sharedRuntime.cpp revision 11120:f2916653b884
1/*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/stringTable.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/codeCache.hpp"
30#include "code/compiledIC.hpp"
31#include "code/codeCacheExtensions.hpp"
32#include "code/scopeDesc.hpp"
33#include "code/vtableStubs.hpp"
34#include "compiler/abstractCompiler.hpp"
35#include "compiler/compileBroker.hpp"
36#include "compiler/disassembler.hpp"
37#include "gc/shared/gcLocker.inline.hpp"
38#include "interpreter/interpreter.hpp"
39#include "interpreter/interpreterRuntime.hpp"
40#include "logging/log.hpp"
41#include "memory/metaspaceShared.hpp"
42#include "memory/resourceArea.hpp"
43#include "memory/universe.inline.hpp"
44#include "oops/klass.hpp"
45#include "oops/objArrayKlass.hpp"
46#include "oops/oop.inline.hpp"
47#include "prims/forte.hpp"
48#include "prims/jvmtiExport.hpp"
49#include "prims/jvmtiRedefineClassesTrace.hpp"
50#include "prims/methodHandles.hpp"
51#include "prims/nativeLookup.hpp"
52#include "runtime/arguments.hpp"
53#include "runtime/atomic.inline.hpp"
54#include "runtime/biasedLocking.hpp"
55#include "runtime/compilationPolicy.hpp"
56#include "runtime/handles.inline.hpp"
57#include "runtime/init.hpp"
58#include "runtime/interfaceSupport.hpp"
59#include "runtime/javaCalls.hpp"
60#include "runtime/sharedRuntime.hpp"
61#include "runtime/stubRoutines.hpp"
62#include "runtime/vframe.hpp"
63#include "runtime/vframeArray.hpp"
64#include "trace/tracing.hpp"
65#include "utilities/copy.hpp"
66#include "utilities/dtrace.hpp"
67#include "utilities/events.hpp"
68#include "utilities/hashtable.inline.hpp"
69#include "utilities/macros.hpp"
70#include "utilities/xmlstream.hpp"
71#ifdef COMPILER1
72#include "c1/c1_Runtime1.hpp"
73#endif
74
75// Shared stub locations
76RuntimeStub*        SharedRuntime::_wrong_method_blob;
77RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
78RuntimeStub*        SharedRuntime::_ic_miss_blob;
79RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
80RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
81RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
82
83DeoptimizationBlob* SharedRuntime::_deopt_blob;
84SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
85SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
86SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
87
88#ifdef COMPILER2
89UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
90#endif // COMPILER2
91
92
93//----------------------------generate_stubs-----------------------------------
94void SharedRuntime::generate_stubs() {
95  _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
96  _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
97  _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
98  _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
99  _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
100  _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
101
102#if defined(COMPILER2) || INCLUDE_JVMCI
103  // Vectors are generated only by C2 and JVMCI.
104  bool support_wide = is_wide_vector(MaxVectorSize);
105  if (support_wide) {
106    _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
107  }
108#endif // COMPILER2 || INCLUDE_JVMCI
109  _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
110  _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
111
112  generate_deopt_blob();
113
114#ifdef COMPILER2
115  generate_uncommon_trap_blob();
116#endif // COMPILER2
117}
118
119#include <math.h>
120
121// Implementation of SharedRuntime
122
123#ifndef PRODUCT
124// For statistics
125int SharedRuntime::_ic_miss_ctr = 0;
126int SharedRuntime::_wrong_method_ctr = 0;
127int SharedRuntime::_resolve_static_ctr = 0;
128int SharedRuntime::_resolve_virtual_ctr = 0;
129int SharedRuntime::_resolve_opt_virtual_ctr = 0;
130int SharedRuntime::_implicit_null_throws = 0;
131int SharedRuntime::_implicit_div0_throws = 0;
132int SharedRuntime::_throw_null_ctr = 0;
133
134int SharedRuntime::_nof_normal_calls = 0;
135int SharedRuntime::_nof_optimized_calls = 0;
136int SharedRuntime::_nof_inlined_calls = 0;
137int SharedRuntime::_nof_megamorphic_calls = 0;
138int SharedRuntime::_nof_static_calls = 0;
139int SharedRuntime::_nof_inlined_static_calls = 0;
140int SharedRuntime::_nof_interface_calls = 0;
141int SharedRuntime::_nof_optimized_interface_calls = 0;
142int SharedRuntime::_nof_inlined_interface_calls = 0;
143int SharedRuntime::_nof_megamorphic_interface_calls = 0;
144int SharedRuntime::_nof_removable_exceptions = 0;
145
146int SharedRuntime::_new_instance_ctr=0;
147int SharedRuntime::_new_array_ctr=0;
148int SharedRuntime::_multi1_ctr=0;
149int SharedRuntime::_multi2_ctr=0;
150int SharedRuntime::_multi3_ctr=0;
151int SharedRuntime::_multi4_ctr=0;
152int SharedRuntime::_multi5_ctr=0;
153int SharedRuntime::_mon_enter_stub_ctr=0;
154int SharedRuntime::_mon_exit_stub_ctr=0;
155int SharedRuntime::_mon_enter_ctr=0;
156int SharedRuntime::_mon_exit_ctr=0;
157int SharedRuntime::_partial_subtype_ctr=0;
158int SharedRuntime::_jbyte_array_copy_ctr=0;
159int SharedRuntime::_jshort_array_copy_ctr=0;
160int SharedRuntime::_jint_array_copy_ctr=0;
161int SharedRuntime::_jlong_array_copy_ctr=0;
162int SharedRuntime::_oop_array_copy_ctr=0;
163int SharedRuntime::_checkcast_array_copy_ctr=0;
164int SharedRuntime::_unsafe_array_copy_ctr=0;
165int SharedRuntime::_generic_array_copy_ctr=0;
166int SharedRuntime::_slow_array_copy_ctr=0;
167int SharedRuntime::_find_handler_ctr=0;
168int SharedRuntime::_rethrow_ctr=0;
169
170int     SharedRuntime::_ICmiss_index                    = 0;
171int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
172address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
173
174
175void SharedRuntime::trace_ic_miss(address at) {
176  for (int i = 0; i < _ICmiss_index; i++) {
177    if (_ICmiss_at[i] == at) {
178      _ICmiss_count[i]++;
179      return;
180    }
181  }
182  int index = _ICmiss_index++;
183  if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
184  _ICmiss_at[index] = at;
185  _ICmiss_count[index] = 1;
186}
187
188void SharedRuntime::print_ic_miss_histogram() {
189  if (ICMissHistogram) {
190    tty->print_cr("IC Miss Histogram:");
191    int tot_misses = 0;
192    for (int i = 0; i < _ICmiss_index; i++) {
193      tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
194      tot_misses += _ICmiss_count[i];
195    }
196    tty->print_cr("Total IC misses: %7d", tot_misses);
197  }
198}
199#endif // PRODUCT
200
201#if INCLUDE_ALL_GCS
202
203// G1 write-barrier pre: executed before a pointer store.
204JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
205  if (orig == NULL) {
206    assert(false, "should be optimized out");
207    return;
208  }
209  assert(orig->is_oop(true /* ignore mark word */), "Error");
210  // store the original value that was in the field reference
211  thread->satb_mark_queue().enqueue(orig);
212JRT_END
213
214// G1 write-barrier post: executed after a pointer store.
215JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
216  thread->dirty_card_queue().enqueue(card_addr);
217JRT_END
218
219#endif // INCLUDE_ALL_GCS
220
221
222JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
223  return x * y;
224JRT_END
225
226
227JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
228  if (x == min_jlong && y == CONST64(-1)) {
229    return x;
230  } else {
231    return x / y;
232  }
233JRT_END
234
235
236JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
237  if (x == min_jlong && y == CONST64(-1)) {
238    return 0;
239  } else {
240    return x % y;
241  }
242JRT_END
243
244
245const juint  float_sign_mask  = 0x7FFFFFFF;
246const juint  float_infinity   = 0x7F800000;
247const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
248const julong double_infinity  = CONST64(0x7FF0000000000000);
249
250JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
251#ifdef _WIN64
252  // 64-bit Windows on amd64 returns the wrong values for
253  // infinity operands.
254  union { jfloat f; juint i; } xbits, ybits;
255  xbits.f = x;
256  ybits.f = y;
257  // x Mod Infinity == x unless x is infinity
258  if (((xbits.i & float_sign_mask) != float_infinity) &&
259       ((ybits.i & float_sign_mask) == float_infinity) ) {
260    return x;
261  }
262  return ((jfloat)fmod_winx64((double)x, (double)y));
263#else
264  return ((jfloat)fmod((double)x,(double)y));
265#endif
266JRT_END
267
268
269JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
270#ifdef _WIN64
271  union { jdouble d; julong l; } xbits, ybits;
272  xbits.d = x;
273  ybits.d = y;
274  // x Mod Infinity == x unless x is infinity
275  if (((xbits.l & double_sign_mask) != double_infinity) &&
276       ((ybits.l & double_sign_mask) == double_infinity) ) {
277    return x;
278  }
279  return ((jdouble)fmod_winx64((double)x, (double)y));
280#else
281  return ((jdouble)fmod((double)x,(double)y));
282#endif
283JRT_END
284
285#ifdef __SOFTFP__
286JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
287  return x + y;
288JRT_END
289
290JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
291  return x - y;
292JRT_END
293
294JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
295  return x * y;
296JRT_END
297
298JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
299  return x / y;
300JRT_END
301
302JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
303  return x + y;
304JRT_END
305
306JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
307  return x - y;
308JRT_END
309
310JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
311  return x * y;
312JRT_END
313
314JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
315  return x / y;
316JRT_END
317
318JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
319  return (jfloat)x;
320JRT_END
321
322JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
323  return (jdouble)x;
324JRT_END
325
326JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
327  return (jdouble)x;
328JRT_END
329
330JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
331  return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
332JRT_END
333
334JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
335  return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
336JRT_END
337
338JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
339  return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
340JRT_END
341
342JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
343  return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
344JRT_END
345
346// Functions to return the opposite of the aeabi functions for nan.
347JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
348  return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
349JRT_END
350
351JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
352  return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
353JRT_END
354
355JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
356  return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
357JRT_END
358
359JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
360  return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
361JRT_END
362
363JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
364  return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
365JRT_END
366
367JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
368  return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
369JRT_END
370
371JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
372  return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
373JRT_END
374
375JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
376  return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
377JRT_END
378
379// Intrinsics make gcc generate code for these.
380float  SharedRuntime::fneg(float f)   {
381  return -f;
382}
383
384double SharedRuntime::dneg(double f)  {
385  return -f;
386}
387
388#endif // __SOFTFP__
389
390#if defined(__SOFTFP__) || defined(E500V2)
391// Intrinsics make gcc generate code for these.
392double SharedRuntime::dabs(double f)  {
393  return (f <= (double)0.0) ? (double)0.0 - f : f;
394}
395
396#endif
397
398#if defined(__SOFTFP__) || defined(PPC)
399double SharedRuntime::dsqrt(double f) {
400  return sqrt(f);
401}
402#endif
403
404JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
405  if (g_isnan(x))
406    return 0;
407  if (x >= (jfloat) max_jint)
408    return max_jint;
409  if (x <= (jfloat) min_jint)
410    return min_jint;
411  return (jint) x;
412JRT_END
413
414
415JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
416  if (g_isnan(x))
417    return 0;
418  if (x >= (jfloat) max_jlong)
419    return max_jlong;
420  if (x <= (jfloat) min_jlong)
421    return min_jlong;
422  return (jlong) x;
423JRT_END
424
425
426JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
427  if (g_isnan(x))
428    return 0;
429  if (x >= (jdouble) max_jint)
430    return max_jint;
431  if (x <= (jdouble) min_jint)
432    return min_jint;
433  return (jint) x;
434JRT_END
435
436
437JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
438  if (g_isnan(x))
439    return 0;
440  if (x >= (jdouble) max_jlong)
441    return max_jlong;
442  if (x <= (jdouble) min_jlong)
443    return min_jlong;
444  return (jlong) x;
445JRT_END
446
447
448JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
449  return (jfloat)x;
450JRT_END
451
452
453JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
454  return (jfloat)x;
455JRT_END
456
457
458JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
459  return (jdouble)x;
460JRT_END
461
462// Exception handling across interpreter/compiler boundaries
463//
464// exception_handler_for_return_address(...) returns the continuation address.
