sharedRuntime.cpp revision 12422:98fe046473c9
1/*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "aot/aotLoader.hpp"
27#include "classfile/stringTable.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/codeCache.hpp"
31#include "code/compiledIC.hpp"
32#include "code/scopeDesc.hpp"
33#include "code/vtableStubs.hpp"
34#include "compiler/abstractCompiler.hpp"
35#include "compiler/compileBroker.hpp"
36#include "compiler/disassembler.hpp"
37#include "gc/shared/gcLocker.inline.hpp"
38#include "interpreter/interpreter.hpp"
39#include "interpreter/interpreterRuntime.hpp"
40#include "logging/log.hpp"
41#include "memory/metaspaceShared.hpp"
42#include "memory/resourceArea.hpp"
43#include "memory/universe.inline.hpp"
44#include "oops/klass.hpp"
45#include "oops/objArrayKlass.hpp"
46#include "oops/oop.inline.hpp"
47#include "prims/forte.hpp"
48#include "prims/jvmtiExport.hpp"
49#include "prims/methodHandles.hpp"
50#include "prims/nativeLookup.hpp"
51#include "runtime/arguments.hpp"
52#include "runtime/atomic.hpp"
53#include "runtime/biasedLocking.hpp"
54#include "runtime/compilationPolicy.hpp"
55#include "runtime/handles.inline.hpp"
56#include "runtime/init.hpp"
57#include "runtime/interfaceSupport.hpp"
58#include "runtime/java.hpp"
59#include "runtime/javaCalls.hpp"
60#include "runtime/sharedRuntime.hpp"
61#include "runtime/stubRoutines.hpp"
62#include "runtime/vframe.hpp"
63#include "runtime/vframeArray.hpp"
64#include "trace/tracing.hpp"
65#include "utilities/copy.hpp"
66#include "utilities/dtrace.hpp"
67#include "utilities/events.hpp"
68#include "utilities/hashtable.inline.hpp"
69#include "utilities/macros.hpp"
70#include "utilities/xmlstream.hpp"
71#ifdef COMPILER1
72#include "c1/c1_Runtime1.hpp"
73#endif
74
75// Shared stub locations
76RuntimeStub*        SharedRuntime::_wrong_method_blob;
77RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
78RuntimeStub*        SharedRuntime::_ic_miss_blob;
79RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
80RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
81RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
82address             SharedRuntime::_resolve_static_call_entry;
83
84DeoptimizationBlob* SharedRuntime::_deopt_blob;
85SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
86SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
87SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
88
89#ifdef COMPILER2
90UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
91#endif // COMPILER2
92
93
94//----------------------------generate_stubs-----------------------------------
95void SharedRuntime::generate_stubs() {
96  _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
97  _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
98  _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
99  _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
100  _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
101  _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
102  _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
103
104#if defined(COMPILER2) || INCLUDE_JVMCI
105  // Vectors are generated only by C2 and JVMCI.
106  bool support_wide = is_wide_vector(MaxVectorSize);
107  if (support_wide) {
108    _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
109  }
110#endif // COMPILER2 || INCLUDE_JVMCI
111  _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
112  _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
113
114  generate_deopt_blob();
115
116#ifdef COMPILER2
117  generate_uncommon_trap_blob();
118#endif // COMPILER2
119}
120
121#include <math.h>
122
123// Implementation of SharedRuntime
124
125#ifndef PRODUCT
126// For statistics
127int SharedRuntime::_ic_miss_ctr = 0;
128int SharedRuntime::_wrong_method_ctr = 0;
129int SharedRuntime::_resolve_static_ctr = 0;
130int SharedRuntime::_resolve_virtual_ctr = 0;
131int SharedRuntime::_resolve_opt_virtual_ctr = 0;
132int SharedRuntime::_implicit_null_throws = 0;
133int SharedRuntime::_implicit_div0_throws = 0;
134int SharedRuntime::_throw_null_ctr = 0;
135
136int SharedRuntime::_nof_normal_calls = 0;
137int SharedRuntime::_nof_optimized_calls = 0;
138int SharedRuntime::_nof_inlined_calls = 0;
139int SharedRuntime::_nof_megamorphic_calls = 0;
140int SharedRuntime::_nof_static_calls = 0;
141int SharedRuntime::_nof_inlined_static_calls = 0;
142int SharedRuntime::_nof_interface_calls = 0;
143int SharedRuntime::_nof_optimized_interface_calls = 0;
144int SharedRuntime::_nof_inlined_interface_calls = 0;
145int SharedRuntime::_nof_megamorphic_interface_calls = 0;
146int SharedRuntime::_nof_removable_exceptions = 0;
147
148int SharedRuntime::_new_instance_ctr=0;
149int SharedRuntime::_new_array_ctr=0;
150int SharedRuntime::_multi1_ctr=0;
151int SharedRuntime::_multi2_ctr=0;
152int SharedRuntime::_multi3_ctr=0;
153int SharedRuntime::_multi4_ctr=0;
154int SharedRuntime::_multi5_ctr=0;
155int SharedRuntime::_mon_enter_stub_ctr=0;
156int SharedRuntime::_mon_exit_stub_ctr=0;
157int SharedRuntime::_mon_enter_ctr=0;
158int SharedRuntime::_mon_exit_ctr=0;
159int SharedRuntime::_partial_subtype_ctr=0;
160int SharedRuntime::_jbyte_array_copy_ctr=0;
161int SharedRuntime::_jshort_array_copy_ctr=0;
162int SharedRuntime::_jint_array_copy_ctr=0;
163int SharedRuntime::_jlong_array_copy_ctr=0;
164int SharedRuntime::_oop_array_copy_ctr=0;
165int SharedRuntime::_checkcast_array_copy_ctr=0;
166int SharedRuntime::_unsafe_array_copy_ctr=0;
167int SharedRuntime::_generic_array_copy_ctr=0;
168int SharedRuntime::_slow_array_copy_ctr=0;
169int SharedRuntime::_find_handler_ctr=0;
170int SharedRuntime::_rethrow_ctr=0;
171
172int     SharedRuntime::_ICmiss_index                    = 0;
173int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
174address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
175
176
177void SharedRuntime::trace_ic_miss(address at) {
178  for (int i = 0; i < _ICmiss_index; i++) {
179    if (_ICmiss_at[i] == at) {
180      _ICmiss_count[i]++;
181      return;
182    }
183  }
184  int index = _ICmiss_index++;
185  if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
186  _ICmiss_at[index] = at;
187  _ICmiss_count[index] = 1;
188}
189
190void SharedRuntime::print_ic_miss_histogram() {
191  if (ICMissHistogram) {
192    tty->print_cr("IC Miss Histogram:");
193    int tot_misses = 0;
194    for (int i = 0; i < _ICmiss_index; i++) {
195      tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
196      tot_misses += _ICmiss_count[i];
197    }
198    tty->print_cr("Total IC misses: %7d", tot_misses);
199  }
200}
201#endif // PRODUCT
202
203#if INCLUDE_ALL_GCS
204
205// G1 write-barrier pre: executed before a pointer store.
206JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
207  if (orig == NULL) {
208    assert(false, "should be optimized out");
209    return;
210  }
211  assert(orig->is_oop(true /* ignore mark word */), "Error");
212  // store the original value that was in the field reference
213  thread->satb_mark_queue().enqueue(orig);
214JRT_END
215
216// G1 write-barrier post: executed after a pointer store.
217JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
218  thread->dirty_card_queue().enqueue(card_addr);
219JRT_END
220
221#endif // INCLUDE_ALL_GCS
222
223
224JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
225  return x * y;
226JRT_END
227
228
229JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
230  if (x == min_jlong && y == CONST64(-1)) {
231    return x;
232  } else {
233    return x / y;
234  }
235JRT_END
236
237
238JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
239  if (x == min_jlong && y == CONST64(-1)) {
240    return 0;
241  } else {
242    return x % y;
243  }
244JRT_END
245
246
247const juint  float_sign_mask  = 0x7FFFFFFF;
248const juint  float_infinity   = 0x7F800000;
249const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
250const julong double_infinity  = CONST64(0x7FF0000000000000);
251
252JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
253#ifdef _WIN64
254  // 64-bit Windows on amd64 returns the wrong values for
255  // infinity operands.
256  union { jfloat f; juint i; } xbits, ybits;
257  xbits.f = x;
258  ybits.f = y;
259  // x Mod Infinity == x unless x is infinity
260  if (((xbits.i & float_sign_mask) != float_infinity) &&
261       ((ybits.i & float_sign_mask) == float_infinity) ) {
262    return x;
263  }
264  return ((jfloat)fmod_winx64((double)x, (double)y));
265#else
266  return ((jfloat)fmod((double)x,(double)y));
267#endif
268JRT_END
269
270
271JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
272#ifdef _WIN64
273  union { jdouble d; julong l; } xbits, ybits;
274  xbits.d = x;
275  ybits.d = y;
276  // x Mod Infinity == x unless x is infinity
277  if (((xbits.l & double_sign_mask) != double_infinity) &&
278       ((ybits.l & double_sign_mask) == double_infinity) ) {
279    return x;
280  }
281  return ((jdouble)fmod_winx64((double)x, (double)y));
282#else
283  return ((jdouble)fmod((double)x,(double)y));
284#endif
285JRT_END
286
287#ifdef __SOFTFP__
288JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
289  return x + y;
290JRT_END
291
292JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
293  return x - y;
294JRT_END
295
296JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
297  return x * y;
298JRT_END
299
300JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
301  return x / y;
302JRT_END
303
304JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
305  return x + y;
306JRT_END
307
308JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
309  return x - y;
310JRT_END
311
312JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
313  return x * y;
314JRT_END
315
316JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
317  return x / y;
318JRT_END
319
320JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
321  return (jfloat)x;
322JRT_END
323
324JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
325  return (jdouble)x;
326JRT_END
327
328JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
329  return (jdouble)x;
330JRT_END
331
332JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
333  return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
334JRT_END
335
336JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
337  return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
338JRT_END
339
340JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
341  return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
342JRT_END
343
344JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
345  return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
346JRT_END
347
348// Functions to return the opposite of the aeabi functions for nan.
349JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
350  return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
351JRT_END
352
353JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
354  return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
355JRT_END
356
357JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
358  return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
359JRT_END
360
361JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
362  return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
363JRT_END
364
365JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
366  return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
367JRT_END
368
369JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
370  return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
371JRT_END
372
373JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
374  return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
375JRT_END
376
377JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
378  return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
379JRT_END
380
381// Intrinsics make gcc generate code for these.
382float  SharedRuntime::fneg(float f)   {
383  return -f;
384}
385
386double SharedRuntime::dneg(double f)  {
387  return -f;
388}
389
390#endif // __SOFTFP__
391
392#if defined(__SOFTFP__) || defined(E500V2)
393// Intrinsics make gcc generate code for these.
394double SharedRuntime::dabs(double f)  {
395  return (f <= (double)0.0) ? (double)0.0 - f : f;
396}
397
398#endif
399
400#if defined(__SOFTFP__) || defined(PPC)
401double SharedRuntime::dsqrt(double f) {
402  return sqrt(f);
403}
404#endif
405
406JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
407  if (g_isnan(x))
408    return 0;
409  if (x >= (jfloat) max_jint)
410    return max_jint;
411  if (x <= (jfloat) min_jint)
412    return min_jint;
413  return (jint) x;
414JRT_END
415
416
417JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
418  if (g_isnan(x))
419    return 0;
420  if (x >= (jfloat) max_jlong)
421    return max_jlong;
422  if (x <= (jfloat) min_jlong)
423    return min_jlong;
424  return (jlong) x;
425JRT_END
426
427
428JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
429  if (g_isnan(x))
430    return 0;
431  if (x >= (jdouble) max_jint)
432    return max_jint;
433  if (x <= (jdouble) min_jint)
434    return min_jint;
435  return (jint) x;
436JRT_END
437
438
439JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
440  if (g_isnan(x))
441    return 0;
442  if (x >= (jdouble) max_jlong)
443    return max_jlong;
444  if (x <= (jdouble) min_jlong)
445    return min_jlong;
446  return (jlong) x;
447JRT_END
448
449
450JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
451  return (jfloat)x;
452JRT_END
453
454
455JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
456  return (jfloat)x;
457JRT_END
458
459
460JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
461  return (jdouble)x;
462JRT_END
463
464// Exception handling across interpreter/compiler boundaries
465//
466// exception_handler_for_return_address(...) returns the continuation address.
