sharedRuntime.cpp revision 5947:f4f6ae481e1a
134961Sphk/*
22729Sdfr * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
32729Sdfr * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
42729Sdfr *
52729Sdfr * This code is free software; you can redistribute it and/or modify it
62729Sdfr * under the terms of the GNU General Public License version 2 only, as
72729Sdfr * published by the Free Software Foundation.
82729Sdfr *
92729Sdfr * This code is distributed in the hope that it will be useful, but WITHOUT
102729Sdfr * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
112729Sdfr * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
122729Sdfr * version 2 for more details (a copy is included in the LICENSE file that
1311626Sbde * accompanied this code).
142729Sdfr *
152729Sdfr * You should have received a copy of the GNU General Public License version
162729Sdfr * 2 along with this work; if not, write to the Free Software Foundation,
1711626Sbde * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
182729Sdfr *
1910653Sdg * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
2010358Sjulian * or visit www.oracle.com if you need additional information or have any
2110358Sjulian * questions.
2212866Speter *
2312866Speter */
2430994Sphk
2511626Sbde#include "precompiled.hpp"
2630994Sphk#include "classfile/systemDictionary.hpp"
2711626Sbde#include "classfile/vmSymbols.hpp"
2830994Sphk#include "code/compiledIC.hpp"
2911626Sbde#include "code/scopeDesc.hpp"
3030994Sphk#include "code/vtableStubs.hpp"
3112866Speter#include "compiler/abstractCompiler.hpp"
3211626Sbde#include "compiler/compileBroker.hpp"
3312819Sphk#include "compiler/compilerOracle.hpp"
3412819Sphk#include "compiler/disassembler.hpp"
3512819Sphk#include "interpreter/interpreter.hpp"
3612819Sphk#include "interpreter/interpreterRuntime.hpp"
3711626Sbde#include "memory/gcLocker.inline.hpp"
3811626Sbde#include "memory/universe.inline.hpp"
3912819Sphk#include "oops/oop.inline.hpp"
4012866Speter#include "prims/forte.hpp"
4111626Sbde#include "prims/jvmtiExport.hpp"
4211626Sbde#include "prims/jvmtiRedefineClassesTrace.hpp"
4311626Sbde#include "prims/methodHandles.hpp"
4412819Sphk#include "prims/nativeLookup.hpp"
459759Sbde#include "runtime/arguments.hpp"
469759Sbde#include "runtime/biasedLocking.hpp"
4712819Sphk#include "runtime/handles.inline.hpp"
489759Sbde#include "runtime/init.hpp"
492729Sdfr#include "runtime/interfaceSupport.hpp"
502729Sdfr#include "runtime/javaCalls.hpp"
512729Sdfr#include "runtime/sharedRuntime.hpp"
522836Sdg#include "runtime/stubRoutines.hpp"
5311626Sbde#include "runtime/vframe.hpp"
5411626Sbde#include "runtime/vframeArray.hpp"
552729Sdfr#include "utilities/copy.hpp"
562729Sdfr#include "utilities/dtrace.hpp"
572729Sdfr#include "utilities/events.hpp"
582729Sdfr#include "utilities/hashtable.inline.hpp"
592729Sdfr#include "utilities/macros.hpp"
602729Sdfr#include "utilities/xmlstream.hpp"
612729Sdfr#ifdef TARGET_ARCH_x86
622729Sdfr# include "nativeInst_x86.hpp"
632729Sdfr# include "vmreg_x86.inline.hpp"
642729Sdfr#endif
652729Sdfr#ifdef TARGET_ARCH_sparc
662729Sdfr# include "nativeInst_sparc.hpp"
672729Sdfr# include "vmreg_sparc.inline.hpp"
682729Sdfr#endif
692729Sdfr#ifdef TARGET_ARCH_zero
702729Sdfr# include "nativeInst_zero.hpp"
712729Sdfr# include "vmreg_zero.inline.hpp"
722729Sdfr#endif
732729Sdfr#ifdef TARGET_ARCH_arm
742729Sdfr# include "nativeInst_arm.hpp"
752729Sdfr# include "vmreg_arm.inline.hpp"
762729Sdfr#endif
772729Sdfr#ifdef TARGET_ARCH_ppc
7830994Sphk# include "nativeInst_ppc.hpp"
792729Sdfr# include "vmreg_ppc.inline.hpp"
8011626Sbde#endif
8111626Sbde#ifdef COMPILER1
8211626Sbde#include "c1/c1_Runtime1.hpp"
8311626Sbde#endif
8411626Sbde
8511626Sbde// Shared stub locations
8611626SbdeRuntimeStub*        SharedRuntime::_wrong_method_blob;
8711626SbdeRuntimeStub*        SharedRuntime::_ic_miss_blob;
882729SdfrRuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
892729SdfrRuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
902729SdfrRuntimeStub*        SharedRuntime::_resolve_static_call_blob;
913396Sdg
922729SdfrDeoptimizationBlob* SharedRuntime::_deopt_blob;
932729SdfrSafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
942729SdfrSafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
9530994SphkSafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
962729Sdfr
972729Sdfr#ifdef COMPILER2
982729SdfrUncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
992729Sdfr#endif // COMPILER2
1002729Sdfr
1012729Sdfr
1022729Sdfr//----------------------------generate_stubs-----------------------------------
1032729Sdfrvoid SharedRuntime::generate_stubs() {
1042729Sdfr  _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),         "wrong_method_stub");
1052729Sdfr  _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
1062729Sdfr  _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),  "resolve_opt_virtual_call");
1072729Sdfr  _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),      "resolve_virtual_call");
1082729Sdfr  _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),       "resolve_static_call");
1092729Sdfr
1102729Sdfr#ifdef COMPILER2
1112729Sdfr  // Vectors are generated only by C2.
1122729Sdfr  if (is_wide_vector(MaxVectorSize)) {
11312866Speter    _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
1142729Sdfr  }
1152729Sdfr#endif // COMPILER2
1162729Sdfr  _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
11712866Speter  _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
1182729Sdfr
11912866Speter  generate_deopt_blob();
12030994Sphk
1212729Sdfr#ifdef COMPILER2
1222729Sdfr  generate_uncommon_trap_blob();
1232729Sdfr#endif // COMPILER2
1242729Sdfr}
1252729Sdfr
1262729Sdfr#include <math.h>
1272729Sdfr
1282729Sdfr#ifndef USDT2
1292729SdfrHS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
1302729SdfrHS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
1312729Sdfr                      char*, int, char*, int, char*, int);
1322729SdfrHS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
1332729Sdfr                      char*, int, char*, int, char*, int);
1342729Sdfr#endif /* !USDT2 */
1352729Sdfr
1362729Sdfr// Implementation of SharedRuntime
1372729Sdfr
1382729Sdfr#ifndef PRODUCT
1392729Sdfr// For statistics
1402729Sdfrint SharedRuntime::_ic_miss_ctr = 0;
1412729Sdfrint SharedRuntime::_wrong_method_ctr = 0;
1422729Sdfrint SharedRuntime::_resolve_static_ctr = 0;
14330994Sphkint SharedRuntime::_resolve_virtual_ctr = 0;
1442729Sdfrint SharedRuntime::_resolve_opt_virtual_ctr = 0;
1452729Sdfrint SharedRuntime::_implicit_null_throws = 0;
1462729Sdfrint SharedRuntime::_implicit_div0_throws = 0;
1472729Sdfrint SharedRuntime::_throw_null_ctr = 0;
1482729Sdfr
1492729Sdfrint SharedRuntime::_nof_normal_calls = 0;
1502729Sdfrint SharedRuntime::_nof_optimized_calls = 0;
1512729Sdfrint SharedRuntime::_nof_inlined_calls = 0;
15212819Sphkint SharedRuntime::_nof_megamorphic_calls = 0;
1532729Sdfrint SharedRuntime::_nof_static_calls = 0;
1542729Sdfrint SharedRuntime::_nof_inlined_static_calls = 0;
1552729Sdfrint SharedRuntime::_nof_interface_calls = 0;
1562729Sdfrint SharedRuntime::_nof_optimized_interface_calls = 0;
1572729Sdfrint SharedRuntime::_nof_inlined_interface_calls = 0;
1582729Sdfrint SharedRuntime::_nof_megamorphic_interface_calls = 0;
1592729Sdfrint SharedRuntime::_nof_removable_exceptions = 0;
1602729Sdfr
1612729Sdfrint SharedRuntime::_new_instance_ctr=0;
1622729Sdfrint SharedRuntime::_new_array_ctr=0;
1632729Sdfrint SharedRuntime::_multi1_ctr=0;
1642729Sdfrint SharedRuntime::_multi2_ctr=0;
1652729Sdfrint SharedRuntime::_multi3_ctr=0;
1662729Sdfrint SharedRuntime::_multi4_ctr=0;
1672729Sdfrint SharedRuntime::_multi5_ctr=0;
1682729Sdfrint SharedRuntime::_mon_enter_stub_ctr=0;
1692729Sdfrint SharedRuntime::_mon_exit_stub_ctr=0;
1702729Sdfrint SharedRuntime::_mon_enter_ctr=0;
1712729Sdfrint SharedRuntime::_mon_exit_ctr=0;
1722729Sdfrint SharedRuntime::_partial_subtype_ctr=0;
1732729Sdfrint SharedRuntime::_jbyte_array_copy_ctr=0;
1742729Sdfrint SharedRuntime::_jshort_array_copy_ctr=0;
1752729Sdfrint SharedRuntime::_jint_array_copy_ctr=0;
1762729Sdfrint SharedRuntime::_jlong_array_copy_ctr=0;
1772729Sdfrint SharedRuntime::_oop_array_copy_ctr=0;
1782729Sdfrint SharedRuntime::_checkcast_array_copy_ctr=0;
1792729Sdfrint SharedRuntime::_unsafe_array_copy_ctr=0;
1802729Sdfrint SharedRuntime::_generic_array_copy_ctr=0;
1812729Sdfrint SharedRuntime::_slow_array_copy_ctr=0;
1822729Sdfrint SharedRuntime::_find_handler_ctr=0;
1832729Sdfrint SharedRuntime::_rethrow_ctr=0;
1842729Sdfr
1852729Sdfrint     SharedRuntime::_ICmiss_index                    = 0;
1862729Sdfrint     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
1872729Sdfraddress SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
1882729Sdfr
1892729Sdfr
1902729Sdfrvoid SharedRuntime::trace_ic_miss(address at) {
1912729Sdfr  for (int i = 0; i < _ICmiss_index; i++) {
1922729Sdfr    if (_ICmiss_at[i] == at) {
1932729Sdfr      _ICmiss_count[i]++;
1942729Sdfr      return;
1952729Sdfr    }
1962729Sdfr  }
1972729Sdfr  int index = _ICmiss_index++;
1982729Sdfr  if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
1992729Sdfr  _ICmiss_at[index] = at;
2002729Sdfr  _ICmiss_count[index] = 1;
2012729Sdfr}
2022729Sdfr
2032729Sdfrvoid SharedRuntime::print_ic_miss_histogram() {
2042729Sdfr  if (ICMissHistogram) {
2052729Sdfr    tty->print_cr ("IC Miss Histogram:");
2062729Sdfr    int tot_misses = 0;
2072729Sdfr    for (int i = 0; i < _ICmiss_index; i++) {
2082729Sdfr      tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
2092729Sdfr      tot_misses += _ICmiss_count[i];
2102729Sdfr    }
2112729Sdfr    tty->print_cr ("Total IC misses: %7d", tot_misses);
2122729Sdfr  }
2132729Sdfr}
2142729Sdfr#endif // PRODUCT
2152836Sdg
2162729Sdfr#if INCLUDE_ALL_GCS
2172729Sdfr
2182729Sdfr// G1 write-barrier pre: executed before a pointer store.
2192729SdfrJRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
2202729Sdfr  if (orig == NULL) {
2212729Sdfr    assert(false, "should be optimized out");
22212819Sphk    return;
2232729Sdfr  }
2242729Sdfr  assert(orig->is_oop(true /* ignore mark word */), "Error");
2252729Sdfr  // store the original value that was in the field reference
2262729Sdfr  thread->satb_mark_queue().enqueue(orig);
2272729SdfrJRT_END
2282729Sdfr
2292729Sdfr// G1 write-barrier post: executed after a pointer store.
2302729SdfrJRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
2312729Sdfr  thread->dirty_card_queue().enqueue(card_addr);
2322729SdfrJRT_END
2332729Sdfr
2342729Sdfr#endif // INCLUDE_ALL_GCS
2352729Sdfr
2362729Sdfr
2372729SdfrJRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
2382729Sdfr  return x * y;
2392729SdfrJRT_END
2402729Sdfr
2412729Sdfr
2422729SdfrJRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
2432729Sdfr  if (x == min_jlong && y == CONST64(-1)) {
2442729Sdfr    return x;
2452729Sdfr  } else {
2462729Sdfr    return x / y;
2472729Sdfr  }
2482729SdfrJRT_END
2492729Sdfr
2502729Sdfr
2512729SdfrJRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
2522729Sdfr  if (x == min_jlong && y == CONST64(-1)) {
2532729Sdfr    return 0;
2542729Sdfr  } else {
2552729Sdfr    return x % y;
2562729Sdfr  }
2572729SdfrJRT_END
2582729Sdfr
2592729Sdfr
2602729Sdfrconst juint  float_sign_mask  = 0x7FFFFFFF;
2612729Sdfrconst juint  float_infinity   = 0x7F800000;
2622729Sdfrconst julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
2632729Sdfrconst julong double_infinity  = CONST64(0x7FF0000000000000);
2642729Sdfr
2652729SdfrJRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
2662729Sdfr#ifdef _WIN64
2672729Sdfr  // 64-bit Windows on amd64 returns the wrong values for
2682729Sdfr  // infinity operands.
