849
2850  assert( cnt < 256, "grow table size" );
2851
2852  int comp_args_on_stack;
2853  comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2854
2855  // the calling convention doesn't count out_preserve_stack_slots so
2856  // we must add that in to get "true" stack offsets.
2857
2858  if (comp_args_on_stack) {
2859    for (int i = 0; i < cnt; i++) {
2860      VMReg reg1 = regs[i].first();
2861      if( reg1->is_stack()) {
2862        // Yuck
2863        reg1 = reg1->bias(out_preserve_stack_slots());
2864      }
2865      VMReg reg2 = regs[i].second();
2866      if( reg2->is_stack()) {
2867        // Yuck
2868        reg2 = reg2->bias(out_preserve_stack_slots());
2869      }
2870      regs[i].set_pair(reg2, reg1);
2871    }
2872  }
2873
2874  // results
2875  *arg_size = cnt;
2876  return regs;
2877}
2878
2879// OSR Migration Code
2880//
2881// This code is used convert interpreter frames into compiled frames.  It is
2882// called from very start of a compiled OSR nmethod.  A temp array is
2883// allocated to hold the interesting bits of the interpreter frame.  All
2884// active locks are inflated to allow them to move.  The displaced headers and
2885// active interpeter locals are copied into the temp buffer.  Then we return
2886// back to the compiled code.  The compiled code then pops the current
2887// interpreter frame off the stack and pushes a new compiled frame.  Then it
2888// copies the interpreter locals and displaced headers where it wants.
2889// Finally it calls back to free the temp buffer.
2890//
2891// All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2892
2893JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2894
2895  //
2896  // This code is dependent on the memory layout of the interpreter local
2897  // array and the monitors. On all of our platforms the layout is identical
2898  // so this code is shared. If some platform lays the their arrays out
2899  // differently then this code could move to platform specific code or
2900  // the code here could be modified to copy items one at a time using
2901  // frame accessor methods and be platform independent.
2902
2903  frame fr = thread->last_frame();
2904  assert( fr.is_interpreted_frame(), "" );
2905  assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2906
2907  // Figure out how many monitors are active.
2908  int active_monitor_count = 0;
2909  for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2910       kptr < fr.interpreter_frame_monitor_begin();
2911       kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2912    if( kptr->obj() != NULL ) active_monitor_count++;
2913  }
2914
2915  // QQQ we could place number of active monitors in the array so that compiled code
2916  // could double check it.
2917
2918  Method* moop = fr.interpreter_frame_method();
2919  int max_locals = moop->max_locals();
2920  // Allocate temp buffer, 1 word per local & 2 per active monitor
2921  int buf_size_words = max_locals + active_monitor_count*2;
2922  intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2923
2924  // Copy the locals.  Order is preserved so that loading of longs works.
2925  // Since there's no GC I can copy the oops blindly.
2926  assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2927  Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2928                       (HeapWord*)&buf[0],
2929                       max_locals);
2930
2931  // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2932  int i = max_locals;
2933  for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2934       kptr2 < fr.interpreter_frame_monitor_begin();
2935       kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2936    if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2937      BasicLock *lock = kptr2->lock();
2938      // Inflate so the displaced header becomes position-independent
2939      if (lock->displaced_header()->is_unlocked())
2940        ObjectSynchronizer::inflate_helper(kptr2->obj());
2941      // Now the displaced header is free to move
2942      buf[i++] = (intptr_t)lock->displaced_header();
2943      buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
2944    }
2945  }
2946  assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2947
2948  return buf;
2949JRT_END
2950
2951JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2952  FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
2953JRT_END
2954
2955bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2956  AdapterHandlerTableIterator iter(_adapters);
2957  while (iter.has_next()) {
2958    AdapterHandlerEntry* a = iter.next();
2959    if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2960  }
2961  return false;
2962}
2963
2964void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2965  AdapterHandlerTableIterator iter(_adapters);
2966  while (iter.has_next()) {
2967    AdapterHandlerEntry* a = iter.next();
2968    if (b == CodeCache::find_blob(a->get_i2c_entry())) {
2969      st->print("Adapter for signature: ");
2970      a->print_adapter_on(tty);
2971      return;
2972    }
2973  }
2974  assert(false, "Should have found handler");
2975}
2976
2977void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
2978  st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2979               (intptr_t) this, fingerprint()->as_string(),
2980               get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
2981
2982}
2983
2984#ifndef PRODUCT
2985
2986void AdapterHandlerLibrary::print_statistics() {
2987  _adapters->print_statistics();
2988}
2989
2990#endif /* PRODUCT */
2991