sharedRuntime.cpp revision 2767:436b4a3231bf
1/*
2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "classfile/vmSymbols.hpp"
28#include "code/compiledIC.hpp"
29#include "code/scopeDesc.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/abstractCompiler.hpp"
32#include "compiler/compileBroker.hpp"
33#include "compiler/compilerOracle.hpp"
34#include "interpreter/interpreter.hpp"
35#include "interpreter/interpreterRuntime.hpp"
36#include "memory/gcLocker.inline.hpp"
37#include "memory/universe.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "prims/forte.hpp"
40#include "prims/jvmtiExport.hpp"
41#include "prims/jvmtiRedefineClassesTrace.hpp"
42#include "prims/methodHandles.hpp"
43#include "prims/nativeLookup.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/biasedLocking.hpp"
46#include "runtime/handles.inline.hpp"
47#include "runtime/init.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/javaCalls.hpp"
50#include "runtime/sharedRuntime.hpp"
51#include "runtime/stubRoutines.hpp"
52#include "runtime/vframe.hpp"
53#include "runtime/vframeArray.hpp"
54#include "utilities/copy.hpp"
55#include "utilities/dtrace.hpp"
56#include "utilities/events.hpp"
57#include "utilities/hashtable.inline.hpp"
58#include "utilities/xmlstream.hpp"
59#ifdef TARGET_ARCH_x86
60# include "nativeInst_x86.hpp"
61# include "vmreg_x86.inline.hpp"
62#endif
63#ifdef TARGET_ARCH_sparc
64# include "nativeInst_sparc.hpp"
65# include "vmreg_sparc.inline.hpp"
66#endif
67#ifdef TARGET_ARCH_zero
68# include "nativeInst_zero.hpp"
69# include "vmreg_zero.inline.hpp"
70#endif
71#ifdef TARGET_ARCH_arm
72# include "nativeInst_arm.hpp"
73# include "vmreg_arm.inline.hpp"
74#endif
75#ifdef TARGET_ARCH_ppc
76# include "nativeInst_ppc.hpp"
77# include "vmreg_ppc.inline.hpp"
78#endif
79#ifdef COMPILER1
80#include "c1/c1_Runtime1.hpp"
81#endif
82
83// Shared stub locations
84RuntimeStub*        SharedRuntime::_wrong_method_blob;
85RuntimeStub*        SharedRuntime::_ic_miss_blob;
86RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
87RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
88RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
89
90DeoptimizationBlob* SharedRuntime::_deopt_blob;
91RicochetBlob*       SharedRuntime::_ricochet_blob;
92
93SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
94SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
95
96#ifdef COMPILER2
97UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
98#endif // COMPILER2
99
100
101//----------------------------generate_stubs-----------------------------------
102void SharedRuntime::generate_stubs() {
103  _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),         "wrong_method_stub");
104  _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
105  _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),  "resolve_opt_virtual_call");
106  _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),      "resolve_virtual_call");
107  _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),       "resolve_static_call");
108
109  _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), false);
110  _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), true);
111
112  generate_ricochet_blob();
113  generate_deopt_blob();
114
115#ifdef COMPILER2
116  generate_uncommon_trap_blob();
117#endif // COMPILER2
118}
119
120//----------------------------generate_ricochet_blob---------------------------
121void SharedRuntime::generate_ricochet_blob() {
122  if (!EnableInvokeDynamic)  return;  // leave it as a null
123
124#ifndef TARGET_ARCH_NYI_6939861
125  // allocate space for the code
126  ResourceMark rm;
127  // setup code generation tools
128  CodeBuffer buffer("ricochet_blob", 256 LP64_ONLY(+ 256), 256);  // XXX x86 LP64L: 512, 512
129  MacroAssembler* masm = new MacroAssembler(&buffer);
130
131  int bounce_offset = -1, exception_offset = -1, frame_size_in_words = -1;
132  MethodHandles::RicochetFrame::generate_ricochet_blob(masm, &bounce_offset, &exception_offset, &frame_size_in_words);
133
134  // -------------
135  // make sure all code is generated
136  masm->flush();
137
138  // failed to generate?
139  if (bounce_offset < 0 || exception_offset < 0 || frame_size_in_words < 0) {
140    assert(false, "bad ricochet blob");
141    return;
142  }
143
144  _ricochet_blob = RicochetBlob::create(&buffer, bounce_offset, exception_offset, frame_size_in_words);
145#endif
146}
147
148
149#include <math.h>
150
151#ifndef USDT2
152HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
153HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
154                      char*, int, char*, int, char*, int);
155HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
156                      char*, int, char*, int, char*, int);
157#endif /* !USDT2 */
158
159// Implementation of SharedRuntime
160
161#ifndef PRODUCT
162// For statistics
163int SharedRuntime::_ic_miss_ctr = 0;
164int SharedRuntime::_wrong_method_ctr = 0;
165int SharedRuntime::_resolve_static_ctr = 0;
166int SharedRuntime::_resolve_virtual_ctr = 0;
167int SharedRuntime::_resolve_opt_virtual_ctr = 0;
168int SharedRuntime::_implicit_null_throws = 0;
169int SharedRuntime::_implicit_div0_throws = 0;
170int SharedRuntime::_throw_null_ctr = 0;
171
172int SharedRuntime::_nof_normal_calls = 0;
173int SharedRuntime::_nof_optimized_calls = 0;
174int SharedRuntime::_nof_inlined_calls = 0;
175int SharedRuntime::_nof_megamorphic_calls = 0;
176int SharedRuntime::_nof_static_calls = 0;
177int SharedRuntime::_nof_inlined_static_calls = 0;
178int SharedRuntime::_nof_interface_calls = 0;
179int SharedRuntime::_nof_optimized_interface_calls = 0;
180int SharedRuntime::_nof_inlined_interface_calls = 0;
181int SharedRuntime::_nof_megamorphic_interface_calls = 0;
182int SharedRuntime::_nof_removable_exceptions = 0;
183
184int SharedRuntime::_new_instance_ctr=0;
185int SharedRuntime::_new_array_ctr=0;
186int SharedRuntime::_multi1_ctr=0;
187int SharedRuntime::_multi2_ctr=0;
188int SharedRuntime::_multi3_ctr=0;
189int SharedRuntime::_multi4_ctr=0;
190int SharedRuntime::_multi5_ctr=0;
191int SharedRuntime::_mon_enter_stub_ctr=0;
192int SharedRuntime::_mon_exit_stub_ctr=0;
193int SharedRuntime::_mon_enter_ctr=0;
194int SharedRuntime::_mon_exit_ctr=0;
195int SharedRuntime::_partial_subtype_ctr=0;
196int SharedRuntime::_jbyte_array_copy_ctr=0;
197int SharedRuntime::_jshort_array_copy_ctr=0;
198int SharedRuntime::_jint_array_copy_ctr=0;
199int SharedRuntime::_jlong_array_copy_ctr=0;
200int SharedRuntime::_oop_array_copy_ctr=0;
201int SharedRuntime::_checkcast_array_copy_ctr=0;
202int SharedRuntime::_unsafe_array_copy_ctr=0;
203int SharedRuntime::_generic_array_copy_ctr=0;
204int SharedRuntime::_slow_array_copy_ctr=0;
205int SharedRuntime::_find_handler_ctr=0;
206int SharedRuntime::_rethrow_ctr=0;
207
208int     SharedRuntime::_ICmiss_index                    = 0;
209int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
210address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
211
212
213void SharedRuntime::trace_ic_miss(address at) {
214  for (int i = 0; i < _ICmiss_index; i++) {
215    if (_ICmiss_at[i] == at) {
216      _ICmiss_count[i]++;
217      return;
218    }
219  }
220  int index = _ICmiss_index++;
221  if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
222  _ICmiss_at[index] = at;
223  _ICmiss_count[index] = 1;
224}
225
226void SharedRuntime::print_ic_miss_histogram() {
227  if (ICMissHistogram) {
228    tty->print_cr ("IC Miss Histogram:");
229    int tot_misses = 0;
230    for (int i = 0; i < _ICmiss_index; i++) {
231      tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
232      tot_misses += _ICmiss_count[i];
233    }
234    tty->print_cr ("Total IC misses: %7d", tot_misses);
235  }
236}
237#endif // PRODUCT
238
239#ifndef SERIALGC
240
241// G1 write-barrier pre: executed before a pointer store.
242JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
243  if (orig == NULL) {
244    assert(false, "should be optimized out");
245    return;
246  }
247  assert(orig->is_oop(true /* ignore mark word */), "Error");
248  // store the original value that was in the field reference
249  thread->satb_mark_queue().enqueue(orig);
250JRT_END
251
252// G1 write-barrier post: executed after a pointer store.
253JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
254  thread->dirty_card_queue().enqueue(card_addr);
255JRT_END
256
257#endif // !SERIALGC
258
259
260JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
261  return x * y;
262JRT_END
263
264
265JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
266  if (x == min_jlong && y == CONST64(-1)) {
267    return x;
268  } else {
269    return x / y;
270  }
271JRT_END
272
273
274JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
275  if (x == min_jlong && y == CONST64(-1)) {
276    return 0;
277  } else {
278    return x % y;
279  }
280JRT_END
281
282
283const juint  float_sign_mask  = 0x7FFFFFFF;
284const juint  float_infinity   = 0x7F800000;
285const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
286const julong double_infinity  = CONST64(0x7FF0000000000000);
287
288JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
289#ifdef _WIN64
290  // 64-bit Windows on amd64 returns the wrong values for
291  // infinity operands.
292  union { jfloat f; juint i; } xbits, ybits;
293  xbits.f = x;
294  ybits.f = y;
295  // x Mod Infinity == x unless x is infinity
296  if ( ((xbits.i & float_sign_mask) != float_infinity) &&
297       ((ybits.i & float_sign_mask) == float_infinity) ) {
298    return x;
299  }
300#endif
301  return ((jfloat)fmod((double)x,(double)y));
302JRT_END
303
304
305JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
306#ifdef _WIN64
307  union { jdouble d; julong l; } xbits, ybits;
308  xbits.d = x;
309  ybits.d = y;
310  // x Mod Infinity == x unless x is infinity
311  if ( ((xbits.l & double_sign_mask) != double_infinity) &&
312       ((ybits.l & double_sign_mask) == double_infinity) ) {
313    return x;
314  }
315#endif
316  return ((jdouble)fmod((double)x,(double)y));
317JRT_END
318
319#ifdef __SOFTFP__
320JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
321  return x + y;
322JRT_END
323
324JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
325  return x - y;
326JRT_END
327
328JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
329  return x * y;
330JRT_END
331
332JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
333  return x / y;
334JRT_END
335
336JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
337  return x + y;
338JRT_END
339
340JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
341  return x - y;
342JRT_END
343
344JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
345  return x * y;
346JRT_END
347
348JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
349  return x / y;
350JRT_END
351
352JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
353  return (jfloat)x;
354JRT_END
355
356JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
357  return (jdouble)x;
358JRT_END
359
360JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
361  return (jdouble)x;
362JRT_END
363
364JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
365  return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
366JRT_END
367
368JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
369  return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
370JRT_END
371
372JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
373  return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
374JRT_END
375
376JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
377  return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
378JRT_END
379
380// Functions to return the opposite of the aeabi functions for nan.
381JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
382  return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
383JRT_END
384
385JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
386  return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
387JRT_END
388
389JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
390  return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
391JRT_END
392
393JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
394  return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
395JRT_END
396
397JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
398  return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
399JRT_END
400
401JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
402  return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
403JRT_END
404
405JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
406  return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
407JRT_END
408
409JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
410  return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
411JRT_END
412
413// Intrinsics make gcc generate code for these.