465// The continuation address is the entry point of the exception handler of the
466// previous frame depending on the return address.
467
468address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
469  assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
470  assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
471
472  // Reset method handle flag.
473  thread->set_is_method_handle_return(false);
474
475#if INCLUDE_JVMCI
476  // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
477  // and other exception handler continuations do not read it
478  thread->set_exception_pc(NULL);
479#endif
480
481  // The fastest case first
482  CodeBlob* blob = CodeCache::find_blob(return_address);
483  nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
484  if (nm != NULL) {
485    // Set flag if return address is a method handle call site.
486    thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
487    // native nmethods don't have exception handlers
488    assert(!nm->is_native_method(), "no exception handler");
489    assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
490    if (nm->is_deopt_pc(return_address)) {
491      // If we come here because of a stack overflow, the stack may be
492      // unguarded. Reguard the stack otherwise if we return to the
493      // deopt blob and the stack bang causes a stack overflow we
494      // crash.
495      bool guard_pages_enabled = thread->stack_guards_enabled();
496      if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
497      if (thread->reserved_stack_activation() != thread->stack_base()) {
498        thread->set_reserved_stack_activation(thread->stack_base());
499      }
500      assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
501      return SharedRuntime::deopt_blob()->unpack_with_exception();
502    } else {
503      return nm->exception_begin();
504    }
505  }
506
507  // Entry code
508  if (StubRoutines::returns_to_call_stub(return_address)) {
509    return StubRoutines::catch_exception_entry();
510  }
511  // Interpreted code
512  if (Interpreter::contains(return_address)) {
513    return Interpreter::rethrow_exception_entry();
514  }
515
516  guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
517  guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
518
519#ifndef PRODUCT
520  { ResourceMark rm;
521    tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
522    tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
523    tty->print_cr("b) other problem");
524  }
525#endif // PRODUCT
526
527  ShouldNotReachHere();
528  return NULL;
529}
530
531
532JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
533  return raw_exception_handler_for_return_address(thread, return_address);
534JRT_END
535
536
537address SharedRuntime::get_poll_stub(address pc) {
538  address stub;
539  // Look up the code blob
540  CodeBlob *cb = CodeCache::find_blob(pc);
541
542  // Should be an nmethod
543  assert(cb && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
544
545  // Look up the relocation information
546  assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
547    "safepoint polling: type must be poll");
548
549#ifdef ASSERT
550  if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
551    tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
552    Disassembler::decode(cb);
553    fatal("Only polling locations are used for safepoint");
554  }
555#endif
556
557  bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
558  bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
559  if (at_poll_return) {
560    assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
561           "polling page return stub not created yet");
562    stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
563  } else if (has_wide_vectors) {
564    assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
565           "polling page vectors safepoint stub not created yet");
566    stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
567  } else {
568    assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
569           "polling page safepoint stub not created yet");
570    stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
571  }
572  log_debug(safepoint)("... found polling page %s exception at pc = "
573                       INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
574                       at_poll_return ? "return" : "loop",
575                       (intptr_t)pc, (intptr_t)stub);
576  return stub;
577}
578
579
580oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
581  assert(caller.is_interpreted_frame(), "");
582  int args_size = ArgumentSizeComputer(sig).size() + 1;
583  assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
584  oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
585  assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
586  return result;
587}
588
589
590void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
591  if (JvmtiExport::can_post_on_exceptions()) {
592    vframeStream vfst(thread, true);
593    methodHandle method = methodHandle(thread, vfst.method());
594    address bcp = method()->bcp_from(vfst.bci());
595    JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
596  }
597  Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
598}
599
600void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
601  Handle h_exception = Exceptions::new_exception(thread, name, message);
602  throw_and_post_jvmti_exception(thread, h_exception);
603}
604
605// The interpreter code to call this tracing function is only
606// called/generated when TraceRedefineClasses has the right bits
607// set. Since obsolete methods are never compiled, we don't have
608// to modify the compilers to generate calls to this function.
609//
610JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
611    JavaThread* thread, Method* method))
612  assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
613
614  if (method->is_obsolete()) {
615    // We are calling an obsolete method, but this is not necessarily
616    // an error. Our method could have been redefined just after we
617    // fetched the Method* from the constant pool.
618
619    // RC_TRACE macro has an embedded ResourceMark
620    RC_TRACE_WITH_THREAD(0x00001000, thread,
621                         ("calling obsolete method '%s'",
622                          method->name_and_sig_as_C_string()));
623    if (RC_TRACE_ENABLED(0x00002000)) {
624      // this option is provided to debug calls to obsolete methods
625      guarantee(false, "faulting at call to an obsolete method.");
626    }
627  }
628  return 0;
629JRT_END
630
631// ret_pc points into caller; we are returning caller's exception handler
632// for given exception
633address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
634                                                    bool force_unwind, bool top_frame_only) {
635  assert(cm != NULL, "must exist");
636  ResourceMark rm;
637
638#if INCLUDE_JVMCI
639  if (cm->is_compiled_by_jvmci()) {
640    // lookup exception handler for this pc
641    int catch_pco = ret_pc - cm->code_begin();
642    ExceptionHandlerTable table(cm);
643    HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
644    if (t != NULL) {
645      return cm->code_begin() + t->pco();
646    } else {
647      // there is no exception handler for this pc => deoptimize
648      cm->make_not_entrant();
649
650      // Use Deoptimization::deoptimize for all of its side-effects:
651      // revoking biases of monitors, gathering traps statistics, logging...
652      // it also patches the return pc but we do not care about that
653      // since we return a continuation to the deopt_blob below.
654      JavaThread* thread = JavaThread::current();
655      RegisterMap reg_map(thread, UseBiasedLocking);
656      frame runtime_frame = thread->last_frame();
657      frame caller_frame = runtime_frame.sender(&reg_map);
658      Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
659
660      return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
661    }
662  }
663#endif // INCLUDE_JVMCI
664
665  nmethod* nm = cm->as_nmethod();
666  ScopeDesc* sd = nm->scope_desc_at(ret_pc);
667  // determine handler bci, if any
668  EXCEPTION_MARK;
669
670  int handler_bci = -1;
671  int scope_depth = 0;
672  if (!force_unwind) {
673    int bci = sd->bci();
674    bool recursive_exception = false;
675    do {
676      bool skip_scope_increment = false;
677      // exception handler lookup
678      KlassHandle ek (THREAD, exception->klass());
679      methodHandle mh(THREAD, sd->method());
680      handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
681      if (HAS_PENDING_EXCEPTION) {
682        recursive_exception = true;
683        // We threw an exception while trying to find the exception handler.
684        // Transfer the new exception to the exception handle which will
685        // be set into thread local storage, and do another lookup for an
686        // exception handler for this exception, this time starting at the
687        // BCI of the exception handler which caused the exception to be
688        // thrown (bugs 4307310 and 4546590). Set "exception" reference
689        // argument to ensure that the correct exception is thrown (4870175).
690        exception = Handle(THREAD, PENDING_EXCEPTION);
691        CLEAR_PENDING_EXCEPTION;
692        if (handler_bci >= 0) {
693          bci = handler_bci;
694          handler_bci = -1;
695          skip_scope_increment = true;
696        }
697      }
698      else {
699        recursive_exception = false;
700      }
701      if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
702        sd = sd->sender();
703        if (sd != NULL) {
704          bci = sd->bci();
705        }
706        ++scope_depth;
707      }
708    } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
709  }
710
711  // found handling method => lookup exception handler
712  int catch_pco = ret_pc - nm->code_begin();
713
714  ExceptionHandlerTable table(nm);
715  HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
716  if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
717    // Allow abbreviated catch tables.  The idea is to allow a method
718    // to materialize its exceptions without committing to the exact
719    // routing of exceptions.  In particular this is needed for adding
720    // a synthetic handler to unlock monitors when inlining
721    // synchronized methods since the unlock path isn't represented in
722    // the bytecodes.
723    t = table.entry_for(catch_pco, -1, 0);
724  }
725
726#ifdef COMPILER1
727  if (t == NULL && nm->is_compiled_by_c1()) {
728    assert(nm->unwind_handler_begin() != NULL, "");
729    return nm->unwind_handler_begin();
730  }
731#endif
732
733  if (t == NULL) {
734    ttyLocker ttyl;
735    tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
736    tty->print_cr("   Exception:");
737    exception->print();
738    tty->cr();
739    tty->print_cr(" Compiled exception table :");
740    table.print();
741    nm->print_code();
742    guarantee(false, "missing exception handler");
743    return NULL;
744  }
745
746  return nm->code_begin() + t->pco();
747}
748
749JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
750  // These errors occur only at call sites
751  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
752JRT_END
753
754JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
755  // These errors occur only at call sites
756  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
757JRT_END
758
759JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
760  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
761JRT_END
762
763JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
764  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
765JRT_END
766
767JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
768  // This entry point is effectively only used for NullPointerExceptions which occur at inline
769  // cache sites (when the callee activation is not yet set up) so we are at a call site
770  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
771JRT_END
772
773JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
774  throw_StackOverflowError_common(thread, false);
775JRT_END
776
777JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
778  throw_StackOverflowError_common(thread, true);
779JRT_END
780
781void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
782  // We avoid using the normal exception construction in this case because
783  // it performs an upcall to Java, and we're already out of stack space.
784  Thread* THREAD = thread;
785  Klass* k = SystemDictionary::StackOverflowError_klass();
786  oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
787  if (delayed) {
788    java_lang_Throwable::set_message(exception_oop,
789                                     Universe::delayed_stack_overflow_error_message());
790  }
791  Handle exception (thread, exception_oop);
792  if (StackTraceInThrowable) {
793    java_lang_Throwable::fill_in_stack_trace(exception);
794  }
795  // Increment counter for hs_err file reporting
796  Atomic::inc(&Exceptions::_stack_overflow_errors);
797  throw_and_post_jvmti_exception(thread, exception);
798}
799
800#if INCLUDE_JVMCI
801address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
802  assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
803  thread->set_jvmci_implicit_exception_pc(pc);
804  thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
805  return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
806}
807#endif // INCLUDE_JVMCI
808
809address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
810                                                           address pc,
811                                                           SharedRuntime::ImplicitExceptionKind exception_kind)
812{
813  address target_pc = NULL;
814
815  if (Interpreter::contains(pc)) {
816#ifdef CC_INTERP
817    // C++ interpreter doesn't throw implicit exceptions
818    ShouldNotReachHere();
819#else
820    switch (exception_kind) {
821      case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
822      case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
823      case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
824      default:                      ShouldNotReachHere();
825    }
826#endif // !CC_INTERP
827  } else {
828    switch (exception_kind) {
829      case STACK_OVERFLOW: {
830        // Stack overflow only occurs upon frame setup; the callee is
831        // going to be unwound. Dispatch to a shared runtime stub
832        // which will cause the StackOverflowError to be fabricated
833        // and processed.
834        // Stack overflow should never occur during deoptimization:
835        // the compiled method bangs the stack by as much as the
836        // interpreter would need in case of a deoptimization. The
837        // deoptimization blob and uncommon trap blob bang the stack
838        // in a debug VM to verify the correctness of the compiled
839        // method stack banging.
840        assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
841        Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
842        return StubRoutines::throw_StackOverflowError_entry();
843      }
844
845      case IMPLICIT_NULL: {
846        if (VtableStubs::contains(pc)) {
847          // We haven't yet entered the callee frame. Fabricate an
848          // exception and begin dispatching it in the caller. Since
849          // the caller was at a call site, it's safe to destroy all
850          // caller-saved registers, as these entry points do.
851          VtableStub* vt_stub = VtableStubs::stub_containing(pc);
852
853          // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
854          if (vt_stub == NULL) return NULL;
855
856          if (vt_stub->is_abstract_method_error(pc)) {
857            assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
858            Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
859            return StubRoutines::throw_AbstractMethodError_entry();
860          } else {
861            Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
862            return StubRoutines::throw_NullPointerException_at_call_entry();
863          }
864        } else {
865          CodeBlob* cb = CodeCache::find_blob(pc);
866
867          // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
868          if (cb == NULL) return NULL;
869
870          // Exception happened in CodeCache. Must be either:
871          // 1. Inline-cache check in C2I handler blob,
872          // 2. Inline-cache check in nmethod, or
873          // 3. Implicit null exception in nmethod
874
875          if (!cb->is_compiled()) {
876            bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
877            if (!is_in_blob) {
878              // Allow normal crash reporting to handle this
879              return NULL;
880            }
881            Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
882            // There is no handler here, so we will simply unwind.
