safepoint.cpp revision 6412:53a41e7cbe05
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/symbolTable.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "code/codeCache.hpp"
29#include "code/icBuffer.hpp"
30#include "code/nmethod.hpp"
31#include "code/pcDesc.hpp"
32#include "code/scopeDesc.hpp"
33#include "gc_interface/collectedHeap.hpp"
34#include "interpreter/interpreter.hpp"
35#include "memory/resourceArea.hpp"
36#include "memory/universe.inline.hpp"
37#include "oops/oop.inline.hpp"
38#include "oops/symbol.hpp"
39#include "runtime/compilationPolicy.hpp"
40#include "runtime/deoptimization.hpp"
41#include "runtime/frame.inline.hpp"
42#include "runtime/interfaceSupport.hpp"
43#include "runtime/mutexLocker.hpp"
44#include "runtime/orderAccess.inline.hpp"
45#include "runtime/osThread.hpp"
46#include "runtime/safepoint.hpp"
47#include "runtime/signature.hpp"
48#include "runtime/stubCodeGenerator.hpp"
49#include "runtime/stubRoutines.hpp"
50#include "runtime/sweeper.hpp"
51#include "runtime/synchronizer.hpp"
52#include "runtime/thread.inline.hpp"
53#include "services/memTracker.hpp"
54#include "services/runtimeService.hpp"
55#include "utilities/events.hpp"
56#include "utilities/macros.hpp"
57#ifdef TARGET_ARCH_x86
58# include "nativeInst_x86.hpp"
59# include "vmreg_x86.inline.hpp"
60#endif
61#ifdef TARGET_ARCH_sparc
62# include "nativeInst_sparc.hpp"
63# include "vmreg_sparc.inline.hpp"
64#endif
65#ifdef TARGET_ARCH_zero
66# include "nativeInst_zero.hpp"
67# include "vmreg_zero.inline.hpp"
68#endif
69#ifdef TARGET_ARCH_arm
70# include "nativeInst_arm.hpp"
71# include "vmreg_arm.inline.hpp"
72#endif
73#ifdef TARGET_ARCH_ppc
74# include "nativeInst_ppc.hpp"
75# include "vmreg_ppc.inline.hpp"
76#endif
77#if INCLUDE_ALL_GCS
78#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
79#include "gc_implementation/shared/suspendibleThreadSet.hpp"
80#endif // INCLUDE_ALL_GCS
81#ifdef COMPILER1
82#include "c1/c1_globals.hpp"
83#endif
84
85PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
86
87// --------------------------------------------------------------------------------------------------
88// Implementation of Safepoint begin/end
89
90SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
91volatile int  SafepointSynchronize::_waiting_to_block = 0;
92volatile int SafepointSynchronize::_safepoint_counter = 0;
93int SafepointSynchronize::_current_jni_active_count = 0;
94long  SafepointSynchronize::_end_of_last_safepoint = 0;
95static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
96static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
97static bool timeout_error_printed = false;
98
99// Roll all threads forward to a safepoint and suspend them all
100void SafepointSynchronize::begin() {
101
102  Thread* myThread = Thread::current();
103  assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
104
105  if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
106    _safepoint_begin_time = os::javaTimeNanos();
107    _ts_of_current_safepoint = tty->time_stamp().seconds();
108  }
109
110#if INCLUDE_ALL_GCS
111  if (UseConcMarkSweepGC) {
112    // In the future we should investigate whether CMS can use the
113    // more-general mechanism below.  DLD (01/05).
114    ConcurrentMarkSweepThread::synchronize(false);
115  } else if (UseG1GC) {
116    SuspendibleThreadSet::synchronize();
117  }
118#endif // INCLUDE_ALL_GCS
119
120  // By getting the Threads_lock, we assure that no threads are about to start or
121  // exit. It is released again in SafepointSynchronize::end().
122  Threads_lock->lock();
123
124  assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
125
126  int nof_threads = Threads::number_of_threads();
127
128  if (TraceSafepoint) {
129    tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
130  }
131
132  RuntimeService::record_safepoint_begin();
133
134  MutexLocker mu(Safepoint_lock);
135
136  // Reset the count of active JNI critical threads
137  _current_jni_active_count = 0;
138
139  // Set number of threads to wait for, before we initiate the callbacks
140  _waiting_to_block = nof_threads;
141  TryingToBlock     = 0 ;
142  int still_running = nof_threads;
143
144  // Save the starting time, so that it can be compared to see if this has taken
145  // too long to complete.
146  jlong safepoint_limit_time;
147  timeout_error_printed = false;
148
149  // PrintSafepointStatisticsTimeout can be specified separately. When
150  // specified, PrintSafepointStatistics will be set to true in
151  // deferred_initialize_stat method. The initialization has to be done
152  // early enough to avoid any races. See bug 6880029 for details.
