safepoint.cpp revision 6760:22b98ab2a69f
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/stringTable.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "code/codeCache.hpp"
29#include "code/icBuffer.hpp"
30#include "code/nmethod.hpp"
31#include "code/pcDesc.hpp"
32#include "code/scopeDesc.hpp"
33#include "gc_interface/collectedHeap.hpp"
34#include "interpreter/interpreter.hpp"
35#include "memory/gcLocker.inline.hpp"
36#include "memory/resourceArea.hpp"
37#include "memory/universe.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "oops/symbol.hpp"
40#include "runtime/atomic.inline.hpp"
41#include "runtime/compilationPolicy.hpp"
42#include "runtime/deoptimization.hpp"
43#include "runtime/frame.inline.hpp"
44#include "runtime/interfaceSupport.hpp"
45#include "runtime/mutexLocker.hpp"
46#include "runtime/orderAccess.inline.hpp"
47#include "runtime/osThread.hpp"
48#include "runtime/safepoint.hpp"
49#include "runtime/signature.hpp"
50#include "runtime/stubCodeGenerator.hpp"
51#include "runtime/stubRoutines.hpp"
52#include "runtime/sweeper.hpp"
53#include "runtime/synchronizer.hpp"
54#include "runtime/thread.inline.hpp"
55#include "services/memTracker.hpp"
56#include "services/runtimeService.hpp"
57#include "utilities/events.hpp"
58#include "utilities/macros.hpp"
59#if INCLUDE_ALL_GCS
60#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
61#include "gc_implementation/shared/suspendibleThreadSet.hpp"
62#endif // INCLUDE_ALL_GCS
63#ifdef COMPILER1
64#include "c1/c1_globals.hpp"
65#endif
66
67PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
68
69// --------------------------------------------------------------------------------------------------
70// Implementation of Safepoint begin/end
71
72SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
73volatile int  SafepointSynchronize::_waiting_to_block = 0;
74volatile int SafepointSynchronize::_safepoint_counter = 0;
75int SafepointSynchronize::_current_jni_active_count = 0;
76long  SafepointSynchronize::_end_of_last_safepoint = 0;
77static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
78static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
79static bool timeout_error_printed = false;
80
81// Roll all threads forward to a safepoint and suspend them all
82void SafepointSynchronize::begin() {
83
84  Thread* myThread = Thread::current();
85  assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
86
87  if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
88    _safepoint_begin_time = os::javaTimeNanos();
89    _ts_of_current_safepoint = tty->time_stamp().seconds();
90  }
91
92#if INCLUDE_ALL_GCS
93  if (UseConcMarkSweepGC) {
94    // In the future we should investigate whether CMS can use the
95    // more-general mechanism below.  DLD (01/05).
96    ConcurrentMarkSweepThread::synchronize(false);
97  } else if (UseG1GC) {
98    SuspendibleThreadSet::synchronize();
99  }
100#endif // INCLUDE_ALL_GCS
101
102  // By getting the Threads_lock, we assure that no threads are about to start or
103  // exit. It is released again in SafepointSynchronize::end().
104  Threads_lock->lock();
105
106  assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
107
108  int nof_threads = Threads::number_of_threads();
109
110  if (TraceSafepoint) {
111    tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
112  }
113
114  RuntimeService::record_safepoint_begin();
115
116  MutexLocker mu(Safepoint_lock);
117
118  // Reset the count of active JNI critical threads
119  _current_jni_active_count = 0;
120
121  // Set number of threads to wait for, before we initiate the callbacks
122  _waiting_to_block = nof_threads;
123  TryingToBlock     = 0 ;
124  int still_running = nof_threads;
125
126  // Save the starting time, so that it can be compared to see if this has taken
127  // too long to complete.
128  jlong safepoint_limit_time;
129  timeout_error_printed = false;
130
131  // PrintSafepointStatisticsTimeout can be specified separately. When
132  // specified, PrintSafepointStatistics will be set to true in
133  // deferred_initialize_stat method. The initialization has to be done
134  // early enough to avoid any races. See bug 6880029 for details.
135  if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
136    deferred_initialize_stat();
137  }
138
139  // Begin the process of bringing the system to a safepoint.
140  // Java threads can be in several different states and are
141  // stopped by different mechanisms:
142  //
143  //  1. Running interpreted
144  //     The interpreter dispatch table is changed to force it to
145  //     check for a safepoint condition between bytecodes.
146  //  2. Running in native code
147  //     When returning from the native code, a Java thread must check
148  //     the safepoint _state to see if we must block.  If the
149  //     VM thread sees a Java thread in native, it does
150  //     not wait for this thread to block.  The order of the memory
151  //     writes and reads of both the safepoint state and the Java
152  //     threads state is critical.  In order to guarantee that the
153  //     memory writes are serialized with respect to each other,
154  //     the VM thread issues a memory barrier instruction
155  //     (on MP systems).  In order to avoid the overhead of issuing
156  //     a memory barrier for each Java thread making native calls, each Java
157  //     thread performs a write to a single memory page after changing
158  //     the thread state.  The VM thread performs a sequence of
159  //     mprotect OS calls which forces all previous writes from all
160  //     Java threads to be serialized.  This is done in the
161  //     os::serialize_thread_states() call.  This has proven to be
162  //     much more efficient than executing a membar instruction
163  //     on every call to native code.
164  //  3. Running compiled Code
165  //     Compiled code reads a global (Safepoint Polling) page that
166  //     is set to fault if we are trying to get to a safepoint.
167  //  4. Blocked
168  //     A thread which is blocked will not be allowed to return from the
169  //     block condition until the safepoint operation is complete.
