sharedRuntime.cpp revision 13154:9c1d77cd9428
1/*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "aot/aotLoader.hpp"
27#include "classfile/stringTable.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/codeCache.hpp"
31#include "code/compiledIC.hpp"
32#include "code/scopeDesc.hpp"
33#include "code/vtableStubs.hpp"
34#include "compiler/abstractCompiler.hpp"
35#include "compiler/compileBroker.hpp"
36#include "compiler/disassembler.hpp"
37#include "gc/shared/gcLocker.inline.hpp"
38#include "interpreter/interpreter.hpp"
39#include "interpreter/interpreterRuntime.hpp"
40#include "logging/log.hpp"
41#include "memory/metaspaceShared.hpp"
42#include "memory/resourceArea.hpp"
43#include "memory/universe.inline.hpp"
44#include "oops/klass.hpp"
45#include "oops/objArrayKlass.hpp"
46#include "oops/oop.inline.hpp"
47#include "prims/forte.hpp"
48#include "prims/jvmtiExport.hpp"
49#include "prims/methodHandles.hpp"
50#include "prims/nativeLookup.hpp"
51#include "runtime/arguments.hpp"
52#include "runtime/atomic.hpp"
53#include "runtime/biasedLocking.hpp"
54#include "runtime/compilationPolicy.hpp"
55#include "runtime/handles.inline.hpp"
56#include "runtime/init.hpp"
57#include "runtime/interfaceSupport.hpp"
58#include "runtime/java.hpp"
59#include "runtime/javaCalls.hpp"
60#include "runtime/sharedRuntime.hpp"
61#include "runtime/stubRoutines.hpp"
62#include "runtime/vframe.hpp"
63#include "runtime/vframeArray.hpp"
64#include "trace/tracing.hpp"
65#include "utilities/copy.hpp"
66#include "utilities/dtrace.hpp"
67#include "utilities/events.hpp"
68#include "utilities/hashtable.inline.hpp"
69#include "utilities/macros.hpp"
70#include "utilities/xmlstream.hpp"
71#ifdef COMPILER1
72#include "c1/c1_Runtime1.hpp"
73#endif
74
75// Shared stub locations
76RuntimeStub*        SharedRuntime::_wrong_method_blob;
77RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
78RuntimeStub*        SharedRuntime::_ic_miss_blob;
79RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
80RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
81RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
82address             SharedRuntime::_resolve_static_call_entry;
83
84DeoptimizationBlob* SharedRuntime::_deopt_blob;
85SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
86SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
87SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
88
89#ifdef COMPILER2
90UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
91#endif // COMPILER2
92
93
94//----------------------------generate_stubs-----------------------------------
95void SharedRuntime::generate_stubs() {
96  _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
97  _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
98  _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
99  _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
100  _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
101  _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
102  _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
103
104#if defined(COMPILER2) || INCLUDE_JVMCI
105  // Vectors are generated only by C2 and JVMCI.
106  bool support_wide = is_wide_vector(MaxVectorSize);
107  if (support_wide) {
108    _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
109  }
110#endif // COMPILER2 || INCLUDE_JVMCI
111  _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
112  _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
113
114  generate_deopt_blob();
115
116#ifdef COMPILER2
117  generate_uncommon_trap_blob();
118#endif // COMPILER2
119}
120
121#include <math.h>
122
123// Implementation of SharedRuntime
124
125#ifndef PRODUCT
126// For statistics
127int SharedRuntime::_ic_miss_ctr = 0;
128int SharedRuntime::_wrong_method_ctr = 0;
129int SharedRuntime::_resolve_static_ctr = 0;
130int SharedRuntime::_resolve_virtual_ctr = 0;
131int SharedRuntime::_resolve_opt_virtual_ctr = 0;
132int SharedRuntime::_implicit_null_throws = 0;
133int SharedRuntime::_implicit_div0_throws = 0;
134int SharedRuntime::_throw_null_ctr = 0;
135
136int SharedRuntime::_nof_normal_calls = 0;
137int SharedRuntime::_nof_optimized_calls = 0;
138int SharedRuntime::_nof_inlined_calls = 0;
139int SharedRuntime::_nof_megamorphic_calls = 0;
140int SharedRuntime::_nof_static_calls = 0;
141int SharedRuntime::_nof_inlined_static_calls = 0;
142int SharedRuntime::_nof_interface_calls = 0;
143int SharedRuntime::_nof_optimized_interface_calls = 0;
144int SharedRuntime::_nof_inlined_interface_calls = 0;
145int SharedRuntime::_nof_megamorphic_interface_calls = 0;
146int SharedRuntime::_nof_removable_exceptions = 0;
147
148int SharedRuntime::_new_instance_ctr=0;
149int SharedRuntime::_new_array_ctr=0;
150int SharedRuntime::_multi1_ctr=0;
151int SharedRuntime::_multi2_ctr=0;
152int SharedRuntime::_multi3_ctr=0;
153int SharedRuntime::_multi4_ctr=0;
154int SharedRuntime::_multi5_ctr=0;
155int SharedRuntime::_mon_enter_stub_ctr=0;
156int SharedRuntime::_mon_exit_stub_ctr=0;
157int SharedRuntime::_mon_enter_ctr=0;
158int SharedRuntime::_mon_exit_ctr=0;
159int SharedRuntime::_partial_subtype_ctr=0;
160int SharedRuntime::_jbyte_array_copy_ctr=0;
161int SharedRuntime::_jshort_array_copy_ctr=0;
162int SharedRuntime::_jint_array_copy_ctr=0;
163int SharedRuntime::_jlong_array_copy_ctr=0;
164int SharedRuntime::_oop_array_copy_ctr=0;
165int SharedRuntime::_checkcast_array_copy_ctr=0;
166int SharedRuntime::_unsafe_array_copy_ctr=0;
167int SharedRuntime::_generic_array_copy_ctr=0;
168int SharedRuntime::_slow_array_copy_ctr=0;
169int SharedRuntime::_find_handler_ctr=0;
170int SharedRuntime::_rethrow_ctr=0;
171
172int     SharedRuntime::_ICmiss_index                    = 0;
173int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
174address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
175
176
177void SharedRuntime::trace_ic_miss(address at) {
178  for (int i = 0; i < _ICmiss_index; i++) {
179    if (_ICmiss_at[i] == at) {
180      _ICmiss_count[i]++;
181      return;
182    }
183  }
184  int index = _ICmiss_index++;
185  if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
186  _ICmiss_at[index] = at;
187  _ICmiss_count[index] = 1;
188}
189
190void SharedRuntime::print_ic_miss_histogram() {
191  if (ICMissHistogram) {
192    tty->print_cr("IC Miss Histogram:");
193    int tot_misses = 0;
194    for (int i = 0; i < _ICmiss_index; i++) {
195      tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
196      tot_misses += _ICmiss_count[i];
197    }
198    tty->print_cr("Total IC misses: %7d", tot_misses);
199  }
200}
201#endif // PRODUCT
202
203#if INCLUDE_ALL_GCS
204
205// G1 write-barrier pre: executed before a pointer store.
206JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
207  if (orig == NULL) {
208    assert(false, "should be optimized out");
209    return;
210  }
211  assert(orig->is_oop(true /* ignore mark word */), "Error");
212  // store the original value that was in the field reference
213  thread->satb_mark_queue().enqueue(orig);
214JRT_END
215
216// G1 write-barrier post: executed after a pointer store.
217JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
218  thread->dirty_card_queue().enqueue(card_addr);
219JRT_END
220
221#endif // INCLUDE_ALL_GCS
222
223
224JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
225  return x * y;
226JRT_END
227
228
229JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
230  if (x == min_jlong && y == CONST64(-1)) {
231    return x;
232  } else {
233    return x / y;
234  }
235JRT_END
236
237
238JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
239  if (x == min_jlong && y == CONST64(-1)) {
240    return 0;
241  } else {
242    return x % y;
243  }
244JRT_END
245
246
247const juint  float_sign_mask  = 0x7FFFFFFF;
248const juint  float_infinity   = 0x7F800000;
249const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
250const julong double_infinity  = CONST64(0x7FF0000000000000);
251
252JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
253#ifdef _WIN64
254  // 64-bit Windows on amd64 returns the wrong values for
255  // infinity operands.
256  union { jfloat f; juint i; } xbits, ybits;
257  xbits.f = x;
258  ybits.f = y;
259  // x Mod Infinity == x unless x is infinity
260  if (((xbits.i & float_sign_mask) != float_infinity) &&
261       ((ybits.i & float_sign_mask) == float_infinity) ) {
262    return x;
263  }
264  return ((jfloat)fmod_winx64((double)x, (double)y));
265#else
266  return ((jfloat)fmod((double)x,(double)y));
267#endif
268JRT_END
269
270
271JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
272#ifdef _WIN64
273  union { jdouble d; julong l; } xbits, ybits;
274  xbits.d = x;
275  ybits.d = y;
276  // x Mod Infinity == x unless x is infinity
277  if (((xbits.l & double_sign_mask) != double_infinity) &&
278       ((ybits.l & double_sign_mask) == double_infinity) ) {
279    return x;
280  }
281  return ((jdouble)fmod_winx64((double)x, (double)y));
282#else
283  return ((jdouble)fmod((double)x,(double)y));
284#endif
285JRT_END
286
287#ifdef __SOFTFP__
288JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
289  return x + y;
290JRT_END
291
292JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
293  return x - y;
294JRT_END
295
296JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
297  return x * y;
298JRT_END
299
300JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
301  return x / y;
302JRT_END
303
304JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
305  return x + y;
306JRT_END
307
308JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
309  return x - y;
310JRT_END
311
312JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
313  return x * y;
314JRT_END
315
316JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
317  return x / y;
318JRT_END
319
320JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
321  return (jfloat)x;
322JRT_END
323
324JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
325  return (jdouble)x;
326JRT_END
327
328JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
329  return (jdouble)x;
330JRT_END
331
332JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
333  return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
334JRT_END
335
336JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
337  return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
338JRT_END
339
340JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
341  return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
342JRT_END
343
344JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
345  return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
346JRT_END
347
348// Functions to return the opposite of the aeabi functions for nan.
349JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
350  return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
351JRT_END
352
353JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
354  return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
355JRT_END
356
357JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
358  return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
359JRT_END
360
361JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
362  return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
363JRT_END
364
365JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
366  return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
367JRT_END
368
369JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
370  return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
371JRT_END
372
373JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
374  return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
375JRT_END
376
377JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
378  return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
379JRT_END
380
381// Intrinsics make gcc generate code for these.
382float  SharedRuntime::fneg(float f)   {
383  return -f;
384}
385
386double SharedRuntime::dneg(double f)  {
387  return -f;
388}
389
390#endif // __SOFTFP__
391
392#if defined(__SOFTFP__) || defined(E500V2)
393// Intrinsics make gcc generate code for these.
394double SharedRuntime::dabs(double f)  {
395  return (f <= (double)0.0) ? (double)0.0 - f : f;
396}
397
398#endif
399
400#if defined(__SOFTFP__) || defined(PPC)
401double SharedRuntime::dsqrt(double f) {
402  return sqrt(f);
403}
404#endif
405
406JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
407  if (g_isnan(x))
408    return 0;
409  if (x >= (jfloat) max_jint)
410    return max_jint;
411  if (x <= (jfloat) min_jint)
412    return min_jint;
413  return (jint) x;
414JRT_END
415
416
417JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
418  if (g_isnan(x))
419    return 0;
420  if (x >= (jfloat) max_jlong)
421    return max_jlong;
422  if (x <= (jfloat) min_jlong)
423    return min_jlong;
424  return (jlong) x;
425JRT_END
426
427
428JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
429  if (g_isnan(x))
430    return 0;
431  if (x >= (jdouble) max_jint)
432    return max_jint;
433  if (x <= (jdouble) min_jint)
434    return min_jint;
435  return (jint) x;
436JRT_END
437
438
439JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
440  if (g_isnan(x))
441    return 0;
442  if (x >= (jdouble) max_jlong)
443    return max_jlong;
444  if (x <= (jdouble) min_jlong)
445    return min_jlong;
446  return (jlong) x;
447JRT_END
448
449
450JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
451  return (jfloat)x;
452JRT_END
453
454
455JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
456  return (jfloat)x;
457JRT_END
458
459
460JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
461  return (jdouble)x;
462JRT_END
463
464// Exception handling across interpreter/compiler boundaries
465//
466// exception_handler_for_return_address(...) returns the continuation address.
