safepoint.cpp revision 6649:01ab9db4584f
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/stringTable.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "code/codeCache.hpp"
29#include "code/icBuffer.hpp"
30#include "code/nmethod.hpp"
31#include "code/pcDesc.hpp"
32#include "code/scopeDesc.hpp"
33#include "gc_interface/collectedHeap.hpp"
34#include "interpreter/interpreter.hpp"
35#include "memory/gcLocker.inline.hpp"
36#include "memory/resourceArea.hpp"
37#include "memory/universe.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "oops/symbol.hpp"
40#include "runtime/atomic.inline.hpp"
41#include "runtime/compilationPolicy.hpp"
42#include "runtime/deoptimization.hpp"
43#include "runtime/frame.inline.hpp"
44#include "runtime/interfaceSupport.hpp"
45#include "runtime/mutexLocker.hpp"
46#include "runtime/orderAccess.inline.hpp"
47#include "runtime/osThread.hpp"
48#include "runtime/safepoint.hpp"
49#include "runtime/signature.hpp"
50#include "runtime/stubCodeGenerator.hpp"
51#include "runtime/stubRoutines.hpp"
52#include "runtime/sweeper.hpp"
53#include "runtime/synchronizer.hpp"
54#include "runtime/thread.inline.hpp"
55#include "services/memTracker.hpp"
56#include "services/runtimeService.hpp"
57#include "utilities/events.hpp"
58#include "utilities/macros.hpp"
59#ifdef TARGET_ARCH_x86
60# include "nativeInst_x86.hpp"
61# include "vmreg_x86.inline.hpp"
62#endif
63#ifdef TARGET_ARCH_sparc
64# include "nativeInst_sparc.hpp"
65# include "vmreg_sparc.inline.hpp"
66#endif
67#ifdef TARGET_ARCH_zero
68# include "nativeInst_zero.hpp"
69# include "vmreg_zero.inline.hpp"
70#endif
71#ifdef TARGET_ARCH_arm
72# include "nativeInst_arm.hpp"
73# include "vmreg_arm.inline.hpp"
74#endif
75#ifdef TARGET_ARCH_ppc
76# include "nativeInst_ppc.hpp"
77# include "vmreg_ppc.inline.hpp"
78#endif
79#if INCLUDE_ALL_GCS
80#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
81#include "gc_implementation/shared/suspendibleThreadSet.hpp"
82#endif // INCLUDE_ALL_GCS
83#ifdef COMPILER1
84#include "c1/c1_globals.hpp"
85#endif
86
87PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
88
89// --------------------------------------------------------------------------------------------------
90// Implementation of Safepoint begin/end
91
92SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
93volatile int  SafepointSynchronize::_waiting_to_block = 0;
94volatile int SafepointSynchronize::_safepoint_counter = 0;
95int SafepointSynchronize::_current_jni_active_count = 0;
96long  SafepointSynchronize::_end_of_last_safepoint = 0;
97static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
98static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
99static bool timeout_error_printed = false;
100
101// Roll all threads forward to a safepoint and suspend them all
102void SafepointSynchronize::begin() {
103
104  Thread* myThread = Thread::current();
105  assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
106
107  if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
108    _safepoint_begin_time = os::javaTimeNanos();
109    _ts_of_current_safepoint = tty->time_stamp().seconds();
110  }
111
112#if INCLUDE_ALL_GCS
113  if (UseConcMarkSweepGC) {
114    // In the future we should investigate whether CMS can use the
115    // more-general mechanism below.  DLD (01/05).
116    ConcurrentMarkSweepThread::synchronize(false);
117  } else if (UseG1GC) {
118    SuspendibleThreadSet::synchronize();
119  }
120#endif // INCLUDE_ALL_GCS
121
122  // By getting the Threads_lock, we assure that no threads are about to start or
123  // exit. It is released again in SafepointSynchronize::end().
124  Threads_lock->lock();
125
126  assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
127
128  int nof_threads = Threads::number_of_threads();
129
130  if (TraceSafepoint) {
131    tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
132  }
133
134  RuntimeService::record_safepoint_begin();
135
136  MutexLocker mu(Safepoint_lock);
137
138  // Reset the count of active JNI critical threads
139  _current_jni_active_count = 0;
140
141  // Set number of threads to wait for, before we initiate the callbacks
142  _waiting_to_block = nof_threads;
143  TryingToBlock     = 0 ;
144  int still_running = nof_threads;
145
146  // Save the starting time, so that it can be compared to see if this has taken
147  // too long to complete.
148  jlong safepoint_limit_time;
149  timeout_error_printed = false;
150
151  // PrintSafepointStatisticsTimeout can be specified separately. When
152  // specified, PrintSafepointStatistics will be set to true in
153  // deferred_initialize_stat method. The initialization has to be done
154  // early enough to avoid any races. See bug 6880029 for details.
155  if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
156    deferred_initialize_stat();
157  }
158
159  // Begin the process of bringing the system to a safepoint.
160  // Java threads can be in several different states and are
161  // stopped by different mechanisms:
162  //
163  //  1. Running interpreted
164  //     The interpreter dispatch table is changed to force it to
165  //     check for a safepoint condition between bytecodes.
166  //  2. Running in native code
167  //     When returning from the native code, a Java thread must check
168  //     the safepoint _state to see if we must block.  If the
169  //     VM thread sees a Java thread in native, it does
170  //     not wait for this thread to block.  The order of the memory
171  //     writes and reads of both the safepoint state and the Java
172  //     threads state is critical.  In order to guarantee that the
173  //     memory writes are serialized with respect to each other,
174  //     the VM thread issues a memory barrier instruction
175  //     (on MP systems).  In order to avoid the overhead of issuing
176  //     a memory barrier for each Java thread making native calls, each Java
177  //     thread performs a write to a single memory page after changing
178  //     the thread state.  The VM thread performs a sequence of
179  //     mprotect OS calls which forces all previous writes from all
180  //     Java threads to be serialized.  This is done in the
181  //     os::serialize_thread_states() call.  This has proven to be
182  //     much more efficient than executing a membar instruction
183  //     on every call to native code.