883            return StubRoutines::throw_NullPointerException_at_call_entry();
884          }
885
886          // Otherwise, it's a compiled method.  Consult its exception handlers.
887          CompiledMethod* cm = (CompiledMethod*)cb;
888          if (cm->inlinecache_check_contains(pc)) {
889            // exception happened inside inline-cache check code
890            // => the nmethod is not yet active (i.e., the frame
891            // is not set up yet) => use return address pushed by
892            // caller => don't push another return address
893            Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
894            return StubRoutines::throw_NullPointerException_at_call_entry();
895          }
896
897          if (cm->method()->is_method_handle_intrinsic()) {
898            // exception happened inside MH dispatch code, similar to a vtable stub
899            Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
900            return StubRoutines::throw_NullPointerException_at_call_entry();
901          }
902
903#ifndef PRODUCT
904          _implicit_null_throws++;
905#endif
906#if INCLUDE_JVMCI
907          if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
908            // If there's no PcDesc then we'll die way down inside of
909            // deopt instead of just getting normal error reporting,
910            // so only go there if it will succeed.
911            return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
912          } else {
913#endif // INCLUDE_JVMCI
914          assert (cm->is_nmethod(), "Expect nmethod");
915          target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
916#if INCLUDE_JVMCI
917          }
918#endif // INCLUDE_JVMCI
919          // If there's an unexpected fault, target_pc might be NULL,
920          // in which case we want to fall through into the normal
921          // error handling code.
922        }
923
924        break; // fall through
925      }
926
927
928      case IMPLICIT_DIVIDE_BY_ZERO: {
929        CompiledMethod* cm = CodeCache::find_compiled(pc);
930        guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
931#ifndef PRODUCT
932        _implicit_div0_throws++;
933#endif
934#if INCLUDE_JVMCI
935        if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
936          return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
937        } else {
938#endif // INCLUDE_JVMCI
939        target_pc = cm->continuation_for_implicit_exception(pc);
940#if INCLUDE_JVMCI
941        }
942#endif // INCLUDE_JVMCI
943        // If there's an unexpected fault, target_pc might be NULL,
944        // in which case we want to fall through into the normal
945        // error handling code.
946        break; // fall through
947      }
948
949      default: ShouldNotReachHere();
950    }
951
952    assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
953
954    if (exception_kind == IMPLICIT_NULL) {
955#ifndef PRODUCT
956      // for AbortVMOnException flag
957      Exceptions::debug_check_abort("java.lang.NullPointerException");
958#endif //PRODUCT
959      Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
960    } else {
961#ifndef PRODUCT
962      // for AbortVMOnException flag
963      Exceptions::debug_check_abort("java.lang.ArithmeticException");
964#endif //PRODUCT
965      Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
966    }
967    return target_pc;
968  }
969
970  ShouldNotReachHere();
971  return NULL;
972}
973
974
975/**
976 * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
977 * installed in the native function entry of all native Java methods before
978 * they get linked to their actual native methods.
979 *
980 * \note
981 * This method actually never gets called!  The reason is because
982 * the interpreter's native entries call NativeLookup::lookup() which
983 * throws the exception when the lookup fails.  The exception is then
984 * caught and forwarded on the return from NativeLookup::lookup() call
985 * before the call to the native function.  This might change in the future.
986 */
987JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
988{
989  // We return a bad value here to make sure that the exception is
990  // forwarded before we look at the return value.
991  THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
992}
993JNI_END
994
995address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
996  return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
997}
998
999JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
1000  assert(obj->is_oop(), "must be a valid oop");
1001#if INCLUDE_JVMCI
1002  // This removes the requirement for JVMCI compilers to emit code
1003  // performing a dynamic check that obj has a finalizer before
1004  // calling this routine. There should be no performance impact
1005  // for C1 since it emits a dynamic check. C2 and the interpreter
1006  // uses other runtime routines for registering finalizers.
1007  if (!obj->klass()->has_finalizer()) {
1008    return;
1009  }
1010#endif // INCLUDE_JVMCI
1011  assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1012  InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1013JRT_END
1014
1015
1016jlong SharedRuntime::get_java_tid(Thread* thread) {
1017  if (thread != NULL) {
1018    if (thread->is_Java_thread()) {
1019      oop obj = ((JavaThread*)thread)->threadObj();
1020      return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1021    }
1022  }
1023  return 0;
1024}
1025
1026/**
1027 * This function ought to be a void function, but cannot be because
1028 * it gets turned into a tail-call on sparc, which runs into dtrace bug
1029 * 6254741.  Once that is fixed we can remove the dummy return value.
1030 */
1031int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1032  return dtrace_object_alloc_base(Thread::current(), o, size);
1033}
1034
1035int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1036  assert(DTraceAllocProbes, "wrong call");
1037  Klass* klass = o->klass();
1038  Symbol* name = klass->name();
1039  HOTSPOT_OBJECT_ALLOC(
1040                   get_java_tid(thread),
1041                   (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1042  return 0;
1043}
1044
1045JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1046    JavaThread* thread, Method* method))
1047  assert(DTraceMethodProbes, "wrong call");
1048  Symbol* kname = method->klass_name();
1049  Symbol* name = method->name();
1050  Symbol* sig = method->signature();
1051  HOTSPOT_METHOD_ENTRY(
1052      get_java_tid(thread),
1053      (char *) kname->bytes(), kname->utf8_length(),
1054      (char *) name->bytes(), name->utf8_length(),
1055      (char *) sig->bytes(), sig->utf8_length());
1056  return 0;
1057JRT_END
1058
1059JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1060    JavaThread* thread, Method* method))
1061  assert(DTraceMethodProbes, "wrong call");
1062  Symbol* kname = method->klass_name();
1063  Symbol* name = method->name();
1064  Symbol* sig = method->signature();
1065  HOTSPOT_METHOD_RETURN(
1066      get_java_tid(thread),
1067      (char *) kname->bytes(), kname->utf8_length(),
1068      (char *) name->bytes(), name->utf8_length(),
1069      (char *) sig->bytes(), sig->utf8_length());
1070  return 0;
1071JRT_END
1072
1073
1074// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1075// for a call current in progress, i.e., arguments has been pushed on stack
1076// put callee has not been invoked yet.  Used by: resolve virtual/static,
1077// vtable updates, etc.  Caller frame must be compiled.
1078Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1079  ResourceMark rm(THREAD);
1080
1081  // last java frame on stack (which includes native call frames)
1082  vframeStream vfst(thread, true);  // Do not skip and javaCalls
1083
1084  return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1085}
1086
1087methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1088  CompiledMethod* caller = vfst.nm();
1089
1090  nmethodLocker caller_lock(caller);
1091
1092  address pc = vfst.frame_pc();
1093  { // Get call instruction under lock because another thread may be busy patching it.
1094    MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1095    return caller->attached_method_before_pc(pc);
1096  }
1097  return NULL;
1098}
1099
1100// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1101// for a call current in progress, i.e., arguments has been pushed on stack
1102// but callee has not been invoked yet.  Caller frame must be compiled.
1103Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1104                                              vframeStream& vfst,
1105                                              Bytecodes::Code& bc,
1106                                              CallInfo& callinfo, TRAPS) {
1107  Handle receiver;
1108  Handle nullHandle;  //create a handy null handle for exception returns
1109
1110  assert(!vfst.at_end(), "Java frame must exist");
1111
1112  // Find caller and bci from vframe
1113  methodHandle caller(THREAD, vfst.method());
1114  int          bci   = vfst.bci();
1115
1116  Bytecode_invoke bytecode(caller, bci);
1117  int bytecode_index = bytecode.index();
1118
1119  methodHandle attached_method = extract_attached_method(vfst);
1120  if (attached_method.not_null()) {
1121    methodHandle callee = bytecode.static_target(CHECK_NH);
1122    vmIntrinsics::ID id = callee->intrinsic_id();
1123    // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1124    // it attaches statically resolved method to the call site.
1125    if (MethodHandles::is_signature_polymorphic(id) &&
1126        MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1127      bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1128
1129      // Adjust invocation mode according to the attached method.
1130      switch (bc) {
1131        case Bytecodes::_invokeinterface:
1132          if (!attached_method->method_holder()->is_interface()) {
1133            bc = Bytecodes::_invokevirtual;
1134          }
1135          break;
1136        case Bytecodes::_invokehandle:
1137          if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1138            bc = attached_method->is_static() ? Bytecodes::_invokestatic
1139                                              : Bytecodes::_invokevirtual;
1140          }
1141          break;
1142      }
1143    }
1144  } else {
1145    bc = bytecode.invoke_code();
1146  }
1147
1148  bool has_receiver = bc != Bytecodes::_invokestatic &&
1149                      bc != Bytecodes::_invokedynamic &&
1150                      bc != Bytecodes::_invokehandle;
1151
1152  // Find receiver for non-static call
1153  if (has_receiver) {
1154    // This register map must be update since we need to find the receiver for
1155    // compiled frames. The receiver might be in a register.
1156    RegisterMap reg_map2(thread);
1157    frame stubFrame   = thread->last_frame();
1158    // Caller-frame is a compiled frame
1159    frame callerFrame = stubFrame.sender(&reg_map2);
1160
1161    if (attached_method.is_null()) {
1162      methodHandle callee = bytecode.static_target(CHECK_NH);
1163      if (callee.is_null()) {
1164        THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1165      }
1166    }
1167
1168    // Retrieve from a compiled argument list
1169    receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1170
1171    if (receiver.is_null()) {
1172      THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1173    }
1174  }
1175
1176  assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1177
1178  // Resolve method
1179  if (attached_method.not_null()) {
1180    // Parameterized by attached method.
1181    LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1182  } else {
1183    // Parameterized by bytecode.
1184    constantPoolHandle constants(THREAD, caller->constants());
1185    LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1186  }
1187
1188#ifdef ASSERT
1189  // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1190  if (has_receiver) {
1191    assert(receiver.not_null(), "should have thrown exception");
1192    KlassHandle receiver_klass(THREAD, receiver->klass());
1193    Klass* rk = NULL;
1194    if (attached_method.not_null()) {
1195      // In case there's resolved method attached, use its holder during the check.
1196      rk = attached_method->method_holder();
1197    } else {
1198      // Klass is already loaded.
1199      constantPoolHandle constants(THREAD, caller->constants());
1200      rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1201    }
1202    KlassHandle static_receiver_klass(THREAD, rk);
1203    methodHandle callee = callinfo.selected_method();
1204    assert(receiver_klass->is_subtype_of(static_receiver_klass()),
1205           "actual receiver must be subclass of static receiver klass");
1206    if (receiver_klass->is_instance_klass()) {
1207      if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1208        tty->print_cr("ERROR: Klass not yet initialized!!");
1209        receiver_klass()->print();
1210      }
1211      assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1212    }
1213  }
1214#endif
1215
1216  return receiver;
1217}
1218
1219methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1220  ResourceMark rm(THREAD);
1221  // We need first to check if any Java activations (compiled, interpreted)
1222  // exist on the stack since last JavaCall.  If not, we need
1223  // to get the target method from the JavaCall wrapper.
1224  vframeStream vfst(thread, true);  // Do not skip any javaCalls
1225  methodHandle callee_method;
1226  if (vfst.at_end()) {
1227    // No Java frames were found on stack since we did the JavaCall.
1228    // Hence the stack can only contain an entry_frame.  We need to
1229    // find the target method from the stub frame.
1230    RegisterMap reg_map(thread, false);
1231    frame fr = thread->last_frame();
1232    assert(fr.is_runtime_frame(), "must be a runtimeStub");
1233    fr = fr.sender(&reg_map);
1234    assert(fr.is_entry_frame(), "must be");
1235    // fr is now pointing to the entry frame.
1236    callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1237    assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1238  } else {
1239    Bytecodes::Code bc;
1240    CallInfo callinfo;
1241    find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1242    callee_method = callinfo.selected_method();
1243  }
1244  assert(callee_method()->is_method(), "must be");
1245  return callee_method;
1246}
1247
1248// Resolves a call.
1249methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1250                                           bool is_virtual,
1251                                           bool is_optimized, TRAPS) {
1252  methodHandle callee_method;
1253  callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1254  if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1255    int retry_count = 0;
1256    while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1257           callee_method->method_holder() != SystemDictionary::Object_klass()) {
1258      // If has a pending exception then there is no need to re-try to
1259      // resolve this method.