2692729Sdfr  union { jfloat f; juint i; } xbits, ybits;
2702729Sdfr  xbits.f = x;
2712729Sdfr  ybits.f = y;
2722729Sdfr  // x Mod Infinity == x unless x is infinity
2732729Sdfr  if ( ((xbits.i & float_sign_mask) != float_infinity) &&
2742729Sdfr       ((ybits.i & float_sign_mask) == float_infinity) ) {
2752729Sdfr    return x;
2762729Sdfr  }
2772729Sdfr#endif
2782729Sdfr  return ((jfloat)fmod((double)x,(double)y));
2792729SdfrJRT_END
2802729Sdfr
2812729Sdfr
2822729SdfrJRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
2832729Sdfr#ifdef _WIN64
2842729Sdfr  union { jdouble d; julong l; } xbits, ybits;
2852729Sdfr  xbits.d = x;
2862729Sdfr  ybits.d = y;
2872729Sdfr  // x Mod Infinity == x unless x is infinity
2882729Sdfr  if ( ((xbits.l & double_sign_mask) != double_infinity) &&
28912819Sphk       ((ybits.l & double_sign_mask) == double_infinity) ) {
2902729Sdfr    return x;
2912729Sdfr  }
2922729Sdfr#endif
2932729Sdfr  return ((jdouble)fmod((double)x,(double)y));
2942729SdfrJRT_END
2952729Sdfr
2962729Sdfr#ifdef __SOFTFP__
2972729SdfrJRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
2982729Sdfr  return x + y;
2992729SdfrJRT_END
3002729Sdfr
3012729SdfrJRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
3022729Sdfr  return x - y;
3032729SdfrJRT_END
3042729Sdfr
3052729SdfrJRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
3062729Sdfr  return x * y;
3072729SdfrJRT_END
3082729Sdfr
3092729SdfrJRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
3102729Sdfr  return x / y;
3112729SdfrJRT_END
3122729Sdfr
3132729SdfrJRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
3142729Sdfr  return x + y;
3152729SdfrJRT_END
3162729Sdfr
31712866SpeterJRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
31812866Speter  return x - y;
31912866SpeterJRT_END
32012866Speter
32112866SpeterJRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
3222729Sdfr  return x * y;
3232729SdfrJRT_END
3242729Sdfr
3252729SdfrJRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
3262729Sdfr  return x / y;
32712866SpeterJRT_END
3282729Sdfr
32912866SpeterJRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
33030994Sphk  return (jfloat)x;
3312729SdfrJRT_END
33212866Speter
3332729SdfrJRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
3342729Sdfr  return (jdouble)x;
3352729SdfrJRT_END
3362729Sdfr
3372729SdfrJRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
3382729Sdfr  return (jdouble)x;
3392729SdfrJRT_END
3402729Sdfr
3412729SdfrJRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
3422729Sdfr  return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
3432729SdfrJRT_END
3442729Sdfr
3452729SdfrJRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
3462729Sdfr  return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
3472729SdfrJRT_END
3482729Sdfr
3492729SdfrJRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
3502729Sdfr  return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
3512729SdfrJRT_END
3522729Sdfr
3532729SdfrJRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
3542729Sdfr  return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
3552729SdfrJRT_END
3562729Sdfr
3572729Sdfr// Functions to return the opposite of the aeabi functions for nan.
3582729SdfrJRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
3592729Sdfr  return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
3602729SdfrJRT_END
3612729Sdfr
3622729SdfrJRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
3632729Sdfr  return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
3642729SdfrJRT_END
3652729Sdfr
3662729SdfrJRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
3672729Sdfr  return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
3682729SdfrJRT_END
3692729Sdfr
3702729SdfrJRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
3712729Sdfr  return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
3722729SdfrJRT_END
3732729Sdfr
3742729SdfrJRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
3752729Sdfr  return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
3762729SdfrJRT_END
3772729Sdfr
3782729SdfrJRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
3792729Sdfr  return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
3802729SdfrJRT_END
3812729Sdfr
3822729SdfrJRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
3832729Sdfr  return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
3842729SdfrJRT_END
3852729Sdfr
3862729SdfrJRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
3872729Sdfr  return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
3882729SdfrJRT_END
3892729Sdfr
3902729Sdfr// Intrinsics make gcc generate code for these.
39134961Sphkfloat  SharedRuntime::fneg(float f)   {
3922729Sdfr  return -f;
3932729Sdfr}
3942729Sdfr
3952729Sdfrdouble SharedRuntime::dneg(double f)  {
3962729Sdfr  return -f;
3972729Sdfr}
3982729Sdfr
3992729Sdfr#endif // __SOFTFP__
4002729Sdfr
4012729Sdfr#if defined(__SOFTFP__) || defined(E500V2)
4022729Sdfr// Intrinsics make gcc generate code for these.
4032729Sdfrdouble SharedRuntime::dabs(double f)  {
4042729Sdfr  return (f <= (double)0.0) ? (double)0.0 - f : f;
4052729Sdfr}
4062729Sdfr
4072729Sdfr#endif
4082729Sdfr
4092729Sdfr#if defined(__SOFTFP__) || defined(PPC32)
4102729Sdfrdouble SharedRuntime::dsqrt(double f) {
4112729Sdfr  return sqrt(f);
4122729Sdfr}
4132729Sdfr#endif
4142729Sdfr
4152729SdfrJRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
4162729Sdfr  if (g_isnan(x))
4172729Sdfr    return 0;
4182729Sdfr  if (x >= (jfloat) max_jint)
4192729Sdfr    return max_jint;
4202729Sdfr  if (x <= (jfloat) min_jint)
4212729Sdfr    return min_jint;
4222729Sdfr  return (jint) x;
4232729SdfrJRT_END
4242729Sdfr
4252729Sdfr
4262729SdfrJRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
4272729Sdfr  if (g_isnan(x))
4282729Sdfr    return 0;
4292729Sdfr  if (x >= (jfloat) max_jlong)
4302729Sdfr    return max_jlong;
4312729Sdfr  if (x <= (jfloat) min_jlong)
4322729Sdfr    return min_jlong;
4332729Sdfr  return (jlong) x;
4342729SdfrJRT_END
4352729Sdfr
4362729Sdfr
4372729SdfrJRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
4382729Sdfr  if (g_isnan(x))
4392729Sdfr    return 0;
4402729Sdfr  if (x >= (jdouble) max_jint)
4412729Sdfr    return max_jint;
4422729Sdfr  if (x <= (jdouble) min_jint)
4432729Sdfr    return min_jint;
4442729Sdfr  return (jint) x;
4452729SdfrJRT_END
4462729Sdfr
4472729Sdfr
4482729SdfrJRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
4492729Sdfr  if (g_isnan(x))
4502729Sdfr    return 0;
4512729Sdfr  if (x >= (jdouble) max_jlong)
4522729Sdfr    return max_jlong;
4532729Sdfr  if (x <= (jdouble) min_jlong)
4542729Sdfr    return min_jlong;
4552729Sdfr  return (jlong) x;
4562729SdfrJRT_END
4572729Sdfr
4582729Sdfr
4592729SdfrJRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
4602729Sdfr  return (jfloat)x;
4612729SdfrJRT_END
4622729Sdfr
4632729Sdfr
4642729SdfrJRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
4652729Sdfr  return (jfloat)x;
4662729SdfrJRT_END
4672729Sdfr
4682729Sdfr
4692729SdfrJRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
4702729Sdfr  return (jdouble)x;
4712729SdfrJRT_END
4722729Sdfr
4732729Sdfr// Exception handling accross interpreter/compiler boundaries
4742729Sdfr//
4752729Sdfr// exception_handler_for_return_address(...) returns the continuation address.
4762729Sdfr// The continuation address is the entry point of the exception handler of the
4772729Sdfr// previous frame depending on the return address.
4782729Sdfr
4792729Sdfraddress SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
4802729Sdfr  assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
48130994Sphk
4822729Sdfr  // Reset method handle flag.
4832729Sdfr  thread->set_is_method_handle_return(false);
4842729Sdfr
48512866Speter  // The fastest case first
4862729Sdfr  CodeBlob* blob = CodeCache::find_blob(return_address);
4872729Sdfr  nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
4882729Sdfr  if (nm != NULL) {
4892729Sdfr    // Set flag if return address is a method handle call site.
4902729Sdfr    thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
49112866Speter    // native nmethods don't have exception handlers
4922729Sdfr    assert(!nm->is_native_method(), "no exception handler");
49312866Speter    assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
49430994Sphk    if (nm->is_deopt_pc(return_address)) {
4952729Sdfr      return SharedRuntime::deopt_blob()->unpack_with_exception();
4962729Sdfr    } else {
4972729Sdfr      return nm->exception_begin();
4982729Sdfr    }
4992729Sdfr  }
5002729Sdfr
5012729Sdfr  // Entry code
5022729Sdfr  if (StubRoutines::returns_to_call_stub(return_address)) {
5032729Sdfr    return StubRoutines::catch_exception_entry();
5042729Sdfr  }
5052729Sdfr  // Interpreted code
5062729Sdfr  if (Interpreter::contains(return_address)) {
5072729Sdfr    return Interpreter::rethrow_exception_entry();
5082729Sdfr  }
5092729Sdfr
5102729Sdfr  guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
5112729Sdfr  guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
5122729Sdfr
5132729Sdfr#ifndef PRODUCT
5142729Sdfr  { ResourceMark rm;
5152729Sdfr    tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
5162729Sdfr    tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
5172729Sdfr    tty->print_cr("b) other problem");
5182729Sdfr  }
5192729Sdfr#endif // PRODUCT
5202729Sdfr
5212729Sdfr  ShouldNotReachHere();
5222729Sdfr  return NULL;
5232729Sdfr}
5242729Sdfr
5252729Sdfr
5262729SdfrJRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
5272729Sdfr  return raw_exception_handler_for_return_address(thread, return_address);
5282729SdfrJRT_END
5292729Sdfr
5302729Sdfr
5312729Sdfraddress SharedRuntime::get_poll_stub(address pc) {
5322729Sdfr  address stub;
5332729Sdfr  // Look up the code blob
5342729Sdfr  CodeBlob *cb = CodeCache::find_blob(pc);
5352729Sdfr
5362729Sdfr  // Should be an nmethod
5372729Sdfr  assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
5382729Sdfr
5392729Sdfr  // Look up the relocation information
5402729Sdfr  assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
5412729Sdfr    "safepoint polling: type must be poll" );
5422729Sdfr
5432729Sdfr  assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
5442729Sdfr    "Only polling locations are used for safepoint");
5452729Sdfr
5462729Sdfr  bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
5472729Sdfr  bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
5482729Sdfr  if (at_poll_return) {
5492729Sdfr    assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
5502729Sdfr           "polling page return stub not created yet");
5512729Sdfr    stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
5522729Sdfr  } else if (has_wide_vectors) {
5532729Sdfr    assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
5542729Sdfr           "polling page vectors safepoint stub not created yet");
5552729Sdfr    stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
5562729Sdfr  } else {
5572729Sdfr    assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
5582729Sdfr           "polling page safepoint stub not created yet");
5592729Sdfr    stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
5602729Sdfr  }
5612729Sdfr#ifndef PRODUCT
5622729Sdfr  if( TraceSafepoint ) {
5632729Sdfr    char buf[256];
5642729Sdfr    jio_snprintf(buf, sizeof(buf),
5652729Sdfr                 "... found polling page %s exception at pc = "
5662729Sdfr                 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
5672729Sdfr                 at_poll_return ? "return" : "loop",
5682729Sdfr                 (intptr_t)pc, (intptr_t)stub);
5692729Sdfr    tty->print_raw_cr(buf);
5702729Sdfr  }
5712729Sdfr#endif // PRODUCT
5722729Sdfr  return stub;
5732729Sdfr}
5742729Sdfr
5752729Sdfr
5762729Sdfroop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
5772729Sdfr  assert(caller.is_interpreted_frame(), "");
57834961Sphk  int args_size = ArgumentSizeComputer(sig).size() + 1;
5792729Sdfr  assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
5802729Sdfr  oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
5812729Sdfr  assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
5822729Sdfr  return result;
5832729Sdfr}
5842729Sdfr
5852729Sdfr
5862729Sdfrvoid SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
5872729Sdfr  if (JvmtiExport::can_post_on_exceptions()) {
5882729Sdfr    vframeStream vfst(thread, true);
5892729Sdfr    methodHandle method = methodHandle(thread, vfst.method());
5902729Sdfr    address bcp = method()->bcp_from(vfst.bci());
5912729Sdfr    JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
5922729Sdfr  }
5932729Sdfr  Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
5942729Sdfr}
59530994Sphk
5962729Sdfrvoid SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
5972729Sdfr  Handle h_exception = Exceptions::new_exception(thread, name, message);
5982729Sdfr  throw_and_post_jvmti_exception(thread, h_exception);
59912866Speter}
6002729Sdfr
6012729Sdfr// The interpreter code to call this tracing function is only
6022729Sdfr// called/generated when TraceRedefineClasses has the right bits
6032729Sdfr// set. Since obsolete methods are never compiled, we don't have
6042729Sdfr// to modify the compilers to generate calls to this function.