467// The continuation address is the entry point of the exception handler of the
468// previous frame depending on the return address.
469
470address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
471  assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
472  assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
473
474  // Reset method handle flag.
475  thread->set_is_method_handle_return(false);
476
477#if INCLUDE_JVMCI
478  // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
479  // and other exception handler continuations do not read it
480  thread->set_exception_pc(NULL);
481#endif // INCLUDE_JVMCI
482
483  // The fastest case first
484  CodeBlob* blob = CodeCache::find_blob(return_address);
485  nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
486  if (nm != NULL) {
487    // Set flag if return address is a method handle call site.
488    thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
489    // native nmethods don't have exception handlers
490    assert(!nm->is_native_method(), "no exception handler");
491    assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
492    if (nm->is_deopt_pc(return_address)) {
493      // If we come here because of a stack overflow, the stack may be
494      // unguarded. Reguard the stack otherwise if we return to the
495      // deopt blob and the stack bang causes a stack overflow we
496      // crash.
497      bool guard_pages_enabled = thread->stack_guards_enabled();
498      if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
499      if (thread->reserved_stack_activation() != thread->stack_base()) {
500        thread->set_reserved_stack_activation(thread->stack_base());
501      }
502      assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
503      return SharedRuntime::deopt_blob()->unpack_with_exception();
504    } else {
505      return nm->exception_begin();
506    }
507  }
508
509#if INCLUDE_AOT
510  if (UseAOT && blob->is_aot()) {
511    // AOT Compiled code
512    return AOTLoader::exception_begin(thread, blob, return_address);
513  }
514#endif
515
516  // Entry code
517  if (StubRoutines::returns_to_call_stub(return_address)) {
518    return StubRoutines::catch_exception_entry();
519  }
520  // Interpreted code
521  if (Interpreter::contains(return_address)) {
522    return Interpreter::rethrow_exception_entry();
523  }
524
525  guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
526  guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
527
528#ifndef PRODUCT
529  { ResourceMark rm;
530    tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
531    tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
532    tty->print_cr("b) other problem");
533  }
534#endif // PRODUCT
535
536  ShouldNotReachHere();
537  return NULL;
538}
539
540
541JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
542  return raw_exception_handler_for_return_address(thread, return_address);
543JRT_END
544
545
546address SharedRuntime::get_poll_stub(address pc) {
547  address stub;
548  // Look up the code blob
549  CodeBlob *cb = CodeCache::find_blob(pc);
550
551  // Should be an nmethod
552  assert(cb && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
553
554  // Look up the relocation information
555  assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
556    "safepoint polling: type must be poll");
557
558#ifdef ASSERT
559  if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
560    tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
561    Disassembler::decode(cb);
562    fatal("Only polling locations are used for safepoint");
563  }
564#endif
565
566  bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
567  bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
568  if (at_poll_return) {
569    assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
570           "polling page return stub not created yet");
571    stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
572  } else if (has_wide_vectors) {
573    assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
574           "polling page vectors safepoint stub not created yet");
575    stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
576  } else {
577    assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
578           "polling page safepoint stub not created yet");
579    stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
580  }
581  log_debug(safepoint)("... found polling page %s exception at pc = "
582                       INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
583                       at_poll_return ? "return" : "loop",
584                       (intptr_t)pc, (intptr_t)stub);
585  return stub;
586}
587
588
589oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
590  assert(caller.is_interpreted_frame(), "");
591  int args_size = ArgumentSizeComputer(sig).size() + 1;
592  assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
593  oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
594  assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
595  return result;
596}
597
598
599void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
600  if (JvmtiExport::can_post_on_exceptions()) {
601    vframeStream vfst(thread, true);
602    methodHandle method = methodHandle(thread, vfst.method());
603    address bcp = method()->bcp_from(vfst.bci());
604    JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
605  }
606  Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
607}
608
609void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
610  Handle h_exception = Exceptions::new_exception(thread, name, message);
611  throw_and_post_jvmti_exception(thread, h_exception);
612}
613
614// The interpreter code to call this tracing function is only
615// called/generated when UL is on for redefine, class and has the right level
616// and tags. Since obsolete methods are never compiled, we don't have
617// to modify the compilers to generate calls to this function.
618//
619JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
620    JavaThread* thread, Method* method))
621  if (method->is_obsolete()) {
622    // We are calling an obsolete method, but this is not necessarily
623    // an error. Our method could have been redefined just after we
624    // fetched the Method* from the constant pool.
625    ResourceMark rm;
626    log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
627  }
628  return 0;
629JRT_END
630
631// ret_pc points into caller; we are returning caller's exception handler
632// for given exception
633address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
634                                                    bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
635  assert(cm != NULL, "must exist");
636  ResourceMark rm;
637
638#if INCLUDE_JVMCI
639  if (cm->is_compiled_by_jvmci()) {
640    // lookup exception handler for this pc
641    int catch_pco = ret_pc - cm->code_begin();
642    ExceptionHandlerTable table(cm);
643    HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
644    if (t != NULL) {
645      return cm->code_begin() + t->pco();
646    } else {
647      // there is no exception handler for this pc => deoptimize
648      cm->make_not_entrant();
649
650      // Use Deoptimization::deoptimize for all of its side-effects:
651      // revoking biases of monitors, gathering traps statistics, logging...
652      // it also patches the return pc but we do not care about that
653      // since we return a continuation to the deopt_blob below.
654      JavaThread* thread = JavaThread::current();
655      RegisterMap reg_map(thread, UseBiasedLocking);
656      frame runtime_frame = thread->last_frame();
657      frame caller_frame = runtime_frame.sender(&reg_map);
658      Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
659
660      return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
661    }
662  }
663#endif // INCLUDE_JVMCI
664
665  nmethod* nm = cm->as_nmethod();
666  ScopeDesc* sd = nm->scope_desc_at(ret_pc);
667  // determine handler bci, if any
668  EXCEPTION_MARK;
669
670  int handler_bci = -1;
671  int scope_depth = 0;
672  if (!force_unwind) {
673    int bci = sd->bci();
674    bool recursive_exception = false;
675    do {
676      bool skip_scope_increment = false;
677      // exception handler lookup
678      KlassHandle ek (THREAD, exception->klass());
679      methodHandle mh(THREAD, sd->method());
680      handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
681      if (HAS_PENDING_EXCEPTION) {
682        recursive_exception = true;
683        // We threw an exception while trying to find the exception handler.
684        // Transfer the new exception to the exception handle which will
685        // be set into thread local storage, and do another lookup for an
686        // exception handler for this exception, this time starting at the
687        // BCI of the exception handler which caused the exception to be
688        // thrown (bugs 4307310 and 4546590). Set "exception" reference
689        // argument to ensure that the correct exception is thrown (4870175).
690        recursive_exception_occurred = true;
691        exception = Handle(THREAD, PENDING_EXCEPTION);
692        CLEAR_PENDING_EXCEPTION;
693        if (handler_bci >= 0) {
694          bci = handler_bci;
695          handler_bci = -1;
696          skip_scope_increment = true;
697        }
698      }
699      else {
700        recursive_exception = false;
701      }
702      if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
703        sd = sd->sender();
704        if (sd != NULL) {
705          bci = sd->bci();
706        }
707        ++scope_depth;
708      }
709    } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
710  }
711
712  // found handling method => lookup exception handler
713  int catch_pco = ret_pc - nm->code_begin();
714
715  ExceptionHandlerTable table(nm);
716  HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
717  if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
718    // Allow abbreviated catch tables.  The idea is to allow a method
719    // to materialize its exceptions without committing to the exact
720    // routing of exceptions.  In particular this is needed for adding
721    // a synthetic handler to unlock monitors when inlining
722    // synchronized methods since the unlock path isn't represented in
723    // the bytecodes.
724    t = table.entry_for(catch_pco, -1, 0);
725  }
726
727#ifdef COMPILER1
728  if (t == NULL && nm->is_compiled_by_c1()) {
729    assert(nm->unwind_handler_begin() != NULL, "");
730    return nm->unwind_handler_begin();
731  }
732#endif
733
734  if (t == NULL) {
735    ttyLocker ttyl;
736    tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
737    tty->print_cr("   Exception:");
738    exception->print();
739    tty->cr();
740    tty->print_cr(" Compiled exception table :");
741    table.print();
742    nm->print_code();
743    guarantee(false, "missing exception handler");
744    return NULL;
745  }
746
747  return nm->code_begin() + t->pco();
748}
749
750JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
751  // These errors occur only at call sites
752  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
753JRT_END
754
755JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
756  // These errors occur only at call sites
757  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
758JRT_END
759
760JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
761  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
762JRT_END
763
764JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
765  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
766JRT_END
767
768JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
769  // This entry point is effectively only used for NullPointerExceptions which occur at inline
770  // cache sites (when the callee activation is not yet set up) so we are at a call site
771  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
772JRT_END
773
774JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
775  throw_StackOverflowError_common(thread, false);
776JRT_END
777
778JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
779  throw_StackOverflowError_common(thread, true);
780JRT_END
781
782void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
783  // We avoid using the normal exception construction in this case because
784  // it performs an upcall to Java, and we're already out of stack space.
785  Thread* THREAD = thread;
786  Klass* k = SystemDictionary::StackOverflowError_klass();
787  oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
788  if (delayed) {
789    java_lang_Throwable::set_message(exception_oop,
790                                     Universe::delayed_stack_overflow_error_message());
791  }
792  Handle exception (thread, exception_oop);
793  if (StackTraceInThrowable) {
794    java_lang_Throwable::fill_in_stack_trace(exception);
795  }
796  // Increment counter for hs_err file reporting
797  Atomic::inc(&Exceptions::_stack_overflow_errors);
798  throw_and_post_jvmti_exception(thread, exception);
799}
800
801#if INCLUDE_JVMCI
802address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
803  assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
804  thread->set_jvmci_implicit_exception_pc(pc);
805  thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
806  return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
807}
808#endif // INCLUDE_JVMCI
809
810address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
811                                                           address pc,
812                                                           SharedRuntime::ImplicitExceptionKind exception_kind)
813{
814  address target_pc = NULL;
815
816  if (Interpreter::contains(pc)) {
817#ifdef CC_INTERP
818    // C++ interpreter doesn't throw implicit exceptions
819    ShouldNotReachHere();
820#else
821    switch (exception_kind) {
822      case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
823      case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
824      case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
825      default:                      ShouldNotReachHere();
826    }
827#endif // !CC_INTERP
828  } else {
829    switch (exception_kind) {
830      case STACK_OVERFLOW: {
831        // Stack overflow only occurs upon frame setup; the callee is
832        // going to be unwound. Dispatch to a shared runtime stub
833        // which will cause the StackOverflowError to be fabricated
834        // and processed.
835        // Stack overflow should never occur during deoptimization:
836        // the compiled method bangs the stack by as much as the
837        // interpreter would need in case of a deoptimization. The
838        // deoptimization blob and uncommon trap blob bang the stack
839        // in a debug VM to verify the correctness of the compiled
840        // method stack banging.
841        assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
842        Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
843        return StubRoutines::throw_StackOverflowError_entry();
844      }
845
846      case IMPLICIT_NULL: {
847        if (VtableStubs::contains(pc)) {
848          // We haven't yet entered the callee frame. Fabricate an
849          // exception and begin dispatching it in the caller. Since
850          // the caller was at a call site, it's safe to destroy all
851          // caller-saved registers, as these entry points do.
852          VtableStub* vt_stub = VtableStubs::stub_containing(pc);
853
854          // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
855          if (vt_stub == NULL) return NULL;
856
857          if (vt_stub->is_abstract_method_error(pc)) {
858            assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
859            Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
860            return StubRoutines::throw_AbstractMethodError_entry();
861          } else {
862            Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
863            return StubRoutines::throw_NullPointerException_at_call_entry();
864          }
865        } else {
866          CodeBlob* cb = CodeCache::find_blob(pc);
867
868          // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
869          if (cb == NULL) return NULL;
870
871          // Exception happened in CodeCache. Must be either:
872          // 1. Inline-cache check in C2I handler blob,
873          // 2. Inline-cache check in nmethod, or
874          // 3. Implicit null exception in nmethod
875
876          if (!cb->is_compiled()) {
877            bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
878            if (!is_in_blob) {
879              // Allow normal crash reporting to handle this
880              return NULL;
881            }
882            Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
883            // There is no handler here, so we will simply unwind.
