sharedRuntime.cpp revision 1879:f95d63e2154a
1/*
2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "classfile/vmSymbols.hpp"
28#include "code/compiledIC.hpp"
29#include "code/scopeDesc.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/abstractCompiler.hpp"
32#include "compiler/compileBroker.hpp"
33#include "compiler/compilerOracle.hpp"
34#include "interpreter/interpreter.hpp"
35#include "interpreter/interpreterRuntime.hpp"
36#include "memory/gcLocker.inline.hpp"
37#include "memory/universe.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "prims/forte.hpp"
40#include "prims/jvmtiExport.hpp"
41#include "prims/jvmtiRedefineClassesTrace.hpp"
42#include "prims/methodHandles.hpp"
43#include "prims/nativeLookup.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/biasedLocking.hpp"
46#include "runtime/handles.inline.hpp"
47#include "runtime/init.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/javaCalls.hpp"
50#include "runtime/sharedRuntime.hpp"
51#include "runtime/stubRoutines.hpp"
52#include "runtime/vframe.hpp"
53#include "runtime/vframeArray.hpp"
54#include "utilities/copy.hpp"
55#include "utilities/dtrace.hpp"
56#include "utilities/events.hpp"
57#include "utilities/hashtable.inline.hpp"
58#include "utilities/xmlstream.hpp"
59#ifdef TARGET_ARCH_x86
60# include "nativeInst_x86.hpp"
61# include "vmreg_x86.inline.hpp"
62#endif
63#ifdef TARGET_ARCH_sparc
64# include "nativeInst_sparc.hpp"
65# include "vmreg_sparc.inline.hpp"
66#endif
67#ifdef TARGET_ARCH_zero
68# include "nativeInst_zero.hpp"
69# include "vmreg_zero.inline.hpp"
70#endif
71#ifdef COMPILER1
72#include "c1/c1_Runtime1.hpp"
73#endif
74
75#include <math.h>
76
77HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
78HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
79                      char*, int, char*, int, char*, int);
80HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
81                      char*, int, char*, int, char*, int);
82
83// Implementation of SharedRuntime
84
85#ifndef PRODUCT
86// For statistics
87int SharedRuntime::_ic_miss_ctr = 0;
88int SharedRuntime::_wrong_method_ctr = 0;
89int SharedRuntime::_resolve_static_ctr = 0;
90int SharedRuntime::_resolve_virtual_ctr = 0;
91int SharedRuntime::_resolve_opt_virtual_ctr = 0;
92int SharedRuntime::_implicit_null_throws = 0;
93int SharedRuntime::_implicit_div0_throws = 0;
94int SharedRuntime::_throw_null_ctr = 0;
95
96int SharedRuntime::_nof_normal_calls = 0;
97int SharedRuntime::_nof_optimized_calls = 0;
98int SharedRuntime::_nof_inlined_calls = 0;
99int SharedRuntime::_nof_megamorphic_calls = 0;
100int SharedRuntime::_nof_static_calls = 0;
101int SharedRuntime::_nof_inlined_static_calls = 0;
102int SharedRuntime::_nof_interface_calls = 0;
103int SharedRuntime::_nof_optimized_interface_calls = 0;
104int SharedRuntime::_nof_inlined_interface_calls = 0;
105int SharedRuntime::_nof_megamorphic_interface_calls = 0;
106int SharedRuntime::_nof_removable_exceptions = 0;
107
108int SharedRuntime::_new_instance_ctr=0;
109int SharedRuntime::_new_array_ctr=0;
110int SharedRuntime::_multi1_ctr=0;
111int SharedRuntime::_multi2_ctr=0;
112int SharedRuntime::_multi3_ctr=0;
113int SharedRuntime::_multi4_ctr=0;
114int SharedRuntime::_multi5_ctr=0;
115int SharedRuntime::_mon_enter_stub_ctr=0;
116int SharedRuntime::_mon_exit_stub_ctr=0;
117int SharedRuntime::_mon_enter_ctr=0;
118int SharedRuntime::_mon_exit_ctr=0;
119int SharedRuntime::_partial_subtype_ctr=0;
120int SharedRuntime::_jbyte_array_copy_ctr=0;
121int SharedRuntime::_jshort_array_copy_ctr=0;
122int SharedRuntime::_jint_array_copy_ctr=0;
123int SharedRuntime::_jlong_array_copy_ctr=0;
124int SharedRuntime::_oop_array_copy_ctr=0;
125int SharedRuntime::_checkcast_array_copy_ctr=0;
126int SharedRuntime::_unsafe_array_copy_ctr=0;
127int SharedRuntime::_generic_array_copy_ctr=0;
128int SharedRuntime::_slow_array_copy_ctr=0;
129int SharedRuntime::_find_handler_ctr=0;
130int SharedRuntime::_rethrow_ctr=0;
131
132int     SharedRuntime::_ICmiss_index                    = 0;
133int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
134address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
135
136void SharedRuntime::trace_ic_miss(address at) {
137  for (int i = 0; i < _ICmiss_index; i++) {
138    if (_ICmiss_at[i] == at) {
139      _ICmiss_count[i]++;
140      return;
141    }
142  }
143  int index = _ICmiss_index++;
144  if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
145  _ICmiss_at[index] = at;
146  _ICmiss_count[index] = 1;
147}
148
149void SharedRuntime::print_ic_miss_histogram() {
150  if (ICMissHistogram) {
151    tty->print_cr ("IC Miss Histogram:");
152    int tot_misses = 0;
153    for (int i = 0; i < _ICmiss_index; i++) {
154      tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
155      tot_misses += _ICmiss_count[i];
156    }
157    tty->print_cr ("Total IC misses: %7d", tot_misses);
158  }
159}
160#endif // PRODUCT
161
162#ifndef SERIALGC
163
164// G1 write-barrier pre: executed before a pointer store.
165JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
166  if (orig == NULL) {
167    assert(false, "should be optimized out");
168    return;
169  }
170  assert(orig->is_oop(true /* ignore mark word */), "Error");
171  // store the original value that was in the field reference
172  thread->satb_mark_queue().enqueue(orig);
173JRT_END
174
175// G1 write-barrier post: executed after a pointer store.
176JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
177  thread->dirty_card_queue().enqueue(card_addr);
178JRT_END
179
180#endif // !SERIALGC
181
182
183JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
184  return x * y;
185JRT_END
186
187
188JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
189  if (x == min_jlong && y == CONST64(-1)) {
190    return x;
191  } else {
192    return x / y;
193  }
194JRT_END
195
196
197JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
198  if (x == min_jlong && y == CONST64(-1)) {
199    return 0;
200  } else {
201    return x % y;
202  }
203JRT_END
204
205
206const juint  float_sign_mask  = 0x7FFFFFFF;
207const juint  float_infinity   = 0x7F800000;
208const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
209const julong double_infinity  = CONST64(0x7FF0000000000000);
210
211JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
212#ifdef _WIN64
213  // 64-bit Windows on amd64 returns the wrong values for
214  // infinity operands.
215  union { jfloat f; juint i; } xbits, ybits;
216  xbits.f = x;
217  ybits.f = y;
218  // x Mod Infinity == x unless x is infinity
219  if ( ((xbits.i & float_sign_mask) != float_infinity) &&
220       ((ybits.i & float_sign_mask) == float_infinity) ) {
221    return x;
222  }
223#endif
224  return ((jfloat)fmod((double)x,(double)y));
225JRT_END
226
227
228JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
229#ifdef _WIN64
230  union { jdouble d; julong l; } xbits, ybits;
231  xbits.d = x;
232  ybits.d = y;
233  // x Mod Infinity == x unless x is infinity
234  if ( ((xbits.l & double_sign_mask) != double_infinity) &&
235       ((ybits.l & double_sign_mask) == double_infinity) ) {
236    return x;
237  }
238#endif
239  return ((jdouble)fmod((double)x,(double)y));
240JRT_END
241
242#ifdef __SOFTFP__
243JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
244  return x + y;
245JRT_END
246
247JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
248  return x - y;
249JRT_END
250
251JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
252  return x * y;
253JRT_END
254
255JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
256  return x / y;
257JRT_END
258
259JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
260  return x + y;
261JRT_END
262
263JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
264  return x - y;
265JRT_END
266
267JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
268  return x * y;
269JRT_END
270
271JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
272  return x / y;
273JRT_END
274
275JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
276  return (jfloat)x;
277JRT_END
278
279JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
280  return (jdouble)x;
281JRT_END
282
283JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
284  return (jdouble)x;
285JRT_END
286
287JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
288  return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
289JRT_END
290
291JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
292  return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
293JRT_END
294
295JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
296  return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
297JRT_END
298
299JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
300  return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
301JRT_END
302
303// Functions to return the opposite of the aeabi functions for nan.
304JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
305  return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
306JRT_END
307
308JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
309  return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
310JRT_END
311
312JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
313  return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
314JRT_END
315
316JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
317  return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
318JRT_END
319
320JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
321  return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
322JRT_END
323
324JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
325  return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
326JRT_END
327
328JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
329  return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
330JRT_END
331
332JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
333  return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
334JRT_END
335
336// Intrinsics make gcc generate code for these.
337float  SharedRuntime::fneg(float f)   {
338  return -f;
339}
340
341double SharedRuntime::dneg(double f)  {
342  return -f;
343}
344
345#endif // __SOFTFP__
346
347#if defined(__SOFTFP__) || defined(E500V2)
348// Intrinsics make gcc generate code for these.
349double SharedRuntime::dabs(double f)  {
350  return (f <= (double)0.0) ? (double)0.0 - f : f;
351}
352
353#endif
354
355#if defined(__SOFTFP__) || defined(PPC)
356double SharedRuntime::dsqrt(double f) {
357  return sqrt(f);
358}
359#endif
360
361JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
362  if (g_isnan(x))
363    return 0;
364  if (x >= (jfloat) max_jint)
365    return max_jint;
366  if (x <= (jfloat) min_jint)
367    return min_jint;
368  return (jint) x;
369JRT_END
370
371
372JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
373  if (g_isnan(x))
374    return 0;
375  if (x >= (jfloat) max_jlong)
376    return max_jlong;
377  if (x <= (jfloat) min_jlong)
378    return min_jlong;
379  return (jlong) x;
380JRT_END
381
382
383JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
384  if (g_isnan(x))
385    return 0;
386  if (x >= (jdouble) max_jint)
387    return max_jint;
388  if (x <= (jdouble) min_jint)
389    return min_jint;
390  return (jint) x;
391JRT_END
392
393
394JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
395  if (g_isnan(x))
396    return 0;
397  if (x >= (jdouble) max_jlong)
398    return max_jlong;
399  if (x <= (jdouble) min_jlong)
400    return min_jlong;
401  return (jlong) x;
402JRT_END
403
404
405JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
406  return (jfloat)x;
407JRT_END
408
409
410JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
411  return (jfloat)x;
412JRT_END
413
414
415JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
416  return (jdouble)x;
417JRT_END
418
419// Exception handling accross interpreter/compiler boundaries
420//
421// exception_handler_for_return_address(...) returns the continuation address.