414float  SharedRuntime::fneg(float f)   {
415  return -f;
416}
417
418double SharedRuntime::dneg(double f)  {
419  return -f;
420}
421
422#endif // __SOFTFP__
423
424#if defined(__SOFTFP__) || defined(E500V2)
425// Intrinsics make gcc generate code for these.
426double SharedRuntime::dabs(double f)  {
427  return (f <= (double)0.0) ? (double)0.0 - f : f;
428}
429
430#endif
431
432#if defined(__SOFTFP__) || defined(PPC)
433double SharedRuntime::dsqrt(double f) {
434  return sqrt(f);
435}
436#endif
437
438JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
439  if (g_isnan(x))
440    return 0;
441  if (x >= (jfloat) max_jint)
442    return max_jint;
443  if (x <= (jfloat) min_jint)
444    return min_jint;
445  return (jint) x;
446JRT_END
447
448
449JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
450  if (g_isnan(x))
451    return 0;
452  if (x >= (jfloat) max_jlong)
453    return max_jlong;
454  if (x <= (jfloat) min_jlong)
455    return min_jlong;
456  return (jlong) x;
457JRT_END
458
459
460JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
461  if (g_isnan(x))
462    return 0;
463  if (x >= (jdouble) max_jint)
464    return max_jint;
465  if (x <= (jdouble) min_jint)
466    return min_jint;
467  return (jint) x;
468JRT_END
469
470
471JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
472  if (g_isnan(x))
473    return 0;
474  if (x >= (jdouble) max_jlong)
475    return max_jlong;
476  if (x <= (jdouble) min_jlong)
477    return min_jlong;
478  return (jlong) x;
479JRT_END
480
481
482JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
483  return (jfloat)x;
484JRT_END
485
486
487JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
488  return (jfloat)x;
489JRT_END
490
491
492JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
493  return (jdouble)x;
494JRT_END
495
496// Exception handling accross interpreter/compiler boundaries
497//
498// exception_handler_for_return_address(...) returns the continuation address.
499// The continuation address is the entry point of the exception handler of the
500// previous frame depending on the return address.
501
502address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
503  assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
504
505  // Reset method handle flag.
506  thread->set_is_method_handle_return(false);
507
508  // The fastest case first
509  CodeBlob* blob = CodeCache::find_blob(return_address);
510  nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
511  if (nm != NULL) {
512    // Set flag if return address is a method handle call site.
513    thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
514    // native nmethods don't have exception handlers
515    assert(!nm->is_native_method(), "no exception handler");
516    assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
517    if (nm->is_deopt_pc(return_address)) {
518      return SharedRuntime::deopt_blob()->unpack_with_exception();
519    } else {
520      return nm->exception_begin();
521    }
522  }
523
524  // Entry code
525  if (StubRoutines::returns_to_call_stub(return_address)) {
526    return StubRoutines::catch_exception_entry();
527  }
528  // Interpreted code
529  if (Interpreter::contains(return_address)) {
530    return Interpreter::rethrow_exception_entry();
531  }
532  // Ricochet frame unwind code
533  if (SharedRuntime::ricochet_blob() != NULL && SharedRuntime::ricochet_blob()->returns_to_bounce_addr(return_address)) {
534    return SharedRuntime::ricochet_blob()->exception_addr();
535  }
536
537  guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
538  guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
539
540#ifndef PRODUCT
541  { ResourceMark rm;
542    tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
543    tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
544    tty->print_cr("b) other problem");
545  }
546#endif // PRODUCT
547
548  ShouldNotReachHere();
549  return NULL;
550}
551
552
553JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
554  return raw_exception_handler_for_return_address(thread, return_address);
555JRT_END
556
557
558address SharedRuntime::get_poll_stub(address pc) {
559  address stub;
560  // Look up the code blob
561  CodeBlob *cb = CodeCache::find_blob(pc);
562
563  // Should be an nmethod
564  assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
565
566  // Look up the relocation information
567  assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
568    "safepoint polling: type must be poll" );
569
570  assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
571    "Only polling locations are used for safepoint");
572
573  bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
574  if (at_poll_return) {
575    assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
576           "polling page return stub not created yet");
577    stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
578  } else {
579    assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
580           "polling page safepoint stub not created yet");
581    stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
582  }
583#ifndef PRODUCT
584  if( TraceSafepoint ) {
585    char buf[256];
586    jio_snprintf(buf, sizeof(buf),
587                 "... found polling page %s exception at pc = "
588                 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
589                 at_poll_return ? "return" : "loop",
590                 (intptr_t)pc, (intptr_t)stub);
591    tty->print_raw_cr(buf);
592  }
593#endif // PRODUCT
594  return stub;
595}
596
597
598oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
599  assert(caller.is_interpreted_frame(), "");
600  int args_size = ArgumentSizeComputer(sig).size() + 1;
601  assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
602  oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
603  assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
604  return result;
605}
606
607
608void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
609  if (JvmtiExport::can_post_on_exceptions()) {
610    vframeStream vfst(thread, true);
611    methodHandle method = methodHandle(thread, vfst.method());
612    address bcp = method()->bcp_from(vfst.bci());
613    JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
614  }
615  Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
616}
617
618void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
619  Handle h_exception = Exceptions::new_exception(thread, name, message);
620  throw_and_post_jvmti_exception(thread, h_exception);
621}
622
623// The interpreter code to call this tracing function is only
624// called/generated when TraceRedefineClasses has the right bits
625// set. Since obsolete methods are never compiled, we don't have
626// to modify the compilers to generate calls to this function.
627//
628JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
629    JavaThread* thread, methodOopDesc* method))
630  assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
631
632  if (method->is_obsolete()) {
633    // We are calling an obsolete method, but this is not necessarily
634    // an error. Our method could have been redefined just after we
635    // fetched the methodOop from the constant pool.
636
637    // RC_TRACE macro has an embedded ResourceMark
638    RC_TRACE_WITH_THREAD(0x00001000, thread,
639                         ("calling obsolete method '%s'",
640                          method->name_and_sig_as_C_string()));
641    if (RC_TRACE_ENABLED(0x00002000)) {
642      // this option is provided to debug calls to obsolete methods
643      guarantee(false, "faulting at call to an obsolete method.");
644    }
645  }
646  return 0;
647JRT_END
648
649// ret_pc points into caller; we are returning caller's exception handler
650// for given exception
651address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
652                                                    bool force_unwind, bool top_frame_only) {
653  assert(nm != NULL, "must exist");
654  ResourceMark rm;
655
656  ScopeDesc* sd = nm->scope_desc_at(ret_pc);
657  // determine handler bci, if any
658  EXCEPTION_MARK;
659
660  int handler_bci = -1;
661  int scope_depth = 0;
662  if (!force_unwind) {
663    int bci = sd->bci();
664    do {
665      bool skip_scope_increment = false;
666      // exception handler lookup
667      KlassHandle ek (THREAD, exception->klass());
668      handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
669      if (HAS_PENDING_EXCEPTION) {
670        // We threw an exception while trying to find the exception handler.
671        // Transfer the new exception to the exception handle which will
672        // be set into thread local storage, and do another lookup for an
673        // exception handler for this exception, this time starting at the
674        // BCI of the exception handler which caused the exception to be
675        // thrown (bugs 4307310 and 4546590). Set "exception" reference
676        // argument to ensure that the correct exception is thrown (4870175).
677        exception = Handle(THREAD, PENDING_EXCEPTION);
678        CLEAR_PENDING_EXCEPTION;
679        if (handler_bci >= 0) {
680          bci = handler_bci;
681          handler_bci = -1;
682          skip_scope_increment = true;
683        }
684      }
685      if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
686        sd = sd->sender();
687        if (sd != NULL) {
688          bci = sd->bci();
689        }
690        ++scope_depth;
691      }
692    } while (!top_frame_only && handler_bci < 0 && sd != NULL);
693  }
694
695  // found handling method => lookup exception handler
696  int catch_pco = ret_pc - nm->code_begin();
697
698  ExceptionHandlerTable table(nm);
699  HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
700  if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
701    // Allow abbreviated catch tables.  The idea is to allow a method
702    // to materialize its exceptions without committing to the exact
703    // routing of exceptions.  In particular this is needed for adding
704    // a synthethic handler to unlock monitors when inlining
705    // synchonized methods since the unlock path isn't represented in
706    // the bytecodes.
707    t = table.entry_for(catch_pco, -1, 0);
708  }
709
710#ifdef COMPILER1
711  if (t == NULL && nm->is_compiled_by_c1()) {
712    assert(nm->unwind_handler_begin() != NULL, "");
713    return nm->unwind_handler_begin();
714  }
715#endif
716
717  if (t == NULL) {
718    tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
719    tty->print_cr("   Exception:");
720    exception->print();
721    tty->cr();
722    tty->print_cr(" Compiled exception table :");
723    table.print();
724    nm->print_code();
725    guarantee(false, "missing exception handler");
726    return NULL;
727  }
728
729  return nm->code_begin() + t->pco();
730}
731
732JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
733  // These errors occur only at call sites
734  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
735JRT_END
736
737JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
738  // These errors occur only at call sites
739  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
740JRT_END
741
742JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
743  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
744JRT_END
745
746JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
747  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
748JRT_END
749
750JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
751  // This entry point is effectively only used for NullPointerExceptions which occur at inline
752  // cache sites (when the callee activation is not yet set up) so we are at a call site
753  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
754JRT_END
755
756JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
757  // We avoid using the normal exception construction in this case because
758  // it performs an upcall to Java, and we're already out of stack space.
759  klassOop k = SystemDictionary::StackOverflowError_klass();
760  oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
761  Handle exception (thread, exception_oop);
762  if (StackTraceInThrowable) {
763    java_lang_Throwable::fill_in_stack_trace(exception);
764  }
765  throw_and_post_jvmti_exception(thread, exception);
766JRT_END
767
768JRT_ENTRY(void, SharedRuntime::throw_WrongMethodTypeException(JavaThread* thread, oopDesc* required, oopDesc* actual))
769  assert(thread == JavaThread::current() && required->is_oop() && actual->is_oop(), "bad args");
770  ResourceMark rm;
771  char* message = SharedRuntime::generate_wrong_method_type_message(thread, required, actual);
772  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_invoke_WrongMethodTypeException(), message);
773JRT_END
774
775address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
776                                                           address pc,
777                                                           SharedRuntime::ImplicitExceptionKind exception_kind)
778{
779  address target_pc = NULL;
780
781  if (Interpreter::contains(pc)) {
782#ifdef CC_INTERP
783    // C++ interpreter doesn't throw implicit exceptions
784    ShouldNotReachHere();
785#else
786    switch (exception_kind) {
787      case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
788      case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
789      case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
790      default:                      ShouldNotReachHere();
791    }
792#endif // !CC_INTERP
793  } else {
794    switch (exception_kind) {
795      case STACK_OVERFLOW: {
796        // Stack overflow only occurs upon frame setup; the callee is
797        // going to be unwound. Dispatch to a shared runtime stub
798        // which will cause the StackOverflowError to be fabricated
799        // and processed.
800        // For stack overflow in deoptimization blob, cleanup thread.
801        if (thread->deopt_mark() != NULL) {
802          Deoptimization::cleanup_deopt_info(thread, NULL);
803        }
804        return StubRoutines::throw_StackOverflowError_entry();
805      }
806
807      case IMPLICIT_NULL: {
808        if (VtableStubs::contains(pc)) {
809          // We haven't yet entered the callee frame. Fabricate an
810          // exception and begin dispatching it in the caller. Since
811          // the caller was at a call site, it's safe to destroy all
812          // caller-saved registers, as these entry points do.