184  //  3. Running compiled Code
185  //     Compiled code reads a global (Safepoint Polling) page that
186  //     is set to fault if we are trying to get to a safepoint.
187  //  4. Blocked
188  //     A thread which is blocked will not be allowed to return from the
189  //     block condition until the safepoint operation is complete.
190  //  5. In VM or Transitioning between states
191  //     If a Java thread is currently running in the VM or transitioning
192  //     between states, the safepointing code will wait for the thread to
193  //     block itself when it attempts transitions to a new state.
194  //
195  _state            = _synchronizing;
196  OrderAccess::fence();
197
198  // Flush all thread states to memory
199  if (!UseMembar) {
200    os::serialize_thread_states();
201  }
202
203  // Make interpreter safepoint aware
204  Interpreter::notice_safepoints();
205
206  if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
207    // Make polling safepoint aware
208    guarantee (PageArmed == 0, "invariant") ;
209    PageArmed = 1 ;
210    os::make_polling_page_unreadable();
211  }
212
213  // Consider using active_processor_count() ... but that call is expensive.
214  int ncpus = os::processor_count() ;
215
216#ifdef ASSERT
217  for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
218    assert(cur->safepoint_state()->is_running(), "Illegal initial state");
219    // Clear the visited flag to ensure that the critical counts are collected properly.
220    cur->set_visited_for_critical_count(false);
221  }
222#endif // ASSERT
223
224  if (SafepointTimeout)
225    safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
226
227  // Iterate through all threads until it have been determined how to stop them all at a safepoint
228  unsigned int iterations = 0;
229  int steps = 0 ;
230  while(still_running > 0) {
231    for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
232      assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
233      ThreadSafepointState *cur_state = cur->safepoint_state();
234      if (cur_state->is_running()) {
235        cur_state->examine_state_of_thread();
236        if (!cur_state->is_running()) {
237           still_running--;
238           // consider adjusting steps downward:
239           //   steps = 0
240           //   steps -= NNN
241           //   steps >>= 1
242           //   steps = MIN(steps, 2000-100)
243           //   if (iterations != 0) steps -= NNN
244        }
245        if (TraceSafepoint && Verbose) cur_state->print();
246      }
247    }
248
249    if (PrintSafepointStatistics && iterations == 0) {
250      begin_statistics(nof_threads, still_running);
251    }
252
253    if (still_running > 0) {
254      // Check for if it takes to long
255      if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
256        print_safepoint_timeout(_spinning_timeout);
257      }
258
259      // Spin to avoid context switching.
260      // There's a tension between allowing the mutators to run (and rendezvous)
261      // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
262      // a mutator might otherwise use profitably to reach a safepoint.  Excessive
263      // spinning by the VM thread on a saturated system can increase rendezvous latency.
264      // Blocking or yielding incur their own penalties in the form of context switching
265      // and the resultant loss of $ residency.
266      //
267      // Further complicating matters is that yield() does not work as naively expected
268      // on many platforms -- yield() does not guarantee that any other ready threads
269      // will run.   As such we revert to naked_short_sleep() after some number of iterations.
270      // nakes_short_sleep() is implemented as a short unconditional sleep.
271      // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
272      // can actually increase the time it takes the VM thread to detect that a system-wide
273      // stop-the-world safepoint has been reached.  In a pathological scenario such as that
274      // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
275      // In that case the mutators will be stalled waiting for the safepoint to complete and the
276      // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
277      // will eventually wake up and detect that all mutators are safe, at which point
278      // we'll again make progress.
279      //
280      // Beware too that that the VMThread typically runs at elevated priority.
281      // Its default priority is higher than the default mutator priority.
282      // Obviously, this complicates spinning.
283      //
284      // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
285      // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
286      //
287      // See the comments in synchronizer.cpp for additional remarks on spinning.
288      //
289      // In the future we might:
290      // 1. Modify the safepoint scheme to avoid potentially unbounded spinning.
291      //    This is tricky as the path used by a thread exiting the JVM (say on
292      //    on JNI call-out) simply stores into its state field.  The burden
293      //    is placed on the VM thread, which must poll (spin).
294      // 2. Find something useful to do while spinning.  If the safepoint is GC-related
295      //    we might aggressively scan the stacks of threads that are already safe.
296      // 3. Use Solaris schedctl to examine the state of the still-running mutators.
297      //    If all the mutators are ONPROC there's no reason to sleep or yield.
298      // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
299      // 5. Check system saturation.  If the system is not fully saturated then
300      //    simply spin and avoid sleep/yield.
301      // 6. As still-running mutators rendezvous they could unpark the sleeping
302      //    VMthread.  This works well for still-running mutators that become
303      //    safe.  The VMthread must still poll for mutators that call-out.
304      // 7. Drive the policy on time-since-begin instead of iterations.
305      // 8. Consider making the spin duration a function of the # of CPUs:
306      //    Spin = (((ncpus-1) * M) + K) + F(still_running)
307      //    Alternately, instead of counting iterations of the outer loop
308      //    we could count the # of threads visited in the inner loop, above.
