sharedRuntime.cpp revision 579:0fbdb4381b99
1/*
2 * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_sharedRuntime.cpp.incl"
27#include <math.h>
28
29HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
30HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
31                      char*, int, char*, int, char*, int);
32HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
33                      char*, int, char*, int, char*, int);
34
35// Implementation of SharedRuntime
36
37#ifndef PRODUCT
38// For statistics
39int SharedRuntime::_ic_miss_ctr = 0;
40int SharedRuntime::_wrong_method_ctr = 0;
41int SharedRuntime::_resolve_static_ctr = 0;
42int SharedRuntime::_resolve_virtual_ctr = 0;
43int SharedRuntime::_resolve_opt_virtual_ctr = 0;
44int SharedRuntime::_implicit_null_throws = 0;
45int SharedRuntime::_implicit_div0_throws = 0;
46int SharedRuntime::_throw_null_ctr = 0;
47
48int SharedRuntime::_nof_normal_calls = 0;
49int SharedRuntime::_nof_optimized_calls = 0;
50int SharedRuntime::_nof_inlined_calls = 0;
51int SharedRuntime::_nof_megamorphic_calls = 0;
52int SharedRuntime::_nof_static_calls = 0;
53int SharedRuntime::_nof_inlined_static_calls = 0;
54int SharedRuntime::_nof_interface_calls = 0;
55int SharedRuntime::_nof_optimized_interface_calls = 0;
56int SharedRuntime::_nof_inlined_interface_calls = 0;
57int SharedRuntime::_nof_megamorphic_interface_calls = 0;
58int SharedRuntime::_nof_removable_exceptions = 0;
59
60int SharedRuntime::_new_instance_ctr=0;
61int SharedRuntime::_new_array_ctr=0;
62int SharedRuntime::_multi1_ctr=0;
63int SharedRuntime::_multi2_ctr=0;
64int SharedRuntime::_multi3_ctr=0;
65int SharedRuntime::_multi4_ctr=0;
66int SharedRuntime::_multi5_ctr=0;
67int SharedRuntime::_mon_enter_stub_ctr=0;
68int SharedRuntime::_mon_exit_stub_ctr=0;
69int SharedRuntime::_mon_enter_ctr=0;
70int SharedRuntime::_mon_exit_ctr=0;
71int SharedRuntime::_partial_subtype_ctr=0;
72int SharedRuntime::_jbyte_array_copy_ctr=0;
73int SharedRuntime::_jshort_array_copy_ctr=0;
74int SharedRuntime::_jint_array_copy_ctr=0;
75int SharedRuntime::_jlong_array_copy_ctr=0;
76int SharedRuntime::_oop_array_copy_ctr=0;
77int SharedRuntime::_checkcast_array_copy_ctr=0;
78int SharedRuntime::_unsafe_array_copy_ctr=0;
79int SharedRuntime::_generic_array_copy_ctr=0;
80int SharedRuntime::_slow_array_copy_ctr=0;
81int SharedRuntime::_find_handler_ctr=0;
82int SharedRuntime::_rethrow_ctr=0;
83
84int     SharedRuntime::_ICmiss_index                    = 0;
85int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
86address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
87
88void SharedRuntime::trace_ic_miss(address at) {
89  for (int i = 0; i < _ICmiss_index; i++) {
90    if (_ICmiss_at[i] == at) {
91      _ICmiss_count[i]++;
92      return;
93    }
94  }
95  int index = _ICmiss_index++;
96  if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
97  _ICmiss_at[index] = at;
98  _ICmiss_count[index] = 1;
99}
100
101void SharedRuntime::print_ic_miss_histogram() {
102  if (ICMissHistogram) {
103    tty->print_cr ("IC Miss Histogram:");
104    int tot_misses = 0;
105    for (int i = 0; i < _ICmiss_index; i++) {
106      tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
107      tot_misses += _ICmiss_count[i];
108    }
109    tty->print_cr ("Total IC misses: %7d", tot_misses);
110  }
111}
112#endif // PRODUCT
113
114#ifndef SERIALGC
115
116// G1 write-barrier pre: executed before a pointer store.
117JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
118  if (orig == NULL) {
119    assert(false, "should be optimized out");
120    return;
121  }
122  // store the original value that was in the field reference
123  thread->satb_mark_queue().enqueue(orig);
124JRT_END
125
126// G1 write-barrier post: executed after a pointer store.
127JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
128  thread->dirty_card_queue().enqueue(card_addr);
129JRT_END
130
131#endif // !SERIALGC
132
133
134JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
135  return x * y;
136JRT_END
137
138
139JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
140  if (x == min_jlong && y == CONST64(-1)) {
141    return x;
142  } else {
143    return x / y;
144  }
145JRT_END
146
147
148JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
149  if (x == min_jlong && y == CONST64(-1)) {
150    return 0;
151  } else {
152    return x % y;
153  }
154JRT_END
155
156
157const juint  float_sign_mask  = 0x7FFFFFFF;
158const juint  float_infinity   = 0x7F800000;
159const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
160const julong double_infinity  = CONST64(0x7FF0000000000000);
161
162JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
163#ifdef _WIN64
164  // 64-bit Windows on amd64 returns the wrong values for
165  // infinity operands.
166  union { jfloat f; juint i; } xbits, ybits;
167  xbits.f = x;
168  ybits.f = y;
169  // x Mod Infinity == x unless x is infinity
170  if ( ((xbits.i & float_sign_mask) != float_infinity) &&
171       ((ybits.i & float_sign_mask) == float_infinity) ) {
172    return x;
173  }
174#endif
175  return ((jfloat)fmod((double)x,(double)y));
176JRT_END
177
178
179JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
180#ifdef _WIN64
181  union { jdouble d; julong l; } xbits, ybits;
182  xbits.d = x;
183  ybits.d = y;
184  // x Mod Infinity == x unless x is infinity
185  if ( ((xbits.l & double_sign_mask) != double_infinity) &&
186       ((ybits.l & double_sign_mask) == double_infinity) ) {
187    return x;
188  }
189#endif
190  return ((jdouble)fmod((double)x,(double)y));
191JRT_END
192
193
194JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
195  if (g_isnan(x))
196    return 0;
197  if (x >= (jfloat) max_jint)
198    return max_jint;
199  if (x <= (jfloat) min_jint)
200    return min_jint;
201  return (jint) x;
202JRT_END
203
204
205JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
206  if (g_isnan(x))
207    return 0;
208  if (x >= (jfloat) max_jlong)
209    return max_jlong;
210  if (x <= (jfloat) min_jlong)
211    return min_jlong;
212  return (jlong) x;
213JRT_END
214
215
216JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
217  if (g_isnan(x))
218    return 0;
219  if (x >= (jdouble) max_jint)
220    return max_jint;
221  if (x <= (jdouble) min_jint)
222    return min_jint;
223  return (jint) x;
224JRT_END
225
226
227JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
228  if (g_isnan(x))
229    return 0;
230  if (x >= (jdouble) max_jlong)
231    return max_jlong;
232  if (x <= (jdouble) min_jlong)
233    return min_jlong;
234  return (jlong) x;
235JRT_END
236
237
238JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
239  return (jfloat)x;
240JRT_END
241
242
243JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
244  return (jfloat)x;
245JRT_END
246
247
248JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
249  return (jdouble)x;
250JRT_END
251
252// Exception handling accross interpreter/compiler boundaries
253//
254// exception_handler_for_return_address(...) returns the continuation address.
255// The continuation address is the entry point of the exception handler of the
256// previous frame depending on the return address.