170  //  5. In VM or Transitioning between states
171  //     If a Java thread is currently running in the VM or transitioning
172  //     between states, the safepointing code will wait for the thread to
173  //     block itself when it attempts transitions to a new state.
174  //
175  _state            = _synchronizing;
176  OrderAccess::fence();
177
178  // Flush all thread states to memory
179  if (!UseMembar) {
180    os::serialize_thread_states();
181  }
182
183  // Make interpreter safepoint aware
184  Interpreter::notice_safepoints();
185
186  if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
187    // Make polling safepoint aware
188    guarantee (PageArmed == 0, "invariant") ;
189    PageArmed = 1 ;
190    os::make_polling_page_unreadable();
191  }
192
193  // Consider using active_processor_count() ... but that call is expensive.
194  int ncpus = os::processor_count() ;
195
196#ifdef ASSERT
197  for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
198    assert(cur->safepoint_state()->is_running(), "Illegal initial state");
199    // Clear the visited flag to ensure that the critical counts are collected properly.
200    cur->set_visited_for_critical_count(false);
201  }
202#endif // ASSERT
203
204  if (SafepointTimeout)
205    safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
206
207  // Iterate through all threads until it have been determined how to stop them all at a safepoint
208  unsigned int iterations = 0;
209  int steps = 0 ;
210  while(still_running > 0) {
211    for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
212      assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
213      ThreadSafepointState *cur_state = cur->safepoint_state();
214      if (cur_state->is_running()) {
215        cur_state->examine_state_of_thread();
216        if (!cur_state->is_running()) {
217           still_running--;
218           // consider adjusting steps downward:
219           //   steps = 0
220           //   steps -= NNN
221           //   steps >>= 1
222           //   steps = MIN(steps, 2000-100)
223           //   if (iterations != 0) steps -= NNN
224        }
225        if (TraceSafepoint && Verbose) cur_state->print();
226      }
227    }
228
229    if (PrintSafepointStatistics && iterations == 0) {
230      begin_statistics(nof_threads, still_running);
231    }
232
233    if (still_running > 0) {
234      // Check for if it takes to long
235      if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
236        print_safepoint_timeout(_spinning_timeout);
237      }
238
239      // Spin to avoid context switching.
240      // There's a tension between allowing the mutators to run (and rendezvous)
241      // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
242      // a mutator might otherwise use profitably to reach a safepoint.  Excessive
243      // spinning by the VM thread on a saturated system can increase rendezvous latency.
244      // Blocking or yielding incur their own penalties in the form of context switching
245      // and the resultant loss of $ residency.
246      //
247      // Further complicating matters is that yield() does not work as naively expected
248      // on many platforms -- yield() does not guarantee that any other ready threads
249      // will run.   As such we revert to naked_short_sleep() after some number of iterations.
250      // nakes_short_sleep() is implemented as a short unconditional sleep.
251      // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
252      // can actually increase the time it takes the VM thread to detect that a system-wide
253      // stop-the-world safepoint has been reached.  In a pathological scenario such as that
254      // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
255      // In that case the mutators will be stalled waiting for the safepoint to complete and the
256      // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
257      // will eventually wake up and detect that all mutators are safe, at which point
258      // we'll again make progress.
259      //
260      // Beware too that that the VMThread typically runs at elevated priority.
261      // Its default priority is higher than the default mutator priority.
262      // Obviously, this complicates spinning.
263      //
264      // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
265      // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
266      //
267      // See the comments in synchronizer.cpp for additional remarks on spinning.
268      //
269      // In the future we might:
270      // 1. Modify the safepoint scheme to avoid potentially unbounded spinning.
271      //    This is tricky as the path used by a thread exiting the JVM (say on
272      //    on JNI call-out) simply stores into its state field.  The burden
273      //    is placed on the VM thread, which must poll (spin).
274      // 2. Find something useful to do while spinning.  If the safepoint is GC-related
275      //    we might aggressively scan the stacks of threads that are already safe.
276      // 3. Use Solaris schedctl to examine the state of the still-running mutators.
277      //    If all the mutators are ONPROC there's no reason to sleep or yield.
278      // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
279      // 5. Check system saturation.  If the system is not fully saturated then
280      //    simply spin and avoid sleep/yield.
281      // 6. As still-running mutators rendezvous they could unpark the sleeping
282      //    VMthread.  This works well for still-running mutators that become
283      //    safe.  The VMthread must still poll for mutators that call-out.
284      // 7. Drive the policy on time-since-begin instead of iterations.
285      // 8. Consider making the spin duration a function of the # of CPUs:
286      //    Spin = (((ncpus-1) * M) + K) + F(still_running)
287      //    Alternately, instead of counting iterations of the outer loop
288      //    we could count the # of threads visited in the inner loop, above.