1260      // If the method has been redefined, we need to try again.
1261      // Hack: we have no way to update the vtables of arrays, so don't
1262      // require that java.lang.Object has been updated.
1263
1264      // It is very unlikely that method is redefined more than 100 times
1265      // in the middle of resolve. If it is looping here more than 100 times
1266      // means then there could be a bug here.
1267      guarantee((retry_count++ < 100),
1268                "Could not resolve to latest version of redefined method");
1269      // method is redefined in the middle of resolve so re-try.
1270      callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1271    }
1272  }
1273  return callee_method;
1274}
1275
1276// Resolves a call.  The compilers generate code for calls that go here
1277// and are patched with the real destination of the call.
1278methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1279                                           bool is_virtual,
1280                                           bool is_optimized, TRAPS) {
1281
1282  ResourceMark rm(thread);
1283  RegisterMap cbl_map(thread, false);
1284  frame caller_frame = thread->last_frame().sender(&cbl_map);
1285
1286  CodeBlob* caller_cb = caller_frame.cb();
1287  guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1288  CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1289
1290  // make sure caller is not getting deoptimized
1291  // and removed before we are done with it.
1292  // CLEANUP - with lazy deopt shouldn't need this lock
1293  nmethodLocker caller_lock(caller_nm);
1294
1295  // determine call info & receiver
1296  // note: a) receiver is NULL for static calls
1297  //       b) an exception is thrown if receiver is NULL for non-static calls
1298  CallInfo call_info;
1299  Bytecodes::Code invoke_code = Bytecodes::_illegal;
1300  Handle receiver = find_callee_info(thread, invoke_code,
1301                                     call_info, CHECK_(methodHandle()));
1302  methodHandle callee_method = call_info.selected_method();
1303
1304  assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1305         (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1306         (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1307         (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1308         ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1309
1310  assert(caller_nm->is_alive(), "It should be alive");
1311
1312#ifndef PRODUCT
1313  // tracing/debugging/statistics
1314  int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1315                (is_virtual) ? (&_resolve_virtual_ctr) :
1316                               (&_resolve_static_ctr);
1317  Atomic::inc(addr);
1318
1319  if (TraceCallFixup) {
1320    ResourceMark rm(thread);
1321    tty->print("resolving %s%s (%s) call to",
1322      (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1323      Bytecodes::name(invoke_code));
1324    callee_method->print_short_name(tty);
1325    tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1326                  p2i(caller_frame.pc()), p2i(callee_method->code()));
1327  }
1328#endif
1329
1330  // JSR 292 key invariant:
1331  // If the resolved method is a MethodHandle invoke target, the call
1332  // site must be a MethodHandle call site, because the lambda form might tail-call
1333  // leaving the stack in a state unknown to either caller or callee
1334  // TODO detune for now but we might need it again
1335//  assert(!callee_method->is_compiled_lambda_form() ||
1336//         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1337
1338  // Compute entry points. This might require generation of C2I converter
1339  // frames, so we cannot be holding any locks here. Furthermore, the
1340  // computation of the entry points is independent of patching the call.  We
1341  // always return the entry-point, but we only patch the stub if the call has
1342  // not been deoptimized.  Return values: For a virtual call this is an
1343  // (cached_oop, destination address) pair. For a static call/optimized
1344  // virtual this is just a destination address.
1345
1346  StaticCallInfo static_call_info;
1347  CompiledICInfo virtual_call_info;
1348
1349  // Make sure the callee nmethod does not get deoptimized and removed before
1350  // we are done patching the code.
1351  CompiledMethod* callee = callee_method->code();
1352
1353  if (callee != NULL) {
1354    assert(callee->is_compiled(), "must be nmethod for patching");
1355  }
1356
1357  if (callee != NULL && !callee->is_in_use()) {
1358    // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1359    callee = NULL;
1360  }
1361  nmethodLocker nl_callee(callee);
1362#ifdef ASSERT
1363  address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1364#endif
1365
1366  if (is_virtual) {
1367    assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1368    bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1369    KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1370    CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1371                     is_optimized, static_bound, virtual_call_info,
1372                     CHECK_(methodHandle()));
1373  } else {
1374    // static call
1375    CompiledStaticCall::compute_entry(callee_method, static_call_info);
1376  }
1377
1378  // grab lock, check for deoptimization and potentially patch caller
1379  {
1380    MutexLocker ml_patch(CompiledIC_lock);
1381
1382    // Lock blocks for safepoint during which both nmethods can change state.
1383
1384    // Now that we are ready to patch if the Method* was redefined then
1385    // don't update call site and let the caller retry.
1386    // Don't update call site if callee nmethod was unloaded or deoptimized.
1387    // Don't update call site if callee nmethod was replaced by an other nmethod
1388    // which may happen when multiply alive nmethod (tiered compilation)
1389    // will be supported.
1390    if (!callee_method->is_old() &&
1391        (callee == NULL || callee->is_in_use() && (callee_method->code() == callee))) {
1392#ifdef ASSERT
1393      // We must not try to patch to jump to an already unloaded method.
1394      if (dest_entry_point != 0) {
1395        CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1396        assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1397               "should not call unloaded nmethod");
1398      }
1399#endif
1400      if (is_virtual) {
1401        CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1402        if (inline_cache->is_clean()) {
1403          inline_cache->set_to_monomorphic(virtual_call_info);
1404        }
1405      } else {
1406        CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1407        if (ssc->is_clean()) ssc->set(static_call_info);
1408      }
1409    }
1410
1411  } // unlock CompiledIC_lock
1412
1413  return callee_method;
1414}
1415
1416
1417// Inline caches exist only in compiled code
1418JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1419#ifdef ASSERT
1420  RegisterMap reg_map(thread, false);
1421  frame stub_frame = thread->last_frame();
1422  assert(stub_frame.is_runtime_frame(), "sanity check");
1423  frame caller_frame = stub_frame.sender(&reg_map);
1424  assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1425#endif /* ASSERT */
1426
1427  methodHandle callee_method;
1428  JRT_BLOCK
1429    callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1430    // Return Method* through TLS
1431    thread->set_vm_result_2(callee_method());
1432  JRT_BLOCK_END
1433  // return compiled code entry point after potential safepoints
1434  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1435  return callee_method->verified_code_entry();
1436JRT_END
1437
1438
1439// Handle call site that has been made non-entrant
1440JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1441  // 6243940 We might end up in here if the callee is deoptimized
1442  // as we race to call it.  We don't want to take a safepoint if
1443  // the caller was interpreted because the caller frame will look
1444  // interpreted to the stack walkers and arguments are now
1445  // "compiled" so it is much better to make this transition
1446  // invisible to the stack walking code. The i2c path will
1447  // place the callee method in the callee_target. It is stashed
1448  // there because if we try and find the callee by normal means a
1449  // safepoint is possible and have trouble gc'ing the compiled args.
1450  RegisterMap reg_map(thread, false);
1451  frame stub_frame = thread->last_frame();
1452  assert(stub_frame.is_runtime_frame(), "sanity check");
1453  frame caller_frame = stub_frame.sender(&reg_map);
1454
1455  if (caller_frame.is_interpreted_frame() ||
1456      caller_frame.is_entry_frame()) {
1457    Method* callee = thread->callee_target();
1458    guarantee(callee != NULL && callee->is_method(), "bad handshake");
1459    thread->set_vm_result_2(callee);
1460    thread->set_callee_target(NULL);
1461    return callee->get_c2i_entry();
1462  }
1463
1464  // Must be compiled to compiled path which is safe to stackwalk
1465  methodHandle callee_method;
1466  JRT_BLOCK
1467    // Force resolving of caller (if we called from compiled frame)
1468    callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1469    thread->set_vm_result_2(callee_method());
1470  JRT_BLOCK_END
1471  // return compiled code entry point after potential safepoints
1472  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1473  return callee_method->verified_code_entry();
1474JRT_END
1475
1476// Handle abstract method call
1477JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1478  return StubRoutines::throw_AbstractMethodError_entry();
1479JRT_END
1480
1481
1482// resolve a static call and patch code
1483JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1484  methodHandle callee_method;
1485  JRT_BLOCK
1486    callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1487    thread->set_vm_result_2(callee_method());
1488  JRT_BLOCK_END
1489  // return compiled code entry point after potential safepoints
1490  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1491  return callee_method->verified_code_entry();
1492JRT_END
1493
1494
1495// resolve virtual call and update inline cache to monomorphic
1496JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1497  methodHandle callee_method;
1498  JRT_BLOCK
1499    callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1500    thread->set_vm_result_2(callee_method());
1501  JRT_BLOCK_END
1502  // return compiled code entry point after potential safepoints
1503  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1504  return callee_method->verified_code_entry();
1505JRT_END
1506
1507
1508// Resolve a virtual call that can be statically bound (e.g., always
1509// monomorphic, so it has no inline cache).  Patch code to resolved target.
1510JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1511  methodHandle callee_method;
1512  JRT_BLOCK
1513    callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1514    thread->set_vm_result_2(callee_method());
1515  JRT_BLOCK_END
1516  // return compiled code entry point after potential safepoints
1517  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1518  return callee_method->verified_code_entry();
1519JRT_END
1520
1521
1522methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1523  ResourceMark rm(thread);
1524  CallInfo call_info;
1525  Bytecodes::Code bc;
1526
1527  // receiver is NULL for static calls. An exception is thrown for NULL
1528  // receivers for non-static calls
1529  Handle receiver = find_callee_info(thread, bc, call_info,
1530                                     CHECK_(methodHandle()));
1531  // Compiler1 can produce virtual call sites that can actually be statically bound
1532  // If we fell thru to below we would think that the site was going megamorphic
1533  // when in fact the site can never miss. Worse because we'd think it was megamorphic
1534  // we'd try and do a vtable dispatch however methods that can be statically bound
1535  // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1536  // reresolution of the  call site (as if we did a handle_wrong_method and not an
1537  // plain ic_miss) and the site will be converted to an optimized virtual call site
1538  // never to miss again. I don't believe C2 will produce code like this but if it
1539  // did this would still be the correct thing to do for it too, hence no ifdef.
1540  //
1541  if (call_info.resolved_method()->can_be_statically_bound()) {
1542    methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1543    if (TraceCallFixup) {
1544      RegisterMap reg_map(thread, false);
1545      frame caller_frame = thread->last_frame().sender(&reg_map);
1546      ResourceMark rm(thread);
1547      tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1548      callee_method->print_short_name(tty);
1549      tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1550      tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1551    }
1552    return callee_method;
1553  }
1554
1555  methodHandle callee_method = call_info.selected_method();
1556
1557  bool should_be_mono = false;
1558
1559#ifndef PRODUCT
1560  Atomic::inc(&_ic_miss_ctr);
1561
1562  // Statistics & Tracing
1563  if (TraceCallFixup) {
1564    ResourceMark rm(thread);
1565    tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1566    callee_method->print_short_name(tty);
1567    tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1568  }
1569
1570  if (ICMissHistogram) {
1571    MutexLocker m(VMStatistic_lock);
1572    RegisterMap reg_map(thread, false);
1573    frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1574    // produce statistics under the lock
1575    trace_ic_miss(f.pc());
1576  }
1577#endif
1578
1579  // install an event collector so that when a vtable stub is created the
1580  // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1581  // event can't be posted when the stub is created as locks are held
1582  // - instead the event will be deferred until the event collector goes
1583  // out of scope.
1584  JvmtiDynamicCodeEventCollector event_collector;
1585
1586  // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1587  { MutexLocker ml_patch (CompiledIC_lock);
1588    RegisterMap reg_map(thread, false);
1589    frame caller_frame = thread->last_frame().sender(&reg_map);
1590    CodeBlob* cb = caller_frame.cb();
1591    CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1592    if (cb->is_compiled()) {
1593      CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1594      bool should_be_mono = false;
1595      if (inline_cache->is_optimized()) {
1596        if (TraceCallFixup) {
1597          ResourceMark rm(thread);
1598          tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1599          callee_method->print_short_name(tty);
1600          tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1601        }
1602        should_be_mono = true;
1603      } else if (inline_cache->is_icholder_call()) {
1604        CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1605        if (ic_oop != NULL) {
1606
1607          if (receiver()->klass() == ic_oop->holder_klass()) {
1608            // This isn't a real miss. We must have seen that compiled code
1609            // is now available and we want the call site converted to a
1610            // monomorphic compiled call site.