257
258address SharedRuntime::raw_exception_handler_for_return_address(address return_address) {
259  assert(frame::verify_return_pc(return_address), "must be a return pc");
260
261  // the fastest case first
262  CodeBlob* blob = CodeCache::find_blob(return_address);
263  if (blob != NULL && blob->is_nmethod()) {
264    nmethod* code = (nmethod*)blob;
265    assert(code != NULL, "nmethod must be present");
266    // native nmethods don't have exception handlers
267    assert(!code->is_native_method(), "no exception handler");
268    assert(code->header_begin() != code->exception_begin(), "no exception handler");
269    if (code->is_deopt_pc(return_address)) {
270      return SharedRuntime::deopt_blob()->unpack_with_exception();
271    } else {
272      return code->exception_begin();
273    }
274  }
275
276  // Entry code
277  if (StubRoutines::returns_to_call_stub(return_address)) {
278    return StubRoutines::catch_exception_entry();
279  }
280  // Interpreted code
281  if (Interpreter::contains(return_address)) {
282    return Interpreter::rethrow_exception_entry();
283  }
284
285  // Compiled code
286  if (CodeCache::contains(return_address)) {
287    CodeBlob* blob = CodeCache::find_blob(return_address);
288    if (blob->is_nmethod()) {
289      nmethod* code = (nmethod*)blob;
290      assert(code != NULL, "nmethod must be present");
291      assert(code->header_begin() != code->exception_begin(), "no exception handler");
292      return code->exception_begin();
293    }
294    if (blob->is_runtime_stub()) {
295      ShouldNotReachHere();   // callers are responsible for skipping runtime stub frames
296    }
297  }
298  guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
299#ifndef PRODUCT
300  { ResourceMark rm;
301    tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
302    tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
303    tty->print_cr("b) other problem");
304  }
305#endif // PRODUCT
306  ShouldNotReachHere();
307  return NULL;
308}
309
310
311JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(address return_address))
312  return raw_exception_handler_for_return_address(return_address);
313JRT_END
314
315address SharedRuntime::get_poll_stub(address pc) {
316  address stub;
317  // Look up the code blob
318  CodeBlob *cb = CodeCache::find_blob(pc);
319
320  // Should be an nmethod
321  assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
322
323  // Look up the relocation information
324  assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
325    "safepoint polling: type must be poll" );
326
327  assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
328    "Only polling locations are used for safepoint");
329
330  bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
331  if (at_poll_return) {
332    assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
333           "polling page return stub not created yet");
334    stub = SharedRuntime::polling_page_return_handler_blob()->instructions_begin();
335  } else {
336    assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
337           "polling page safepoint stub not created yet");
338    stub = SharedRuntime::polling_page_safepoint_handler_blob()->instructions_begin();
339  }
340#ifndef PRODUCT
341  if( TraceSafepoint ) {
342    char buf[256];
343    jio_snprintf(buf, sizeof(buf),
344                 "... found polling page %s exception at pc = "
345                 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
346                 at_poll_return ? "return" : "loop",
347                 (intptr_t)pc, (intptr_t)stub);
348    tty->print_raw_cr(buf);
349  }
350#endif // PRODUCT
351  return stub;
352}
353
354
355oop SharedRuntime::retrieve_receiver( symbolHandle sig, frame caller ) {
356  assert(caller.is_interpreted_frame(), "");
357  int args_size = ArgumentSizeComputer(sig).size() + 1;
358  assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
359  oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
360  assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
361  return result;
362}
363
364
365void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
366  if (JvmtiExport::can_post_exceptions()) {
367    vframeStream vfst(thread, true);
368    methodHandle method = methodHandle(thread, vfst.method());
369    address bcp = method()->bcp_from(vfst.bci());
370    JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
371  }
372  Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
373}
374
375void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, symbolOop name, const char *message) {
376  Handle h_exception = Exceptions::new_exception(thread, name, message);
377  throw_and_post_jvmti_exception(thread, h_exception);
378}
379
380// ret_pc points into caller; we are returning caller's exception handler
381// for given exception
382address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
383                                                    bool force_unwind, bool top_frame_only) {
384  assert(nm != NULL, "must exist");
385  ResourceMark rm;
386
387  ScopeDesc* sd = nm->scope_desc_at(ret_pc);
388  // determine handler bci, if any
389  EXCEPTION_MARK;
390
391  int handler_bci = -1;
392  int scope_depth = 0;
393  if (!force_unwind) {
394    int bci = sd->bci();
395    do {
396      bool skip_scope_increment = false;
397      // exception handler lookup
398      KlassHandle ek (THREAD, exception->klass());
399      handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
400      if (HAS_PENDING_EXCEPTION) {
401        // We threw an exception while trying to find the exception handler.
402        // Transfer the new exception to the exception handle which will
403        // be set into thread local storage, and do another lookup for an
404        // exception handler for this exception, this time starting at the
405        // BCI of the exception handler which caused the exception to be
406        // thrown (bugs 4307310 and 4546590). Set "exception" reference
407        // argument to ensure that the correct exception is thrown (4870175).
408        exception = Handle(THREAD, PENDING_EXCEPTION);
409        CLEAR_PENDING_EXCEPTION;
410        if (handler_bci >= 0) {
411          bci = handler_bci;
412          handler_bci = -1;
413          skip_scope_increment = true;
414        }
415      }
416      if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
417        sd = sd->sender();
418        if (sd != NULL) {
419          bci = sd->bci();
420        }
421        ++scope_depth;
422      }
423    } while (!top_frame_only && handler_bci < 0 && sd != NULL);
424  }
425
426  // found handling method => lookup exception handler
427  int catch_pco = ret_pc - nm->instructions_begin();
428
429  ExceptionHandlerTable table(nm);
430  HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
431  if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
432    // Allow abbreviated catch tables.  The idea is to allow a method
433    // to materialize its exceptions without committing to the exact
434    // routing of exceptions.  In particular this is needed for adding
435    // a synthethic handler to unlock monitors when inlining
436    // synchonized methods since the unlock path isn't represented in
437    // the bytecodes.
438    t = table.entry_for(catch_pco, -1, 0);
439  }
440
441#ifdef COMPILER1
442  if (nm->is_compiled_by_c1() && t == NULL && handler_bci == -1) {
443    // Exception is not handled by this frame so unwind.  Note that
444    // this is not the same as how C2 does this.  C2 emits a table
445    // entry that dispatches to the unwind code in the nmethod.
446    return NULL;
447  }
448#endif /* COMPILER1 */
449
450
451  if (t == NULL) {
452    tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
453    tty->print_cr("   Exception:");
454    exception->print();
455    tty->cr();
456    tty->print_cr(" Compiled exception table :");
457    table.print();
458    nm->print_code();
459    guarantee(false, "missing exception handler");
460    return NULL;
461  }
462
463  return nm->instructions_begin() + t->pco();
464}
465
466JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
467  // These errors occur only at call sites
468  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
469JRT_END
470
471JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
472  // These errors occur only at call sites
473  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
474JRT_END
475
476JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
477  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
478JRT_END
479
480JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
481  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
482JRT_END
483
484JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
485  // This entry point is effectively only used for NullPointerExceptions which occur at inline
486  // cache sites (when the callee activation is not yet set up) so we are at a call site
487  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
488JRT_END
489
490JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
491  // We avoid using the normal exception construction in this case because
492  // it performs an upcall to Java, and we're already out of stack space.
493  klassOop k = SystemDictionary::StackOverflowError_klass();
494  oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
495  Handle exception (thread, exception_oop);
496  if (StackTraceInThrowable) {
497    java_lang_Throwable::fill_in_stack_trace(exception);
498  }
499  throw_and_post_jvmti_exception(thread, exception);
500JRT_END
501
502address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
503                                                           address pc,
504                                                           SharedRuntime::ImplicitExceptionKind exception_kind)
505{
506  address target_pc = NULL;
507
508  if (Interpreter::contains(pc)) {
509#ifdef CC_INTERP
510    // C++ interpreter doesn't throw implicit exceptions
511    ShouldNotReachHere();
512#else
513    switch (exception_kind) {
514      case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
515      case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
516      case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
517      default:                      ShouldNotReachHere();
518    }
519#endif // !CC_INTERP
520  } else {
521    switch (exception_kind) {
522      case STACK_OVERFLOW: {
523        // Stack overflow only occurs upon frame setup; the callee is
524        // going to be unwound. Dispatch to a shared runtime stub
525        // which will cause the StackOverflowError to be fabricated
526        // and processed.
527        // For stack overflow in deoptimization blob, cleanup thread.
528        if (thread->deopt_mark() != NULL) {
529          Deoptimization::cleanup_deopt_info(thread, NULL);
530        }
531        return StubRoutines::throw_StackOverflowError_entry();
532      }
533
534      case IMPLICIT_NULL: {
535        if (VtableStubs::contains(pc)) {
536          // We haven't yet entered the callee frame. Fabricate an
537          // exception and begin dispatching it in the caller. Since
538          // the caller was at a call site, it's safe to destroy all
539          // caller-saved registers, as these entry points do.
540          VtableStub* vt_stub = VtableStubs::stub_containing(pc);
541
542          // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
543          if (vt_stub == NULL) return NULL;
544
545          if (vt_stub->is_abstract_method_error(pc)) {
546            assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
547            return StubRoutines::throw_AbstractMethodError_entry();
548          } else {
549            return StubRoutines::throw_NullPointerException_at_call_entry();
550          }
551        } else {
552          CodeBlob* cb = CodeCache::find_blob(pc);
553
554          // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
555          if (cb == NULL) return NULL;
556
557          // Exception happened in CodeCache. Must be either:
558          // 1. Inline-cache check in C2I handler blob,
559          // 2. Inline-cache check in nmethod, or
560          // 3. Implict null exception in nmethod
561
562          if (!cb->is_nmethod()) {
563            guarantee(cb->is_adapter_blob(),
564                      "exception happened outside interpreter, nmethods and vtable stubs (1)");
565            // There is no handler here, so we will simply unwind.
566            return StubRoutines::throw_NullPointerException_at_call_entry();
567          }
568
569          // Otherwise, it's an nmethod.  Consult its exception handlers.