467// The continuation address is the entry point of the exception handler of the
468// previous frame depending on the return address.
469
470address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
471  assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
472  assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
473
474  // Reset method handle flag.
475  thread->set_is_method_handle_return(false);
476
477#if INCLUDE_JVMCI
478  // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
479  // and other exception handler continuations do not read it
480  thread->set_exception_pc(NULL);
481#endif // INCLUDE_JVMCI
482
483  // The fastest case first
484  CodeBlob* blob = CodeCache::find_blob(return_address);
485  CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
486  if (nm != NULL) {
487    // Set flag if return address is a method handle call site.
488    thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
489    // native nmethods don't have exception handlers
490    assert(!nm->is_native_method(), "no exception handler");
491    assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
492    if (nm->is_deopt_pc(return_address)) {
493      // If we come here because of a stack overflow, the stack may be
494      // unguarded. Reguard the stack otherwise if we return to the
495      // deopt blob and the stack bang causes a stack overflow we
496      // crash.
497      bool guard_pages_enabled = thread->stack_guards_enabled();
498      if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
499      if (thread->reserved_stack_activation() != thread->stack_base()) {
500        thread->set_reserved_stack_activation(thread->stack_base());
501      }
502      assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
503      return SharedRuntime::deopt_blob()->unpack_with_exception();
504    } else {
505      return nm->exception_begin();
506    }
507  }
508
509  // Entry code
510  if (StubRoutines::returns_to_call_stub(return_address)) {
511    return StubRoutines::catch_exception_entry();
512  }
513  // Interpreted code
514  if (Interpreter::contains(return_address)) {
515    return Interpreter::rethrow_exception_entry();
516  }
517
518  guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
519  guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
520
521#ifndef PRODUCT
522  { ResourceMark rm;
523    tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
524    tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
525    tty->print_cr("b) other problem");
526  }
527#endif // PRODUCT
528
529  ShouldNotReachHere();
530  return NULL;
531}
532
533
534JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
535  return raw_exception_handler_for_return_address(thread, return_address);
536JRT_END
537
538
539address SharedRuntime::get_poll_stub(address pc) {
540  address stub;
541  // Look up the code blob
542  CodeBlob *cb = CodeCache::find_blob(pc);
543
544  // Should be an nmethod
545  guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
546
547  // Look up the relocation information
548  assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
549    "safepoint polling: type must be poll");
550
551#ifdef ASSERT
552  if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
553    tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
554    Disassembler::decode(cb);
555    fatal("Only polling locations are used for safepoint");
556  }
557#endif
558
559  bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
560  bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
561  if (at_poll_return) {
562    assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
563           "polling page return stub not created yet");
564    stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
565  } else if (has_wide_vectors) {
566    assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
567           "polling page vectors safepoint stub not created yet");
568    stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
569  } else {
570    assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
571           "polling page safepoint stub not created yet");
572    stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
573  }
574  log_debug(safepoint)("... found polling page %s exception at pc = "
575                       INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
576                       at_poll_return ? "return" : "loop",
577                       (intptr_t)pc, (intptr_t)stub);
578  return stub;
579}
580
581
582oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
583  assert(caller.is_interpreted_frame(), "");
584  int args_size = ArgumentSizeComputer(sig).size() + 1;
585  assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
586  oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
587  assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
588  return result;
589}
590
591
592void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
593  if (JvmtiExport::can_post_on_exceptions()) {
594    vframeStream vfst(thread, true);
595    methodHandle method = methodHandle(thread, vfst.method());
596    address bcp = method()->bcp_from(vfst.bci());
597    JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
598  }
599  Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
600}
601
602void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
603  Handle h_exception = Exceptions::new_exception(thread, name, message);
604  throw_and_post_jvmti_exception(thread, h_exception);
605}
606
607// The interpreter code to call this tracing function is only
608// called/generated when UL is on for redefine, class and has the right level
609// and tags. Since obsolete methods are never compiled, we don't have
610// to modify the compilers to generate calls to this function.
611//
612JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
613    JavaThread* thread, Method* method))
614  if (method->is_obsolete()) {
615    // We are calling an obsolete method, but this is not necessarily
616    // an error. Our method could have been redefined just after we
617    // fetched the Method* from the constant pool.
618    ResourceMark rm;
619    log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
620  }
621  return 0;
622JRT_END
623
624// ret_pc points into caller; we are returning caller's exception handler
625// for given exception
626address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
627                                                    bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
628  assert(cm != NULL, "must exist");
629  ResourceMark rm;
630
631#if INCLUDE_JVMCI
632  if (cm->is_compiled_by_jvmci()) {
633    // lookup exception handler for this pc
634    int catch_pco = ret_pc - cm->code_begin();
635    ExceptionHandlerTable table(cm);
636    HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
637    if (t != NULL) {
638      return cm->code_begin() + t->pco();
639    } else {
640      // there is no exception handler for this pc => deoptimize
641      cm->make_not_entrant();
642
643      // Use Deoptimization::deoptimize for all of its side-effects:
644      // revoking biases of monitors, gathering traps statistics, logging...
645      // it also patches the return pc but we do not care about that
646      // since we return a continuation to the deopt_blob below.
647      JavaThread* thread = JavaThread::current();
648      RegisterMap reg_map(thread, UseBiasedLocking);
649      frame runtime_frame = thread->last_frame();
650      frame caller_frame = runtime_frame.sender(&reg_map);
651      Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
652
653      return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
654    }
655  }
656#endif // INCLUDE_JVMCI
657
658  nmethod* nm = cm->as_nmethod();
659  ScopeDesc* sd = nm->scope_desc_at(ret_pc);
660  // determine handler bci, if any
661  EXCEPTION_MARK;
662
663  int handler_bci = -1;
664  int scope_depth = 0;
665  if (!force_unwind) {
666    int bci = sd->bci();
667    bool recursive_exception = false;
668    do {
669      bool skip_scope_increment = false;
670      // exception handler lookup
671      Klass* ek = exception->klass();
672      methodHandle mh(THREAD, sd->method());
673      handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
674      if (HAS_PENDING_EXCEPTION) {
675        recursive_exception = true;
676        // We threw an exception while trying to find the exception handler.
677        // Transfer the new exception to the exception handle which will
678        // be set into thread local storage, and do another lookup for an
679        // exception handler for this exception, this time starting at the
680        // BCI of the exception handler which caused the exception to be
681        // thrown (bugs 4307310 and 4546590). Set "exception" reference
682        // argument to ensure that the correct exception is thrown (4870175).
683        recursive_exception_occurred = true;
684        exception = Handle(THREAD, PENDING_EXCEPTION);
685        CLEAR_PENDING_EXCEPTION;
686        if (handler_bci >= 0) {
687          bci = handler_bci;
688          handler_bci = -1;
689          skip_scope_increment = true;
690        }
691      }
692      else {
693        recursive_exception = false;
694      }
695      if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
696        sd = sd->sender();
697        if (sd != NULL) {
698          bci = sd->bci();
699        }
700        ++scope_depth;
701      }
702    } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
703  }
704
705  // found handling method => lookup exception handler
706  int catch_pco = ret_pc - nm->code_begin();
707
708  ExceptionHandlerTable table(nm);
709  HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
710  if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
711    // Allow abbreviated catch tables.  The idea is to allow a method
712    // to materialize its exceptions without committing to the exact
713    // routing of exceptions.  In particular this is needed for adding
714    // a synthetic handler to unlock monitors when inlining
715    // synchronized methods since the unlock path isn't represented in
716    // the bytecodes.
717    t = table.entry_for(catch_pco, -1, 0);
718  }
719
720#ifdef COMPILER1
721  if (t == NULL && nm->is_compiled_by_c1()) {
722    assert(nm->unwind_handler_begin() != NULL, "");
723    return nm->unwind_handler_begin();
724  }
725#endif
726
727  if (t == NULL) {
728    ttyLocker ttyl;
729    tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
730    tty->print_cr("   Exception:");
731    exception->print();
732    tty->cr();
733    tty->print_cr(" Compiled exception table :");
734    table.print();
735    nm->print_code();
736    guarantee(false, "missing exception handler");
737    return NULL;
738  }
739
740  return nm->code_begin() + t->pco();
741}
742
743JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
744  // These errors occur only at call sites
745  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
746JRT_END
747
748JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
749  // These errors occur only at call sites
750  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
751JRT_END
752
753JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
754  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
755JRT_END
756
757JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
758  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
759JRT_END
760
761JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
762  // This entry point is effectively only used for NullPointerExceptions which occur at inline
763  // cache sites (when the callee activation is not yet set up) so we are at a call site
764  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
765JRT_END
766
767JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
768  throw_StackOverflowError_common(thread, false);
769JRT_END
770
771JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
772  throw_StackOverflowError_common(thread, true);
773JRT_END
774
775void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
776  // We avoid using the normal exception construction in this case because
777  // it performs an upcall to Java, and we're already out of stack space.
778  Thread* THREAD = thread;
779  Klass* k = SystemDictionary::StackOverflowError_klass();
780  oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
781  if (delayed) {
782    java_lang_Throwable::set_message(exception_oop,
783                                     Universe::delayed_stack_overflow_error_message());
784  }
785  Handle exception (thread, exception_oop);
786  if (StackTraceInThrowable) {
787    java_lang_Throwable::fill_in_stack_trace(exception);
788  }
789  // Increment counter for hs_err file reporting
790  Atomic::inc(&Exceptions::_stack_overflow_errors);
791  throw_and_post_jvmti_exception(thread, exception);
792}
793
794#if INCLUDE_JVMCI
795address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
796  assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
797  thread->set_jvmci_implicit_exception_pc(pc);
798  thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
799  return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
800}
801#endif // INCLUDE_JVMCI
802
803address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
804                                                           address pc,
805                                                           SharedRuntime::ImplicitExceptionKind exception_kind)
806{
807  address target_pc = NULL;
808
809  if (Interpreter::contains(pc)) {
810#ifdef CC_INTERP
811    // C++ interpreter doesn't throw implicit exceptions
812    ShouldNotReachHere();
813#else
814    switch (exception_kind) {
815      case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
816      case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
817      case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
818      default:                      ShouldNotReachHere();
819    }
820#endif // !CC_INTERP
821  } else {
822    switch (exception_kind) {
823      case STACK_OVERFLOW: {
824        // Stack overflow only occurs upon frame setup; the callee is
825        // going to be unwound. Dispatch to a shared runtime stub
826        // which will cause the StackOverflowError to be fabricated
827        // and processed.
828        // Stack overflow should never occur during deoptimization:
829        // the compiled method bangs the stack by as much as the
830        // interpreter would need in case of a deoptimization. The
831        // deoptimization blob and uncommon trap blob bang the stack
832        // in a debug VM to verify the correctness of the compiled
833        // method stack banging.
834        assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
835        Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
836        return StubRoutines::throw_StackOverflowError_entry();
837      }
838
839      case IMPLICIT_NULL: {
840        if (VtableStubs::contains(pc)) {
841          // We haven't yet entered the callee frame. Fabricate an
842          // exception and begin dispatching it in the caller. Since
843          // the caller was at a call site, it's safe to destroy all
844          // caller-saved registers, as these entry points do.
845          VtableStub* vt_stub = VtableStubs::stub_containing(pc);
846
847          // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
848          if (vt_stub == NULL) return NULL;
849
850          if (vt_stub->is_abstract_method_error(pc)) {
851            assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
852            Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
853            return StubRoutines::throw_AbstractMethodError_entry();
854          } else {
855            Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
856            return StubRoutines::throw_NullPointerException_at_call_entry();
857          }
858        } else {
859          CodeBlob* cb = CodeCache::find_blob(pc);
860
861          // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
862          if (cb == NULL) return NULL;
863
864          // Exception happened in CodeCache. Must be either:
865          // 1. Inline-cache check in C2I handler blob,
866          // 2. Inline-cache check in nmethod, or
867          // 3. Implicit null exception in nmethod
868
869          if (!cb->is_compiled()) {
870            bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
871            if (!is_in_blob) {
872              // Allow normal crash reporting to handle this
873              return NULL;
874            }
875            Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
876            // There is no handler here, so we will simply unwind.
877            return StubRoutines::throw_NullPointerException_at_call_entry();
878          }
879
880          // Otherwise, it's a compiled method.  Consult its exception handlers.