884            return StubRoutines::throw_NullPointerException_at_call_entry();
885          }
886
887          // Otherwise, it's a compiled method.  Consult its exception handlers.
888          CompiledMethod* cm = (CompiledMethod*)cb;
889          if (cm->inlinecache_check_contains(pc)) {
890            // exception happened inside inline-cache check code
891            // => the nmethod is not yet active (i.e., the frame
892            // is not set up yet) => use return address pushed by
893            // caller => don't push another return address
894            Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
895            return StubRoutines::throw_NullPointerException_at_call_entry();
896          }
897
898          if (cm->method()->is_method_handle_intrinsic()) {
899            // exception happened inside MH dispatch code, similar to a vtable stub
900            Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
901            return StubRoutines::throw_NullPointerException_at_call_entry();
902          }
903
904#ifndef PRODUCT
905          _implicit_null_throws++;
906#endif
907#if INCLUDE_JVMCI
908          if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
909            // If there's no PcDesc then we'll die way down inside of
910            // deopt instead of just getting normal error reporting,
911            // so only go there if it will succeed.
912            return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
913          } else {
914#endif // INCLUDE_JVMCI
915          assert (cm->is_nmethod(), "Expect nmethod");
916          target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
917#if INCLUDE_JVMCI
918          }
919#endif // INCLUDE_JVMCI
920          // If there's an unexpected fault, target_pc might be NULL,
921          // in which case we want to fall through into the normal
922          // error handling code.
923        }
924
925        break; // fall through
926      }
927
928
929      case IMPLICIT_DIVIDE_BY_ZERO: {
930        CompiledMethod* cm = CodeCache::find_compiled(pc);
931        guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
932#ifndef PRODUCT
933        _implicit_div0_throws++;
934#endif
935#if INCLUDE_JVMCI
936        if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
937          return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
938        } else {
939#endif // INCLUDE_JVMCI
940        target_pc = cm->continuation_for_implicit_exception(pc);
941#if INCLUDE_JVMCI
942        }
943#endif // INCLUDE_JVMCI
944        // If there's an unexpected fault, target_pc might be NULL,
945        // in which case we want to fall through into the normal
946        // error handling code.
947        break; // fall through
948      }
949
950      default: ShouldNotReachHere();
951    }
952
953    assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
954
955    if (exception_kind == IMPLICIT_NULL) {
956#ifndef PRODUCT
957      // for AbortVMOnException flag
958      Exceptions::debug_check_abort("java.lang.NullPointerException");
959#endif //PRODUCT
960      Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
961    } else {
962#ifndef PRODUCT
963      // for AbortVMOnException flag
964      Exceptions::debug_check_abort("java.lang.ArithmeticException");
965#endif //PRODUCT
966      Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
967    }
968    return target_pc;
969  }
970
971  ShouldNotReachHere();
972  return NULL;
973}
974
975
976/**
977 * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
978 * installed in the native function entry of all native Java methods before
979 * they get linked to their actual native methods.
980 *
981 * \note
982 * This method actually never gets called!  The reason is because
983 * the interpreter's native entries call NativeLookup::lookup() which
984 * throws the exception when the lookup fails.  The exception is then
985 * caught and forwarded on the return from NativeLookup::lookup() call
986 * before the call to the native function.  This might change in the future.
987 */
988JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
989{
990  // We return a bad value here to make sure that the exception is
991  // forwarded before we look at the return value.
992  THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
993}
994JNI_END
995
996address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
997  return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
998}
999
1000JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
1001#if INCLUDE_JVMCI
1002  if (!obj->klass()->has_finalizer()) {
1003    return;
1004  }
1005#endif // INCLUDE_JVMCI
1006  assert(obj->is_oop(), "must be a valid oop");
1007  assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1008  InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1009JRT_END
1010
1011
1012jlong SharedRuntime::get_java_tid(Thread* thread) {
1013  if (thread != NULL) {
1014    if (thread->is_Java_thread()) {
1015      oop obj = ((JavaThread*)thread)->threadObj();
1016      return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1017    }
1018  }
1019  return 0;
1020}
1021
1022/**
1023 * This function ought to be a void function, but cannot be because
1024 * it gets turned into a tail-call on sparc, which runs into dtrace bug
1025 * 6254741.  Once that is fixed we can remove the dummy return value.
1026 */
1027int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1028  return dtrace_object_alloc_base(Thread::current(), o, size);
1029}
1030
1031int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1032  assert(DTraceAllocProbes, "wrong call");
1033  Klass* klass = o->klass();
1034  Symbol* name = klass->name();
1035  HOTSPOT_OBJECT_ALLOC(
1036                   get_java_tid(thread),
1037                   (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1038  return 0;
1039}
1040
1041JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1042    JavaThread* thread, Method* method))
1043  assert(DTraceMethodProbes, "wrong call");
1044  Symbol* kname = method->klass_name();
1045  Symbol* name = method->name();
1046  Symbol* sig = method->signature();
1047  HOTSPOT_METHOD_ENTRY(
1048      get_java_tid(thread),
1049      (char *) kname->bytes(), kname->utf8_length(),
1050      (char *) name->bytes(), name->utf8_length(),
1051      (char *) sig->bytes(), sig->utf8_length());
1052  return 0;
1053JRT_END
1054
1055JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1056    JavaThread* thread, Method* method))
1057  assert(DTraceMethodProbes, "wrong call");
1058  Symbol* kname = method->klass_name();
1059  Symbol* name = method->name();
1060  Symbol* sig = method->signature();
1061  HOTSPOT_METHOD_RETURN(
1062      get_java_tid(thread),
1063      (char *) kname->bytes(), kname->utf8_length(),
1064      (char *) name->bytes(), name->utf8_length(),
1065      (char *) sig->bytes(), sig->utf8_length());
1066  return 0;
1067JRT_END
1068
1069
1070// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1071// for a call current in progress, i.e., arguments has been pushed on stack
1072// put callee has not been invoked yet.  Used by: resolve virtual/static,
1073// vtable updates, etc.  Caller frame must be compiled.
1074Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1075  ResourceMark rm(THREAD);
1076
1077  // last java frame on stack (which includes native call frames)
1078  vframeStream vfst(thread, true);  // Do not skip and javaCalls
1079
1080  return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1081}
1082
1083methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1084  CompiledMethod* caller = vfst.nm();
1085
1086  nmethodLocker caller_lock(caller);
1087
1088  address pc = vfst.frame_pc();
1089  { // Get call instruction under lock because another thread may be busy patching it.
1090    MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1091    return caller->attached_method_before_pc(pc);
1092  }
1093  return NULL;
1094}
1095
1096// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1097// for a call current in progress, i.e., arguments has been pushed on stack
1098// but callee has not been invoked yet.  Caller frame must be compiled.
1099Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1100                                              vframeStream& vfst,
1101                                              Bytecodes::Code& bc,
1102                                              CallInfo& callinfo, TRAPS) {
1103  Handle receiver;
1104  Handle nullHandle;  //create a handy null handle for exception returns
1105
1106  assert(!vfst.at_end(), "Java frame must exist");
1107
1108  // Find caller and bci from vframe
1109  methodHandle caller(THREAD, vfst.method());
1110  int          bci   = vfst.bci();
1111
1112  Bytecode_invoke bytecode(caller, bci);
1113  int bytecode_index = bytecode.index();
1114
1115  methodHandle attached_method = extract_attached_method(vfst);
1116  if (attached_method.not_null()) {
1117    methodHandle callee = bytecode.static_target(CHECK_NH);
1118    vmIntrinsics::ID id = callee->intrinsic_id();
1119    // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1120    // it attaches statically resolved method to the call site.
1121    if (MethodHandles::is_signature_polymorphic(id) &&
1122        MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1123      bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1124
1125      // Adjust invocation mode according to the attached method.
1126      switch (bc) {
1127        case Bytecodes::_invokeinterface:
1128          if (!attached_method->method_holder()->is_interface()) {
1129            bc = Bytecodes::_invokevirtual;
1130          }
1131          break;
1132        case Bytecodes::_invokehandle:
1133          if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1134            bc = attached_method->is_static() ? Bytecodes::_invokestatic
1135                                              : Bytecodes::_invokevirtual;
1136          }
1137          break;
1138      }
1139    }
1140  } else {
1141    bc = bytecode.invoke_code();
1142  }
1143
1144  bool has_receiver = bc != Bytecodes::_invokestatic &&
1145                      bc != Bytecodes::_invokedynamic &&
1146                      bc != Bytecodes::_invokehandle;
1147
1148  // Find receiver for non-static call
1149  if (has_receiver) {
1150    // This register map must be update since we need to find the receiver for
1151    // compiled frames. The receiver might be in a register.
1152    RegisterMap reg_map2(thread);
1153    frame stubFrame   = thread->last_frame();
1154    // Caller-frame is a compiled frame
1155    frame callerFrame = stubFrame.sender(&reg_map2);
1156
1157    if (attached_method.is_null()) {
1158      methodHandle callee = bytecode.static_target(CHECK_NH);
1159      if (callee.is_null()) {
1160        THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1161      }
1162    }
1163
1164    // Retrieve from a compiled argument list
1165    receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1166
1167    if (receiver.is_null()) {
1168      THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1169    }
1170  }
1171
1172  assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1173
1174  // Resolve method
1175  if (attached_method.not_null()) {
1176    // Parameterized by attached method.
1177    LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1178  } else {
1179    // Parameterized by bytecode.
1180    constantPoolHandle constants(THREAD, caller->constants());
1181    LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1182  }
1183
1184#ifdef ASSERT
1185  // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1186  if (has_receiver) {
1187    assert(receiver.not_null(), "should have thrown exception");
1188    KlassHandle receiver_klass(THREAD, receiver->klass());
1189    Klass* rk = NULL;
1190    if (attached_method.not_null()) {
1191      // In case there's resolved method attached, use its holder during the check.
1192      rk = attached_method->method_holder();
1193    } else {
1194      // Klass is already loaded.
1195      constantPoolHandle constants(THREAD, caller->constants());
1196      rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1197    }
1198    KlassHandle static_receiver_klass(THREAD, rk);
1199    methodHandle callee = callinfo.selected_method();
1200    assert(receiver_klass->is_subtype_of(static_receiver_klass()),
1201           "actual receiver must be subclass of static receiver klass");
1202    if (receiver_klass->is_instance_klass()) {
1203      if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1204        tty->print_cr("ERROR: Klass not yet initialized!!");
1205        receiver_klass()->print();
1206      }
1207      assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1208    }
1209  }
1210#endif
1211
1212  return receiver;
1213}
1214
1215methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1216  ResourceMark rm(THREAD);
1217  // We need first to check if any Java activations (compiled, interpreted)
1218  // exist on the stack since last JavaCall.  If not, we need
1219  // to get the target method from the JavaCall wrapper.
1220  vframeStream vfst(thread, true);  // Do not skip any javaCalls
1221  methodHandle callee_method;
1222  if (vfst.at_end()) {
1223    // No Java frames were found on stack since we did the JavaCall.
1224    // Hence the stack can only contain an entry_frame.  We need to
1225    // find the target method from the stub frame.
1226    RegisterMap reg_map(thread, false);
1227    frame fr = thread->last_frame();
1228    assert(fr.is_runtime_frame(), "must be a runtimeStub");
1229    fr = fr.sender(&reg_map);
1230    assert(fr.is_entry_frame(), "must be");
1231    // fr is now pointing to the entry frame.
1232    callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1233  } else {
1234    Bytecodes::Code bc;
1235    CallInfo callinfo;
1236    find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1237    callee_method = callinfo.selected_method();
1238  }
1239  assert(callee_method()->is_method(), "must be");
1240  return callee_method;
1241}
1242
1243// Resolves a call.
1244methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1245                                           bool is_virtual,
1246                                           bool is_optimized, TRAPS) {
1247  methodHandle callee_method;
1248  callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1249  if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1250    int retry_count = 0;
1251    while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1252           callee_method->method_holder() != SystemDictionary::Object_klass()) {
1253      // If has a pending exception then there is no need to re-try to
1254      // resolve this method.
1255      // If the method has been redefined, we need to try again.
1256      // Hack: we have no way to update the vtables of arrays, so don't
1257      // require that java.lang.Object has been updated.
1258
1259      // It is very unlikely that method is redefined more than 100 times
1260      // in the middle of resolve. If it is looping here more than 100 times
1261      // means then there could be a bug here.