570          nmethod* nm = (nmethod*)cb;
571          if (nm->inlinecache_check_contains(pc)) {
572            // exception happened inside inline-cache check code
573            // => the nmethod is not yet active (i.e., the frame
574            // is not set up yet) => use return address pushed by
575            // caller => don't push another return address
576            return StubRoutines::throw_NullPointerException_at_call_entry();
577          }
578
579#ifndef PRODUCT
580          _implicit_null_throws++;
581#endif
582          target_pc = nm->continuation_for_implicit_exception(pc);
583          guarantee(target_pc != 0, "must have a continuation point");
584        }
585
586        break; // fall through
587      }
588
589
590      case IMPLICIT_DIVIDE_BY_ZERO: {
591        nmethod* nm = CodeCache::find_nmethod(pc);
592        guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
593#ifndef PRODUCT
594        _implicit_div0_throws++;
595#endif
596        target_pc = nm->continuation_for_implicit_exception(pc);
597        guarantee(target_pc != 0, "must have a continuation point");
598        break; // fall through
599      }
600
601      default: ShouldNotReachHere();
602    }
603
604    guarantee(target_pc != NULL, "must have computed destination PC for implicit exception");
605    assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
606
607    // for AbortVMOnException flag
608    NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
609    if (exception_kind == IMPLICIT_NULL) {
610      Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
611    } else {
612      Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
613    }
614    return target_pc;
615  }
616
617  ShouldNotReachHere();
618  return NULL;
619}
620
621
622JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
623{
624  THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
625}
626JNI_END
627
628
629address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
630  return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
631}
632
633
634#ifndef PRODUCT
635JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
636  const frame f = thread->last_frame();
637  assert(f.is_interpreted_frame(), "must be an interpreted frame");
638#ifndef PRODUCT
639  methodHandle mh(THREAD, f.interpreter_frame_method());
640  BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
641#endif // !PRODUCT
642  return preserve_this_value;
643JRT_END
644#endif // !PRODUCT
645
646
647JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
648  os::yield_all(attempts);
649JRT_END
650
651
652// ---------------------------------------------------------------------------------------------------------
653// Non-product code
654#ifndef PRODUCT
655
656void SharedRuntime::verify_caller_frame(frame caller_frame, methodHandle callee_method) {
657  ResourceMark rm;
658  assert (caller_frame.is_interpreted_frame(), "sanity check");
659  assert (callee_method->has_compiled_code(), "callee must be compiled");
660  methodHandle caller_method (Thread::current(), caller_frame.interpreter_frame_method());
661  jint bci = caller_frame.interpreter_frame_bci();
662  methodHandle method = find_callee_method_inside_interpreter(caller_frame, caller_method, bci);
663  assert (callee_method == method, "incorrect method");
664}
665
666methodHandle SharedRuntime::find_callee_method_inside_interpreter(frame caller_frame, methodHandle caller_method, int bci) {
667  EXCEPTION_MARK;
668  Bytecode_invoke* bytecode = Bytecode_invoke_at(caller_method, bci);
669  methodHandle staticCallee = bytecode->static_target(CATCH); // Non-product code
670
671  bytecode = Bytecode_invoke_at(caller_method, bci);
672  int bytecode_index = bytecode->index();
673  Bytecodes::Code bc = bytecode->adjusted_invoke_code();
674
675  Handle receiver;
676  if (bc == Bytecodes::_invokeinterface ||
677      bc == Bytecodes::_invokevirtual ||
678      bc == Bytecodes::_invokespecial) {
679    symbolHandle signature (THREAD, staticCallee->signature());
680    receiver = Handle(THREAD, retrieve_receiver(signature, caller_frame));
681  } else {
682    receiver = Handle();
683  }
684  CallInfo result;
685  constantPoolHandle constants (THREAD, caller_method->constants());
686  LinkResolver::resolve_invoke(result, receiver, constants, bytecode_index, bc, CATCH); // Non-product code
687  methodHandle calleeMethod = result.selected_method();
688  return calleeMethod;
689}
690
691#endif  // PRODUCT
692
693
694JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
695  assert(obj->is_oop(), "must be a valid oop");
696  assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
697  instanceKlass::register_finalizer(instanceOop(obj), CHECK);
698JRT_END
699
700
701jlong SharedRuntime::get_java_tid(Thread* thread) {
702  if (thread != NULL) {
703    if (thread->is_Java_thread()) {
704      oop obj = ((JavaThread*)thread)->threadObj();
705      return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
706    }
707  }
708  return 0;
709}
710
711/**
712 * This function ought to be a void function, but cannot be because
713 * it gets turned into a tail-call on sparc, which runs into dtrace bug
714 * 6254741.  Once that is fixed we can remove the dummy return value.
715 */
716int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
717  return dtrace_object_alloc_base(Thread::current(), o);
718}
719
720int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
721  assert(DTraceAllocProbes, "wrong call");
722  Klass* klass = o->blueprint();
723  int size = o->size();
724  symbolOop name = klass->name();
725  HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
726                   name->bytes(), name->utf8_length(), size * HeapWordSize);
727  return 0;
728}
729
730JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
731    JavaThread* thread, methodOopDesc* method))
732  assert(DTraceMethodProbes, "wrong call");
733  symbolOop kname = method->klass_name();
734  symbolOop name = method->name();
735  symbolOop sig = method->signature();
736  HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
737      kname->bytes(), kname->utf8_length(),
738      name->bytes(), name->utf8_length(),
739      sig->bytes(), sig->utf8_length());
740  return 0;
741JRT_END
742
743JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
744    JavaThread* thread, methodOopDesc* method))
745  assert(DTraceMethodProbes, "wrong call");
746  symbolOop kname = method->klass_name();
747  symbolOop name = method->name();
748  symbolOop sig = method->signature();
749  HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
750      kname->bytes(), kname->utf8_length(),
751      name->bytes(), name->utf8_length(),
752      sig->bytes(), sig->utf8_length());
753  return 0;
754JRT_END
755
756
757// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
758// for a call current in progress, i.e., arguments has been pushed on stack
759// put callee has not been invoked yet.  Used by: resolve virtual/static,
760// vtable updates, etc.  Caller frame must be compiled.
761Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
762  ResourceMark rm(THREAD);
763
764  // last java frame on stack (which includes native call frames)
765  vframeStream vfst(thread, true);  // Do not skip and javaCalls
766
767  return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
768}
769
770
771// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
772// for a call current in progress, i.e., arguments has been pushed on stack
773// but callee has not been invoked yet.  Caller frame must be compiled.
774Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
775                                              vframeStream& vfst,
776                                              Bytecodes::Code& bc,
777                                              CallInfo& callinfo, TRAPS) {
778  Handle receiver;
779  Handle nullHandle;  //create a handy null handle for exception returns
780
781  assert(!vfst.at_end(), "Java frame must exist");
782
783  // Find caller and bci from vframe
784  methodHandle caller (THREAD, vfst.method());
785  int          bci    = vfst.bci();
786
787  // Find bytecode
788  Bytecode_invoke* bytecode = Bytecode_invoke_at(caller, bci);
789  bc = bytecode->adjusted_invoke_code();
790  int bytecode_index = bytecode->index();
791
792  // Find receiver for non-static call
793  if (bc != Bytecodes::_invokestatic) {
794    // This register map must be update since we need to find the receiver for
795    // compiled frames. The receiver might be in a register.
796    RegisterMap reg_map2(thread);
797    frame stubFrame   = thread->last_frame();
798    // Caller-frame is a compiled frame
799    frame callerFrame = stubFrame.sender(&reg_map2);
800
801    methodHandle callee = bytecode->static_target(CHECK_(nullHandle));
802    if (callee.is_null()) {
803      THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
804    }
805    // Retrieve from a compiled argument list
806    receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
807
808    if (receiver.is_null()) {
809      THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
810    }
811  }
812
813  // Resolve method. This is parameterized by bytecode.
814  constantPoolHandle constants (THREAD, caller->constants());
815  assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
816  LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
817
818#ifdef ASSERT
819  // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
820  if (bc != Bytecodes::_invokestatic) {
821    assert(receiver.not_null(), "should have thrown exception");
822    KlassHandle receiver_klass (THREAD, receiver->klass());
823    klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
824                            // klass is already loaded
825    KlassHandle static_receiver_klass (THREAD, rk);
826    assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
827    if (receiver_klass->oop_is_instance()) {
828      if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
829        tty->print_cr("ERROR: Klass not yet initialized!!");
830        receiver_klass.print();
831      }
832      assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
833    }
834  }
835#endif
836
837  return receiver;
838}
839
840methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
841  ResourceMark rm(THREAD);
842  // We need first to check if any Java activations (compiled, interpreted)
843  // exist on the stack since last JavaCall.  If not, we need
844  // to get the target method from the JavaCall wrapper.
845  vframeStream vfst(thread, true);  // Do not skip any javaCalls
846  methodHandle callee_method;
847  if (vfst.at_end()) {
848    // No Java frames were found on stack since we did the JavaCall.
849    // Hence the stack can only contain an entry_frame.  We need to
850    // find the target method from the stub frame.
851    RegisterMap reg_map(thread, false);
852    frame fr = thread->last_frame();
853    assert(fr.is_runtime_frame(), "must be a runtimeStub");
854    fr = fr.sender(&reg_map);
855    assert(fr.is_entry_frame(), "must be");
856    // fr is now pointing to the entry frame.
857    callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
858    assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
859  } else {
860    Bytecodes::Code bc;
861    CallInfo callinfo;
862    find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
863    callee_method = callinfo.selected_method();
864  }
865  assert(callee_method()->is_method(), "must be");
866  return callee_method;
867}
868
869// Resolves a call.
870methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
871                                           bool is_virtual,
872                                           bool is_optimized, TRAPS) {
873  methodHandle callee_method;
874  callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
875  if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
876    int retry_count = 0;
877    while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
878           callee_method->method_holder() != SystemDictionary::object_klass()) {
879      // If has a pending exception then there is no need to re-try to
880      // resolve this method.
881      // If the method has been redefined, we need to try again.
882      // Hack: we have no way to update the vtables of arrays, so don't
883      // require that java.lang.Object has been updated.
884
885      // It is very unlikely that method is redefined more than 100 times
886      // in the middle of resolve. If it is looping here more than 100 times
887      // means then there could be a bug here.
888      guarantee((retry_count++ < 100),
889                "Could not resolve to latest version of redefined method");
890      // method is redefined in the middle of resolve so re-try.
891      callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
892    }
893  }
894  return callee_method;
895}
896
897// Resolves a call.  The compilers generate code for calls that go here
898// and are patched with the real destination of the call.
899methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
900                                           bool is_virtual,
901                                           bool is_optimized, TRAPS) {
902
903  ResourceMark rm(thread);
904  RegisterMap cbl_map(thread, false);
905  frame caller_frame = thread->last_frame().sender(&cbl_map);
906
907  CodeBlob* cb = caller_frame.cb();
908  guarantee(cb != NULL && cb->is_nmethod(), "must be called from nmethod");
909  // make sure caller is not getting deoptimized
910  // and removed before we are done with it.