881          CompiledMethod* cm = (CompiledMethod*)cb;
882          if (cm->inlinecache_check_contains(pc)) {
883            // exception happened inside inline-cache check code
884            // => the nmethod is not yet active (i.e., the frame
885            // is not set up yet) => use return address pushed by
886            // caller => don't push another return address
887            Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
888            return StubRoutines::throw_NullPointerException_at_call_entry();
889          }
890
891          if (cm->method()->is_method_handle_intrinsic()) {
892            // exception happened inside MH dispatch code, similar to a vtable stub
893            Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
894            return StubRoutines::throw_NullPointerException_at_call_entry();
895          }
896
897#ifndef PRODUCT
898          _implicit_null_throws++;
899#endif
900#if INCLUDE_JVMCI
901          if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
902            // If there's no PcDesc then we'll die way down inside of
903            // deopt instead of just getting normal error reporting,
904            // so only go there if it will succeed.
905            return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
906          } else {
907#endif // INCLUDE_JVMCI
908          assert (cm->is_nmethod(), "Expect nmethod");
909          target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
910#if INCLUDE_JVMCI
911          }
912#endif // INCLUDE_JVMCI
913          // If there's an unexpected fault, target_pc might be NULL,
914          // in which case we want to fall through into the normal
915          // error handling code.
916        }
917
918        break; // fall through
919      }
920
921
922      case IMPLICIT_DIVIDE_BY_ZERO: {
923        CompiledMethod* cm = CodeCache::find_compiled(pc);
924        guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
925#ifndef PRODUCT
926        _implicit_div0_throws++;
927#endif
928#if INCLUDE_JVMCI
929        if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
930          return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
931        } else {
932#endif // INCLUDE_JVMCI
933        target_pc = cm->continuation_for_implicit_exception(pc);
934#if INCLUDE_JVMCI
935        }
936#endif // INCLUDE_JVMCI
937        // If there's an unexpected fault, target_pc might be NULL,
938        // in which case we want to fall through into the normal
939        // error handling code.
940        break; // fall through
941      }
942
943      default: ShouldNotReachHere();
944    }
945
946    assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
947
948    if (exception_kind == IMPLICIT_NULL) {
949#ifndef PRODUCT
950      // for AbortVMOnException flag
951      Exceptions::debug_check_abort("java.lang.NullPointerException");
952#endif //PRODUCT
953      Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
954    } else {
955#ifndef PRODUCT
956      // for AbortVMOnException flag
957      Exceptions::debug_check_abort("java.lang.ArithmeticException");
958#endif //PRODUCT
959      Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
960    }
961    return target_pc;
962  }
963
964  ShouldNotReachHere();
965  return NULL;
966}
967
968
969/**
970 * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
971 * installed in the native function entry of all native Java methods before
972 * they get linked to their actual native methods.
973 *
974 * \note
975 * This method actually never gets called!  The reason is because
976 * the interpreter's native entries call NativeLookup::lookup() which
977 * throws the exception when the lookup fails.  The exception is then
978 * caught and forwarded on the return from NativeLookup::lookup() call
979 * before the call to the native function.  This might change in the future.
980 */
981JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
982{
983  // We return a bad value here to make sure that the exception is
984  // forwarded before we look at the return value.
985  THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
986}
987JNI_END
988
989address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
990  return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
991}
992
993JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
994#if INCLUDE_JVMCI
995  if (!obj->klass()->has_finalizer()) {
996    return;
997  }
998#endif // INCLUDE_JVMCI
999  assert(obj->is_oop(), "must be a valid oop");
1000  assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1001  InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1002JRT_END
1003
1004
1005jlong SharedRuntime::get_java_tid(Thread* thread) {
1006  if (thread != NULL) {
1007    if (thread->is_Java_thread()) {
1008      oop obj = ((JavaThread*)thread)->threadObj();
1009      return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1010    }
1011  }
1012  return 0;
1013}
1014
1015/**
1016 * This function ought to be a void function, but cannot be because
1017 * it gets turned into a tail-call on sparc, which runs into dtrace bug
1018 * 6254741.  Once that is fixed we can remove the dummy return value.
1019 */
1020int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1021  return dtrace_object_alloc_base(Thread::current(), o, size);
1022}
1023
1024int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1025  assert(DTraceAllocProbes, "wrong call");
1026  Klass* klass = o->klass();
1027  Symbol* name = klass->name();
1028  HOTSPOT_OBJECT_ALLOC(
1029                   get_java_tid(thread),
1030                   (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1031  return 0;
1032}
1033
1034JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1035    JavaThread* thread, Method* method))
1036  assert(DTraceMethodProbes, "wrong call");
1037  Symbol* kname = method->klass_name();
1038  Symbol* name = method->name();
1039  Symbol* sig = method->signature();
1040  HOTSPOT_METHOD_ENTRY(
1041      get_java_tid(thread),
1042      (char *) kname->bytes(), kname->utf8_length(),
1043      (char *) name->bytes(), name->utf8_length(),
1044      (char *) sig->bytes(), sig->utf8_length());
1045  return 0;
1046JRT_END
1047
1048JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1049    JavaThread* thread, Method* method))
1050  assert(DTraceMethodProbes, "wrong call");
1051  Symbol* kname = method->klass_name();
1052  Symbol* name = method->name();
1053  Symbol* sig = method->signature();
1054  HOTSPOT_METHOD_RETURN(
1055      get_java_tid(thread),
1056      (char *) kname->bytes(), kname->utf8_length(),
1057      (char *) name->bytes(), name->utf8_length(),
1058      (char *) sig->bytes(), sig->utf8_length());
1059  return 0;
1060JRT_END
1061
1062
1063// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1064// for a call current in progress, i.e., arguments has been pushed on stack
1065// put callee has not been invoked yet.  Used by: resolve virtual/static,
1066// vtable updates, etc.  Caller frame must be compiled.
1067Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1068  ResourceMark rm(THREAD);
1069
1070  // last java frame on stack (which includes native call frames)
1071  vframeStream vfst(thread, true);  // Do not skip and javaCalls
1072
1073  return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1074}
1075
1076methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1077  CompiledMethod* caller = vfst.nm();
1078
1079  nmethodLocker caller_lock(caller);
1080
1081  address pc = vfst.frame_pc();
1082  { // Get call instruction under lock because another thread may be busy patching it.
1083    MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1084    return caller->attached_method_before_pc(pc);
1085  }
1086  return NULL;
1087}
1088
1089// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1090// for a call current in progress, i.e., arguments has been pushed on stack
1091// but callee has not been invoked yet.  Caller frame must be compiled.
1092Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1093                                              vframeStream& vfst,
1094                                              Bytecodes::Code& bc,
1095                                              CallInfo& callinfo, TRAPS) {
1096  Handle receiver;
1097  Handle nullHandle;  //create a handy null handle for exception returns
1098
1099  assert(!vfst.at_end(), "Java frame must exist");
1100
1101  // Find caller and bci from vframe
1102  methodHandle caller(THREAD, vfst.method());
1103  int          bci   = vfst.bci();
1104
1105  Bytecode_invoke bytecode(caller, bci);
1106  int bytecode_index = bytecode.index();
1107
1108  methodHandle attached_method = extract_attached_method(vfst);
1109  if (attached_method.not_null()) {
1110    methodHandle callee = bytecode.static_target(CHECK_NH);
1111    vmIntrinsics::ID id = callee->intrinsic_id();
1112    // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1113    // it attaches statically resolved method to the call site.
1114    if (MethodHandles::is_signature_polymorphic(id) &&
1115        MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1116      bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1117
1118      // Adjust invocation mode according to the attached method.
1119      switch (bc) {
1120        case Bytecodes::_invokeinterface:
1121          if (!attached_method->method_holder()->is_interface()) {
1122            bc = Bytecodes::_invokevirtual;
1123          }
1124          break;
1125        case Bytecodes::_invokehandle:
1126          if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1127            bc = attached_method->is_static() ? Bytecodes::_invokestatic
1128                                              : Bytecodes::_invokevirtual;
1129          }
1130          break;
1131      }
1132    }
1133  } else {
1134    bc = bytecode.invoke_code();
1135  }
1136
1137  bool has_receiver = bc != Bytecodes::_invokestatic &&
1138                      bc != Bytecodes::_invokedynamic &&
1139                      bc != Bytecodes::_invokehandle;
1140
1141  // Find receiver for non-static call
1142  if (has_receiver) {
1143    // This register map must be update since we need to find the receiver for
1144    // compiled frames. The receiver might be in a register.
1145    RegisterMap reg_map2(thread);
1146    frame stubFrame   = thread->last_frame();
1147    // Caller-frame is a compiled frame
1148    frame callerFrame = stubFrame.sender(&reg_map2);
1149
1150    if (attached_method.is_null()) {
1151      methodHandle callee = bytecode.static_target(CHECK_NH);
1152      if (callee.is_null()) {
1153        THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1154      }
1155    }
1156
1157    // Retrieve from a compiled argument list
1158    receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1159
1160    if (receiver.is_null()) {
1161      THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1162    }
1163  }
1164
1165  assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1166
1167  // Resolve method
1168  if (attached_method.not_null()) {
1169    // Parameterized by attached method.
1170    LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1171  } else {
1172    // Parameterized by bytecode.
1173    constantPoolHandle constants(THREAD, caller->constants());
1174    LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1175  }
1176
1177#ifdef ASSERT
1178  // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1179  if (has_receiver) {
1180    assert(receiver.not_null(), "should have thrown exception");
1181    Klass* receiver_klass = receiver->klass();
1182    Klass* rk = NULL;
1183    if (attached_method.not_null()) {
1184      // In case there's resolved method attached, use its holder during the check.
1185      rk = attached_method->method_holder();
1186    } else {
1187      // Klass is already loaded.
1188      constantPoolHandle constants(THREAD, caller->constants());
1189      rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1190    }
1191    Klass* static_receiver_klass = rk;
1192    methodHandle callee = callinfo.selected_method();
1193    assert(receiver_klass->is_subtype_of(static_receiver_klass),
1194           "actual receiver must be subclass of static receiver klass");
1195    if (receiver_klass->is_instance_klass()) {
1196      if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1197        tty->print_cr("ERROR: Klass not yet initialized!!");
1198        receiver_klass->print();
1199      }
1200      assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1201    }
1202  }
1203#endif
1204
1205  return receiver;
1206}
1207
1208methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1209  ResourceMark rm(THREAD);
1210  // We need first to check if any Java activations (compiled, interpreted)
1211  // exist on the stack since last JavaCall.  If not, we need
1212  // to get the target method from the JavaCall wrapper.
1213  vframeStream vfst(thread, true);  // Do not skip any javaCalls
1214  methodHandle callee_method;
1215  if (vfst.at_end()) {
1216    // No Java frames were found on stack since we did the JavaCall.
1217    // Hence the stack can only contain an entry_frame.  We need to
1218    // find the target method from the stub frame.
1219    RegisterMap reg_map(thread, false);
1220    frame fr = thread->last_frame();
1221    assert(fr.is_runtime_frame(), "must be a runtimeStub");
1222    fr = fr.sender(&reg_map);
1223    assert(fr.is_entry_frame(), "must be");
1224    // fr is now pointing to the entry frame.
1225    callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1226  } else {
1227    Bytecodes::Code bc;
1228    CallInfo callinfo;
1229    find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1230    callee_method = callinfo.selected_method();
1231  }
1232  assert(callee_method()->is_method(), "must be");
1233  return callee_method;
1234}
1235
1236// Resolves a call.
1237methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1238                                           bool is_virtual,
1239                                           bool is_optimized, TRAPS) {
1240  methodHandle callee_method;
1241  callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1242  if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1243    int retry_count = 0;
1244    while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1245           callee_method->method_holder() != SystemDictionary::Object_klass()) {
1246      // If has a pending exception then there is no need to re-try to
1247      // resolve this method.
1248      // If the method has been redefined, we need to try again.
1249      // Hack: we have no way to update the vtables of arrays, so don't
1250      // require that java.lang.Object has been updated.
1251
1252      // It is very unlikely that method is redefined more than 100 times
1253      // in the middle of resolve. If it is looping here more than 100 times
1254      // means then there could be a bug here.
1255      guarantee((retry_count++ < 100),
1256                "Could not resolve to latest version of redefined method");
1257      // method is redefined in the middle of resolve so re-try.