1262      guarantee((retry_count++ < 100),
1263                "Could not resolve to latest version of redefined method");
1264      // method is redefined in the middle of resolve so re-try.
1265      callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1266    }
1267  }
1268  return callee_method;
1269}
1270
1271// Resolves a call.  The compilers generate code for calls that go here
1272// and are patched with the real destination of the call.
1273methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1274                                           bool is_virtual,
1275                                           bool is_optimized, TRAPS) {
1276
1277  ResourceMark rm(thread);
1278  RegisterMap cbl_map(thread, false);
1279  frame caller_frame = thread->last_frame().sender(&cbl_map);
1280
1281  CodeBlob* caller_cb = caller_frame.cb();
1282  guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1283  CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1284
1285  // make sure caller is not getting deoptimized
1286  // and removed before we are done with it.
1287  // CLEANUP - with lazy deopt shouldn't need this lock
1288  nmethodLocker caller_lock(caller_nm);
1289
1290  // determine call info & receiver
1291  // note: a) receiver is NULL for static calls
1292  //       b) an exception is thrown if receiver is NULL for non-static calls
1293  CallInfo call_info;
1294  Bytecodes::Code invoke_code = Bytecodes::_illegal;
1295  Handle receiver = find_callee_info(thread, invoke_code,
1296                                     call_info, CHECK_(methodHandle()));
1297  methodHandle callee_method = call_info.selected_method();
1298
1299  assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1300         (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1301         (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1302         (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1303         ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1304
1305  assert(caller_nm->is_alive(), "It should be alive");
1306
1307#ifndef PRODUCT
1308  // tracing/debugging/statistics
1309  int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1310                (is_virtual) ? (&_resolve_virtual_ctr) :
1311                               (&_resolve_static_ctr);
1312  Atomic::inc(addr);
1313
1314  if (TraceCallFixup) {
1315    ResourceMark rm(thread);
1316    tty->print("resolving %s%s (%s) call to",
1317      (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1318      Bytecodes::name(invoke_code));
1319    callee_method->print_short_name(tty);
1320    tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1321                  p2i(caller_frame.pc()), p2i(callee_method->code()));
1322  }
1323#endif
1324
1325  // JSR 292 key invariant:
1326  // If the resolved method is a MethodHandle invoke target, the call
1327  // site must be a MethodHandle call site, because the lambda form might tail-call
1328  // leaving the stack in a state unknown to either caller or callee
1329  // TODO detune for now but we might need it again
1330//  assert(!callee_method->is_compiled_lambda_form() ||
1331//         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1332
1333  // Compute entry points. This might require generation of C2I converter
1334  // frames, so we cannot be holding any locks here. Furthermore, the
1335  // computation of the entry points is independent of patching the call.  We
1336  // always return the entry-point, but we only patch the stub if the call has
1337  // not been deoptimized.  Return values: For a virtual call this is an
1338  // (cached_oop, destination address) pair. For a static call/optimized
1339  // virtual this is just a destination address.
1340
1341  StaticCallInfo static_call_info;
1342  CompiledICInfo virtual_call_info;
1343
1344  // Make sure the callee nmethod does not get deoptimized and removed before
1345  // we are done patching the code.
1346  CompiledMethod* callee = callee_method->code();
1347
1348  if (callee != NULL) {
1349    assert(callee->is_compiled(), "must be nmethod for patching");
1350  }
1351
1352  if (callee != NULL && !callee->is_in_use()) {
1353    // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1354    callee = NULL;
1355  }
1356  nmethodLocker nl_callee(callee);
1357#ifdef ASSERT
1358  address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1359#endif
1360
1361  bool is_nmethod = caller_nm->is_nmethod();
1362
1363  if (is_virtual) {
1364    assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1365    bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1366    KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1367    CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1368                     is_optimized, static_bound, is_nmethod, virtual_call_info,
1369                     CHECK_(methodHandle()));
1370  } else {
1371    // static call
1372    CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1373  }
1374
1375  // grab lock, check for deoptimization and potentially patch caller
1376  {
1377    MutexLocker ml_patch(CompiledIC_lock);
1378
1379    // Lock blocks for safepoint during which both nmethods can change state.
1380
1381    // Now that we are ready to patch if the Method* was redefined then
1382    // don't update call site and let the caller retry.
1383    // Don't update call site if callee nmethod was unloaded or deoptimized.
1384    // Don't update call site if callee nmethod was replaced by an other nmethod
1385    // which may happen when multiply alive nmethod (tiered compilation)
1386    // will be supported.
1387    if (!callee_method->is_old() &&
1388        (callee == NULL || callee->is_in_use() && (callee_method->code() == callee))) {
1389#ifdef ASSERT
1390      // We must not try to patch to jump to an already unloaded method.
1391      if (dest_entry_point != 0) {
1392        CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1393        assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1394               "should not call unloaded nmethod");
1395      }
1396#endif
1397      if (is_virtual) {
1398        CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1399        if (inline_cache->is_clean()) {
1400          inline_cache->set_to_monomorphic(virtual_call_info);
1401        }
1402      } else {
1403        CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1404        if (ssc->is_clean()) ssc->set(static_call_info);
1405      }
1406    }
1407
1408  } // unlock CompiledIC_lock
1409
1410  return callee_method;
1411}
1412
1413
1414// Inline caches exist only in compiled code
1415JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1416#ifdef ASSERT
1417  RegisterMap reg_map(thread, false);
1418  frame stub_frame = thread->last_frame();
1419  assert(stub_frame.is_runtime_frame(), "sanity check");
1420  frame caller_frame = stub_frame.sender(&reg_map);
1421  assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1422#endif /* ASSERT */
1423
1424  methodHandle callee_method;
1425  JRT_BLOCK
1426    callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1427    // Return Method* through TLS
1428    thread->set_vm_result_2(callee_method());
1429  JRT_BLOCK_END
1430  // return compiled code entry point after potential safepoints
1431  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1432  return callee_method->verified_code_entry();
1433JRT_END
1434
1435
1436// Handle call site that has been made non-entrant
1437JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1438  // 6243940 We might end up in here if the callee is deoptimized
1439  // as we race to call it.  We don't want to take a safepoint if
1440  // the caller was interpreted because the caller frame will look
1441  // interpreted to the stack walkers and arguments are now
1442  // "compiled" so it is much better to make this transition
1443  // invisible to the stack walking code. The i2c path will
1444  // place the callee method in the callee_target. It is stashed
1445  // there because if we try and find the callee by normal means a
1446  // safepoint is possible and have trouble gc'ing the compiled args.
1447  RegisterMap reg_map(thread, false);
1448  frame stub_frame = thread->last_frame();
1449  assert(stub_frame.is_runtime_frame(), "sanity check");
1450  frame caller_frame = stub_frame.sender(&reg_map);
1451
1452  if (caller_frame.is_interpreted_frame() ||
1453      caller_frame.is_entry_frame()) {
1454    Method* callee = thread->callee_target();
1455    guarantee(callee != NULL && callee->is_method(), "bad handshake");
1456    thread->set_vm_result_2(callee);
1457    thread->set_callee_target(NULL);
1458    return callee->get_c2i_entry();
1459  }
1460
1461  // Must be compiled to compiled path which is safe to stackwalk
1462  methodHandle callee_method;
1463  JRT_BLOCK
1464    // Force resolving of caller (if we called from compiled frame)
1465    callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1466    thread->set_vm_result_2(callee_method());
1467  JRT_BLOCK_END
1468  // return compiled code entry point after potential safepoints
1469  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1470  return callee_method->verified_code_entry();
1471JRT_END
1472
1473// Handle abstract method call
1474JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1475  return StubRoutines::throw_AbstractMethodError_entry();
1476JRT_END
1477
1478
1479// resolve a static call and patch code
1480JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1481  methodHandle callee_method;
1482  JRT_BLOCK
1483    callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1484    thread->set_vm_result_2(callee_method());
1485  JRT_BLOCK_END
1486  // return compiled code entry point after potential safepoints
1487  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1488  return callee_method->verified_code_entry();
1489JRT_END
1490
1491
1492// resolve virtual call and update inline cache to monomorphic
1493JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1494  methodHandle callee_method;
1495  JRT_BLOCK
1496    callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1497    thread->set_vm_result_2(callee_method());
1498  JRT_BLOCK_END
1499  // return compiled code entry point after potential safepoints
1500  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1501  return callee_method->verified_code_entry();
1502JRT_END
1503
1504
1505// Resolve a virtual call that can be statically bound (e.g., always
1506// monomorphic, so it has no inline cache).  Patch code to resolved target.
1507JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1508  methodHandle callee_method;
1509  JRT_BLOCK
1510    callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1511    thread->set_vm_result_2(callee_method());
1512  JRT_BLOCK_END
1513  // return compiled code entry point after potential safepoints
1514  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1515  return callee_method->verified_code_entry();
1516JRT_END
1517
1518
1519
1520methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1521  ResourceMark rm(thread);
1522  CallInfo call_info;
1523  Bytecodes::Code bc;
1524
1525  // receiver is NULL for static calls. An exception is thrown for NULL
1526  // receivers for non-static calls
1527  Handle receiver = find_callee_info(thread, bc, call_info,
1528                                     CHECK_(methodHandle()));
1529  // Compiler1 can produce virtual call sites that can actually be statically bound
1530  // If we fell thru to below we would think that the site was going megamorphic
1531  // when in fact the site can never miss. Worse because we'd think it was megamorphic
1532  // we'd try and do a vtable dispatch however methods that can be statically bound
1533  // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1534  // reresolution of the  call site (as if we did a handle_wrong_method and not an
1535  // plain ic_miss) and the site will be converted to an optimized virtual call site
1536  // never to miss again. I don't believe C2 will produce code like this but if it
1537  // did this would still be the correct thing to do for it too, hence no ifdef.
1538  //
1539  if (call_info.resolved_method()->can_be_statically_bound()) {
1540    methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1541    if (TraceCallFixup) {
1542      RegisterMap reg_map(thread, false);
1543      frame caller_frame = thread->last_frame().sender(&reg_map);
1544      ResourceMark rm(thread);
1545      tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1546      callee_method->print_short_name(tty);
1547      tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1548      tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1549    }
1550    return callee_method;
1551  }
1552
1553  methodHandle callee_method = call_info.selected_method();
1554
1555  bool should_be_mono = false;
1556
1557#ifndef PRODUCT
1558  Atomic::inc(&_ic_miss_ctr);
1559
1560  // Statistics & Tracing
1561  if (TraceCallFixup) {
1562    ResourceMark rm(thread);
1563    tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1564    callee_method->print_short_name(tty);
1565    tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1566  }
1567
1568  if (ICMissHistogram) {
1569    MutexLocker m(VMStatistic_lock);
1570    RegisterMap reg_map(thread, false);
1571    frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1572    // produce statistics under the lock
1573    trace_ic_miss(f.pc());
1574  }
1575#endif
1576
1577  // install an event collector so that when a vtable stub is created the
1578  // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1579  // event can't be posted when the stub is created as locks are held
1580  // - instead the event will be deferred until the event collector goes
1581  // out of scope.
1582  JvmtiDynamicCodeEventCollector event_collector;
1583
1584  // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1585  { MutexLocker ml_patch (CompiledIC_lock);
1586    RegisterMap reg_map(thread, false);
1587    frame caller_frame = thread->last_frame().sender(&reg_map);
1588    CodeBlob* cb = caller_frame.cb();
1589    CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1590    if (cb->is_compiled()) {
1591      CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1592      bool should_be_mono = false;
1593      if (inline_cache->is_optimized()) {
1594        if (TraceCallFixup) {
1595          ResourceMark rm(thread);
1596          tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1597          callee_method->print_short_name(tty);
1598          tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1599        }
1600        should_be_mono = true;
1601      } else if (inline_cache->is_icholder_call()) {
1602        CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1603        if (ic_oop != NULL) {
1604
1605          if (receiver()->klass() == ic_oop->holder_klass()) {
1606            // This isn't a real miss. We must have seen that compiled code
1607            // is now available and we want the call site converted to a
1608            // monomorphic compiled call site.
1609            // We can't assert for callee_method->code() != NULL because it
1610            // could have been deoptimized in the meantime
1611            if (TraceCallFixup) {
1612              ResourceMark rm(thread);
1613              tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1614              callee_method->print_short_name(tty);
1615              tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1616            }
1617            should_be_mono = true;
1618          }
1619        }
1620      }
1621
1622      if (should_be_mono) {
1623
1624        // We have a path that was monomorphic but was going interpreted
1625        // and now we have (or had) a compiled entry. We correct the IC
1626        // by using a new icBuffer.