813          VtableStub* vt_stub = VtableStubs::stub_containing(pc);
814
815          // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
816          if (vt_stub == NULL) return NULL;
817
818          if (vt_stub->is_abstract_method_error(pc)) {
819            assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
820            return StubRoutines::throw_AbstractMethodError_entry();
821          } else {
822            return StubRoutines::throw_NullPointerException_at_call_entry();
823          }
824        } else {
825          CodeBlob* cb = CodeCache::find_blob(pc);
826
827          // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
828          if (cb == NULL) return NULL;
829
830          // Exception happened in CodeCache. Must be either:
831          // 1. Inline-cache check in C2I handler blob,
832          // 2. Inline-cache check in nmethod, or
833          // 3. Implict null exception in nmethod
834
835          if (!cb->is_nmethod()) {
836            guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
837                      "exception happened outside interpreter, nmethods and vtable stubs (1)");
838            // There is no handler here, so we will simply unwind.
839            return StubRoutines::throw_NullPointerException_at_call_entry();
840          }
841
842          // Otherwise, it's an nmethod.  Consult its exception handlers.
843          nmethod* nm = (nmethod*)cb;
844          if (nm->inlinecache_check_contains(pc)) {
845            // exception happened inside inline-cache check code
846            // => the nmethod is not yet active (i.e., the frame
847            // is not set up yet) => use return address pushed by
848            // caller => don't push another return address
849            return StubRoutines::throw_NullPointerException_at_call_entry();
850          }
851
852#ifndef PRODUCT
853          _implicit_null_throws++;
854#endif
855          target_pc = nm->continuation_for_implicit_exception(pc);
856          // If there's an unexpected fault, target_pc might be NULL,
857          // in which case we want to fall through into the normal
858          // error handling code.
859        }
860
861        break; // fall through
862      }
863
864
865      case IMPLICIT_DIVIDE_BY_ZERO: {
866        nmethod* nm = CodeCache::find_nmethod(pc);
867        guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
868#ifndef PRODUCT
869        _implicit_div0_throws++;
870#endif
871        target_pc = nm->continuation_for_implicit_exception(pc);
872        // If there's an unexpected fault, target_pc might be NULL,
873        // in which case we want to fall through into the normal
874        // error handling code.
875        break; // fall through
876      }
877
878      default: ShouldNotReachHere();
879    }
880
881    assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
882
883    // for AbortVMOnException flag
884    NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
885    if (exception_kind == IMPLICIT_NULL) {
886      Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
887    } else {
888      Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
889    }
890    return target_pc;
891  }
892
893  ShouldNotReachHere();
894  return NULL;
895}
896
897
898JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
899{
900  THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
901}
902JNI_END
903
904
905address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
906  return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
907}
908
909
910#ifndef PRODUCT
911JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
912  const frame f = thread->last_frame();
913  assert(f.is_interpreted_frame(), "must be an interpreted frame");
914#ifndef PRODUCT
915  methodHandle mh(THREAD, f.interpreter_frame_method());
916  BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
917#endif // !PRODUCT
918  return preserve_this_value;
919JRT_END
920#endif // !PRODUCT
921
922
923JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
924  os::yield_all(attempts);
925JRT_END
926
927
928JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
929  assert(obj->is_oop(), "must be a valid oop");
930  assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
931  instanceKlass::register_finalizer(instanceOop(obj), CHECK);
932JRT_END
933
934
935jlong SharedRuntime::get_java_tid(Thread* thread) {
936  if (thread != NULL) {
937    if (thread->is_Java_thread()) {
938      oop obj = ((JavaThread*)thread)->threadObj();
939      return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
940    }
941  }
942  return 0;
943}
944
945/**
946 * This function ought to be a void function, but cannot be because
947 * it gets turned into a tail-call on sparc, which runs into dtrace bug
948 * 6254741.  Once that is fixed we can remove the dummy return value.
949 */
950int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
951  return dtrace_object_alloc_base(Thread::current(), o);
952}
953
954int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
955  assert(DTraceAllocProbes, "wrong call");
956  Klass* klass = o->blueprint();
957  int size = o->size();
958  Symbol* name = klass->name();
959#ifndef USDT2
960  HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
961                   name->bytes(), name->utf8_length(), size * HeapWordSize);
962#else /* USDT2 */
963  HOTSPOT_OBJECT_ALLOC(
964                   get_java_tid(thread),
965                   (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
966#endif /* USDT2 */
967  return 0;
968}
969
970JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
971    JavaThread* thread, methodOopDesc* method))
972  assert(DTraceMethodProbes, "wrong call");
973  Symbol* kname = method->klass_name();
974  Symbol* name = method->name();
975  Symbol* sig = method->signature();
976#ifndef USDT2
977  HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
978      kname->bytes(), kname->utf8_length(),
979      name->bytes(), name->utf8_length(),
980      sig->bytes(), sig->utf8_length());
981#else /* USDT2 */
982  HOTSPOT_METHOD_ENTRY(
983      get_java_tid(thread),
984      (char *) kname->bytes(), kname->utf8_length(),
985      (char *) name->bytes(), name->utf8_length(),
986      (char *) sig->bytes(), sig->utf8_length());
987#endif /* USDT2 */
988  return 0;
989JRT_END
990
991JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
992    JavaThread* thread, methodOopDesc* method))
993  assert(DTraceMethodProbes, "wrong call");
994  Symbol* kname = method->klass_name();
995  Symbol* name = method->name();
996  Symbol* sig = method->signature();
997#ifndef USDT2
998  HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
999      kname->bytes(), kname->utf8_length(),
1000      name->bytes(), name->utf8_length(),
1001      sig->bytes(), sig->utf8_length());
1002#else /* USDT2 */
1003  HOTSPOT_METHOD_RETURN(
1004      get_java_tid(thread),
1005      (char *) kname->bytes(), kname->utf8_length(),
1006      (char *) name->bytes(), name->utf8_length(),
1007      (char *) sig->bytes(), sig->utf8_length());
1008#endif /* USDT2 */
1009  return 0;
1010JRT_END
1011
1012
1013// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1014// for a call current in progress, i.e., arguments has been pushed on stack
1015// put callee has not been invoked yet.  Used by: resolve virtual/static,
1016// vtable updates, etc.  Caller frame must be compiled.
1017Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1018  ResourceMark rm(THREAD);
1019
1020  // last java frame on stack (which includes native call frames)
1021  vframeStream vfst(thread, true);  // Do not skip and javaCalls
1022
1023  return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
1024}
1025
1026
1027// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1028// for a call current in progress, i.e., arguments has been pushed on stack
1029// but callee has not been invoked yet.  Caller frame must be compiled.
1030Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1031                                              vframeStream& vfst,
1032                                              Bytecodes::Code& bc,
1033                                              CallInfo& callinfo, TRAPS) {
1034  Handle receiver;
1035  Handle nullHandle;  //create a handy null handle for exception returns
1036
1037  assert(!vfst.at_end(), "Java frame must exist");
1038
1039  // Find caller and bci from vframe
1040  methodHandle caller (THREAD, vfst.method());
1041  int          bci    = vfst.bci();
1042
1043  // Find bytecode
1044  Bytecode_invoke bytecode(caller, bci);
1045  bc = bytecode.java_code();
1046  int bytecode_index = bytecode.index();
1047
1048  // Find receiver for non-static call
1049  if (bc != Bytecodes::_invokestatic) {
1050    // This register map must be update since we need to find the receiver for
1051    // compiled frames. The receiver might be in a register.
1052    RegisterMap reg_map2(thread);
1053    frame stubFrame   = thread->last_frame();
1054    // Caller-frame is a compiled frame
1055    frame callerFrame = stubFrame.sender(&reg_map2);
1056
1057    methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1058    if (callee.is_null()) {
1059      THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1060    }
1061    // Retrieve from a compiled argument list
1062    receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1063
1064    if (receiver.is_null()) {
1065      THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1066    }
1067  }
1068
1069  // Resolve method. This is parameterized by bytecode.
1070  constantPoolHandle constants (THREAD, caller->constants());
1071  assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
1072  LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1073
1074#ifdef ASSERT
1075  // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1076  if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
1077    assert(receiver.not_null(), "should have thrown exception");
1078    KlassHandle receiver_klass (THREAD, receiver->klass());
1079    klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1080                            // klass is already loaded
1081    KlassHandle static_receiver_klass (THREAD, rk);
1082    assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
1083    if (receiver_klass->oop_is_instance()) {
1084      if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
1085        tty->print_cr("ERROR: Klass not yet initialized!!");
1086        receiver_klass.print();
1087      }
1088      assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1089    }
1090  }
1091#endif
1092
1093  return receiver;
1094}
1095
1096methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1097  ResourceMark rm(THREAD);
1098  // We need first to check if any Java activations (compiled, interpreted)
1099  // exist on the stack since last JavaCall.  If not, we need
1100  // to get the target method from the JavaCall wrapper.
1101  vframeStream vfst(thread, true);  // Do not skip any javaCalls
1102  methodHandle callee_method;
1103  if (vfst.at_end()) {
1104    // No Java frames were found on stack since we did the JavaCall.
1105    // Hence the stack can only contain an entry_frame.  We need to
1106    // find the target method from the stub frame.
1107    RegisterMap reg_map(thread, false);
1108    frame fr = thread->last_frame();
1109    assert(fr.is_runtime_frame(), "must be a runtimeStub");
1110    fr = fr.sender(&reg_map);
1111    assert(fr.is_entry_frame(), "must be");
1112    // fr is now pointing to the entry frame.
1113    callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1114    assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1115  } else {
1116    Bytecodes::Code bc;
1117    CallInfo callinfo;
1118    find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1119    callee_method = callinfo.selected_method();
1120  }
1121  assert(callee_method()->is_method(), "must be");
1122  return callee_method;
1123}
1124
1125// Resolves a call.
1126methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1127                                           bool is_virtual,
1128                                           bool is_optimized, TRAPS) {
1129  methodHandle callee_method;
1130  callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1131  if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1132    int retry_count = 0;
1133    while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1134           callee_method->method_holder() != SystemDictionary::Object_klass()) {
1135      // If has a pending exception then there is no need to re-try to
1136      // resolve this method.
1137      // If the method has been redefined, we need to try again.
1138      // Hack: we have no way to update the vtables of arrays, so don't
1139      // require that java.lang.Object has been updated.
1140
1141      // It is very unlikely that method is redefined more than 100 times
1142      // in the middle of resolve. If it is looping here more than 100 times
1143      // means then there could be a bug here.
1144      guarantee((retry_count++ < 100),
1145                "Could not resolve to latest version of redefined method");
1146      // method is redefined in the middle of resolve so re-try.
1147      callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1148    }
1149  }
1150  return callee_method;
1151}
1152
1153// Resolves a call.  The compilers generate code for calls that go here
1154// and are patched with the real destination of the call.
1155methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1156                                           bool is_virtual,
1157                                           bool is_optimized, TRAPS) {
1158
1159  ResourceMark rm(thread);
1160  RegisterMap cbl_map(thread, false);
1161  frame caller_frame = thread->last_frame().sender(&cbl_map);
1162
1163  CodeBlob* caller_cb = caller_frame.cb();
1164  guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1165  nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1166  // make sure caller is not getting deoptimized
1167  // and removed before we are done with it.