60512866Speter//
6062729SdfrJRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
60712866Speter    JavaThread* thread, Method* method))
60830994Sphk  assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
6092729Sdfr
6102729Sdfr  if (method->is_obsolete()) {
6112729Sdfr    // We are calling an obsolete method, but this is not necessarily
6122729Sdfr    // an error. Our method could have been redefined just after we
6132729Sdfr    // fetched the Method* from the constant pool.
6142729Sdfr
6152729Sdfr    // RC_TRACE macro has an embedded ResourceMark
6162729Sdfr    RC_TRACE_WITH_THREAD(0x00001000, thread,
6172729Sdfr                         ("calling obsolete method '%s'",
6182729Sdfr                          method->name_and_sig_as_C_string()));
6192729Sdfr    if (RC_TRACE_ENABLED(0x00002000)) {
6202729Sdfr      // this option is provided to debug calls to obsolete methods
6213308Sphk      guarantee(false, "faulting at call to an obsolete method.");
6222729Sdfr    }
6232729Sdfr  }
6242729Sdfr  return 0;
6252729SdfrJRT_END
6262729Sdfr
6272729Sdfr// ret_pc points into caller; we are returning caller's exception handler
6282729Sdfr// for given exception
6292729Sdfraddress SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
6302729Sdfr                                                    bool force_unwind, bool top_frame_only) {
6312729Sdfr  assert(nm != NULL, "must exist");
6322729Sdfr  ResourceMark rm;
6332729Sdfr
6342729Sdfr  ScopeDesc* sd = nm->scope_desc_at(ret_pc);
6352729Sdfr  // determine handler bci, if any
6362729Sdfr  EXCEPTION_MARK;
6372729Sdfr
6382729Sdfr  int handler_bci = -1;
6392729Sdfr  int scope_depth = 0;
6402729Sdfr  if (!force_unwind) {
6412729Sdfr    int bci = sd->bci();
6422729Sdfr    bool recursive_exception = false;
6432729Sdfr    do {
6442729Sdfr      bool skip_scope_increment = false;
6452729Sdfr      // exception handler lookup
6462729Sdfr      KlassHandle ek (THREAD, exception->klass());
6472729Sdfr      methodHandle mh(THREAD, sd->method());
6482729Sdfr      handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
6492729Sdfr      if (HAS_PENDING_EXCEPTION) {
6502729Sdfr        recursive_exception = true;
6512729Sdfr        // We threw an exception while trying to find the exception handler.
6522729Sdfr        // Transfer the new exception to the exception handle which will
6532729Sdfr        // be set into thread local storage, and do another lookup for an
6542729Sdfr        // exception handler for this exception, this time starting at the
6552729Sdfr        // BCI of the exception handler which caused the exception to be
6562729Sdfr        // thrown (bugs 4307310 and 4546590). Set "exception" reference
6572729Sdfr        // argument to ensure that the correct exception is thrown (4870175).
6582729Sdfr        exception = Handle(THREAD, PENDING_EXCEPTION);
6592729Sdfr        CLEAR_PENDING_EXCEPTION;
6608876Srgrimes        if (handler_bci >= 0) {
6612729Sdfr          bci = handler_bci;
6622729Sdfr          handler_bci = -1;
6632729Sdfr          skip_scope_increment = true;
6642729Sdfr        }
6652729Sdfr      }
6662729Sdfr      else {
6672729Sdfr        recursive_exception = false;
6682729Sdfr      }
6692729Sdfr      if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
6702729Sdfr        sd = sd->sender();
6712729Sdfr        if (sd != NULL) {
6722729Sdfr          bci = sd->bci();
6732729Sdfr        }
6742729Sdfr        ++scope_depth;
6752729Sdfr      }
6762729Sdfr    } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
6772729Sdfr  }
6782729Sdfr
6792729Sdfr  // found handling method => lookup exception handler
6802729Sdfr  int catch_pco = ret_pc - nm->code_begin();
6812729Sdfr
6822729Sdfr  ExceptionHandlerTable table(nm);
6832729Sdfr  HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
6842729Sdfr  if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
6852729Sdfr    // Allow abbreviated catch tables.  The idea is to allow a method
6862729Sdfr    // to materialize its exceptions without committing to the exact
6872729Sdfr    // routing of exceptions.  In particular this is needed for adding
6882729Sdfr    // a synthethic handler to unlock monitors when inlining
6892729Sdfr    // synchonized methods since the unlock path isn't represented in
6902729Sdfr    // the bytecodes.
6912729Sdfr    t = table.entry_for(catch_pco, -1, 0);
6922729Sdfr  }
6932729Sdfr
6942729Sdfr#ifdef COMPILER1
6952729Sdfr  if (t == NULL && nm->is_compiled_by_c1()) {
6962729Sdfr    assert(nm->unwind_handler_begin() != NULL, "");
6972729Sdfr    return nm->unwind_handler_begin();
6982729Sdfr  }
6992729Sdfr#endif
7002729Sdfr
7012729Sdfr  if (t == NULL) {
7022729Sdfr    tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
7032729Sdfr    tty->print_cr("   Exception:");
7042729Sdfr    exception->print();
7052729Sdfr    tty->cr();
7062729Sdfr    tty->print_cr(" Compiled exception table :");
7072729Sdfr    table.print();
7082729Sdfr    nm->print_code();
7092729Sdfr    guarantee(false, "missing exception handler");
7102729Sdfr    return NULL;
7112729Sdfr  }
7122729Sdfr
7132729Sdfr  return nm->code_begin() + t->pco();
7142729Sdfr}
7152729Sdfr
7162729SdfrJRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
7172729Sdfr  // These errors occur only at call sites
7182729Sdfr  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
7192729SdfrJRT_END
7202729Sdfr
7212729SdfrJRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
7222729Sdfr  // These errors occur only at call sites
7232729Sdfr  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
7242729SdfrJRT_END
7252729Sdfr
7262729SdfrJRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
7272729Sdfr  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
7282729SdfrJRT_END
7292729Sdfr
7302729SdfrJRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
7312729Sdfr  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
7322729SdfrJRT_END
7332729Sdfr
7342729SdfrJRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
7352729Sdfr  // This entry point is effectively only used for NullPointerExceptions which occur at inline
7362729Sdfr  // cache sites (when the callee activation is not yet set up) so we are at a call site
7372729Sdfr  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
7382729SdfrJRT_END
7392729Sdfr
7402729SdfrJRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
7412729Sdfr  // We avoid using the normal exception construction in this case because
7422729Sdfr  // it performs an upcall to Java, and we're already out of stack space.
7432729Sdfr  Klass* k = SystemDictionary::StackOverflowError_klass();
7442729Sdfr  oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
7452729Sdfr  Handle exception (thread, exception_oop);
7462729Sdfr  if (StackTraceInThrowable) {
7472729Sdfr    java_lang_Throwable::fill_in_stack_trace(exception);
7482729Sdfr  }
7492729Sdfr  throw_and_post_jvmti_exception(thread, exception);
7502729SdfrJRT_END
7512729Sdfr
7522729Sdfraddress SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
7532729Sdfr                                                           address pc,
7542729Sdfr                                                           SharedRuntime::ImplicitExceptionKind exception_kind)
7552729Sdfr{
7562729Sdfr  address target_pc = NULL;
7572729Sdfr
7582729Sdfr  if (Interpreter::contains(pc)) {
7592729Sdfr#ifdef CC_INTERP
7602729Sdfr    // C++ interpreter doesn't throw implicit exceptions
7612729Sdfr    ShouldNotReachHere();
7622729Sdfr#else
7632729Sdfr    switch (exception_kind) {
7642729Sdfr      case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
7652729Sdfr      case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
7662729Sdfr      case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
7672729Sdfr      default:                      ShouldNotReachHere();
7682729Sdfr    }
7692729Sdfr#endif // !CC_INTERP
7702729Sdfr  } else {
7712729Sdfr    switch (exception_kind) {
7722729Sdfr      case STACK_OVERFLOW: {
7732729Sdfr        // Stack overflow only occurs upon frame setup; the callee is
7742729Sdfr        // going to be unwound. Dispatch to a shared runtime stub
7752729Sdfr        // which will cause the StackOverflowError to be fabricated
7762729Sdfr        // and processed.
7772729Sdfr        // For stack overflow in deoptimization blob, cleanup thread.
7782729Sdfr        if (thread->deopt_mark() != NULL) {
7792729Sdfr          Deoptimization::cleanup_deopt_info(thread, NULL);
7802729Sdfr        }
7812729Sdfr        Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
7822729Sdfr        return StubRoutines::throw_StackOverflowError_entry();
7832729Sdfr      }
7842729Sdfr
7852729Sdfr      case IMPLICIT_NULL: {
7862729Sdfr        if (VtableStubs::contains(pc)) {
7872729Sdfr          // We haven't yet entered the callee frame. Fabricate an
7882729Sdfr          // exception and begin dispatching it in the caller. Since
7892729Sdfr          // the caller was at a call site, it's safe to destroy all
7902729Sdfr          // caller-saved registers, as these entry points do.
7912729Sdfr          VtableStub* vt_stub = VtableStubs::stub_containing(pc);
7922729Sdfr
7932729Sdfr          // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
7942729Sdfr          if (vt_stub == NULL) return NULL;
7952729Sdfr
7962729Sdfr          if (vt_stub->is_abstract_method_error(pc)) {
7972729Sdfr            assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
7982729Sdfr            Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
7992729Sdfr            return StubRoutines::throw_AbstractMethodError_entry();
8002729Sdfr          } else {
8012729Sdfr            Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
8022729Sdfr            return StubRoutines::throw_NullPointerException_at_call_entry();
8032729Sdfr          }
8042729Sdfr        } else {
8052729Sdfr          CodeBlob* cb = CodeCache::find_blob(pc);
8062729Sdfr
8072729Sdfr          // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
8082729Sdfr          if (cb == NULL) return NULL;
8092729Sdfr
8102729Sdfr          // Exception happened in CodeCache. Must be either:
8112729Sdfr          // 1. Inline-cache check in C2I handler blob,
8122729Sdfr          // 2. Inline-cache check in nmethod, or
8132729Sdfr          // 3. Implict null exception in nmethod
8142729Sdfr
8152729Sdfr          if (!cb->is_nmethod()) {
8162729Sdfr            guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
8172729Sdfr                      "exception happened outside interpreter, nmethods and vtable stubs (1)");
8182729Sdfr            Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
8192729Sdfr            // There is no handler here, so we will simply unwind.
8202729Sdfr            return StubRoutines::throw_NullPointerException_at_call_entry();
8212729Sdfr          }
8222729Sdfr
8232729Sdfr          // Otherwise, it's an nmethod.  Consult its exception handlers.
8242729Sdfr          nmethod* nm = (nmethod*)cb;
8252729Sdfr          if (nm->inlinecache_check_contains(pc)) {
8262729Sdfr            // exception happened inside inline-cache check code
8272729Sdfr            // => the nmethod is not yet active (i.e., the frame
8282729Sdfr            // is not set up yet) => use return address pushed by
8292729Sdfr            // caller => don't push another return address
8302729Sdfr            Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
8312729Sdfr            return StubRoutines::throw_NullPointerException_at_call_entry();
8322729Sdfr          }
8332729Sdfr
8342729Sdfr          if (nm->method()->is_method_handle_intrinsic()) {
8352729Sdfr            // exception happened inside MH dispatch code, similar to a vtable stub
8362729Sdfr            Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
8372729Sdfr            return StubRoutines::throw_NullPointerException_at_call_entry();
8382729Sdfr          }
8392729Sdfr
8402729Sdfr#ifndef PRODUCT
8412729Sdfr          _implicit_null_throws++;
8422729Sdfr#endif
8432729Sdfr          target_pc = nm->continuation_for_implicit_exception(pc);
8442729Sdfr          // If there's an unexpected fault, target_pc might be NULL,
8452729Sdfr          // in which case we want to fall through into the normal
8462729Sdfr          // error handling code.
8472729Sdfr        }
8482729Sdfr
8492729Sdfr        break; // fall through
8502729Sdfr      }
8512729Sdfr
8522729Sdfr
8532729Sdfr      case IMPLICIT_DIVIDE_BY_ZERO: {
8542729Sdfr        nmethod* nm = CodeCache::find_nmethod(pc);
8552729Sdfr        guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
8562729Sdfr#ifndef PRODUCT
8572729Sdfr        _implicit_div0_throws++;
8582729Sdfr#endif
8592729Sdfr        target_pc = nm->continuation_for_implicit_exception(pc);
8602729Sdfr        // If there's an unexpected fault, target_pc might be NULL,
8612729Sdfr        // in which case we want to fall through into the normal
8622729Sdfr        // error handling code.
8632729Sdfr        break; // fall through
8642729Sdfr      }
86530994Sphk
8662729Sdfr      default: ShouldNotReachHere();
8672729Sdfr    }
8682729Sdfr
8692729Sdfr    assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
8702729Sdfr
8712729Sdfr    // for AbortVMOnException flag
8722729Sdfr    NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
87313072Sjkh    if (exception_kind == IMPLICIT_NULL) {
8742729Sdfr      Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
8752729Sdfr    } else {
8762729Sdfr      Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
8772729Sdfr    }
8782729Sdfr    return target_pc;
8792729Sdfr  }
8802729Sdfr
8812729Sdfr  ShouldNotReachHere();
8822729Sdfr  return NULL;
8832729Sdfr}
8842729Sdfr
8852729Sdfr
8862729Sdfr/**
8872729Sdfr * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
8882729Sdfr * installed in the native function entry of all native Java methods before
8893396Sdg * they get linked to their actual native methods.