1258      callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1259    }
1260  }
1261  return callee_method;
1262}
1263
1264// Resolves a call.  The compilers generate code for calls that go here
1265// and are patched with the real destination of the call.
1266methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1267                                           bool is_virtual,
1268                                           bool is_optimized, TRAPS) {
1269
1270  ResourceMark rm(thread);
1271  RegisterMap cbl_map(thread, false);
1272  frame caller_frame = thread->last_frame().sender(&cbl_map);
1273
1274  CodeBlob* caller_cb = caller_frame.cb();
1275  guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1276  CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1277
1278  // make sure caller is not getting deoptimized
1279  // and removed before we are done with it.
1280  // CLEANUP - with lazy deopt shouldn't need this lock
1281  nmethodLocker caller_lock(caller_nm);
1282
1283  // determine call info & receiver
1284  // note: a) receiver is NULL for static calls
1285  //       b) an exception is thrown if receiver is NULL for non-static calls
1286  CallInfo call_info;
1287  Bytecodes::Code invoke_code = Bytecodes::_illegal;
1288  Handle receiver = find_callee_info(thread, invoke_code,
1289                                     call_info, CHECK_(methodHandle()));
1290  methodHandle callee_method = call_info.selected_method();
1291
1292  assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1293         (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1294         (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1295         (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1296         ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1297
1298  assert(caller_nm->is_alive(), "It should be alive");
1299
1300#ifndef PRODUCT
1301  // tracing/debugging/statistics
1302  int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1303                (is_virtual) ? (&_resolve_virtual_ctr) :
1304                               (&_resolve_static_ctr);
1305  Atomic::inc(addr);
1306
1307  if (TraceCallFixup) {
1308    ResourceMark rm(thread);
1309    tty->print("resolving %s%s (%s) call to",
1310      (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1311      Bytecodes::name(invoke_code));
1312    callee_method->print_short_name(tty);
1313    tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1314                  p2i(caller_frame.pc()), p2i(callee_method->code()));
1315  }
1316#endif
1317
1318  // JSR 292 key invariant:
1319  // If the resolved method is a MethodHandle invoke target, the call
1320  // site must be a MethodHandle call site, because the lambda form might tail-call
1321  // leaving the stack in a state unknown to either caller or callee
1322  // TODO detune for now but we might need it again
1323//  assert(!callee_method->is_compiled_lambda_form() ||
1324//         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1325
1326  // Compute entry points. This might require generation of C2I converter
1327  // frames, so we cannot be holding any locks here. Furthermore, the
1328  // computation of the entry points is independent of patching the call.  We
1329  // always return the entry-point, but we only patch the stub if the call has
1330  // not been deoptimized.  Return values: For a virtual call this is an
1331  // (cached_oop, destination address) pair. For a static call/optimized
1332  // virtual this is just a destination address.
1333
1334  StaticCallInfo static_call_info;
1335  CompiledICInfo virtual_call_info;
1336
1337  // Make sure the callee nmethod does not get deoptimized and removed before
1338  // we are done patching the code.
1339  CompiledMethod* callee = callee_method->code();
1340
1341  if (callee != NULL) {
1342    assert(callee->is_compiled(), "must be nmethod for patching");
1343  }
1344
1345  if (callee != NULL && !callee->is_in_use()) {
1346    // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1347    callee = NULL;
1348  }
1349  nmethodLocker nl_callee(callee);
1350#ifdef ASSERT
1351  address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1352#endif
1353
1354  bool is_nmethod = caller_nm->is_nmethod();
1355
1356  if (is_virtual) {
1357    assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1358    bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1359    Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1360    CompiledIC::compute_monomorphic_entry(callee_method, klass,
1361                     is_optimized, static_bound, is_nmethod, virtual_call_info,
1362                     CHECK_(methodHandle()));
1363  } else {
1364    // static call
1365    CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1366  }
1367
1368  // grab lock, check for deoptimization and potentially patch caller
1369  {
1370    MutexLocker ml_patch(CompiledIC_lock);
1371
1372    // Lock blocks for safepoint during which both nmethods can change state.
1373
1374    // Now that we are ready to patch if the Method* was redefined then
1375    // don't update call site and let the caller retry.
1376    // Don't update call site if callee nmethod was unloaded or deoptimized.
1377    // Don't update call site if callee nmethod was replaced by an other nmethod
1378    // which may happen when multiply alive nmethod (tiered compilation)
1379    // will be supported.
1380    if (!callee_method->is_old() &&
1381        (callee == NULL || callee->is_in_use() && (callee_method->code() == callee))) {
1382#ifdef ASSERT
1383      // We must not try to patch to jump to an already unloaded method.
1384      if (dest_entry_point != 0) {
1385        CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1386        assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1387               "should not call unloaded nmethod");
1388      }
1389#endif
1390      if (is_virtual) {
1391        CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1392        if (inline_cache->is_clean()) {
1393          inline_cache->set_to_monomorphic(virtual_call_info);
1394        }
1395      } else {
1396        CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1397        if (ssc->is_clean()) ssc->set(static_call_info);
1398      }
1399    }
1400
1401  } // unlock CompiledIC_lock
1402
1403  return callee_method;
1404}
1405
1406
1407// Inline caches exist only in compiled code
1408JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1409#ifdef ASSERT
1410  RegisterMap reg_map(thread, false);
1411  frame stub_frame = thread->last_frame();
1412  assert(stub_frame.is_runtime_frame(), "sanity check");
1413  frame caller_frame = stub_frame.sender(&reg_map);
1414  assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1415#endif /* ASSERT */
1416
1417  methodHandle callee_method;
1418  JRT_BLOCK
1419    callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1420    // Return Method* through TLS
1421    thread->set_vm_result_2(callee_method());
1422  JRT_BLOCK_END
1423  // return compiled code entry point after potential safepoints
1424  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1425  return callee_method->verified_code_entry();
1426JRT_END
1427
1428
1429// Handle call site that has been made non-entrant
1430JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1431  // 6243940 We might end up in here if the callee is deoptimized
1432  // as we race to call it.  We don't want to take a safepoint if
1433  // the caller was interpreted because the caller frame will look
1434  // interpreted to the stack walkers and arguments are now
1435  // "compiled" so it is much better to make this transition
1436  // invisible to the stack walking code. The i2c path will
1437  // place the callee method in the callee_target. It is stashed
1438  // there because if we try and find the callee by normal means a
1439  // safepoint is possible and have trouble gc'ing the compiled args.
1440  RegisterMap reg_map(thread, false);
1441  frame stub_frame = thread->last_frame();
1442  assert(stub_frame.is_runtime_frame(), "sanity check");
1443  frame caller_frame = stub_frame.sender(&reg_map);
1444
1445  if (caller_frame.is_interpreted_frame() ||
1446      caller_frame.is_entry_frame()) {
1447    Method* callee = thread->callee_target();
1448    guarantee(callee != NULL && callee->is_method(), "bad handshake");
1449    thread->set_vm_result_2(callee);
1450    thread->set_callee_target(NULL);
1451    return callee->get_c2i_entry();
1452  }
1453
1454  // Must be compiled to compiled path which is safe to stackwalk
1455  methodHandle callee_method;
1456  JRT_BLOCK
1457    // Force resolving of caller (if we called from compiled frame)
1458    callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1459    thread->set_vm_result_2(callee_method());
1460  JRT_BLOCK_END
1461  // return compiled code entry point after potential safepoints
1462  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1463  return callee_method->verified_code_entry();
1464JRT_END
1465
1466// Handle abstract method call
1467JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1468  return StubRoutines::throw_AbstractMethodError_entry();
1469JRT_END
1470
1471
1472// resolve a static call and patch code
1473JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1474  methodHandle callee_method;
1475  JRT_BLOCK
1476    callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1477    thread->set_vm_result_2(callee_method());
1478  JRT_BLOCK_END
1479  // return compiled code entry point after potential safepoints
1480  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1481  return callee_method->verified_code_entry();
1482JRT_END
1483
1484
1485// resolve virtual call and update inline cache to monomorphic
1486JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1487  methodHandle callee_method;
1488  JRT_BLOCK
1489    callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1490    thread->set_vm_result_2(callee_method());
1491  JRT_BLOCK_END
1492  // return compiled code entry point after potential safepoints
1493  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1494  return callee_method->verified_code_entry();
1495JRT_END
1496
1497
1498// Resolve a virtual call that can be statically bound (e.g., always
1499// monomorphic, so it has no inline cache).  Patch code to resolved target.
1500JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1501  methodHandle callee_method;
1502  JRT_BLOCK
1503    callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1504    thread->set_vm_result_2(callee_method());
1505  JRT_BLOCK_END
1506  // return compiled code entry point after potential safepoints
1507  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1508  return callee_method->verified_code_entry();
1509JRT_END
1510
1511
1512
1513methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1514  ResourceMark rm(thread);
1515  CallInfo call_info;
1516  Bytecodes::Code bc;
1517
1518  // receiver is NULL for static calls. An exception is thrown for NULL
1519  // receivers for non-static calls
1520  Handle receiver = find_callee_info(thread, bc, call_info,
1521                                     CHECK_(methodHandle()));
1522  // Compiler1 can produce virtual call sites that can actually be statically bound
1523  // If we fell thru to below we would think that the site was going megamorphic
1524  // when in fact the site can never miss. Worse because we'd think it was megamorphic
1525  // we'd try and do a vtable dispatch however methods that can be statically bound
1526  // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1527  // reresolution of the  call site (as if we did a handle_wrong_method and not an
1528  // plain ic_miss) and the site will be converted to an optimized virtual call site
1529  // never to miss again. I don't believe C2 will produce code like this but if it
1530  // did this would still be the correct thing to do for it too, hence no ifdef.
1531  //
1532  if (call_info.resolved_method()->can_be_statically_bound()) {
1533    methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1534    if (TraceCallFixup) {
1535      RegisterMap reg_map(thread, false);
1536      frame caller_frame = thread->last_frame().sender(&reg_map);
1537      ResourceMark rm(thread);
1538      tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1539      callee_method->print_short_name(tty);
1540      tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1541      tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1542    }
1543    return callee_method;
1544  }
1545
1546  methodHandle callee_method = call_info.selected_method();
1547
1548  bool should_be_mono = false;
1549
1550#ifndef PRODUCT
1551  Atomic::inc(&_ic_miss_ctr);
1552
1553  // Statistics & Tracing
1554  if (TraceCallFixup) {
1555    ResourceMark rm(thread);
1556    tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1557    callee_method->print_short_name(tty);
1558    tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1559  }
1560
1561  if (ICMissHistogram) {
1562    MutexLocker m(VMStatistic_lock);
1563    RegisterMap reg_map(thread, false);
1564    frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1565    // produce statistics under the lock
1566    trace_ic_miss(f.pc());
1567  }
1568#endif
1569
1570  // install an event collector so that when a vtable stub is created the
1571  // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1572  // event can't be posted when the stub is created as locks are held
1573  // - instead the event will be deferred until the event collector goes
1574  // out of scope.
1575  JvmtiDynamicCodeEventCollector event_collector;
1576
1577  // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1578  { MutexLocker ml_patch (CompiledIC_lock);
1579    RegisterMap reg_map(thread, false);
1580    frame caller_frame = thread->last_frame().sender(&reg_map);
1581    CodeBlob* cb = caller_frame.cb();
1582    CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1583    if (cb->is_compiled()) {
1584      CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1585      bool should_be_mono = false;
1586      if (inline_cache->is_optimized()) {
1587        if (TraceCallFixup) {
1588          ResourceMark rm(thread);
1589          tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1590          callee_method->print_short_name(tty);
1591          tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1592        }
1593        should_be_mono = true;
1594      } else if (inline_cache->is_icholder_call()) {
1595        CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1596        if (ic_oop != NULL) {
1597
1598          if (receiver()->klass() == ic_oop->holder_klass()) {
1599            // This isn't a real miss. We must have seen that compiled code
1600            // is now available and we want the call site converted to a
1601            // monomorphic compiled call site.
1602            // We can't assert for callee_method->code() != NULL because it
1603            // could have been deoptimized in the meantime
1604            if (TraceCallFixup) {
1605              ResourceMark rm(thread);
1606              tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1607              callee_method->print_short_name(tty);
1608              tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1609            }
1610            should_be_mono = true;
1611          }
1612        }
1613      }
1614
1615      if (should_be_mono) {
1616
1617        // We have a path that was monomorphic but was going interpreted
1618        // and now we have (or had) a compiled entry. We correct the IC
1619        // by using a new icBuffer.