289      // 9. On windows consider using the return value from SwitchThreadTo()
290      //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
291
292      if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
293         guarantee (PageArmed == 0, "invariant") ;
294         PageArmed = 1 ;
295         os::make_polling_page_unreadable();
296      }
297
298      // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
299      // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
300      ++steps ;
301      if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
302        SpinPause() ;     // MP-Polite spin
303      } else
304      if (steps < DeferThrSuspendLoopCount) {
305        os::NakedYield() ;
306      } else {
307        os::naked_short_sleep(1);
308      }
309
310      iterations ++ ;
311    }
312    assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
313  }
314  assert(still_running == 0, "sanity check");
315
316  if (PrintSafepointStatistics) {
317    update_statistics_on_spin_end();
318  }
319
320  // wait until all threads are stopped
321  while (_waiting_to_block > 0) {
322    if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
323    if (!SafepointTimeout || timeout_error_printed) {
324      Safepoint_lock->wait(true);  // true, means with no safepoint checks
325    } else {
326      // Compute remaining time
327      jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
328
329      // If there is no remaining time, then there is an error
330      if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
331        print_safepoint_timeout(_blocking_timeout);
332      }
333    }
334  }
335  assert(_waiting_to_block == 0, "sanity check");
336
337#ifndef PRODUCT
338  if (SafepointTimeout) {
339    jlong current_time = os::javaTimeNanos();
340    if (safepoint_limit_time < current_time) {
341      tty->print_cr("# SafepointSynchronize: Finished after "
342                    INT64_FORMAT_W(6) " ms",
343                    ((current_time - safepoint_limit_time) / MICROUNITS +
344                     SafepointTimeoutDelay));
345    }
346  }
347#endif
348
349  assert((_safepoint_counter & 0x1) == 0, "must be even");
350  assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
351  _safepoint_counter ++;
352
353  // Record state
354  _state = _synchronized;
355
356  OrderAccess::fence();
357
358#ifdef ASSERT
359  for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
360    // make sure all the threads were visited
361    assert(cur->was_visited_for_critical_count(), "missed a thread");
362  }
363#endif // ASSERT
364
365  // Update the count of active JNI critical regions
366  GC_locker::set_jni_lock_count(_current_jni_active_count);
367
368  if (TraceSafepoint) {
369    VM_Operation *op = VMThread::vm_operation();
370    tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
371  }
372
373  RuntimeService::record_safepoint_synchronized();
374  if (PrintSafepointStatistics) {
375    update_statistics_on_sync_end(os::javaTimeNanos());
376  }
377
378  // Call stuff that needs to be run when a safepoint is just about to be completed
379  do_cleanup_tasks();
380
381  if (PrintSafepointStatistics) {
382    // Record how much time spend on the above cleanup tasks
383    update_statistics_on_cleanup_end(os::javaTimeNanos());
384  }
385}
386
387// Wake up all threads, so they are ready to resume execution after the safepoint
388// operation has been carried out
389void SafepointSynchronize::end() {
390
391  assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
392  assert((_safepoint_counter & 0x1) == 1, "must be odd");
393  _safepoint_counter ++;
394  // memory fence isn't required here since an odd _safepoint_counter
395  // value can do no harm and a fence is issued below anyway.
396
397  DEBUG_ONLY(Thread* myThread = Thread::current();)
398  assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
399
400  if (PrintSafepointStatistics) {
401    end_statistics(os::javaTimeNanos());
402  }
403
404#ifdef ASSERT
405  // A pending_exception cannot be installed during a safepoint.  The threads
406  // may install an async exception after they come back from a safepoint into
407  // pending_exception after they unblock.  But that should happen later.
408  for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
409    assert (!(cur->has_pending_exception() &&
410              cur->safepoint_state()->is_at_poll_safepoint()),
411            "safepoint installed a pending exception");
412  }
413#endif // ASSERT
414
415  if (PageArmed) {
416    // Make polling safepoint aware
417    os::make_polling_page_readable();
418    PageArmed = 0 ;
419  }
420
421  // Remove safepoint check from interpreter
422  Interpreter::ignore_safepoints();
423
424  {
425    MutexLocker mu(Safepoint_lock);
426
427    assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
428
429    // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
430    // when they get restarted.
431    _state = _not_synchronized;
432    OrderAccess::fence();
433
434    if (TraceSafepoint) {
435       tty->print_cr("Leaving safepoint region");
436    }
437
438    // Start suspended threads
439    for(JavaThread *current = Threads::first(); current; current = current->next()) {
440      // A problem occurring on Solaris is when attempting to restart threads
441      // the first #cpus - 1 go well, but then the VMThread is preempted when we get
442      // to the next one (since it has been running the longest).  We then have
443      // to wait for a cpu to become available before we can continue restarting
444      // threads.
445      // FIXME: This causes the performance of the VM to degrade when active and with
446      // large numbers of threads.  Apparently this is due to the synchronous nature
447      // of suspending threads.
448      //
449      // TODO-FIXME: the comments above are vestigial and no longer apply.
450      // Furthermore, using solaris' schedctl in this particular context confers no benefit
451      if (VMThreadHintNoPreempt) {
452        os::hint_no_preempt();
453      }
454      ThreadSafepointState* cur_state = current->safepoint_state();
455      assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
456      cur_state->restart();
457      assert(cur_state->is_running(), "safepoint state has not been reset");
458    }
459
460    RuntimeService::record_safepoint_end();
461
462    // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
463    // blocked in signal_thread_blocked
464    Threads_lock->unlock();
465
466  }
467#if INCLUDE_ALL_GCS
468  // If there are any concurrent GC threads resume them.
469  if (UseConcMarkSweepGC) {
470    ConcurrentMarkSweepThread::desynchronize(false);
471  } else if (UseG1GC) {
472    SuspendibleThreadSet::desynchronize();
473  }
474#endif // INCLUDE_ALL_GCS
475  // record this time so VMThread can keep track how much time has elapsed
476  // since last safepoint.