309      // 9. On windows consider using the return value from SwitchThreadTo()
310      //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
311
312      if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
313         guarantee (PageArmed == 0, "invariant") ;
314         PageArmed = 1 ;
315         os::make_polling_page_unreadable();
316      }
317
318      // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
319      // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
320      ++steps ;
321      if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
322        SpinPause() ;     // MP-Polite spin
323      } else
324      if (steps < DeferThrSuspendLoopCount) {
325        os::NakedYield() ;
326      } else {
327        os::naked_short_sleep(1);
328      }
329
330      iterations ++ ;
331    }
332    assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
333  }
334  assert(still_running == 0, "sanity check");
335
336  if (PrintSafepointStatistics) {
337    update_statistics_on_spin_end();
338  }
339
340  // wait until all threads are stopped
341  while (_waiting_to_block > 0) {
342    if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
343    if (!SafepointTimeout || timeout_error_printed) {
344      Safepoint_lock->wait(true);  // true, means with no safepoint checks
345    } else {
346      // Compute remaining time
347      jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
348
349      // If there is no remaining time, then there is an error
350      if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
351        print_safepoint_timeout(_blocking_timeout);
352      }
353    }
354  }
355  assert(_waiting_to_block == 0, "sanity check");
356
357#ifndef PRODUCT
358  if (SafepointTimeout) {
359    jlong current_time = os::javaTimeNanos();
360    if (safepoint_limit_time < current_time) {
361      tty->print_cr("# SafepointSynchronize: Finished after "
362                    INT64_FORMAT_W(6) " ms",
363                    ((current_time - safepoint_limit_time) / MICROUNITS +
364                     SafepointTimeoutDelay));
365    }
366  }
367#endif
368
369  assert((_safepoint_counter & 0x1) == 0, "must be even");
370  assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
371  _safepoint_counter ++;
372
373  // Record state
374  _state = _synchronized;
375
376  OrderAccess::fence();
377
378#ifdef ASSERT
379  for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
380    // make sure all the threads were visited
381    assert(cur->was_visited_for_critical_count(), "missed a thread");
382  }
383#endif // ASSERT
384
385  // Update the count of active JNI critical regions
386  GC_locker::set_jni_lock_count(_current_jni_active_count);
387
388  if (TraceSafepoint) {
389    VM_Operation *op = VMThread::vm_operation();
390    tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
391  }
392
393  RuntimeService::record_safepoint_synchronized();
394  if (PrintSafepointStatistics) {
395    update_statistics_on_sync_end(os::javaTimeNanos());
396  }
397
398  // Call stuff that needs to be run when a safepoint is just about to be completed
399  do_cleanup_tasks();
400
401  if (PrintSafepointStatistics) {
402    // Record how much time spend on the above cleanup tasks
403    update_statistics_on_cleanup_end(os::javaTimeNanos());
404  }
405}
406
407// Wake up all threads, so they are ready to resume execution after the safepoint
408// operation has been carried out
409void SafepointSynchronize::end() {
410
411  assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
412  assert((_safepoint_counter & 0x1) == 1, "must be odd");
413  _safepoint_counter ++;
414  // memory fence isn't required here since an odd _safepoint_counter
415  // value can do no harm and a fence is issued below anyway.
416
417  DEBUG_ONLY(Thread* myThread = Thread::current();)
418  assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
419
420  if (PrintSafepointStatistics) {
421    end_statistics(os::javaTimeNanos());
422  }
423
424#ifdef ASSERT
425  // A pending_exception cannot be installed during a safepoint.  The threads
426  // may install an async exception after they come back from a safepoint into
427  // pending_exception after they unblock.  But that should happen later.
428  for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
429    assert (!(cur->has_pending_exception() &&
430              cur->safepoint_state()->is_at_poll_safepoint()),
431            "safepoint installed a pending exception");
432  }
433#endif // ASSERT
434
435  if (PageArmed) {
436    // Make polling safepoint aware
437    os::make_polling_page_readable();
438    PageArmed = 0 ;
439  }
440
441  // Remove safepoint check from interpreter
442  Interpreter::ignore_safepoints();
443
444  {
445    MutexLocker mu(Safepoint_lock);
446
447    assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
448
449    // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
450    // when they get restarted.
451    _state = _not_synchronized;
452    OrderAccess::fence();
453
454    if (TraceSafepoint) {
455       tty->print_cr("Leaving safepoint region");
456    }
457
458    // Start suspended threads
459    for(JavaThread *current = Threads::first(); current; current = current->next()) {
460      // A problem occurring on Solaris is when attempting to restart threads
461      // the first #cpus - 1 go well, but then the VMThread is preempted when we get
462      // to the next one (since it has been running the longest).  We then have
463      // to wait for a cpu to become available before we can continue restarting
464      // threads.
465      // FIXME: This causes the performance of the VM to degrade when active and with
466      // large numbers of threads.  Apparently this is due to the synchronous nature
467      // of suspending threads.
468      //
469      // TODO-FIXME: the comments above are vestigial and no longer apply.
470      // Furthermore, using solaris' schedctl in this particular context confers no benefit
471      if (VMThreadHintNoPreempt) {
472        os::hint_no_preempt();
473      }
474      ThreadSafepointState* cur_state = current->safepoint_state();
475      assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
476      cur_state->restart();
477      assert(cur_state->is_running(), "safepoint state has not been reset");
478    }
479
480    RuntimeService::record_safepoint_end();
481
482    // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
483    // blocked in signal_thread_blocked
484    Threads_lock->unlock();
485
486  }
487#if INCLUDE_ALL_GCS
488  // If there are any concurrent GC threads resume them.
489  if (UseConcMarkSweepGC) {
490    ConcurrentMarkSweepThread::desynchronize(false);
491  } else if (UseG1GC) {
492    SuspendibleThreadSet::desynchronize();
493  }
494#endif // INCLUDE_ALL_GCS
495  // record this time so VMThread can keep track how much time has elapsed
496  // since last safepoint.