1620        CompiledICInfo info;
1621        Klass* receiver_klass = receiver()->klass();
1622        inline_cache->compute_monomorphic_entry(callee_method,
1623                                                receiver_klass,
1624                                                inline_cache->is_optimized(),
1625                                                false, caller_nm->is_nmethod(),
1626                                                info, CHECK_(methodHandle()));
1627        inline_cache->set_to_monomorphic(info);
1628      } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1629        // Potential change to megamorphic
1630        bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1631        if (!successful) {
1632          inline_cache->set_to_clean();
1633        }
1634      } else {
1635        // Either clean or megamorphic
1636      }
1637    } else {
1638      fatal("Unimplemented");
1639    }
1640  } // Release CompiledIC_lock
1641
1642  return callee_method;
1643}
1644
1645//
1646// Resets a call-site in compiled code so it will get resolved again.
1647// This routines handles both virtual call sites, optimized virtual call
1648// sites, and static call sites. Typically used to change a call sites
1649// destination from compiled to interpreted.
1650//
1651methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1652  ResourceMark rm(thread);
1653  RegisterMap reg_map(thread, false);
1654  frame stub_frame = thread->last_frame();
1655  assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1656  frame caller = stub_frame.sender(&reg_map);
1657
1658  // Do nothing if the frame isn't a live compiled frame.
1659  // nmethod could be deoptimized by the time we get here
1660  // so no update to the caller is needed.
1661
1662  if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1663
1664    address pc = caller.pc();
1665
1666    // Check for static or virtual call
1667    bool is_static_call = false;
1668    CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1669
1670    // Default call_addr is the location of the "basic" call.
1671    // Determine the address of the call we a reresolving. With
1672    // Inline Caches we will always find a recognizable call.
1673    // With Inline Caches disabled we may or may not find a
1674    // recognizable call. We will always find a call for static
1675    // calls and for optimized virtual calls. For vanilla virtual
1676    // calls it depends on the state of the UseInlineCaches switch.
1677    //
1678    // With Inline Caches disabled we can get here for a virtual call
1679    // for two reasons:
1680    //   1 - calling an abstract method. The vtable for abstract methods
1681    //       will run us thru handle_wrong_method and we will eventually
1682    //       end up in the interpreter to throw the ame.
1683    //   2 - a racing deoptimization. We could be doing a vanilla vtable
1684    //       call and between the time we fetch the entry address and
1685    //       we jump to it the target gets deoptimized. Similar to 1
1686    //       we will wind up in the interprter (thru a c2i with c2).
1687    //
1688    address call_addr = NULL;
1689    {
1690      // Get call instruction under lock because another thread may be
1691      // busy patching it.
1692      MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1693      // Location of call instruction
1694      call_addr = caller_nm->call_instruction_address(pc);
1695    }
1696    // Make sure nmethod doesn't get deoptimized and removed until
1697    // this is done with it.
1698    // CLEANUP - with lazy deopt shouldn't need this lock
1699    nmethodLocker nmlock(caller_nm);
1700
1701    if (call_addr != NULL) {
1702      RelocIterator iter(caller_nm, call_addr, call_addr+1);
1703      int ret = iter.next(); // Get item
1704      if (ret) {
1705        assert(iter.addr() == call_addr, "must find call");
1706        if (iter.type() == relocInfo::static_call_type) {
1707          is_static_call = true;
1708        } else {
1709          assert(iter.type() == relocInfo::virtual_call_type ||
1710                 iter.type() == relocInfo::opt_virtual_call_type
1711                , "unexpected relocInfo. type");
1712        }
1713      } else {
1714        assert(!UseInlineCaches, "relocation info. must exist for this address");
1715      }
1716
1717      // Cleaning the inline cache will force a new resolve. This is more robust
1718      // than directly setting it to the new destination, since resolving of calls
1719      // is always done through the same code path. (experience shows that it
1720      // leads to very hard to track down bugs, if an inline cache gets updated
1721      // to a wrong method). It should not be performance critical, since the
1722      // resolve is only done once.
1723
1724      bool is_nmethod = caller_nm->is_nmethod();
1725      MutexLocker ml(CompiledIC_lock);
1726      if (is_static_call) {
1727        CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1728        ssc->set_to_clean();
1729      } else {
1730        // compiled, dispatched call (which used to call an interpreted method)
1731        CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1732        inline_cache->set_to_clean();
1733      }
1734    }
1735  }
1736
1737  methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1738
1739
1740#ifndef PRODUCT
1741  Atomic::inc(&_wrong_method_ctr);
1742
1743  if (TraceCallFixup) {
1744    ResourceMark rm(thread);
1745    tty->print("handle_wrong_method reresolving call to");
1746    callee_method->print_short_name(tty);
1747    tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1748  }
1749#endif
1750
1751  return callee_method;
1752}
1753
1754address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1755  // The faulting unsafe accesses should be changed to throw the error
1756  // synchronously instead. Meanwhile the faulting instruction will be
1757  // skipped over (effectively turning it into a no-op) and an
1758  // asynchronous exception will be raised which the thread will
1759  // handle at a later point. If the instruction is a load it will
1760  // return garbage.
1761
1762  // Request an async exception.
1763  thread->set_pending_unsafe_access_error();
1764
1765  // Return address of next instruction to execute.
1766  return next_pc;
1767}
1768
1769#ifdef ASSERT
1770void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1771                                                                const BasicType* sig_bt,
1772                                                                const VMRegPair* regs) {
1773  ResourceMark rm;
1774  const int total_args_passed = method->size_of_parameters();
1775  const VMRegPair*    regs_with_member_name = regs;
1776        VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1777
1778  const int member_arg_pos = total_args_passed - 1;
1779  assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1780  assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1781
1782  const bool is_outgoing = method->is_method_handle_intrinsic();
1783  int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1784
1785  for (int i = 0; i < member_arg_pos; i++) {
1786    VMReg a =    regs_with_member_name[i].first();
1787    VMReg b = regs_without_member_name[i].first();
1788    assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1789  }
1790  assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1791}
1792#endif
1793
1794bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1795  if (destination != entry_point) {
1796    CodeBlob* callee = CodeCache::find_blob(destination);
1797    // callee == cb seems weird. It means calling interpreter thru stub.
1798    if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1799      // static call or optimized virtual
1800      if (TraceCallFixup) {
1801        tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1802        moop->print_short_name(tty);
1803        tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1804      }
1805      return true;
1806    } else {
1807      if (TraceCallFixup) {
1808        tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1809        moop->print_short_name(tty);
1810        tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1811      }
1812      // assert is too strong could also be resolve destinations.
1813      // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1814    }
1815  } else {
1816    if (TraceCallFixup) {
1817      tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1818      moop->print_short_name(tty);
1819      tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1820    }
1821  }
1822  return false;
1823}
1824
1825// ---------------------------------------------------------------------------
1826// We are calling the interpreter via a c2i. Normally this would mean that
1827// we were called by a compiled method. However we could have lost a race
1828// where we went int -> i2c -> c2i and so the caller could in fact be
1829// interpreted. If the caller is compiled we attempt to patch the caller
1830// so he no longer calls into the interpreter.
1831IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1832  Method* moop(method);
1833
1834  address entry_point = moop->from_compiled_entry_no_trampoline();
1835
1836  // It's possible that deoptimization can occur at a call site which hasn't
1837  // been resolved yet, in which case this function will be called from
1838  // an nmethod that has been patched for deopt and we can ignore the
1839  // request for a fixup.
1840  // Also it is possible that we lost a race in that from_compiled_entry
1841  // is now back to the i2c in that case we don't need to patch and if
1842  // we did we'd leap into space because the callsite needs to use
1843  // "to interpreter" stub in order to load up the Method*. Don't
1844  // ask me how I know this...
1845
1846  CodeBlob* cb = CodeCache::find_blob(caller_pc);
1847  if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1848    return;
1849  }
1850
1851  // The check above makes sure this is a nmethod.
1852  CompiledMethod* nm = cb->as_compiled_method_or_null();
1853  assert(nm, "must be");
1854
1855  // Get the return PC for the passed caller PC.
1856  address return_pc = caller_pc + frame::pc_return_offset;
1857
1858  // There is a benign race here. We could be attempting to patch to a compiled
1859  // entry point at the same time the callee is being deoptimized. If that is
1860  // the case then entry_point may in fact point to a c2i and we'd patch the
1861  // call site with the same old data. clear_code will set code() to NULL
1862  // at the end of it. If we happen to see that NULL then we can skip trying
1863  // to patch. If we hit the window where the callee has a c2i in the
1864  // from_compiled_entry and the NULL isn't present yet then we lose the race
1865  // and patch the code with the same old data. Asi es la vida.
1866
1867  if (moop->code() == NULL) return;
1868
1869  if (nm->is_in_use()) {
1870
1871    // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1872    MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1873    if (NativeCall::is_call_before(return_pc)) {
1874      ResourceMark mark;
1875      NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1876      //
1877      // bug 6281185. We might get here after resolving a call site to a vanilla
1878      // virtual call. Because the resolvee uses the verified entry it may then
1879      // see compiled code and attempt to patch the site by calling us. This would
1880      // then incorrectly convert the call site to optimized and its downhill from
1881      // there. If you're lucky you'll get the assert in the bugid, if not you've
1882      // just made a call site that could be megamorphic into a monomorphic site
1883      // for the rest of its life! Just another racing bug in the life of
1884      // fixup_callers_callsite ...
1885      //
1886      RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1887      iter.next();
1888      assert(iter.has_current(), "must have a reloc at java call site");
1889      relocInfo::relocType typ = iter.reloc()->type();
1890      if (typ != relocInfo::static_call_type &&
1891           typ != relocInfo::opt_virtual_call_type &&
1892           typ != relocInfo::static_stub_type) {
1893        return;
1894      }
1895      address destination = call->destination();
1896      if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1897        call->set_destination_mt_safe(entry_point);
1898      }
1899    }
1900  }
1901IRT_END
1902
1903
1904// same as JVM_Arraycopy, but called directly from compiled code
1905JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1906                                                oopDesc* dest, jint dest_pos,
1907                                                jint length,
1908                                                JavaThread* thread)) {
1909#ifndef PRODUCT
1910  _slow_array_copy_ctr++;
1911#endif
1912  // Check if we have null pointers
1913  if (src == NULL || dest == NULL) {
1914    THROW(vmSymbols::java_lang_NullPointerException());
1915  }
1916  // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1917  // even though the copy_array API also performs dynamic checks to ensure
1918  // that src and dest are truly arrays (and are conformable).
1919  // The copy_array mechanism is awkward and could be removed, but
1920  // the compilers don't call this function except as a last resort,
1921  // so it probably doesn't matter.
1922  src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1923                                        (arrayOopDesc*)dest, dest_pos,
1924                                        length, thread);
1925}
1926JRT_END
1927
1928// The caller of generate_class_cast_message() (or one of its callers)
1929// must use a ResourceMark in order to correctly free the result.
1930char* SharedRuntime::generate_class_cast_message(
1931    JavaThread* thread, Klass* caster_klass) {
1932
1933  // Get target class name from the checkcast instruction
1934  vframeStream vfst(thread, true);
1935  assert(!vfst.at_end(), "Java frame must exist");
1936  Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1937  Klass* target_klass = vfst.method()->constants()->klass_at(
1938    cc.index(), thread);
1939  return generate_class_cast_message(caster_klass, target_klass);
1940}
1941
1942// The caller of class_loader_and_module_name() (or one of its callers)
1943// must use a ResourceMark in order to correctly free the result.