8902729Sdfr *
8912729Sdfr * \note
8922729Sdfr * This method actually never gets called!  The reason is because
8932729Sdfr * the interpreter's native entries call NativeLookup::lookup() which
8942729Sdfr * throws the exception when the lookup fails.  The exception is then
8952729Sdfr * caught and forwarded on the return from NativeLookup::lookup() call
8962729Sdfr * before the call to the native function.  This might change in the future.
8972729Sdfr */
8982729SdfrJNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
8992729Sdfr{
9002729Sdfr  // We return a bad value here to make sure that the exception is
9012729Sdfr  // forwarded before we look at the return value.
9022729Sdfr  THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
9032729Sdfr}
9042729SdfrJNI_END
9052729Sdfr
9062729Sdfraddress SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
9072729Sdfr  return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
9082729Sdfr}
9092729Sdfr
9102729Sdfr
9112729Sdfr#ifndef PRODUCT
9122729SdfrJRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
9132729Sdfr  const frame f = thread->last_frame();
9142729Sdfr  assert(f.is_interpreted_frame(), "must be an interpreted frame");
9152729Sdfr#ifndef PRODUCT
9162729Sdfr  methodHandle mh(THREAD, f.interpreter_frame_method());
9172729Sdfr  BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
9182729Sdfr#endif // !PRODUCT
9192729Sdfr  return preserve_this_value;
9202729SdfrJRT_END
9212729Sdfr#endif // !PRODUCT
9222729Sdfr
9232729Sdfr
9242729SdfrJRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
9252729Sdfr  os::yield_all(attempts);
9262729SdfrJRT_END
9272729Sdfr
9282729Sdfr
9292729SdfrJRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
9302729Sdfr  assert(obj->is_oop(), "must be a valid oop");
9312729Sdfr  assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
9322729Sdfr  InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
9332729SdfrJRT_END
9342729Sdfr
9352729Sdfr
9362729Sdfrjlong SharedRuntime::get_java_tid(Thread* thread) {
9372729Sdfr  if (thread != NULL) {
9382729Sdfr    if (thread->is_Java_thread()) {
9392729Sdfr      oop obj = ((JavaThread*)thread)->threadObj();
9402729Sdfr      return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
9412729Sdfr    }
9422729Sdfr  }
9432729Sdfr  return 0;
9442729Sdfr}
9452729Sdfr
9462729Sdfr/**
9472729Sdfr * This function ought to be a void function, but cannot be because
9482729Sdfr * it gets turned into a tail-call on sparc, which runs into dtrace bug
9492729Sdfr * 6254741.  Once that is fixed we can remove the dummy return value.
9502729Sdfr */
9512729Sdfrint SharedRuntime::dtrace_object_alloc(oopDesc* o) {
9522729Sdfr  return dtrace_object_alloc_base(Thread::current(), o);
9532729Sdfr}
9542729Sdfr
9552729Sdfrint SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
9562729Sdfr  assert(DTraceAllocProbes, "wrong call");
9572729Sdfr  Klass* klass = o->klass();
9582729Sdfr  int size = o->size();
9592729Sdfr  Symbol* name = klass->name();
9602729Sdfr#ifndef USDT2
9612729Sdfr  HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
9622729Sdfr                   name->bytes(), name->utf8_length(), size * HeapWordSize);
9632729Sdfr#else /* USDT2 */
9642729Sdfr  HOTSPOT_OBJECT_ALLOC(
9652729Sdfr                   get_java_tid(thread),
9662729Sdfr                   (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
9672729Sdfr#endif /* USDT2 */
9682729Sdfr  return 0;
9692729Sdfr}
9702729Sdfr
9712729SdfrJRT_LEAF(int, SharedRuntime::dtrace_method_entry(
9722729Sdfr    JavaThread* thread, Method* method))
9732729Sdfr  assert(DTraceMethodProbes, "wrong call");
9742729Sdfr  Symbol* kname = method->klass_name();
9752729Sdfr  Symbol* name = method->name();
9762729Sdfr  Symbol* sig = method->signature();
9772729Sdfr#ifndef USDT2
978  HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
979      kname->bytes(), kname->utf8_length(),
980      name->bytes(), name->utf8_length(),
981      sig->bytes(), sig->utf8_length());
982#else /* USDT2 */
983  HOTSPOT_METHOD_ENTRY(
984      get_java_tid(thread),
985      (char *) kname->bytes(), kname->utf8_length(),
986      (char *) name->bytes(), name->utf8_length(),
987      (char *) sig->bytes(), sig->utf8_length());
988#endif /* USDT2 */
989  return 0;
990JRT_END
991
992JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
993    JavaThread* thread, Method* method))
994  assert(DTraceMethodProbes, "wrong call");
995  Symbol* kname = method->klass_name();
996  Symbol* name = method->name();
997  Symbol* sig = method->signature();
998#ifndef USDT2
999  HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
1000      kname->bytes(), kname->utf8_length(),
1001      name->bytes(), name->utf8_length(),
1002      sig->bytes(), sig->utf8_length());
1003#else /* USDT2 */
1004  HOTSPOT_METHOD_RETURN(
1005      get_java_tid(thread),
1006      (char *) kname->bytes(), kname->utf8_length(),
1007      (char *) name->bytes(), name->utf8_length(),
1008      (char *) sig->bytes(), sig->utf8_length());
1009#endif /* USDT2 */
1010  return 0;
1011JRT_END
1012
1013
1014// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1015// for a call current in progress, i.e., arguments has been pushed on stack
1016// put callee has not been invoked yet.  Used by: resolve virtual/static,
1017// vtable updates, etc.  Caller frame must be compiled.
1018Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1019  ResourceMark rm(THREAD);
1020
1021  // last java frame on stack (which includes native call frames)
1022  vframeStream vfst(thread, true);  // Do not skip and javaCalls
1023
1024  return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
1025}
1026
1027
1028// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1029// for a call current in progress, i.e., arguments has been pushed on stack
1030// but callee has not been invoked yet.  Caller frame must be compiled.
1031Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1032                                              vframeStream& vfst,
1033                                              Bytecodes::Code& bc,
1034                                              CallInfo& callinfo, TRAPS) {
1035  Handle receiver;
1036  Handle nullHandle;  //create a handy null handle for exception returns
1037
1038  assert(!vfst.at_end(), "Java frame must exist");
1039
1040  // Find caller and bci from vframe
1041  methodHandle caller(THREAD, vfst.method());
1042  int          bci   = vfst.bci();
1043
1044  // Find bytecode
1045  Bytecode_invoke bytecode(caller, bci);
1046  bc = bytecode.invoke_code();
1047  int bytecode_index = bytecode.index();
1048
1049  // Find receiver for non-static call
1050  if (bc != Bytecodes::_invokestatic &&
1051      bc != Bytecodes::_invokedynamic) {
1052    // This register map must be update since we need to find the receiver for
1053    // compiled frames. The receiver might be in a register.
1054    RegisterMap reg_map2(thread);
1055    frame stubFrame   = thread->last_frame();
1056    // Caller-frame is a compiled frame
1057    frame callerFrame = stubFrame.sender(&reg_map2);
1058
1059    methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1060    if (callee.is_null()) {
1061      THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1062    }
1063    // Retrieve from a compiled argument list
1064    receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1065
1066    if (receiver.is_null()) {
1067      THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1068    }
1069  }
1070
1071  // Resolve method. This is parameterized by bytecode.
1072  constantPoolHandle constants(THREAD, caller->constants());
1073  assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1074  LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1075
1076#ifdef ASSERT
1077  // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1078  if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
1079    assert(receiver.not_null(), "should have thrown exception");
1080    KlassHandle receiver_klass(THREAD, receiver->klass());
1081    Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1082                            // klass is already loaded
1083    KlassHandle static_receiver_klass(THREAD, rk);
1084    // Method handle invokes might have been optimized to a direct call
1085    // so don't check for the receiver class.
1086    // FIXME this weakens the assert too much
1087    methodHandle callee = callinfo.selected_method();
1088    assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1089           callee->is_method_handle_intrinsic() ||
1090           callee->is_compiled_lambda_form(),
1091           "actual receiver must be subclass of static receiver klass");
1092    if (receiver_klass->oop_is_instance()) {
1093      if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1094        tty->print_cr("ERROR: Klass not yet initialized!!");
1095        receiver_klass()->print();
1096      }
1097      assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1098    }
1099  }
1100#endif
1101
1102  return receiver;
1103}
1104
1105methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1106  ResourceMark rm(THREAD);
1107  // We need first to check if any Java activations (compiled, interpreted)
1108  // exist on the stack since last JavaCall.  If not, we need
1109  // to get the target method from the JavaCall wrapper.
1110  vframeStream vfst(thread, true);  // Do not skip any javaCalls
1111  methodHandle callee_method;
1112  if (vfst.at_end()) {
1113    // No Java frames were found on stack since we did the JavaCall.
1114    // Hence the stack can only contain an entry_frame.  We need to
1115    // find the target method from the stub frame.
1116    RegisterMap reg_map(thread, false);
1117    frame fr = thread->last_frame();
1118    assert(fr.is_runtime_frame(), "must be a runtimeStub");
1119    fr = fr.sender(&reg_map);
1120    assert(fr.is_entry_frame(), "must be");
1121    // fr is now pointing to the entry frame.
1122    callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1123    assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1124  } else {
1125    Bytecodes::Code bc;
1126    CallInfo callinfo;
1127    find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1128    callee_method = callinfo.selected_method();
1129  }
1130  assert(callee_method()->is_method(), "must be");
1131  return callee_method;
1132}
1133
1134// Resolves a call.
1135methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1136                                           bool is_virtual,
1137                                           bool is_optimized, TRAPS) {
1138  methodHandle callee_method;
1139  callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1140  if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1141    int retry_count = 0;
1142    while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1143           callee_method->method_holder() != SystemDictionary::Object_klass()) {
1144      // If has a pending exception then there is no need to re-try to
1145      // resolve this method.
1146      // If the method has been redefined, we need to try again.
1147      // Hack: we have no way to update the vtables of arrays, so don't
1148      // require that java.lang.Object has been updated.
1149
1150      // It is very unlikely that method is redefined more than 100 times
1151      // in the middle of resolve. If it is looping here more than 100 times
1152      // means then there could be a bug here.
1153      guarantee((retry_count++ < 100),
1154                "Could not resolve to latest version of redefined method");
1155      // method is redefined in the middle of resolve so re-try.
1156      callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1157    }
1158  }
1159  return callee_method;
1160}
1161
1162// Resolves a call.  The compilers generate code for calls that go here
1163// and are patched with the real destination of the call.
1164methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1165                                           bool is_virtual,
1166                                           bool is_optimized, TRAPS) {
1167
1168  ResourceMark rm(thread);
1169  RegisterMap cbl_map(thread, false);
1170  frame caller_frame = thread->last_frame().sender(&cbl_map);
1171
1172  CodeBlob* caller_cb = caller_frame.cb();
1173  guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1174  nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1175  // make sure caller is not getting deoptimized
1176  // and removed before we are done with it.
1177  // CLEANUP - with lazy deopt shouldn't need this lock
1178  nmethodLocker caller_lock(caller_nm);
1179
1180
1181  // determine call info & receiver
1182  // note: a) receiver is NULL for static calls
1183  //       b) an exception is thrown if receiver is NULL for non-static calls
1184  CallInfo call_info;
1185  Bytecodes::Code invoke_code = Bytecodes::_illegal;
1186  Handle receiver = find_callee_info(thread, invoke_code,
1187                                     call_info, CHECK_(methodHandle()));
1188  methodHandle callee_method = call_info.selected_method();
1189
1190  assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1191         (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1192         (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1193         ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1194
1195#ifndef PRODUCT
1196  // tracing/debugging/statistics
1197  int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1198                (is_virtual) ? (&_resolve_virtual_ctr) :
1199                               (&_resolve_static_ctr);
1200  Atomic::inc(addr);
1201
1202  if (TraceCallFixup) {
1203    ResourceMark rm(thread);
1204    tty->print("resolving %s%s (%s) call to",
1205      (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1206      Bytecodes::name(invoke_code));
1207    callee_method->print_short_name(tty);
1208    tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
1209  }
1210#endif
1211
1212  // JSR 292 key invariant:
1213  // If the resolved method is a MethodHandle invoke target the call
1214  // site must be a MethodHandle call site, because the lambda form might tail-call
1215  // leaving the stack in a state unknown to either caller or callee
1216  // TODO detune for now but we might need it again
1217//  assert(!callee_method->is_compiled_lambda_form() ||
1218//         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1219
1220  // Compute entry points. This might require generation of C2I converter
1221  // frames, so we cannot be holding any locks here. Furthermore, the
1222  // computation of the entry points is independent of patching the call.  We
1223  // always return the entry-point, but we only patch the stub if the call has
1224  // not been deoptimized.  Return values: For a virtual call this is an
1225  // (cached_oop, destination address) pair. For a static call/optimized
1226  // virtual this is just a destination address.
1227
1228  StaticCallInfo static_call_info;
1229  CompiledICInfo virtual_call_info;
1230
1231  // Make sure the callee nmethod does not get deoptimized and removed before
1232  // we are done patching the code.