497  _end_of_last_safepoint = os::javaTimeMillis();
498}
499
500bool SafepointSynchronize::is_cleanup_needed() {
501  // Need a safepoint if some inline cache buffers is non-empty
502  if (!InlineCacheBuffer::is_empty()) return true;
503  return false;
504}
505
506
507
508// Various cleaning tasks that should be done periodically at safepoints
509void SafepointSynchronize::do_cleanup_tasks() {
510  {
511    TraceTime t1("deflating idle monitors", TraceSafepointCleanupTime);
512    ObjectSynchronizer::deflate_idle_monitors();
513  }
514
515  {
516    TraceTime t2("updating inline caches", TraceSafepointCleanupTime);
517    InlineCacheBuffer::update_inline_caches();
518  }
519  {
520    TraceTime t3("compilation policy safepoint handler", TraceSafepointCleanupTime);
521    CompilationPolicy::policy()->do_safepoint_work();
522  }
523
524  {
525    TraceTime t4("mark nmethods", TraceSafepointCleanupTime);
526    NMethodSweeper::mark_active_nmethods();
527  }
528
529  if (SymbolTable::needs_rehashing()) {
530    TraceTime t5("rehashing symbol table", TraceSafepointCleanupTime);
531    SymbolTable::rehash_table();
532  }
533
534  if (StringTable::needs_rehashing()) {
535    TraceTime t6("rehashing string table", TraceSafepointCleanupTime);
536    StringTable::rehash_table();
537  }
538
539  // rotate log files?
540  if (UseGCLogFileRotation) {
541    gclog_or_tty->rotate_log(false);
542  }
543
544  {
545    // CMS delays purging the CLDG until the beginning of the next safepoint and to
546    // make sure concurrent sweep is done
547    TraceTime t7("purging class loader data graph", TraceSafepointCleanupTime);
548    ClassLoaderDataGraph::purge_if_needed();
549  }
550
551  if (MemTracker::is_on()) {
552    MemTracker::sync();
553  }
554}
555
556
557bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
558  switch(state) {
559  case _thread_in_native:
560    // native threads are safe if they have no java stack or have walkable stack
561    return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
562
563   // blocked threads should have already have walkable stack
564  case _thread_blocked:
565    assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
566    return true;
567
568  default:
569    return false;
570  }
571}
572
573
574// See if the thread is running inside a lazy critical native and
575// update the thread critical count if so.  Also set a suspend flag to
576// cause the native wrapper to return into the JVM to do the unlock
577// once the native finishes.
578void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
579  if (state == _thread_in_native &&
580      thread->has_last_Java_frame() &&
581      thread->frame_anchor()->walkable()) {
582    // This thread might be in a critical native nmethod so look at
583    // the top of the stack and increment the critical count if it
584    // is.
585    frame wrapper_frame = thread->last_frame();
586    CodeBlob* stub_cb = wrapper_frame.cb();
587    if (stub_cb != NULL &&
588        stub_cb->is_nmethod() &&
589        stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
590      // A thread could potentially be in a critical native across
591      // more than one safepoint, so only update the critical state on
592      // the first one.  When it returns it will perform the unlock.
593      if (!thread->do_critical_native_unlock()) {
594#ifdef ASSERT
595        if (!thread->in_critical()) {
596          GC_locker::increment_debug_jni_lock_count();
597        }
598#endif
599        thread->enter_critical();
600        // Make sure the native wrapper calls back on return to
601        // perform the needed critical unlock.
602        thread->set_critical_native_unlock();
603      }
604    }
605  }
606}
607
608
609
610// -------------------------------------------------------------------------------------------------------
611// Implementation of Safepoint callback point
612
613void SafepointSynchronize::block(JavaThread *thread) {
614  assert(thread != NULL, "thread must be set");
615  assert(thread->is_Java_thread(), "not a Java thread");
616
617  // Threads shouldn't block if they are in the middle of printing, but...
618  ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
619
620  // Only bail from the block() call if the thread is gone from the
621  // thread list; starting to exit should still block.
622  if (thread->is_terminated()) {
623     // block current thread if we come here from native code when VM is gone
624     thread->block_if_vm_exited();
625
626     // otherwise do nothing
627     return;
628  }
629
630  JavaThreadState state = thread->thread_state();
631  thread->frame_anchor()->make_walkable(thread);
632
633  // Check that we have a valid thread_state at this point
634  switch(state) {
635    case _thread_in_vm_trans:
636    case _thread_in_Java:        // From compiled code
637
638      // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
639      // we pretend we are still in the VM.
640      thread->set_thread_state(_thread_in_vm);
641
642      if (is_synchronizing()) {
643         Atomic::inc (&TryingToBlock) ;
644      }
645
646      // We will always be holding the Safepoint_lock when we are examine the state
647      // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
648      // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
649      Safepoint_lock->lock_without_safepoint_check();
650      if (is_synchronizing()) {
651        // Decrement the number of threads to wait for and signal vm thread
652        assert(_waiting_to_block > 0, "sanity check");
653        _waiting_to_block--;
654        thread->safepoint_state()->set_has_called_back(true);
655
656        DEBUG_ONLY(thread->set_visited_for_critical_count(true));
657        if (thread->in_critical()) {
658          // Notice that this thread is in a critical section
659          increment_jni_active_count();
660        }
661
662        // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
663        if (_waiting_to_block == 0) {
664          Safepoint_lock->notify_all();
665        }
666      }
667
668      // We transition the thread to state _thread_blocked here, but
669      // we can't do our usual check for external suspension and then
670      // self-suspend after the lock_without_safepoint_check() call
671      // below because we are often called during transitions while
672      // we hold different locks. That would leave us suspended while
673      // holding a resource which results in deadlocks.