1168  // CLEANUP - with lazy deopt shouldn't need this lock
1169  nmethodLocker caller_lock(caller_nm);
1170
1171
1172  // determine call info & receiver
1173  // note: a) receiver is NULL for static calls
1174  //       b) an exception is thrown if receiver is NULL for non-static calls
1175  CallInfo call_info;
1176  Bytecodes::Code invoke_code = Bytecodes::_illegal;
1177  Handle receiver = find_callee_info(thread, invoke_code,
1178                                     call_info, CHECK_(methodHandle()));
1179  methodHandle callee_method = call_info.selected_method();
1180
1181  assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
1182         ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
1183
1184#ifndef PRODUCT
1185  // tracing/debugging/statistics
1186  int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1187                (is_virtual) ? (&_resolve_virtual_ctr) :
1188                               (&_resolve_static_ctr);
1189  Atomic::inc(addr);
1190
1191  if (TraceCallFixup) {
1192    ResourceMark rm(thread);
1193    tty->print("resolving %s%s (%s) call to",
1194      (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1195      Bytecodes::name(invoke_code));
1196    callee_method->print_short_name(tty);
1197    tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1198  }
1199#endif
1200
1201  // JSR 292
1202  // If the resolved method is a MethodHandle invoke target the call
1203  // site must be a MethodHandle call site.
1204  if (callee_method->is_method_handle_invoke()) {
1205    assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1206  }
1207
1208  // Compute entry points. This might require generation of C2I converter
1209  // frames, so we cannot be holding any locks here. Furthermore, the
1210  // computation of the entry points is independent of patching the call.  We
1211  // always return the entry-point, but we only patch the stub if the call has
1212  // not been deoptimized.  Return values: For a virtual call this is an
1213  // (cached_oop, destination address) pair. For a static call/optimized
1214  // virtual this is just a destination address.
1215
1216  StaticCallInfo static_call_info;
1217  CompiledICInfo virtual_call_info;
1218
1219  // Make sure the callee nmethod does not get deoptimized and removed before
1220  // we are done patching the code.
1221  nmethod* callee_nm = callee_method->code();
1222  nmethodLocker nl_callee(callee_nm);
1223#ifdef ASSERT
1224  address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1225#endif
1226
1227  if (is_virtual) {
1228    assert(receiver.not_null(), "sanity check");
1229    bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1230    KlassHandle h_klass(THREAD, receiver->klass());
1231    CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1232                     is_optimized, static_bound, virtual_call_info,
1233                     CHECK_(methodHandle()));
1234  } else {
1235    // static call
1236    CompiledStaticCall::compute_entry(callee_method, static_call_info);
1237  }
1238
1239  // grab lock, check for deoptimization and potentially patch caller
1240  {
1241    MutexLocker ml_patch(CompiledIC_lock);
1242
1243    // Now that we are ready to patch if the methodOop was redefined then
1244    // don't update call site and let the caller retry.
1245
1246    if (!callee_method->is_old()) {
1247#ifdef ASSERT
1248      // We must not try to patch to jump to an already unloaded method.
1249      if (dest_entry_point != 0) {
1250        assert(CodeCache::find_blob(dest_entry_point) != NULL,
1251               "should not unload nmethod while locked");
1252      }
1253#endif
1254      if (is_virtual) {
1255        CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1256        if (inline_cache->is_clean()) {
1257          inline_cache->set_to_monomorphic(virtual_call_info);
1258        }
1259      } else {
1260        CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1261        if (ssc->is_clean()) ssc->set(static_call_info);
1262      }
1263    }
1264
1265  } // unlock CompiledIC_lock
1266
1267  return callee_method;
1268}
1269
1270
1271// Inline caches exist only in compiled code
1272JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1273#ifdef ASSERT
1274  RegisterMap reg_map(thread, false);
1275  frame stub_frame = thread->last_frame();
1276  assert(stub_frame.is_runtime_frame(), "sanity check");
1277  frame caller_frame = stub_frame.sender(&reg_map);
1278  assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1279  assert(!caller_frame.is_ricochet_frame(), "unexpected frame");
1280#endif /* ASSERT */
1281
1282  methodHandle callee_method;
1283  JRT_BLOCK
1284    callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1285    // Return methodOop through TLS
1286    thread->set_vm_result(callee_method());
1287  JRT_BLOCK_END
1288  // return compiled code entry point after potential safepoints
1289  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1290  return callee_method->verified_code_entry();
1291JRT_END
1292
1293
1294// Handle call site that has been made non-entrant
1295JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1296  // 6243940 We might end up in here if the callee is deoptimized
1297  // as we race to call it.  We don't want to take a safepoint if
1298  // the caller was interpreted because the caller frame will look
1299  // interpreted to the stack walkers and arguments are now
1300  // "compiled" so it is much better to make this transition
1301  // invisible to the stack walking code. The i2c path will
1302  // place the callee method in the callee_target. It is stashed
1303  // there because if we try and find the callee by normal means a
1304  // safepoint is possible and have trouble gc'ing the compiled args.
1305  RegisterMap reg_map(thread, false);
1306  frame stub_frame = thread->last_frame();
1307  assert(stub_frame.is_runtime_frame(), "sanity check");
1308  frame caller_frame = stub_frame.sender(&reg_map);
1309
1310  // MethodHandle invokes don't have a CompiledIC and should always
1311  // simply redispatch to the callee_target.
1312  address   sender_pc = caller_frame.pc();
1313  CodeBlob* sender_cb = caller_frame.cb();
1314  nmethod*  sender_nm = sender_cb->as_nmethod_or_null();
1315  bool is_mh_invoke_via_adapter = false;  // Direct c2c call or via adapter?
1316  if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
1317    // If the callee_target is set, then we have come here via an i2c
1318    // adapter.
1319    methodOop callee = thread->callee_target();
1320    if (callee != NULL) {
1321      assert(callee->is_method(), "sanity");
1322      is_mh_invoke_via_adapter = true;
1323    }
1324  }
1325
1326  if (caller_frame.is_interpreted_frame() ||
1327      caller_frame.is_entry_frame()       ||
1328      caller_frame.is_ricochet_frame()    ||
1329      is_mh_invoke_via_adapter) {
1330    methodOop callee = thread->callee_target();
1331    guarantee(callee != NULL && callee->is_method(), "bad handshake");
1332    thread->set_vm_result(callee);
1333    thread->set_callee_target(NULL);
1334    return callee->get_c2i_entry();
1335  }
1336
1337  // Must be compiled to compiled path which is safe to stackwalk
1338  methodHandle callee_method;
1339  JRT_BLOCK
1340    // Force resolving of caller (if we called from compiled frame)
1341    callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1342    thread->set_vm_result(callee_method());
1343  JRT_BLOCK_END
1344  // return compiled code entry point after potential safepoints
1345  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1346  return callee_method->verified_code_entry();
1347JRT_END
1348
1349
1350// resolve a static call and patch code
1351JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1352  methodHandle callee_method;
1353  JRT_BLOCK
1354    callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1355    thread->set_vm_result(callee_method());
1356  JRT_BLOCK_END
1357  // return compiled code entry point after potential safepoints
1358  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1359  return callee_method->verified_code_entry();
1360JRT_END
1361
1362
1363// resolve virtual call and update inline cache to monomorphic
1364JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1365  methodHandle callee_method;
1366  JRT_BLOCK
1367    callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1368    thread->set_vm_result(callee_method());
1369  JRT_BLOCK_END
1370  // return compiled code entry point after potential safepoints
1371  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1372  return callee_method->verified_code_entry();
1373JRT_END
1374
1375
1376// Resolve a virtual call that can be statically bound (e.g., always
1377// monomorphic, so it has no inline cache).  Patch code to resolved target.
1378JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1379  methodHandle callee_method;
1380  JRT_BLOCK
1381    callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1382    thread->set_vm_result(callee_method());
1383  JRT_BLOCK_END
1384  // return compiled code entry point after potential safepoints
1385  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1386  return callee_method->verified_code_entry();
1387JRT_END
1388
1389
1390
1391
1392
1393methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1394  ResourceMark rm(thread);
1395  CallInfo call_info;
1396  Bytecodes::Code bc;
1397
1398  // receiver is NULL for static calls. An exception is thrown for NULL
1399  // receivers for non-static calls
1400  Handle receiver = find_callee_info(thread, bc, call_info,
1401                                     CHECK_(methodHandle()));
1402  // Compiler1 can produce virtual call sites that can actually be statically bound
1403  // If we fell thru to below we would think that the site was going megamorphic
1404  // when in fact the site can never miss. Worse because we'd think it was megamorphic
1405  // we'd try and do a vtable dispatch however methods that can be statically bound
1406  // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1407  // reresolution of the  call site (as if we did a handle_wrong_method and not an
1408  // plain ic_miss) and the site will be converted to an optimized virtual call site
1409  // never to miss again. I don't believe C2 will produce code like this but if it
1410  // did this would still be the correct thing to do for it too, hence no ifdef.
1411  //
1412  if (call_info.resolved_method()->can_be_statically_bound()) {
1413    methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1414    if (TraceCallFixup) {
1415      RegisterMap reg_map(thread, false);
1416      frame caller_frame = thread->last_frame().sender(&reg_map);
1417      ResourceMark rm(thread);
1418      tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1419      callee_method->print_short_name(tty);
1420      tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1421      tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1422    }
1423    return callee_method;
1424  }
1425
1426  methodHandle callee_method = call_info.selected_method();
1427
1428  bool should_be_mono = false;
1429
1430#ifndef PRODUCT
1431  Atomic::inc(&_ic_miss_ctr);
1432
1433  // Statistics & Tracing
1434  if (TraceCallFixup) {
1435    ResourceMark rm(thread);
1436    tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1437    callee_method->print_short_name(tty);
1438    tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1439  }
1440
1441  if (ICMissHistogram) {
1442    MutexLocker m(VMStatistic_lock);
1443    RegisterMap reg_map(thread, false);
1444    frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1445    // produce statistics under the lock
1446    trace_ic_miss(f.pc());
1447  }
1448#endif
1449
1450  // install an event collector so that when a vtable stub is created the
1451  // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1452  // event can't be posted when the stub is created as locks are held
1453  // - instead the event will be deferred until the event collector goes
1454  // out of scope.
1455  JvmtiDynamicCodeEventCollector event_collector;
1456
1457  // Update inline cache to megamorphic. Skip update if caller has been
1458  // made non-entrant or we are called from interpreted.
1459  { MutexLocker ml_patch (CompiledIC_lock);
1460    RegisterMap reg_map(thread, false);
1461    frame caller_frame = thread->last_frame().sender(&reg_map);
1462    CodeBlob* cb = caller_frame.cb();
1463    if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1464      // Not a non-entrant nmethod, so find inline_cache
1465      CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1466      bool should_be_mono = false;
1467      if (inline_cache->is_optimized()) {
1468        if (TraceCallFixup) {
1469          ResourceMark rm(thread);
1470          tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1471          callee_method->print_short_name(tty);
1472          tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1473        }
1474        should_be_mono = true;
1475      } else {
1476        compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
1477        if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
1478
1479          if (receiver()->klass() == ic_oop->holder_klass()) {
1480            // This isn't a real miss. We must have seen that compiled code
1481            // is now available and we want the call site converted to a
1482            // monomorphic compiled call site.
1483            // We can't assert for callee_method->code() != NULL because it
1484            // could have been deoptimized in the meantime
1485            if (TraceCallFixup) {
1486              ResourceMark rm(thread);
1487              tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1488              callee_method->print_short_name(tty);
1489              tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1490            }
1491            should_be_mono = true;
1492          }
1493        }
1494      }
1495
1496      if (should_be_mono) {
1497
1498        // We have a path that was monomorphic but was going interpreted
1499        // and now we have (or had) a compiled entry. We correct the IC
1500        // by using a new icBuffer.