422// The continuation address is the entry point of the exception handler of the
423// previous frame depending on the return address.
424
425address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
426  assert(frame::verify_return_pc(return_address), "must be a return pc");
427
428  // Reset MethodHandle flag.
429  thread->set_is_method_handle_return(false);
430
431  // the fastest case first
432  CodeBlob* blob = CodeCache::find_blob(return_address);
433  if (blob != NULL && blob->is_nmethod()) {
434    nmethod* code = (nmethod*)blob;
435    assert(code != NULL, "nmethod must be present");
436    // Check if the return address is a MethodHandle call site.
437    thread->set_is_method_handle_return(code->is_method_handle_return(return_address));
438    // native nmethods don't have exception handlers
439    assert(!code->is_native_method(), "no exception handler");
440    assert(code->header_begin() != code->exception_begin(), "no exception handler");
441    if (code->is_deopt_pc(return_address)) {
442      return SharedRuntime::deopt_blob()->unpack_with_exception();
443    } else {
444      return code->exception_begin();
445    }
446  }
447
448  // Entry code
449  if (StubRoutines::returns_to_call_stub(return_address)) {
450    return StubRoutines::catch_exception_entry();
451  }
452  // Interpreted code
453  if (Interpreter::contains(return_address)) {
454    return Interpreter::rethrow_exception_entry();
455  }
456
457  // Compiled code
458  if (CodeCache::contains(return_address)) {
459    CodeBlob* blob = CodeCache::find_blob(return_address);
460    if (blob->is_nmethod()) {
461      nmethod* code = (nmethod*)blob;
462      assert(code != NULL, "nmethod must be present");
463      // Check if the return address is a MethodHandle call site.
464      thread->set_is_method_handle_return(code->is_method_handle_return(return_address));
465      assert(code->header_begin() != code->exception_begin(), "no exception handler");
466      return code->exception_begin();
467    }
468    if (blob->is_runtime_stub()) {
469      ShouldNotReachHere();   // callers are responsible for skipping runtime stub frames
470    }
471  }
472  guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
473#ifndef PRODUCT
474  { ResourceMark rm;
475    tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
476    tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
477    tty->print_cr("b) other problem");
478  }
479#endif // PRODUCT
480  ShouldNotReachHere();
481  return NULL;
482}
483
484
485JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
486  return raw_exception_handler_for_return_address(thread, return_address);
487JRT_END
488
489
490address SharedRuntime::get_poll_stub(address pc) {
491  address stub;
492  // Look up the code blob
493  CodeBlob *cb = CodeCache::find_blob(pc);
494
495  // Should be an nmethod
496  assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
497
498  // Look up the relocation information
499  assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
500    "safepoint polling: type must be poll" );
501
502  assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
503    "Only polling locations are used for safepoint");
504
505  bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
506  if (at_poll_return) {
507    assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
508           "polling page return stub not created yet");
509    stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
510  } else {
511    assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
512           "polling page safepoint stub not created yet");
513    stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
514  }
515#ifndef PRODUCT
516  if( TraceSafepoint ) {
517    char buf[256];
518    jio_snprintf(buf, sizeof(buf),
519                 "... found polling page %s exception at pc = "
520                 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
521                 at_poll_return ? "return" : "loop",
522                 (intptr_t)pc, (intptr_t)stub);
523    tty->print_raw_cr(buf);
524  }
525#endif // PRODUCT
526  return stub;
527}
528
529
530oop SharedRuntime::retrieve_receiver( symbolHandle sig, frame caller ) {
531  assert(caller.is_interpreted_frame(), "");
532  int args_size = ArgumentSizeComputer(sig).size() + 1;
533  assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
534  oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
535  assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
536  return result;
537}
538
539
540void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
541  if (JvmtiExport::can_post_on_exceptions()) {
542    vframeStream vfst(thread, true);
543    methodHandle method = methodHandle(thread, vfst.method());
544    address bcp = method()->bcp_from(vfst.bci());
545    JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
546  }
547  Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
548}
549
550void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, symbolOop name, const char *message) {
551  Handle h_exception = Exceptions::new_exception(thread, name, message);
552  throw_and_post_jvmti_exception(thread, h_exception);
553}
554
555// The interpreter code to call this tracing function is only
556// called/generated when TraceRedefineClasses has the right bits
557// set. Since obsolete methods are never compiled, we don't have
558// to modify the compilers to generate calls to this function.
559//
560JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
561    JavaThread* thread, methodOopDesc* method))
562  assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
563
564  if (method->is_obsolete()) {
565    // We are calling an obsolete method, but this is not necessarily
566    // an error. Our method could have been redefined just after we
567    // fetched the methodOop from the constant pool.
568
569    // RC_TRACE macro has an embedded ResourceMark
570    RC_TRACE_WITH_THREAD(0x00001000, thread,
571                         ("calling obsolete method '%s'",
572                          method->name_and_sig_as_C_string()));
573    if (RC_TRACE_ENABLED(0x00002000)) {
574      // this option is provided to debug calls to obsolete methods
575      guarantee(false, "faulting at call to an obsolete method.");
576    }
577  }
578  return 0;
579JRT_END
580
581// ret_pc points into caller; we are returning caller's exception handler
582// for given exception
583address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
584                                                    bool force_unwind, bool top_frame_only) {
585  assert(nm != NULL, "must exist");
586  ResourceMark rm;
587
588  ScopeDesc* sd = nm->scope_desc_at(ret_pc);
589  // determine handler bci, if any
590  EXCEPTION_MARK;
591
592  int handler_bci = -1;
593  int scope_depth = 0;
594  if (!force_unwind) {
595    int bci = sd->bci();
596    do {
597      bool skip_scope_increment = false;
598      // exception handler lookup
599      KlassHandle ek (THREAD, exception->klass());
600      handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
601      if (HAS_PENDING_EXCEPTION) {
602        // We threw an exception while trying to find the exception handler.
603        // Transfer the new exception to the exception handle which will
604        // be set into thread local storage, and do another lookup for an
605        // exception handler for this exception, this time starting at the
606        // BCI of the exception handler which caused the exception to be
607        // thrown (bugs 4307310 and 4546590). Set "exception" reference
608        // argument to ensure that the correct exception is thrown (4870175).
609        exception = Handle(THREAD, PENDING_EXCEPTION);
610        CLEAR_PENDING_EXCEPTION;
611        if (handler_bci >= 0) {
612          bci = handler_bci;
613          handler_bci = -1;
614          skip_scope_increment = true;
615        }
616      }
617      if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
618        sd = sd->sender();
619        if (sd != NULL) {
620          bci = sd->bci();
621        }
622        ++scope_depth;
623      }
624    } while (!top_frame_only && handler_bci < 0 && sd != NULL);
625  }
626
627  // found handling method => lookup exception handler
628  int catch_pco = ret_pc - nm->code_begin();
629
630  ExceptionHandlerTable table(nm);
631  HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
632  if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
633    // Allow abbreviated catch tables.  The idea is to allow a method
634    // to materialize its exceptions without committing to the exact
635    // routing of exceptions.  In particular this is needed for adding
636    // a synthethic handler to unlock monitors when inlining
637    // synchonized methods since the unlock path isn't represented in
638    // the bytecodes.
639    t = table.entry_for(catch_pco, -1, 0);
640  }
641
642#ifdef COMPILER1
643  if (t == NULL && nm->is_compiled_by_c1()) {
644    assert(nm->unwind_handler_begin() != NULL, "");
645    return nm->unwind_handler_begin();
646  }
647#endif
648
649  if (t == NULL) {
650    tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
651    tty->print_cr("   Exception:");
652    exception->print();
653    tty->cr();
654    tty->print_cr(" Compiled exception table :");
655    table.print();
656    nm->print_code();
657    guarantee(false, "missing exception handler");
658    return NULL;
659  }
660
661  return nm->code_begin() + t->pco();
662}
663
664JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
665  // These errors occur only at call sites
666  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
667JRT_END
668
669JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
670  // These errors occur only at call sites
671  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
672JRT_END
673
674JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
675  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
676JRT_END
677
678JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
679  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
680JRT_END
681
682JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
683  // This entry point is effectively only used for NullPointerExceptions which occur at inline
684  // cache sites (when the callee activation is not yet set up) so we are at a call site
685  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
686JRT_END
687
688JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
689  // We avoid using the normal exception construction in this case because
690  // it performs an upcall to Java, and we're already out of stack space.
691  klassOop k = SystemDictionary::StackOverflowError_klass();
692  oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
693  Handle exception (thread, exception_oop);
694  if (StackTraceInThrowable) {
695    java_lang_Throwable::fill_in_stack_trace(exception);
696  }
697  throw_and_post_jvmti_exception(thread, exception);
698JRT_END
699
700address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
701                                                           address pc,
702                                                           SharedRuntime::ImplicitExceptionKind exception_kind)
703{
704  address target_pc = NULL;
705
706  if (Interpreter::contains(pc)) {
707#ifdef CC_INTERP
708    // C++ interpreter doesn't throw implicit exceptions
709    ShouldNotReachHere();
710#else
711    switch (exception_kind) {
712      case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
713      case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
714      case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
715      default:                      ShouldNotReachHere();
716    }
717#endif // !CC_INTERP
718  } else {
719    switch (exception_kind) {
720      case STACK_OVERFLOW: {
721        // Stack overflow only occurs upon frame setup; the callee is
722        // going to be unwound. Dispatch to a shared runtime stub
723        // which will cause the StackOverflowError to be fabricated
724        // and processed.
725        // For stack overflow in deoptimization blob, cleanup thread.
726        if (thread->deopt_mark() != NULL) {
727          Deoptimization::cleanup_deopt_info(thread, NULL);
728        }
729        return StubRoutines::throw_StackOverflowError_entry();
730      }
731
732      case IMPLICIT_NULL: {
733        if (VtableStubs::contains(pc)) {
734          // We haven't yet entered the callee frame. Fabricate an
735          // exception and begin dispatching it in the caller. Since
736          // the caller was at a call site, it's safe to destroy all
737          // caller-saved registers, as these entry points do.
738          VtableStub* vt_stub = VtableStubs::stub_containing(pc);
739
740          // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
741          if (vt_stub == NULL) return NULL;
742
743          if (vt_stub->is_abstract_method_error(pc)) {
744            assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
745            return StubRoutines::throw_AbstractMethodError_entry();
746          } else {
747            return StubRoutines::throw_NullPointerException_at_call_entry();
748          }
749        } else {
750          CodeBlob* cb = CodeCache::find_blob(pc);
751
752          // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
753          if (cb == NULL) return NULL;
754
755          // Exception happened in CodeCache. Must be either:
756          // 1. Inline-cache check in C2I handler blob,
757          // 2. Inline-cache check in nmethod, or
758          // 3. Implict null exception in nmethod
759
760          if (!cb->is_nmethod()) {
761            guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
762                      "exception happened outside interpreter, nmethods and vtable stubs (1)");
763            // There is no handler here, so we will simply unwind.
764            return StubRoutines::throw_NullPointerException_at_call_entry();
765          }
766
767          // Otherwise, it's an nmethod.  Consult its exception handlers.