674      thread->set_thread_state(_thread_blocked);
675      Safepoint_lock->unlock();
676
677      // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
678      // the entire safepoint, the threads will all line up here during the safepoint.
679      Threads_lock->lock_without_safepoint_check();
680      // restore original state. This is important if the thread comes from compiled code, so it
681      // will continue to execute with the _thread_in_Java state.
682      thread->set_thread_state(state);
683      Threads_lock->unlock();
684      break;
685
686    case _thread_in_native_trans:
687    case _thread_blocked_trans:
688    case _thread_new_trans:
689      if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
690        thread->print_thread_state();
691        fatal("Deadlock in safepoint code.  "
692              "Should have called back to the VM before blocking.");
693      }
694
695      // We transition the thread to state _thread_blocked here, but
696      // we can't do our usual check for external suspension and then
697      // self-suspend after the lock_without_safepoint_check() call
698      // below because we are often called during transitions while
699      // we hold different locks. That would leave us suspended while
700      // holding a resource which results in deadlocks.
701      thread->set_thread_state(_thread_blocked);
702
703      // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
704      // the safepoint code might still be waiting for it to block. We need to change the state here,
705      // so it can see that it is at a safepoint.
706
707      // Block until the safepoint operation is completed.
708      Threads_lock->lock_without_safepoint_check();
709
710      // Restore state
711      thread->set_thread_state(state);
712
713      Threads_lock->unlock();
714      break;
715
716    default:
717     fatal(err_msg("Illegal threadstate encountered: %d", state));
718  }
719
720  // Check for pending. async. exceptions or suspends - except if the
721  // thread was blocked inside the VM. has_special_runtime_exit_condition()
722  // is called last since it grabs a lock and we only want to do that when
723  // we must.
724  //
725  // Note: we never deliver an async exception at a polling point as the
726  // compiler may not have an exception handler for it. The polling
727  // code will notice the async and deoptimize and the exception will
728  // be delivered. (Polling at a return point is ok though). Sure is
729  // a lot of bother for a deprecated feature...
730  //
731  // We don't deliver an async exception if the thread state is
732  // _thread_in_native_trans so JNI functions won't be called with
733  // a surprising pending exception. If the thread state is going back to java,
734  // async exception is checked in check_special_condition_for_native_trans().
735
736  if (state != _thread_blocked_trans &&
737      state != _thread_in_vm_trans &&
738      thread->has_special_runtime_exit_condition()) {
739    thread->handle_special_runtime_exit_condition(
740      !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
741  }
742}
743
744// ------------------------------------------------------------------------------------------------------
745// Exception handlers
746
747
748void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
749  assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
750  assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
751  assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
752
753  if (ShowSafepointMsgs) {
754    tty->print("handle_polling_page_exception: ");
755  }
756
757  if (PrintSafepointStatistics) {
758    inc_page_trap_count();
759  }
760
761  ThreadSafepointState* state = thread->safepoint_state();
762
763  state->handle_polling_page_exception();
764}
765
766
767void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
768  if (!timeout_error_printed) {
769    timeout_error_printed = true;
770    // Print out the thread info which didn't reach the safepoint for debugging
771    // purposes (useful when there are lots of threads in the debugger).
772    tty->cr();
773    tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
774    if (reason ==  _spinning_timeout) {
775      tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
776    } else if (reason == _blocking_timeout) {
777      tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
778    }
779
780    tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
781    ThreadSafepointState *cur_state;
782    ResourceMark rm;
783    for(JavaThread *cur_thread = Threads::first(); cur_thread;
784        cur_thread = cur_thread->next()) {
785      cur_state = cur_thread->safepoint_state();
786
787      if (cur_thread->thread_state() != _thread_blocked &&
788          ((reason == _spinning_timeout && cur_state->is_running()) ||
789           (reason == _blocking_timeout && !cur_state->has_called_back()))) {
790        tty->print("# ");
791        cur_thread->print();
792        tty->cr();
793      }
794    }
795    tty->print_cr("# SafepointSynchronize::begin: (End of list)");
796  }
797
798  // To debug the long safepoint, specify both DieOnSafepointTimeout &
799  // ShowMessageBoxOnError.
800  if (DieOnSafepointTimeout) {
801    char msg[1024];
802    VM_Operation *op = VMThread::vm_operation();
803    sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
804            SafepointTimeoutDelay,
805            op != NULL ? op->name() : "no vm operation");
806    fatal(msg);
807  }
808}
809
810
811// -------------------------------------------------------------------------------------------------------
812// Implementation of ThreadSafepointState
813
814ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
815  _thread = thread;
816  _type   = _running;
817  _has_called_back = false;
818  _at_poll_safepoint = false;
819}
820
821void ThreadSafepointState::create(JavaThread *thread) {
822  ThreadSafepointState *state = new ThreadSafepointState(thread);
823  thread->set_safepoint_state(state);
824}
825
826void ThreadSafepointState::destroy(JavaThread *thread) {
827  if (thread->safepoint_state()) {
828    delete(thread->safepoint_state());
829    thread->set_safepoint_state(NULL);
830  }
831}
832
833void ThreadSafepointState::examine_state_of_thread() {
834  assert(is_running(), "better be running or just have hit safepoint poll");
835
836  JavaThreadState state = _thread->thread_state();
837
838  // Save the state at the start of safepoint processing.
839  _orig_thread_state = state;
840
841  // Check for a thread that is suspended. Note that thread resume tries
842  // to grab the Threads_lock which we own here, so a thread cannot be
843  // resumed during safepoint synchronization.