1611            // We can't assert for callee_method->code() != NULL because it
1612            // could have been deoptimized in the meantime
1613            if (TraceCallFixup) {
1614              ResourceMark rm(thread);
1615              tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1616              callee_method->print_short_name(tty);
1617              tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1618            }
1619            should_be_mono = true;
1620          }
1621        }
1622      }
1623
1624      if (should_be_mono) {
1625
1626        // We have a path that was monomorphic but was going interpreted
1627        // and now we have (or had) a compiled entry. We correct the IC
1628        // by using a new icBuffer.
1629        CompiledICInfo info;
1630        KlassHandle receiver_klass(THREAD, receiver()->klass());
1631        inline_cache->compute_monomorphic_entry(callee_method,
1632                                                receiver_klass,
1633                                                inline_cache->is_optimized(),
1634                                                false,
1635                                                info, CHECK_(methodHandle()));
1636        inline_cache->set_to_monomorphic(info);
1637      } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1638        // Potential change to megamorphic
1639        bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1640        if (!successful) {
1641          inline_cache->set_to_clean();
1642        }
1643      } else {
1644        // Either clean or megamorphic
1645      }
1646    } else {
1647      fatal("Unimplemented");
1648    }
1649  } // Release CompiledIC_lock
1650
1651  return callee_method;
1652}
1653
1654//
1655// Resets a call-site in compiled code so it will get resolved again.
1656// This routines handles both virtual call sites, optimized virtual call
1657// sites, and static call sites. Typically used to change a call sites
1658// destination from compiled to interpreted.
1659//
1660methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1661  ResourceMark rm(thread);
1662  RegisterMap reg_map(thread, false);
1663  frame stub_frame = thread->last_frame();
1664  assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1665  frame caller = stub_frame.sender(&reg_map);
1666
1667  // Do nothing if the frame isn't a live compiled frame.
1668  // nmethod could be deoptimized by the time we get here
1669  // so no update to the caller is needed.
1670
1671  if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1672
1673    address pc = caller.pc();
1674
1675    // Check for static or virtual call
1676    bool is_static_call = false;
1677    CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1678
1679    // Default call_addr is the location of the "basic" call.
1680    // Determine the address of the call we a reresolving. With
1681    // Inline Caches we will always find a recognizable call.
1682    // With Inline Caches disabled we may or may not find a
1683    // recognizable call. We will always find a call for static
1684    // calls and for optimized virtual calls. For vanilla virtual
1685    // calls it depends on the state of the UseInlineCaches switch.
1686    //
1687    // With Inline Caches disabled we can get here for a virtual call
1688    // for two reasons:
1689    //   1 - calling an abstract method. The vtable for abstract methods
1690    //       will run us thru handle_wrong_method and we will eventually
1691    //       end up in the interpreter to throw the ame.
1692    //   2 - a racing deoptimization. We could be doing a vanilla vtable
1693    //       call and between the time we fetch the entry address and
1694    //       we jump to it the target gets deoptimized. Similar to 1
1695    //       we will wind up in the interprter (thru a c2i with c2).
1696    //
1697    address call_addr = NULL;
1698    {
1699      // Get call instruction under lock because another thread may be
1700      // busy patching it.
1701      MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1702      // Location of call instruction
1703      if (NativeCall::is_call_before(pc)) {
1704        NativeCall *ncall = nativeCall_before(pc);
1705        call_addr = ncall->instruction_address();
1706      }
1707    }
1708    // Make sure nmethod doesn't get deoptimized and removed until
1709    // this is done with it.
1710    // CLEANUP - with lazy deopt shouldn't need this lock
1711    nmethodLocker nmlock(caller_nm);
1712
1713    if (call_addr != NULL) {
1714      RelocIterator iter(caller_nm, call_addr, call_addr+1);
1715      int ret = iter.next(); // Get item
1716      if (ret) {
1717        assert(iter.addr() == call_addr, "must find call");
1718        if (iter.type() == relocInfo::static_call_type) {
1719          is_static_call = true;
1720        } else {
1721          assert(iter.type() == relocInfo::virtual_call_type ||
1722                 iter.type() == relocInfo::opt_virtual_call_type
1723                , "unexpected relocInfo. type");
1724        }
1725      } else {
1726        assert(!UseInlineCaches, "relocation info. must exist for this address");
1727      }
1728
1729      // Cleaning the inline cache will force a new resolve. This is more robust
1730      // than directly setting it to the new destination, since resolving of calls
1731      // is always done through the same code path. (experience shows that it
1732      // leads to very hard to track down bugs, if an inline cache gets updated
1733      // to a wrong method). It should not be performance critical, since the
1734      // resolve is only done once.
1735
1736      MutexLocker ml(CompiledIC_lock);
1737      if (is_static_call) {
1738        CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1739        ssc->set_to_clean();
1740      } else {
1741        // compiled, dispatched call (which used to call an interpreted method)
1742        CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1743        inline_cache->set_to_clean();
1744      }
1745    }
1746  }
1747
1748  methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1749
1750
1751#ifndef PRODUCT
1752  Atomic::inc(&_wrong_method_ctr);
1753
1754  if (TraceCallFixup) {
1755    ResourceMark rm(thread);
1756    tty->print("handle_wrong_method reresolving call to");
1757    callee_method->print_short_name(tty);
1758    tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1759  }
1760#endif
1761
1762  return callee_method;
1763}
1764
1765address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1766  // The faulting unsafe accesses should be changed to throw the error
1767  // synchronously instead. Meanwhile the faulting instruction will be
1768  // skipped over (effectively turning it into a no-op) and an
1769  // asynchronous exception will be raised which the thread will
1770  // handle at a later point. If the instruction is a load it will
1771  // return garbage.
1772
1773  // Request an async exception.
1774  thread->set_pending_unsafe_access_error();
1775
1776  // Return address of next instruction to execute.
1777  return next_pc;
1778}
1779
1780#ifdef ASSERT
1781void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1782                                                                const BasicType* sig_bt,
1783                                                                const VMRegPair* regs) {
1784  ResourceMark rm;
1785  const int total_args_passed = method->size_of_parameters();
1786  const VMRegPair*    regs_with_member_name = regs;
1787        VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1788
1789  const int member_arg_pos = total_args_passed - 1;
1790  assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1791  assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1792
1793  const bool is_outgoing = method->is_method_handle_intrinsic();
1794  int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1795
1796  for (int i = 0; i < member_arg_pos; i++) {
1797    VMReg a =    regs_with_member_name[i].first();
1798    VMReg b = regs_without_member_name[i].first();
1799    assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1800  }
1801  assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1802}
1803#endif
1804
1805// ---------------------------------------------------------------------------
1806// We are calling the interpreter via a c2i. Normally this would mean that
1807// we were called by a compiled method. However we could have lost a race
1808// where we went int -> i2c -> c2i and so the caller could in fact be
1809// interpreted. If the caller is compiled we attempt to patch the caller
1810// so he no longer calls into the interpreter.
1811IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1812  Method* moop(method);
1813
1814  address entry_point = moop->from_compiled_entry_no_trampoline();
1815
1816  // It's possible that deoptimization can occur at a call site which hasn't
1817  // been resolved yet, in which case this function will be called from
1818  // an nmethod that has been patched for deopt and we can ignore the
1819  // request for a fixup.
1820  // Also it is possible that we lost a race in that from_compiled_entry
1821  // is now back to the i2c in that case we don't need to patch and if
1822  // we did we'd leap into space because the callsite needs to use
1823  // "to interpreter" stub in order to load up the Method*. Don't
1824  // ask me how I know this...
1825
1826  CodeBlob* cb = CodeCache::find_blob(caller_pc);
1827  if (!cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1828    return;
1829  }
1830
1831  // The check above makes sure this is a nmethod.
1832  CompiledMethod* nm = cb->as_compiled_method_or_null();
1833  assert(nm, "must be");
1834
1835  // Get the return PC for the passed caller PC.
1836  address return_pc = caller_pc + frame::pc_return_offset;
1837
1838  // There is a benign race here. We could be attempting to patch to a compiled
1839  // entry point at the same time the callee is being deoptimized. If that is
1840  // the case then entry_point may in fact point to a c2i and we'd patch the
1841  // call site with the same old data. clear_code will set code() to NULL
1842  // at the end of it. If we happen to see that NULL then we can skip trying
1843  // to patch. If we hit the window where the callee has a c2i in the
1844  // from_compiled_entry and the NULL isn't present yet then we lose the race
1845  // and patch the code with the same old data. Asi es la vida.
1846
1847  if (moop->code() == NULL) return;
1848
1849  if (nm->is_in_use()) {
1850
1851    // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1852    MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1853    if (NativeCall::is_call_before(return_pc)) {
1854      NativeCall *call = nativeCall_before(return_pc);
1855      //
1856      // bug 6281185. We might get here after resolving a call site to a vanilla
1857      // virtual call. Because the resolvee uses the verified entry it may then
1858      // see compiled code and attempt to patch the site by calling us. This would
1859      // then incorrectly convert the call site to optimized and its downhill from
1860      // there. If you're lucky you'll get the assert in the bugid, if not you've
1861      // just made a call site that could be megamorphic into a monomorphic site
1862      // for the rest of its life! Just another racing bug in the life of
1863      // fixup_callers_callsite ...
1864      //
1865      RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1866      iter.next();
1867      assert(iter.has_current(), "must have a reloc at java call site");
1868      relocInfo::relocType typ = iter.reloc()->type();
1869      if (typ != relocInfo::static_call_type &&
1870           typ != relocInfo::opt_virtual_call_type &&
1871           typ != relocInfo::static_stub_type) {
1872        return;
1873      }
1874      address destination = call->destination();
1875      if (destination != entry_point) {
1876        CodeBlob* callee = CodeCache::find_blob(destination);
1877        // callee == cb seems weird. It means calling interpreter thru stub.
1878        if (callee == cb || callee->is_adapter_blob()) {
1879          // static call or optimized virtual
1880          if (TraceCallFixup) {
1881            tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1882            moop->print_short_name(tty);
1883            tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1884          }
1885          call->set_destination_mt_safe(entry_point);
1886        } else {
1887          if (TraceCallFixup) {
1888            tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1889            moop->print_short_name(tty);
1890            tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1891          }
1892          // assert is too strong could also be resolve destinations.
1893          // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1894        }
1895      } else {
1896          if (TraceCallFixup) {
1897            tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1898            moop->print_short_name(tty);
1899            tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1900          }
1901      }
1902    }
1903  }
1904IRT_END
1905
1906
1907// same as JVM_Arraycopy, but called directly from compiled code
1908JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1909                                                oopDesc* dest, jint dest_pos,
1910                                                jint length,
1911                                                JavaThread* thread)) {
1912#ifndef PRODUCT
1913  _slow_array_copy_ctr++;
1914#endif
1915  // Check if we have null pointers
1916  if (src == NULL || dest == NULL) {
1917    THROW(vmSymbols::java_lang_NullPointerException());
1918  }
1919  // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1920  // even though the copy_array API also performs dynamic checks to ensure
1921  // that src and dest are truly arrays (and are conformable).
1922  // The copy_array mechanism is awkward and could be removed, but
1923  // the compilers don't call this function except as a last resort,
1924  // so it probably doesn't matter.
1925  src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1926                                        (arrayOopDesc*)dest, dest_pos,
1927                                        length, thread);
1928}
1929JRT_END
1930
1931// The caller of generate_class_cast_message() (or one of its callers)
1932// must use a ResourceMark in order to correctly free the result.
1933char* SharedRuntime::generate_class_cast_message(
1934    JavaThread* thread, Klass* caster_klass) {
1935
1936  // Get target class name from the checkcast instruction
1937  vframeStream vfst(thread, true);
1938  assert(!vfst.at_end(), "Java frame must exist");
1939  Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1940  Klass* target_klass = vfst.method()->constants()->klass_at(
1941    cc.index(), thread);
1942  return generate_class_cast_message(caster_klass, target_klass);
1943}
1944
1945char* SharedRuntime::generate_class_cast_message(
1946    Klass* caster_klass, Klass* target_klass) {
1947
1948  const char* caster_klass_name = caster_klass->external_name();
1949  Klass* c_klass = caster_klass->is_objArray_klass() ?
1950    ObjArrayKlass::cast(caster_klass)->bottom_klass() : caster_klass;
1951  ModuleEntry* caster_module;
1952  const char* caster_module_name;
1953  if (c_klass->is_instance_klass()) {
1954    caster_module = InstanceKlass::cast(c_klass)->module();
1955    caster_module_name = caster_module->is_named() ?