477  _end_of_last_safepoint = os::javaTimeMillis();
478}
479
480bool SafepointSynchronize::is_cleanup_needed() {
481  // Need a safepoint if some inline cache buffers is non-empty
482  if (!InlineCacheBuffer::is_empty()) return true;
483  return false;
484}
485
486
487
488// Various cleaning tasks that should be done periodically at safepoints
489void SafepointSynchronize::do_cleanup_tasks() {
490  {
491    TraceTime t1("deflating idle monitors", TraceSafepointCleanupTime);
492    ObjectSynchronizer::deflate_idle_monitors();
493  }
494
495  {
496    TraceTime t2("updating inline caches", TraceSafepointCleanupTime);
497    InlineCacheBuffer::update_inline_caches();
498  }
499  {
500    TraceTime t3("compilation policy safepoint handler", TraceSafepointCleanupTime);
501    CompilationPolicy::policy()->do_safepoint_work();
502  }
503
504  {
505    TraceTime t4("mark nmethods", TraceSafepointCleanupTime);
506    NMethodSweeper::mark_active_nmethods();
507  }
508
509  if (SymbolTable::needs_rehashing()) {
510    TraceTime t5("rehashing symbol table", TraceSafepointCleanupTime);
511    SymbolTable::rehash_table();
512  }
513
514  if (StringTable::needs_rehashing()) {
515    TraceTime t6("rehashing string table", TraceSafepointCleanupTime);
516    StringTable::rehash_table();
517  }
518
519  // rotate log files?
520  if (UseGCLogFileRotation) {
521    gclog_or_tty->rotate_log(false);
522  }
523
524  {
525    // CMS delays purging the CLDG until the beginning of the next safepoint and to
526    // make sure concurrent sweep is done
527    TraceTime t7("purging class loader data graph", TraceSafepointCleanupTime);
528    ClassLoaderDataGraph::purge_if_needed();
529  }
530
531  if (MemTracker::is_on()) {
532    MemTracker::sync();
533  }
534}
535
536
537bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
538  switch(state) {
539  case _thread_in_native:
540    // native threads are safe if they have no java stack or have walkable stack
541    return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
542
543   // blocked threads should have already have walkable stack
544  case _thread_blocked:
545    assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
546    return true;
547
548  default:
549    return false;
550  }
551}
552
553
554// See if the thread is running inside a lazy critical native and
555// update the thread critical count if so.  Also set a suspend flag to
556// cause the native wrapper to return into the JVM to do the unlock
557// once the native finishes.
558void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
559  if (state == _thread_in_native &&
560      thread->has_last_Java_frame() &&
561      thread->frame_anchor()->walkable()) {
562    // This thread might be in a critical native nmethod so look at
563    // the top of the stack and increment the critical count if it
564    // is.
565    frame wrapper_frame = thread->last_frame();
566    CodeBlob* stub_cb = wrapper_frame.cb();
567    if (stub_cb != NULL &&
568        stub_cb->is_nmethod() &&
569        stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
570      // A thread could potentially be in a critical native across
571      // more than one safepoint, so only update the critical state on
572      // the first one.  When it returns it will perform the unlock.
573      if (!thread->do_critical_native_unlock()) {
574#ifdef ASSERT
575        if (!thread->in_critical()) {
576          GC_locker::increment_debug_jni_lock_count();
577        }
578#endif
579        thread->enter_critical();
580        // Make sure the native wrapper calls back on return to
581        // perform the needed critical unlock.
582        thread->set_critical_native_unlock();
583      }
584    }
585  }
586}
587
588
589
590// -------------------------------------------------------------------------------------------------------
591// Implementation of Safepoint callback point
592
593void SafepointSynchronize::block(JavaThread *thread) {
594  assert(thread != NULL, "thread must be set");
595  assert(thread->is_Java_thread(), "not a Java thread");
596
597  // Threads shouldn't block if they are in the middle of printing, but...
598  ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
599
600  // Only bail from the block() call if the thread is gone from the
601  // thread list; starting to exit should still block.
602  if (thread->is_terminated()) {
603     // block current thread if we come here from native code when VM is gone
604     thread->block_if_vm_exited();
605
606     // otherwise do nothing
607     return;
608  }
609
610  JavaThreadState state = thread->thread_state();
611  thread->frame_anchor()->make_walkable(thread);
612
613  // Check that we have a valid thread_state at this point
614  switch(state) {
615    case _thread_in_vm_trans:
616    case _thread_in_Java:        // From compiled code
617
618      // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
619      // we pretend we are still in the VM.
620      thread->set_thread_state(_thread_in_vm);
621
622      if (is_synchronizing()) {
623         Atomic::inc (&TryingToBlock) ;
624      }
625
626      // We will always be holding the Safepoint_lock when we are examine the state
627      // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
628      // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
629      Safepoint_lock->lock_without_safepoint_check();
630      if (is_synchronizing()) {
631        // Decrement the number of threads to wait for and signal vm thread
632        assert(_waiting_to_block > 0, "sanity check");
633        _waiting_to_block--;
634        thread->safepoint_state()->set_has_called_back(true);
635
636        DEBUG_ONLY(thread->set_visited_for_critical_count(true));
637        if (thread->in_critical()) {
638          // Notice that this thread is in a critical section
639          increment_jni_active_count();
640        }
641
642        // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
643        if (_waiting_to_block == 0) {
644          Safepoint_lock->notify_all();
645        }
646      }
647
648      // We transition the thread to state _thread_blocked here, but
649      // we can't do our usual check for external suspension and then
650      // self-suspend after the lock_without_safepoint_check() call
651      // below because we are often called during transitions while
652      // we hold different locks. That would leave us suspended while
653      // holding a resource which results in deadlocks.
654      thread->set_thread_state(_thread_blocked);
655      Safepoint_lock->unlock();
656
657      // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
658      // the entire safepoint, the threads will all line up here during the safepoint.