844
845  // We check to see if this thread is suspended without locking to
846  // avoid deadlocking with a third thread that is waiting for this
847  // thread to be suspended. The third thread can notice the safepoint
848  // that we're trying to start at the beginning of its SR_lock->wait()
849  // call. If that happens, then the third thread will block on the
850  // safepoint while still holding the underlying SR_lock. We won't be
851  // able to get the SR_lock and we'll deadlock.
852  //
853  // We don't need to grab the SR_lock here for two reasons:
854  // 1) The suspend flags are both volatile and are set with an
855  //    Atomic::cmpxchg() call so we should see the suspended
856  //    state right away.
857  // 2) We're being called from the safepoint polling loop; if
858  //    we don't see the suspended state on this iteration, then
859  //    we'll come around again.
860  //
861  bool is_suspended = _thread->is_ext_suspended();
862  if (is_suspended) {
863    roll_forward(_at_safepoint);
864    return;
865  }
866
867  // Some JavaThread states have an initial safepoint state of
868  // running, but are actually at a safepoint. We will happily
869  // agree and update the safepoint state here.
870  if (SafepointSynchronize::safepoint_safe(_thread, state)) {
871    SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
872    roll_forward(_at_safepoint);
873    return;
874  }
875
876  if (state == _thread_in_vm) {
877    roll_forward(_call_back);
878    return;
879  }
880
881  // All other thread states will continue to run until they
882  // transition and self-block in state _blocked
883  // Safepoint polling in compiled code causes the Java threads to do the same.
884  // Note: new threads may require a malloc so they must be allowed to finish
885
886  assert(is_running(), "examine_state_of_thread on non-running thread");
887  return;
888}
889
890// Returns true is thread could not be rolled forward at present position.
891void ThreadSafepointState::roll_forward(suspend_type type) {
892  _type = type;
893
894  switch(_type) {
895    case _at_safepoint:
896      SafepointSynchronize::signal_thread_at_safepoint();
897      DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
898      if (_thread->in_critical()) {
899        // Notice that this thread is in a critical section
900        SafepointSynchronize::increment_jni_active_count();
901      }
902      break;
903
904    case _call_back:
905      set_has_called_back(false);
906      break;
907
908    case _running:
909    default:
910      ShouldNotReachHere();
911  }
912}
913
914void ThreadSafepointState::restart() {
915  switch(type()) {
916    case _at_safepoint:
917    case _call_back:
918      break;
919
920    case _running:
921    default:
922       tty->print_cr("restart thread "INTPTR_FORMAT" with state %d",
923                      _thread, _type);
924       _thread->print();
925      ShouldNotReachHere();
926  }
927  _type = _running;
928  set_has_called_back(false);
929}
930
931
932void ThreadSafepointState::print_on(outputStream *st) const {
933  const char *s;
934
935  switch(_type) {
936    case _running                : s = "_running";              break;
937    case _at_safepoint           : s = "_at_safepoint";         break;
938    case _call_back              : s = "_call_back";            break;
939    default:
940      ShouldNotReachHere();
941  }
942
943  st->print_cr("Thread: " INTPTR_FORMAT
944              "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
945               _thread, _thread->osthread()->thread_id(), s, _has_called_back,
946               _at_poll_safepoint);
947
948  _thread->print_thread_state_on(st);
949}
950
951
952// ---------------------------------------------------------------------------------------------------------------------
953
954// Block the thread at the safepoint poll or poll return.
955void ThreadSafepointState::handle_polling_page_exception() {
956
957  // Check state.  block() will set thread state to thread_in_vm which will
958  // cause the safepoint state _type to become _call_back.
959  assert(type() == ThreadSafepointState::_running,
960         "polling page exception on thread not running state");
961
962  // Step 1: Find the nmethod from the return address
963  if (ShowSafepointMsgs && Verbose) {
964    tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
965  }
966  address real_return_addr = thread()->saved_exception_pc();
967
968  CodeBlob *cb = CodeCache::find_blob(real_return_addr);
969  assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
970  nmethod* nm = (nmethod*)cb;
971
972  // Find frame of caller
973  frame stub_fr = thread()->last_frame();
974  CodeBlob* stub_cb = stub_fr.cb();
975  assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
976  RegisterMap map(thread(), true);
977  frame caller_fr = stub_fr.sender(&map);
978
979  // Should only be poll_return or poll
980  assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
981
982  // This is a poll immediately before a return. The exception handling code
983  // has already had the effect of causing the return to occur, so the execution
984  // will continue immediately after the call. In addition, the oopmap at the
985  // return point does not mark the return value as an oop (if it is), so
986  // it needs a handle here to be updated.
987  if( nm->is_at_poll_return(real_return_addr) ) {
988    // See if return type is an oop.
989    bool return_oop = nm->method()->is_returning_oop();
990    Handle return_value;
991    if (return_oop) {
992      // The oop result has been saved on the stack together with all
993      // the other registers. In order to preserve it over GCs we need
994      // to keep it in a handle.
995      oop result = caller_fr.saved_oop_result(&map);
996      assert(result == NULL || result->is_oop(), "must be oop");
997      return_value = Handle(thread(), result);
998      assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
999    }
1000
1001    // Block the thread
1002    SafepointSynchronize::block(thread());
1003
1004    // restore oop result, if any
1005    if (return_oop) {
1006      caller_fr.set_saved_oop_result(&map, return_value());
1007    }
1008  }
1009
1010  // This is a safepoint poll. Verify the return address and block.