911  // CLEANUP - with lazy deopt shouldn't need this lock
912  nmethodLocker caller_lock((nmethod*)cb);
913
914
915  // determine call info & receiver
916  // note: a) receiver is NULL for static calls
917  //       b) an exception is thrown if receiver is NULL for non-static calls
918  CallInfo call_info;
919  Bytecodes::Code invoke_code = Bytecodes::_illegal;
920  Handle receiver = find_callee_info(thread, invoke_code,
921                                     call_info, CHECK_(methodHandle()));
922  methodHandle callee_method = call_info.selected_method();
923
924  assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
925         ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
926
927#ifndef PRODUCT
928  // tracing/debugging/statistics
929  int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
930                (is_virtual) ? (&_resolve_virtual_ctr) :
931                               (&_resolve_static_ctr);
932  Atomic::inc(addr);
933
934  if (TraceCallFixup) {
935    ResourceMark rm(thread);
936    tty->print("resolving %s%s (%s) call to",
937      (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
938      Bytecodes::name(invoke_code));
939    callee_method->print_short_name(tty);
940    tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
941  }
942#endif
943
944  // Compute entry points. This might require generation of C2I converter
945  // frames, so we cannot be holding any locks here. Furthermore, the
946  // computation of the entry points is independent of patching the call.  We
947  // always return the entry-point, but we only patch the stub if the call has
948  // not been deoptimized.  Return values: For a virtual call this is an
949  // (cached_oop, destination address) pair. For a static call/optimized
950  // virtual this is just a destination address.
951
952  StaticCallInfo static_call_info;
953  CompiledICInfo virtual_call_info;
954
955
956  // Make sure the callee nmethod does not get deoptimized and removed before
957  // we are done patching the code.
958  nmethod* nm = callee_method->code();
959  nmethodLocker nl_callee(nm);
960#ifdef ASSERT
961  address dest_entry_point = nm == NULL ? 0 : nm->entry_point(); // used below
962#endif
963
964  if (is_virtual) {
965    assert(receiver.not_null(), "sanity check");
966    bool static_bound = call_info.resolved_method()->can_be_statically_bound();
967    KlassHandle h_klass(THREAD, receiver->klass());
968    CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
969                     is_optimized, static_bound, virtual_call_info,
970                     CHECK_(methodHandle()));
971  } else {
972    // static call
973    CompiledStaticCall::compute_entry(callee_method, static_call_info);
974  }
975
976  // grab lock, check for deoptimization and potentially patch caller
977  {
978    MutexLocker ml_patch(CompiledIC_lock);
979
980    // Now that we are ready to patch if the methodOop was redefined then
981    // don't update call site and let the caller retry.
982
983    if (!callee_method->is_old()) {
984#ifdef ASSERT
985      // We must not try to patch to jump to an already unloaded method.
986      if (dest_entry_point != 0) {
987        assert(CodeCache::find_blob(dest_entry_point) != NULL,
988               "should not unload nmethod while locked");
989      }
990#endif
991      if (is_virtual) {
992        CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
993        if (inline_cache->is_clean()) {
994          inline_cache->set_to_monomorphic(virtual_call_info);
995        }
996      } else {
997        CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
998        if (ssc->is_clean()) ssc->set(static_call_info);
999      }
1000    }
1001
1002  } // unlock CompiledIC_lock
1003
1004  return callee_method;
1005}
1006
1007
1008// Inline caches exist only in compiled code
1009JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1010#ifdef ASSERT
1011  RegisterMap reg_map(thread, false);
1012  frame stub_frame = thread->last_frame();
1013  assert(stub_frame.is_runtime_frame(), "sanity check");
1014  frame caller_frame = stub_frame.sender(&reg_map);
1015  assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1016#endif /* ASSERT */
1017
1018  methodHandle callee_method;
1019  JRT_BLOCK
1020    callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1021    // Return methodOop through TLS
1022    thread->set_vm_result(callee_method());
1023  JRT_BLOCK_END
1024  // return compiled code entry point after potential safepoints
1025  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1026  return callee_method->verified_code_entry();
1027JRT_END
1028
1029
1030// Handle call site that has been made non-entrant
1031JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1032  // 6243940 We might end up in here if the callee is deoptimized
1033  // as we race to call it.  We don't want to take a safepoint if
1034  // the caller was interpreted because the caller frame will look
1035  // interpreted to the stack walkers and arguments are now
1036  // "compiled" so it is much better to make this transition
1037  // invisible to the stack walking code. The i2c path will
1038  // place the callee method in the callee_target. It is stashed
1039  // there because if we try and find the callee by normal means a
1040  // safepoint is possible and have trouble gc'ing the compiled args.
1041  RegisterMap reg_map(thread, false);
1042  frame stub_frame = thread->last_frame();
1043  assert(stub_frame.is_runtime_frame(), "sanity check");
1044  frame caller_frame = stub_frame.sender(&reg_map);
1045  if (caller_frame.is_interpreted_frame() || caller_frame.is_entry_frame() ) {
1046    methodOop callee = thread->callee_target();
1047    guarantee(callee != NULL && callee->is_method(), "bad handshake");
1048    thread->set_vm_result(callee);
1049    thread->set_callee_target(NULL);
1050    return callee->get_c2i_entry();
1051  }
1052
1053  // Must be compiled to compiled path which is safe to stackwalk
1054  methodHandle callee_method;
1055  JRT_BLOCK
1056    // Force resolving of caller (if we called from compiled frame)
1057    callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1058    thread->set_vm_result(callee_method());
1059  JRT_BLOCK_END
1060  // return compiled code entry point after potential safepoints
1061  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1062  return callee_method->verified_code_entry();
1063JRT_END
1064
1065
1066// resolve a static call and patch code
1067JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1068  methodHandle callee_method;
1069  JRT_BLOCK
1070    callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1071    thread->set_vm_result(callee_method());
1072  JRT_BLOCK_END
1073  // return compiled code entry point after potential safepoints
1074  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1075  return callee_method->verified_code_entry();
1076JRT_END
1077
1078
1079// resolve virtual call and update inline cache to monomorphic
1080JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1081  methodHandle callee_method;
1082  JRT_BLOCK
1083    callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1084    thread->set_vm_result(callee_method());
1085  JRT_BLOCK_END
1086  // return compiled code entry point after potential safepoints
1087  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1088  return callee_method->verified_code_entry();
1089JRT_END
1090
1091
1092// Resolve a virtual call that can be statically bound (e.g., always
1093// monomorphic, so it has no inline cache).  Patch code to resolved target.
1094JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1095  methodHandle callee_method;
1096  JRT_BLOCK
1097    callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1098    thread->set_vm_result(callee_method());
1099  JRT_BLOCK_END
1100  // return compiled code entry point after potential safepoints
1101  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1102  return callee_method->verified_code_entry();
1103JRT_END
1104
1105
1106
1107
1108
1109methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1110  ResourceMark rm(thread);
1111  CallInfo call_info;
1112  Bytecodes::Code bc;
1113
1114  // receiver is NULL for static calls. An exception is thrown for NULL
1115  // receivers for non-static calls
1116  Handle receiver = find_callee_info(thread, bc, call_info,
1117                                     CHECK_(methodHandle()));
1118  // Compiler1 can produce virtual call sites that can actually be statically bound
1119  // If we fell thru to below we would think that the site was going megamorphic
1120  // when in fact the site can never miss. Worse because we'd think it was megamorphic
1121  // we'd try and do a vtable dispatch however methods that can be statically bound
1122  // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1123  // reresolution of the  call site (as if we did a handle_wrong_method and not an
1124  // plain ic_miss) and the site will be converted to an optimized virtual call site
1125  // never to miss again. I don't believe C2 will produce code like this but if it
1126  // did this would still be the correct thing to do for it too, hence no ifdef.
1127  //
1128  if (call_info.resolved_method()->can_be_statically_bound()) {
1129    methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1130    if (TraceCallFixup) {
1131      RegisterMap reg_map(thread, false);
1132      frame caller_frame = thread->last_frame().sender(&reg_map);
1133      ResourceMark rm(thread);
1134      tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1135      callee_method->print_short_name(tty);
1136      tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1137      tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1138    }
1139    return callee_method;
1140  }
1141
1142  methodHandle callee_method = call_info.selected_method();
1143
1144  bool should_be_mono = false;
1145
1146#ifndef PRODUCT
1147  Atomic::inc(&_ic_miss_ctr);
1148
1149  // Statistics & Tracing
1150  if (TraceCallFixup) {
1151    ResourceMark rm(thread);
1152    tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1153    callee_method->print_short_name(tty);
1154    tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1155  }
1156
1157  if (ICMissHistogram) {
1158    MutexLocker m(VMStatistic_lock);
1159    RegisterMap reg_map(thread, false);
1160    frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1161    // produce statistics under the lock
1162    trace_ic_miss(f.pc());
1163  }
1164#endif
1165
1166  // install an event collector so that when a vtable stub is created the
1167  // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1168  // event can't be posted when the stub is created as locks are held
1169  // - instead the event will be deferred until the event collector goes
1170  // out of scope.
1171  JvmtiDynamicCodeEventCollector event_collector;
1172
1173  // Update inline cache to megamorphic. Skip update if caller has been
1174  // made non-entrant or we are called from interpreted.
1175  { MutexLocker ml_patch (CompiledIC_lock);
1176    RegisterMap reg_map(thread, false);
1177    frame caller_frame = thread->last_frame().sender(&reg_map);
1178    CodeBlob* cb = caller_frame.cb();
1179    if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1180      // Not a non-entrant nmethod, so find inline_cache
1181      CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1182      bool should_be_mono = false;
1183      if (inline_cache->is_optimized()) {
1184        if (TraceCallFixup) {
1185          ResourceMark rm(thread);
1186          tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1187          callee_method->print_short_name(tty);
1188          tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1189        }
1190        should_be_mono = true;
1191      } else {
1192        compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
1193        if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
1194
1195          if (receiver()->klass() == ic_oop->holder_klass()) {
1196            // This isn't a real miss. We must have seen that compiled code
1197            // is now available and we want the call site converted to a
1198            // monomorphic compiled call site.