153  if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
154    deferred_initialize_stat();
155  }
156
157  // Begin the process of bringing the system to a safepoint.
158  // Java threads can be in several different states and are
159  // stopped by different mechanisms:
160  //
161  //  1. Running interpreted
162  //     The interpreter dispatch table is changed to force it to
163  //     check for a safepoint condition between bytecodes.
164  //  2. Running in native code
165  //     When returning from the native code, a Java thread must check
166  //     the safepoint _state to see if we must block.  If the
167  //     VM thread sees a Java thread in native, it does
168  //     not wait for this thread to block.  The order of the memory
169  //     writes and reads of both the safepoint state and the Java
170  //     threads state is critical.  In order to guarantee that the
171  //     memory writes are serialized with respect to each other,
172  //     the VM thread issues a memory barrier instruction
173  //     (on MP systems).  In order to avoid the overhead of issuing
174  //     a memory barrier for each Java thread making native calls, each Java
175  //     thread performs a write to a single memory page after changing
176  //     the thread state.  The VM thread performs a sequence of
177  //     mprotect OS calls which forces all previous writes from all
178  //     Java threads to be serialized.  This is done in the
179  //     os::serialize_thread_states() call.  This has proven to be
180  //     much more efficient than executing a membar instruction
181  //     on every call to native code.
182  //  3. Running compiled Code
183  //     Compiled code reads a global (Safepoint Polling) page that
184  //     is set to fault if we are trying to get to a safepoint.
185  //  4. Blocked
186  //     A thread which is blocked will not be allowed to return from the
187  //     block condition until the safepoint operation is complete.
188  //  5. In VM or Transitioning between states
189  //     If a Java thread is currently running in the VM or transitioning
190  //     between states, the safepointing code will wait for the thread to
191  //     block itself when it attempts transitions to a new state.
192  //
193  _state            = _synchronizing;
194  OrderAccess::fence();
195
196  // Flush all thread states to memory
197  if (!UseMembar) {
198    os::serialize_thread_states();
199  }
200
201  // Make interpreter safepoint aware
202  Interpreter::notice_safepoints();
203
204  if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
205    // Make polling safepoint aware
206    guarantee (PageArmed == 0, "invariant") ;
207    PageArmed = 1 ;
208    os::make_polling_page_unreadable();
209  }
210
211  // Consider using active_processor_count() ... but that call is expensive.
212  int ncpus = os::processor_count() ;
213
214#ifdef ASSERT
215  for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
216    assert(cur->safepoint_state()->is_running(), "Illegal initial state");
217    // Clear the visited flag to ensure that the critical counts are collected properly.
218    cur->set_visited_for_critical_count(false);
219  }
220#endif // ASSERT
221
222  if (SafepointTimeout)
223    safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
224
225  // Iterate through all threads until it have been determined how to stop them all at a safepoint
226  unsigned int iterations = 0;
227  int steps = 0 ;
228  while(still_running > 0) {
229    for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
230      assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
231      ThreadSafepointState *cur_state = cur->safepoint_state();
232      if (cur_state->is_running()) {
233        cur_state->examine_state_of_thread();
234        if (!cur_state->is_running()) {
235           still_running--;
236           // consider adjusting steps downward:
237           //   steps = 0
238           //   steps -= NNN
239           //   steps >>= 1
240           //   steps = MIN(steps, 2000-100)
241           //   if (iterations != 0) steps -= NNN
242        }
243        if (TraceSafepoint && Verbose) cur_state->print();
244      }
245    }
246
247    if (PrintSafepointStatistics && iterations == 0) {
248      begin_statistics(nof_threads, still_running);
249    }
250
251    if (still_running > 0) {
252      // Check for if it takes to long
253      if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
254        print_safepoint_timeout(_spinning_timeout);
255      }
256
257      // Spin to avoid context switching.
258      // There's a tension between allowing the mutators to run (and rendezvous)
259      // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
260      // a mutator might otherwise use profitably to reach a safepoint.  Excessive
261      // spinning by the VM thread on a saturated system can increase rendezvous latency.
262      // Blocking or yielding incur their own penalties in the form of context switching
263      // and the resultant loss of $ residency.
264      //
265      // Further complicating matters is that yield() does not work as naively expected
266      // on many platforms -- yield() does not guarantee that any other ready threads
267      // will run.   As such we revert yield_all() after some number of iterations.
268      // Yield_all() is implemented as a short unconditional sleep on some platforms.
269      // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
270      // can actually increase the time it takes the VM thread to detect that a system-wide
271      // stop-the-world safepoint has been reached.  In a pathological scenario such as that
272      // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
273      // In that case the mutators will be stalled waiting for the safepoint to complete and the
274      // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
275      // will eventually wake up and detect that all mutators are safe, at which point
276      // we'll again make progress.
277      //
278      // Beware too that that the VMThread typically runs at elevated priority.