1011  else {
1012    set_at_poll_safepoint(true);
1013
1014    // verify the blob built the "return address" correctly
1015    assert(real_return_addr == caller_fr.pc(), "must match");
1016
1017    // Block the thread
1018    SafepointSynchronize::block(thread());
1019    set_at_poll_safepoint(false);
1020
1021    // If we have a pending async exception deoptimize the frame
1022    // as otherwise we may never deliver it.
1023    if (thread()->has_async_condition()) {
1024      ThreadInVMfromJavaNoAsyncException __tiv(thread());
1025      Deoptimization::deoptimize_frame(thread(), caller_fr.id());
1026    }
1027
1028    // If an exception has been installed we must check for a pending deoptimization
1029    // Deoptimize frame if exception has been thrown.
1030
1031    if (thread()->has_pending_exception() ) {
1032      RegisterMap map(thread(), true);
1033      frame caller_fr = stub_fr.sender(&map);
1034      if (caller_fr.is_deoptimized_frame()) {
1035        // The exception patch will destroy registers that are still
1036        // live and will be needed during deoptimization. Defer the
1037        // Async exception should have deferred the exception until the
1038        // next safepoint which will be detected when we get into
1039        // the interpreter so if we have an exception now things
1040        // are messed up.
1041
1042        fatal("Exception installed and deoptimization is pending");
1043      }
1044    }
1045  }
1046}
1047
1048
1049//
1050//                     Statistics & Instrumentations
1051//
1052SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
1053jlong  SafepointSynchronize::_safepoint_begin_time = 0;
1054int    SafepointSynchronize::_cur_stat_index = 0;
1055julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
1056julong SafepointSynchronize::_coalesced_vmop_count = 0;
1057jlong  SafepointSynchronize::_max_sync_time = 0;
1058jlong  SafepointSynchronize::_max_vmop_time = 0;
1059float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
1060
1061static jlong  cleanup_end_time = 0;
1062static bool   need_to_track_page_armed_status = false;
1063static bool   init_done = false;
1064
1065// Helper method to print the header.
1066static void print_header() {
1067  tty->print("         vmop                    "
1068             "[threads: total initially_running wait_to_block]    ");
1069  tty->print("[time: spin block sync cleanup vmop] ");
1070
1071  // no page armed status printed out if it is always armed.
1072  if (need_to_track_page_armed_status) {
1073    tty->print("page_armed ");
1074  }
1075
1076  tty->print_cr("page_trap_count");
1077}
1078
1079void SafepointSynchronize::deferred_initialize_stat() {
1080  if (init_done) return;
1081
1082  if (PrintSafepointStatisticsCount <= 0) {
1083    fatal("Wrong PrintSafepointStatisticsCount");
1084  }
1085
1086  // If PrintSafepointStatisticsTimeout is specified, the statistics data will
1087  // be printed right away, in which case, _safepoint_stats will regress to
1088  // a single element array. Otherwise, it is a circular ring buffer with default
1089  // size of PrintSafepointStatisticsCount.
1090  int stats_array_size;
1091  if (PrintSafepointStatisticsTimeout > 0) {
1092    stats_array_size = 1;
1093    PrintSafepointStatistics = true;
1094  } else {
1095    stats_array_size = PrintSafepointStatisticsCount;
1096  }
1097  _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
1098                                                 * sizeof(SafepointStats), mtInternal);
1099  guarantee(_safepoint_stats != NULL,
1100            "not enough memory for safepoint instrumentation data");
1101
1102  if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
1103    need_to_track_page_armed_status = true;
1104  }
1105  init_done = true;
1106}
1107
1108void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1109  assert(init_done, "safepoint statistics array hasn't been initialized");
1110  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1111
1112  spstat->_time_stamp = _ts_of_current_safepoint;
1113
1114  VM_Operation *op = VMThread::vm_operation();
1115  spstat->_vmop_type = (op != NULL ? op->type() : -1);
1116  if (op != NULL) {
1117    _safepoint_reasons[spstat->_vmop_type]++;
1118  }
1119
1120  spstat->_nof_total_threads = nof_threads;
1121  spstat->_nof_initial_running_threads = nof_running;
1122  spstat->_nof_threads_hit_page_trap = 0;
1123
1124  // Records the start time of spinning. The real time spent on spinning
1125  // will be adjusted when spin is done. Same trick is applied for time
1126  // spent on waiting for threads to block.
1127  if (nof_running != 0) {
1128    spstat->_time_to_spin = os::javaTimeNanos();
1129  }  else {
1130    spstat->_time_to_spin = 0;
1131  }
1132}
1133
1134void SafepointSynchronize::update_statistics_on_spin_end() {
1135  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1136
1137  jlong cur_time = os::javaTimeNanos();
1138
1139  spstat->_nof_threads_wait_to_block = _waiting_to_block;
1140  if (spstat->_nof_initial_running_threads != 0) {
1141    spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1142  }
1143
1144  if (need_to_track_page_armed_status) {
1145    spstat->_page_armed = (PageArmed == 1);
1146  }
1147
1148  // Records the start time of waiting for to block. Updated when block is done.
1149  if (_waiting_to_block != 0) {
1150    spstat->_time_to_wait_to_block = cur_time;
1151  } else {
1152    spstat->_time_to_wait_to_block = 0;
1153  }
1154}
1155
1156void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1157  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1158
1159  if (spstat->_nof_threads_wait_to_block != 0) {
1160    spstat->_time_to_wait_to_block = end_time -
1161      spstat->_time_to_wait_to_block;
1162  }
1163
1164  // Records the end time of sync which will be used to calculate the total
1165  // vm operation time. Again, the real time spending in syncing will be deducted
1166  // from the start of the sync time later when end_statistics is called.