1199            // We can't assert for callee_method->code() != NULL because it
1200            // could have been deoptimized in the meantime
1201            if (TraceCallFixup) {
1202              ResourceMark rm(thread);
1203              tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1204              callee_method->print_short_name(tty);
1205              tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1206            }
1207            should_be_mono = true;
1208          }
1209        }
1210      }
1211
1212      if (should_be_mono) {
1213
1214        // We have a path that was monomorphic but was going interpreted
1215        // and now we have (or had) a compiled entry. We correct the IC
1216        // by using a new icBuffer.
1217        CompiledICInfo info;
1218        KlassHandle receiver_klass(THREAD, receiver()->klass());
1219        inline_cache->compute_monomorphic_entry(callee_method,
1220                                                receiver_klass,
1221                                                inline_cache->is_optimized(),
1222                                                false,
1223                                                info, CHECK_(methodHandle()));
1224        inline_cache->set_to_monomorphic(info);
1225      } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1226        // Change to megamorphic
1227        inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1228      } else {
1229        // Either clean or megamorphic
1230      }
1231    }
1232  } // Release CompiledIC_lock
1233
1234  return callee_method;
1235}
1236
1237//
1238// Resets a call-site in compiled code so it will get resolved again.
1239// This routines handles both virtual call sites, optimized virtual call
1240// sites, and static call sites. Typically used to change a call sites
1241// destination from compiled to interpreted.
1242//
1243methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1244  ResourceMark rm(thread);
1245  RegisterMap reg_map(thread, false);
1246  frame stub_frame = thread->last_frame();
1247  assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1248  frame caller = stub_frame.sender(&reg_map);
1249
1250  // Do nothing if the frame isn't a live compiled frame.
1251  // nmethod could be deoptimized by the time we get here
1252  // so no update to the caller is needed.
1253
1254  if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1255
1256    address pc = caller.pc();
1257    Events::log("update call-site at pc " INTPTR_FORMAT, pc);
1258
1259    // Default call_addr is the location of the "basic" call.
1260    // Determine the address of the call we a reresolving. With
1261    // Inline Caches we will always find a recognizable call.
1262    // With Inline Caches disabled we may or may not find a
1263    // recognizable call. We will always find a call for static
1264    // calls and for optimized virtual calls. For vanilla virtual
1265    // calls it depends on the state of the UseInlineCaches switch.
1266    //
1267    // With Inline Caches disabled we can get here for a virtual call
1268    // for two reasons:
1269    //   1 - calling an abstract method. The vtable for abstract methods
1270    //       will run us thru handle_wrong_method and we will eventually
1271    //       end up in the interpreter to throw the ame.
1272    //   2 - a racing deoptimization. We could be doing a vanilla vtable
1273    //       call and between the time we fetch the entry address and
1274    //       we jump to it the target gets deoptimized. Similar to 1
1275    //       we will wind up in the interprter (thru a c2i with c2).
1276    //
1277    address call_addr = NULL;
1278    {
1279      // Get call instruction under lock because another thread may be
1280      // busy patching it.
1281      MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1282      // Location of call instruction
1283      if (NativeCall::is_call_before(pc)) {
1284        NativeCall *ncall = nativeCall_before(pc);
1285        call_addr = ncall->instruction_address();
1286      }
1287    }
1288
1289    // Check for static or virtual call
1290    bool is_static_call = false;
1291    nmethod* caller_nm = CodeCache::find_nmethod(pc);
1292    // Make sure nmethod doesn't get deoptimized and removed until
1293    // this is done with it.
1294    // CLEANUP - with lazy deopt shouldn't need this lock
1295    nmethodLocker nmlock(caller_nm);
1296
1297    if (call_addr != NULL) {
1298      RelocIterator iter(caller_nm, call_addr, call_addr+1);
1299      int ret = iter.next(); // Get item
1300      if (ret) {
1301        assert(iter.addr() == call_addr, "must find call");
1302        if (iter.type() == relocInfo::static_call_type) {
1303          is_static_call = true;
1304        } else {
1305          assert(iter.type() == relocInfo::virtual_call_type ||
1306                 iter.type() == relocInfo::opt_virtual_call_type
1307                , "unexpected relocInfo. type");
1308        }
1309      } else {
1310        assert(!UseInlineCaches, "relocation info. must exist for this address");
1311      }
1312
1313      // Cleaning the inline cache will force a new resolve. This is more robust
1314      // than directly setting it to the new destination, since resolving of calls
1315      // is always done through the same code path. (experience shows that it
1316      // leads to very hard to track down bugs, if an inline cache gets updated
1317      // to a wrong method). It should not be performance critical, since the
1318      // resolve is only done once.
1319
1320      MutexLocker ml(CompiledIC_lock);
1321      //
1322      // We do not patch the call site if the nmethod has been made non-entrant
1323      // as it is a waste of time
1324      //
1325      if (caller_nm->is_in_use()) {
1326        if (is_static_call) {
1327          CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1328          ssc->set_to_clean();
1329        } else {
1330          // compiled, dispatched call (which used to call an interpreted method)
1331          CompiledIC* inline_cache = CompiledIC_at(call_addr);
1332          inline_cache->set_to_clean();
1333        }
1334      }
1335    }
1336
1337  }
1338
1339  methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1340
1341
1342#ifndef PRODUCT
1343  Atomic::inc(&_wrong_method_ctr);
1344
1345  if (TraceCallFixup) {
1346    ResourceMark rm(thread);
1347    tty->print("handle_wrong_method reresolving call to");
1348    callee_method->print_short_name(tty);
1349    tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1350  }
1351#endif
1352
1353  return callee_method;
1354}
1355
1356// ---------------------------------------------------------------------------
1357// We are calling the interpreter via a c2i. Normally this would mean that
1358// we were called by a compiled method. However we could have lost a race
1359// where we went int -> i2c -> c2i and so the caller could in fact be
1360// interpreted. If the caller is compiled we attampt to patch the caller
1361// so he no longer calls into the interpreter.
1362IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
1363  methodOop moop(method);
1364
1365  address entry_point = moop->from_compiled_entry();
1366
1367  // It's possible that deoptimization can occur at a call site which hasn't
1368  // been resolved yet, in which case this function will be called from
1369  // an nmethod that has been patched for deopt and we can ignore the
1370  // request for a fixup.
1371  // Also it is possible that we lost a race in that from_compiled_entry
1372  // is now back to the i2c in that case we don't need to patch and if
1373  // we did we'd leap into space because the callsite needs to use
1374  // "to interpreter" stub in order to load up the methodOop. Don't
1375  // ask me how I know this...
1376  //
1377
1378  CodeBlob* cb = CodeCache::find_blob(caller_pc);
1379  if ( !cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1380    return;
1381  }
1382
1383  // There is a benign race here. We could be attempting to patch to a compiled
1384  // entry point at the same time the callee is being deoptimized. If that is
1385  // the case then entry_point may in fact point to a c2i and we'd patch the
1386  // call site with the same old data. clear_code will set code() to NULL
1387  // at the end of it. If we happen to see that NULL then we can skip trying
1388  // to patch. If we hit the window where the callee has a c2i in the
1389  // from_compiled_entry and the NULL isn't present yet then we lose the race
1390  // and patch the code with the same old data. Asi es la vida.
1391
1392  if (moop->code() == NULL) return;
1393
1394  if (((nmethod*)cb)->is_in_use()) {
1395
1396    // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1397    MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1398    if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
1399      NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
1400      //
1401      // bug 6281185. We might get here after resolving a call site to a vanilla
1402      // virtual call. Because the resolvee uses the verified entry it may then
1403      // see compiled code and attempt to patch the site by calling us. This would
1404      // then incorrectly convert the call site to optimized and its downhill from
1405      // there. If you're lucky you'll get the assert in the bugid, if not you've
1406      // just made a call site that could be megamorphic into a monomorphic site
1407      // for the rest of its life! Just another racing bug in the life of
1408      // fixup_callers_callsite ...
1409      //
1410      RelocIterator iter(cb, call->instruction_address(), call->next_instruction_address());
1411      iter.next();
1412      assert(iter.has_current(), "must have a reloc at java call site");
1413      relocInfo::relocType typ = iter.reloc()->type();
1414      if ( typ != relocInfo::static_call_type &&
1415           typ != relocInfo::opt_virtual_call_type &&
1416           typ != relocInfo::static_stub_type) {
1417        return;
1418      }
1419      address destination = call->destination();
1420      if (destination != entry_point) {
1421        CodeBlob* callee = CodeCache::find_blob(destination);
1422        // callee == cb seems weird. It means calling interpreter thru stub.
1423        if (callee == cb || callee->is_adapter_blob()) {
1424          // static call or optimized virtual
1425          if (TraceCallFixup) {
1426            tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1427            moop->print_short_name(tty);
1428            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1429          }
1430          call->set_destination_mt_safe(entry_point);
1431        } else {
1432          if (TraceCallFixup) {
1433            tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1434            moop->print_short_name(tty);
1435            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1436          }
1437          // assert is too strong could also be resolve destinations.