768          nmethod* nm = (nmethod*)cb;
769          if (nm->inlinecache_check_contains(pc)) {
770            // exception happened inside inline-cache check code
771            // => the nmethod is not yet active (i.e., the frame
772            // is not set up yet) => use return address pushed by
773            // caller => don't push another return address
774            return StubRoutines::throw_NullPointerException_at_call_entry();
775          }
776
777#ifndef PRODUCT
778          _implicit_null_throws++;
779#endif
780          target_pc = nm->continuation_for_implicit_exception(pc);
781          // If there's an unexpected fault, target_pc might be NULL,
782          // in which case we want to fall through into the normal
783          // error handling code.
784        }
785
786        break; // fall through
787      }
788
789
790      case IMPLICIT_DIVIDE_BY_ZERO: {
791        nmethod* nm = CodeCache::find_nmethod(pc);
792        guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
793#ifndef PRODUCT
794        _implicit_div0_throws++;
795#endif
796        target_pc = nm->continuation_for_implicit_exception(pc);
797        // If there's an unexpected fault, target_pc might be NULL,
798        // in which case we want to fall through into the normal
799        // error handling code.
800        break; // fall through
801      }
802
803      default: ShouldNotReachHere();
804    }
805
806    assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
807
808    // for AbortVMOnException flag
809    NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
810    if (exception_kind == IMPLICIT_NULL) {
811      Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
812    } else {
813      Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
814    }
815    return target_pc;
816  }
817
818  ShouldNotReachHere();
819  return NULL;
820}
821
822
823JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
824{
825  THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
826}
827JNI_END
828
829
830address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
831  return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
832}
833
834
835#ifndef PRODUCT
836JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
837  const frame f = thread->last_frame();
838  assert(f.is_interpreted_frame(), "must be an interpreted frame");
839#ifndef PRODUCT
840  methodHandle mh(THREAD, f.interpreter_frame_method());
841  BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
842#endif // !PRODUCT
843  return preserve_this_value;
844JRT_END
845#endif // !PRODUCT
846
847
848JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
849  os::yield_all(attempts);
850JRT_END
851
852
853JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
854  assert(obj->is_oop(), "must be a valid oop");
855  assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
856  instanceKlass::register_finalizer(instanceOop(obj), CHECK);
857JRT_END
858
859
860jlong SharedRuntime::get_java_tid(Thread* thread) {
861  if (thread != NULL) {
862    if (thread->is_Java_thread()) {
863      oop obj = ((JavaThread*)thread)->threadObj();
864      return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
865    }
866  }
867  return 0;
868}
869
870/**
871 * This function ought to be a void function, but cannot be because
872 * it gets turned into a tail-call on sparc, which runs into dtrace bug
873 * 6254741.  Once that is fixed we can remove the dummy return value.
874 */
875int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
876  return dtrace_object_alloc_base(Thread::current(), o);
877}
878
879int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
880  assert(DTraceAllocProbes, "wrong call");
881  Klass* klass = o->blueprint();
882  int size = o->size();
883  symbolOop name = klass->name();
884  HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
885                   name->bytes(), name->utf8_length(), size * HeapWordSize);
886  return 0;
887}
888
889JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
890    JavaThread* thread, methodOopDesc* method))
891  assert(DTraceMethodProbes, "wrong call");
892  symbolOop kname = method->klass_name();
893  symbolOop name = method->name();
894  symbolOop sig = method->signature();
895  HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
896      kname->bytes(), kname->utf8_length(),
897      name->bytes(), name->utf8_length(),
898      sig->bytes(), sig->utf8_length());
899  return 0;
900JRT_END
901
902JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
903    JavaThread* thread, methodOopDesc* method))
904  assert(DTraceMethodProbes, "wrong call");
905  symbolOop kname = method->klass_name();
906  symbolOop name = method->name();
907  symbolOop sig = method->signature();
908  HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
909      kname->bytes(), kname->utf8_length(),
910      name->bytes(), name->utf8_length(),
911      sig->bytes(), sig->utf8_length());
912  return 0;
913JRT_END
914
915
916// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
917// for a call current in progress, i.e., arguments has been pushed on stack
918// put callee has not been invoked yet.  Used by: resolve virtual/static,
919// vtable updates, etc.  Caller frame must be compiled.
920Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
921  ResourceMark rm(THREAD);
922
923  // last java frame on stack (which includes native call frames)
924  vframeStream vfst(thread, true);  // Do not skip and javaCalls
925
926  return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
927}
928
929
930// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
931// for a call current in progress, i.e., arguments has been pushed on stack
932// but callee has not been invoked yet.  Caller frame must be compiled.
933Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
934                                              vframeStream& vfst,
935                                              Bytecodes::Code& bc,
936                                              CallInfo& callinfo, TRAPS) {
937  Handle receiver;
938  Handle nullHandle;  //create a handy null handle for exception returns
939
940  assert(!vfst.at_end(), "Java frame must exist");
941
942  // Find caller and bci from vframe
943  methodHandle caller (THREAD, vfst.method());
944  int          bci    = vfst.bci();
945
946  // Find bytecode
947  Bytecode_invoke* bytecode = Bytecode_invoke_at(caller, bci);
948  bc = bytecode->java_code();
949  int bytecode_index = bytecode->index();
950
951  // Find receiver for non-static call
952  if (bc != Bytecodes::_invokestatic) {
953    // This register map must be update since we need to find the receiver for
954    // compiled frames. The receiver might be in a register.
955    RegisterMap reg_map2(thread);
956    frame stubFrame   = thread->last_frame();
957    // Caller-frame is a compiled frame
958    frame callerFrame = stubFrame.sender(&reg_map2);
959
960    methodHandle callee = bytecode->static_target(CHECK_(nullHandle));
961    if (callee.is_null()) {
962      THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
963    }
964    // Retrieve from a compiled argument list
965    receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
966
967    if (receiver.is_null()) {
968      THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
969    }
970  }
971
972  // Resolve method. This is parameterized by bytecode.
973  constantPoolHandle constants (THREAD, caller->constants());
974  assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
975  LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
976
977#ifdef ASSERT
978  // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
979  if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
980    assert(receiver.not_null(), "should have thrown exception");
981    KlassHandle receiver_klass (THREAD, receiver->klass());
982    klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
983                            // klass is already loaded
984    KlassHandle static_receiver_klass (THREAD, rk);
985    assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
986    if (receiver_klass->oop_is_instance()) {
987      if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
988        tty->print_cr("ERROR: Klass not yet initialized!!");
989        receiver_klass.print();
990      }
991      assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
992    }
993  }
994#endif
995
996  return receiver;
997}
998
999methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1000  ResourceMark rm(THREAD);
1001  // We need first to check if any Java activations (compiled, interpreted)
1002  // exist on the stack since last JavaCall.  If not, we need
1003  // to get the target method from the JavaCall wrapper.
1004  vframeStream vfst(thread, true);  // Do not skip any javaCalls
1005  methodHandle callee_method;
1006  if (vfst.at_end()) {
1007    // No Java frames were found on stack since we did the JavaCall.
1008    // Hence the stack can only contain an entry_frame.  We need to
1009    // find the target method from the stub frame.
1010    RegisterMap reg_map(thread, false);
1011    frame fr = thread->last_frame();
1012    assert(fr.is_runtime_frame(), "must be a runtimeStub");
1013    fr = fr.sender(&reg_map);
1014    assert(fr.is_entry_frame(), "must be");
1015    // fr is now pointing to the entry frame.
1016    callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1017    assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1018  } else {
1019    Bytecodes::Code bc;
1020    CallInfo callinfo;
1021    find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1022    callee_method = callinfo.selected_method();
1023  }
1024  assert(callee_method()->is_method(), "must be");
1025  return callee_method;
1026}
1027
1028// Resolves a call.
1029methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1030                                           bool is_virtual,
1031                                           bool is_optimized, TRAPS) {
1032  methodHandle callee_method;
1033  callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1034  if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1035    int retry_count = 0;
1036    while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1037           callee_method->method_holder() != SystemDictionary::Object_klass()) {
1038      // If has a pending exception then there is no need to re-try to
1039      // resolve this method.
1040      // If the method has been redefined, we need to try again.
1041      // Hack: we have no way to update the vtables of arrays, so don't
1042      // require that java.lang.Object has been updated.
1043
1044      // It is very unlikely that method is redefined more than 100 times
1045      // in the middle of resolve. If it is looping here more than 100 times
1046      // means then there could be a bug here.
1047      guarantee((retry_count++ < 100),
1048                "Could not resolve to latest version of redefined method");
1049      // method is redefined in the middle of resolve so re-try.
1050      callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1051    }
1052  }
1053  return callee_method;
1054}
1055
1056// Resolves a call.  The compilers generate code for calls that go here
1057// and are patched with the real destination of the call.
1058methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1059                                           bool is_virtual,
1060                                           bool is_optimized, TRAPS) {
1061
1062  ResourceMark rm(thread);
1063  RegisterMap cbl_map(thread, false);
1064  frame caller_frame = thread->last_frame().sender(&cbl_map);
1065
1066  CodeBlob* caller_cb = caller_frame.cb();
1067  guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1068  nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1069  // make sure caller is not getting deoptimized
1070  // and removed before we are done with it.
1071  // CLEANUP - with lazy deopt shouldn't need this lock
1072  nmethodLocker caller_lock(caller_nm);
1073
1074
1075  // determine call info & receiver
1076  // note: a) receiver is NULL for static calls
1077  //       b) an exception is thrown if receiver is NULL for non-static calls
1078  CallInfo call_info;
1079  Bytecodes::Code invoke_code = Bytecodes::_illegal;
1080  Handle receiver = find_callee_info(thread, invoke_code,
1081                                     call_info, CHECK_(methodHandle()));
1082  methodHandle callee_method = call_info.selected_method();
1083
1084  assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
1085         ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
1086
1087#ifndef PRODUCT
1088  // tracing/debugging/statistics
1089  int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1090                (is_virtual) ? (&_resolve_virtual_ctr) :
1091                               (&_resolve_static_ctr);
1092  Atomic::inc(addr);
1093
1094  if (TraceCallFixup) {
1095    ResourceMark rm(thread);
1096    tty->print("resolving %s%s (%s) call to",
1097      (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1098      Bytecodes::name(invoke_code));
1099    callee_method->print_short_name(tty);
1100    tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1101  }
1102#endif
1103
1104  // JSR 292
1105  // If the resolved method is a MethodHandle invoke target the call
1106  // site must be a MethodHandle call site.
1107  if (callee_method->is_method_handle_invoke()) {
1108    assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1109  }
1110
1111  // Compute entry points. This might require generation of C2I converter
1112  // frames, so we cannot be holding any locks here. Furthermore, the
1113  // computation of the entry points is independent of patching the call.  We
1114  // always return the entry-point, but we only patch the stub if the call has
1115  // not been deoptimized.  Return values: For a virtual call this is an
1116  // (cached_oop, destination address) pair. For a static call/optimized
1117  // virtual this is just a destination address.