1956      caster_module->name()->as_C_string() : UNNAMED_MODULE;
1957  } else {
1958    caster_module_name = "java.base";
1959  }
1960  const char* target_klass_name = target_klass->external_name();
1961  Klass* t_klass = target_klass->is_objArray_klass() ?
1962    ObjArrayKlass::cast(target_klass)->bottom_klass() : target_klass;
1963  ModuleEntry* target_module;
1964  const char* target_module_name;
1965  if (t_klass->is_instance_klass()) {
1966    target_module = InstanceKlass::cast(t_klass)->module();
1967    target_module_name = target_module->is_named() ?
1968      target_module->name()->as_C_string(): UNNAMED_MODULE;
1969  } else {
1970    target_module_name = "java.base";
1971  }
1972
1973  size_t msglen = strlen(caster_klass_name) + strlen(caster_module_name) +
1974     strlen(target_klass_name) + strlen(target_module_name) + 50;
1975
1976  char* message = NEW_RESOURCE_ARRAY(char, msglen);
1977  if (NULL == message) {
1978    // Shouldn't happen, but don't cause even more problems if it does
1979    message = const_cast<char*>(caster_klass_name);
1980  } else {
1981    jio_snprintf(message, msglen, "%s (in module: %s) cannot be cast to %s (in module: %s)",
1982      caster_klass_name, caster_module_name, target_klass_name, target_module_name);
1983  }
1984  return message;
1985}
1986
1987JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1988  (void) JavaThread::current()->reguard_stack();
1989JRT_END
1990
1991
1992// Handles the uncommon case in locking, i.e., contention or an inflated lock.
1993JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1994  // Disable ObjectSynchronizer::quick_enter() in default config
1995  // on AARCH64 until JDK-8153107 is resolved.
1996  if (AARCH64_ONLY((SyncFlags & 256) != 0 &&) !SafepointSynchronize::is_synchronizing()) {
1997    // Only try quick_enter() if we're not trying to reach a safepoint
1998    // so that the calling thread reaches the safepoint more quickly.
1999    if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2000  }
2001  // NO_ASYNC required because an async exception on the state transition destructor
2002  // would leave you with the lock held and it would never be released.
2003  // The normal monitorenter NullPointerException is thrown without acquiring a lock
2004  // and the model is that an exception implies the method failed.
2005  JRT_BLOCK_NO_ASYNC
2006  oop obj(_obj);
2007  if (PrintBiasedLockingStatistics) {
2008    Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2009  }
2010  Handle h_obj(THREAD, obj);
2011  if (UseBiasedLocking) {
2012    // Retry fast entry if bias is revoked to avoid unnecessary inflation
2013    ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2014  } else {
2015    ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2016  }
2017  assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2018  JRT_BLOCK_END
2019JRT_END
2020
2021// Handles the uncommon cases of monitor unlocking in compiled code
2022JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2023   oop obj(_obj);
2024  assert(JavaThread::current() == THREAD, "invariant");
2025  // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2026  // testing was unable to ever fire the assert that guarded it so I have removed it.
2027  assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2028#undef MIGHT_HAVE_PENDING
2029#ifdef MIGHT_HAVE_PENDING
2030  // Save and restore any pending_exception around the exception mark.
2031  // While the slow_exit must not throw an exception, we could come into
2032  // this routine with one set.
2033  oop pending_excep = NULL;
2034  const char* pending_file;
2035  int pending_line;
2036  if (HAS_PENDING_EXCEPTION) {
2037    pending_excep = PENDING_EXCEPTION;
2038    pending_file  = THREAD->exception_file();
2039    pending_line  = THREAD->exception_line();
2040    CLEAR_PENDING_EXCEPTION;
2041  }
2042#endif /* MIGHT_HAVE_PENDING */
2043
2044  {
2045    // Exit must be non-blocking, and therefore no exceptions can be thrown.
2046    EXCEPTION_MARK;
2047    ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2048  }
2049
2050#ifdef MIGHT_HAVE_PENDING
2051  if (pending_excep != NULL) {
2052    THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2053  }
2054#endif /* MIGHT_HAVE_PENDING */
2055JRT_END
2056
2057#ifndef PRODUCT
2058
2059void SharedRuntime::print_statistics() {
2060  ttyLocker ttyl;
2061  if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2062
2063  if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2064
2065  SharedRuntime::print_ic_miss_histogram();
2066
2067  if (CountRemovableExceptions) {
2068    if (_nof_removable_exceptions > 0) {
2069      Unimplemented(); // this counter is not yet incremented
2070      tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2071    }
2072  }
2073
2074  // Dump the JRT_ENTRY counters
2075  if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2076  if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2077  if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2078  if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2079  if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2080  if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2081  if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2082
2083  tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2084  tty->print_cr("%5d wrong method", _wrong_method_ctr);
2085  tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2086  tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2087  tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2088
2089  if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2090  if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2091  if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2092  if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2093  if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2094  if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2095  if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2096  if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2097  if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2098  if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2099  if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2100  if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2101  if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2102  if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2103  if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2104  if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2105
2106  AdapterHandlerLibrary::print_statistics();
2107
2108  if (xtty != NULL)  xtty->tail("statistics");
2109}
2110
2111inline double percent(int x, int y) {
2112  return 100.0 * x / MAX2(y, 1);
2113}
2114
2115class MethodArityHistogram {
2116 public:
2117  enum { MAX_ARITY = 256 };
2118 private:
2119  static int _arity_histogram[MAX_ARITY];     // histogram of #args
2120  static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2121  static int _max_arity;                      // max. arity seen
2122  static int _max_size;                       // max. arg size seen
2123
2124  static void add_method_to_histogram(nmethod* nm) {
2125    Method* m = nm->method();
2126    ArgumentCount args(m->signature());
2127    int arity   = args.size() + (m->is_static() ? 0 : 1);
2128    int argsize = m->size_of_parameters();
2129    arity   = MIN2(arity, MAX_ARITY-1);
2130    argsize = MIN2(argsize, MAX_ARITY-1);
2131    int count = nm->method()->compiled_invocation_count();
2132    _arity_histogram[arity]  += count;
2133    _size_histogram[argsize] += count;
2134    _max_arity = MAX2(_max_arity, arity);
2135    _max_size  = MAX2(_max_size, argsize);
2136  }
2137
2138  void print_histogram_helper(int n, int* histo, const char* name) {
2139    const int N = MIN2(5, n);
2140    tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2141    double sum = 0;
2142    double weighted_sum = 0;
2143    int i;
2144    for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2145    double rest = sum;
2146    double percent = sum / 100;
2147    for (i = 0; i <= N; i++) {
2148      rest -= histo[i];
2149      tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2150    }
2151    tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2152    tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2153  }
2154
2155  void print_histogram() {
2156    tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2157    print_histogram_helper(_max_arity, _arity_histogram, "arity");
2158    tty->print_cr("\nSame for parameter size (in words):");
2159    print_histogram_helper(_max_size, _size_histogram, "size");
2160    tty->cr();
2161  }
2162
2163 public:
2164  MethodArityHistogram() {
2165    MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2166    _max_arity = _max_size = 0;
2167    for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2168    CodeCache::nmethods_do(add_method_to_histogram);
2169    print_histogram();
2170  }
2171};
2172
2173int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2174int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2175int MethodArityHistogram::_max_arity;
2176int MethodArityHistogram::_max_size;
2177
2178void SharedRuntime::print_call_statistics(int comp_total) {
2179  tty->print_cr("Calls from compiled code:");
2180  int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2181  int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2182  int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2183  tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2184  tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2185  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2186  tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2187  tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2188  tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2189  tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2190  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2191  tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2192  tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2193  tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2194  tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2195  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2196  tty->cr();
2197  tty->print_cr("Note 1: counter updates are not MT-safe.");
2198  tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2199  tty->print_cr("        %% in nested categories are relative to their category");
2200  tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2201  tty->cr();
2202
2203  MethodArityHistogram h;
2204}
2205#endif
2206
2207
2208// A simple wrapper class around the calling convention information
2209// that allows sharing of adapters for the same calling convention.
2210class AdapterFingerPrint : public CHeapObj<mtCode> {
2211 private:
2212  enum {
2213    _basic_type_bits = 4,
2214    _basic_type_mask = right_n_bits(_basic_type_bits),
2215    _basic_types_per_int = BitsPerInt / _basic_type_bits,
2216    _compact_int_count = 3
2217  };
2218  // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2219  // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2220
2221  union {
2222    int  _compact[_compact_int_count];
2223    int* _fingerprint;
2224  } _value;
2225  int _length; // A negative length indicates the fingerprint is in the compact form,
2226               // Otherwise _value._fingerprint is the array.
2227
2228  // Remap BasicTypes that are handled equivalently by the adapters.
2229  // These are correct for the current system but someday it might be
2230  // necessary to make this mapping platform dependent.
2231  static int adapter_encoding(BasicType in) {
2232    switch (in) {
2233      case T_BOOLEAN:
2234      case T_BYTE:
2235      case T_SHORT:
2236      case T_CHAR:
2237        // There are all promoted to T_INT in the calling convention
2238        return T_INT;
2239
2240      case T_OBJECT:
2241      case T_ARRAY:
2242        // In other words, we assume that any register good enough for
2243        // an int or long is good enough for a managed pointer.
2244#ifdef _LP64
2245        return T_LONG;
2246#else
2247        return T_INT;
2248#endif
2249
2250      case T_INT:
2251      case T_LONG:
2252      case T_FLOAT:
2253      case T_DOUBLE:
2254      case T_VOID:
2255        return in;
2256
2257      default:
2258        ShouldNotReachHere();
2259        return T_CONFLICT;
2260    }
2261  }
2262
2263 public:
2264  AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2265    // The fingerprint is based on the BasicType signature encoded
2266    // into an array of ints with eight entries per int.
2267    int* ptr;
2268    int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2269    if (len <= _compact_int_count) {
2270      assert(_compact_int_count == 3, "else change next line");
2271      _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2272      // Storing the signature encoded as signed chars hits about 98%
2273      // of the time.