1501        CompiledICInfo info;
1502        KlassHandle receiver_klass(THREAD, receiver()->klass());
1503        inline_cache->compute_monomorphic_entry(callee_method,
1504                                                receiver_klass,
1505                                                inline_cache->is_optimized(),
1506                                                false,
1507                                                info, CHECK_(methodHandle()));
1508        inline_cache->set_to_monomorphic(info);
1509      } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1510        // Change to megamorphic
1511        inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1512      } else {
1513        // Either clean or megamorphic
1514      }
1515    }
1516  } // Release CompiledIC_lock
1517
1518  return callee_method;
1519}
1520
1521//
1522// Resets a call-site in compiled code so it will get resolved again.
1523// This routines handles both virtual call sites, optimized virtual call
1524// sites, and static call sites. Typically used to change a call sites
1525// destination from compiled to interpreted.
1526//
1527methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1528  ResourceMark rm(thread);
1529  RegisterMap reg_map(thread, false);
1530  frame stub_frame = thread->last_frame();
1531  assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1532  frame caller = stub_frame.sender(&reg_map);
1533
1534  // Do nothing if the frame isn't a live compiled frame.
1535  // nmethod could be deoptimized by the time we get here
1536  // so no update to the caller is needed.
1537
1538  if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1539
1540    address pc = caller.pc();
1541    Events::log("update call-site at pc " INTPTR_FORMAT, pc);
1542
1543    // Default call_addr is the location of the "basic" call.
1544    // Determine the address of the call we a reresolving. With
1545    // Inline Caches we will always find a recognizable call.
1546    // With Inline Caches disabled we may or may not find a
1547    // recognizable call. We will always find a call for static
1548    // calls and for optimized virtual calls. For vanilla virtual
1549    // calls it depends on the state of the UseInlineCaches switch.
1550    //
1551    // With Inline Caches disabled we can get here for a virtual call
1552    // for two reasons:
1553    //   1 - calling an abstract method. The vtable for abstract methods
1554    //       will run us thru handle_wrong_method and we will eventually
1555    //       end up in the interpreter to throw the ame.
1556    //   2 - a racing deoptimization. We could be doing a vanilla vtable
1557    //       call and between the time we fetch the entry address and
1558    //       we jump to it the target gets deoptimized. Similar to 1
1559    //       we will wind up in the interprter (thru a c2i with c2).
1560    //
1561    address call_addr = NULL;
1562    {
1563      // Get call instruction under lock because another thread may be
1564      // busy patching it.
1565      MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1566      // Location of call instruction
1567      if (NativeCall::is_call_before(pc)) {
1568        NativeCall *ncall = nativeCall_before(pc);
1569        call_addr = ncall->instruction_address();
1570      }
1571    }
1572
1573    // Check for static or virtual call
1574    bool is_static_call = false;
1575    nmethod* caller_nm = CodeCache::find_nmethod(pc);
1576    // Make sure nmethod doesn't get deoptimized and removed until
1577    // this is done with it.
1578    // CLEANUP - with lazy deopt shouldn't need this lock
1579    nmethodLocker nmlock(caller_nm);
1580
1581    if (call_addr != NULL) {
1582      RelocIterator iter(caller_nm, call_addr, call_addr+1);
1583      int ret = iter.next(); // Get item
1584      if (ret) {
1585        assert(iter.addr() == call_addr, "must find call");
1586        if (iter.type() == relocInfo::static_call_type) {
1587          is_static_call = true;
1588        } else {
1589          assert(iter.type() == relocInfo::virtual_call_type ||
1590                 iter.type() == relocInfo::opt_virtual_call_type
1591                , "unexpected relocInfo. type");
1592        }
1593      } else {
1594        assert(!UseInlineCaches, "relocation info. must exist for this address");
1595      }
1596
1597      // Cleaning the inline cache will force a new resolve. This is more robust
1598      // than directly setting it to the new destination, since resolving of calls
1599      // is always done through the same code path. (experience shows that it
1600      // leads to very hard to track down bugs, if an inline cache gets updated
1601      // to a wrong method). It should not be performance critical, since the
1602      // resolve is only done once.
1603
1604      MutexLocker ml(CompiledIC_lock);
1605      //
1606      // We do not patch the call site if the nmethod has been made non-entrant
1607      // as it is a waste of time
1608      //
1609      if (caller_nm->is_in_use()) {
1610        if (is_static_call) {
1611          CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1612          ssc->set_to_clean();
1613        } else {
1614          // compiled, dispatched call (which used to call an interpreted method)
1615          CompiledIC* inline_cache = CompiledIC_at(call_addr);
1616          inline_cache->set_to_clean();
1617        }
1618      }
1619    }
1620
1621  }
1622
1623  methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1624
1625
1626#ifndef PRODUCT
1627  Atomic::inc(&_wrong_method_ctr);
1628
1629  if (TraceCallFixup) {
1630    ResourceMark rm(thread);
1631    tty->print("handle_wrong_method reresolving call to");
1632    callee_method->print_short_name(tty);
1633    tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1634  }
1635#endif
1636
1637  return callee_method;
1638}
1639
1640// ---------------------------------------------------------------------------
1641// We are calling the interpreter via a c2i. Normally this would mean that
1642// we were called by a compiled method. However we could have lost a race
1643// where we went int -> i2c -> c2i and so the caller could in fact be
1644// interpreted. If the caller is compiled we attempt to patch the caller
1645// so he no longer calls into the interpreter.
1646IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
1647  methodOop moop(method);
1648
1649  address entry_point = moop->from_compiled_entry();
1650
1651  // It's possible that deoptimization can occur at a call site which hasn't
1652  // been resolved yet, in which case this function will be called from
1653  // an nmethod that has been patched for deopt and we can ignore the
1654  // request for a fixup.
1655  // Also it is possible that we lost a race in that from_compiled_entry
1656  // is now back to the i2c in that case we don't need to patch and if
1657  // we did we'd leap into space because the callsite needs to use
1658  // "to interpreter" stub in order to load up the methodOop. Don't
1659  // ask me how I know this...
1660
1661  CodeBlob* cb = CodeCache::find_blob(caller_pc);
1662  if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1663    return;
1664  }
1665
1666  // The check above makes sure this is a nmethod.
1667  nmethod* nm = cb->as_nmethod_or_null();
1668  assert(nm, "must be");
1669
1670  // Don't fixup MethodHandle call sites as c2i/i2c adapters are used
1671  // to implement MethodHandle actions.
1672  if (nm->is_method_handle_return(caller_pc)) {
1673    return;
1674  }
1675
1676  // There is a benign race here. We could be attempting to patch to a compiled
1677  // entry point at the same time the callee is being deoptimized. If that is
1678  // the case then entry_point may in fact point to a c2i and we'd patch the
1679  // call site with the same old data. clear_code will set code() to NULL
1680  // at the end of it. If we happen to see that NULL then we can skip trying
1681  // to patch. If we hit the window where the callee has a c2i in the
1682  // from_compiled_entry and the NULL isn't present yet then we lose the race
1683  // and patch the code with the same old data. Asi es la vida.
1684
1685  if (moop->code() == NULL) return;
1686
1687  if (nm->is_in_use()) {
1688
1689    // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1690    MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1691    if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
1692      NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
1693      //
1694      // bug 6281185. We might get here after resolving a call site to a vanilla
1695      // virtual call. Because the resolvee uses the verified entry it may then
1696      // see compiled code and attempt to patch the site by calling us. This would
1697      // then incorrectly convert the call site to optimized and its downhill from
1698      // there. If you're lucky you'll get the assert in the bugid, if not you've
1699      // just made a call site that could be megamorphic into a monomorphic site
1700      // for the rest of its life! Just another racing bug in the life of
1701      // fixup_callers_callsite ...
1702      //
1703      RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1704      iter.next();
1705      assert(iter.has_current(), "must have a reloc at java call site");
1706      relocInfo::relocType typ = iter.reloc()->type();
1707      if ( typ != relocInfo::static_call_type &&
1708           typ != relocInfo::opt_virtual_call_type &&
1709           typ != relocInfo::static_stub_type) {
1710        return;
1711      }
1712      address destination = call->destination();
1713      if (destination != entry_point) {
1714        CodeBlob* callee = CodeCache::find_blob(destination);
1715        // callee == cb seems weird. It means calling interpreter thru stub.
1716        if (callee == cb || callee->is_adapter_blob()) {
1717          // static call or optimized virtual
1718          if (TraceCallFixup) {
1719            tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1720            moop->print_short_name(tty);
1721            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1722          }
1723          call->set_destination_mt_safe(entry_point);
1724        } else {
1725          if (TraceCallFixup) {
1726            tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1727            moop->print_short_name(tty);
1728            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1729          }
1730          // assert is too strong could also be resolve destinations.
1731          // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1732        }
1733      } else {
1734          if (TraceCallFixup) {
1735            tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1736            moop->print_short_name(tty);
1737            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1738          }
1739      }
1740    }
1741  }
1742
1743IRT_END
1744
1745
1746// same as JVM_Arraycopy, but called directly from compiled code
1747JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1748                                                oopDesc* dest, jint dest_pos,
1749                                                jint length,
1750                                                JavaThread* thread)) {
1751#ifndef PRODUCT
1752  _slow_array_copy_ctr++;
1753#endif
1754  // Check if we have null pointers
1755  if (src == NULL || dest == NULL) {
1756    THROW(vmSymbols::java_lang_NullPointerException());
1757  }
1758  // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1759  // even though the copy_array API also performs dynamic checks to ensure
1760  // that src and dest are truly arrays (and are conformable).
1761  // The copy_array mechanism is awkward and could be removed, but
1762  // the compilers don't call this function except as a last resort,
1763  // so it probably doesn't matter.
1764  Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
1765                                        (arrayOopDesc*)dest, dest_pos,
1766                                        length, thread);
1767}
1768JRT_END
1769
1770char* SharedRuntime::generate_class_cast_message(
1771    JavaThread* thread, const char* objName) {
1772
1773  // Get target class name from the checkcast instruction
1774  vframeStream vfst(thread, true);
1775  assert(!vfst.at_end(), "Java frame must exist");
1776  Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1777  Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
1778    cc.index(), thread));
1779  return generate_class_cast_message(objName, targetKlass->external_name());
1780}
1781
1782char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
1783                                                        oopDesc* required,
1784                                                        oopDesc* actual) {
1785  if (TraceMethodHandles) {
1786    tty->print_cr("WrongMethodType thread="PTR_FORMAT" req="PTR_FORMAT" act="PTR_FORMAT"",
1787                  thread, required, actual);
1788  }
1789  assert(EnableInvokeDynamic, "");
1790  oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
1791  char* message = NULL;
1792  if (singleKlass != NULL) {
1793    const char* objName = "argument or return value";
1794    if (actual != NULL) {
1795      // be flexible about the junk passed in:
1796      klassOop ak = (actual->is_klass()
1797                     ? (klassOop)actual
1798                     : actual->klass());
1799      objName = Klass::cast(ak)->external_name();
1800    }
1801    Klass* targetKlass = Klass::cast(required->is_klass()
1802                                     ? (klassOop)required
1803                                     : java_lang_Class::as_klassOop(required));
1804    message = generate_class_cast_message(objName, targetKlass->external_name());
1805  } else {
1806    // %%% need to get the MethodType string, without messing around too much
1807    const char* desc = NULL;
1808    // Get a signature from the invoke instruction
1809    const char* mhName = "method handle";
1810    const char* targetType = "the required signature";
1811    int targetArity = -1, mhArity = -1;
1812    vframeStream vfst(thread, true);
1813    if (!vfst.at_end()) {
1814      Bytecode_invoke call(vfst.method(), vfst.bci());
1815      methodHandle target;
1816      {
1817        EXCEPTION_MARK;
1818        target = call.static_target(THREAD);
1819        if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
1820      }
1821      if (target.not_null()
1822          && target->is_method_handle_invoke()
1823          && required == target->method_handle_type()) {
1824        targetType = target->signature()->as_C_string();
1825        targetArity = ArgumentCount(target->signature()).size();
1826      }
1827    }
1828    KlassHandle kignore; int dmf_flags = 0;
1829    methodHandle actual_method = MethodHandles::decode_method(actual, kignore, dmf_flags);
1830    if ((dmf_flags & ~(MethodHandles::_dmf_has_receiver |
1831                       MethodHandles::_dmf_does_dispatch |
1832                       MethodHandles::_dmf_from_interface)) != 0)
1833      actual_method = methodHandle();  // MH does extra binds, drops, etc.