1118
1119  StaticCallInfo static_call_info;
1120  CompiledICInfo virtual_call_info;
1121
1122  // Make sure the callee nmethod does not get deoptimized and removed before
1123  // we are done patching the code.
1124  nmethod* callee_nm = callee_method->code();
1125  nmethodLocker nl_callee(callee_nm);
1126#ifdef ASSERT
1127  address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1128#endif
1129
1130  if (is_virtual) {
1131    assert(receiver.not_null(), "sanity check");
1132    bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1133    KlassHandle h_klass(THREAD, receiver->klass());
1134    CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1135                     is_optimized, static_bound, virtual_call_info,
1136                     CHECK_(methodHandle()));
1137  } else {
1138    // static call
1139    CompiledStaticCall::compute_entry(callee_method, static_call_info);
1140  }
1141
1142  // grab lock, check for deoptimization and potentially patch caller
1143  {
1144    MutexLocker ml_patch(CompiledIC_lock);
1145
1146    // Now that we are ready to patch if the methodOop was redefined then
1147    // don't update call site and let the caller retry.
1148
1149    if (!callee_method->is_old()) {
1150#ifdef ASSERT
1151      // We must not try to patch to jump to an already unloaded method.
1152      if (dest_entry_point != 0) {
1153        assert(CodeCache::find_blob(dest_entry_point) != NULL,
1154               "should not unload nmethod while locked");
1155      }
1156#endif
1157      if (is_virtual) {
1158        CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1159        if (inline_cache->is_clean()) {
1160          inline_cache->set_to_monomorphic(virtual_call_info);
1161        }
1162      } else {
1163        CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1164        if (ssc->is_clean()) ssc->set(static_call_info);
1165      }
1166    }
1167
1168  } // unlock CompiledIC_lock
1169
1170  return callee_method;
1171}
1172
1173
1174// Inline caches exist only in compiled code
1175JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1176#ifdef ASSERT
1177  RegisterMap reg_map(thread, false);
1178  frame stub_frame = thread->last_frame();
1179  assert(stub_frame.is_runtime_frame(), "sanity check");
1180  frame caller_frame = stub_frame.sender(&reg_map);
1181  assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1182#endif /* ASSERT */
1183
1184  methodHandle callee_method;
1185  JRT_BLOCK
1186    callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1187    // Return methodOop through TLS
1188    thread->set_vm_result(callee_method());
1189  JRT_BLOCK_END
1190  // return compiled code entry point after potential safepoints
1191  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1192  return callee_method->verified_code_entry();
1193JRT_END
1194
1195
1196// Handle call site that has been made non-entrant
1197JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1198  // 6243940 We might end up in here if the callee is deoptimized
1199  // as we race to call it.  We don't want to take a safepoint if
1200  // the caller was interpreted because the caller frame will look
1201  // interpreted to the stack walkers and arguments are now
1202  // "compiled" so it is much better to make this transition
1203  // invisible to the stack walking code. The i2c path will
1204  // place the callee method in the callee_target. It is stashed
1205  // there because if we try and find the callee by normal means a
1206  // safepoint is possible and have trouble gc'ing the compiled args.
1207  RegisterMap reg_map(thread, false);
1208  frame stub_frame = thread->last_frame();
1209  assert(stub_frame.is_runtime_frame(), "sanity check");
1210  frame caller_frame = stub_frame.sender(&reg_map);
1211
1212  // MethodHandle invokes don't have a CompiledIC and should always
1213  // simply redispatch to the callee_target.
1214  address   sender_pc = caller_frame.pc();
1215  CodeBlob* sender_cb = caller_frame.cb();
1216  nmethod*  sender_nm = sender_cb->as_nmethod_or_null();
1217  bool is_mh_invoke_via_adapter = false;  // Direct c2c call or via adapter?
1218  if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
1219    // If the callee_target is set, then we have come here via an i2c
1220    // adapter.
1221    methodOop callee = thread->callee_target();
1222    if (callee != NULL) {
1223      assert(callee->is_method(), "sanity");
1224      is_mh_invoke_via_adapter = true;
1225    }
1226  }
1227
1228  if (caller_frame.is_interpreted_frame() ||
1229      caller_frame.is_entry_frame()       ||
1230      is_mh_invoke_via_adapter) {
1231    methodOop callee = thread->callee_target();
1232    guarantee(callee != NULL && callee->is_method(), "bad handshake");
1233    thread->set_vm_result(callee);
1234    thread->set_callee_target(NULL);
1235    return callee->get_c2i_entry();
1236  }
1237
1238  // Must be compiled to compiled path which is safe to stackwalk
1239  methodHandle callee_method;
1240  JRT_BLOCK
1241    // Force resolving of caller (if we called from compiled frame)
1242    callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1243    thread->set_vm_result(callee_method());
1244  JRT_BLOCK_END
1245  // return compiled code entry point after potential safepoints
1246  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1247  return callee_method->verified_code_entry();
1248JRT_END
1249
1250
1251// resolve a static call and patch code
1252JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1253  methodHandle callee_method;
1254  JRT_BLOCK
1255    callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1256    thread->set_vm_result(callee_method());
1257  JRT_BLOCK_END
1258  // return compiled code entry point after potential safepoints
1259  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1260  return callee_method->verified_code_entry();
1261JRT_END
1262
1263
1264// resolve virtual call and update inline cache to monomorphic
1265JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1266  methodHandle callee_method;
1267  JRT_BLOCK
1268    callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1269    thread->set_vm_result(callee_method());
1270  JRT_BLOCK_END
1271  // return compiled code entry point after potential safepoints
1272  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1273  return callee_method->verified_code_entry();
1274JRT_END
1275
1276
1277// Resolve a virtual call that can be statically bound (e.g., always
1278// monomorphic, so it has no inline cache).  Patch code to resolved target.
1279JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1280  methodHandle callee_method;
1281  JRT_BLOCK
1282    callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1283    thread->set_vm_result(callee_method());
1284  JRT_BLOCK_END
1285  // return compiled code entry point after potential safepoints
1286  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1287  return callee_method->verified_code_entry();
1288JRT_END
1289
1290
1291
1292
1293
1294methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1295  ResourceMark rm(thread);
1296  CallInfo call_info;
1297  Bytecodes::Code bc;
1298
1299  // receiver is NULL for static calls. An exception is thrown for NULL
1300  // receivers for non-static calls
1301  Handle receiver = find_callee_info(thread, bc, call_info,
1302                                     CHECK_(methodHandle()));
1303  // Compiler1 can produce virtual call sites that can actually be statically bound
1304  // If we fell thru to below we would think that the site was going megamorphic
1305  // when in fact the site can never miss. Worse because we'd think it was megamorphic
1306  // we'd try and do a vtable dispatch however methods that can be statically bound
1307  // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1308  // reresolution of the  call site (as if we did a handle_wrong_method and not an
1309  // plain ic_miss) and the site will be converted to an optimized virtual call site
1310  // never to miss again. I don't believe C2 will produce code like this but if it
1311  // did this would still be the correct thing to do for it too, hence no ifdef.
1312  //
1313  if (call_info.resolved_method()->can_be_statically_bound()) {
1314    methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1315    if (TraceCallFixup) {
1316      RegisterMap reg_map(thread, false);
1317      frame caller_frame = thread->last_frame().sender(&reg_map);
1318      ResourceMark rm(thread);
1319      tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1320      callee_method->print_short_name(tty);
1321      tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1322      tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1323    }
1324    return callee_method;
1325  }
1326
1327  methodHandle callee_method = call_info.selected_method();
1328
1329  bool should_be_mono = false;
1330
1331#ifndef PRODUCT
1332  Atomic::inc(&_ic_miss_ctr);
1333
1334  // Statistics & Tracing
1335  if (TraceCallFixup) {
1336    ResourceMark rm(thread);
1337    tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1338    callee_method->print_short_name(tty);
1339    tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1340  }
1341
1342  if (ICMissHistogram) {
1343    MutexLocker m(VMStatistic_lock);
1344    RegisterMap reg_map(thread, false);
1345    frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1346    // produce statistics under the lock
1347    trace_ic_miss(f.pc());
1348  }
1349#endif
1350
1351  // install an event collector so that when a vtable stub is created the
1352  // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1353  // event can't be posted when the stub is created as locks are held
1354  // - instead the event will be deferred until the event collector goes
1355  // out of scope.
1356  JvmtiDynamicCodeEventCollector event_collector;
1357
1358  // Update inline cache to megamorphic. Skip update if caller has been
1359  // made non-entrant or we are called from interpreted.
1360  { MutexLocker ml_patch (CompiledIC_lock);
1361    RegisterMap reg_map(thread, false);
1362    frame caller_frame = thread->last_frame().sender(&reg_map);
1363    CodeBlob* cb = caller_frame.cb();
1364    if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1365      // Not a non-entrant nmethod, so find inline_cache
1366      CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1367      bool should_be_mono = false;
1368      if (inline_cache->is_optimized()) {
1369        if (TraceCallFixup) {
1370          ResourceMark rm(thread);
1371          tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1372          callee_method->print_short_name(tty);
1373          tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1374        }
1375        should_be_mono = true;
1376      } else {
1377        compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
1378        if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
1379
1380          if (receiver()->klass() == ic_oop->holder_klass()) {
1381            // This isn't a real miss. We must have seen that compiled code
1382            // is now available and we want the call site converted to a
1383            // monomorphic compiled call site.
1384            // We can't assert for callee_method->code() != NULL because it
1385            // could have been deoptimized in the meantime
1386            if (TraceCallFixup) {
1387              ResourceMark rm(thread);
1388              tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1389              callee_method->print_short_name(tty);
1390              tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1391            }
1392            should_be_mono = true;
1393          }
1394        }
1395      }
1396
1397      if (should_be_mono) {
1398
1399        // We have a path that was monomorphic but was going interpreted
1400        // and now we have (or had) a compiled entry. We correct the IC
1401        // by using a new icBuffer.
1402        CompiledICInfo info;
1403        KlassHandle receiver_klass(THREAD, receiver()->klass());
1404        inline_cache->compute_monomorphic_entry(callee_method,
1405                                                receiver_klass,
1406                                                inline_cache->is_optimized(),
1407                                                false,
1408                                                info, CHECK_(methodHandle()));
1409        inline_cache->set_to_monomorphic(info);
1410      } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1411        // Change to megamorphic
1412        inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1413      } else {
1414        // Either clean or megamorphic
1415      }
1416    }
1417  } // Release CompiledIC_lock
1418
1419  return callee_method;
1420}
1421
1422//
1423// Resets a call-site in compiled code so it will get resolved again.
1424// This routines handles both virtual call sites, optimized virtual call
1425// sites, and static call sites. Typically used to change a call sites
1426// destination from compiled to interpreted.
1427//
1428methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1429  ResourceMark rm(thread);
1430  RegisterMap reg_map(thread, false);
1431  frame stub_frame = thread->last_frame();
1432  assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1433  frame caller = stub_frame.sender(&reg_map);
1434
1435  // Do nothing if the frame isn't a live compiled frame.