659      Threads_lock->lock_without_safepoint_check();
660      // restore original state. This is important if the thread comes from compiled code, so it
661      // will continue to execute with the _thread_in_Java state.
662      thread->set_thread_state(state);
663      Threads_lock->unlock();
664      break;
665
666    case _thread_in_native_trans:
667    case _thread_blocked_trans:
668    case _thread_new_trans:
669      if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
670        thread->print_thread_state();
671        fatal("Deadlock in safepoint code.  "
672              "Should have called back to the VM before blocking.");
673      }
674
675      // We transition the thread to state _thread_blocked here, but
676      // we can't do our usual check for external suspension and then
677      // self-suspend after the lock_without_safepoint_check() call
678      // below because we are often called during transitions while
679      // we hold different locks. That would leave us suspended while
680      // holding a resource which results in deadlocks.
681      thread->set_thread_state(_thread_blocked);
682
683      // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
684      // the safepoint code might still be waiting for it to block. We need to change the state here,
685      // so it can see that it is at a safepoint.
686
687      // Block until the safepoint operation is completed.
688      Threads_lock->lock_without_safepoint_check();
689
690      // Restore state
691      thread->set_thread_state(state);
692
693      Threads_lock->unlock();
694      break;
695
696    default:
697     fatal(err_msg("Illegal threadstate encountered: %d", state));
698  }
699
700  // Check for pending. async. exceptions or suspends - except if the
701  // thread was blocked inside the VM. has_special_runtime_exit_condition()
702  // is called last since it grabs a lock and we only want to do that when
703  // we must.
704  //
705  // Note: we never deliver an async exception at a polling point as the
706  // compiler may not have an exception handler for it. The polling
707  // code will notice the async and deoptimize and the exception will
708  // be delivered. (Polling at a return point is ok though). Sure is
709  // a lot of bother for a deprecated feature...
710  //
711  // We don't deliver an async exception if the thread state is
712  // _thread_in_native_trans so JNI functions won't be called with
713  // a surprising pending exception. If the thread state is going back to java,
714  // async exception is checked in check_special_condition_for_native_trans().
715
716  if (state != _thread_blocked_trans &&
717      state != _thread_in_vm_trans &&
718      thread->has_special_runtime_exit_condition()) {
719    thread->handle_special_runtime_exit_condition(
720      !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
721  }
722}
723
724// ------------------------------------------------------------------------------------------------------
725// Exception handlers
726
727
728void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
729  assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
730  assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
731  assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
732
733  if (ShowSafepointMsgs) {
734    tty->print("handle_polling_page_exception: ");
735  }
736
737  if (PrintSafepointStatistics) {
738    inc_page_trap_count();
739  }
740
741  ThreadSafepointState* state = thread->safepoint_state();
742
743  state->handle_polling_page_exception();
744}
745
746
747void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
748  if (!timeout_error_printed) {
749    timeout_error_printed = true;
750    // Print out the thread info which didn't reach the safepoint for debugging
751    // purposes (useful when there are lots of threads in the debugger).
752    tty->cr();
753    tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
754    if (reason ==  _spinning_timeout) {
755      tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
756    } else if (reason == _blocking_timeout) {
757      tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
758    }
759
760    tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
761    ThreadSafepointState *cur_state;
762    ResourceMark rm;
763    for(JavaThread *cur_thread = Threads::first(); cur_thread;
764        cur_thread = cur_thread->next()) {
765      cur_state = cur_thread->safepoint_state();
766
767      if (cur_thread->thread_state() != _thread_blocked &&
768          ((reason == _spinning_timeout && cur_state->is_running()) ||
769           (reason == _blocking_timeout && !cur_state->has_called_back()))) {
770        tty->print("# ");
771        cur_thread->print();
772        tty->cr();
773      }
774    }
775    tty->print_cr("# SafepointSynchronize::begin: (End of list)");
776  }
777
778  // To debug the long safepoint, specify both DieOnSafepointTimeout &
779  // ShowMessageBoxOnError.
780  if (DieOnSafepointTimeout) {
781    char msg[1024];
782    VM_Operation *op = VMThread::vm_operation();
783    sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
784            SafepointTimeoutDelay,
785            op != NULL ? op->name() : "no vm operation");
786    fatal(msg);
787  }
788}
789
790
791// -------------------------------------------------------------------------------------------------------
792// Implementation of ThreadSafepointState
793
794ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
795  _thread = thread;
796  _type   = _running;
797  _has_called_back = false;
798  _at_poll_safepoint = false;
799}
800
801void ThreadSafepointState::create(JavaThread *thread) {
802  ThreadSafepointState *state = new ThreadSafepointState(thread);
803  thread->set_safepoint_state(state);
804}
805
806void ThreadSafepointState::destroy(JavaThread *thread) {
807  if (thread->safepoint_state()) {
808    delete(thread->safepoint_state());
809    thread->set_safepoint_state(NULL);
810  }
811}
812
813void ThreadSafepointState::examine_state_of_thread() {
814  assert(is_running(), "better be running or just have hit safepoint poll");
815
816  JavaThreadState state = _thread->thread_state();
817
818  // Save the state at the start of safepoint processing.
819  _orig_thread_state = state;
820
821  // Check for a thread that is suspended. Note that thread resume tries
822  // to grab the Threads_lock which we own here, so a thread cannot be
823  // resumed during safepoint synchronization.