1627        CompiledICInfo info;
1628        KlassHandle receiver_klass(THREAD, receiver()->klass());
1629        inline_cache->compute_monomorphic_entry(callee_method,
1630                                                receiver_klass,
1631                                                inline_cache->is_optimized(),
1632                                                false, caller_nm->is_nmethod(),
1633                                                info, CHECK_(methodHandle()));
1634        inline_cache->set_to_monomorphic(info);
1635      } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1636        // Potential change to megamorphic
1637        bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1638        if (!successful) {
1639          inline_cache->set_to_clean();
1640        }
1641      } else {
1642        // Either clean or megamorphic
1643      }
1644    } else {
1645      fatal("Unimplemented");
1646    }
1647  } // Release CompiledIC_lock
1648
1649  return callee_method;
1650}
1651
1652//
1653// Resets a call-site in compiled code so it will get resolved again.
1654// This routines handles both virtual call sites, optimized virtual call
1655// sites, and static call sites. Typically used to change a call sites
1656// destination from compiled to interpreted.
1657//
1658methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1659  ResourceMark rm(thread);
1660  RegisterMap reg_map(thread, false);
1661  frame stub_frame = thread->last_frame();
1662  assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1663  frame caller = stub_frame.sender(&reg_map);
1664
1665  // Do nothing if the frame isn't a live compiled frame.
1666  // nmethod could be deoptimized by the time we get here
1667  // so no update to the caller is needed.
1668
1669  if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1670
1671    address pc = caller.pc();
1672
1673    // Check for static or virtual call
1674    bool is_static_call = false;
1675    CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1676
1677    // Default call_addr is the location of the "basic" call.
1678    // Determine the address of the call we a reresolving. With
1679    // Inline Caches we will always find a recognizable call.
1680    // With Inline Caches disabled we may or may not find a
1681    // recognizable call. We will always find a call for static
1682    // calls and for optimized virtual calls. For vanilla virtual
1683    // calls it depends on the state of the UseInlineCaches switch.
1684    //
1685    // With Inline Caches disabled we can get here for a virtual call
1686    // for two reasons:
1687    //   1 - calling an abstract method. The vtable for abstract methods
1688    //       will run us thru handle_wrong_method and we will eventually
1689    //       end up in the interpreter to throw the ame.
1690    //   2 - a racing deoptimization. We could be doing a vanilla vtable
1691    //       call and between the time we fetch the entry address and
1692    //       we jump to it the target gets deoptimized. Similar to 1
1693    //       we will wind up in the interprter (thru a c2i with c2).
1694    //
1695    address call_addr = NULL;
1696    {
1697      // Get call instruction under lock because another thread may be
1698      // busy patching it.
1699      MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1700      // Location of call instruction
1701      call_addr = caller_nm->call_instruction_address(pc);
1702    }
1703    // Make sure nmethod doesn't get deoptimized and removed until
1704    // this is done with it.
1705    // CLEANUP - with lazy deopt shouldn't need this lock
1706    nmethodLocker nmlock(caller_nm);
1707
1708    if (call_addr != NULL) {
1709      RelocIterator iter(caller_nm, call_addr, call_addr+1);
1710      int ret = iter.next(); // Get item
1711      if (ret) {
1712        assert(iter.addr() == call_addr, "must find call");
1713        if (iter.type() == relocInfo::static_call_type) {
1714          is_static_call = true;
1715        } else {
1716          assert(iter.type() == relocInfo::virtual_call_type ||
1717                 iter.type() == relocInfo::opt_virtual_call_type
1718                , "unexpected relocInfo. type");
1719        }
1720      } else {
1721        assert(!UseInlineCaches, "relocation info. must exist for this address");
1722      }
1723
1724      // Cleaning the inline cache will force a new resolve. This is more robust
1725      // than directly setting it to the new destination, since resolving of calls
1726      // is always done through the same code path. (experience shows that it
1727      // leads to very hard to track down bugs, if an inline cache gets updated
1728      // to a wrong method). It should not be performance critical, since the
1729      // resolve is only done once.
1730
1731      bool is_nmethod = caller_nm->is_nmethod();
1732      MutexLocker ml(CompiledIC_lock);
1733      if (is_static_call) {
1734        CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1735        ssc->set_to_clean();
1736      } else {
1737        // compiled, dispatched call (which used to call an interpreted method)
1738        CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1739        inline_cache->set_to_clean();
1740      }
1741    }
1742  }
1743
1744  methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1745
1746
1747#ifndef PRODUCT
1748  Atomic::inc(&_wrong_method_ctr);
1749
1750  if (TraceCallFixup) {
1751    ResourceMark rm(thread);
1752    tty->print("handle_wrong_method reresolving call to");
1753    callee_method->print_short_name(tty);
1754    tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1755  }
1756#endif
1757
1758  return callee_method;
1759}
1760
1761address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1762  // The faulting unsafe accesses should be changed to throw the error
1763  // synchronously instead. Meanwhile the faulting instruction will be
1764  // skipped over (effectively turning it into a no-op) and an
1765  // asynchronous exception will be raised which the thread will
1766  // handle at a later point. If the instruction is a load it will
1767  // return garbage.
1768
1769  // Request an async exception.
1770  thread->set_pending_unsafe_access_error();
1771
1772  // Return address of next instruction to execute.
1773  return next_pc;
1774}
1775
1776#ifdef ASSERT
1777void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1778                                                                const BasicType* sig_bt,
1779                                                                const VMRegPair* regs) {
1780  ResourceMark rm;
1781  const int total_args_passed = method->size_of_parameters();
1782  const VMRegPair*    regs_with_member_name = regs;
1783        VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1784
1785  const int member_arg_pos = total_args_passed - 1;
1786  assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1787  assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1788
1789  const bool is_outgoing = method->is_method_handle_intrinsic();
1790  int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1791
1792  for (int i = 0; i < member_arg_pos; i++) {
1793    VMReg a =    regs_with_member_name[i].first();
1794    VMReg b = regs_without_member_name[i].first();
1795    assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1796  }
1797  assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1798}
1799#endif
1800
1801bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1802  if (destination != entry_point) {
1803    CodeBlob* callee = CodeCache::find_blob(destination);
1804    // callee == cb seems weird. It means calling interpreter thru stub.
1805    if (callee == cb || callee->is_adapter_blob()) {
1806      // static call or optimized virtual
1807      if (TraceCallFixup) {
1808        tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1809        moop->print_short_name(tty);
1810        tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1811      }
1812      return true;
1813    } else {
1814      if (TraceCallFixup) {
1815        tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1816        moop->print_short_name(tty);
1817        tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1818      }
1819      // assert is too strong could also be resolve destinations.
1820      // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1821    }
1822  } else {
1823    if (TraceCallFixup) {
1824      tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1825      moop->print_short_name(tty);
1826      tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1827    }
1828  }
1829  return false;
1830}
1831
1832// ---------------------------------------------------------------------------
1833// We are calling the interpreter via a c2i. Normally this would mean that
1834// we were called by a compiled method. However we could have lost a race
1835// where we went int -> i2c -> c2i and so the caller could in fact be
1836// interpreted. If the caller is compiled we attempt to patch the caller
1837// so he no longer calls into the interpreter.
1838IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1839  Method* moop(method);
1840
1841  address entry_point = moop->from_compiled_entry_no_trampoline();
1842
1843  // It's possible that deoptimization can occur at a call site which hasn't
1844  // been resolved yet, in which case this function will be called from
1845  // an nmethod that has been patched for deopt and we can ignore the
1846  // request for a fixup.
1847  // Also it is possible that we lost a race in that from_compiled_entry
1848  // is now back to the i2c in that case we don't need to patch and if
1849  // we did we'd leap into space because the callsite needs to use
1850  // "to interpreter" stub in order to load up the Method*. Don't
1851  // ask me how I know this...
1852
1853  CodeBlob* cb = CodeCache::find_blob(caller_pc);
1854  if (!cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1855    return;
1856  }
1857
1858  // The check above makes sure this is a nmethod.
1859  CompiledMethod* nm = cb->as_compiled_method_or_null();
1860  assert(nm, "must be");
1861
1862  // Get the return PC for the passed caller PC.
1863  address return_pc = caller_pc + frame::pc_return_offset;
1864
1865  // There is a benign race here. We could be attempting to patch to a compiled
1866  // entry point at the same time the callee is being deoptimized. If that is
1867  // the case then entry_point may in fact point to a c2i and we'd patch the
1868  // call site with the same old data. clear_code will set code() to NULL
1869  // at the end of it. If we happen to see that NULL then we can skip trying
1870  // to patch. If we hit the window where the callee has a c2i in the
1871  // from_compiled_entry and the NULL isn't present yet then we lose the race
1872  // and patch the code with the same old data. Asi es la vida.
1873
1874  if (moop->code() == NULL) return;
1875
1876  if (nm->is_in_use()) {
1877
1878    // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1879    MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1880    if (NativeCall::is_call_before(return_pc)) {
1881      ResourceMark mark;
1882      NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1883      //
1884      // bug 6281185. We might get here after resolving a call site to a vanilla
1885      // virtual call. Because the resolvee uses the verified entry it may then
1886      // see compiled code and attempt to patch the site by calling us. This would
1887      // then incorrectly convert the call site to optimized and its downhill from
1888      // there. If you're lucky you'll get the assert in the bugid, if not you've
1889      // just made a call site that could be megamorphic into a monomorphic site
1890      // for the rest of its life! Just another racing bug in the life of
1891      // fixup_callers_callsite ...
1892      //
1893      RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1894      iter.next();
1895      assert(iter.has_current(), "must have a reloc at java call site");
1896      relocInfo::relocType typ = iter.reloc()->type();
1897      if (typ != relocInfo::static_call_type &&
1898           typ != relocInfo::opt_virtual_call_type &&
1899           typ != relocInfo::static_stub_type) {
1900        return;
1901      }
1902      address destination = call->destination();
1903      if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1904        call->set_destination_mt_safe(entry_point);
1905      }
1906    }
1907  }
1908IRT_END
1909
1910
1911// same as JVM_Arraycopy, but called directly from compiled code
1912JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1913                                                oopDesc* dest, jint dest_pos,
1914                                                jint length,
1915                                                JavaThread* thread)) {
1916#ifndef PRODUCT
1917  _slow_array_copy_ctr++;
1918#endif
1919  // Check if we have null pointers
1920  if (src == NULL || dest == NULL) {
1921    THROW(vmSymbols::java_lang_NullPointerException());
1922  }
1923  // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1924  // even though the copy_array API also performs dynamic checks to ensure
1925  // that src and dest are truly arrays (and are conformable).
1926  // The copy_array mechanism is awkward and could be removed, but
1927  // the compilers don't call this function except as a last resort,
1928  // so it probably doesn't matter.
1929  src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1930                                        (arrayOopDesc*)dest, dest_pos,
1931                                        length, thread);
1932}
1933JRT_END
1934
1935// The caller of generate_class_cast_message() (or one of its callers)
1936// must use a ResourceMark in order to correctly free the result.
1937char* SharedRuntime::generate_class_cast_message(
1938    JavaThread* thread, Klass* caster_klass) {
1939
1940  // Get target class name from the checkcast instruction
1941  vframeStream vfst(thread, true);
1942  assert(!vfst.at_end(), "Java frame must exist");
1943  Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1944  Klass* target_klass = vfst.method()->constants()->klass_at(
1945    cc.index(), thread);
1946  return generate_class_cast_message(caster_klass, target_klass);
1947}
1948
1949// The caller of class_loader_and_module_name() (or one of its callers)
1950// must use a ResourceMark in order to correctly free the result.