1233  nmethod* callee_nm = callee_method->code();
1234  nmethodLocker nl_callee(callee_nm);
1235#ifdef ASSERT
1236  address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1237#endif
1238
1239  if (is_virtual) {
1240    assert(receiver.not_null(), "sanity check");
1241    bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1242    KlassHandle h_klass(THREAD, receiver->klass());
1243    CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1244                     is_optimized, static_bound, virtual_call_info,
1245                     CHECK_(methodHandle()));
1246  } else {
1247    // static call
1248    CompiledStaticCall::compute_entry(callee_method, static_call_info);
1249  }
1250
1251  // grab lock, check for deoptimization and potentially patch caller
1252  {
1253    MutexLocker ml_patch(CompiledIC_lock);
1254
1255    // Now that we are ready to patch if the Method* was redefined then
1256    // don't update call site and let the caller retry.
1257
1258    if (!callee_method->is_old()) {
1259#ifdef ASSERT
1260      // We must not try to patch to jump to an already unloaded method.
1261      if (dest_entry_point != 0) {
1262        assert(CodeCache::find_blob(dest_entry_point) != NULL,
1263               "should not unload nmethod while locked");
1264      }
1265#endif
1266      if (is_virtual) {
1267        nmethod* nm = callee_nm;
1268        if (nm == NULL) CodeCache::find_blob(caller_frame.pc());
1269        CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1270        if (inline_cache->is_clean()) {
1271          inline_cache->set_to_monomorphic(virtual_call_info);
1272        }
1273      } else {
1274        CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1275        if (ssc->is_clean()) ssc->set(static_call_info);
1276      }
1277    }
1278
1279  } // unlock CompiledIC_lock
1280
1281  return callee_method;
1282}
1283
1284
1285// Inline caches exist only in compiled code
1286JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1287#ifdef ASSERT
1288  RegisterMap reg_map(thread, false);
1289  frame stub_frame = thread->last_frame();
1290  assert(stub_frame.is_runtime_frame(), "sanity check");
1291  frame caller_frame = stub_frame.sender(&reg_map);
1292  assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1293#endif /* ASSERT */
1294
1295  methodHandle callee_method;
1296  JRT_BLOCK
1297    callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1298    // Return Method* through TLS
1299    thread->set_vm_result_2(callee_method());
1300  JRT_BLOCK_END
1301  // return compiled code entry point after potential safepoints
1302  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1303  return callee_method->verified_code_entry();
1304JRT_END
1305
1306
1307// Handle call site that has been made non-entrant
1308JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1309  // 6243940 We might end up in here if the callee is deoptimized
1310  // as we race to call it.  We don't want to take a safepoint if
1311  // the caller was interpreted because the caller frame will look
1312  // interpreted to the stack walkers and arguments are now
1313  // "compiled" so it is much better to make this transition
1314  // invisible to the stack walking code. The i2c path will
1315  // place the callee method in the callee_target. It is stashed
1316  // there because if we try and find the callee by normal means a
1317  // safepoint is possible and have trouble gc'ing the compiled args.
1318  RegisterMap reg_map(thread, false);
1319  frame stub_frame = thread->last_frame();
1320  assert(stub_frame.is_runtime_frame(), "sanity check");
1321  frame caller_frame = stub_frame.sender(&reg_map);
1322
1323  if (caller_frame.is_interpreted_frame() ||
1324      caller_frame.is_entry_frame()) {
1325    Method* callee = thread->callee_target();
1326    guarantee(callee != NULL && callee->is_method(), "bad handshake");
1327    thread->set_vm_result_2(callee);
1328    thread->set_callee_target(NULL);
1329    return callee->get_c2i_entry();
1330  }
1331
1332  // Must be compiled to compiled path which is safe to stackwalk
1333  methodHandle callee_method;
1334  JRT_BLOCK
1335    // Force resolving of caller (if we called from compiled frame)
1336    callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1337    thread->set_vm_result_2(callee_method());
1338  JRT_BLOCK_END
1339  // return compiled code entry point after potential safepoints
1340  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1341  return callee_method->verified_code_entry();
1342JRT_END
1343
1344
1345// resolve a static call and patch code
1346JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1347  methodHandle callee_method;
1348  JRT_BLOCK
1349    callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1350    thread->set_vm_result_2(callee_method());
1351  JRT_BLOCK_END
1352  // return compiled code entry point after potential safepoints
1353  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1354  return callee_method->verified_code_entry();
1355JRT_END
1356
1357
1358// resolve virtual call and update inline cache to monomorphic
1359JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1360  methodHandle callee_method;
1361  JRT_BLOCK
1362    callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1363    thread->set_vm_result_2(callee_method());
1364  JRT_BLOCK_END
1365  // return compiled code entry point after potential safepoints
1366  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1367  return callee_method->verified_code_entry();
1368JRT_END
1369
1370
1371// Resolve a virtual call that can be statically bound (e.g., always
1372// monomorphic, so it has no inline cache).  Patch code to resolved target.
1373JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1374  methodHandle callee_method;
1375  JRT_BLOCK
1376    callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1377    thread->set_vm_result_2(callee_method());
1378  JRT_BLOCK_END
1379  // return compiled code entry point after potential safepoints
1380  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1381  return callee_method->verified_code_entry();
1382JRT_END
1383
1384
1385
1386
1387
1388methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1389  ResourceMark rm(thread);
1390  CallInfo call_info;
1391  Bytecodes::Code bc;
1392
1393  // receiver is NULL for static calls. An exception is thrown for NULL
1394  // receivers for non-static calls
1395  Handle receiver = find_callee_info(thread, bc, call_info,
1396                                     CHECK_(methodHandle()));
1397  // Compiler1 can produce virtual call sites that can actually be statically bound
1398  // If we fell thru to below we would think that the site was going megamorphic
1399  // when in fact the site can never miss. Worse because we'd think it was megamorphic
1400  // we'd try and do a vtable dispatch however methods that can be statically bound
1401  // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1402  // reresolution of the  call site (as if we did a handle_wrong_method and not an
1403  // plain ic_miss) and the site will be converted to an optimized virtual call site
1404  // never to miss again. I don't believe C2 will produce code like this but if it
1405  // did this would still be the correct thing to do for it too, hence no ifdef.
1406  //
1407  if (call_info.resolved_method()->can_be_statically_bound()) {
1408    methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1409    if (TraceCallFixup) {
1410      RegisterMap reg_map(thread, false);
1411      frame caller_frame = thread->last_frame().sender(&reg_map);
1412      ResourceMark rm(thread);
1413      tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1414      callee_method->print_short_name(tty);
1415      tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1416      tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1417    }
1418    return callee_method;
1419  }
1420
1421  methodHandle callee_method = call_info.selected_method();
1422
1423  bool should_be_mono = false;
1424
1425#ifndef PRODUCT
1426  Atomic::inc(&_ic_miss_ctr);
1427
1428  // Statistics & Tracing
1429  if (TraceCallFixup) {
1430    ResourceMark rm(thread);
1431    tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1432    callee_method->print_short_name(tty);
1433    tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1434  }
1435
1436  if (ICMissHistogram) {
1437    MutexLocker m(VMStatistic_lock);
1438    RegisterMap reg_map(thread, false);
1439    frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1440    // produce statistics under the lock
1441    trace_ic_miss(f.pc());
1442  }
1443#endif
1444
1445  // install an event collector so that when a vtable stub is created the
1446  // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1447  // event can't be posted when the stub is created as locks are held
1448  // - instead the event will be deferred until the event collector goes
1449  // out of scope.
1450  JvmtiDynamicCodeEventCollector event_collector;
1451
1452  // Update inline cache to megamorphic. Skip update if caller has been
1453  // made non-entrant or we are called from interpreted.
1454  { MutexLocker ml_patch (CompiledIC_lock);
1455    RegisterMap reg_map(thread, false);
1456    frame caller_frame = thread->last_frame().sender(&reg_map);
1457    CodeBlob* cb = caller_frame.cb();
1458    if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1459      // Not a non-entrant nmethod, so find inline_cache
1460      CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1461      bool should_be_mono = false;
1462      if (inline_cache->is_optimized()) {
1463        if (TraceCallFixup) {
1464          ResourceMark rm(thread);
1465          tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1466          callee_method->print_short_name(tty);
1467          tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1468        }
1469        should_be_mono = true;
1470      } else if (inline_cache->is_icholder_call()) {
1471        CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1472        if ( ic_oop != NULL) {
1473
1474          if (receiver()->klass() == ic_oop->holder_klass()) {
1475            // This isn't a real miss. We must have seen that compiled code
1476            // is now available and we want the call site converted to a
1477            // monomorphic compiled call site.
1478            // We can't assert for callee_method->code() != NULL because it
1479            // could have been deoptimized in the meantime
1480            if (TraceCallFixup) {
1481              ResourceMark rm(thread);
1482              tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1483              callee_method->print_short_name(tty);
1484              tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1485            }
1486            should_be_mono = true;
1487          }
1488        }
1489      }
1490
1491      if (should_be_mono) {
1492
1493        // We have a path that was monomorphic but was going interpreted
1494        // and now we have (or had) a compiled entry. We correct the IC
1495        // by using a new icBuffer.
1496        CompiledICInfo info;
1497        KlassHandle receiver_klass(THREAD, receiver()->klass());
1498        inline_cache->compute_monomorphic_entry(callee_method,
1499                                                receiver_klass,
1500                                                inline_cache->is_optimized(),
1501                                                false,
1502                                                info, CHECK_(methodHandle()));
1503        inline_cache->set_to_monomorphic(info);
1504      } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1505        // Change to megamorphic
1506        inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1507      } else {
1508        // Either clean or megamorphic
1509      }
1510    }
1511  } // Release CompiledIC_lock
1512
1513  return callee_method;
1514}
1515
1516//
1517// Resets a call-site in compiled code so it will get resolved again.
1518// This routines handles both virtual call sites, optimized virtual call
1519// sites, and static call sites. Typically used to change a call sites
1520// destination from compiled to interpreted.
1521//
1522methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1523  ResourceMark rm(thread);
1524  RegisterMap reg_map(thread, false);
1525  frame stub_frame = thread->last_frame();
1526  assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1527  frame caller = stub_frame.sender(&reg_map);
1528
1529  // Do nothing if the frame isn't a live compiled frame.
1530  // nmethod could be deoptimized by the time we get here
1531  // so no update to the caller is needed.
1532
1533  if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1534
1535    address pc = caller.pc();
1536
1537    // Default call_addr is the location of the "basic" call.
1538    // Determine the address of the call we a reresolving. With
1539    // Inline Caches we will always find a recognizable call.
1540    // With Inline Caches disabled we may or may not find a
1541    // recognizable call. We will always find a call for static
1542    // calls and for optimized virtual calls. For vanilla virtual
1543    // calls it depends on the state of the UseInlineCaches switch.
1544    //
1545    // With Inline Caches disabled we can get here for a virtual call
1546    // for two reasons:
1547    //   1 - calling an abstract method. The vtable for abstract methods
1548    //       will run us thru handle_wrong_method and we will eventually
1549    //       end up in the interpreter to throw the ame.
1550    //   2 - a racing deoptimization. We could be doing a vanilla vtable
1551    //       call and between the time we fetch the entry address and
1552    //       we jump to it the target gets deoptimized. Similar to 1
1553    //       we will wind up in the interprter (thru a c2i with c2).
1554    //
1555    address call_addr = NULL;
1556    {
1557      // Get call instruction under lock because another thread may be
1558      // busy patching it.
1559      MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1560      // Location of call instruction
1561      if (NativeCall::is_call_before(pc)) {
1562        NativeCall *ncall = nativeCall_before(pc);
1563        call_addr = ncall->instruction_address();
1564      }
1565    }
1566
1567    // Check for static or virtual call
1568    bool is_static_call = false;
1569    nmethod* caller_nm = CodeCache::find_nmethod(pc);
1570    // Make sure nmethod doesn't get deoptimized and removed until
1571    // this is done with it.
1572    // CLEANUP - with lazy deopt shouldn't need this lock
1573    nmethodLocker nmlock(caller_nm);
1574
1575    if (call_addr != NULL) {
1576      RelocIterator iter(caller_nm, call_addr, call_addr+1);
1577      int ret = iter.next(); // Get item
1578      if (ret) {
1579        assert(iter.addr() == call_addr, "must find call");
1580        if (iter.type() == relocInfo::static_call_type) {
1581          is_static_call = true;
1582        } else {
1583          assert(iter.type() == relocInfo::virtual_call_type ||
1584                 iter.type() == relocInfo::opt_virtual_call_type
1585                , "unexpected relocInfo. type");
1586        }
1587      } else {
1588        assert(!UseInlineCaches, "relocation info. must exist for this address");
1589      }
1590
1591      // Cleaning the inline cache will force a new resolve. This is more robust
1592      // than directly setting it to the new destination, since resolving of calls
1593      // is always done through the same code path. (experience shows that it
1594      // leads to very hard to track down bugs, if an inline cache gets updated
1595      // to a wrong method). It should not be performance critical, since the
1596      // resolve is only done once.