824
825  // We check to see if this thread is suspended without locking to
826  // avoid deadlocking with a third thread that is waiting for this
827  // thread to be suspended. The third thread can notice the safepoint
828  // that we're trying to start at the beginning of its SR_lock->wait()
829  // call. If that happens, then the third thread will block on the
830  // safepoint while still holding the underlying SR_lock. We won't be
831  // able to get the SR_lock and we'll deadlock.
832  //
833  // We don't need to grab the SR_lock here for two reasons:
834  // 1) The suspend flags are both volatile and are set with an
835  //    Atomic::cmpxchg() call so we should see the suspended
836  //    state right away.
837  // 2) We're being called from the safepoint polling loop; if
838  //    we don't see the suspended state on this iteration, then
839  //    we'll come around again.
840  //
841  bool is_suspended = _thread->is_ext_suspended();
842  if (is_suspended) {
843    roll_forward(_at_safepoint);
844    return;
845  }
846
847  // Some JavaThread states have an initial safepoint state of
848  // running, but are actually at a safepoint. We will happily
849  // agree and update the safepoint state here.
850  if (SafepointSynchronize::safepoint_safe(_thread, state)) {
851    SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
852    roll_forward(_at_safepoint);
853    return;
854  }
855
856  if (state == _thread_in_vm) {
857    roll_forward(_call_back);
858    return;
859  }
860
861  // All other thread states will continue to run until they
862  // transition and self-block in state _blocked
863  // Safepoint polling in compiled code causes the Java threads to do the same.
864  // Note: new threads may require a malloc so they must be allowed to finish
865
866  assert(is_running(), "examine_state_of_thread on non-running thread");
867  return;
868}
869
870// Returns true is thread could not be rolled forward at present position.
871void ThreadSafepointState::roll_forward(suspend_type type) {
872  _type = type;
873
874  switch(_type) {
875    case _at_safepoint:
876      SafepointSynchronize::signal_thread_at_safepoint();
877      DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
878      if (_thread->in_critical()) {
879        // Notice that this thread is in a critical section
880        SafepointSynchronize::increment_jni_active_count();
881      }
882      break;
883
884    case _call_back:
885      set_has_called_back(false);
886      break;
887
888    case _running:
889    default:
890      ShouldNotReachHere();
891  }
892}
893
894void ThreadSafepointState::restart() {
895  switch(type()) {
896    case _at_safepoint:
897    case _call_back:
898      break;
899
900    case _running:
901    default:
902       tty->print_cr("restart thread "INTPTR_FORMAT" with state %d",
903                      _thread, _type);
904       _thread->print();
905      ShouldNotReachHere();
906  }
907  _type = _running;
908  set_has_called_back(false);
909}
910
911
912void ThreadSafepointState::print_on(outputStream *st) const {
913  const char *s;
914
915  switch(_type) {
916    case _running                : s = "_running";              break;
917    case _at_safepoint           : s = "_at_safepoint";         break;
918    case _call_back              : s = "_call_back";            break;
919    default:
920      ShouldNotReachHere();
921  }
922
923  st->print_cr("Thread: " INTPTR_FORMAT
924              "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
925               _thread, _thread->osthread()->thread_id(), s, _has_called_back,
926               _at_poll_safepoint);
927
928  _thread->print_thread_state_on(st);
929}
930
931
932// ---------------------------------------------------------------------------------------------------------------------
933
934// Block the thread at the safepoint poll or poll return.
935void ThreadSafepointState::handle_polling_page_exception() {
936
937  // Check state.  block() will set thread state to thread_in_vm which will
938  // cause the safepoint state _type to become _call_back.
939  assert(type() == ThreadSafepointState::_running,
940         "polling page exception on thread not running state");
941
942  // Step 1: Find the nmethod from the return address
943  if (ShowSafepointMsgs && Verbose) {
944    tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
945  }
946  address real_return_addr = thread()->saved_exception_pc();
947
948  CodeBlob *cb = CodeCache::find_blob(real_return_addr);
949  assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
950  nmethod* nm = (nmethod*)cb;
951
952  // Find frame of caller
953  frame stub_fr = thread()->last_frame();
954  CodeBlob* stub_cb = stub_fr.cb();
955  assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
956  RegisterMap map(thread(), true);
957  frame caller_fr = stub_fr.sender(&map);
958
959  // Should only be poll_return or poll
960  assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
961
962  // This is a poll immediately before a return. The exception handling code
963  // has already had the effect of causing the return to occur, so the execution
964  // will continue immediately after the call. In addition, the oopmap at the
965  // return point does not mark the return value as an oop (if it is), so
966  // it needs a handle here to be updated.
967  if( nm->is_at_poll_return(real_return_addr) ) {
968    // See if return type is an oop.
969    bool return_oop = nm->method()->is_returning_oop();
970    Handle return_value;
971    if (return_oop) {
972      // The oop result has been saved on the stack together with all
973      // the other registers. In order to preserve it over GCs we need
974      // to keep it in a handle.
975      oop result = caller_fr.saved_oop_result(&map);
976      assert(result == NULL || result->is_oop(), "must be oop");
977      return_value = Handle(thread(), result);
978      assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
979    }
980
981    // Block the thread
982    SafepointSynchronize::block(thread());
983
984    // restore oop result, if any
985    if (return_oop) {
986      caller_fr.set_saved_oop_result(&map, return_value());
987    }
988  }
989
990  // This is a safepoint poll. Verify the return address and block.
991  else {
992    set_at_poll_safepoint(true);
993
994    // verify the blob built the "return address" correctly
995    assert(real_return_addr == caller_fr.pc(), "must match");
996
997    // Block the thread
998    SafepointSynchronize::block(thread());
999    set_at_poll_safepoint(false);
1000
1001    // If we have a pending async exception deoptimize the frame
1002    // as otherwise we may never deliver it.