1436  // nmethod could be deoptimized by the time we get here
1437  // so no update to the caller is needed.
1438
1439  if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1440
1441    address pc = caller.pc();
1442    Events::log("update call-site at pc " INTPTR_FORMAT, pc);
1443
1444    // Default call_addr is the location of the "basic" call.
1445    // Determine the address of the call we a reresolving. With
1446    // Inline Caches we will always find a recognizable call.
1447    // With Inline Caches disabled we may or may not find a
1448    // recognizable call. We will always find a call for static
1449    // calls and for optimized virtual calls. For vanilla virtual
1450    // calls it depends on the state of the UseInlineCaches switch.
1451    //
1452    // With Inline Caches disabled we can get here for a virtual call
1453    // for two reasons:
1454    //   1 - calling an abstract method. The vtable for abstract methods
1455    //       will run us thru handle_wrong_method and we will eventually
1456    //       end up in the interpreter to throw the ame.
1457    //   2 - a racing deoptimization. We could be doing a vanilla vtable
1458    //       call and between the time we fetch the entry address and
1459    //       we jump to it the target gets deoptimized. Similar to 1
1460    //       we will wind up in the interprter (thru a c2i with c2).
1461    //
1462    address call_addr = NULL;
1463    {
1464      // Get call instruction under lock because another thread may be
1465      // busy patching it.
1466      MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1467      // Location of call instruction
1468      if (NativeCall::is_call_before(pc)) {
1469        NativeCall *ncall = nativeCall_before(pc);
1470        call_addr = ncall->instruction_address();
1471      }
1472    }
1473
1474    // Check for static or virtual call
1475    bool is_static_call = false;
1476    nmethod* caller_nm = CodeCache::find_nmethod(pc);
1477    // Make sure nmethod doesn't get deoptimized and removed until
1478    // this is done with it.
1479    // CLEANUP - with lazy deopt shouldn't need this lock
1480    nmethodLocker nmlock(caller_nm);
1481
1482    if (call_addr != NULL) {
1483      RelocIterator iter(caller_nm, call_addr, call_addr+1);
1484      int ret = iter.next(); // Get item
1485      if (ret) {
1486        assert(iter.addr() == call_addr, "must find call");
1487        if (iter.type() == relocInfo::static_call_type) {
1488          is_static_call = true;
1489        } else {
1490          assert(iter.type() == relocInfo::virtual_call_type ||
1491                 iter.type() == relocInfo::opt_virtual_call_type
1492                , "unexpected relocInfo. type");
1493        }
1494      } else {
1495        assert(!UseInlineCaches, "relocation info. must exist for this address");
1496      }
1497
1498      // Cleaning the inline cache will force a new resolve. This is more robust
1499      // than directly setting it to the new destination, since resolving of calls
1500      // is always done through the same code path. (experience shows that it
1501      // leads to very hard to track down bugs, if an inline cache gets updated
1502      // to a wrong method). It should not be performance critical, since the
1503      // resolve is only done once.
1504
1505      MutexLocker ml(CompiledIC_lock);
1506      //
1507      // We do not patch the call site if the nmethod has been made non-entrant
1508      // as it is a waste of time
1509      //
1510      if (caller_nm->is_in_use()) {
1511        if (is_static_call) {
1512          CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1513          ssc->set_to_clean();
1514        } else {
1515          // compiled, dispatched call (which used to call an interpreted method)
1516          CompiledIC* inline_cache = CompiledIC_at(call_addr);
1517          inline_cache->set_to_clean();
1518        }
1519      }
1520    }
1521
1522  }
1523
1524  methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1525
1526
1527#ifndef PRODUCT
1528  Atomic::inc(&_wrong_method_ctr);
1529
1530  if (TraceCallFixup) {
1531    ResourceMark rm(thread);
1532    tty->print("handle_wrong_method reresolving call to");
1533    callee_method->print_short_name(tty);
1534    tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1535  }
1536#endif
1537
1538  return callee_method;
1539}
1540
1541// ---------------------------------------------------------------------------
1542// We are calling the interpreter via a c2i. Normally this would mean that
1543// we were called by a compiled method. However we could have lost a race
1544// where we went int -> i2c -> c2i and so the caller could in fact be
1545// interpreted. If the caller is compiled we attempt to patch the caller
1546// so he no longer calls into the interpreter.
1547IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
1548  methodOop moop(method);
1549
1550  address entry_point = moop->from_compiled_entry();
1551
1552  // It's possible that deoptimization can occur at a call site which hasn't
1553  // been resolved yet, in which case this function will be called from
1554  // an nmethod that has been patched for deopt and we can ignore the
1555  // request for a fixup.
1556  // Also it is possible that we lost a race in that from_compiled_entry
1557  // is now back to the i2c in that case we don't need to patch and if
1558  // we did we'd leap into space because the callsite needs to use
1559  // "to interpreter" stub in order to load up the methodOop. Don't
1560  // ask me how I know this...
1561
1562  CodeBlob* cb = CodeCache::find_blob(caller_pc);
1563  if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1564    return;
1565  }
1566
1567  // The check above makes sure this is a nmethod.
1568  nmethod* nm = cb->as_nmethod_or_null();
1569  assert(nm, "must be");
1570
1571  // Don't fixup MethodHandle call sites as c2i/i2c adapters are used
1572  // to implement MethodHandle actions.
1573  if (nm->is_method_handle_return(caller_pc)) {
1574    return;
1575  }
1576
1577  // There is a benign race here. We could be attempting to patch to a compiled
1578  // entry point at the same time the callee is being deoptimized. If that is
1579  // the case then entry_point may in fact point to a c2i and we'd patch the
1580  // call site with the same old data. clear_code will set code() to NULL
1581  // at the end of it. If we happen to see that NULL then we can skip trying
1582  // to patch. If we hit the window where the callee has a c2i in the
1583  // from_compiled_entry and the NULL isn't present yet then we lose the race
1584  // and patch the code with the same old data. Asi es la vida.
1585
1586  if (moop->code() == NULL) return;
1587
1588  if (nm->is_in_use()) {
1589
1590    // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1591    MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1592    if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
1593      NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
1594      //
1595      // bug 6281185. We might get here after resolving a call site to a vanilla
1596      // virtual call. Because the resolvee uses the verified entry it may then
1597      // see compiled code and attempt to patch the site by calling us. This would
1598      // then incorrectly convert the call site to optimized and its downhill from
1599      // there. If you're lucky you'll get the assert in the bugid, if not you've
1600      // just made a call site that could be megamorphic into a monomorphic site
1601      // for the rest of its life! Just another racing bug in the life of
1602      // fixup_callers_callsite ...
1603      //
1604      RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1605      iter.next();
1606      assert(iter.has_current(), "must have a reloc at java call site");
1607      relocInfo::relocType typ = iter.reloc()->type();
1608      if ( typ != relocInfo::static_call_type &&
1609           typ != relocInfo::opt_virtual_call_type &&
1610           typ != relocInfo::static_stub_type) {
1611        return;
1612      }
1613      address destination = call->destination();
1614      if (destination != entry_point) {
1615        CodeBlob* callee = CodeCache::find_blob(destination);
1616        // callee == cb seems weird. It means calling interpreter thru stub.
1617        if (callee == cb || callee->is_adapter_blob()) {
1618          // static call or optimized virtual
1619          if (TraceCallFixup) {
1620            tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1621            moop->print_short_name(tty);
1622            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1623          }
1624          call->set_destination_mt_safe(entry_point);
1625        } else {
1626          if (TraceCallFixup) {
1627            tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1628            moop->print_short_name(tty);
1629            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1630          }
1631          // assert is too strong could also be resolve destinations.
1632          // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1633        }
1634      } else {
1635          if (TraceCallFixup) {
1636            tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1637            moop->print_short_name(tty);
1638            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1639          }
1640      }
1641    }
1642  }
1643
1644IRT_END
1645
1646
1647// same as JVM_Arraycopy, but called directly from compiled code
1648JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1649                                                oopDesc* dest, jint dest_pos,
1650                                                jint length,
1651                                                JavaThread* thread)) {
1652#ifndef PRODUCT
1653  _slow_array_copy_ctr++;
1654#endif
1655  // Check if we have null pointers
1656  if (src == NULL || dest == NULL) {
1657    THROW(vmSymbols::java_lang_NullPointerException());
1658  }
1659  // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1660  // even though the copy_array API also performs dynamic checks to ensure
1661  // that src and dest are truly arrays (and are conformable).
1662  // The copy_array mechanism is awkward and could be removed, but
1663  // the compilers don't call this function except as a last resort,
1664  // so it probably doesn't matter.
1665  Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
1666                                        (arrayOopDesc*)dest, dest_pos,
1667                                        length, thread);
1668}
1669JRT_END
1670
1671char* SharedRuntime::generate_class_cast_message(
1672    JavaThread* thread, const char* objName) {
1673
1674  // Get target class name from the checkcast instruction
1675  vframeStream vfst(thread, true);
1676  assert(!vfst.at_end(), "Java frame must exist");
1677  Bytecode_checkcast* cc = Bytecode_checkcast_at(
1678    vfst.method()->bcp_from(vfst.bci()));
1679  Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
1680    cc->index(), thread));
1681  return generate_class_cast_message(objName, targetKlass->external_name());
1682}
1683
1684char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
1685                                                        oopDesc* required,
1686                                                        oopDesc* actual) {
1687  if (TraceMethodHandles) {
1688    tty->print_cr("WrongMethodType thread="PTR_FORMAT" req="PTR_FORMAT" act="PTR_FORMAT"",
1689                  thread, required, actual);
1690  }
1691  assert(EnableMethodHandles, "");
1692  oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
1693  char* message = NULL;
1694  if (singleKlass != NULL) {
1695    const char* objName = "argument or return value";
1696    if (actual != NULL) {
1697      // be flexible about the junk passed in:
1698      klassOop ak = (actual->is_klass()
1699                     ? (klassOop)actual
1700                     : actual->klass());
1701      objName = Klass::cast(ak)->external_name();
1702    }
1703    Klass* targetKlass = Klass::cast(required->is_klass()
1704                                     ? (klassOop)required
1705                                     : java_lang_Class::as_klassOop(required));
1706    message = generate_class_cast_message(objName, targetKlass->external_name());
1707  } else {
1708    // %%% need to get the MethodType string, without messing around too much
1709    // Get a signature from the invoke instruction
1710    const char* mhName = "method handle";
1711    const char* targetType = "the required signature";
1712    vframeStream vfst(thread, true);
1713    if (!vfst.at_end()) {
1714      Bytecode_invoke* call = Bytecode_invoke_at(vfst.method(), vfst.bci());
1715      methodHandle target;
1716      {
1717        EXCEPTION_MARK;
1718        target = call->static_target(THREAD);
1719        if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
1720      }
1721      if (target.not_null()
1722          && target->is_method_handle_invoke()
1723          && required == target->method_handle_type()) {
1724        targetType = target->signature()->as_C_string();
1725      }
1726    }
1727    klassOop kignore; int fignore;
1728    methodOop actual_method = MethodHandles::decode_method(actual,
1729                                                          kignore, fignore);
1730    if (actual_method != NULL) {
1731      if (methodOopDesc::is_method_handle_invoke_name(actual_method->name()))
1732        mhName = "$";
1733      else
1734        mhName = actual_method->signature()->as_C_string();
1735      if (mhName[0] == '$')
1736        mhName = actual_method->signature()->as_C_string();
1737    }
1738    message = generate_class_cast_message(mhName, targetType,
1739                                          " cannot be called as ");
1740  }
1741  if (TraceMethodHandles) {
1742    tty->print_cr("WrongMethodType => message=%s", message);
1743  }
1744  return message;
1745}
1746
1747oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
1748                                                            oopDesc* required) {
1749  if (required == NULL)  return NULL;
1750  if (required->klass() == SystemDictionary::Class_klass())
1751    return required;
1752  if (required->is_klass())
1753    return Klass::cast(klassOop(required))->java_mirror();
1754  return NULL;
1755}
1756
1757
1758char* SharedRuntime::generate_class_cast_message(
1759    const char* objName, const char* targetKlassName, const char* desc) {
1760  size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1761
1762  char* message = NEW_RESOURCE_ARRAY(char, msglen);
1763  if (NULL == message) {
1764    // Shouldn't happen, but don't cause even more problems if it does
1765    message = const_cast<char*>(objName);
1766  } else {
1767    jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1768  }
1769  return message;
1770}
1771
1772JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1773  (void) JavaThread::current()->reguard_stack();
1774JRT_END
1775
1776
1777// Handles the uncommon case in locking, i.e., contention or an inflated lock.