2274      _length = -len;
2275      ptr = _value._compact;
2276    } else {
2277      _length = len;
2278      _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2279      ptr = _value._fingerprint;
2280    }
2281
2282    // Now pack the BasicTypes with 8 per int
2283    int sig_index = 0;
2284    for (int index = 0; index < len; index++) {
2285      int value = 0;
2286      for (int byte = 0; byte < _basic_types_per_int; byte++) {
2287        int bt = ((sig_index < total_args_passed)
2288                  ? adapter_encoding(sig_bt[sig_index++])
2289                  : 0);
2290        assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2291        value = (value << _basic_type_bits) | bt;
2292      }
2293      ptr[index] = value;
2294    }
2295  }
2296
2297  ~AdapterFingerPrint() {
2298    if (_length > 0) {
2299      FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2300    }
2301  }
2302
2303  int value(int index) {
2304    if (_length < 0) {
2305      return _value._compact[index];
2306    }
2307    return _value._fingerprint[index];
2308  }
2309  int length() {
2310    if (_length < 0) return -_length;
2311    return _length;
2312  }
2313
2314  bool is_compact() {
2315    return _length <= 0;
2316  }
2317
2318  unsigned int compute_hash() {
2319    int hash = 0;
2320    for (int i = 0; i < length(); i++) {
2321      int v = value(i);
2322      hash = (hash << 8) ^ v ^ (hash >> 5);
2323    }
2324    return (unsigned int)hash;
2325  }
2326
2327  const char* as_string() {
2328    stringStream st;
2329    st.print("0x");
2330    for (int i = 0; i < length(); i++) {
2331      st.print("%08x", value(i));
2332    }
2333    return st.as_string();
2334  }
2335
2336  bool equals(AdapterFingerPrint* other) {
2337    if (other->_length != _length) {
2338      return false;
2339    }
2340    if (_length < 0) {
2341      assert(_compact_int_count == 3, "else change next line");
2342      return _value._compact[0] == other->_value._compact[0] &&
2343             _value._compact[1] == other->_value._compact[1] &&
2344             _value._compact[2] == other->_value._compact[2];
2345    } else {
2346      for (int i = 0; i < _length; i++) {
2347        if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2348          return false;
2349        }
2350      }
2351    }
2352    return true;
2353  }
2354};
2355
2356
2357// A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2358class AdapterHandlerTable : public BasicHashtable<mtCode> {
2359  friend class AdapterHandlerTableIterator;
2360
2361 private:
2362
2363#ifndef PRODUCT
2364  static int _lookups; // number of calls to lookup
2365  static int _buckets; // number of buckets checked
2366  static int _equals;  // number of buckets checked with matching hash
2367  static int _hits;    // number of successful lookups
2368  static int _compact; // number of equals calls with compact signature
2369#endif
2370
2371  AdapterHandlerEntry* bucket(int i) {
2372    return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2373  }
2374
2375 public:
2376  AdapterHandlerTable()
2377    : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2378
2379  // Create a new entry suitable for insertion in the table
2380  AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2381    AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2382    entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2383    if (DumpSharedSpaces) {
2384      ((CDSAdapterHandlerEntry*)entry)->init();
2385    }
2386    return entry;
2387  }
2388
2389  // Insert an entry into the table
2390  void add(AdapterHandlerEntry* entry) {
2391    int index = hash_to_index(entry->hash());
2392    add_entry(index, entry);
2393  }
2394
2395  void free_entry(AdapterHandlerEntry* entry) {
2396    entry->deallocate();
2397    BasicHashtable<mtCode>::free_entry(entry);
2398  }
2399
2400  // Find a entry with the same fingerprint if it exists
2401  AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2402    NOT_PRODUCT(_lookups++);
2403    AdapterFingerPrint fp(total_args_passed, sig_bt);
2404    unsigned int hash = fp.compute_hash();
2405    int index = hash_to_index(hash);
2406    for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2407      NOT_PRODUCT(_buckets++);
2408      if (e->hash() == hash) {
2409        NOT_PRODUCT(_equals++);
2410        if (fp.equals(e->fingerprint())) {
2411#ifndef PRODUCT
2412          if (fp.is_compact()) _compact++;
2413          _hits++;
2414#endif
2415          return e;
2416        }
2417      }
2418    }
2419    return NULL;
2420  }
2421
2422#ifndef PRODUCT
2423  void print_statistics() {
2424    ResourceMark rm;
2425    int longest = 0;
2426    int empty = 0;
2427    int total = 0;
2428    int nonempty = 0;
2429    for (int index = 0; index < table_size(); index++) {
2430      int count = 0;
2431      for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2432        count++;
2433      }
2434      if (count != 0) nonempty++;
2435      if (count == 0) empty++;
2436      if (count > longest) longest = count;
2437      total += count;
2438    }
2439    tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2440                  empty, longest, total, total / (double)nonempty);
2441    tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2442                  _lookups, _buckets, _equals, _hits, _compact);
2443  }
2444#endif
2445};
2446
2447
2448#ifndef PRODUCT
2449
2450int AdapterHandlerTable::_lookups;
2451int AdapterHandlerTable::_buckets;
2452int AdapterHandlerTable::_equals;
2453int AdapterHandlerTable::_hits;
2454int AdapterHandlerTable::_compact;
2455
2456#endif
2457
2458class AdapterHandlerTableIterator : public StackObj {
2459 private:
2460  AdapterHandlerTable* _table;
2461  int _index;
2462  AdapterHandlerEntry* _current;
2463
2464  void scan() {
2465    while (_index < _table->table_size()) {
2466      AdapterHandlerEntry* a = _table->bucket(_index);
2467      _index++;
2468      if (a != NULL) {
2469        _current = a;
2470        return;
2471      }
2472    }
2473  }
2474
2475 public:
2476  AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2477    scan();
2478  }
2479  bool has_next() {
2480    return _current != NULL;
2481  }
2482  AdapterHandlerEntry* next() {
2483    if (_current != NULL) {
2484      AdapterHandlerEntry* result = _current;
2485      _current = _current->next();
2486      if (_current == NULL) scan();
2487      return result;
2488    } else {
2489      return NULL;
2490    }
2491  }
2492};
2493
2494
2495// ---------------------------------------------------------------------------
2496// Implementation of AdapterHandlerLibrary
2497AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2498AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2499const int AdapterHandlerLibrary_size = 16*K;
2500BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2501
2502BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2503  // Should be called only when AdapterHandlerLibrary_lock is active.
2504  if (_buffer == NULL) // Initialize lazily
2505      _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2506  return _buffer;
2507}
2508
2509extern "C" void unexpected_adapter_call() {
2510  ShouldNotCallThis();
2511}
2512
2513void AdapterHandlerLibrary::initialize() {
2514  if (_adapters != NULL) return;
2515  _adapters = new AdapterHandlerTable();
2516
2517  if (!CodeCacheExtensions::skip_compiler_support()) {
2518    // Create a special handler for abstract methods.  Abstract methods
2519    // are never compiled so an i2c entry is somewhat meaningless, but
2520    // throw AbstractMethodError just in case.
2521    // Pass wrong_method_abstract for the c2i transitions to return
2522    // AbstractMethodError for invalid invocations.
2523    address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2524    _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2525                                                                StubRoutines::throw_AbstractMethodError_entry(),
2526                                                                wrong_method_abstract, wrong_method_abstract);
2527  } else {
2528    // Adapters are not supposed to be used.
2529    // Generate a special one to cause an error if used (and store this
2530    // singleton in place of the useless _abstract_method_error adapter).
2531    address entry = (address) &unexpected_adapter_call;
2532    _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2533                                                                entry,
2534                                                                entry,
2535                                                                entry);
2536
2537  }
2538}
2539
2540AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2541                                                      address i2c_entry,
2542                                                      address c2i_entry,
2543                                                      address c2i_unverified_entry) {
2544  return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2545}
2546
2547AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2548  AdapterHandlerEntry* entry = get_adapter0(method);
2549  if (method->is_shared()) {
2550    MutexLocker mu(AdapterHandlerLibrary_lock);
2551    if (method->adapter() == NULL) {
2552      method->update_adapter_trampoline(entry);
2553    }
2554    address trampoline = method->from_compiled_entry();
2555    if (*(int*)trampoline == 0) {
2556      CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2557      MacroAssembler _masm(&buffer);
2558      SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2559
2560      if (PrintInterpreter) {
2561        Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2562      }
2563    }
2564  }
2565
2566  return entry;
2567}
2568
2569AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2570  // Use customized signature handler.  Need to lock around updates to
2571  // the AdapterHandlerTable (it is not safe for concurrent readers
2572  // and a single writer: this could be fixed if it becomes a
2573  // problem).
2574
2575  ResourceMark rm;
2576
2577  NOT_PRODUCT(int insts_size);
2578  AdapterBlob* new_adapter = NULL;
2579  AdapterHandlerEntry* entry = NULL;
2580  AdapterFingerPrint* fingerprint = NULL;
2581  {
2582    MutexLocker mu(AdapterHandlerLibrary_lock);
2583    // make sure data structure is initialized
2584    initialize();
2585
2586    // during dump time, always generate adapters, even if the
2587    // compiler has been turned off.
2588    if (!DumpSharedSpaces && CodeCacheExtensions::skip_compiler_support()) {
2589      // adapters are useless and should not be used, including the
2590      // abstract_method_handler. However, some callers check that
2591      // an adapter was installed.
2592      // Return the singleton adapter, stored into _abstract_method_handler
2593      // and modified to cause an error if we ever call it.
2594      return _abstract_method_handler;
2595    }
2596
2597    if (method->is_abstract()) {
2598      return _abstract_method_handler;
2599    }
2600
2601    // Fill in the signature array, for the calling-convention call.
2602    int total_args_passed = method->size_of_parameters(); // All args on stack
2603
2604    BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2605    VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2606    int i = 0;
2607    if (!method->is_static())  // Pass in receiver first
2608      sig_bt[i++] = T_OBJECT;
2609    for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2610      sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2611      if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2612        sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2613    }
2614    assert(i == total_args_passed, "");
2615
2616    // Lookup method signature's fingerprint
2617    entry = _adapters->lookup(total_args_passed, sig_bt);
2618
2619#ifdef ASSERT
2620    AdapterHandlerEntry* shared_entry = NULL;
2621    // Start adapter sharing verification only after the VM is booted.
2622    if (VerifyAdapterSharing && (entry != NULL)) {
2623      shared_entry = entry;
2624      entry = NULL;
2625    }
2626#endif
2627
2628    if (entry != NULL) {
2629      return entry;
2630    }
2631
2632    // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2633    int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2634
2635    // Make a C heap allocated version of the fingerprint to store in the adapter
2636    fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2637
2638    // StubRoutines::code2() is initialized after this function can be called. As a result,
2639    // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2640    // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2641    // stub that ensure that an I2C stub is called from an interpreter frame.
2642    bool contains_all_checks = StubRoutines::code2() != NULL;
2643
2644    // Create I2C & C2I handlers
2645    BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2646    if (buf != NULL) {
2647      CodeBuffer buffer(buf);
2648      short buffer_locs[20];
2649      buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2650                                             sizeof(buffer_locs)/sizeof(relocInfo));
2651
2652      MacroAssembler _masm(&buffer);
2653      entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2654                                                     total_args_passed,
2655                                                     comp_args_on_stack,
2656                                                     sig_bt,
2657                                                     regs,
2658                                                     fingerprint);
2659#ifdef ASSERT
2660      if (VerifyAdapterSharing) {
2661        if (shared_entry != NULL) {
2662          assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2663          // Release the one just created and return the original
2664          _adapters->free_entry(entry);
2665          return shared_entry;
2666        } else  {
2667          entry->save_code(buf->code_begin(), buffer.insts_size());
2668        }
2669      }
2670#endif
2671
2672      new_adapter = AdapterBlob::create(&buffer);
2673      NOT_PRODUCT(insts_size = buffer.insts_size());
2674    }
2675    if (new_adapter == NULL) {
2676      // CodeCache is full, disable compilation
2677      // Ought to log this but compile log is only per compile thread
2678      // and we're some non descript Java thread.
2679      return NULL; // Out of CodeCache space
2680    }
2681    entry->relocate(new_adapter->content_begin());
2682#ifndef PRODUCT
2683    // debugging suppport
2684    if (PrintAdapterHandlers || PrintStubCode) {
2685      ttyLocker ttyl;
2686      entry->print_adapter_on(tty);
2687      tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2688                    _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2689                    method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2690      tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2691      if (Verbose || PrintStubCode) {
2692        address first_pc = entry->base_address();
2693        if (first_pc != NULL) {
2694          Disassembler::decode(first_pc, first_pc + insts_size);
2695          tty->cr();
2696        }
2697      }
2698    }
2699#endif
2700    // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2701    // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2702    if (contains_all_checks || !VerifyAdapterCalls) {
2703      _adapters->add(entry);
2704    }
2705  }
2706  // Outside of the lock
2707  if (new_adapter != NULL) {
2708    char blob_id[256];
2709    jio_snprintf(blob_id,
2710                 sizeof(blob_id),
2711                 "%s(%s)@" PTR_FORMAT,
2712                 new_adapter->name(),
2713                 fingerprint->as_string(),
2714                 new_adapter->content_begin());
2715    Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2716
2717    if (JvmtiExport::should_post_dynamic_code_generated()) {
2718      JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2719    }
2720  }
2721  return entry;
2722}
2723
2724address AdapterHandlerEntry::base_address() {
2725  address base = _i2c_entry;
2726  if (base == NULL)  base = _c2i_entry;
2727  assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2728  assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2729  return base;
2730}
2731
2732void AdapterHandlerEntry::relocate(address new_base) {
2733  address old_base = base_address();
2734  assert(old_base != NULL, "");
2735  ptrdiff_t delta = new_base - old_base;
2736  if (_i2c_entry != NULL)
2737    _i2c_entry += delta;
2738  if (_c2i_entry != NULL)
2739    _c2i_entry += delta;
2740  if (_c2i_unverified_entry != NULL)
2741    _c2i_unverified_entry += delta;
2742  assert(base_address() == new_base, "");
2743}
2744
2745
2746void AdapterHandlerEntry::deallocate() {
2747  delete _fingerprint;
2748#ifdef ASSERT
2749  if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2750#endif
2751}
2752
2753
2754#ifdef ASSERT
2755// Capture the code before relocation so that it can be compared
2756// against other versions.  If the code is captured after relocation
2757// then relative instructions won't be equivalent.
2758void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2759  _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2760  _saved_code_length = length;
2761  memcpy(_saved_code, buffer, length);
2762}
2763
2764
2765bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2766  if (length != _saved_code_length) {
2767    return false;
2768  }
2769
2770  return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2771}
2772#endif
2773
2774
2775/**
2776 * Create a native wrapper for this native method.  The wrapper converts the
2777 * Java-compiled calling convention to the native convention, handles
2778 * arguments, and transitions to native.  On return from the native we transition
2779 * back to java blocking if a safepoint is in progress.