1944const char* class_loader_and_module_name(Klass* klass) {
1945  const char* delim = "/";
1946  size_t delim_len = strlen(delim);
1947
1948  const char* fqn = klass->external_name();
1949  // Length of message to return; always include FQN
1950  size_t msglen = strlen(fqn) + 1;
1951
1952  bool has_cl_name = false;
1953  bool has_mod_name = false;
1954  bool has_version = false;
1955
1956  // Use class loader name, if exists and not builtin
1957  const char* class_loader_name = "";
1958  ClassLoaderData* cld = klass->class_loader_data();
1959  assert(cld != NULL, "class_loader_data should not be NULL");
1960  if (!cld->is_builtin_class_loader_data()) {
1961    // If not builtin, look for name
1962    oop loader = klass->class_loader();
1963    if (loader != NULL) {
1964      oop class_loader_name_oop = java_lang_ClassLoader::name(loader);
1965      if (class_loader_name_oop != NULL) {
1966        class_loader_name = java_lang_String::as_utf8_string(class_loader_name_oop);
1967        if (class_loader_name != NULL && class_loader_name[0] != '\0') {
1968          has_cl_name = true;
1969          msglen += strlen(class_loader_name) + delim_len;
1970        }
1971      }
1972    }
1973  }
1974
1975  const char* module_name = "";
1976  const char* version = "";
1977  Klass* bottom_klass = klass->is_objArray_klass() ?
1978    ObjArrayKlass::cast(klass)->bottom_klass() : klass;
1979  if (bottom_klass->is_instance_klass()) {
1980    ModuleEntry* module = InstanceKlass::cast(bottom_klass)->module();
1981    // Use module name, if exists
1982    if (module->is_named()) {
1983      has_mod_name = true;
1984      module_name = module->name()->as_C_string();
1985      msglen += strlen(module_name);
1986      // Use version if exists and is not a jdk module
1987      if (module->is_non_jdk_module() && module->version() != NULL) {
1988        has_version = true;
1989        version = module->version()->as_C_string();
1990        msglen += strlen("@") + strlen(version);
1991      }
1992    }
1993  } else {
1994    // klass is an array of primitives, so its module is java.base
1995    module_name = JAVA_BASE_NAME;
1996  }
1997
1998  if (has_cl_name || has_mod_name) {
1999    msglen += delim_len;
2000  }
2001
2002  char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2003
2004  // Just return the FQN if error in allocating string
2005  if (message == NULL) {
2006    return fqn;
2007  }
2008
2009  jio_snprintf(message, msglen, "%s%s%s%s%s%s%s",
2010               class_loader_name,
2011               (has_cl_name) ? delim : "",
2012               (has_mod_name) ? module_name : "",
2013               (has_version) ? "@" : "",
2014               (has_version) ? version : "",
2015               (has_cl_name || has_mod_name) ? delim : "",
2016               fqn);
2017  return message;
2018}
2019
2020char* SharedRuntime::generate_class_cast_message(
2021    Klass* caster_klass, Klass* target_klass) {
2022
2023  const char* caster_name = class_loader_and_module_name(caster_klass);
2024
2025  const char* target_name = class_loader_and_module_name(target_klass);
2026
2027  size_t msglen = strlen(caster_name) + strlen(" cannot be cast to ") + strlen(target_name) + 1;
2028
2029  char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2030  if (message == NULL) {
2031    // Shouldn't happen, but don't cause even more problems if it does
2032    message = const_cast<char*>(caster_klass->external_name());
2033  } else {
2034    jio_snprintf(message,
2035                 msglen,
2036                 "%s cannot be cast to %s",
2037                 caster_name,
2038                 target_name);
2039  }
2040  return message;
2041}
2042
2043JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2044  (void) JavaThread::current()->reguard_stack();
2045JRT_END
2046
2047
2048// Handles the uncommon case in locking, i.e., contention or an inflated lock.
2049JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2050  // Disable ObjectSynchronizer::quick_enter() in default config
2051  // on AARCH64 and ARM until JDK-8153107 is resolved.
2052  if (ARM_ONLY((SyncFlags & 256) != 0 &&)
2053      AARCH64_ONLY((SyncFlags & 256) != 0 &&)
2054      !SafepointSynchronize::is_synchronizing()) {
2055    // Only try quick_enter() if we're not trying to reach a safepoint
2056    // so that the calling thread reaches the safepoint more quickly.
2057    if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2058  }
2059  // NO_ASYNC required because an async exception on the state transition destructor
2060  // would leave you with the lock held and it would never be released.
2061  // The normal monitorenter NullPointerException is thrown without acquiring a lock
2062  // and the model is that an exception implies the method failed.
2063  JRT_BLOCK_NO_ASYNC
2064  oop obj(_obj);
2065  if (PrintBiasedLockingStatistics) {
2066    Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2067  }
2068  Handle h_obj(THREAD, obj);
2069  if (UseBiasedLocking) {
2070    // Retry fast entry if bias is revoked to avoid unnecessary inflation
2071    ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2072  } else {
2073    ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2074  }
2075  assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2076  JRT_BLOCK_END
2077JRT_END
2078
2079// Handles the uncommon cases of monitor unlocking in compiled code
2080JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2081   oop obj(_obj);
2082  assert(JavaThread::current() == THREAD, "invariant");
2083  // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2084  // testing was unable to ever fire the assert that guarded it so I have removed it.
2085  assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2086#undef MIGHT_HAVE_PENDING
2087#ifdef MIGHT_HAVE_PENDING
2088  // Save and restore any pending_exception around the exception mark.
2089  // While the slow_exit must not throw an exception, we could come into
2090  // this routine with one set.
2091  oop pending_excep = NULL;
2092  const char* pending_file;
2093  int pending_line;
2094  if (HAS_PENDING_EXCEPTION) {
2095    pending_excep = PENDING_EXCEPTION;
2096    pending_file  = THREAD->exception_file();
2097    pending_line  = THREAD->exception_line();
2098    CLEAR_PENDING_EXCEPTION;
2099  }
2100#endif /* MIGHT_HAVE_PENDING */
2101
2102  {
2103    // Exit must be non-blocking, and therefore no exceptions can be thrown.
2104    EXCEPTION_MARK;
2105    ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2106  }
2107
2108#ifdef MIGHT_HAVE_PENDING
2109  if (pending_excep != NULL) {
2110    THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2111  }
2112#endif /* MIGHT_HAVE_PENDING */
2113JRT_END
2114
2115#ifndef PRODUCT
2116
2117void SharedRuntime::print_statistics() {
2118  ttyLocker ttyl;
2119  if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2120
2121  if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2122
2123  SharedRuntime::print_ic_miss_histogram();
2124
2125  if (CountRemovableExceptions) {
2126    if (_nof_removable_exceptions > 0) {
2127      Unimplemented(); // this counter is not yet incremented
2128      tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2129    }
2130  }
2131
2132  // Dump the JRT_ENTRY counters
2133  if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2134  if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2135  if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2136  if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2137  if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2138  if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2139  if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2140
2141  tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2142  tty->print_cr("%5d wrong method", _wrong_method_ctr);
2143  tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2144  tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2145  tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2146
2147  if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2148  if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2149  if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2150  if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2151  if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2152  if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2153  if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2154  if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2155  if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2156  if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2157  if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2158  if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2159  if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2160  if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2161  if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2162  if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2163
2164  AdapterHandlerLibrary::print_statistics();
2165
2166  if (xtty != NULL)  xtty->tail("statistics");
2167}
2168
2169inline double percent(int x, int y) {
2170  return 100.0 * x / MAX2(y, 1);
2171}
2172
2173class MethodArityHistogram {
2174 public:
2175  enum { MAX_ARITY = 256 };
2176 private:
2177  static int _arity_histogram[MAX_ARITY];     // histogram of #args
2178  static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2179  static int _max_arity;                      // max. arity seen
2180  static int _max_size;                       // max. arg size seen
2181
2182  static void add_method_to_histogram(nmethod* nm) {
2183    Method* m = nm->method();
2184    ArgumentCount args(m->signature());
2185    int arity   = args.size() + (m->is_static() ? 0 : 1);
2186    int argsize = m->size_of_parameters();
2187    arity   = MIN2(arity, MAX_ARITY-1);
2188    argsize = MIN2(argsize, MAX_ARITY-1);
2189    int count = nm->method()->compiled_invocation_count();
2190    _arity_histogram[arity]  += count;
2191    _size_histogram[argsize] += count;
2192    _max_arity = MAX2(_max_arity, arity);
2193    _max_size  = MAX2(_max_size, argsize);
2194  }
2195
2196  void print_histogram_helper(int n, int* histo, const char* name) {
2197    const int N = MIN2(5, n);
2198    tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2199    double sum = 0;
2200    double weighted_sum = 0;
2201    int i;
2202    for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2203    double rest = sum;
2204    double percent = sum / 100;
2205    for (i = 0; i <= N; i++) {
2206      rest -= histo[i];
2207      tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2208    }
2209    tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2210    tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2211  }
2212
2213  void print_histogram() {
2214    tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2215    print_histogram_helper(_max_arity, _arity_histogram, "arity");
2216    tty->print_cr("\nSame for parameter size (in words):");
2217    print_histogram_helper(_max_size, _size_histogram, "size");
2218    tty->cr();
2219  }
2220
2221 public:
2222  MethodArityHistogram() {
2223    MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2224    _max_arity = _max_size = 0;
2225    for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2226    CodeCache::nmethods_do(add_method_to_histogram);
2227    print_histogram();
2228  }
2229};
2230
2231int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2232int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2233int MethodArityHistogram::_max_arity;
2234int MethodArityHistogram::_max_size;
2235
2236void SharedRuntime::print_call_statistics(int comp_total) {
2237  tty->print_cr("Calls from compiled code:");
2238  int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2239  int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2240  int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2241  tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2242  tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2243  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2244  tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2245  tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2246  tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2247  tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2248  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2249  tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2250  tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2251  tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2252  tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2253  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2254  tty->cr();
2255  tty->print_cr("Note 1: counter updates are not MT-safe.");
2256  tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2257  tty->print_cr("        %% in nested categories are relative to their category");
2258  tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2259  tty->cr();
2260
2261  MethodArityHistogram h;
2262}
2263#endif
2264
2265
2266// A simple wrapper class around the calling convention information
2267// that allows sharing of adapters for the same calling convention.
2268class AdapterFingerPrint : public CHeapObj<mtCode> {
2269 private:
2270  enum {
2271    _basic_type_bits = 4,
2272    _basic_type_mask = right_n_bits(_basic_type_bits),
2273    _basic_types_per_int = BitsPerInt / _basic_type_bits,
2274    _compact_int_count = 3
2275  };
2276  // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2277  // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2278
2279  union {
2280    int  _compact[_compact_int_count];
2281    int* _fingerprint;
2282  } _value;
2283  int _length; // A negative length indicates the fingerprint is in the compact form,
2284               // Otherwise _value._fingerprint is the array.
2285
2286  // Remap BasicTypes that are handled equivalently by the adapters.
2287  // These are correct for the current system but someday it might be
2288  // necessary to make this mapping platform dependent.
2289  static int adapter_encoding(BasicType in) {
2290    switch (in) {
2291      case T_BOOLEAN:
2292      case T_BYTE:
2293      case T_SHORT:
2294      case T_CHAR:
2295        // There are all promoted to T_INT in the calling convention
2296        return T_INT;
2297
2298      case T_OBJECT:
2299      case T_ARRAY:
2300        // In other words, we assume that any register good enough for
2301        // an int or long is good enough for a managed pointer.
2302#ifdef _LP64
2303        return T_LONG;
2304#else
2305        return T_INT;
2306#endif
2307
2308      case T_INT:
2309      case T_LONG:
2310      case T_FLOAT:
2311      case T_DOUBLE:
2312      case T_VOID:
2313        return in;
2314
2315      default:
2316        ShouldNotReachHere();
2317        return T_CONFLICT;
2318    }
2319  }
2320
2321 public:
2322  AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2323    // The fingerprint is based on the BasicType signature encoded
2324    // into an array of ints with eight entries per int.
2325    int* ptr;
2326    int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2327    if (len <= _compact_int_count) {
2328      assert(_compact_int_count == 3, "else change next line");
2329      _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2330      // Storing the signature encoded as signed chars hits about 98%
2331      // of the time.