1951const char* class_loader_and_module_name(Klass* klass) {
1952  const char* delim = "/";
1953  size_t delim_len = strlen(delim);
1954
1955  const char* fqn = klass->external_name();
1956  // Length of message to return; always include FQN
1957  size_t msglen = strlen(fqn) + 1;
1958
1959  bool has_cl_name = false;
1960  bool has_mod_name = false;
1961  bool has_version = false;
1962
1963  // Use class loader name, if exists and not builtin
1964  const char* class_loader_name = "";
1965  ClassLoaderData* cld = klass->class_loader_data();
1966  assert(cld != NULL, "class_loader_data should not be NULL");
1967  if (!cld->is_builtin_class_loader_data()) {
1968    // If not builtin, look for name
1969    oop loader = klass->class_loader();
1970    if (loader != NULL) {
1971      oop class_loader_name_oop = java_lang_ClassLoader::name(loader);
1972      if (class_loader_name_oop != NULL) {
1973        class_loader_name = java_lang_String::as_utf8_string(class_loader_name_oop);
1974        if (class_loader_name != NULL && class_loader_name[0] != '\0') {
1975          has_cl_name = true;
1976          msglen += strlen(class_loader_name) + delim_len;
1977        }
1978      }
1979    }
1980  }
1981
1982  const char* module_name = "";
1983  const char* version = "";
1984  Klass* bottom_klass = klass->is_objArray_klass() ?
1985    ObjArrayKlass::cast(klass)->bottom_klass() : klass;
1986  if (bottom_klass->is_instance_klass()) {
1987    ModuleEntry* module = InstanceKlass::cast(bottom_klass)->module();
1988    // Use module name, if exists
1989    if (module->is_named()) {
1990      has_mod_name = true;
1991      module_name = module->name()->as_C_string();
1992      msglen += strlen(module_name);
1993      // Use version if exists and is not a jdk module
1994      if (module->is_non_jdk_module() && module->version() != NULL) {
1995        has_version = true;
1996        version = module->version()->as_C_string();
1997        msglen += strlen("@") + strlen(version);
1998      }
1999    }
2000  } else {
2001    // klass is an array of primitives, so its module is java.base
2002    module_name = JAVA_BASE_NAME;
2003  }
2004
2005  if (has_cl_name || has_mod_name) {
2006    msglen += delim_len;
2007  }
2008
2009  char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2010
2011  // Just return the FQN if error in allocating string
2012  if (message == NULL) {
2013    return fqn;
2014  }
2015
2016  jio_snprintf(message, msglen, "%s%s%s%s%s%s%s",
2017               class_loader_name,
2018               (has_cl_name) ? delim : "",
2019               (has_mod_name) ? module_name : "",
2020               (has_version) ? "@" : "",
2021               (has_version) ? version : "",
2022               (has_cl_name || has_mod_name) ? delim : "",
2023               fqn);
2024  return message;
2025}
2026
2027char* SharedRuntime::generate_class_cast_message(
2028    Klass* caster_klass, Klass* target_klass) {
2029
2030  const char* caster_name = class_loader_and_module_name(caster_klass);
2031
2032  const char* target_name = class_loader_and_module_name(target_klass);
2033
2034  size_t msglen = strlen(caster_name) + strlen(" cannot be cast to ") + strlen(target_name) + 1;
2035
2036  char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2037  if (message == NULL) {
2038    // Shouldn't happen, but don't cause even more problems if it does
2039    message = const_cast<char*>(caster_klass->external_name());
2040  } else {
2041    jio_snprintf(message,
2042                 msglen,
2043                 "%s cannot be cast to %s",
2044                 caster_name,
2045                 target_name);
2046  }
2047  return message;
2048}
2049
2050JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2051  (void) JavaThread::current()->reguard_stack();
2052JRT_END
2053
2054
2055// Handles the uncommon case in locking, i.e., contention or an inflated lock.
2056JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2057  // Disable ObjectSynchronizer::quick_enter() in default config
2058  // on AARCH64 and ARM until JDK-8153107 is resolved.
2059  if (ARM_ONLY((SyncFlags & 256) != 0 &&)
2060      AARCH64_ONLY((SyncFlags & 256) != 0 &&)
2061      !SafepointSynchronize::is_synchronizing()) {
2062    // Only try quick_enter() if we're not trying to reach a safepoint
2063    // so that the calling thread reaches the safepoint more quickly.
2064    if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2065  }
2066  // NO_ASYNC required because an async exception on the state transition destructor
2067  // would leave you with the lock held and it would never be released.
2068  // The normal monitorenter NullPointerException is thrown without acquiring a lock
2069  // and the model is that an exception implies the method failed.
2070  JRT_BLOCK_NO_ASYNC
2071  oop obj(_obj);
2072  if (PrintBiasedLockingStatistics) {
2073    Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2074  }
2075  Handle h_obj(THREAD, obj);
2076  if (UseBiasedLocking) {
2077    // Retry fast entry if bias is revoked to avoid unnecessary inflation
2078    ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2079  } else {
2080    ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2081  }
2082  assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2083  JRT_BLOCK_END
2084JRT_END
2085
2086// Handles the uncommon cases of monitor unlocking in compiled code
2087JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2088   oop obj(_obj);
2089  assert(JavaThread::current() == THREAD, "invariant");
2090  // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2091  // testing was unable to ever fire the assert that guarded it so I have removed it.
2092  assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2093#undef MIGHT_HAVE_PENDING
2094#ifdef MIGHT_HAVE_PENDING
2095  // Save and restore any pending_exception around the exception mark.
2096  // While the slow_exit must not throw an exception, we could come into
2097  // this routine with one set.
2098  oop pending_excep = NULL;
2099  const char* pending_file;
2100  int pending_line;
2101  if (HAS_PENDING_EXCEPTION) {
2102    pending_excep = PENDING_EXCEPTION;
2103    pending_file  = THREAD->exception_file();
2104    pending_line  = THREAD->exception_line();
2105    CLEAR_PENDING_EXCEPTION;
2106  }
2107#endif /* MIGHT_HAVE_PENDING */
2108
2109  {
2110    // Exit must be non-blocking, and therefore no exceptions can be thrown.
2111    EXCEPTION_MARK;
2112    ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2113  }
2114
2115#ifdef MIGHT_HAVE_PENDING
2116  if (pending_excep != NULL) {
2117    THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2118  }
2119#endif /* MIGHT_HAVE_PENDING */
2120JRT_END
2121
2122#ifndef PRODUCT
2123
2124void SharedRuntime::print_statistics() {
2125  ttyLocker ttyl;
2126  if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2127
2128  if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2129
2130  SharedRuntime::print_ic_miss_histogram();
2131
2132  if (CountRemovableExceptions) {
2133    if (_nof_removable_exceptions > 0) {
2134      Unimplemented(); // this counter is not yet incremented
2135      tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2136    }
2137  }
2138
2139  // Dump the JRT_ENTRY counters
2140  if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2141  if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2142  if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2143  if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2144  if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2145  if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2146  if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2147
2148  tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2149  tty->print_cr("%5d wrong method", _wrong_method_ctr);
2150  tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2151  tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2152  tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2153
2154  if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2155  if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2156  if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2157  if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2158  if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2159  if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2160  if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2161  if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2162  if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2163  if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2164  if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2165  if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2166  if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2167  if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2168  if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2169  if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2170
2171  AdapterHandlerLibrary::print_statistics();
2172
2173  if (xtty != NULL)  xtty->tail("statistics");
2174}
2175
2176inline double percent(int x, int y) {
2177  return 100.0 * x / MAX2(y, 1);
2178}
2179
2180class MethodArityHistogram {
2181 public:
2182  enum { MAX_ARITY = 256 };
2183 private:
2184  static int _arity_histogram[MAX_ARITY];     // histogram of #args
2185  static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2186  static int _max_arity;                      // max. arity seen
2187  static int _max_size;                       // max. arg size seen
2188
2189  static void add_method_to_histogram(nmethod* nm) {
2190    Method* m = nm->method();
2191    ArgumentCount args(m->signature());
2192    int arity   = args.size() + (m->is_static() ? 0 : 1);
2193    int argsize = m->size_of_parameters();
2194    arity   = MIN2(arity, MAX_ARITY-1);
2195    argsize = MIN2(argsize, MAX_ARITY-1);
2196    int count = nm->method()->compiled_invocation_count();
2197    _arity_histogram[arity]  += count;
2198    _size_histogram[argsize] += count;
2199    _max_arity = MAX2(_max_arity, arity);
2200    _max_size  = MAX2(_max_size, argsize);
2201  }
2202
2203  void print_histogram_helper(int n, int* histo, const char* name) {
2204    const int N = MIN2(5, n);
2205    tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2206    double sum = 0;
2207    double weighted_sum = 0;
2208    int i;
2209    for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2210    double rest = sum;
2211    double percent = sum / 100;
2212    for (i = 0; i <= N; i++) {
2213      rest -= histo[i];
2214      tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2215    }
2216    tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2217    tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2218  }
2219
2220  void print_histogram() {
2221    tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2222    print_histogram_helper(_max_arity, _arity_histogram, "arity");
2223    tty->print_cr("\nSame for parameter size (in words):");
2224    print_histogram_helper(_max_size, _size_histogram, "size");
2225    tty->cr();
2226  }
2227
2228 public:
2229  MethodArityHistogram() {
2230    MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2231    _max_arity = _max_size = 0;
2232    for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2233    CodeCache::nmethods_do(add_method_to_histogram);
2234    print_histogram();
2235  }
2236};
2237
2238int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2239int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2240int MethodArityHistogram::_max_arity;
2241int MethodArityHistogram::_max_size;
2242
2243void SharedRuntime::print_call_statistics(int comp_total) {
2244  tty->print_cr("Calls from compiled code:");
2245  int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2246  int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2247  int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2248  tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2249  tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2250  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2251  tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2252  tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2253  tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2254  tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2255  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2256  tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2257  tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2258  tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2259  tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2260  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2261  tty->cr();
2262  tty->print_cr("Note 1: counter updates are not MT-safe.");
2263  tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2264  tty->print_cr("        %% in nested categories are relative to their category");
2265  tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2266  tty->cr();
2267
2268  MethodArityHistogram h;
2269}
2270#endif
2271
2272
2273// A simple wrapper class around the calling convention information
2274// that allows sharing of adapters for the same calling convention.
2275class AdapterFingerPrint : public CHeapObj<mtCode> {
2276 private:
2277  enum {
2278    _basic_type_bits = 4,
2279    _basic_type_mask = right_n_bits(_basic_type_bits),
2280    _basic_types_per_int = BitsPerInt / _basic_type_bits,
2281    _compact_int_count = 3
2282  };
2283  // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2284  // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2285
2286  union {
2287    int  _compact[_compact_int_count];
2288    int* _fingerprint;
2289  } _value;
2290  int _length; // A negative length indicates the fingerprint is in the compact form,
2291               // Otherwise _value._fingerprint is the array.
2292
2293  // Remap BasicTypes that are handled equivalently by the adapters.
2294  // These are correct for the current system but someday it might be
2295  // necessary to make this mapping platform dependent.
2296  static int adapter_encoding(BasicType in) {
2297    switch (in) {
2298      case T_BOOLEAN:
2299      case T_BYTE:
2300      case T_SHORT:
2301      case T_CHAR:
2302        // There are all promoted to T_INT in the calling convention
2303        return T_INT;
2304
2305      case T_OBJECT:
2306      case T_ARRAY:
2307        // In other words, we assume that any register good enough for
2308        // an int or long is good enough for a managed pointer.
2309#ifdef _LP64
2310        return T_LONG;
2311#else
2312        return T_INT;
2313#endif
2314
2315      case T_INT:
2316      case T_LONG:
2317      case T_FLOAT:
2318      case T_DOUBLE:
2319      case T_VOID:
2320        return in;
2321
2322      default:
2323        ShouldNotReachHere();
2324        return T_CONFLICT;
2325    }
2326  }
2327
2328 public:
2329  AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2330    // The fingerprint is based on the BasicType signature encoded
2331    // into an array of ints with eight entries per int.
2332    int* ptr;
2333    int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2334    if (len <= _compact_int_count) {
2335      assert(_compact_int_count == 3, "else change next line");
2336      _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2337      // Storing the signature encoded as signed chars hits about 98%
2338      // of the time.