1438          // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1439        }
1440      } else {
1441          if (TraceCallFixup) {
1442            tty->print("already patched  callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1443            moop->print_short_name(tty);
1444            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1445          }
1446      }
1447    }
1448  }
1449
1450IRT_END
1451
1452
1453// same as JVM_Arraycopy, but called directly from compiled code
1454JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1455                                                oopDesc* dest, jint dest_pos,
1456                                                jint length,
1457                                                JavaThread* thread)) {
1458#ifndef PRODUCT
1459  _slow_array_copy_ctr++;
1460#endif
1461  // Check if we have null pointers
1462  if (src == NULL || dest == NULL) {
1463    THROW(vmSymbols::java_lang_NullPointerException());
1464  }
1465  // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1466  // even though the copy_array API also performs dynamic checks to ensure
1467  // that src and dest are truly arrays (and are conformable).
1468  // The copy_array mechanism is awkward and could be removed, but
1469  // the compilers don't call this function except as a last resort,
1470  // so it probably doesn't matter.
1471  Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
1472                                        (arrayOopDesc*)dest, dest_pos,
1473                                        length, thread);
1474}
1475JRT_END
1476
1477char* SharedRuntime::generate_class_cast_message(
1478    JavaThread* thread, const char* objName) {
1479
1480  // Get target class name from the checkcast instruction
1481  vframeStream vfst(thread, true);
1482  assert(!vfst.at_end(), "Java frame must exist");
1483  Bytecode_checkcast* cc = Bytecode_checkcast_at(
1484    vfst.method()->bcp_from(vfst.bci()));
1485  Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
1486    cc->index(), thread));
1487  return generate_class_cast_message(objName, targetKlass->external_name());
1488}
1489
1490char* SharedRuntime::generate_class_cast_message(
1491    const char* objName, const char* targetKlassName) {
1492  const char* desc = " cannot be cast to ";
1493  size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1494
1495  char* message = NEW_RESOURCE_ARRAY(char, msglen);
1496  if (NULL == message) {
1497    // Shouldn't happen, but don't cause even more problems if it does
1498    message = const_cast<char*>(objName);
1499  } else {
1500    jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1501  }
1502  return message;
1503}
1504
1505JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1506  (void) JavaThread::current()->reguard_stack();
1507JRT_END
1508
1509
1510// Handles the uncommon case in locking, i.e., contention or an inflated lock.
1511#ifndef PRODUCT
1512int SharedRuntime::_monitor_enter_ctr=0;
1513#endif
1514JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1515  oop obj(_obj);
1516#ifndef PRODUCT
1517  _monitor_enter_ctr++;             // monitor enter slow
1518#endif
1519  if (PrintBiasedLockingStatistics) {
1520    Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1521  }
1522  Handle h_obj(THREAD, obj);
1523  if (UseBiasedLocking) {
1524    // Retry fast entry if bias is revoked to avoid unnecessary inflation
1525    ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1526  } else {
1527    ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1528  }
1529  assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1530JRT_END
1531
1532#ifndef PRODUCT
1533int SharedRuntime::_monitor_exit_ctr=0;
1534#endif
1535// Handles the uncommon cases of monitor unlocking in compiled code
1536JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1537   oop obj(_obj);
1538#ifndef PRODUCT
1539  _monitor_exit_ctr++;              // monitor exit slow
1540#endif
1541  Thread* THREAD = JavaThread::current();
1542  // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1543  // testing was unable to ever fire the assert that guarded it so I have removed it.
1544  assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1545#undef MIGHT_HAVE_PENDING
1546#ifdef MIGHT_HAVE_PENDING
1547  // Save and restore any pending_exception around the exception mark.
1548  // While the slow_exit must not throw an exception, we could come into
1549  // this routine with one set.
1550  oop pending_excep = NULL;
1551  const char* pending_file;
1552  int pending_line;
1553  if (HAS_PENDING_EXCEPTION) {
1554    pending_excep = PENDING_EXCEPTION;
1555    pending_file  = THREAD->exception_file();
1556    pending_line  = THREAD->exception_line();
1557    CLEAR_PENDING_EXCEPTION;
1558  }
1559#endif /* MIGHT_HAVE_PENDING */
1560
1561  {
1562    // Exit must be non-blocking, and therefore no exceptions can be thrown.
1563    EXCEPTION_MARK;
1564    ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1565  }
1566
1567#ifdef MIGHT_HAVE_PENDING
1568  if (pending_excep != NULL) {
1569    THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1570  }
1571#endif /* MIGHT_HAVE_PENDING */
1572JRT_END
1573
1574#ifndef PRODUCT
1575
1576void SharedRuntime::print_statistics() {
1577  ttyLocker ttyl;
1578  if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1579
1580  if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1581  if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1582  if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1583
1584  SharedRuntime::print_ic_miss_histogram();
1585
1586  if (CountRemovableExceptions) {
1587    if (_nof_removable_exceptions > 0) {
1588      Unimplemented(); // this counter is not yet incremented
1589      tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1590    }
1591  }
1592
1593  // Dump the JRT_ENTRY counters
1594  if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1595  if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1596  if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1597  if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1598  if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1599  if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1600  if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1601
1602  tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1603  tty->print_cr("%5d wrong method", _wrong_method_ctr );
1604  tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1605  tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1606  tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1607
1608  if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1609  if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1610  if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1611  if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1612  if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1613  if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1614  if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1615  if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1616  if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1617  if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1618  if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1619  if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1620  if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1621  if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1622  if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1623  if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1624
1625  if (xtty != NULL)  xtty->tail("statistics");
1626}
1627
1628inline double percent(int x, int y) {
1629  return 100.0 * x / MAX2(y, 1);
1630}
1631
1632class MethodArityHistogram {
1633 public:
1634  enum { MAX_ARITY = 256 };
1635 private:
1636  static int _arity_histogram[MAX_ARITY];     // histogram of #args
1637  static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1638  static int _max_arity;                      // max. arity seen
1639  static int _max_size;                       // max. arg size seen
1640
1641  static void add_method_to_histogram(nmethod* nm) {
1642    methodOop m = nm->method();
1643    ArgumentCount args(m->signature());
1644    int arity   = args.size() + (m->is_static() ? 0 : 1);
1645    int argsize = m->size_of_parameters();
1646    arity   = MIN2(arity, MAX_ARITY-1);
1647    argsize = MIN2(argsize, MAX_ARITY-1);
1648    int count = nm->method()->compiled_invocation_count();
1649    _arity_histogram[arity]  += count;
1650    _size_histogram[argsize] += count;
1651    _max_arity = MAX2(_max_arity, arity);
1652    _max_size  = MAX2(_max_size, argsize);
1653  }
1654
1655  void print_histogram_helper(int n, int* histo, const char* name) {
1656    const int N = MIN2(5, n);
1657    tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1658    double sum = 0;
1659    double weighted_sum = 0;
1660    int i;
1661    for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1662    double rest = sum;
1663    double percent = sum / 100;
1664    for (i = 0; i <= N; i++) {
1665      rest -= histo[i];
1666      tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1667    }
1668    tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1669    tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1670  }
1671
1672  void print_histogram() {
1673    tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1674    print_histogram_helper(_max_arity, _arity_histogram, "arity");
1675    tty->print_cr("\nSame for parameter size (in words):");
1676    print_histogram_helper(_max_size, _size_histogram, "size");
1677    tty->cr();
1678  }
1679
1680 public:
1681  MethodArityHistogram() {
1682    MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1683    _max_arity = _max_size = 0;
1684    for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
1685    CodeCache::nmethods_do(add_method_to_histogram);
1686    print_histogram();
1687  }
1688};
1689
1690int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
1691int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
1692int MethodArityHistogram::_max_arity;
1693int MethodArityHistogram::_max_size;
1694
1695void SharedRuntime::print_call_statistics(int comp_total) {
1696  tty->print_cr("Calls from compiled code:");
1697  int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
1698  int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
1699  int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
1700  tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
1701  tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
1702  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
1703  tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
1704  tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
1705  tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
1706  tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
1707  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
1708  tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
1709  tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
1710  tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
1711  tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
1712  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
1713  tty->cr();
1714  tty->print_cr("Note 1: counter updates are not MT-safe.");
1715  tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
1716  tty->print_cr("        %% in nested categories are relative to their category");
1717  tty->print_cr("        (and thus add up to more than 100%% with inlining)");
1718  tty->cr();
1719
1720  MethodArityHistogram h;
1721}
1722#endif
1723
1724
1725// ---------------------------------------------------------------------------
1726// Implementation of AdapterHandlerLibrary
1727const char* AdapterHandlerEntry::name = "I2C/C2I adapters";
1728GrowableArray<uint64_t>* AdapterHandlerLibrary::_fingerprints = NULL;
1729GrowableArray<AdapterHandlerEntry* >* AdapterHandlerLibrary::_handlers = NULL;
1730const int AdapterHandlerLibrary_size = 16*K;
1731u_char                   AdapterHandlerLibrary::_buffer[AdapterHandlerLibrary_size + 32];
1732
1733void AdapterHandlerLibrary::initialize() {
1734  if (_fingerprints != NULL) return;
1735  _fingerprints = new(ResourceObj::C_HEAP)GrowableArray<uint64_t>(32, true);
1736  _handlers = new(ResourceObj::C_HEAP)GrowableArray<AdapterHandlerEntry*>(32, true);
1737  // Index 0 reserved for the slow path handler
1738  _fingerprints->append(0/*the never-allowed 0 fingerprint*/);
1739  _handlers->append(NULL);
1740
1741  // Create a special handler for abstract methods.  Abstract methods
1742  // are never compiled so an i2c entry is somewhat meaningless, but
1743  // fill it in with something appropriate just in case.  Pass handle
1744  // wrong method for the c2i transitions.