1778#ifndef PRODUCT
1779int SharedRuntime::_monitor_enter_ctr=0;
1780#endif
1781JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1782  oop obj(_obj);
1783#ifndef PRODUCT
1784  _monitor_enter_ctr++;             // monitor enter slow
1785#endif
1786  if (PrintBiasedLockingStatistics) {
1787    Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1788  }
1789  Handle h_obj(THREAD, obj);
1790  if (UseBiasedLocking) {
1791    // Retry fast entry if bias is revoked to avoid unnecessary inflation
1792    ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1793  } else {
1794    ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1795  }
1796  assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1797JRT_END
1798
1799#ifndef PRODUCT
1800int SharedRuntime::_monitor_exit_ctr=0;
1801#endif
1802// Handles the uncommon cases of monitor unlocking in compiled code
1803JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1804   oop obj(_obj);
1805#ifndef PRODUCT
1806  _monitor_exit_ctr++;              // monitor exit slow
1807#endif
1808  Thread* THREAD = JavaThread::current();
1809  // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1810  // testing was unable to ever fire the assert that guarded it so I have removed it.
1811  assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1812#undef MIGHT_HAVE_PENDING
1813#ifdef MIGHT_HAVE_PENDING
1814  // Save and restore any pending_exception around the exception mark.
1815  // While the slow_exit must not throw an exception, we could come into
1816  // this routine with one set.
1817  oop pending_excep = NULL;
1818  const char* pending_file;
1819  int pending_line;
1820  if (HAS_PENDING_EXCEPTION) {
1821    pending_excep = PENDING_EXCEPTION;
1822    pending_file  = THREAD->exception_file();
1823    pending_line  = THREAD->exception_line();
1824    CLEAR_PENDING_EXCEPTION;
1825  }
1826#endif /* MIGHT_HAVE_PENDING */
1827
1828  {
1829    // Exit must be non-blocking, and therefore no exceptions can be thrown.
1830    EXCEPTION_MARK;
1831    ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1832  }
1833
1834#ifdef MIGHT_HAVE_PENDING
1835  if (pending_excep != NULL) {
1836    THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1837  }
1838#endif /* MIGHT_HAVE_PENDING */
1839JRT_END
1840
1841#ifndef PRODUCT
1842
1843void SharedRuntime::print_statistics() {
1844  ttyLocker ttyl;
1845  if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1846
1847  if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1848  if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1849  if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1850
1851  SharedRuntime::print_ic_miss_histogram();
1852
1853  if (CountRemovableExceptions) {
1854    if (_nof_removable_exceptions > 0) {
1855      Unimplemented(); // this counter is not yet incremented
1856      tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1857    }
1858  }
1859
1860  // Dump the JRT_ENTRY counters
1861  if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1862  if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1863  if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1864  if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1865  if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1866  if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1867  if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1868
1869  tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1870  tty->print_cr("%5d wrong method", _wrong_method_ctr );
1871  tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1872  tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1873  tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1874
1875  if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1876  if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1877  if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1878  if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1879  if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1880  if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1881  if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1882  if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1883  if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1884  if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1885  if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1886  if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1887  if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1888  if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1889  if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1890  if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1891
1892  AdapterHandlerLibrary::print_statistics();
1893
1894  if (xtty != NULL)  xtty->tail("statistics");
1895}
1896
1897inline double percent(int x, int y) {
1898  return 100.0 * x / MAX2(y, 1);
1899}
1900
1901class MethodArityHistogram {
1902 public:
1903  enum { MAX_ARITY = 256 };
1904 private:
1905  static int _arity_histogram[MAX_ARITY];     // histogram of #args
1906  static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1907  static int _max_arity;                      // max. arity seen
1908  static int _max_size;                       // max. arg size seen
1909
1910  static void add_method_to_histogram(nmethod* nm) {
1911    methodOop m = nm->method();
1912    ArgumentCount args(m->signature());
1913    int arity   = args.size() + (m->is_static() ? 0 : 1);
1914    int argsize = m->size_of_parameters();
1915    arity   = MIN2(arity, MAX_ARITY-1);
1916    argsize = MIN2(argsize, MAX_ARITY-1);
1917    int count = nm->method()->compiled_invocation_count();
1918    _arity_histogram[arity]  += count;
1919    _size_histogram[argsize] += count;
1920    _max_arity = MAX2(_max_arity, arity);
1921    _max_size  = MAX2(_max_size, argsize);
1922  }
1923
1924  void print_histogram_helper(int n, int* histo, const char* name) {
1925    const int N = MIN2(5, n);
1926    tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1927    double sum = 0;
1928    double weighted_sum = 0;
1929    int i;
1930    for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1931    double rest = sum;
1932    double percent = sum / 100;
1933    for (i = 0; i <= N; i++) {
1934      rest -= histo[i];
1935      tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1936    }
1937    tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1938    tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1939  }
1940
1941  void print_histogram() {
1942    tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1943    print_histogram_helper(_max_arity, _arity_histogram, "arity");
1944    tty->print_cr("\nSame for parameter size (in words):");
1945    print_histogram_helper(_max_size, _size_histogram, "size");
1946    tty->cr();
1947  }
1948
1949 public:
1950  MethodArityHistogram() {
1951    MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1952    _max_arity = _max_size = 0;
1953    for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
1954    CodeCache::nmethods_do(add_method_to_histogram);
1955    print_histogram();
1956  }
1957};
1958
1959int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
1960int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
1961int MethodArityHistogram::_max_arity;
1962int MethodArityHistogram::_max_size;
1963
1964void SharedRuntime::print_call_statistics(int comp_total) {
1965  tty->print_cr("Calls from compiled code:");
1966  int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
1967  int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
1968  int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
1969  tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
1970  tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
1971  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
1972  tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
1973  tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
1974  tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
1975  tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
1976  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
1977  tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
1978  tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
1979  tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
1980  tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
1981  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
1982  tty->cr();
1983  tty->print_cr("Note 1: counter updates are not MT-safe.");
1984  tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
1985  tty->print_cr("        %% in nested categories are relative to their category");
1986  tty->print_cr("        (and thus add up to more than 100%% with inlining)");
1987  tty->cr();
1988
1989  MethodArityHistogram h;
1990}
1991#endif
1992
1993
1994// A simple wrapper class around the calling convention information
1995// that allows sharing of adapters for the same calling convention.
1996class AdapterFingerPrint : public CHeapObj {
1997 private:
1998  union {
1999    int  _compact[3];
2000    int* _fingerprint;
2001  } _value;
2002  int _length; // A negative length indicates the fingerprint is in the compact form,
2003               // Otherwise _value._fingerprint is the array.
2004
2005  // Remap BasicTypes that are handled equivalently by the adapters.
2006  // These are correct for the current system but someday it might be
2007  // necessary to make this mapping platform dependent.
2008  static BasicType adapter_encoding(BasicType in) {
2009    assert((~0xf & in) == 0, "must fit in 4 bits");
2010    switch(in) {
2011      case T_BOOLEAN:
2012      case T_BYTE:
2013      case T_SHORT:
2014      case T_CHAR:
2015        // There are all promoted to T_INT in the calling convention
2016        return T_INT;
2017
2018      case T_OBJECT:
2019      case T_ARRAY:
2020#ifdef _LP64
2021        return T_LONG;
2022#else
2023        return T_INT;
2024#endif
2025
2026      case T_INT:
2027      case T_LONG:
2028      case T_FLOAT:
2029      case T_DOUBLE:
2030      case T_VOID:
2031        return in;
2032
2033      default:
2034        ShouldNotReachHere();
2035        return T_CONFLICT;
2036    }
2037  }
2038
2039 public:
2040  AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2041    // The fingerprint is based on the BasicType signature encoded
2042    // into an array of ints with four entries per int.
2043    int* ptr;
2044    int len = (total_args_passed + 3) >> 2;
2045    if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
2046      _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2047      // Storing the signature encoded as signed chars hits about 98%
2048      // of the time.