1597
1598      MutexLocker ml(CompiledIC_lock);
1599      //
1600      // We do not patch the call site if the nmethod has been made non-entrant
1601      // as it is a waste of time
1602      //
1603      if (caller_nm->is_in_use()) {
1604        if (is_static_call) {
1605          CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1606          ssc->set_to_clean();
1607        } else {
1608          // compiled, dispatched call (which used to call an interpreted method)
1609          CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1610          inline_cache->set_to_clean();
1611        }
1612      }
1613    }
1614
1615  }
1616
1617  methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1618
1619
1620#ifndef PRODUCT
1621  Atomic::inc(&_wrong_method_ctr);
1622
1623  if (TraceCallFixup) {
1624    ResourceMark rm(thread);
1625    tty->print("handle_wrong_method reresolving call to");
1626    callee_method->print_short_name(tty);
1627    tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1628  }
1629#endif
1630
1631  return callee_method;
1632}
1633
1634#ifdef ASSERT
1635void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
1636                                                                const BasicType* sig_bt,
1637                                                                const VMRegPair* regs) {
1638  ResourceMark rm;
1639  const int total_args_passed = method->size_of_parameters();
1640  const VMRegPair*    regs_with_member_name = regs;
1641        VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1642
1643  const int member_arg_pos = total_args_passed - 1;
1644  assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1645  assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1646
1647  const bool is_outgoing = method->is_method_handle_intrinsic();
1648  int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1649
1650  for (int i = 0; i < member_arg_pos; i++) {
1651    VMReg a =    regs_with_member_name[i].first();
1652    VMReg b = regs_without_member_name[i].first();
1653    assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
1654  }
1655  assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1656}
1657#endif
1658
1659// ---------------------------------------------------------------------------
1660// We are calling the interpreter via a c2i. Normally this would mean that
1661// we were called by a compiled method. However we could have lost a race
1662// where we went int -> i2c -> c2i and so the caller could in fact be
1663// interpreted. If the caller is compiled we attempt to patch the caller
1664// so he no longer calls into the interpreter.
1665IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1666  Method* moop(method);
1667
1668  address entry_point = moop->from_compiled_entry();
1669
1670  // It's possible that deoptimization can occur at a call site which hasn't
1671  // been resolved yet, in which case this function will be called from
1672  // an nmethod that has been patched for deopt and we can ignore the
1673  // request for a fixup.
1674  // Also it is possible that we lost a race in that from_compiled_entry
1675  // is now back to the i2c in that case we don't need to patch and if
1676  // we did we'd leap into space because the callsite needs to use
1677  // "to interpreter" stub in order to load up the Method*. Don't
1678  // ask me how I know this...
1679
1680  CodeBlob* cb = CodeCache::find_blob(caller_pc);
1681  if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1682    return;
1683  }
1684
1685  // The check above makes sure this is a nmethod.
1686  nmethod* nm = cb->as_nmethod_or_null();
1687  assert(nm, "must be");
1688
1689  // Get the return PC for the passed caller PC.
1690  address return_pc = caller_pc + frame::pc_return_offset;
1691
1692  // There is a benign race here. We could be attempting to patch to a compiled
1693  // entry point at the same time the callee is being deoptimized. If that is
1694  // the case then entry_point may in fact point to a c2i and we'd patch the
1695  // call site with the same old data. clear_code will set code() to NULL
1696  // at the end of it. If we happen to see that NULL then we can skip trying
1697  // to patch. If we hit the window where the callee has a c2i in the
1698  // from_compiled_entry and the NULL isn't present yet then we lose the race
1699  // and patch the code with the same old data. Asi es la vida.
1700
1701  if (moop->code() == NULL) return;
1702
1703  if (nm->is_in_use()) {
1704
1705    // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1706    MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1707    if (NativeCall::is_call_before(return_pc)) {
1708      NativeCall *call = nativeCall_before(return_pc);
1709      //
1710      // bug 6281185. We might get here after resolving a call site to a vanilla
1711      // virtual call. Because the resolvee uses the verified entry it may then
1712      // see compiled code and attempt to patch the site by calling us. This would
1713      // then incorrectly convert the call site to optimized and its downhill from
1714      // there. If you're lucky you'll get the assert in the bugid, if not you've
1715      // just made a call site that could be megamorphic into a monomorphic site
1716      // for the rest of its life! Just another racing bug in the life of
1717      // fixup_callers_callsite ...
1718      //
1719      RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1720      iter.next();
1721      assert(iter.has_current(), "must have a reloc at java call site");
1722      relocInfo::relocType typ = iter.reloc()->type();
1723      if ( typ != relocInfo::static_call_type &&
1724           typ != relocInfo::opt_virtual_call_type &&
1725           typ != relocInfo::static_stub_type) {
1726        return;
1727      }
1728      address destination = call->destination();
1729      if (destination != entry_point) {
1730        CodeBlob* callee = CodeCache::find_blob(destination);
1731        // callee == cb seems weird. It means calling interpreter thru stub.
1732        if (callee == cb || callee->is_adapter_blob()) {
1733          // static call or optimized virtual
1734          if (TraceCallFixup) {
1735            tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1736            moop->print_short_name(tty);
1737            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1738          }
1739          call->set_destination_mt_safe(entry_point);
1740        } else {
1741          if (TraceCallFixup) {
1742            tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1743            moop->print_short_name(tty);
1744            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1745          }
1746          // assert is too strong could also be resolve destinations.
1747          // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1748        }
1749      } else {
1750          if (TraceCallFixup) {
1751            tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1752            moop->print_short_name(tty);
1753            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1754          }
1755      }
1756    }
1757  }
1758IRT_END
1759
1760
1761// same as JVM_Arraycopy, but called directly from compiled code
1762JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1763                                                oopDesc* dest, jint dest_pos,
1764                                                jint length,
1765                                                JavaThread* thread)) {
1766#ifndef PRODUCT
1767  _slow_array_copy_ctr++;
1768#endif
1769  // Check if we have null pointers
1770  if (src == NULL || dest == NULL) {
1771    THROW(vmSymbols::java_lang_NullPointerException());
1772  }
1773  // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1774  // even though the copy_array API also performs dynamic checks to ensure
1775  // that src and dest are truly arrays (and are conformable).
1776  // The copy_array mechanism is awkward and could be removed, but
1777  // the compilers don't call this function except as a last resort,
1778  // so it probably doesn't matter.
1779  src->klass()->copy_array((arrayOopDesc*)src,  src_pos,
1780                                        (arrayOopDesc*)dest, dest_pos,
1781                                        length, thread);
1782}
1783JRT_END
1784
1785char* SharedRuntime::generate_class_cast_message(
1786    JavaThread* thread, const char* objName) {
1787
1788  // Get target class name from the checkcast instruction
1789  vframeStream vfst(thread, true);
1790  assert(!vfst.at_end(), "Java frame must exist");
1791  Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1792  Klass* targetKlass = vfst.method()->constants()->klass_at(
1793    cc.index(), thread);
1794  return generate_class_cast_message(objName, targetKlass->external_name());
1795}
1796
1797char* SharedRuntime::generate_class_cast_message(
1798    const char* objName, const char* targetKlassName, const char* desc) {
1799  size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1800
1801  char* message = NEW_RESOURCE_ARRAY(char, msglen);
1802  if (NULL == message) {
1803    // Shouldn't happen, but don't cause even more problems if it does
1804    message = const_cast<char*>(objName);
1805  } else {
1806    jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1807  }
1808  return message;
1809}
1810
1811JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1812  (void) JavaThread::current()->reguard_stack();
1813JRT_END
1814
1815
1816// Handles the uncommon case in locking, i.e., contention or an inflated lock.
1817#ifndef PRODUCT
1818int SharedRuntime::_monitor_enter_ctr=0;
1819#endif
1820JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1821  oop obj(_obj);
1822#ifndef PRODUCT
1823  _monitor_enter_ctr++;             // monitor enter slow
1824#endif
1825  if (PrintBiasedLockingStatistics) {
1826    Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1827  }
1828  Handle h_obj(THREAD, obj);
1829  if (UseBiasedLocking) {
1830    // Retry fast entry if bias is revoked to avoid unnecessary inflation
1831    ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1832  } else {
1833    ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1834  }
1835  assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1836JRT_END
1837
1838#ifndef PRODUCT
1839int SharedRuntime::_monitor_exit_ctr=0;
1840#endif
1841// Handles the uncommon cases of monitor unlocking in compiled code
1842JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1843   oop obj(_obj);
1844#ifndef PRODUCT
1845  _monitor_exit_ctr++;              // monitor exit slow
1846#endif
1847  Thread* THREAD = JavaThread::current();
1848  // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1849  // testing was unable to ever fire the assert that guarded it so I have removed it.
1850  assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1851#undef MIGHT_HAVE_PENDING
1852#ifdef MIGHT_HAVE_PENDING
1853  // Save and restore any pending_exception around the exception mark.
1854  // While the slow_exit must not throw an exception, we could come into
1855  // this routine with one set.
1856  oop pending_excep = NULL;
1857  const char* pending_file;
1858  int pending_line;
1859  if (HAS_PENDING_EXCEPTION) {
1860    pending_excep = PENDING_EXCEPTION;
1861    pending_file  = THREAD->exception_file();
1862    pending_line  = THREAD->exception_line();
1863    CLEAR_PENDING_EXCEPTION;
1864  }
1865#endif /* MIGHT_HAVE_PENDING */
1866
1867  {
1868    // Exit must be non-blocking, and therefore no exceptions can be thrown.
1869    EXCEPTION_MARK;
1870    ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1871  }
1872
1873#ifdef MIGHT_HAVE_PENDING
1874  if (pending_excep != NULL) {
1875    THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1876  }
1877#endif /* MIGHT_HAVE_PENDING */
1878JRT_END
1879
1880#ifndef PRODUCT
1881
1882void SharedRuntime::print_statistics() {
1883  ttyLocker ttyl;
1884  if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1885
1886  if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1887  if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1888  if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1889
1890  SharedRuntime::print_ic_miss_histogram();
1891
1892  if (CountRemovableExceptions) {
1893    if (_nof_removable_exceptions > 0) {
1894      Unimplemented(); // this counter is not yet incremented
1895      tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1896    }
1897  }
1898
1899  // Dump the JRT_ENTRY counters
1900  if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1901  if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1902  if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1903  if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1904  if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1905  if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1906  if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1907
1908  tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1909  tty->print_cr("%5d wrong method", _wrong_method_ctr );
1910  tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1911  tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1912  tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1913
1914  if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1915  if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1916  if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1917  if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1918  if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1919  if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1920  if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1921  if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1922  if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1923  if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1924  if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1925  if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1926  if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1927  if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1928  if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1929  if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1930
1931  AdapterHandlerLibrary::print_statistics();
1932
1933  if (xtty != NULL)  xtty->tail("statistics");
1934}
1935
1936inline double percent(int x, int y) {
1937  return 100.0 * x / MAX2(y, 1);
1938}
1939
1940class MethodArityHistogram {
1941 public:
1942  enum { MAX_ARITY = 256 };
1943 private:
1944  static int _arity_histogram[MAX_ARITY];     // histogram of #args
1945  static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1946  static int _max_arity;                      // max. arity seen
1947  static int _max_size;                       // max. arg size seen
1948
1949  static void add_method_to_histogram(nmethod* nm) {
1950    Method* m = nm->method();
1951    ArgumentCount args(m->signature());
1952    int arity   = args.size() + (m->is_static() ? 0 : 1);
1953    int argsize = m->size_of_parameters();
1954    arity   = MIN2(arity, MAX_ARITY-1);
1955    argsize = MIN2(argsize, MAX_ARITY-1);
1956    int count = nm->method()->compiled_invocation_count();
1957    _arity_histogram[arity]  += count;
1958    _size_histogram[argsize] += count;
1959    _max_arity = MAX2(_max_arity, arity);
1960    _max_size  = MAX2(_max_size, argsize);
1961  }
1962
1963  void print_histogram_helper(int n, int* histo, const char* name) {
1964    const int N = MIN2(5, n);
1965    tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1966    double sum = 0;
1967    double weighted_sum = 0;
1968    int i;
1969    for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1970    double rest = sum;
1971    double percent = sum / 100;
1972    for (i = 0; i <= N; i++) {
1973      rest -= histo[i];
1974      tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1975    }
1976    tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1977    tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1978  }
1979
1980  void print_histogram() {
1981    tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1982    print_histogram_helper(_max_arity, _arity_histogram, "arity");
1983    tty->print_cr("\nSame for parameter size (in words):");
1984    print_histogram_helper(_max_size, _size_histogram, "size");
1985    tty->cr();
1986  }
1987
1988 public:
1989  MethodArityHistogram() {
1990    MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1991    _max_arity = _max_size = 0;
1992    for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
1993    CodeCache::nmethods_do(add_method_to_histogram);
1994    print_histogram();
1995  }
1996};
1997
1998int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
1999int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2000int MethodArityHistogram::_max_arity;
2001int MethodArityHistogram::_max_size;
2002
2003void SharedRuntime::print_call_statistics(int comp_total) {
2004  tty->print_cr("Calls from compiled code:");
2005  int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2006  int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2007  int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2008  tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2009  tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2010  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2011  tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2012  tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2013  tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2014  tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2015  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2016  tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2017  tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2018  tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2019  tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2020  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2021  tty->cr();
2022  tty->print_cr("Note 1: counter updates are not MT-safe.");
2023  tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2024  tty->print_cr("        %% in nested categories are relative to their category");
2025  tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2026  tty->cr();
2027
2028  MethodArityHistogram h;
2029}
2030#endif
2031
2032
2033// A simple wrapper class around the calling convention information
2034// that allows sharing of adapters for the same calling convention.
2035class AdapterFingerPrint : public CHeapObj<mtCode> {
2036 private:
2037  enum {
2038    _basic_type_bits = 4,
2039    _basic_type_mask = right_n_bits(_basic_type_bits),
2040    _basic_types_per_int = BitsPerInt / _basic_type_bits,
2041    _compact_int_count = 3
2042  };
2043  // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2044  // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2045
2046  union {
2047    int  _compact[_compact_int_count];
2048    int* _fingerprint;
2049  } _value;
2050  int _length; // A negative length indicates the fingerprint is in the compact form,
2051               // Otherwise _value._fingerprint is the array.