1745  address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
1746  _fingerprints->append(0/*the never-allowed 0 fingerprint*/);
1747  assert(_handlers->length() == AbstractMethodHandler, "in wrong slot");
1748  _handlers->append(new AdapterHandlerEntry(StubRoutines::throw_AbstractMethodError_entry(),
1749                                            wrong_method, wrong_method));
1750}
1751
1752int AdapterHandlerLibrary::get_create_adapter_index(methodHandle method) {
1753  // Use customized signature handler.  Need to lock around updates to the
1754  // _fingerprints array (it is not safe for concurrent readers and a single
1755  // writer: this can be fixed if it becomes a problem).
1756
1757  // Get the address of the ic_miss handlers before we grab the
1758  // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
1759  // was caused by the initialization of the stubs happening
1760  // while we held the lock and then notifying jvmti while
1761  // holding it. This just forces the initialization to be a little
1762  // earlier.
1763  address ic_miss = SharedRuntime::get_ic_miss_stub();
1764  assert(ic_miss != NULL, "must have handler");
1765
1766  int result;
1767  BufferBlob *B = NULL;
1768  uint64_t fingerprint;
1769  {
1770    MutexLocker mu(AdapterHandlerLibrary_lock);
1771    // make sure data structure is initialized
1772    initialize();
1773
1774    if (method->is_abstract()) {
1775      return AbstractMethodHandler;
1776    }
1777
1778    // Lookup method signature's fingerprint
1779    fingerprint = Fingerprinter(method).fingerprint();
1780    assert( fingerprint != CONST64( 0), "no zero fingerprints allowed" );
1781    // Fingerprints are small fixed-size condensed representations of
1782    // signatures.  If the signature is too large, it won't fit in a
1783    // fingerprint.  Signatures which cannot support a fingerprint get a new i2c
1784    // adapter gen'd each time, instead of searching the cache for one.  This -1
1785    // game can be avoided if I compared signatures instead of using
1786    // fingerprints.  However, -1 fingerprints are very rare.
1787    if( fingerprint != UCONST64(-1) ) { // If this is a cache-able fingerprint
1788      // Turns out i2c adapters do not care what the return value is.  Mask it
1789      // out so signatures that only differ in return type will share the same
1790      // adapter.
1791      fingerprint &= ~(SignatureIterator::result_feature_mask << SignatureIterator::static_feature_size);
1792      // Search for a prior existing i2c/c2i adapter
1793      int index = _fingerprints->find(fingerprint);
1794      if( index >= 0 ) return index; // Found existing handlers?
1795    } else {
1796      // Annoyingly, I end up adding -1 fingerprints to the array of handlers,
1797      // because I need a unique handler index.  It cannot be scanned for
1798      // because all -1's look alike.  Instead, the matching index is passed out
1799      // and immediately used to collect the 2 return values (the c2i and i2c
1800      // adapters).
1801    }
1802
1803    // Create I2C & C2I handlers
1804    ResourceMark rm;
1805    // Improve alignment slightly
1806    u_char *buf = (u_char*)(((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
1807    CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
1808    short buffer_locs[20];
1809    buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
1810                                           sizeof(buffer_locs)/sizeof(relocInfo));
1811    MacroAssembler _masm(&buffer);
1812
1813    // Fill in the signature array, for the calling-convention call.
1814    int total_args_passed = method->size_of_parameters(); // All args on stack
1815
1816    BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
1817    VMRegPair  * regs   = NEW_RESOURCE_ARRAY(VMRegPair  ,total_args_passed);
1818    int i=0;
1819    if( !method->is_static() )  // Pass in receiver first
1820      sig_bt[i++] = T_OBJECT;
1821    for( SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
1822      sig_bt[i++] = ss.type();  // Collect remaining bits of signature
1823      if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
1824        sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
1825    }
1826    assert( i==total_args_passed, "" );
1827
1828    // Now get the re-packed compiled-Java layout.
1829    int comp_args_on_stack;
1830
1831    // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
1832    comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
1833
1834    AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
1835                                                                        total_args_passed,
1836                                                                        comp_args_on_stack,
1837                                                                        sig_bt,
1838                                                                        regs);
1839
1840    B = BufferBlob::create(AdapterHandlerEntry::name, &buffer);
1841    if (B == NULL) {
1842      // CodeCache is full, disable compilation
1843      // Ought to log this but compile log is only per compile thread
1844      // and we're some non descript Java thread.
1845      UseInterpreter = true;
1846      if (UseCompiler || AlwaysCompileLoopMethods ) {
1847#ifndef PRODUCT
1848        warning("CodeCache is full. Compiler has been disabled");
1849        if (CompileTheWorld || ExitOnFullCodeCache) {
1850          before_exit(JavaThread::current());
1851          exit_globals(); // will delete tty
1852          vm_direct_exit(CompileTheWorld ? 0 : 1);
1853        }
1854#endif
1855        UseCompiler               = false;
1856        AlwaysCompileLoopMethods  = false;
1857      }
1858      return 0; // Out of CodeCache space (_handlers[0] == NULL)
1859    }
1860    entry->relocate(B->instructions_begin());
1861#ifndef PRODUCT
1862    // debugging suppport
1863    if (PrintAdapterHandlers) {
1864      tty->cr();
1865      tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = 0x%llx, %d bytes generated)",
1866                    _handlers->length(), (method->is_static() ? "static" : "receiver"),
1867                    method->signature()->as_C_string(), fingerprint, buffer.code_size() );
1868      tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
1869      Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + buffer.code_size());
1870    }
1871#endif
1872
1873    // add handlers to library
1874    _fingerprints->append(fingerprint);
1875    _handlers->append(entry);
1876    // set handler index
1877    assert(_fingerprints->length() == _handlers->length(), "sanity check");
1878    result = _fingerprints->length() - 1;
1879  }
1880  // Outside of the lock
1881  if (B != NULL) {
1882    char blob_id[256];
1883    jio_snprintf(blob_id,
1884                 sizeof(blob_id),
1885                 "%s(" PTR64_FORMAT ")@" PTR_FORMAT,
1886                 AdapterHandlerEntry::name,
1887                 fingerprint,
1888                 B->instructions_begin());
1889    VTune::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
1890    Forte::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
1891
1892    if (JvmtiExport::should_post_dynamic_code_generated()) {
1893      JvmtiExport::post_dynamic_code_generated(blob_id,
1894                                               B->instructions_begin(),
1895                                               B->instructions_end());
1896    }
1897  }
1898  return result;
1899}
1900
1901void AdapterHandlerEntry::relocate(address new_base) {
1902    ptrdiff_t delta = new_base - _i2c_entry;
1903    _i2c_entry += delta;
1904    _c2i_entry += delta;
1905    _c2i_unverified_entry += delta;
1906}
1907
1908// Create a native wrapper for this native method.  The wrapper converts the
1909// java compiled calling convention to the native convention, handlizes
1910// arguments, and transitions to native.  On return from the native we transition
1911// back to java blocking if a safepoint is in progress.
1912nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
1913  ResourceMark rm;
1914  nmethod* nm = NULL;
1915
1916  if (PrintCompilation) {
1917    ttyLocker ttyl;
1918    tty->print("---   n%s ", (method->is_synchronized() ? "s" : " "));
1919    method->print_short_name(tty);
1920    if (method->is_static()) {
1921      tty->print(" (static)");
1922    }
1923    tty->cr();
1924  }
1925
1926  assert(method->has_native_function(), "must have something valid to call!");
1927
1928  {
1929    // perform the work while holding the lock, but perform any printing outside the lock
1930    MutexLocker mu(AdapterHandlerLibrary_lock);
1931    // See if somebody beat us to it
1932    nm = method->code();
1933    if (nm) {
1934      return nm;
1935    }
1936
1937    // Improve alignment slightly
1938    u_char* buf = (u_char*)(((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
1939    CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
1940    // Need a few relocation entries
1941    double locs_buf[20];
1942    buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
1943    MacroAssembler _masm(&buffer);
1944
1945    // Fill in the signature array, for the calling-convention call.
1946    int total_args_passed = method->size_of_parameters();
1947
1948    BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
1949    VMRegPair  * regs   = NEW_RESOURCE_ARRAY(VMRegPair  ,total_args_passed);
1950    int i=0;
1951    if( !method->is_static() )  // Pass in receiver first
1952      sig_bt[i++] = T_OBJECT;
1953    SignatureStream ss(method->signature());
1954    for( ; !ss.at_return_type(); ss.next()) {
1955      sig_bt[i++] = ss.type();  // Collect remaining bits of signature
1956      if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
1957        sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
1958    }
1959    assert( i==total_args_passed, "" );
1960    BasicType ret_type = ss.type();
1961
1962    // Now get the compiled-Java layout as input arguments
1963    int comp_args_on_stack;
1964    comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
1965
1966    // Generate the compiled-to-native wrapper code
1967    nm = SharedRuntime::generate_native_wrapper(&_masm,
1968                                                method,
1969                                                total_args_passed,
1970                                                comp_args_on_stack,
1971                                                sig_bt,regs,
1972                                                ret_type);
1973  }
1974
1975  // Must unlock before calling set_code
1976  // Install the generated code.
1977  if (nm != NULL) {
1978    method->set_code(method, nm);
1979    nm->post_compiled_method_load_event();
1980  } else {
1981    // CodeCache is full, disable compilation
1982    // Ought to log this but compile log is only per compile thread
1983    // and we're some non descript Java thread.