2049      _length = -len;
2050      ptr = _value._compact;
2051    } else {
2052      _length = len;
2053      _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
2054      ptr = _value._fingerprint;
2055    }
2056
2057    // Now pack the BasicTypes with 4 per int
2058    int sig_index = 0;
2059    for (int index = 0; index < len; index++) {
2060      int value = 0;
2061      for (int byte = 0; byte < 4; byte++) {
2062        if (sig_index < total_args_passed) {
2063          value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
2064        }
2065      }
2066      ptr[index] = value;
2067    }
2068  }
2069
2070  ~AdapterFingerPrint() {
2071    if (_length > 0) {
2072      FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2073    }
2074  }
2075
2076  int value(int index) {
2077    if (_length < 0) {
2078      return _value._compact[index];
2079    }
2080    return _value._fingerprint[index];
2081  }
2082  int length() {
2083    if (_length < 0) return -_length;
2084    return _length;
2085  }
2086
2087  bool is_compact() {
2088    return _length <= 0;
2089  }
2090
2091  unsigned int compute_hash() {
2092    int hash = 0;
2093    for (int i = 0; i < length(); i++) {
2094      int v = value(i);
2095      hash = (hash << 8) ^ v ^ (hash >> 5);
2096    }
2097    return (unsigned int)hash;
2098  }
2099
2100  const char* as_string() {
2101    stringStream st;
2102    for (int i = 0; i < length(); i++) {
2103      st.print(PTR_FORMAT, value(i));
2104    }
2105    return st.as_string();
2106  }
2107
2108  bool equals(AdapterFingerPrint* other) {
2109    if (other->_length != _length) {
2110      return false;
2111    }
2112    if (_length < 0) {
2113      return _value._compact[0] == other->_value._compact[0] &&
2114             _value._compact[1] == other->_value._compact[1] &&
2115             _value._compact[2] == other->_value._compact[2];
2116    } else {
2117      for (int i = 0; i < _length; i++) {
2118        if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2119          return false;
2120        }
2121      }
2122    }
2123    return true;
2124  }
2125};
2126
2127
2128// A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2129class AdapterHandlerTable : public BasicHashtable {
2130  friend class AdapterHandlerTableIterator;
2131
2132 private:
2133
2134#ifndef PRODUCT
2135  static int _lookups; // number of calls to lookup
2136  static int _buckets; // number of buckets checked
2137  static int _equals;  // number of buckets checked with matching hash
2138  static int _hits;    // number of successful lookups
2139  static int _compact; // number of equals calls with compact signature
2140#endif
2141
2142  AdapterHandlerEntry* bucket(int i) {
2143    return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
2144  }
2145
2146 public:
2147  AdapterHandlerTable()
2148    : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
2149
2150  // Create a new entry suitable for insertion in the table
2151  AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2152    AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
2153    entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2154    return entry;
2155  }
2156
2157  // Insert an entry into the table
2158  void add(AdapterHandlerEntry* entry) {
2159    int index = hash_to_index(entry->hash());
2160    add_entry(index, entry);
2161  }
2162
2163  void free_entry(AdapterHandlerEntry* entry) {
2164    entry->deallocate();
2165    BasicHashtable::free_entry(entry);
2166  }
2167
2168  // Find a entry with the same fingerprint if it exists
2169  AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2170    NOT_PRODUCT(_lookups++);
2171    AdapterFingerPrint fp(total_args_passed, sig_bt);
2172    unsigned int hash = fp.compute_hash();
2173    int index = hash_to_index(hash);
2174    for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2175      NOT_PRODUCT(_buckets++);
2176      if (e->hash() == hash) {
2177        NOT_PRODUCT(_equals++);
2178        if (fp.equals(e->fingerprint())) {
2179#ifndef PRODUCT
2180          if (fp.is_compact()) _compact++;
2181          _hits++;
2182#endif
2183          return e;
2184        }
2185      }
2186    }
2187    return NULL;
2188  }
2189
2190#ifndef PRODUCT
2191  void print_statistics() {
2192    ResourceMark rm;
2193    int longest = 0;
2194    int empty = 0;
2195    int total = 0;
2196    int nonempty = 0;
2197    for (int index = 0; index < table_size(); index++) {
2198      int count = 0;
2199      for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2200        count++;
2201      }
2202      if (count != 0) nonempty++;
2203      if (count == 0) empty++;
2204      if (count > longest) longest = count;
2205      total += count;
2206    }
2207    tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2208                  empty, longest, total, total / (double)nonempty);
2209    tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2210                  _lookups, _buckets, _equals, _hits, _compact);
2211  }
2212#endif
2213};
2214
2215
2216#ifndef PRODUCT
2217
2218int AdapterHandlerTable::_lookups;
2219int AdapterHandlerTable::_buckets;
2220int AdapterHandlerTable::_equals;
2221int AdapterHandlerTable::_hits;
2222int AdapterHandlerTable::_compact;
2223
2224#endif
2225
2226class AdapterHandlerTableIterator : public StackObj {
2227 private:
2228  AdapterHandlerTable* _table;
2229  int _index;
2230  AdapterHandlerEntry* _current;
2231
2232  void scan() {
2233    while (_index < _table->table_size()) {
2234      AdapterHandlerEntry* a = _table->bucket(_index);
2235      _index++;
2236      if (a != NULL) {
2237        _current = a;
2238        return;
2239      }
2240    }
2241  }
2242
2243 public:
2244  AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2245    scan();
2246  }
2247  bool has_next() {
2248    return _current != NULL;
2249  }
2250  AdapterHandlerEntry* next() {
2251    if (_current != NULL) {
2252      AdapterHandlerEntry* result = _current;
2253      _current = _current->next();
2254      if (_current == NULL) scan();
2255      return result;
2256    } else {
2257      return NULL;
2258    }
2259  }
2260};
2261
2262
2263// ---------------------------------------------------------------------------
2264// Implementation of AdapterHandlerLibrary
2265AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2266AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2267const int AdapterHandlerLibrary_size = 16*K;
2268BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2269
2270BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2271  // Should be called only when AdapterHandlerLibrary_lock is active.
2272  if (_buffer == NULL) // Initialize lazily
2273      _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2274  return _buffer;
2275}
2276
2277void AdapterHandlerLibrary::initialize() {
2278  if (_adapters != NULL) return;
2279  _adapters = new AdapterHandlerTable();
2280
2281  // Create a special handler for abstract methods.  Abstract methods
2282  // are never compiled so an i2c entry is somewhat meaningless, but
2283  // fill it in with something appropriate just in case.  Pass handle
2284  // wrong method for the c2i transitions.
2285  address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
2286  _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2287                                                              StubRoutines::throw_AbstractMethodError_entry(),
2288                                                              wrong_method, wrong_method);
2289}
2290
2291AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2292                                                      address i2c_entry,
2293                                                      address c2i_entry,
2294                                                      address c2i_unverified_entry) {
2295  return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2296}
2297
2298AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2299  // Use customized signature handler.  Need to lock around updates to
2300  // the AdapterHandlerTable (it is not safe for concurrent readers
2301  // and a single writer: this could be fixed if it becomes a
2302  // problem).
2303
2304  // Get the address of the ic_miss handlers before we grab the
2305  // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2306  // was caused by the initialization of the stubs happening
2307  // while we held the lock and then notifying jvmti while
2308  // holding it. This just forces the initialization to be a little
2309  // earlier.
2310  address ic_miss = SharedRuntime::get_ic_miss_stub();
2311  assert(ic_miss != NULL, "must have handler");
2312
2313  ResourceMark rm;
2314
2315  NOT_PRODUCT(int insts_size);
2316  AdapterBlob* B = NULL;
2317  AdapterHandlerEntry* entry = NULL;
2318  AdapterFingerPrint* fingerprint = NULL;
2319  {
2320    MutexLocker mu(AdapterHandlerLibrary_lock);
2321    // make sure data structure is initialized
2322    initialize();
2323
2324    if (method->is_abstract()) {
2325      return _abstract_method_handler;
2326    }
2327
2328    // Fill in the signature array, for the calling-convention call.
2329    int total_args_passed = method->size_of_parameters(); // All args on stack
2330
2331    BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2332    VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2333    int i = 0;
2334    if (!method->is_static())  // Pass in receiver first
2335      sig_bt[i++] = T_OBJECT;
2336    for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2337      sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2338      if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2339        sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2340    }
2341    assert(i == total_args_passed, "");
2342
2343    // Lookup method signature's fingerprint
2344    entry = _adapters->lookup(total_args_passed, sig_bt);
2345
2346#ifdef ASSERT
2347    AdapterHandlerEntry* shared_entry = NULL;
2348    if (VerifyAdapterSharing && entry != NULL) {
2349      shared_entry = entry;
2350      entry = NULL;
2351    }
2352#endif
2353
2354    if (entry != NULL) {
2355      return entry;
2356    }
2357
2358    // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2359    int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2360
2361    // Make a C heap allocated version of the fingerprint to store in the adapter
2362    fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2363
2364    // Create I2C & C2I handlers
2365
2366    BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2367    if (buf != NULL) {
2368      CodeBuffer buffer(buf);
2369      short buffer_locs[20];
2370      buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2371                                             sizeof(buffer_locs)/sizeof(relocInfo));
2372      MacroAssembler _masm(&buffer);
2373
2374      entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2375                                                     total_args_passed,
2376                                                     comp_args_on_stack,
2377                                                     sig_bt,
2378                                                     regs,
2379                                                     fingerprint);
2380
2381#ifdef ASSERT
2382      if (VerifyAdapterSharing) {
2383        if (shared_entry != NULL) {
2384          assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
2385                 "code must match");
2386          // Release the one just created and return the original
2387          _adapters->free_entry(entry);
2388          return shared_entry;
2389        } else  {
2390          entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
2391        }
2392      }
2393#endif
2394
2395      B = AdapterBlob::create(&buffer);
2396      NOT_PRODUCT(insts_size = buffer.insts_size());
2397    }
2398    if (B == NULL) {
2399      // CodeCache is full, disable compilation
2400      // Ought to log this but compile log is only per compile thread
2401      // and we're some non descript Java thread.
2402      MutexUnlocker mu(AdapterHandlerLibrary_lock);
2403      CompileBroker::handle_full_code_cache();
2404      return NULL; // Out of CodeCache space
2405    }
2406    entry->relocate(B->content_begin());
2407#ifndef PRODUCT
2408    // debugging suppport
2409    if (PrintAdapterHandlers) {
2410      tty->cr();
2411      tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
2412                    _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2413                    method->signature()->as_C_string(), fingerprint->as_string(), insts_size );
2414      tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2415      Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + insts_size);
2416    }
2417#endif
2418
2419    _adapters->add(entry);
2420  }
2421  // Outside of the lock
2422  if (B != NULL) {
2423    char blob_id[256];
2424    jio_snprintf(blob_id,
2425                 sizeof(blob_id),
2426                 "%s(%s)@" PTR_FORMAT,
2427                 B->name(),
2428                 fingerprint->as_string(),
2429                 B->content_begin());
2430    Forte::register_stub(blob_id, B->content_begin(), B->content_end());
2431
2432    if (JvmtiExport::should_post_dynamic_code_generated()) {
2433      JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
2434    }
2435  }
2436  return entry;
2437}
2438
2439void AdapterHandlerEntry::relocate(address new_base) {
2440    ptrdiff_t delta = new_base - _i2c_entry;
2441    _i2c_entry += delta;
2442    _c2i_entry += delta;
2443    _c2i_unverified_entry += delta;
2444}
2445
2446
2447void AdapterHandlerEntry::deallocate() {
2448  delete _fingerprint;
2449#ifdef ASSERT
2450  if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2451  if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
2452#endif
2453}
2454
2455
2456#ifdef ASSERT
2457// Capture the code before relocation so that it can be compared
2458// against other versions.  If the code is captured after relocation
2459// then relative instructions won't be equivalent.
2460void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2461  _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
2462  _code_length = length;
2463  memcpy(_saved_code, buffer, length);
2464  _total_args_passed = total_args_passed;
2465  _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
2466  memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
2467}
2468
2469
2470bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2471  if (length != _code_length) {
2472    return false;
2473  }
2474  for (int i = 0; i < length; i++) {
2475    if (buffer[i] != _saved_code[i]) {
2476      return false;
2477    }
2478  }
2479  return true;
2480}
2481#endif
2482
2483
2484// Create a native wrapper for this native method.  The wrapper converts the
2485// java compiled calling convention to the native convention, handlizes
2486// arguments, and transitions to native.  On return from the native we transition
2487// back to java blocking if a safepoint is in progress.