1003    if (thread()->has_async_condition()) {
1004      ThreadInVMfromJavaNoAsyncException __tiv(thread());
1005      Deoptimization::deoptimize_frame(thread(), caller_fr.id());
1006    }
1007
1008    // If an exception has been installed we must check for a pending deoptimization
1009    // Deoptimize frame if exception has been thrown.
1010
1011    if (thread()->has_pending_exception() ) {
1012      RegisterMap map(thread(), true);
1013      frame caller_fr = stub_fr.sender(&map);
1014      if (caller_fr.is_deoptimized_frame()) {
1015        // The exception patch will destroy registers that are still
1016        // live and will be needed during deoptimization. Defer the
1017        // Async exception should have deferred the exception until the
1018        // next safepoint which will be detected when we get into
1019        // the interpreter so if we have an exception now things
1020        // are messed up.
1021
1022        fatal("Exception installed and deoptimization is pending");
1023      }
1024    }
1025  }
1026}
1027
1028
1029//
1030//                     Statistics & Instrumentations
1031//
1032SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
1033jlong  SafepointSynchronize::_safepoint_begin_time = 0;
1034int    SafepointSynchronize::_cur_stat_index = 0;
1035julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
1036julong SafepointSynchronize::_coalesced_vmop_count = 0;
1037jlong  SafepointSynchronize::_max_sync_time = 0;
1038jlong  SafepointSynchronize::_max_vmop_time = 0;
1039float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
1040
1041static jlong  cleanup_end_time = 0;
1042static bool   need_to_track_page_armed_status = false;
1043static bool   init_done = false;
1044
1045// Helper method to print the header.
1046static void print_header() {
1047  tty->print("         vmop                    "
1048             "[threads: total initially_running wait_to_block]    ");
1049  tty->print("[time: spin block sync cleanup vmop] ");
1050
1051  // no page armed status printed out if it is always armed.
1052  if (need_to_track_page_armed_status) {
1053    tty->print("page_armed ");
1054  }
1055
1056  tty->print_cr("page_trap_count");
1057}
1058
1059void SafepointSynchronize::deferred_initialize_stat() {
1060  if (init_done) return;
1061
1062  if (PrintSafepointStatisticsCount <= 0) {
1063    fatal("Wrong PrintSafepointStatisticsCount");
1064  }
1065
1066  // If PrintSafepointStatisticsTimeout is specified, the statistics data will
1067  // be printed right away, in which case, _safepoint_stats will regress to
1068  // a single element array. Otherwise, it is a circular ring buffer with default
1069  // size of PrintSafepointStatisticsCount.
1070  int stats_array_size;
1071  if (PrintSafepointStatisticsTimeout > 0) {
1072    stats_array_size = 1;
1073    PrintSafepointStatistics = true;
1074  } else {
1075    stats_array_size = PrintSafepointStatisticsCount;
1076  }
1077  _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
1078                                                 * sizeof(SafepointStats), mtInternal);
1079  guarantee(_safepoint_stats != NULL,
1080            "not enough memory for safepoint instrumentation data");
1081
1082  if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
1083    need_to_track_page_armed_status = true;
1084  }
1085  init_done = true;
1086}
1087
1088void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1089  assert(init_done, "safepoint statistics array hasn't been initialized");
1090  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1091
1092  spstat->_time_stamp = _ts_of_current_safepoint;
1093
1094  VM_Operation *op = VMThread::vm_operation();
1095  spstat->_vmop_type = (op != NULL ? op->type() : -1);
1096  if (op != NULL) {
1097    _safepoint_reasons[spstat->_vmop_type]++;
1098  }
1099
1100  spstat->_nof_total_threads = nof_threads;
1101  spstat->_nof_initial_running_threads = nof_running;
1102  spstat->_nof_threads_hit_page_trap = 0;
1103
1104  // Records the start time of spinning. The real time spent on spinning
1105  // will be adjusted when spin is done. Same trick is applied for time
1106  // spent on waiting for threads to block.
1107  if (nof_running != 0) {
1108    spstat->_time_to_spin = os::javaTimeNanos();
1109  }  else {
1110    spstat->_time_to_spin = 0;
1111  }
1112}
1113
1114void SafepointSynchronize::update_statistics_on_spin_end() {
1115  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1116
1117  jlong cur_time = os::javaTimeNanos();
1118
1119  spstat->_nof_threads_wait_to_block = _waiting_to_block;
1120  if (spstat->_nof_initial_running_threads != 0) {
1121    spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1122  }
1123
1124  if (need_to_track_page_armed_status) {
1125    spstat->_page_armed = (PageArmed == 1);
1126  }
1127
1128  // Records the start time of waiting for to block. Updated when block is done.
1129  if (_waiting_to_block != 0) {
1130    spstat->_time_to_wait_to_block = cur_time;
1131  } else {
1132    spstat->_time_to_wait_to_block = 0;
1133  }
1134}
1135
1136void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1137  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1138
1139  if (spstat->_nof_threads_wait_to_block != 0) {
1140    spstat->_time_to_wait_to_block = end_time -
1141      spstat->_time_to_wait_to_block;
1142  }
1143
1144  // Records the end time of sync which will be used to calculate the total
1145  // vm operation time. Again, the real time spending in syncing will be deducted
1146  // from the start of the sync time later when end_statistics is called.