2339      _length = -len;
2340      ptr = _value._compact;
2341    } else {
2342      _length = len;
2343      _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2344      ptr = _value._fingerprint;
2345    }
2346
2347    // Now pack the BasicTypes with 8 per int
2348    int sig_index = 0;
2349    for (int index = 0; index < len; index++) {
2350      int value = 0;
2351      for (int byte = 0; byte < _basic_types_per_int; byte++) {
2352        int bt = ((sig_index < total_args_passed)
2353                  ? adapter_encoding(sig_bt[sig_index++])
2354                  : 0);
2355        assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2356        value = (value << _basic_type_bits) | bt;
2357      }
2358      ptr[index] = value;
2359    }
2360  }
2361
2362  ~AdapterFingerPrint() {
2363    if (_length > 0) {
2364      FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2365    }
2366  }
2367
2368  int value(int index) {
2369    if (_length < 0) {
2370      return _value._compact[index];
2371    }
2372    return _value._fingerprint[index];
2373  }
2374  int length() {
2375    if (_length < 0) return -_length;
2376    return _length;
2377  }
2378
2379  bool is_compact() {
2380    return _length <= 0;
2381  }
2382
2383  unsigned int compute_hash() {
2384    int hash = 0;
2385    for (int i = 0; i < length(); i++) {
2386      int v = value(i);
2387      hash = (hash << 8) ^ v ^ (hash >> 5);
2388    }
2389    return (unsigned int)hash;
2390  }
2391
2392  const char* as_string() {
2393    stringStream st;
2394    st.print("0x");
2395    for (int i = 0; i < length(); i++) {
2396      st.print("%08x", value(i));
2397    }
2398    return st.as_string();
2399  }
2400
2401  bool equals(AdapterFingerPrint* other) {
2402    if (other->_length != _length) {
2403      return false;
2404    }
2405    if (_length < 0) {
2406      assert(_compact_int_count == 3, "else change next line");
2407      return _value._compact[0] == other->_value._compact[0] &&
2408             _value._compact[1] == other->_value._compact[1] &&
2409             _value._compact[2] == other->_value._compact[2];
2410    } else {
2411      for (int i = 0; i < _length; i++) {
2412        if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2413          return false;
2414        }
2415      }
2416    }
2417    return true;
2418  }
2419};
2420
2421
2422// A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2423class AdapterHandlerTable : public BasicHashtable<mtCode> {
2424  friend class AdapterHandlerTableIterator;
2425
2426 private:
2427
2428#ifndef PRODUCT
2429  static int _lookups; // number of calls to lookup
2430  static int _buckets; // number of buckets checked
2431  static int _equals;  // number of buckets checked with matching hash
2432  static int _hits;    // number of successful lookups
2433  static int _compact; // number of equals calls with compact signature
2434#endif
2435
2436  AdapterHandlerEntry* bucket(int i) {
2437    return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2438  }
2439
2440 public:
2441  AdapterHandlerTable()
2442    : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2443
2444  // Create a new entry suitable for insertion in the table
2445  AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2446    AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2447    entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2448    if (DumpSharedSpaces) {
2449      ((CDSAdapterHandlerEntry*)entry)->init();
2450    }
2451    return entry;
2452  }
2453
2454  // Insert an entry into the table
2455  void add(AdapterHandlerEntry* entry) {
2456    int index = hash_to_index(entry->hash());
2457    add_entry(index, entry);
2458  }
2459
2460  void free_entry(AdapterHandlerEntry* entry) {
2461    entry->deallocate();
2462    BasicHashtable<mtCode>::free_entry(entry);
2463  }
2464
2465  // Find a entry with the same fingerprint if it exists
2466  AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2467    NOT_PRODUCT(_lookups++);
2468    AdapterFingerPrint fp(total_args_passed, sig_bt);
2469    unsigned int hash = fp.compute_hash();
2470    int index = hash_to_index(hash);
2471    for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2472      NOT_PRODUCT(_buckets++);
2473      if (e->hash() == hash) {
2474        NOT_PRODUCT(_equals++);
2475        if (fp.equals(e->fingerprint())) {
2476#ifndef PRODUCT
2477          if (fp.is_compact()) _compact++;
2478          _hits++;
2479#endif
2480          return e;
2481        }
2482      }
2483    }
2484    return NULL;
2485  }
2486
2487#ifndef PRODUCT
2488  void print_statistics() {
2489    ResourceMark rm;
2490    int longest = 0;
2491    int empty = 0;
2492    int total = 0;
2493    int nonempty = 0;
2494    for (int index = 0; index < table_size(); index++) {
2495      int count = 0;
2496      for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2497        count++;
2498      }
2499      if (count != 0) nonempty++;
2500      if (count == 0) empty++;
2501      if (count > longest) longest = count;
2502      total += count;
2503    }
2504    tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2505                  empty, longest, total, total / (double)nonempty);
2506    tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2507                  _lookups, _buckets, _equals, _hits, _compact);
2508  }
2509#endif
2510};
2511
2512
2513#ifndef PRODUCT
2514
2515int AdapterHandlerTable::_lookups;
2516int AdapterHandlerTable::_buckets;
2517int AdapterHandlerTable::_equals;
2518int AdapterHandlerTable::_hits;
2519int AdapterHandlerTable::_compact;
2520
2521#endif
2522
2523class AdapterHandlerTableIterator : public StackObj {
2524 private:
2525  AdapterHandlerTable* _table;
2526  int _index;
2527  AdapterHandlerEntry* _current;
2528
2529  void scan() {
2530    while (_index < _table->table_size()) {
2531      AdapterHandlerEntry* a = _table->bucket(_index);
2532      _index++;
2533      if (a != NULL) {
2534        _current = a;
2535        return;
2536      }
2537    }
2538  }
2539
2540 public:
2541  AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2542    scan();
2543  }
2544  bool has_next() {
2545    return _current != NULL;
2546  }
2547  AdapterHandlerEntry* next() {
2548    if (_current != NULL) {
2549      AdapterHandlerEntry* result = _current;
2550      _current = _current->next();
2551      if (_current == NULL) scan();
2552      return result;
2553    } else {
2554      return NULL;
2555    }
2556  }
2557};
2558
2559
2560// ---------------------------------------------------------------------------
2561// Implementation of AdapterHandlerLibrary
2562AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2563AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2564const int AdapterHandlerLibrary_size = 16*K;
2565BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2566
2567BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2568  // Should be called only when AdapterHandlerLibrary_lock is active.
2569  if (_buffer == NULL) // Initialize lazily
2570      _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2571  return _buffer;
2572}
2573
2574extern "C" void unexpected_adapter_call() {
2575  ShouldNotCallThis();
2576}
2577
2578void AdapterHandlerLibrary::initialize() {
2579  if (_adapters != NULL) return;
2580  _adapters = new AdapterHandlerTable();
2581
2582  // Create a special handler for abstract methods.  Abstract methods
2583  // are never compiled so an i2c entry is somewhat meaningless, but
2584  // throw AbstractMethodError just in case.
2585  // Pass wrong_method_abstract for the c2i transitions to return
2586  // AbstractMethodError for invalid invocations.
2587  address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2588  _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2589                                                              StubRoutines::throw_AbstractMethodError_entry(),
2590                                                              wrong_method_abstract, wrong_method_abstract);
2591}
2592
2593AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2594                                                      address i2c_entry,
2595                                                      address c2i_entry,
2596                                                      address c2i_unverified_entry) {
2597  return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2598}
2599
2600AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2601  AdapterHandlerEntry* entry = get_adapter0(method);
2602  if (method->is_shared()) {
2603    // See comments around Method::link_method()
2604    MutexLocker mu(AdapterHandlerLibrary_lock);
2605    if (method->adapter() == NULL) {
2606      method->update_adapter_trampoline(entry);
2607    }
2608    address trampoline = method->from_compiled_entry();
2609    if (*(int*)trampoline == 0) {
2610      CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2611      MacroAssembler _masm(&buffer);
2612      SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2613      assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2614
2615      if (PrintInterpreter) {
2616        Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2617      }
2618    }
2619  }
2620
2621  return entry;
2622}
2623
2624AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2625  // Use customized signature handler.  Need to lock around updates to
2626  // the AdapterHandlerTable (it is not safe for concurrent readers
2627  // and a single writer: this could be fixed if it becomes a
2628  // problem).
2629
2630  ResourceMark rm;
2631
2632  NOT_PRODUCT(int insts_size);
2633  AdapterBlob* new_adapter = NULL;
2634  AdapterHandlerEntry* entry = NULL;
2635  AdapterFingerPrint* fingerprint = NULL;
2636  {
2637    MutexLocker mu(AdapterHandlerLibrary_lock);
2638    // make sure data structure is initialized
2639    initialize();
2640
2641    if (method->is_abstract()) {
2642      return _abstract_method_handler;
2643    }
2644
2645    // Fill in the signature array, for the calling-convention call.
2646    int total_args_passed = method->size_of_parameters(); // All args on stack
2647
2648    BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2649    VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2650    int i = 0;
2651    if (!method->is_static())  // Pass in receiver first
2652      sig_bt[i++] = T_OBJECT;
2653    for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2654      sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2655      if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2656        sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2657    }
2658    assert(i == total_args_passed, "");
2659
2660    // Lookup method signature's fingerprint
2661    entry = _adapters->lookup(total_args_passed, sig_bt);
2662
2663#ifdef ASSERT
2664    AdapterHandlerEntry* shared_entry = NULL;
2665    // Start adapter sharing verification only after the VM is booted.
2666    if (VerifyAdapterSharing && (entry != NULL)) {
2667      shared_entry = entry;
2668      entry = NULL;
2669    }
2670#endif
2671
2672    if (entry != NULL) {
2673      return entry;
2674    }
2675
2676    // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2677    int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2678
2679    // Make a C heap allocated version of the fingerprint to store in the adapter
2680    fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2681
2682    // StubRoutines::code2() is initialized after this function can be called. As a result,
2683    // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2684    // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2685    // stub that ensure that an I2C stub is called from an interpreter frame.
2686    bool contains_all_checks = StubRoutines::code2() != NULL;
2687
2688    // Create I2C & C2I handlers
2689    BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2690    if (buf != NULL) {
2691      CodeBuffer buffer(buf);
2692      short buffer_locs[20];
2693      buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2694                                             sizeof(buffer_locs)/sizeof(relocInfo));
2695
2696      MacroAssembler _masm(&buffer);
2697      entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2698                                                     total_args_passed,
2699                                                     comp_args_on_stack,
2700                                                     sig_bt,
2701                                                     regs,
2702                                                     fingerprint);
2703#ifdef ASSERT
2704      if (VerifyAdapterSharing) {
2705        if (shared_entry != NULL) {
2706          assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2707          // Release the one just created and return the original
2708          _adapters->free_entry(entry);
2709          return shared_entry;
2710        } else  {
2711          entry->save_code(buf->code_begin(), buffer.insts_size());
2712        }
2713      }
2714#endif
2715
2716      new_adapter = AdapterBlob::create(&buffer);
2717      NOT_PRODUCT(insts_size = buffer.insts_size());
2718    }
2719    if (new_adapter == NULL) {
2720      // CodeCache is full, disable compilation
2721      // Ought to log this but compile log is only per compile thread
2722      // and we're some non descript Java thread.
2723      return NULL; // Out of CodeCache space
2724    }
2725    entry->relocate(new_adapter->content_begin());
2726#ifndef PRODUCT
2727    // debugging suppport
2728    if (PrintAdapterHandlers || PrintStubCode) {
2729      ttyLocker ttyl;
2730      entry->print_adapter_on(tty);
2731      tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2732                    _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2733                    method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2734      tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2735      if (Verbose || PrintStubCode) {
2736        address first_pc = entry->base_address();
2737        if (first_pc != NULL) {
2738          Disassembler::decode(first_pc, first_pc + insts_size);
2739          tty->cr();
2740        }
2741      }
2742    }
2743#endif
2744    // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2745    // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2746    if (contains_all_checks || !VerifyAdapterCalls) {
2747      _adapters->add(entry);
2748    }
2749  }
2750  // Outside of the lock
2751  if (new_adapter != NULL) {
2752    char blob_id[256];
2753    jio_snprintf(blob_id,
2754                 sizeof(blob_id),
2755                 "%s(%s)@" PTR_FORMAT,
2756                 new_adapter->name(),
2757                 fingerprint->as_string(),
2758                 new_adapter->content_begin());
2759    Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2760
2761    if (JvmtiExport::should_post_dynamic_code_generated()) {
2762      JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2763    }
2764  }
2765  return entry;
2766}
2767
2768address AdapterHandlerEntry::base_address() {
2769  address base = _i2c_entry;
2770  if (base == NULL)  base = _c2i_entry;
2771  assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2772  assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2773  return base;
2774}
2775
2776void AdapterHandlerEntry::relocate(address new_base) {
2777  address old_base = base_address();
2778  assert(old_base != NULL, "");
2779  ptrdiff_t delta = new_base - old_base;
2780  if (_i2c_entry != NULL)
2781    _i2c_entry += delta;
2782  if (_c2i_entry != NULL)
2783    _c2i_entry += delta;
2784  if (_c2i_unverified_entry != NULL)
2785    _c2i_unverified_entry += delta;
2786  assert(base_address() == new_base, "");
2787}
2788
2789
2790void AdapterHandlerEntry::deallocate() {
2791  delete _fingerprint;
2792#ifdef ASSERT
2793  if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2794#endif
2795}
2796
2797
2798#ifdef ASSERT
2799// Capture the code before relocation so that it can be compared
2800// against other versions.  If the code is captured after relocation
2801// then relative instructions won't be equivalent.