2052
2053  // Remap BasicTypes that are handled equivalently by the adapters.
2054  // These are correct for the current system but someday it might be
2055  // necessary to make this mapping platform dependent.
2056  static int adapter_encoding(BasicType in) {
2057    switch(in) {
2058      case T_BOOLEAN:
2059      case T_BYTE:
2060      case T_SHORT:
2061      case T_CHAR:
2062        // There are all promoted to T_INT in the calling convention
2063        return T_INT;
2064
2065      case T_OBJECT:
2066      case T_ARRAY:
2067        // In other words, we assume that any register good enough for
2068        // an int or long is good enough for a managed pointer.
2069#ifdef _LP64
2070        return T_LONG;
2071#else
2072        return T_INT;
2073#endif
2074
2075      case T_INT:
2076      case T_LONG:
2077      case T_FLOAT:
2078      case T_DOUBLE:
2079      case T_VOID:
2080        return in;
2081
2082      default:
2083        ShouldNotReachHere();
2084        return T_CONFLICT;
2085    }
2086  }
2087
2088 public:
2089  AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2090    // The fingerprint is based on the BasicType signature encoded
2091    // into an array of ints with eight entries per int.
2092    int* ptr;
2093    int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2094    if (len <= _compact_int_count) {
2095      assert(_compact_int_count == 3, "else change next line");
2096      _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2097      // Storing the signature encoded as signed chars hits about 98%
2098      // of the time.
2099      _length = -len;
2100      ptr = _value._compact;
2101    } else {
2102      _length = len;
2103      _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2104      ptr = _value._fingerprint;
2105    }
2106
2107    // Now pack the BasicTypes with 8 per int
2108    int sig_index = 0;
2109    for (int index = 0; index < len; index++) {
2110      int value = 0;
2111      for (int byte = 0; byte < _basic_types_per_int; byte++) {
2112        int bt = ((sig_index < total_args_passed)
2113                  ? adapter_encoding(sig_bt[sig_index++])
2114                  : 0);
2115        assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2116        value = (value << _basic_type_bits) | bt;
2117      }
2118      ptr[index] = value;
2119    }
2120  }
2121
2122  ~AdapterFingerPrint() {
2123    if (_length > 0) {
2124      FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
2125    }
2126  }
2127
2128  int value(int index) {
2129    if (_length < 0) {
2130      return _value._compact[index];
2131    }
2132    return _value._fingerprint[index];
2133  }
2134  int length() {
2135    if (_length < 0) return -_length;
2136    return _length;
2137  }
2138
2139  bool is_compact() {
2140    return _length <= 0;
2141  }
2142
2143  unsigned int compute_hash() {
2144    int hash = 0;
2145    for (int i = 0; i < length(); i++) {
2146      int v = value(i);
2147      hash = (hash << 8) ^ v ^ (hash >> 5);
2148    }
2149    return (unsigned int)hash;
2150  }
2151
2152  const char* as_string() {
2153    stringStream st;
2154    st.print("0x");
2155    for (int i = 0; i < length(); i++) {
2156      st.print("%08x", value(i));
2157    }
2158    return st.as_string();
2159  }
2160
2161  bool equals(AdapterFingerPrint* other) {
2162    if (other->_length != _length) {
2163      return false;
2164    }
2165    if (_length < 0) {
2166      assert(_compact_int_count == 3, "else change next line");
2167      return _value._compact[0] == other->_value._compact[0] &&
2168             _value._compact[1] == other->_value._compact[1] &&
2169             _value._compact[2] == other->_value._compact[2];
2170    } else {
2171      for (int i = 0; i < _length; i++) {
2172        if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2173          return false;
2174        }
2175      }
2176    }
2177    return true;
2178  }
2179};
2180
2181
2182// A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2183class AdapterHandlerTable : public BasicHashtable<mtCode> {
2184  friend class AdapterHandlerTableIterator;
2185
2186 private:
2187
2188#ifndef PRODUCT
2189  static int _lookups; // number of calls to lookup
2190  static int _buckets; // number of buckets checked
2191  static int _equals;  // number of buckets checked with matching hash
2192  static int _hits;    // number of successful lookups
2193  static int _compact; // number of equals calls with compact signature
2194#endif
2195
2196  AdapterHandlerEntry* bucket(int i) {
2197    return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2198  }
2199
2200 public:
2201  AdapterHandlerTable()
2202    : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2203
2204  // Create a new entry suitable for insertion in the table
2205  AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2206    AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2207    entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2208    return entry;
2209  }
2210
2211  // Insert an entry into the table
2212  void add(AdapterHandlerEntry* entry) {
2213    int index = hash_to_index(entry->hash());
2214    add_entry(index, entry);
2215  }
2216
2217  void free_entry(AdapterHandlerEntry* entry) {
2218    entry->deallocate();
2219    BasicHashtable<mtCode>::free_entry(entry);
2220  }
2221
2222  // Find a entry with the same fingerprint if it exists
2223  AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2224    NOT_PRODUCT(_lookups++);
2225    AdapterFingerPrint fp(total_args_passed, sig_bt);
2226    unsigned int hash = fp.compute_hash();
2227    int index = hash_to_index(hash);
2228    for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2229      NOT_PRODUCT(_buckets++);
2230      if (e->hash() == hash) {
2231        NOT_PRODUCT(_equals++);
2232        if (fp.equals(e->fingerprint())) {
2233#ifndef PRODUCT
2234          if (fp.is_compact()) _compact++;
2235          _hits++;
2236#endif
2237          return e;
2238        }
2239      }
2240    }
2241    return NULL;
2242  }
2243
2244#ifndef PRODUCT
2245  void print_statistics() {
2246    ResourceMark rm;
2247    int longest = 0;
2248    int empty = 0;
2249    int total = 0;
2250    int nonempty = 0;
2251    for (int index = 0; index < table_size(); index++) {
2252      int count = 0;
2253      for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2254        count++;
2255      }
2256      if (count != 0) nonempty++;
2257      if (count == 0) empty++;
2258      if (count > longest) longest = count;
2259      total += count;
2260    }
2261    tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2262                  empty, longest, total, total / (double)nonempty);
2263    tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2264                  _lookups, _buckets, _equals, _hits, _compact);
2265  }
2266#endif
2267};
2268
2269
2270#ifndef PRODUCT
2271
2272int AdapterHandlerTable::_lookups;
2273int AdapterHandlerTable::_buckets;
2274int AdapterHandlerTable::_equals;
2275int AdapterHandlerTable::_hits;
2276int AdapterHandlerTable::_compact;
2277
2278#endif
2279
2280class AdapterHandlerTableIterator : public StackObj {
2281 private:
2282  AdapterHandlerTable* _table;
2283  int _index;
2284  AdapterHandlerEntry* _current;
2285
2286  void scan() {
2287    while (_index < _table->table_size()) {
2288      AdapterHandlerEntry* a = _table->bucket(_index);
2289      _index++;
2290      if (a != NULL) {
2291        _current = a;
2292        return;
2293      }
2294    }
2295  }
2296
2297 public:
2298  AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2299    scan();
2300  }
2301  bool has_next() {
2302    return _current != NULL;
2303  }
2304  AdapterHandlerEntry* next() {
2305    if (_current != NULL) {
2306      AdapterHandlerEntry* result = _current;
2307      _current = _current->next();
2308      if (_current == NULL) scan();
2309      return result;
2310    } else {
2311      return NULL;
2312    }
2313  }
2314};
2315
2316
2317// ---------------------------------------------------------------------------
2318// Implementation of AdapterHandlerLibrary
2319AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2320AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2321const int AdapterHandlerLibrary_size = 16*K;
2322BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2323
2324BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2325  // Should be called only when AdapterHandlerLibrary_lock is active.
2326  if (_buffer == NULL) // Initialize lazily
2327      _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2328  return _buffer;
2329}
2330
2331void AdapterHandlerLibrary::initialize() {
2332  if (_adapters != NULL) return;
2333  _adapters = new AdapterHandlerTable();
2334
2335  // Create a special handler for abstract methods.  Abstract methods
2336  // are never compiled so an i2c entry is somewhat meaningless, but
2337  // fill it in with something appropriate just in case.  Pass handle
2338  // wrong method for the c2i transitions.
2339  address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
2340  _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2341                                                              StubRoutines::throw_AbstractMethodError_entry(),
2342                                                              wrong_method, wrong_method);
2343}
2344
2345AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2346                                                      address i2c_entry,
2347                                                      address c2i_entry,
2348                                                      address c2i_unverified_entry) {
2349  return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2350}
2351
2352AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2353  // Use customized signature handler.  Need to lock around updates to
2354  // the AdapterHandlerTable (it is not safe for concurrent readers
2355  // and a single writer: this could be fixed if it becomes a
2356  // problem).
2357
2358  // Get the address of the ic_miss handlers before we grab the
2359  // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2360  // was caused by the initialization of the stubs happening
2361  // while we held the lock and then notifying jvmti while
2362  // holding it. This just forces the initialization to be a little
2363  // earlier.
2364  address ic_miss = SharedRuntime::get_ic_miss_stub();
2365  assert(ic_miss != NULL, "must have handler");
2366
2367  ResourceMark rm;
2368
2369  NOT_PRODUCT(int insts_size);
2370  AdapterBlob* B = NULL;
2371  AdapterHandlerEntry* entry = NULL;
2372  AdapterFingerPrint* fingerprint = NULL;
2373  {
2374    MutexLocker mu(AdapterHandlerLibrary_lock);
2375    // make sure data structure is initialized
2376    initialize();
2377
2378    if (method->is_abstract()) {
2379      return _abstract_method_handler;
2380    }
2381
2382    // Fill in the signature array, for the calling-convention call.
2383    int total_args_passed = method->size_of_parameters(); // All args on stack
2384
2385    BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2386    VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2387    int i = 0;
2388    if (!method->is_static())  // Pass in receiver first
2389      sig_bt[i++] = T_OBJECT;
2390    for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2391      sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2392      if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2393        sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2394    }
2395    assert(i == total_args_passed, "");
2396
2397    // Lookup method signature's fingerprint
2398    entry = _adapters->lookup(total_args_passed, sig_bt);
2399
2400#ifdef ASSERT
2401    AdapterHandlerEntry* shared_entry = NULL;
2402    if (VerifyAdapterSharing && entry != NULL) {
2403      shared_entry = entry;
2404      entry = NULL;
2405    }
2406#endif
2407
2408    if (entry != NULL) {
2409      return entry;
2410    }
2411
2412    // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2413    int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2414
2415    // Make a C heap allocated version of the fingerprint to store in the adapter
2416    fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2417
2418    // Create I2C & C2I handlers
2419
2420    BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2421    if (buf != NULL) {
2422      CodeBuffer buffer(buf);
2423      short buffer_locs[20];
2424      buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2425                                             sizeof(buffer_locs)/sizeof(relocInfo));
2426      MacroAssembler _masm(&buffer);
2427
2428      entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2429                                                     total_args_passed,
2430                                                     comp_args_on_stack,
2431                                                     sig_bt,
2432                                                     regs,
2433                                                     fingerprint);
2434
2435#ifdef ASSERT
2436      if (VerifyAdapterSharing) {
2437        if (shared_entry != NULL) {
2438          assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
2439                 "code must match");
2440          // Release the one just created and return the original
2441          _adapters->free_entry(entry);
2442          return shared_entry;
2443        } else  {
2444          entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
2445        }
2446      }
2447#endif
2448
2449      B = AdapterBlob::create(&buffer);
2450      NOT_PRODUCT(insts_size = buffer.insts_size());
2451    }
2452    if (B == NULL) {
2453      // CodeCache is full, disable compilation
2454      // Ought to log this but compile log is only per compile thread
2455      // and we're some non descript Java thread.
2456      MutexUnlocker mu(AdapterHandlerLibrary_lock);
2457      CompileBroker::handle_full_code_cache();
2458      return NULL; // Out of CodeCache space
2459    }
2460    entry->relocate(B->content_begin());
2461#ifndef PRODUCT
2462    // debugging suppport
2463    if (PrintAdapterHandlers || PrintStubCode) {
2464      ttyLocker ttyl;
2465      entry->print_adapter_on(tty);
2466      tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
2467                    _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2468                    method->signature()->as_C_string(), insts_size);
2469      tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2470      if (Verbose || PrintStubCode) {
2471        address first_pc = entry->base_address();
2472        if (first_pc != NULL) {
2473          Disassembler::decode(first_pc, first_pc + insts_size);
2474          tty->cr();
2475        }
2476      }
2477    }
2478#endif
2479
2480    _adapters->add(entry);
2481  }
2482  // Outside of the lock
2483  if (B != NULL) {
2484    char blob_id[256];
2485    jio_snprintf(blob_id,
2486                 sizeof(blob_id),
2487                 "%s(%s)@" PTR_FORMAT,
2488                 B->name(),
2489                 fingerprint->as_string(),
2490                 B->content_begin());
2491    Forte::register_stub(blob_id, B->content_begin(), B->content_end());
2492
2493    if (JvmtiExport::should_post_dynamic_code_generated()) {
2494      JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
2495    }
2496  }
2497  return entry;
2498}
2499
2500address AdapterHandlerEntry::base_address() {
2501  address base = _i2c_entry;
2502  if (base == NULL)  base = _c2i_entry;
2503  assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2504  assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2505  return base;
2506}
2507
2508void AdapterHandlerEntry::relocate(address new_base) {
2509  address old_base = base_address();
2510  assert(old_base != NULL, "");
2511  ptrdiff_t delta = new_base - old_base;
2512  if (_i2c_entry != NULL)
2513    _i2c_entry += delta;
2514  if (_c2i_entry != NULL)
2515    _c2i_entry += delta;
2516  if (_c2i_unverified_entry != NULL)
2517    _c2i_unverified_entry += delta;
2518  assert(base_address() == new_base, "");
2519}
2520
2521
2522void AdapterHandlerEntry::deallocate() {
2523  delete _fingerprint;
2524#ifdef ASSERT
2525  if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
2526  if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig, mtCode);
2527#endif
2528}
2529
2530
2531#ifdef ASSERT
2532// Capture the code before relocation so that it can be compared
2533// against other versions.  If the code is captured after relocation
2534// then relative instructions won't be equivalent.