2332      _length = -len;
2333      ptr = _value._compact;
2334    } else {
2335      _length = len;
2336      _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2337      ptr = _value._fingerprint;
2338    }
2339
2340    // Now pack the BasicTypes with 8 per int
2341    int sig_index = 0;
2342    for (int index = 0; index < len; index++) {
2343      int value = 0;
2344      for (int byte = 0; byte < _basic_types_per_int; byte++) {
2345        int bt = ((sig_index < total_args_passed)
2346                  ? adapter_encoding(sig_bt[sig_index++])
2347                  : 0);
2348        assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2349        value = (value << _basic_type_bits) | bt;
2350      }
2351      ptr[index] = value;
2352    }
2353  }
2354
2355  ~AdapterFingerPrint() {
2356    if (_length > 0) {
2357      FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2358    }
2359  }
2360
2361  int value(int index) {
2362    if (_length < 0) {
2363      return _value._compact[index];
2364    }
2365    return _value._fingerprint[index];
2366  }
2367  int length() {
2368    if (_length < 0) return -_length;
2369    return _length;
2370  }
2371
2372  bool is_compact() {
2373    return _length <= 0;
2374  }
2375
2376  unsigned int compute_hash() {
2377    int hash = 0;
2378    for (int i = 0; i < length(); i++) {
2379      int v = value(i);
2380      hash = (hash << 8) ^ v ^ (hash >> 5);
2381    }
2382    return (unsigned int)hash;
2383  }
2384
2385  const char* as_string() {
2386    stringStream st;
2387    st.print("0x");
2388    for (int i = 0; i < length(); i++) {
2389      st.print("%08x", value(i));
2390    }
2391    return st.as_string();
2392  }
2393
2394  bool equals(AdapterFingerPrint* other) {
2395    if (other->_length != _length) {
2396      return false;
2397    }
2398    if (_length < 0) {
2399      assert(_compact_int_count == 3, "else change next line");
2400      return _value._compact[0] == other->_value._compact[0] &&
2401             _value._compact[1] == other->_value._compact[1] &&
2402             _value._compact[2] == other->_value._compact[2];
2403    } else {
2404      for (int i = 0; i < _length; i++) {
2405        if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2406          return false;
2407        }
2408      }
2409    }
2410    return true;
2411  }
2412};
2413
2414
2415// A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2416class AdapterHandlerTable : public BasicHashtable<mtCode> {
2417  friend class AdapterHandlerTableIterator;
2418
2419 private:
2420
2421#ifndef PRODUCT
2422  static int _lookups; // number of calls to lookup
2423  static int _buckets; // number of buckets checked
2424  static int _equals;  // number of buckets checked with matching hash
2425  static int _hits;    // number of successful lookups
2426  static int _compact; // number of equals calls with compact signature
2427#endif
2428
2429  AdapterHandlerEntry* bucket(int i) {
2430    return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2431  }
2432
2433 public:
2434  AdapterHandlerTable()
2435    : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2436
2437  // Create a new entry suitable for insertion in the table
2438  AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2439    AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2440    entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2441    if (DumpSharedSpaces) {
2442      ((CDSAdapterHandlerEntry*)entry)->init();
2443    }
2444    return entry;
2445  }
2446
2447  // Insert an entry into the table
2448  void add(AdapterHandlerEntry* entry) {
2449    int index = hash_to_index(entry->hash());
2450    add_entry(index, entry);
2451  }
2452
2453  void free_entry(AdapterHandlerEntry* entry) {
2454    entry->deallocate();
2455    BasicHashtable<mtCode>::free_entry(entry);
2456  }
2457
2458  // Find a entry with the same fingerprint if it exists
2459  AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2460    NOT_PRODUCT(_lookups++);
2461    AdapterFingerPrint fp(total_args_passed, sig_bt);
2462    unsigned int hash = fp.compute_hash();
2463    int index = hash_to_index(hash);
2464    for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2465      NOT_PRODUCT(_buckets++);
2466      if (e->hash() == hash) {
2467        NOT_PRODUCT(_equals++);
2468        if (fp.equals(e->fingerprint())) {
2469#ifndef PRODUCT
2470          if (fp.is_compact()) _compact++;
2471          _hits++;
2472#endif
2473          return e;
2474        }
2475      }
2476    }
2477    return NULL;
2478  }
2479
2480#ifndef PRODUCT
2481  void print_statistics() {
2482    ResourceMark rm;
2483    int longest = 0;
2484    int empty = 0;
2485    int total = 0;
2486    int nonempty = 0;
2487    for (int index = 0; index < table_size(); index++) {
2488      int count = 0;
2489      for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2490        count++;
2491      }
2492      if (count != 0) nonempty++;
2493      if (count == 0) empty++;
2494      if (count > longest) longest = count;
2495      total += count;
2496    }
2497    tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2498                  empty, longest, total, total / (double)nonempty);
2499    tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2500                  _lookups, _buckets, _equals, _hits, _compact);
2501  }
2502#endif
2503};
2504
2505
2506#ifndef PRODUCT
2507
2508int AdapterHandlerTable::_lookups;
2509int AdapterHandlerTable::_buckets;
2510int AdapterHandlerTable::_equals;
2511int AdapterHandlerTable::_hits;
2512int AdapterHandlerTable::_compact;
2513
2514#endif
2515
2516class AdapterHandlerTableIterator : public StackObj {
2517 private:
2518  AdapterHandlerTable* _table;
2519  int _index;
2520  AdapterHandlerEntry* _current;
2521
2522  void scan() {
2523    while (_index < _table->table_size()) {
2524      AdapterHandlerEntry* a = _table->bucket(_index);
2525      _index++;
2526      if (a != NULL) {
2527        _current = a;
2528        return;
2529      }
2530    }
2531  }
2532
2533 public:
2534  AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2535    scan();
2536  }
2537  bool has_next() {
2538    return _current != NULL;
2539  }
2540  AdapterHandlerEntry* next() {
2541    if (_current != NULL) {
2542      AdapterHandlerEntry* result = _current;
2543      _current = _current->next();
2544      if (_current == NULL) scan();
2545      return result;
2546    } else {
2547      return NULL;
2548    }
2549  }
2550};
2551
2552
2553// ---------------------------------------------------------------------------
2554// Implementation of AdapterHandlerLibrary
2555AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2556AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2557const int AdapterHandlerLibrary_size = 16*K;
2558BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2559
2560BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2561  // Should be called only when AdapterHandlerLibrary_lock is active.
2562  if (_buffer == NULL) // Initialize lazily
2563      _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2564  return _buffer;
2565}
2566
2567extern "C" void unexpected_adapter_call() {
2568  ShouldNotCallThis();
2569}
2570
2571void AdapterHandlerLibrary::initialize() {
2572  if (_adapters != NULL) return;
2573  _adapters = new AdapterHandlerTable();
2574
2575  // Create a special handler for abstract methods.  Abstract methods
2576  // are never compiled so an i2c entry is somewhat meaningless, but
2577  // throw AbstractMethodError just in case.
2578  // Pass wrong_method_abstract for the c2i transitions to return
2579  // AbstractMethodError for invalid invocations.
2580  address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2581  _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2582                                                              StubRoutines::throw_AbstractMethodError_entry(),
2583                                                              wrong_method_abstract, wrong_method_abstract);
2584}
2585
2586AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2587                                                      address i2c_entry,
2588                                                      address c2i_entry,
2589                                                      address c2i_unverified_entry) {
2590  return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2591}
2592
2593AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2594  AdapterHandlerEntry* entry = get_adapter0(method);
2595  if (method->is_shared()) {
2596    // See comments around Method::link_method()
2597    MutexLocker mu(AdapterHandlerLibrary_lock);
2598    if (method->adapter() == NULL) {
2599      method->update_adapter_trampoline(entry);
2600    }
2601    address trampoline = method->from_compiled_entry();
2602    if (*(int*)trampoline == 0) {
2603      CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2604      MacroAssembler _masm(&buffer);
2605      SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2606      assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2607
2608      if (PrintInterpreter) {
2609        Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2610      }
2611    }
2612  }
2613
2614  return entry;
2615}
2616
2617AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2618  // Use customized signature handler.  Need to lock around updates to
2619  // the AdapterHandlerTable (it is not safe for concurrent readers
2620  // and a single writer: this could be fixed if it becomes a
2621  // problem).
2622
2623  ResourceMark rm;
2624
2625  NOT_PRODUCT(int insts_size);
2626  AdapterBlob* new_adapter = NULL;
2627  AdapterHandlerEntry* entry = NULL;
2628  AdapterFingerPrint* fingerprint = NULL;
2629  {
2630    MutexLocker mu(AdapterHandlerLibrary_lock);
2631    // make sure data structure is initialized
2632    initialize();
2633
2634    if (method->is_abstract()) {
2635      return _abstract_method_handler;
2636    }
2637
2638    // Fill in the signature array, for the calling-convention call.
2639    int total_args_passed = method->size_of_parameters(); // All args on stack
2640
2641    BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2642    VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2643    int i = 0;
2644    if (!method->is_static())  // Pass in receiver first
2645      sig_bt[i++] = T_OBJECT;
2646    for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2647      sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2648      if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2649        sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2650    }
2651    assert(i == total_args_passed, "");
2652
2653    // Lookup method signature's fingerprint
2654    entry = _adapters->lookup(total_args_passed, sig_bt);
2655
2656#ifdef ASSERT
2657    AdapterHandlerEntry* shared_entry = NULL;
2658    // Start adapter sharing verification only after the VM is booted.
2659    if (VerifyAdapterSharing && (entry != NULL)) {
2660      shared_entry = entry;
2661      entry = NULL;
2662    }
2663#endif
2664
2665    if (entry != NULL) {
2666      return entry;
2667    }
2668
2669    // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2670    int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2671
2672    // Make a C heap allocated version of the fingerprint to store in the adapter
2673    fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2674
2675    // StubRoutines::code2() is initialized after this function can be called. As a result,
2676    // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2677    // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2678    // stub that ensure that an I2C stub is called from an interpreter frame.
2679    bool contains_all_checks = StubRoutines::code2() != NULL;
2680
2681    // Create I2C & C2I handlers
2682    BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2683    if (buf != NULL) {
2684      CodeBuffer buffer(buf);
2685      short buffer_locs[20];
2686      buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2687                                             sizeof(buffer_locs)/sizeof(relocInfo));
2688
2689      MacroAssembler _masm(&buffer);
2690      entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2691                                                     total_args_passed,
2692                                                     comp_args_on_stack,
2693                                                     sig_bt,
2694                                                     regs,
2695                                                     fingerprint);
2696#ifdef ASSERT
2697      if (VerifyAdapterSharing) {
2698        if (shared_entry != NULL) {
2699          assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2700          // Release the one just created and return the original
2701          _adapters->free_entry(entry);
2702          return shared_entry;
2703        } else  {
2704          entry->save_code(buf->code_begin(), buffer.insts_size());
2705        }
2706      }
2707#endif
2708
2709      new_adapter = AdapterBlob::create(&buffer);
2710      NOT_PRODUCT(insts_size = buffer.insts_size());
2711    }
2712    if (new_adapter == NULL) {
2713      // CodeCache is full, disable compilation
2714      // Ought to log this but compile log is only per compile thread
2715      // and we're some non descript Java thread.
2716      return NULL; // Out of CodeCache space
2717    }
2718    entry->relocate(new_adapter->content_begin());
2719#ifndef PRODUCT
2720    // debugging suppport
2721    if (PrintAdapterHandlers || PrintStubCode) {
2722      ttyLocker ttyl;
2723      entry->print_adapter_on(tty);
2724      tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2725                    _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2726                    method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2727      tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2728      if (Verbose || PrintStubCode) {
2729        address first_pc = entry->base_address();
2730        if (first_pc != NULL) {
2731          Disassembler::decode(first_pc, first_pc + insts_size);
2732          tty->cr();
2733        }
2734      }
2735    }
2736#endif
2737    // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2738    // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2739    if (contains_all_checks || !VerifyAdapterCalls) {
2740      _adapters->add(entry);
2741    }
2742  }
2743  // Outside of the lock
2744  if (new_adapter != NULL) {
2745    char blob_id[256];
2746    jio_snprintf(blob_id,
2747                 sizeof(blob_id),
2748                 "%s(%s)@" PTR_FORMAT,
2749                 new_adapter->name(),
2750                 fingerprint->as_string(),
2751                 new_adapter->content_begin());
2752    Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2753
2754    if (JvmtiExport::should_post_dynamic_code_generated()) {
2755      JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2756    }
2757  }
2758  return entry;
2759}
2760
2761address AdapterHandlerEntry::base_address() {
2762  address base = _i2c_entry;
2763  if (base == NULL)  base = _c2i_entry;
2764  assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2765  assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2766  return base;
2767}
2768
2769void AdapterHandlerEntry::relocate(address new_base) {
2770  address old_base = base_address();
2771  assert(old_base != NULL, "");
2772  ptrdiff_t delta = new_base - old_base;
2773  if (_i2c_entry != NULL)
2774    _i2c_entry += delta;
2775  if (_c2i_entry != NULL)
2776    _c2i_entry += delta;
2777  if (_c2i_unverified_entry != NULL)
2778    _c2i_unverified_entry += delta;
2779  assert(base_address() == new_base, "");
2780}
2781
2782
2783void AdapterHandlerEntry::deallocate() {
2784  delete _fingerprint;
2785#ifdef ASSERT
2786  if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2787#endif
2788}
2789
2790
2791#ifdef ASSERT
2792// Capture the code before relocation so that it can be compared
2793// against other versions.  If the code is captured after relocation
2794// then relative instructions won't be equivalent.