2802void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2803  _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2804  _saved_code_length = length;
2805  memcpy(_saved_code, buffer, length);
2806}
2807
2808
2809bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2810  if (length != _saved_code_length) {
2811    return false;
2812  }
2813
2814  return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2815}
2816#endif
2817
2818
2819/**
2820 * Create a native wrapper for this native method.  The wrapper converts the
2821 * Java-compiled calling convention to the native convention, handles
2822 * arguments, and transitions to native.  On return from the native we transition
2823 * back to java blocking if a safepoint is in progress.
2824 */
2825void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2826  ResourceMark rm;
2827  nmethod* nm = NULL;
2828
2829  assert(method->is_native(), "must be native");
2830  assert(method->is_method_handle_intrinsic() ||
2831         method->has_native_function(), "must have something valid to call!");
2832
2833  {
2834    // Perform the work while holding the lock, but perform any printing outside the lock
2835    MutexLocker mu(AdapterHandlerLibrary_lock);
2836    // See if somebody beat us to it
2837    if (method->code() != NULL) {
2838      return;
2839    }
2840
2841    const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2842    assert(compile_id > 0, "Must generate native wrapper");
2843
2844
2845    ResourceMark rm;
2846    BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2847    if (buf != NULL) {
2848      CodeBuffer buffer(buf);
2849      double locs_buf[20];
2850      buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2851      MacroAssembler _masm(&buffer);
2852
2853      // Fill in the signature array, for the calling-convention call.
2854      const int total_args_passed = method->size_of_parameters();
2855
2856      BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2857      VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2858      int i=0;
2859      if (!method->is_static())  // Pass in receiver first
2860        sig_bt[i++] = T_OBJECT;
2861      SignatureStream ss(method->signature());
2862      for (; !ss.at_return_type(); ss.next()) {
2863        sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2864        if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2865          sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2866      }
2867      assert(i == total_args_passed, "");
2868      BasicType ret_type = ss.type();
2869
2870      // Now get the compiled-Java layout as input (or output) arguments.
2871      // NOTE: Stubs for compiled entry points of method handle intrinsics
2872      // are just trampolines so the argument registers must be outgoing ones.
2873      const bool is_outgoing = method->is_method_handle_intrinsic();
2874      int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2875
2876      // Generate the compiled-to-native wrapper code
2877      nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2878
2879      if (nm != NULL) {
2880        method->set_code(method, nm);
2881
2882        DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2883        if (directive->PrintAssemblyOption) {
2884          nm->print_code();
2885        }
2886        DirectivesStack::release(directive);
2887      }
2888    }
2889  } // Unlock AdapterHandlerLibrary_lock
2890
2891
2892  // Install the generated code.
2893  if (nm != NULL) {
2894    if (PrintCompilation) {
2895      ttyLocker ttyl;
2896      CompileTask::print(tty, nm, method->is_static() ? "(static)" : "");
2897    }
2898    nm->post_compiled_method_load_event();
2899  }
2900}
2901
2902JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2903  assert(thread == JavaThread::current(), "must be");
2904  // The code is about to enter a JNI lazy critical native method and
2905  // _needs_gc is true, so if this thread is already in a critical
2906  // section then just return, otherwise this thread should block
2907  // until needs_gc has been cleared.
2908  if (thread->in_critical()) {
2909    return;
2910  }
2911  // Lock and unlock a critical section to give the system a chance to block
2912  GCLocker::lock_critical(thread);
2913  GCLocker::unlock_critical(thread);
2914JRT_END
2915
2916// -------------------------------------------------------------------------
2917// Java-Java calling convention
2918// (what you use when Java calls Java)
2919
2920//------------------------------name_for_receiver----------------------------------
2921// For a given signature, return the VMReg for parameter 0.
2922VMReg SharedRuntime::name_for_receiver() {
2923  VMRegPair regs;
2924  BasicType sig_bt = T_OBJECT;
2925  (void) java_calling_convention(&sig_bt, &regs, 1, true);
2926  // Return argument 0 register.  In the LP64 build pointers
2927  // take 2 registers, but the VM wants only the 'main' name.
2928  return regs.first();
2929}
2930
2931VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2932  // This method is returning a data structure allocating as a
2933  // ResourceObject, so do not put any ResourceMarks in here.
2934  char *s = sig->as_C_string();
2935  int len = (int)strlen(s);
2936  s++; len--;                   // Skip opening paren
2937
2938  BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2939  VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2940  int cnt = 0;
2941  if (has_receiver) {
2942    sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2943  }
2944
2945  while (*s != ')') {          // Find closing right paren
2946    switch (*s++) {            // Switch on signature character
2947    case 'B': sig_bt[cnt++] = T_BYTE;    break;
2948    case 'C': sig_bt[cnt++] = T_CHAR;    break;
2949    case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2950    case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2951    case 'I': sig_bt[cnt++] = T_INT;     break;
2952    case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2953    case 'S': sig_bt[cnt++] = T_SHORT;   break;
2954    case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2955    case 'V': sig_bt[cnt++] = T_VOID;    break;
2956    case 'L':                   // Oop
2957      while (*s++ != ';');   // Skip signature
2958      sig_bt[cnt++] = T_OBJECT;
2959      break;
2960    case '[': {                 // Array
2961      do {                      // Skip optional size
2962        while (*s >= '0' && *s <= '9') s++;
2963      } while (*s++ == '[');   // Nested arrays?
2964      // Skip element type
2965      if (s[-1] == 'L')
2966        while (*s++ != ';'); // Skip signature
2967      sig_bt[cnt++] = T_ARRAY;
2968      break;
2969    }
2970    default : ShouldNotReachHere();
2971    }
2972  }
2973
2974  if (has_appendix) {
2975    sig_bt[cnt++] = T_OBJECT;
2976  }
2977
2978  assert(cnt < 256, "grow table size");
2979
2980  int comp_args_on_stack;
2981  comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2982
2983  // the calling convention doesn't count out_preserve_stack_slots so
2984  // we must add that in to get "true" stack offsets.
2985
2986  if (comp_args_on_stack) {
2987    for (int i = 0; i < cnt; i++) {
2988      VMReg reg1 = regs[i].first();
2989      if (reg1->is_stack()) {
2990        // Yuck
2991        reg1 = reg1->bias(out_preserve_stack_slots());
2992      }
2993      VMReg reg2 = regs[i].second();
2994      if (reg2->is_stack()) {
2995        // Yuck
2996        reg2 = reg2->bias(out_preserve_stack_slots());
2997      }
2998      regs[i].set_pair(reg2, reg1);
2999    }
3000  }
3001
3002  // results
3003  *arg_size = cnt;
3004  return regs;
3005}
3006
3007// OSR Migration Code
3008//
3009// This code is used convert interpreter frames into compiled frames.  It is
3010// called from very start of a compiled OSR nmethod.  A temp array is
3011// allocated to hold the interesting bits of the interpreter frame.  All
3012// active locks are inflated to allow them to move.  The displaced headers and
3013// active interpreter locals are copied into the temp buffer.  Then we return
3014// back to the compiled code.  The compiled code then pops the current
3015// interpreter frame off the stack and pushes a new compiled frame.  Then it
3016// copies the interpreter locals and displaced headers where it wants.
3017// Finally it calls back to free the temp buffer.
3018//
3019// All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3020
3021JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3022
3023  //
3024  // This code is dependent on the memory layout of the interpreter local
3025  // array and the monitors. On all of our platforms the layout is identical
3026  // so this code is shared. If some platform lays the their arrays out
3027  // differently then this code could move to platform specific code or
3028  // the code here could be modified to copy items one at a time using
3029  // frame accessor methods and be platform independent.
3030
3031  frame fr = thread->last_frame();
3032  assert(fr.is_interpreted_frame(), "");
3033  assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3034
3035  // Figure out how many monitors are active.
3036  int active_monitor_count = 0;
3037  for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3038       kptr < fr.interpreter_frame_monitor_begin();
3039       kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3040    if (kptr->obj() != NULL) active_monitor_count++;
3041  }
3042
3043  // QQQ we could place number of active monitors in the array so that compiled code
3044  // could double check it.
3045
3046  Method* moop = fr.interpreter_frame_method();
3047  int max_locals = moop->max_locals();
3048  // Allocate temp buffer, 1 word per local & 2 per active monitor
3049  int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3050  intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3051
3052  // Copy the locals.  Order is preserved so that loading of longs works.
3053  // Since there's no GC I can copy the oops blindly.
3054  assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3055  Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3056                       (HeapWord*)&buf[0],
3057                       max_locals);
3058
3059  // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3060  int i = max_locals;
3061  for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3062       kptr2 < fr.interpreter_frame_monitor_begin();
3063       kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3064    if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3065      BasicLock *lock = kptr2->lock();
3066      // Inflate so the displaced header becomes position-independent
3067      if (lock->displaced_header()->is_unlocked())
3068        ObjectSynchronizer::inflate_helper(kptr2->obj());
3069      // Now the displaced header is free to move
3070      buf[i++] = (intptr_t)lock->displaced_header();
3071      buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3072    }
3073  }
3074  assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3075
3076  return buf;
3077JRT_END
3078
3079JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3080  FREE_C_HEAP_ARRAY(intptr_t, buf);
3081JRT_END
3082
3083bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3084  AdapterHandlerTableIterator iter(_adapters);
3085  while (iter.has_next()) {
3086    AdapterHandlerEntry* a = iter.next();
3087    if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3088  }
3089  return false;
3090}
3091
3092void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3093  AdapterHandlerTableIterator iter(_adapters);
3094  while (iter.has_next()) {
3095    AdapterHandlerEntry* a = iter.next();
3096    if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3097      st->print("Adapter for signature: ");
3098      a->print_adapter_on(tty);
3099      return;
3100    }
3101  }
3102  assert(false, "Should have found handler");
3103}
3104
3105void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3106  st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3107               p2i(this), fingerprint()->as_string(),
3108               p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3109
3110}
3111
3112#if INCLUDE_CDS
3113
3114void CDSAdapterHandlerEntry::init() {
3115  assert(DumpSharedSpaces, "used during dump time only");
3116  _c2i_entry_trampoline = (address)MetaspaceShared::misc_data_space_alloc(SharedRuntime::trampoline_size());
3117  _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_data_space_alloc(sizeof(AdapterHandlerEntry*));
3118};
3119
3120#endif // INCLUDE_CDS
3121
3122
3123#ifndef PRODUCT
3124
3125void AdapterHandlerLibrary::print_statistics() {
3126  _adapters->print_statistics();
3127}
3128
3129#endif /* PRODUCT */
3130
3131JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3132  assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3133  thread->enable_stack_reserved_zone();
3134  thread->set_reserved_stack_activation(thread->stack_base());
3135JRT_END
3136
3137frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3138  frame activation;
3139  CompiledMethod* nm = NULL;
3140  int count = 1;
3141
3142  assert(fr.is_java_frame(), "Must start on Java frame");
3143
3144  while (true) {
3145    Method* method = NULL;
3146    if (fr.is_interpreted_frame()) {
3147      method = fr.interpreter_frame_method();
3148    } else {
3149      CodeBlob* cb = fr.cb();
3150      if (cb != NULL && cb->is_compiled()) {
3151        nm = cb->as_compiled_method();
3152        method = nm->method();
3153      }
3154    }
3155    if ((method != NULL) && method->has_reserved_stack_access()) {
3156      ResourceMark rm(thread);
3157      activation = fr;
3158      warning("Potentially dangerous stack overflow in "
3159              "ReservedStackAccess annotated method %s [%d]",
3160              method->name_and_sig_as_C_string(), count++);
3161      EventReservedStackActivation event;
3162      if (event.should_commit()) {
3163        event.set_method(method);
3164        event.commit();
3165      }
3166    }
3167    if (fr.is_first_java_frame()) {
3168      break;
3169    } else {
3170      fr = fr.java_sender();
3171    }
3172  }
3173  return activation;
3174}
3175
3176