1167  spstat->_time_to_sync = end_time - _safepoint_begin_time;
1168  if (spstat->_time_to_sync > _max_sync_time) {
1169    _max_sync_time = spstat->_time_to_sync;
1170  }
1171
1172  spstat->_time_to_do_cleanups = end_time;
1173}
1174
1175void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
1176  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1177
1178  // Record how long spent in cleanup tasks.
1179  spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
1180
1181  cleanup_end_time = end_time;
1182}
1183
1184void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1185  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1186
1187  // Update the vm operation time.
1188  spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
1189  if (spstat->_time_to_exec_vmop > _max_vmop_time) {
1190    _max_vmop_time = spstat->_time_to_exec_vmop;
1191  }
1192  // Only the sync time longer than the specified
1193  // PrintSafepointStatisticsTimeout will be printed out right away.
1194  // By default, it is -1 meaning all samples will be put into the list.
1195  if ( PrintSafepointStatisticsTimeout > 0) {
1196    if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1197      print_statistics();
1198    }
1199  } else {
1200    // The safepoint statistics will be printed out when the _safepoin_stats
1201    // array fills up.
1202    if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
1203      print_statistics();
1204      _cur_stat_index = 0;
1205    } else {
1206      _cur_stat_index++;
1207    }
1208  }
1209}
1210
1211void SafepointSynchronize::print_statistics() {
1212  SafepointStats* sstats = _safepoint_stats;
1213
1214  for (int index = 0; index <= _cur_stat_index; index++) {
1215    if (index % 30 == 0) {
1216      print_header();
1217    }
1218    sstats = &_safepoint_stats[index];
1219    tty->print("%.3f: ", sstats->_time_stamp);
1220    tty->print("%-26s       ["
1221               INT32_FORMAT_W(8)INT32_FORMAT_W(11)INT32_FORMAT_W(15)
1222               "    ]    ",
1223               sstats->_vmop_type == -1 ? "no vm operation" :
1224               VM_Operation::name(sstats->_vmop_type),
1225               sstats->_nof_total_threads,
1226               sstats->_nof_initial_running_threads,
1227               sstats->_nof_threads_wait_to_block);
1228    // "/ MICROUNITS " is to convert the unit from nanos to millis.
1229    tty->print("  ["
1230               INT64_FORMAT_W(6)INT64_FORMAT_W(6)
1231               INT64_FORMAT_W(6)INT64_FORMAT_W(6)
1232               INT64_FORMAT_W(6)"    ]  ",
1233               sstats->_time_to_spin / MICROUNITS,
1234               sstats->_time_to_wait_to_block / MICROUNITS,
1235               sstats->_time_to_sync / MICROUNITS,
1236               sstats->_time_to_do_cleanups / MICROUNITS,
1237               sstats->_time_to_exec_vmop / MICROUNITS);
1238
1239    if (need_to_track_page_armed_status) {
1240      tty->print(INT32_FORMAT"         ", sstats->_page_armed);
1241    }
1242    tty->print_cr(INT32_FORMAT"   ", sstats->_nof_threads_hit_page_trap);
1243  }
1244}
1245
1246// This method will be called when VM exits. It will first call
1247// print_statistics to print out the rest of the sampling.  Then
1248// it tries to summarize the sampling.
1249void SafepointSynchronize::print_stat_on_exit() {
1250  if (_safepoint_stats == NULL) return;
1251
1252  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1253
1254  // During VM exit, end_statistics may not get called and in that
1255  // case, if the sync time is less than PrintSafepointStatisticsTimeout,
1256  // don't print it out.
1257  // Approximate the vm op time.
1258  _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
1259    os::javaTimeNanos() - cleanup_end_time;
1260
1261  if ( PrintSafepointStatisticsTimeout < 0 ||
1262       spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1263    print_statistics();
1264  }
1265  tty->cr();
1266
1267  // Print out polling page sampling status.
1268  if (!need_to_track_page_armed_status) {
1269    if (UseCompilerSafepoints) {
1270      tty->print_cr("Polling page always armed");
1271    }
1272  } else {
1273    tty->print_cr("Defer polling page loop count = %d\n",
1274                 DeferPollingPageLoopCount);
1275  }
1276
1277  for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1278    if (_safepoint_reasons[index] != 0) {
1279      tty->print_cr("%-26s"UINT64_FORMAT_W(10), VM_Operation::name(index),
1280                    _safepoint_reasons[index]);
1281    }
1282  }
1283
1284  tty->print_cr(UINT64_FORMAT_W(5)" VM operations coalesced during safepoint",
1285                _coalesced_vmop_count);
1286  tty->print_cr("Maximum sync time  "INT64_FORMAT_W(5)" ms",
1287                _max_sync_time / MICROUNITS);
1288  tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
1289                INT64_FORMAT_W(5)" ms",
1290                _max_vmop_time / MICROUNITS);
1291}
1292
1293// ------------------------------------------------------------------------------------------------
1294// Non-product code
1295
1296#ifndef PRODUCT
1297
1298void SafepointSynchronize::print_state() {
1299  if (_state == _not_synchronized) {
1300    tty->print_cr("not synchronized");
1301  } else if (_state == _synchronizing || _state == _synchronized) {
1302    tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
1303                  "synchronized");
1304
1305    for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
1306       cur->safepoint_state()->print();
1307    }
1308  }
1309}
1310
1311void SafepointSynchronize::safepoint_msg(const char* format, ...) {
1312  if (ShowSafepointMsgs) {
1313    va_list ap;
1314    va_start(ap, format);
1315    tty->vprint_cr(format, ap);
1316    va_end(ap);
1317  }
1318}
1319
1320#endif // !PRODUCT
1321