1834    bool has_receiver = ((dmf_flags & MethodHandles::_dmf_has_receiver) != 0);
1835    if (actual_method.not_null()) {
1836      mhName = actual_method->signature()->as_C_string();
1837      mhArity = ArgumentCount(actual_method->signature()).size();
1838      if (!actual_method->is_static())  mhArity += 1;
1839    } else if (java_lang_invoke_MethodHandle::is_instance(actual)) {
1840      oopDesc* mhType = java_lang_invoke_MethodHandle::type(actual);
1841      mhArity = java_lang_invoke_MethodType::ptype_count(mhType);
1842      stringStream st;
1843      java_lang_invoke_MethodType::print_signature(mhType, &st);
1844      mhName = st.as_string();
1845    }
1846    if (targetArity != -1 && targetArity != mhArity) {
1847      if (has_receiver && targetArity == mhArity-1)
1848        desc = " cannot be called without a receiver argument as ";
1849      else
1850        desc = " cannot be called with a different arity as ";
1851    }
1852    message = generate_class_cast_message(mhName, targetType,
1853                                          desc != NULL ? desc :
1854                                          " cannot be called as ");
1855  }
1856  if (TraceMethodHandles) {
1857    tty->print_cr("WrongMethodType => message=%s", message);
1858  }
1859  return message;
1860}
1861
1862oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
1863                                                            oopDesc* required) {
1864  if (required == NULL)  return NULL;
1865  if (required->klass() == SystemDictionary::Class_klass())
1866    return required;
1867  if (required->is_klass())
1868    return Klass::cast(klassOop(required))->java_mirror();
1869  return NULL;
1870}
1871
1872
1873char* SharedRuntime::generate_class_cast_message(
1874    const char* objName, const char* targetKlassName, const char* desc) {
1875  size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1876
1877  char* message = NEW_RESOURCE_ARRAY(char, msglen);
1878  if (NULL == message) {
1879    // Shouldn't happen, but don't cause even more problems if it does
1880    message = const_cast<char*>(objName);
1881  } else {
1882    jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1883  }
1884  return message;
1885}
1886
1887JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1888  (void) JavaThread::current()->reguard_stack();
1889JRT_END
1890
1891
1892// Handles the uncommon case in locking, i.e., contention or an inflated lock.
1893#ifndef PRODUCT
1894int SharedRuntime::_monitor_enter_ctr=0;
1895#endif
1896JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1897  oop obj(_obj);
1898#ifndef PRODUCT
1899  _monitor_enter_ctr++;             // monitor enter slow
1900#endif
1901  if (PrintBiasedLockingStatistics) {
1902    Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1903  }
1904  Handle h_obj(THREAD, obj);
1905  if (UseBiasedLocking) {
1906    // Retry fast entry if bias is revoked to avoid unnecessary inflation
1907    ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1908  } else {
1909    ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1910  }
1911  assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1912JRT_END
1913
1914#ifndef PRODUCT
1915int SharedRuntime::_monitor_exit_ctr=0;
1916#endif
1917// Handles the uncommon cases of monitor unlocking in compiled code
1918JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1919   oop obj(_obj);
1920#ifndef PRODUCT
1921  _monitor_exit_ctr++;              // monitor exit slow
1922#endif
1923  Thread* THREAD = JavaThread::current();
1924  // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1925  // testing was unable to ever fire the assert that guarded it so I have removed it.
1926  assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1927#undef MIGHT_HAVE_PENDING
1928#ifdef MIGHT_HAVE_PENDING
1929  // Save and restore any pending_exception around the exception mark.
1930  // While the slow_exit must not throw an exception, we could come into
1931  // this routine with one set.
1932  oop pending_excep = NULL;
1933  const char* pending_file;
1934  int pending_line;
1935  if (HAS_PENDING_EXCEPTION) {
1936    pending_excep = PENDING_EXCEPTION;
1937    pending_file  = THREAD->exception_file();
1938    pending_line  = THREAD->exception_line();
1939    CLEAR_PENDING_EXCEPTION;
1940  }
1941#endif /* MIGHT_HAVE_PENDING */
1942
1943  {
1944    // Exit must be non-blocking, and therefore no exceptions can be thrown.
1945    EXCEPTION_MARK;
1946    ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1947  }
1948
1949#ifdef MIGHT_HAVE_PENDING
1950  if (pending_excep != NULL) {
1951    THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1952  }
1953#endif /* MIGHT_HAVE_PENDING */
1954JRT_END
1955
1956#ifndef PRODUCT
1957
1958void SharedRuntime::print_statistics() {
1959  ttyLocker ttyl;
1960  if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1961
1962  if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1963  if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1964  if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1965
1966  SharedRuntime::print_ic_miss_histogram();
1967
1968  if (CountRemovableExceptions) {
1969    if (_nof_removable_exceptions > 0) {
1970      Unimplemented(); // this counter is not yet incremented
1971      tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1972    }
1973  }
1974
1975  // Dump the JRT_ENTRY counters
1976  if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1977  if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1978  if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1979  if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1980  if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1981  if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1982  if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1983
1984  tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1985  tty->print_cr("%5d wrong method", _wrong_method_ctr );
1986  tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1987  tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1988  tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1989
1990  if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1991  if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1992  if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1993  if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1994  if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1995  if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1996  if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1997  if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1998  if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1999  if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
2000  if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
2001  if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
2002  if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
2003  if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
2004  if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
2005  if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
2006
2007  AdapterHandlerLibrary::print_statistics();
2008
2009  if (xtty != NULL)  xtty->tail("statistics");
2010}
2011
2012inline double percent(int x, int y) {
2013  return 100.0 * x / MAX2(y, 1);
2014}
2015
2016class MethodArityHistogram {
2017 public:
2018  enum { MAX_ARITY = 256 };
2019 private:
2020  static int _arity_histogram[MAX_ARITY];     // histogram of #args
2021  static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2022  static int _max_arity;                      // max. arity seen
2023  static int _max_size;                       // max. arg size seen
2024
2025  static void add_method_to_histogram(nmethod* nm) {
2026    methodOop m = nm->method();
2027    ArgumentCount args(m->signature());
2028    int arity   = args.size() + (m->is_static() ? 0 : 1);
2029    int argsize = m->size_of_parameters();
2030    arity   = MIN2(arity, MAX_ARITY-1);
2031    argsize = MIN2(argsize, MAX_ARITY-1);
2032    int count = nm->method()->compiled_invocation_count();
2033    _arity_histogram[arity]  += count;
2034    _size_histogram[argsize] += count;
2035    _max_arity = MAX2(_max_arity, arity);
2036    _max_size  = MAX2(_max_size, argsize);
2037  }
2038
2039  void print_histogram_helper(int n, int* histo, const char* name) {
2040    const int N = MIN2(5, n);
2041    tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2042    double sum = 0;
2043    double weighted_sum = 0;
2044    int i;
2045    for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2046    double rest = sum;
2047    double percent = sum / 100;
2048    for (i = 0; i <= N; i++) {
2049      rest -= histo[i];
2050      tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2051    }
2052    tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2053    tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2054  }
2055
2056  void print_histogram() {
2057    tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2058    print_histogram_helper(_max_arity, _arity_histogram, "arity");
2059    tty->print_cr("\nSame for parameter size (in words):");
2060    print_histogram_helper(_max_size, _size_histogram, "size");
2061    tty->cr();
2062  }
2063
2064 public:
2065  MethodArityHistogram() {
2066    MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2067    _max_arity = _max_size = 0;
2068    for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
2069    CodeCache::nmethods_do(add_method_to_histogram);
2070    print_histogram();
2071  }
2072};
2073
2074int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2075int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2076int MethodArityHistogram::_max_arity;
2077int MethodArityHistogram::_max_size;
2078
2079void SharedRuntime::print_call_statistics(int comp_total) {
2080  tty->print_cr("Calls from compiled code:");
2081  int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2082  int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2083  int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2084  tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2085  tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2086  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2087  tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2088  tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2089  tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2090  tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2091  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2092  tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2093  tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2094  tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2095  tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2096  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2097  tty->cr();
2098  tty->print_cr("Note 1: counter updates are not MT-safe.");
2099  tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2100  tty->print_cr("        %% in nested categories are relative to their category");
2101  tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2102  tty->cr();
2103
2104  MethodArityHistogram h;
2105}
2106#endif
2107
2108
2109// A simple wrapper class around the calling convention information
2110// that allows sharing of adapters for the same calling convention.
2111class AdapterFingerPrint : public CHeapObj {
2112 private:
2113  union {
2114    int  _compact[3];
2115    int* _fingerprint;
2116  } _value;
2117  int _length; // A negative length indicates the fingerprint is in the compact form,
2118               // Otherwise _value._fingerprint is the array.
2119
2120  // Remap BasicTypes that are handled equivalently by the adapters.
2121  // These are correct for the current system but someday it might be
2122  // necessary to make this mapping platform dependent.
2123  static BasicType adapter_encoding(BasicType in) {
2124    assert((~0xf & in) == 0, "must fit in 4 bits");
2125    switch(in) {
2126      case T_BOOLEAN:
2127      case T_BYTE:
2128      case T_SHORT:
2129      case T_CHAR:
2130        // There are all promoted to T_INT in the calling convention
2131        return T_INT;
2132
2133      case T_OBJECT:
2134      case T_ARRAY:
2135#ifdef _LP64
2136        return T_LONG;
2137#else
2138        return T_INT;
2139#endif
2140
2141      case T_INT:
2142      case T_LONG:
2143      case T_FLOAT:
2144      case T_DOUBLE:
2145      case T_VOID:
2146        return in;
2147
2148      default:
2149        ShouldNotReachHere();
2150        return T_CONFLICT;
2151    }
2152  }
2153
2154 public:
2155  AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2156    // The fingerprint is based on the BasicType signature encoded
2157    // into an array of ints with eight entries per int.
2158    int* ptr;
2159    int len = (total_args_passed + 7) >> 3;
2160    if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
2161      _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2162      // Storing the signature encoded as signed chars hits about 98%
2163      // of the time.