2488nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
2489  ResourceMark rm;
2490  nmethod* nm = NULL;
2491
2492  if (PrintCompilation) {
2493    ttyLocker ttyl;
2494    tty->print("---   n%s ", (method->is_synchronized() ? "s" : " "));
2495    method->print_short_name(tty);
2496    if (method->is_static()) {
2497      tty->print(" (static)");
2498    }
2499    tty->cr();
2500  }
2501
2502  assert(method->has_native_function(), "must have something valid to call!");
2503
2504  {
2505    // perform the work while holding the lock, but perform any printing outside the lock
2506    MutexLocker mu(AdapterHandlerLibrary_lock);
2507    // See if somebody beat us to it
2508    nm = method->code();
2509    if (nm) {
2510      return nm;
2511    }
2512
2513    ResourceMark rm;
2514
2515    BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2516    if (buf != NULL) {
2517      CodeBuffer buffer(buf);
2518      double locs_buf[20];
2519      buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2520      MacroAssembler _masm(&buffer);
2521
2522      // Fill in the signature array, for the calling-convention call.
2523      int total_args_passed = method->size_of_parameters();
2524
2525      BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
2526      VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
2527      int i=0;
2528      if( !method->is_static() )  // Pass in receiver first
2529        sig_bt[i++] = T_OBJECT;
2530      SignatureStream ss(method->signature());
2531      for( ; !ss.at_return_type(); ss.next()) {
2532        sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2533        if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2534          sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2535      }
2536      assert( i==total_args_passed, "" );
2537      BasicType ret_type = ss.type();
2538
2539      // Now get the compiled-Java layout as input arguments
2540      int comp_args_on_stack;
2541      comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2542
2543      // Generate the compiled-to-native wrapper code
2544      nm = SharedRuntime::generate_native_wrapper(&_masm,
2545                                                  method,
2546                                                  total_args_passed,
2547                                                  comp_args_on_stack,
2548                                                  sig_bt,regs,
2549                                                  ret_type);
2550    }
2551  }
2552
2553  // Must unlock before calling set_code
2554
2555  // Install the generated code.
2556  if (nm != NULL) {
2557    method->set_code(method, nm);
2558    nm->post_compiled_method_load_event();
2559  } else {
2560    // CodeCache is full, disable compilation
2561    CompileBroker::handle_full_code_cache();
2562  }
2563  return nm;
2564}
2565
2566#ifdef HAVE_DTRACE_H
2567// Create a dtrace nmethod for this method.  The wrapper converts the
2568// java compiled calling convention to the native convention, makes a dummy call
2569// (actually nops for the size of the call instruction, which become a trap if
2570// probe is enabled). The returns to the caller. Since this all looks like a
2571// leaf no thread transition is needed.
2572
2573nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2574  ResourceMark rm;
2575  nmethod* nm = NULL;
2576
2577  if (PrintCompilation) {
2578    ttyLocker ttyl;
2579    tty->print("---   n%s  ");
2580    method->print_short_name(tty);
2581    if (method->is_static()) {
2582      tty->print(" (static)");
2583    }
2584    tty->cr();
2585  }
2586
2587  {
2588    // perform the work while holding the lock, but perform any printing
2589    // outside the lock
2590    MutexLocker mu(AdapterHandlerLibrary_lock);
2591    // See if somebody beat us to it
2592    nm = method->code();
2593    if (nm) {
2594      return nm;
2595    }
2596
2597    ResourceMark rm;
2598
2599    BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2600    if (buf != NULL) {
2601      CodeBuffer buffer(buf);
2602      // Need a few relocation entries
2603      double locs_buf[20];
2604      buffer.insts()->initialize_shared_locs(
2605        (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2606      MacroAssembler _masm(&buffer);
2607
2608      // Generate the compiled-to-native wrapper code
2609      nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2610    }
2611  }
2612  return nm;
2613}
2614
2615// the dtrace method needs to convert java lang string to utf8 string.
2616void SharedRuntime::get_utf(oopDesc* src, address dst) {
2617  typeArrayOop jlsValue  = java_lang_String::value(src);
2618  int          jlsOffset = java_lang_String::offset(src);
2619  int          jlsLen    = java_lang_String::length(src);
2620  jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2621                                           jlsValue->char_at_addr(jlsOffset);
2622  (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2623}
2624#endif // ndef HAVE_DTRACE_H
2625
2626// -------------------------------------------------------------------------
2627// Java-Java calling convention
2628// (what you use when Java calls Java)
2629
2630//------------------------------name_for_receiver----------------------------------
2631// For a given signature, return the VMReg for parameter 0.
2632VMReg SharedRuntime::name_for_receiver() {
2633  VMRegPair regs;
2634  BasicType sig_bt = T_OBJECT;
2635  (void) java_calling_convention(&sig_bt, &regs, 1, true);
2636  // Return argument 0 register.  In the LP64 build pointers
2637  // take 2 registers, but the VM wants only the 'main' name.
2638  return regs.first();
2639}
2640
2641VMRegPair *SharedRuntime::find_callee_arguments(symbolOop sig, bool has_receiver, int* arg_size) {
2642  // This method is returning a data structure allocating as a
2643  // ResourceObject, so do not put any ResourceMarks in here.
2644  char *s = sig->as_C_string();
2645  int len = (int)strlen(s);
2646  *s++; len--;                  // Skip opening paren
2647  char *t = s+len;
2648  while( *(--t) != ')' ) ;      // Find close paren
2649
2650  BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2651  VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2652  int cnt = 0;
2653  if (has_receiver) {
2654    sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2655  }
2656
2657  while( s < t ) {
2658    switch( *s++ ) {            // Switch on signature character
2659    case 'B': sig_bt[cnt++] = T_BYTE;    break;
2660    case 'C': sig_bt[cnt++] = T_CHAR;    break;
2661    case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2662    case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2663    case 'I': sig_bt[cnt++] = T_INT;     break;
2664    case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2665    case 'S': sig_bt[cnt++] = T_SHORT;   break;
2666    case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2667    case 'V': sig_bt[cnt++] = T_VOID;    break;
2668    case 'L':                   // Oop
2669      while( *s++ != ';'  ) ;   // Skip signature
2670      sig_bt[cnt++] = T_OBJECT;
2671      break;
2672    case '[': {                 // Array
2673      do {                      // Skip optional size
2674        while( *s >= '0' && *s <= '9' ) s++;
2675      } while( *s++ == '[' );   // Nested arrays?
2676      // Skip element type
2677      if( s[-1] == 'L' )
2678        while( *s++ != ';'  ) ; // Skip signature
2679      sig_bt[cnt++] = T_ARRAY;
2680      break;
2681    }
2682    default : ShouldNotReachHere();
2683    }
2684  }
2685  assert( cnt < 256, "grow table size" );
2686
2687  int comp_args_on_stack;
2688  comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2689
2690  // the calling convention doesn't count out_preserve_stack_slots so
2691  // we must add that in to get "true" stack offsets.
2692
2693  if (comp_args_on_stack) {
2694    for (int i = 0; i < cnt; i++) {
2695      VMReg reg1 = regs[i].first();
2696      if( reg1->is_stack()) {
2697        // Yuck
2698        reg1 = reg1->bias(out_preserve_stack_slots());
2699      }
2700      VMReg reg2 = regs[i].second();
2701      if( reg2->is_stack()) {
2702        // Yuck
2703        reg2 = reg2->bias(out_preserve_stack_slots());
2704      }
2705      regs[i].set_pair(reg2, reg1);
2706    }
2707  }
2708
2709  // results
2710  *arg_size = cnt;
2711  return regs;
2712}
2713
2714// OSR Migration Code
2715//
2716// This code is used convert interpreter frames into compiled frames.  It is
2717// called from very start of a compiled OSR nmethod.  A temp array is
2718// allocated to hold the interesting bits of the interpreter frame.  All
2719// active locks are inflated to allow them to move.  The displaced headers and
2720// active interpeter locals are copied into the temp buffer.  Then we return
2721// back to the compiled code.  The compiled code then pops the current
2722// interpreter frame off the stack and pushes a new compiled frame.  Then it
2723// copies the interpreter locals and displaced headers where it wants.
2724// Finally it calls back to free the temp buffer.
2725//
2726// All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2727
2728JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2729
2730#ifdef IA64
2731  ShouldNotReachHere(); // NYI
2732#endif /* IA64 */
2733
2734  //
2735  // This code is dependent on the memory layout of the interpreter local
2736  // array and the monitors. On all of our platforms the layout is identical
2737  // so this code is shared. If some platform lays the their arrays out
2738  // differently then this code could move to platform specific code or
2739  // the code here could be modified to copy items one at a time using
2740  // frame accessor methods and be platform independent.
2741
2742  frame fr = thread->last_frame();
2743  assert( fr.is_interpreted_frame(), "" );
2744  assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2745
2746  // Figure out how many monitors are active.
2747  int active_monitor_count = 0;
2748  for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2749       kptr < fr.interpreter_frame_monitor_begin();
2750       kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2751    if( kptr->obj() != NULL ) active_monitor_count++;
2752  }
2753
2754  // QQQ we could place number of active monitors in the array so that compiled code
2755  // could double check it.
2756
2757  methodOop moop = fr.interpreter_frame_method();
2758  int max_locals = moop->max_locals();
2759  // Allocate temp buffer, 1 word per local & 2 per active monitor
2760  int buf_size_words = max_locals + active_monitor_count*2;
2761  intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
2762
2763  // Copy the locals.  Order is preserved so that loading of longs works.
2764  // Since there's no GC I can copy the oops blindly.
2765  assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2766  Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2767                       (HeapWord*)&buf[0],
2768                       max_locals);
2769
2770  // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2771  int i = max_locals;
2772  for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2773       kptr2 < fr.interpreter_frame_monitor_begin();
2774       kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2775    if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2776      BasicLock *lock = kptr2->lock();
2777      // Inflate so the displaced header becomes position-independent
2778      if (lock->displaced_header()->is_unlocked())
2779        ObjectSynchronizer::inflate_helper(kptr2->obj());
2780      // Now the displaced header is free to move
2781      buf[i++] = (intptr_t)lock->displaced_header();
2782      buf[i++] = (intptr_t)kptr2->obj();
2783    }
2784  }
2785  assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2786
2787  return buf;
2788JRT_END
2789
2790JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2791  FREE_C_HEAP_ARRAY(intptr_t,buf);
2792JRT_END
2793
2794bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2795  AdapterHandlerTableIterator iter(_adapters);
2796  while (iter.has_next()) {
2797    AdapterHandlerEntry* a = iter.next();
2798    if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2799  }
2800  return false;
2801}
2802
2803void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2804  AdapterHandlerTableIterator iter(_adapters);
2805  while (iter.has_next()) {
2806    AdapterHandlerEntry* a = iter.next();
2807    if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
2808      st->print("Adapter for signature: ");
2809      st->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2810                   a->fingerprint()->as_string(),
2811                   a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
2812
2813      return;
2814    }
2815  }
2816  assert(false, "Should have found handler");
2817}
2818
2819#ifndef PRODUCT
2820
2821void AdapterHandlerLibrary::print_statistics() {
2822  _adapters->print_statistics();
2823}
2824
2825#endif /* PRODUCT */
2826