1147  spstat->_time_to_sync = end_time - _safepoint_begin_time;
1148  if (spstat->_time_to_sync > _max_sync_time) {
1149    _max_sync_time = spstat->_time_to_sync;
1150  }
1151
1152  spstat->_time_to_do_cleanups = end_time;
1153}
1154
1155void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
1156  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1157
1158  // Record how long spent in cleanup tasks.
1159  spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
1160
1161  cleanup_end_time = end_time;
1162}
1163
1164void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1165  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1166
1167  // Update the vm operation time.
1168  spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
1169  if (spstat->_time_to_exec_vmop > _max_vmop_time) {
1170    _max_vmop_time = spstat->_time_to_exec_vmop;
1171  }
1172  // Only the sync time longer than the specified
1173  // PrintSafepointStatisticsTimeout will be printed out right away.
1174  // By default, it is -1 meaning all samples will be put into the list.
1175  if ( PrintSafepointStatisticsTimeout > 0) {
1176    if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1177      print_statistics();
1178    }
1179  } else {
1180    // The safepoint statistics will be printed out when the _safepoin_stats
1181    // array fills up.
1182    if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
1183      print_statistics();
1184      _cur_stat_index = 0;
1185    } else {
1186      _cur_stat_index++;
1187    }
1188  }
1189}
1190
1191void SafepointSynchronize::print_statistics() {
1192  SafepointStats* sstats = _safepoint_stats;
1193
1194  for (int index = 0; index <= _cur_stat_index; index++) {
1195    if (index % 30 == 0) {
1196      print_header();
1197    }
1198    sstats = &_safepoint_stats[index];
1199    tty->print("%.3f: ", sstats->_time_stamp);
1200    tty->print("%-26s       ["
1201               INT32_FORMAT_W(8)INT32_FORMAT_W(11)INT32_FORMAT_W(15)
1202               "    ]    ",
1203               sstats->_vmop_type == -1 ? "no vm operation" :
1204               VM_Operation::name(sstats->_vmop_type),
1205               sstats->_nof_total_threads,
1206               sstats->_nof_initial_running_threads,
1207               sstats->_nof_threads_wait_to_block);
1208    // "/ MICROUNITS " is to convert the unit from nanos to millis.
1209    tty->print("  ["
1210               INT64_FORMAT_W(6)INT64_FORMAT_W(6)
1211               INT64_FORMAT_W(6)INT64_FORMAT_W(6)
1212               INT64_FORMAT_W(6)"    ]  ",
1213               sstats->_time_to_spin / MICROUNITS,
1214               sstats->_time_to_wait_to_block / MICROUNITS,
1215               sstats->_time_to_sync / MICROUNITS,
1216               sstats->_time_to_do_cleanups / MICROUNITS,
1217               sstats->_time_to_exec_vmop / MICROUNITS);
1218
1219    if (need_to_track_page_armed_status) {
1220      tty->print(INT32_FORMAT"         ", sstats->_page_armed);
1221    }
1222    tty->print_cr(INT32_FORMAT"   ", sstats->_nof_threads_hit_page_trap);
1223  }
1224}
1225
1226// This method will be called when VM exits. It will first call
1227// print_statistics to print out the rest of the sampling.  Then
1228// it tries to summarize the sampling.
1229void SafepointSynchronize::print_stat_on_exit() {
1230  if (_safepoint_stats == NULL) return;
1231
1232  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1233
1234  // During VM exit, end_statistics may not get called and in that
1235  // case, if the sync time is less than PrintSafepointStatisticsTimeout,
1236  // don't print it out.
1237  // Approximate the vm op time.
1238  _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
1239    os::javaTimeNanos() - cleanup_end_time;
1240
1241  if ( PrintSafepointStatisticsTimeout < 0 ||
1242       spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1243    print_statistics();
1244  }
1245  tty->cr();
1246
1247  // Print out polling page sampling status.
1248  if (!need_to_track_page_armed_status) {
1249    if (UseCompilerSafepoints) {
1250      tty->print_cr("Polling page always armed");
1251    }
1252  } else {
1253    tty->print_cr("Defer polling page loop count = %d\n",
1254                 DeferPollingPageLoopCount);
1255  }
1256
1257  for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1258    if (_safepoint_reasons[index] != 0) {
1259      tty->print_cr("%-26s"UINT64_FORMAT_W(10), VM_Operation::name(index),
1260                    _safepoint_reasons[index]);
1261    }
1262  }
1263
1264  tty->print_cr(UINT64_FORMAT_W(5)" VM operations coalesced during safepoint",
1265                _coalesced_vmop_count);
1266  tty->print_cr("Maximum sync time  "INT64_FORMAT_W(5)" ms",
1267                _max_sync_time / MICROUNITS);
1268  tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
1269                INT64_FORMAT_W(5)" ms",
1270                _max_vmop_time / MICROUNITS);
1271}
1272
1273// ------------------------------------------------------------------------------------------------
1274// Non-product code
1275
1276#ifndef PRODUCT
1277
1278void SafepointSynchronize::print_state() {
1279  if (_state == _not_synchronized) {
1280    tty->print_cr("not synchronized");
1281  } else if (_state == _synchronizing || _state == _synchronized) {
1282    tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
1283                  "synchronized");
1284
1285    for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
1286       cur->safepoint_state()->print();
1287    }
1288  }
1289}
1290
1291void SafepointSynchronize::safepoint_msg(const char* format, ...) {
1292  if (ShowSafepointMsgs) {
1293    va_list ap;
1294    va_start(ap, format);
1295    tty->vprint_cr(format, ap);
1296    va_end(ap);
1297  }
1298}
1299
1300#endif // !PRODUCT
1301