2535void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2536  _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2537  _code_length = length;
2538  memcpy(_saved_code, buffer, length);
2539  _total_args_passed = total_args_passed;
2540  _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed, mtCode);
2541  memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
2542}
2543
2544
2545bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2546  if (length != _code_length) {
2547    return false;
2548  }
2549  for (int i = 0; i < length; i++) {
2550    if (buffer[i] != _saved_code[i]) {
2551      return false;
2552    }
2553  }
2554  return true;
2555}
2556#endif
2557
2558
2559// Create a native wrapper for this native method.  The wrapper converts the
2560// java compiled calling convention to the native convention, handlizes
2561// arguments, and transitions to native.  On return from the native we transition
2562// back to java blocking if a safepoint is in progress.
2563nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
2564  ResourceMark rm;
2565  nmethod* nm = NULL;
2566
2567  assert(method->is_native(), "must be native");
2568  assert(method->is_method_handle_intrinsic() ||
2569         method->has_native_function(), "must have something valid to call!");
2570
2571  {
2572    // perform the work while holding the lock, but perform any printing outside the lock
2573    MutexLocker mu(AdapterHandlerLibrary_lock);
2574    // See if somebody beat us to it
2575    nm = method->code();
2576    if (nm) {
2577      return nm;
2578    }
2579
2580    ResourceMark rm;
2581
2582    BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2583    if (buf != NULL) {
2584      CodeBuffer buffer(buf);
2585      double locs_buf[20];
2586      buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2587      MacroAssembler _masm(&buffer);
2588
2589      // Fill in the signature array, for the calling-convention call.
2590      const int total_args_passed = method->size_of_parameters();
2591
2592      BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2593      VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2594      int i=0;
2595      if( !method->is_static() )  // Pass in receiver first
2596        sig_bt[i++] = T_OBJECT;
2597      SignatureStream ss(method->signature());
2598      for( ; !ss.at_return_type(); ss.next()) {
2599        sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2600        if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2601          sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2602      }
2603      assert(i == total_args_passed, "");
2604      BasicType ret_type = ss.type();
2605
2606      // Now get the compiled-Java layout as input (or output) arguments.
2607      // NOTE: Stubs for compiled entry points of method handle intrinsics
2608      // are just trampolines so the argument registers must be outgoing ones.
2609      const bool is_outgoing = method->is_method_handle_intrinsic();
2610      int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2611
2612      // Generate the compiled-to-native wrapper code
2613      nm = SharedRuntime::generate_native_wrapper(&_masm,
2614                                                  method,
2615                                                  compile_id,
2616                                                  sig_bt,
2617                                                  regs,
2618                                                  ret_type);
2619    }
2620  }
2621
2622  // Must unlock before calling set_code
2623
2624  // Install the generated code.
2625  if (nm != NULL) {
2626    if (PrintCompilation) {
2627      ttyLocker ttyl;
2628      CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2629    }
2630    method->set_code(method, nm);
2631    nm->post_compiled_method_load_event();
2632  } else {
2633    // CodeCache is full, disable compilation
2634    CompileBroker::handle_full_code_cache();
2635  }
2636  return nm;
2637}
2638
2639JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2640  assert(thread == JavaThread::current(), "must be");
2641  // The code is about to enter a JNI lazy critical native method and
2642  // _needs_gc is true, so if this thread is already in a critical
2643  // section then just return, otherwise this thread should block
2644  // until needs_gc has been cleared.
2645  if (thread->in_critical()) {
2646    return;
2647  }
2648  // Lock and unlock a critical section to give the system a chance to block
2649  GC_locker::lock_critical(thread);
2650  GC_locker::unlock_critical(thread);
2651JRT_END
2652
2653#ifdef HAVE_DTRACE_H
2654// Create a dtrace nmethod for this method.  The wrapper converts the
2655// java compiled calling convention to the native convention, makes a dummy call
2656// (actually nops for the size of the call instruction, which become a trap if
2657// probe is enabled). The returns to the caller. Since this all looks like a
2658// leaf no thread transition is needed.
2659
2660nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2661  ResourceMark rm;
2662  nmethod* nm = NULL;
2663
2664  if (PrintCompilation) {
2665    ttyLocker ttyl;
2666    tty->print("---   n%s  ");
2667    method->print_short_name(tty);
2668    if (method->is_static()) {
2669      tty->print(" (static)");
2670    }
2671    tty->cr();
2672  }
2673
2674  {
2675    // perform the work while holding the lock, but perform any printing
2676    // outside the lock
2677    MutexLocker mu(AdapterHandlerLibrary_lock);
2678    // See if somebody beat us to it
2679    nm = method->code();
2680    if (nm) {
2681      return nm;
2682    }
2683
2684    ResourceMark rm;
2685
2686    BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2687    if (buf != NULL) {
2688      CodeBuffer buffer(buf);
2689      // Need a few relocation entries
2690      double locs_buf[20];
2691      buffer.insts()->initialize_shared_locs(
2692        (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2693      MacroAssembler _masm(&buffer);
2694
2695      // Generate the compiled-to-native wrapper code
2696      nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2697    }
2698  }
2699  return nm;
2700}
2701
2702// the dtrace method needs to convert java lang string to utf8 string.
2703void SharedRuntime::get_utf(oopDesc* src, address dst) {
2704  typeArrayOop jlsValue  = java_lang_String::value(src);
2705  int          jlsOffset = java_lang_String::offset(src);
2706  int          jlsLen    = java_lang_String::length(src);
2707  jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2708                                           jlsValue->char_at_addr(jlsOffset);
2709  assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2710  (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2711}
2712#endif // ndef HAVE_DTRACE_H
2713
2714// -------------------------------------------------------------------------
2715// Java-Java calling convention
2716// (what you use when Java calls Java)
2717
2718//------------------------------name_for_receiver----------------------------------
2719// For a given signature, return the VMReg for parameter 0.
2720VMReg SharedRuntime::name_for_receiver() {
2721  VMRegPair regs;
2722  BasicType sig_bt = T_OBJECT;
2723  (void) java_calling_convention(&sig_bt, &regs, 1, true);
2724  // Return argument 0 register.  In the LP64 build pointers
2725  // take 2 registers, but the VM wants only the 'main' name.
2726  return regs.first();
2727}
2728
2729VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2730  // This method is returning a data structure allocating as a
2731  // ResourceObject, so do not put any ResourceMarks in here.
2732  char *s = sig->as_C_string();
2733  int len = (int)strlen(s);
2734  s++; len--;                   // Skip opening paren
2735  char *t = s+len;
2736  while( *(--t) != ')' ) ;      // Find close paren
2737
2738  BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2739  VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2740  int cnt = 0;
2741  if (has_receiver) {
2742    sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2743  }
2744
2745  while( s < t ) {
2746    switch( *s++ ) {            // Switch on signature character
2747    case 'B': sig_bt[cnt++] = T_BYTE;    break;
2748    case 'C': sig_bt[cnt++] = T_CHAR;    break;
2749    case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2750    case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2751    case 'I': sig_bt[cnt++] = T_INT;     break;
2752    case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2753    case 'S': sig_bt[cnt++] = T_SHORT;   break;
2754    case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2755    case 'V': sig_bt[cnt++] = T_VOID;    break;
2756    case 'L':                   // Oop
2757      while( *s++ != ';'  ) ;   // Skip signature
2758      sig_bt[cnt++] = T_OBJECT;
2759      break;
2760    case '[': {                 // Array
2761      do {                      // Skip optional size
2762        while( *s >= '0' && *s <= '9' ) s++;
2763      } while( *s++ == '[' );   // Nested arrays?
2764      // Skip element type
2765      if( s[-1] == 'L' )
2766        while( *s++ != ';'  ) ; // Skip signature
2767      sig_bt[cnt++] = T_ARRAY;
2768      break;
2769    }
2770    default : ShouldNotReachHere();
2771    }
2772  }
2773
2774  if (has_appendix) {
2775    sig_bt[cnt++] = T_OBJECT;
2776  }
2777
2778  assert( cnt < 256, "grow table size" );
2779
2780  int comp_args_on_stack;
2781  comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2782
2783  // the calling convention doesn't count out_preserve_stack_slots so
2784  // we must add that in to get "true" stack offsets.
2785
2786  if (comp_args_on_stack) {
2787    for (int i = 0; i < cnt; i++) {
2788      VMReg reg1 = regs[i].first();
2789      if( reg1->is_stack()) {
2790        // Yuck
2791        reg1 = reg1->bias(out_preserve_stack_slots());
2792      }
2793      VMReg reg2 = regs[i].second();
2794      if( reg2->is_stack()) {
2795        // Yuck
2796        reg2 = reg2->bias(out_preserve_stack_slots());
2797      }
2798      regs[i].set_pair(reg2, reg1);
2799    }
2800  }
2801
2802  // results
2803  *arg_size = cnt;
2804  return regs;
2805}
2806
2807// OSR Migration Code
2808//
2809// This code is used convert interpreter frames into compiled frames.  It is
2810// called from very start of a compiled OSR nmethod.  A temp array is
2811// allocated to hold the interesting bits of the interpreter frame.  All
2812// active locks are inflated to allow them to move.  The displaced headers and
2813// active interpeter locals are copied into the temp buffer.  Then we return
2814// back to the compiled code.  The compiled code then pops the current
2815// interpreter frame off the stack and pushes a new compiled frame.  Then it
2816// copies the interpreter locals and displaced headers where it wants.
2817// Finally it calls back to free the temp buffer.
2818//
2819// All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2820
2821JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2822
2823  //
2824  // This code is dependent on the memory layout of the interpreter local
2825  // array and the monitors. On all of our platforms the layout is identical
2826  // so this code is shared. If some platform lays the their arrays out
2827  // differently then this code could move to platform specific code or
2828  // the code here could be modified to copy items one at a time using
2829  // frame accessor methods and be platform independent.
2830
2831  frame fr = thread->last_frame();
2832  assert( fr.is_interpreted_frame(), "" );
2833  assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2834
2835  // Figure out how many monitors are active.
2836  int active_monitor_count = 0;
2837  for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2838       kptr < fr.interpreter_frame_monitor_begin();
2839       kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2840    if( kptr->obj() != NULL ) active_monitor_count++;
2841  }
2842
2843  // QQQ we could place number of active monitors in the array so that compiled code
2844  // could double check it.
2845
2846  Method* moop = fr.interpreter_frame_method();
2847  int max_locals = moop->max_locals();
2848  // Allocate temp buffer, 1 word per local & 2 per active monitor
2849  int buf_size_words = max_locals + active_monitor_count*2;
2850  intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2851
2852  // Copy the locals.  Order is preserved so that loading of longs works.
2853  // Since there's no GC I can copy the oops blindly.
2854  assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2855  Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2856                       (HeapWord*)&buf[0],
2857                       max_locals);
2858
2859  // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2860  int i = max_locals;
2861  for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2862       kptr2 < fr.interpreter_frame_monitor_begin();
2863       kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2864    if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2865      BasicLock *lock = kptr2->lock();
2866      // Inflate so the displaced header becomes position-independent
2867      if (lock->displaced_header()->is_unlocked())
2868        ObjectSynchronizer::inflate_helper(kptr2->obj());
2869      // Now the displaced header is free to move
2870      buf[i++] = (intptr_t)lock->displaced_header();
2871      buf[i++] = (intptr_t)kptr2->obj();
2872    }
2873  }
2874  assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2875
2876  return buf;
2877JRT_END
2878
2879JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2880  FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
2881JRT_END
2882
2883bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2884  AdapterHandlerTableIterator iter(_adapters);
2885  while (iter.has_next()) {
2886    AdapterHandlerEntry* a = iter.next();
2887    if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2888  }
2889  return false;
2890}
2891
2892void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2893  AdapterHandlerTableIterator iter(_adapters);
2894  while (iter.has_next()) {
2895    AdapterHandlerEntry* a = iter.next();
2896    if (b == CodeCache::find_blob(a->get_i2c_entry())) {
2897      st->print("Adapter for signature: ");
2898      a->print_adapter_on(tty);
2899      return;
2900    }
2901  }
2902  assert(false, "Should have found handler");
2903}
2904
2905void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
2906  st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2907               (intptr_t) this, fingerprint()->as_string(),
2908               get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
2909
2910}
2911
2912#ifndef PRODUCT
2913
2914void AdapterHandlerLibrary::print_statistics() {
2915  _adapters->print_statistics();
2916}
2917
2918#endif /* PRODUCT */
2919