2780 */
2781void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2782  ResourceMark rm;
2783  nmethod* nm = NULL;
2784
2785  assert(method->is_native(), "must be native");
2786  assert(method->is_method_handle_intrinsic() ||
2787         method->has_native_function(), "must have something valid to call!");
2788
2789  {
2790    // Perform the work while holding the lock, but perform any printing outside the lock
2791    MutexLocker mu(AdapterHandlerLibrary_lock);
2792    // See if somebody beat us to it
2793    if (method->code() != NULL) {
2794      return;
2795    }
2796
2797    const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2798    assert(compile_id > 0, "Must generate native wrapper");
2799
2800
2801    ResourceMark rm;
2802    BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2803    if (buf != NULL) {
2804      CodeBuffer buffer(buf);
2805      double locs_buf[20];
2806      buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2807      MacroAssembler _masm(&buffer);
2808
2809      // Fill in the signature array, for the calling-convention call.
2810      const int total_args_passed = method->size_of_parameters();
2811
2812      BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2813      VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2814      int i=0;
2815      if (!method->is_static())  // Pass in receiver first
2816        sig_bt[i++] = T_OBJECT;
2817      SignatureStream ss(method->signature());
2818      for (; !ss.at_return_type(); ss.next()) {
2819        sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2820        if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2821          sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2822      }
2823      assert(i == total_args_passed, "");
2824      BasicType ret_type = ss.type();
2825
2826      // Now get the compiled-Java layout as input (or output) arguments.
2827      // NOTE: Stubs for compiled entry points of method handle intrinsics
2828      // are just trampolines so the argument registers must be outgoing ones.
2829      const bool is_outgoing = method->is_method_handle_intrinsic();
2830      int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2831
2832      // Generate the compiled-to-native wrapper code
2833      nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2834
2835      if (nm != NULL) {
2836        method->set_code(method, nm);
2837
2838        DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2839        if (directive->PrintAssemblyOption) {
2840          nm->print_code();
2841        }
2842        DirectivesStack::release(directive);
2843      }
2844    }
2845  } // Unlock AdapterHandlerLibrary_lock
2846
2847
2848  // Install the generated code.
2849  if (nm != NULL) {
2850    if (PrintCompilation) {
2851      ttyLocker ttyl;
2852      CompileTask::print(tty, nm, method->is_static() ? "(static)" : "");
2853    }
2854    nm->post_compiled_method_load_event();
2855  }
2856}
2857
2858JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2859  assert(thread == JavaThread::current(), "must be");
2860  // The code is about to enter a JNI lazy critical native method and
2861  // _needs_gc is true, so if this thread is already in a critical
2862  // section then just return, otherwise this thread should block
2863  // until needs_gc has been cleared.
2864  if (thread->in_critical()) {
2865    return;
2866  }
2867  // Lock and unlock a critical section to give the system a chance to block
2868  GCLocker::lock_critical(thread);
2869  GCLocker::unlock_critical(thread);
2870JRT_END
2871
2872// -------------------------------------------------------------------------
2873// Java-Java calling convention
2874// (what you use when Java calls Java)
2875
2876//------------------------------name_for_receiver----------------------------------
2877// For a given signature, return the VMReg for parameter 0.
2878VMReg SharedRuntime::name_for_receiver() {
2879  VMRegPair regs;
2880  BasicType sig_bt = T_OBJECT;
2881  (void) java_calling_convention(&sig_bt, &regs, 1, true);
2882  // Return argument 0 register.  In the LP64 build pointers
2883  // take 2 registers, but the VM wants only the 'main' name.
2884  return regs.first();
2885}
2886
2887VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2888  // This method is returning a data structure allocating as a
2889  // ResourceObject, so do not put any ResourceMarks in here.
2890  char *s = sig->as_C_string();
2891  int len = (int)strlen(s);
2892  s++; len--;                   // Skip opening paren
2893  char *t = s+len;
2894  while (*(--t) != ')');      // Find close paren
2895
2896  BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2897  VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2898  int cnt = 0;
2899  if (has_receiver) {
2900    sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2901  }
2902
2903  while (s < t) {
2904    switch (*s++) {            // Switch on signature character
2905    case 'B': sig_bt[cnt++] = T_BYTE;    break;
2906    case 'C': sig_bt[cnt++] = T_CHAR;    break;
2907    case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2908    case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2909    case 'I': sig_bt[cnt++] = T_INT;     break;
2910    case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2911    case 'S': sig_bt[cnt++] = T_SHORT;   break;
2912    case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2913    case 'V': sig_bt[cnt++] = T_VOID;    break;
2914    case 'L':                   // Oop
2915      while (*s++ != ';');   // Skip signature
2916      sig_bt[cnt++] = T_OBJECT;
2917      break;
2918    case '[': {                 // Array
2919      do {                      // Skip optional size
2920        while (*s >= '0' && *s <= '9') s++;
2921      } while (*s++ == '[');   // Nested arrays?
2922      // Skip element type
2923      if (s[-1] == 'L')
2924        while (*s++ != ';'); // Skip signature
2925      sig_bt[cnt++] = T_ARRAY;
2926      break;
2927    }
2928    default : ShouldNotReachHere();
2929    }
2930  }
2931
2932  if (has_appendix) {
2933    sig_bt[cnt++] = T_OBJECT;
2934  }
2935
2936  assert(cnt < 256, "grow table size");
2937
2938  int comp_args_on_stack;
2939  comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2940
2941  // the calling convention doesn't count out_preserve_stack_slots so
2942  // we must add that in to get "true" stack offsets.
2943
2944  if (comp_args_on_stack) {
2945    for (int i = 0; i < cnt; i++) {
2946      VMReg reg1 = regs[i].first();
2947      if (reg1->is_stack()) {
2948        // Yuck
2949        reg1 = reg1->bias(out_preserve_stack_slots());
2950      }
2951      VMReg reg2 = regs[i].second();
2952      if (reg2->is_stack()) {
2953        // Yuck
2954        reg2 = reg2->bias(out_preserve_stack_slots());
2955      }
2956      regs[i].set_pair(reg2, reg1);
2957    }
2958  }
2959
2960  // results
2961  *arg_size = cnt;
2962  return regs;
2963}
2964
2965// OSR Migration Code
2966//
2967// This code is used convert interpreter frames into compiled frames.  It is
2968// called from very start of a compiled OSR nmethod.  A temp array is
2969// allocated to hold the interesting bits of the interpreter frame.  All
2970// active locks are inflated to allow them to move.  The displaced headers and
2971// active interpreter locals are copied into the temp buffer.  Then we return
2972// back to the compiled code.  The compiled code then pops the current
2973// interpreter frame off the stack and pushes a new compiled frame.  Then it
2974// copies the interpreter locals and displaced headers where it wants.
2975// Finally it calls back to free the temp buffer.
2976//
2977// All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2978
2979JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2980
2981  //
2982  // This code is dependent on the memory layout of the interpreter local
2983  // array and the monitors. On all of our platforms the layout is identical
2984  // so this code is shared. If some platform lays the their arrays out
2985  // differently then this code could move to platform specific code or
2986  // the code here could be modified to copy items one at a time using
2987  // frame accessor methods and be platform independent.
2988
2989  frame fr = thread->last_frame();
2990  assert(fr.is_interpreted_frame(), "");
2991  assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
2992
2993  // Figure out how many monitors are active.
2994  int active_monitor_count = 0;
2995  for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2996       kptr < fr.interpreter_frame_monitor_begin();
2997       kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2998    if (kptr->obj() != NULL) active_monitor_count++;
2999  }
3000
3001  // QQQ we could place number of active monitors in the array so that compiled code
3002  // could double check it.
3003
3004  Method* moop = fr.interpreter_frame_method();
3005  int max_locals = moop->max_locals();
3006  // Allocate temp buffer, 1 word per local & 2 per active monitor
3007  int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3008  intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3009
3010  // Copy the locals.  Order is preserved so that loading of longs works.
3011  // Since there's no GC I can copy the oops blindly.
3012  assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3013  Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3014                       (HeapWord*)&buf[0],
3015                       max_locals);
3016
3017  // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3018  int i = max_locals;
3019  for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3020       kptr2 < fr.interpreter_frame_monitor_begin();
3021       kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3022    if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3023      BasicLock *lock = kptr2->lock();
3024      // Inflate so the displaced header becomes position-independent
3025      if (lock->displaced_header()->is_unlocked())
3026        ObjectSynchronizer::inflate_helper(kptr2->obj());
3027      // Now the displaced header is free to move
3028      buf[i++] = (intptr_t)lock->displaced_header();
3029      buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3030    }
3031  }
3032  assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3033
3034  return buf;
3035JRT_END
3036
3037JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3038  FREE_C_HEAP_ARRAY(intptr_t, buf);
3039JRT_END
3040
3041bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3042  AdapterHandlerTableIterator iter(_adapters);
3043  while (iter.has_next()) {
3044    AdapterHandlerEntry* a = iter.next();
3045    if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3046  }
3047  return false;
3048}
3049
3050void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3051  AdapterHandlerTableIterator iter(_adapters);
3052  while (iter.has_next()) {
3053    AdapterHandlerEntry* a = iter.next();
3054    if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3055      st->print("Adapter for signature: ");
3056      a->print_adapter_on(tty);
3057      return;
3058    }
3059  }
3060  assert(false, "Should have found handler");
3061}
3062
3063void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3064  st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3065               p2i(this), fingerprint()->as_string(),
3066               p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3067
3068}
3069
3070#if INCLUDE_CDS
3071
3072void CDSAdapterHandlerEntry::init() {
3073  assert(DumpSharedSpaces, "used during dump time only");
3074  _c2i_entry_trampoline = (address)MetaspaceShared::misc_data_space_alloc(SharedRuntime::trampoline_size());
3075  _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_data_space_alloc(sizeof(AdapterHandlerEntry*));
3076};
3077
3078#endif // INCLUDE_CDS
3079
3080
3081#ifndef PRODUCT
3082
3083void AdapterHandlerLibrary::print_statistics() {
3084  _adapters->print_statistics();
3085}
3086
3087#endif /* PRODUCT */
3088
3089JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3090  assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3091  thread->enable_stack_reserved_zone();
3092  thread->set_reserved_stack_activation(thread->stack_base());
3093JRT_END
3094
3095frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3096  frame activation;
3097  int decode_offset = 0;
3098  nmethod* nm = NULL;
3099  frame prv_fr = fr;
3100  int count = 1;
3101
3102  assert(fr.is_java_frame(), "Must start on Java frame");
3103
3104  while (!fr.is_first_frame()) {
3105    Method* method = NULL;
3106    // Compiled java method case.
3107    if (decode_offset != 0) {
3108      DebugInfoReadStream stream(nm, decode_offset);
3109      decode_offset = stream.read_int();
3110      method = (Method*)nm->metadata_at(stream.read_int());
3111    } else {
3112      if (fr.is_first_java_frame()) break;
3113      address pc = fr.pc();
3114      prv_fr = fr;
3115      if (fr.is_interpreted_frame()) {
3116        method = fr.interpreter_frame_method();
3117        fr = fr.java_sender();
3118      } else {
3119        CodeBlob* cb = fr.cb();
3120        fr = fr.java_sender();
3121        if (cb == NULL || !cb->is_nmethod()) {
3122          continue;
3123        }
3124        nm = (nmethod*)cb;
3125        if (nm->method()->is_native()) {
3126          method = nm->method();
3127        } else {
3128          PcDesc* pd = nm->pc_desc_at(pc);
3129          assert(pd != NULL, "PcDesc must not be NULL");
3130          decode_offset = pd->scope_decode_offset();
3131          // if decode_offset is not equal to 0, it will execute the
3132          // "compiled java method case" at the beginning of the loop.
3133          continue;
3134        }
3135      }
3136    }
3137    if (method->has_reserved_stack_access()) {
3138      ResourceMark rm(thread);
3139      activation = prv_fr;
3140      warning("Potentially dangerous stack overflow in "
3141              "ReservedStackAccess annotated method %s [%d]",
3142              method->name_and_sig_as_C_string(), count++);
3143      EventReservedStackActivation event;
3144      if (event.should_commit()) {
3145        event.set_method(method);
3146        event.commit();
3147      }
3148    }
3149  }
3150  return activation;
3151}
3152
3153