2164      _length = -len;
2165      ptr = _value._compact;
2166    } else {
2167      _length = len;
2168      _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
2169      ptr = _value._fingerprint;
2170    }
2171
2172    // Now pack the BasicTypes with 8 per int
2173    int sig_index = 0;
2174    for (int index = 0; index < len; index++) {
2175      int value = 0;
2176      for (int byte = 0; byte < 8; byte++) {
2177        if (sig_index < total_args_passed) {
2178          value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
2179        }
2180      }
2181      ptr[index] = value;
2182    }
2183  }
2184
2185  ~AdapterFingerPrint() {
2186    if (_length > 0) {
2187      FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2188    }
2189  }
2190
2191  int value(int index) {
2192    if (_length < 0) {
2193      return _value._compact[index];
2194    }
2195    return _value._fingerprint[index];
2196  }
2197  int length() {
2198    if (_length < 0) return -_length;
2199    return _length;
2200  }
2201
2202  bool is_compact() {
2203    return _length <= 0;
2204  }
2205
2206  unsigned int compute_hash() {
2207    int hash = 0;
2208    for (int i = 0; i < length(); i++) {
2209      int v = value(i);
2210      hash = (hash << 8) ^ v ^ (hash >> 5);
2211    }
2212    return (unsigned int)hash;
2213  }
2214
2215  const char* as_string() {
2216    stringStream st;
2217    st.print("0x");
2218    for (int i = 0; i < length(); i++) {
2219      st.print("%08x", value(i));
2220    }
2221    return st.as_string();
2222  }
2223
2224  bool equals(AdapterFingerPrint* other) {
2225    if (other->_length != _length) {
2226      return false;
2227    }
2228    if (_length < 0) {
2229      return _value._compact[0] == other->_value._compact[0] &&
2230             _value._compact[1] == other->_value._compact[1] &&
2231             _value._compact[2] == other->_value._compact[2];
2232    } else {
2233      for (int i = 0; i < _length; i++) {
2234        if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2235          return false;
2236        }
2237      }
2238    }
2239    return true;
2240  }
2241};
2242
2243
2244// A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2245class AdapterHandlerTable : public BasicHashtable {
2246  friend class AdapterHandlerTableIterator;
2247
2248 private:
2249
2250#ifndef PRODUCT
2251  static int _lookups; // number of calls to lookup
2252  static int _buckets; // number of buckets checked
2253  static int _equals;  // number of buckets checked with matching hash
2254  static int _hits;    // number of successful lookups
2255  static int _compact; // number of equals calls with compact signature
2256#endif
2257
2258  AdapterHandlerEntry* bucket(int i) {
2259    return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
2260  }
2261
2262 public:
2263  AdapterHandlerTable()
2264    : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
2265
2266  // Create a new entry suitable for insertion in the table
2267  AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2268    AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
2269    entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2270    return entry;
2271  }
2272
2273  // Insert an entry into the table
2274  void add(AdapterHandlerEntry* entry) {
2275    int index = hash_to_index(entry->hash());
2276    add_entry(index, entry);
2277  }
2278
2279  void free_entry(AdapterHandlerEntry* entry) {
2280    entry->deallocate();
2281    BasicHashtable::free_entry(entry);
2282  }
2283
2284  // Find a entry with the same fingerprint if it exists
2285  AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2286    NOT_PRODUCT(_lookups++);
2287    AdapterFingerPrint fp(total_args_passed, sig_bt);
2288    unsigned int hash = fp.compute_hash();
2289    int index = hash_to_index(hash);
2290    for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2291      NOT_PRODUCT(_buckets++);
2292      if (e->hash() == hash) {
2293        NOT_PRODUCT(_equals++);
2294        if (fp.equals(e->fingerprint())) {
2295#ifndef PRODUCT
2296          if (fp.is_compact()) _compact++;
2297          _hits++;
2298#endif
2299          return e;
2300        }
2301      }
2302    }
2303    return NULL;
2304  }
2305
2306#ifndef PRODUCT
2307  void print_statistics() {
2308    ResourceMark rm;
2309    int longest = 0;
2310    int empty = 0;
2311    int total = 0;
2312    int nonempty = 0;
2313    for (int index = 0; index < table_size(); index++) {
2314      int count = 0;
2315      for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2316        count++;
2317      }
2318      if (count != 0) nonempty++;
2319      if (count == 0) empty++;
2320      if (count > longest) longest = count;
2321      total += count;
2322    }
2323    tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2324                  empty, longest, total, total / (double)nonempty);
2325    tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2326                  _lookups, _buckets, _equals, _hits, _compact);
2327  }
2328#endif
2329};
2330
2331
2332#ifndef PRODUCT
2333
2334int AdapterHandlerTable::_lookups;
2335int AdapterHandlerTable::_buckets;
2336int AdapterHandlerTable::_equals;
2337int AdapterHandlerTable::_hits;
2338int AdapterHandlerTable::_compact;
2339
2340#endif
2341
2342class AdapterHandlerTableIterator : public StackObj {
2343 private:
2344  AdapterHandlerTable* _table;
2345  int _index;
2346  AdapterHandlerEntry* _current;
2347
2348  void scan() {
2349    while (_index < _table->table_size()) {
2350      AdapterHandlerEntry* a = _table->bucket(_index);
2351      _index++;
2352      if (a != NULL) {
2353        _current = a;
2354        return;
2355      }
2356    }
2357  }
2358
2359 public:
2360  AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2361    scan();
2362  }
2363  bool has_next() {
2364    return _current != NULL;
2365  }
2366  AdapterHandlerEntry* next() {
2367    if (_current != NULL) {
2368      AdapterHandlerEntry* result = _current;
2369      _current = _current->next();
2370      if (_current == NULL) scan();
2371      return result;
2372    } else {
2373      return NULL;
2374    }
2375  }
2376};
2377
2378
2379// ---------------------------------------------------------------------------
2380// Implementation of AdapterHandlerLibrary
2381AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2382AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2383const int AdapterHandlerLibrary_size = 16*K;
2384BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2385
2386BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2387  // Should be called only when AdapterHandlerLibrary_lock is active.
2388  if (_buffer == NULL) // Initialize lazily
2389      _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2390  return _buffer;
2391}
2392
2393void AdapterHandlerLibrary::initialize() {
2394  if (_adapters != NULL) return;
2395  _adapters = new AdapterHandlerTable();
2396
2397  // Create a special handler for abstract methods.  Abstract methods
2398  // are never compiled so an i2c entry is somewhat meaningless, but
2399  // fill it in with something appropriate just in case.  Pass handle
2400  // wrong method for the c2i transitions.
2401  address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
2402  _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2403                                                              StubRoutines::throw_AbstractMethodError_entry(),
2404                                                              wrong_method, wrong_method);
2405}
2406
2407AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2408                                                      address i2c_entry,
2409                                                      address c2i_entry,
2410                                                      address c2i_unverified_entry) {
2411  return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2412}
2413
2414AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2415  // Use customized signature handler.  Need to lock around updates to
2416  // the AdapterHandlerTable (it is not safe for concurrent readers
2417  // and a single writer: this could be fixed if it becomes a
2418  // problem).
2419
2420  // Get the address of the ic_miss handlers before we grab the
2421  // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2422  // was caused by the initialization of the stubs happening
2423  // while we held the lock and then notifying jvmti while
2424  // holding it. This just forces the initialization to be a little
2425  // earlier.
2426  address ic_miss = SharedRuntime::get_ic_miss_stub();
2427  assert(ic_miss != NULL, "must have handler");
2428
2429  ResourceMark rm;
2430
2431  NOT_PRODUCT(int insts_size);
2432  AdapterBlob* B = NULL;
2433  AdapterHandlerEntry* entry = NULL;
2434  AdapterFingerPrint* fingerprint = NULL;
2435  {
2436    MutexLocker mu(AdapterHandlerLibrary_lock);
2437    // make sure data structure is initialized
2438    initialize();
2439
2440    if (method->is_abstract()) {
2441      return _abstract_method_handler;
2442    }
2443
2444    // Fill in the signature array, for the calling-convention call.
2445    int total_args_passed = method->size_of_parameters(); // All args on stack
2446
2447    BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2448    VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2449    int i = 0;
2450    if (!method->is_static())  // Pass in receiver first
2451      sig_bt[i++] = T_OBJECT;
2452    for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2453      sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2454      if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2455        sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2456    }
2457    assert(i == total_args_passed, "");
2458
2459    // Lookup method signature's fingerprint
2460    entry = _adapters->lookup(total_args_passed, sig_bt);
2461
2462#ifdef ASSERT
2463    AdapterHandlerEntry* shared_entry = NULL;
2464    if (VerifyAdapterSharing && entry != NULL) {
2465      shared_entry = entry;
2466      entry = NULL;
2467    }
2468#endif
2469
2470    if (entry != NULL) {
2471      return entry;
2472    }
2473
2474    // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2475    int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2476
2477    // Make a C heap allocated version of the fingerprint to store in the adapter
2478    fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2479
2480    // Create I2C & C2I handlers
2481
2482    BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2483    if (buf != NULL) {
2484      CodeBuffer buffer(buf);
2485      short buffer_locs[20];
2486      buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2487                                             sizeof(buffer_locs)/sizeof(relocInfo));
2488      MacroAssembler _masm(&buffer);
2489
2490      entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2491                                                     total_args_passed,
2492                                                     comp_args_on_stack,
2493                                                     sig_bt,
2494                                                     regs,
2495                                                     fingerprint);
2496
2497#ifdef ASSERT
2498      if (VerifyAdapterSharing) {
2499        if (shared_entry != NULL) {
2500          assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
2501                 "code must match");
2502          // Release the one just created and return the original
2503          _adapters->free_entry(entry);
2504          return shared_entry;
2505        } else  {
2506          entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
2507        }
2508      }
2509#endif
2510
2511      B = AdapterBlob::create(&buffer);
2512      NOT_PRODUCT(insts_size = buffer.insts_size());
2513    }
2514    if (B == NULL) {
2515      // CodeCache is full, disable compilation
2516      // Ought to log this but compile log is only per compile thread
2517      // and we're some non descript Java thread.
2518      MutexUnlocker mu(AdapterHandlerLibrary_lock);
2519      CompileBroker::handle_full_code_cache();
2520      return NULL; // Out of CodeCache space
2521    }
2522    entry->relocate(B->content_begin());
2523#ifndef PRODUCT
2524    // debugging suppport
2525    if (PrintAdapterHandlers) {
2526      tty->cr();
2527      tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
2528                    _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2529                    method->signature()->as_C_string(), fingerprint->as_string(), insts_size );
2530      tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2531      Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + insts_size);
2532    }
2533#endif
2534
2535    _adapters->add(entry);
2536  }
2537  // Outside of the lock
2538  if (B != NULL) {
2539    char blob_id[256];
2540    jio_snprintf(blob_id,
2541                 sizeof(blob_id),
2542                 "%s(%s)@" PTR_FORMAT,
2543                 B->name(),
2544                 fingerprint->as_string(),
2545                 B->content_begin());
2546    Forte::register_stub(blob_id, B->content_begin(), B->content_end());
2547
2548    if (JvmtiExport::should_post_dynamic_code_generated()) {
2549      JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
2550    }
2551  }
2552  return entry;
2553}
2554
2555void AdapterHandlerEntry::relocate(address new_base) {
2556    ptrdiff_t delta = new_base - _i2c_entry;
2557    _i2c_entry += delta;
2558    _c2i_entry += delta;
2559    _c2i_unverified_entry += delta;
2560}
2561
2562
2563void AdapterHandlerEntry::deallocate() {
2564  delete _fingerprint;
2565#ifdef ASSERT
2566  if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2567  if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
2568#endif
2569}
2570
2571
2572#ifdef ASSERT
2573// Capture the code before relocation so that it can be compared
2574// against other versions.  If the code is captured after relocation
2575// then relative instructions won't be equivalent.