2795void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2796  _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2797  _saved_code_length = length;
2798  memcpy(_saved_code, buffer, length);
2799}
2800
2801
2802bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2803  if (length != _saved_code_length) {
2804    return false;
2805  }
2806
2807  return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2808}
2809#endif
2810
2811
2812/**
2813 * Create a native wrapper for this native method.  The wrapper converts the
2814 * Java-compiled calling convention to the native convention, handles
2815 * arguments, and transitions to native.  On return from the native we transition
2816 * back to java blocking if a safepoint is in progress.
2817 */
2818void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2819  ResourceMark rm;
2820  nmethod* nm = NULL;
2821
2822  assert(method->is_native(), "must be native");
2823  assert(method->is_method_handle_intrinsic() ||
2824         method->has_native_function(), "must have something valid to call!");
2825
2826  {
2827    // Perform the work while holding the lock, but perform any printing outside the lock
2828    MutexLocker mu(AdapterHandlerLibrary_lock);
2829    // See if somebody beat us to it
2830    if (method->code() != NULL) {
2831      return;
2832    }
2833
2834    const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2835    assert(compile_id > 0, "Must generate native wrapper");
2836
2837
2838    ResourceMark rm;
2839    BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2840    if (buf != NULL) {
2841      CodeBuffer buffer(buf);
2842      double locs_buf[20];
2843      buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2844      MacroAssembler _masm(&buffer);
2845
2846      // Fill in the signature array, for the calling-convention call.
2847      const int total_args_passed = method->size_of_parameters();
2848
2849      BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2850      VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2851      int i=0;
2852      if (!method->is_static())  // Pass in receiver first
2853        sig_bt[i++] = T_OBJECT;
2854      SignatureStream ss(method->signature());
2855      for (; !ss.at_return_type(); ss.next()) {
2856        sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2857        if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2858          sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2859      }
2860      assert(i == total_args_passed, "");
2861      BasicType ret_type = ss.type();
2862
2863      // Now get the compiled-Java layout as input (or output) arguments.
2864      // NOTE: Stubs for compiled entry points of method handle intrinsics
2865      // are just trampolines so the argument registers must be outgoing ones.
2866      const bool is_outgoing = method->is_method_handle_intrinsic();
2867      int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2868
2869      // Generate the compiled-to-native wrapper code
2870      nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2871
2872      if (nm != NULL) {
2873        method->set_code(method, nm);
2874
2875        DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2876        if (directive->PrintAssemblyOption) {
2877          nm->print_code();
2878        }
2879        DirectivesStack::release(directive);
2880      }
2881    }
2882  } // Unlock AdapterHandlerLibrary_lock
2883
2884
2885  // Install the generated code.
2886  if (nm != NULL) {
2887    const char *msg = method->is_static() ? "(static)" : "";
2888    CompileTask::print_ul(nm, msg);
2889    if (PrintCompilation) {
2890      ttyLocker ttyl;
2891      CompileTask::print(tty, nm, msg);
2892    }
2893    nm->post_compiled_method_load_event();
2894  }
2895}
2896
2897JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2898  assert(thread == JavaThread::current(), "must be");
2899  // The code is about to enter a JNI lazy critical native method and
2900  // _needs_gc is true, so if this thread is already in a critical
2901  // section then just return, otherwise this thread should block
2902  // until needs_gc has been cleared.
2903  if (thread->in_critical()) {
2904    return;
2905  }
2906  // Lock and unlock a critical section to give the system a chance to block
2907  GCLocker::lock_critical(thread);
2908  GCLocker::unlock_critical(thread);
2909JRT_END
2910
2911// -------------------------------------------------------------------------
2912// Java-Java calling convention
2913// (what you use when Java calls Java)
2914
2915//------------------------------name_for_receiver----------------------------------
2916// For a given signature, return the VMReg for parameter 0.
2917VMReg SharedRuntime::name_for_receiver() {
2918  VMRegPair regs;
2919  BasicType sig_bt = T_OBJECT;
2920  (void) java_calling_convention(&sig_bt, &regs, 1, true);
2921  // Return argument 0 register.  In the LP64 build pointers
2922  // take 2 registers, but the VM wants only the 'main' name.
2923  return regs.first();
2924}
2925
2926VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2927  // This method is returning a data structure allocating as a
2928  // ResourceObject, so do not put any ResourceMarks in here.
2929  char *s = sig->as_C_string();
2930  int len = (int)strlen(s);
2931  s++; len--;                   // Skip opening paren
2932
2933  BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2934  VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2935  int cnt = 0;
2936  if (has_receiver) {
2937    sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2938  }
2939
2940  while (*s != ')') {          // Find closing right paren
2941    switch (*s++) {            // Switch on signature character
2942    case 'B': sig_bt[cnt++] = T_BYTE;    break;
2943    case 'C': sig_bt[cnt++] = T_CHAR;    break;
2944    case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2945    case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2946    case 'I': sig_bt[cnt++] = T_INT;     break;
2947    case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2948    case 'S': sig_bt[cnt++] = T_SHORT;   break;
2949    case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2950    case 'V': sig_bt[cnt++] = T_VOID;    break;
2951    case 'L':                   // Oop
2952      while (*s++ != ';');   // Skip signature
2953      sig_bt[cnt++] = T_OBJECT;
2954      break;
2955    case '[': {                 // Array
2956      do {                      // Skip optional size
2957        while (*s >= '0' && *s <= '9') s++;
2958      } while (*s++ == '[');   // Nested arrays?
2959      // Skip element type
2960      if (s[-1] == 'L')
2961        while (*s++ != ';'); // Skip signature
2962      sig_bt[cnt++] = T_ARRAY;
2963      break;
2964    }
2965    default : ShouldNotReachHere();
2966    }
2967  }
2968
2969  if (has_appendix) {
2970    sig_bt[cnt++] = T_OBJECT;
2971  }
2972
2973  assert(cnt < 256, "grow table size");
2974
2975  int comp_args_on_stack;
2976  comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2977
2978  // the calling convention doesn't count out_preserve_stack_slots so
2979  // we must add that in to get "true" stack offsets.
2980
2981  if (comp_args_on_stack) {
2982    for (int i = 0; i < cnt; i++) {
2983      VMReg reg1 = regs[i].first();
2984      if (reg1->is_stack()) {
2985        // Yuck
2986        reg1 = reg1->bias(out_preserve_stack_slots());
2987      }
2988      VMReg reg2 = regs[i].second();
2989      if (reg2->is_stack()) {
2990        // Yuck
2991        reg2 = reg2->bias(out_preserve_stack_slots());
2992      }
2993      regs[i].set_pair(reg2, reg1);
2994    }
2995  }
2996
2997  // results
2998  *arg_size = cnt;
2999  return regs;
3000}
3001
3002// OSR Migration Code
3003//
3004// This code is used convert interpreter frames into compiled frames.  It is
3005// called from very start of a compiled OSR nmethod.  A temp array is
3006// allocated to hold the interesting bits of the interpreter frame.  All
3007// active locks are inflated to allow them to move.  The displaced headers and
3008// active interpreter locals are copied into the temp buffer.  Then we return
3009// back to the compiled code.  The compiled code then pops the current
3010// interpreter frame off the stack and pushes a new compiled frame.  Then it
3011// copies the interpreter locals and displaced headers where it wants.
3012// Finally it calls back to free the temp buffer.
3013//
3014// All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3015
3016JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3017
3018  //
3019  // This code is dependent on the memory layout of the interpreter local
3020  // array and the monitors. On all of our platforms the layout is identical
3021  // so this code is shared. If some platform lays the their arrays out
3022  // differently then this code could move to platform specific code or
3023  // the code here could be modified to copy items one at a time using
3024  // frame accessor methods and be platform independent.
3025
3026  frame fr = thread->last_frame();
3027  assert(fr.is_interpreted_frame(), "");
3028  assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3029
3030  // Figure out how many monitors are active.
3031  int active_monitor_count = 0;
3032  for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3033       kptr < fr.interpreter_frame_monitor_begin();
3034       kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3035    if (kptr->obj() != NULL) active_monitor_count++;
3036  }
3037
3038  // QQQ we could place number of active monitors in the array so that compiled code
3039  // could double check it.
3040
3041  Method* moop = fr.interpreter_frame_method();
3042  int max_locals = moop->max_locals();
3043  // Allocate temp buffer, 1 word per local & 2 per active monitor
3044  int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3045  intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3046
3047  // Copy the locals.  Order is preserved so that loading of longs works.
3048  // Since there's no GC I can copy the oops blindly.
3049  assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3050  Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3051                       (HeapWord*)&buf[0],
3052                       max_locals);
3053
3054  // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3055  int i = max_locals;
3056  for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3057       kptr2 < fr.interpreter_frame_monitor_begin();
3058       kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3059    if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3060      BasicLock *lock = kptr2->lock();
3061      // Inflate so the displaced header becomes position-independent
3062      if (lock->displaced_header()->is_unlocked())
3063        ObjectSynchronizer::inflate_helper(kptr2->obj());
3064      // Now the displaced header is free to move
3065      buf[i++] = (intptr_t)lock->displaced_header();
3066      buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3067    }
3068  }
3069  assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3070
3071  return buf;
3072JRT_END
3073
3074JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3075  FREE_C_HEAP_ARRAY(intptr_t, buf);
3076JRT_END
3077
3078bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3079  AdapterHandlerTableIterator iter(_adapters);
3080  while (iter.has_next()) {
3081    AdapterHandlerEntry* a = iter.next();
3082    if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3083  }
3084  return false;
3085}
3086
3087void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3088  AdapterHandlerTableIterator iter(_adapters);
3089  while (iter.has_next()) {
3090    AdapterHandlerEntry* a = iter.next();
3091    if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3092      st->print("Adapter for signature: ");
3093      a->print_adapter_on(tty);
3094      return;
3095    }
3096  }
3097  assert(false, "Should have found handler");
3098}
3099
3100void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3101  st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3102               p2i(this), fingerprint()->as_string(),
3103               p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3104
3105}
3106
3107#if INCLUDE_CDS
3108
3109void CDSAdapterHandlerEntry::init() {
3110  assert(DumpSharedSpaces, "used during dump time only");
3111  _c2i_entry_trampoline = (address)MetaspaceShared::misc_data_space_alloc(SharedRuntime::trampoline_size());
3112  _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_data_space_alloc(sizeof(AdapterHandlerEntry*));
3113};
3114
3115#endif // INCLUDE_CDS
3116
3117
3118#ifndef PRODUCT
3119
3120void AdapterHandlerLibrary::print_statistics() {
3121  _adapters->print_statistics();
3122}
3123
3124#endif /* PRODUCT */
3125
3126JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3127  assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3128  thread->enable_stack_reserved_zone();
3129  thread->set_reserved_stack_activation(thread->stack_base());
3130JRT_END
3131
3132frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3133  frame activation;
3134  CompiledMethod* nm = NULL;
3135  int count = 1;
3136
3137  assert(fr.is_java_frame(), "Must start on Java frame");
3138
3139  while (true) {
3140    Method* method = NULL;
3141    if (fr.is_interpreted_frame()) {
3142      method = fr.interpreter_frame_method();
3143    } else {
3144      CodeBlob* cb = fr.cb();
3145      if (cb != NULL && cb->is_compiled()) {
3146        nm = cb->as_compiled_method();
3147        method = nm->method();
3148      }
3149    }
3150    if ((method != NULL) && method->has_reserved_stack_access()) {
3151      ResourceMark rm(thread);
3152      activation = fr;
3153      warning("Potentially dangerous stack overflow in "
3154              "ReservedStackAccess annotated method %s [%d]",
3155              method->name_and_sig_as_C_string(), count++);
3156      EventReservedStackActivation event;
3157      if (event.should_commit()) {
3158        event.set_method(method);
3159        event.commit();
3160      }
3161    }
3162    if (fr.is_first_java_frame()) {
3163      break;
3164    } else {
3165      fr = fr.java_sender();
3166    }
3167  }
3168  return activation;
3169}
3170
3171