1984    UseInterpreter = true;
1985    if (UseCompiler || AlwaysCompileLoopMethods ) {
1986#ifndef PRODUCT
1987      warning("CodeCache is full. Compiler has been disabled");
1988      if (CompileTheWorld || ExitOnFullCodeCache) {
1989        before_exit(JavaThread::current());
1990        exit_globals(); // will delete tty
1991        vm_direct_exit(CompileTheWorld ? 0 : 1);
1992      }
1993#endif
1994      UseCompiler               = false;
1995      AlwaysCompileLoopMethods  = false;
1996    }
1997  }
1998  return nm;
1999}
2000
2001#ifdef HAVE_DTRACE_H
2002// Create a dtrace nmethod for this method.  The wrapper converts the
2003// java compiled calling convention to the native convention, makes a dummy call
2004// (actually nops for the size of the call instruction, which become a trap if
2005// probe is enabled). The returns to the caller. Since this all looks like a
2006// leaf no thread transition is needed.
2007
2008nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2009  ResourceMark rm;
2010  nmethod* nm = NULL;
2011
2012  if (PrintCompilation) {
2013    ttyLocker ttyl;
2014    tty->print("---   n%s  ");
2015    method->print_short_name(tty);
2016    if (method->is_static()) {
2017      tty->print(" (static)");
2018    }
2019    tty->cr();
2020  }
2021
2022  {
2023    // perform the work while holding the lock, but perform any printing
2024    // outside the lock
2025    MutexLocker mu(AdapterHandlerLibrary_lock);
2026    // See if somebody beat us to it
2027    nm = method->code();
2028    if (nm) {
2029      return nm;
2030    }
2031
2032    // Improve alignment slightly
2033    u_char* buf = (u_char*)
2034        (((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
2035    CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
2036    // Need a few relocation entries
2037    double locs_buf[20];
2038    buffer.insts()->initialize_shared_locs(
2039        (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2040    MacroAssembler _masm(&buffer);
2041
2042    // Generate the compiled-to-native wrapper code
2043    nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2044  }
2045  return nm;
2046}
2047
2048// the dtrace method needs to convert java lang string to utf8 string.
2049void SharedRuntime::get_utf(oopDesc* src, address dst) {
2050  typeArrayOop jlsValue  = java_lang_String::value(src);
2051  int          jlsOffset = java_lang_String::offset(src);
2052  int          jlsLen    = java_lang_String::length(src);
2053  jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2054                                           jlsValue->char_at_addr(jlsOffset);
2055  (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2056}
2057#endif // ndef HAVE_DTRACE_H
2058
2059// -------------------------------------------------------------------------
2060// Java-Java calling convention
2061// (what you use when Java calls Java)
2062
2063//------------------------------name_for_receiver----------------------------------
2064// For a given signature, return the VMReg for parameter 0.
2065VMReg SharedRuntime::name_for_receiver() {
2066  VMRegPair regs;
2067  BasicType sig_bt = T_OBJECT;
2068  (void) java_calling_convention(&sig_bt, &regs, 1, true);
2069  // Return argument 0 register.  In the LP64 build pointers
2070  // take 2 registers, but the VM wants only the 'main' name.
2071  return regs.first();
2072}
2073
2074VMRegPair *SharedRuntime::find_callee_arguments(symbolOop sig, bool is_static, int* arg_size) {
2075  // This method is returning a data structure allocating as a
2076  // ResourceObject, so do not put any ResourceMarks in here.
2077  char *s = sig->as_C_string();
2078  int len = (int)strlen(s);
2079  *s++; len--;                  // Skip opening paren
2080  char *t = s+len;
2081  while( *(--t) != ')' ) ;      // Find close paren
2082
2083  BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2084  VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2085  int cnt = 0;
2086  if (!is_static) {
2087    sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2088  }
2089
2090  while( s < t ) {
2091    switch( *s++ ) {            // Switch on signature character
2092    case 'B': sig_bt[cnt++] = T_BYTE;    break;
2093    case 'C': sig_bt[cnt++] = T_CHAR;    break;
2094    case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2095    case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2096    case 'I': sig_bt[cnt++] = T_INT;     break;
2097    case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2098    case 'S': sig_bt[cnt++] = T_SHORT;   break;
2099    case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2100    case 'V': sig_bt[cnt++] = T_VOID;    break;
2101    case 'L':                   // Oop
2102      while( *s++ != ';'  ) ;   // Skip signature
2103      sig_bt[cnt++] = T_OBJECT;
2104      break;
2105    case '[': {                 // Array
2106      do {                      // Skip optional size
2107        while( *s >= '0' && *s <= '9' ) s++;
2108      } while( *s++ == '[' );   // Nested arrays?
2109      // Skip element type
2110      if( s[-1] == 'L' )
2111        while( *s++ != ';'  ) ; // Skip signature
2112      sig_bt[cnt++] = T_ARRAY;
2113      break;
2114    }
2115    default : ShouldNotReachHere();
2116    }
2117  }
2118  assert( cnt < 256, "grow table size" );
2119
2120  int comp_args_on_stack;
2121  comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2122
2123  // the calling convention doesn't count out_preserve_stack_slots so
2124  // we must add that in to get "true" stack offsets.
2125
2126  if (comp_args_on_stack) {
2127    for (int i = 0; i < cnt; i++) {
2128      VMReg reg1 = regs[i].first();
2129      if( reg1->is_stack()) {
2130        // Yuck
2131        reg1 = reg1->bias(out_preserve_stack_slots());
2132      }
2133      VMReg reg2 = regs[i].second();
2134      if( reg2->is_stack()) {
2135        // Yuck
2136        reg2 = reg2->bias(out_preserve_stack_slots());
2137      }
2138      regs[i].set_pair(reg2, reg1);
2139    }
2140  }
2141
2142  // results
2143  *arg_size = cnt;
2144  return regs;
2145}
2146
2147// OSR Migration Code
2148//
2149// This code is used convert interpreter frames into compiled frames.  It is
2150// called from very start of a compiled OSR nmethod.  A temp array is
2151// allocated to hold the interesting bits of the interpreter frame.  All
2152// active locks are inflated to allow them to move.  The displaced headers and
2153// active interpeter locals are copied into the temp buffer.  Then we return
2154// back to the compiled code.  The compiled code then pops the current
2155// interpreter frame off the stack and pushes a new compiled frame.  Then it
2156// copies the interpreter locals and displaced headers where it wants.
2157// Finally it calls back to free the temp buffer.
2158//
2159// All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2160
2161JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2162
2163#ifdef IA64
2164  ShouldNotReachHere(); // NYI
2165#endif /* IA64 */
2166
2167  //
2168  // This code is dependent on the memory layout of the interpreter local
2169  // array and the monitors. On all of our platforms the layout is identical
2170  // so this code is shared. If some platform lays the their arrays out
2171  // differently then this code could move to platform specific code or
2172  // the code here could be modified to copy items one at a time using
2173  // frame accessor methods and be platform independent.
2174
2175  frame fr = thread->last_frame();
2176  assert( fr.is_interpreted_frame(), "" );
2177  assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2178
2179  // Figure out how many monitors are active.
2180  int active_monitor_count = 0;
2181  for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2182       kptr < fr.interpreter_frame_monitor_begin();
2183       kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2184    if( kptr->obj() != NULL ) active_monitor_count++;
2185  }
2186
2187  // QQQ we could place number of active monitors in the array so that compiled code
2188  // could double check it.
2189
2190  methodOop moop = fr.interpreter_frame_method();
2191  int max_locals = moop->max_locals();
2192  // Allocate temp buffer, 1 word per local & 2 per active monitor
2193  int buf_size_words = max_locals + active_monitor_count*2;
2194  intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
2195
2196  // Copy the locals.  Order is preserved so that loading of longs works.
2197  // Since there's no GC I can copy the oops blindly.
2198  assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2199  if (TaggedStackInterpreter) {
2200    for (int i = 0; i < max_locals; i++) {
2201      // copy only each local separately to the buffer avoiding the tag
2202      buf[i] = *fr.interpreter_frame_local_at(max_locals-i-1);
2203    }
2204  } else {
2205    Copy::disjoint_words(
2206                       (HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2207                       (HeapWord*)&buf[0],
2208                       max_locals);
2209  }
2210
2211  // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2212  int i = max_locals;
2213  for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2214       kptr2 < fr.interpreter_frame_monitor_begin();
2215       kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2216    if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2217      BasicLock *lock = kptr2->lock();
2218      // Inflate so the displaced header becomes position-independent
2219      if (lock->displaced_header()->is_unlocked())
2220        ObjectSynchronizer::inflate_helper(kptr2->obj());
2221      // Now the displaced header is free to move
2222      buf[i++] = (intptr_t)lock->displaced_header();
2223      buf[i++] = (intptr_t)kptr2->obj();
2224    }
2225  }
2226  assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2227
2228  return buf;
2229JRT_END
2230
2231JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2232  FREE_C_HEAP_ARRAY(intptr_t,buf);
2233JRT_END
2234
2235#ifndef PRODUCT
2236bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2237
2238  if (_handlers == NULL) return false;
2239
2240  for (int i = 0 ; i < _handlers->length() ; i++) {
2241    AdapterHandlerEntry* a = get_entry(i);
2242    if ( a != NULL && b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2243  }
2244  return false;
2245}
2246
2247void AdapterHandlerLibrary::print_handler(CodeBlob* b) {
2248
2249  for (int i = 0 ; i < _handlers->length() ; i++) {
2250    AdapterHandlerEntry* a = get_entry(i);
2251    if ( a != NULL && b == CodeCache::find_blob(a->get_i2c_entry()) ) {
2252      tty->print("Adapter for signature: ");
2253      // Fingerprinter::print(_fingerprints->at(i));
2254      tty->print("0x%" FORMAT64_MODIFIER "x", _fingerprints->at(i));
2255      tty->print_cr(" i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2256                    a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
2257
2258      return;
2259    }
2260  }
2261  assert(false, "Should have found handler");
2262}
2263#endif /* PRODUCT */
2264