2576void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2577  _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
2578  _code_length = length;
2579  memcpy(_saved_code, buffer, length);
2580  _total_args_passed = total_args_passed;
2581  _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
2582  memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
2583}
2584
2585
2586bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2587  if (length != _code_length) {
2588    return false;
2589  }
2590  for (int i = 0; i < length; i++) {
2591    if (buffer[i] != _saved_code[i]) {
2592      return false;
2593    }
2594  }
2595  return true;
2596}
2597#endif
2598
2599
2600// Create a native wrapper for this native method.  The wrapper converts the
2601// java compiled calling convention to the native convention, handlizes
2602// arguments, and transitions to native.  On return from the native we transition
2603// back to java blocking if a safepoint is in progress.
2604nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
2605  ResourceMark rm;
2606  nmethod* nm = NULL;
2607
2608  assert(method->has_native_function(), "must have something valid to call!");
2609
2610  {
2611    // perform the work while holding the lock, but perform any printing outside the lock
2612    MutexLocker mu(AdapterHandlerLibrary_lock);
2613    // See if somebody beat us to it
2614    nm = method->code();
2615    if (nm) {
2616      return nm;
2617    }
2618
2619    ResourceMark rm;
2620
2621    BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2622    if (buf != NULL) {
2623      CodeBuffer buffer(buf);
2624      double locs_buf[20];
2625      buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2626      MacroAssembler _masm(&buffer);
2627
2628      // Fill in the signature array, for the calling-convention call.
2629      int total_args_passed = method->size_of_parameters();
2630
2631      BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
2632      VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
2633      int i=0;
2634      if( !method->is_static() )  // Pass in receiver first
2635        sig_bt[i++] = T_OBJECT;
2636      SignatureStream ss(method->signature());
2637      for( ; !ss.at_return_type(); ss.next()) {
2638        sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2639        if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2640          sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2641      }
2642      assert( i==total_args_passed, "" );
2643      BasicType ret_type = ss.type();
2644
2645      // Now get the compiled-Java layout as input arguments
2646      int comp_args_on_stack;
2647      comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2648
2649      // Generate the compiled-to-native wrapper code
2650      nm = SharedRuntime::generate_native_wrapper(&_masm,
2651                                                  method,
2652                                                  compile_id,
2653                                                  total_args_passed,
2654                                                  comp_args_on_stack,
2655                                                  sig_bt,regs,
2656                                                  ret_type);
2657    }
2658  }
2659
2660  // Must unlock before calling set_code
2661
2662  // Install the generated code.
2663  if (nm != NULL) {
2664    if (PrintCompilation) {
2665      ttyLocker ttyl;
2666      CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2667    }
2668    method->set_code(method, nm);
2669    nm->post_compiled_method_load_event();
2670  } else {
2671    // CodeCache is full, disable compilation
2672    CompileBroker::handle_full_code_cache();
2673  }
2674  return nm;
2675}
2676
2677#ifdef HAVE_DTRACE_H
2678// Create a dtrace nmethod for this method.  The wrapper converts the
2679// java compiled calling convention to the native convention, makes a dummy call
2680// (actually nops for the size of the call instruction, which become a trap if
2681// probe is enabled). The returns to the caller. Since this all looks like a
2682// leaf no thread transition is needed.
2683
2684nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2685  ResourceMark rm;
2686  nmethod* nm = NULL;
2687
2688  if (PrintCompilation) {
2689    ttyLocker ttyl;
2690    tty->print("---   n%s  ");
2691    method->print_short_name(tty);
2692    if (method->is_static()) {
2693      tty->print(" (static)");
2694    }
2695    tty->cr();
2696  }
2697
2698  {
2699    // perform the work while holding the lock, but perform any printing
2700    // outside the lock
2701    MutexLocker mu(AdapterHandlerLibrary_lock);
2702    // See if somebody beat us to it
2703    nm = method->code();
2704    if (nm) {
2705      return nm;
2706    }
2707
2708    ResourceMark rm;
2709
2710    BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2711    if (buf != NULL) {
2712      CodeBuffer buffer(buf);
2713      // Need a few relocation entries
2714      double locs_buf[20];
2715      buffer.insts()->initialize_shared_locs(
2716        (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2717      MacroAssembler _masm(&buffer);
2718
2719      // Generate the compiled-to-native wrapper code
2720      nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2721    }
2722  }
2723  return nm;
2724}
2725
2726// the dtrace method needs to convert java lang string to utf8 string.
2727void SharedRuntime::get_utf(oopDesc* src, address dst) {
2728  typeArrayOop jlsValue  = java_lang_String::value(src);
2729  int          jlsOffset = java_lang_String::offset(src);
2730  int          jlsLen    = java_lang_String::length(src);
2731  jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2732                                           jlsValue->char_at_addr(jlsOffset);
2733  assert(typeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2734  (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2735}
2736#endif // ndef HAVE_DTRACE_H
2737
2738// -------------------------------------------------------------------------
2739// Java-Java calling convention
2740// (what you use when Java calls Java)
2741
2742//------------------------------name_for_receiver----------------------------------
2743// For a given signature, return the VMReg for parameter 0.
2744VMReg SharedRuntime::name_for_receiver() {
2745  VMRegPair regs;
2746  BasicType sig_bt = T_OBJECT;
2747  (void) java_calling_convention(&sig_bt, &regs, 1, true);
2748  // Return argument 0 register.  In the LP64 build pointers
2749  // take 2 registers, but the VM wants only the 'main' name.
2750  return regs.first();
2751}
2752
2753VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) {
2754  // This method is returning a data structure allocating as a
2755  // ResourceObject, so do not put any ResourceMarks in here.
2756  char *s = sig->as_C_string();
2757  int len = (int)strlen(s);
2758  *s++; len--;                  // Skip opening paren
2759  char *t = s+len;
2760  while( *(--t) != ')' ) ;      // Find close paren
2761
2762  BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2763  VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2764  int cnt = 0;
2765  if (has_receiver) {
2766    sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2767  }
2768
2769  while( s < t ) {
2770    switch( *s++ ) {            // Switch on signature character
2771    case 'B': sig_bt[cnt++] = T_BYTE;    break;
2772    case 'C': sig_bt[cnt++] = T_CHAR;    break;
2773    case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2774    case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2775    case 'I': sig_bt[cnt++] = T_INT;     break;
2776    case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2777    case 'S': sig_bt[cnt++] = T_SHORT;   break;
2778    case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2779    case 'V': sig_bt[cnt++] = T_VOID;    break;
2780    case 'L':                   // Oop
2781      while( *s++ != ';'  ) ;   // Skip signature
2782      sig_bt[cnt++] = T_OBJECT;
2783      break;
2784    case '[': {                 // Array
2785      do {                      // Skip optional size
2786        while( *s >= '0' && *s <= '9' ) s++;
2787      } while( *s++ == '[' );   // Nested arrays?
2788      // Skip element type
2789      if( s[-1] == 'L' )
2790        while( *s++ != ';'  ) ; // Skip signature
2791      sig_bt[cnt++] = T_ARRAY;
2792      break;
2793    }
2794    default : ShouldNotReachHere();
2795    }
2796  }
2797  assert( cnt < 256, "grow table size" );
2798
2799  int comp_args_on_stack;
2800  comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2801
2802  // the calling convention doesn't count out_preserve_stack_slots so
2803  // we must add that in to get "true" stack offsets.
2804
2805  if (comp_args_on_stack) {
2806    for (int i = 0; i < cnt; i++) {
2807      VMReg reg1 = regs[i].first();
2808      if( reg1->is_stack()) {
2809        // Yuck
2810        reg1 = reg1->bias(out_preserve_stack_slots());
2811      }
2812      VMReg reg2 = regs[i].second();
2813      if( reg2->is_stack()) {
2814        // Yuck
2815        reg2 = reg2->bias(out_preserve_stack_slots());
2816      }
2817      regs[i].set_pair(reg2, reg1);
2818    }
2819  }
2820
2821  // results
2822  *arg_size = cnt;
2823  return regs;
2824}
2825
2826// OSR Migration Code
2827//
2828// This code is used convert interpreter frames into compiled frames.  It is
2829// called from very start of a compiled OSR nmethod.  A temp array is
2830// allocated to hold the interesting bits of the interpreter frame.  All
2831// active locks are inflated to allow them to move.  The displaced headers and
2832// active interpeter locals are copied into the temp buffer.  Then we return
2833// back to the compiled code.  The compiled code then pops the current
2834// interpreter frame off the stack and pushes a new compiled frame.  Then it
2835// copies the interpreter locals and displaced headers where it wants.
2836// Finally it calls back to free the temp buffer.
2837//
2838// All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2839
2840JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2841
2842#ifdef IA64
2843  ShouldNotReachHere(); // NYI
2844#endif /* IA64 */
2845
2846  //
2847  // This code is dependent on the memory layout of the interpreter local
2848  // array and the monitors. On all of our platforms the layout is identical
2849  // so this code is shared. If some platform lays the their arrays out
2850  // differently then this code could move to platform specific code or
2851  // the code here could be modified to copy items one at a time using
2852  // frame accessor methods and be platform independent.
2853
2854  frame fr = thread->last_frame();
2855  assert( fr.is_interpreted_frame(), "" );
2856  assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2857
2858  // Figure out how many monitors are active.
2859  int active_monitor_count = 0;
2860  for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2861       kptr < fr.interpreter_frame_monitor_begin();
2862       kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2863    if( kptr->obj() != NULL ) active_monitor_count++;
2864  }
2865
2866  // QQQ we could place number of active monitors in the array so that compiled code
2867  // could double check it.
2868
2869  methodOop moop = fr.interpreter_frame_method();
2870  int max_locals = moop->max_locals();
2871  // Allocate temp buffer, 1 word per local & 2 per active monitor
2872  int buf_size_words = max_locals + active_monitor_count*2;
2873  intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
2874
2875  // Copy the locals.  Order is preserved so that loading of longs works.
2876  // Since there's no GC I can copy the oops blindly.
2877  assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2878  Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2879                       (HeapWord*)&buf[0],
2880                       max_locals);
2881
2882  // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2883  int i = max_locals;
2884  for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2885       kptr2 < fr.interpreter_frame_monitor_begin();
2886       kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2887    if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2888      BasicLock *lock = kptr2->lock();
2889      // Inflate so the displaced header becomes position-independent
2890      if (lock->displaced_header()->is_unlocked())
2891        ObjectSynchronizer::inflate_helper(kptr2->obj());
2892      // Now the displaced header is free to move
2893      buf[i++] = (intptr_t)lock->displaced_header();
2894      buf[i++] = (intptr_t)kptr2->obj();
2895    }
2896  }
2897  assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2898
2899  return buf;
2900JRT_END
2901
2902JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2903  FREE_C_HEAP_ARRAY(intptr_t,buf);
2904JRT_END
2905
2906bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2907  AdapterHandlerTableIterator iter(_adapters);
2908  while (iter.has_next()) {
2909    AdapterHandlerEntry* a = iter.next();
2910    if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2911  }
2912  return false;
2913}
2914
2915void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2916  AdapterHandlerTableIterator iter(_adapters);
2917  while (iter.has_next()) {
2918    AdapterHandlerEntry* a = iter.next();
2919    if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
2920      st->print("Adapter for signature: ");
2921      st->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2922                   a->fingerprint()->as_string(),
2923                   a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
2924
2925      return;
2926    }
2927  }
2928  assert(false, "Should have found handler");
2929}
2930
2931#ifndef PRODUCT
2932
2933void AdapterHandlerLibrary::print_statistics() {
2934  _adapters->print_statistics();
2935}
2936
2937#endif /* PRODUCT */
2938