279      // Its default priority is higher than the default mutator priority.
280      // Obviously, this complicates spinning.
281      //
282      // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
283      // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
284      //
285      // See the comments in synchronizer.cpp for additional remarks on spinning.
286      //
287      // In the future we might:
288      // 1. Modify the safepoint scheme to avoid potentially unbounded spinning.
289      //    This is tricky as the path used by a thread exiting the JVM (say on
290      //    on JNI call-out) simply stores into its state field.  The burden
291      //    is placed on the VM thread, which must poll (spin).
292      // 2. Find something useful to do while spinning.  If the safepoint is GC-related
293      //    we might aggressively scan the stacks of threads that are already safe.
294      // 3. Use Solaris schedctl to examine the state of the still-running mutators.
295      //    If all the mutators are ONPROC there's no reason to sleep or yield.
296      // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
297      // 5. Check system saturation.  If the system is not fully saturated then
298      //    simply spin and avoid sleep/yield.
299      // 6. As still-running mutators rendezvous they could unpark the sleeping
300      //    VMthread.  This works well for still-running mutators that become
301      //    safe.  The VMthread must still poll for mutators that call-out.
302      // 7. Drive the policy on time-since-begin instead of iterations.
303      // 8. Consider making the spin duration a function of the # of CPUs:
304      //    Spin = (((ncpus-1) * M) + K) + F(still_running)
305      //    Alternately, instead of counting iterations of the outer loop
306      //    we could count the # of threads visited in the inner loop, above.
307      // 9. On windows consider using the return value from SwitchThreadTo()
308      //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
309
310      if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
311         guarantee (PageArmed == 0, "invariant") ;
312         PageArmed = 1 ;
313         os::make_polling_page_unreadable();
314      }
315
316      // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
317      // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
318      ++steps ;
319      if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
320        SpinPause() ;     // MP-Polite spin
321      } else
322      if (steps < DeferThrSuspendLoopCount) {
323        os::NakedYield() ;
324      } else {
325        os::yield_all() ;
326        // Alternately, the VM thread could transiently depress its scheduling priority or
327        // transiently increase the priority of the tardy mutator(s).
328      }
329
330      iterations ++ ;
331    }
332    assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
333  }
334  assert(still_running == 0, "sanity check");
335
336  if (PrintSafepointStatistics) {
337    update_statistics_on_spin_end();
338  }
339
340  // wait until all threads are stopped
341  while (_waiting_to_block > 0) {
342    if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
343    if (!SafepointTimeout || timeout_error_printed) {
344      Safepoint_lock->wait(true);  // true, means with no safepoint checks
345    } else {
346      // Compute remaining time
347      jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
348
349      // If there is no remaining time, then there is an error
350      if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
351        print_safepoint_timeout(_blocking_timeout);
352      }
353    }
354  }
355  assert(_waiting_to_block == 0, "sanity check");
356
357#ifndef PRODUCT
358  if (SafepointTimeout) {
359    jlong current_time = os::javaTimeNanos();
360    if (safepoint_limit_time < current_time) {
361      tty->print_cr("# SafepointSynchronize: Finished after "
362                    INT64_FORMAT_W(6) " ms",
363                    ((current_time - safepoint_limit_time) / MICROUNITS +
364                     SafepointTimeoutDelay));
365    }
366  }
367#endif
368
369  assert((_safepoint_counter & 0x1) == 0, "must be even");
370  assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
371  _safepoint_counter ++;
372
373  // Record state
374  _state = _synchronized;
375
376  OrderAccess::fence();
377
378#ifdef ASSERT
379  for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
380    // make sure all the threads were visited
381    assert(cur->was_visited_for_critical_count(), "missed a thread");
382  }
383#endif // ASSERT
384
385  // Update the count of active JNI critical regions
386  GC_locker::set_jni_lock_count(_current_jni_active_count);
387
388  if (TraceSafepoint) {
389    VM_Operation *op = VMThread::vm_operation();
390    tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
391  }
392
393  RuntimeService::record_safepoint_synchronized();
394  if (PrintSafepointStatistics) {
395    update_statistics_on_sync_end(os::javaTimeNanos());
396  }
397
398  // Call stuff that needs to be run when a safepoint is just about to be completed
399  do_cleanup_tasks();
400
401  if (PrintSafepointStatistics) {
402    // Record how much time spend on the above cleanup tasks
403    update_statistics_on_cleanup_end(os::javaTimeNanos());
404  }
405}
406
407// Wake up all threads, so they are ready to resume execution after the safepoint
408// operation has been carried out
409void SafepointSynchronize::end() {
410
411  assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
412  assert((_safepoint_counter & 0x1) == 1, "must be odd");
413  _safepoint_counter ++;
414  // memory fence isn't required here since an odd _safepoint_counter
415  // value can do no harm and a fence is issued below anyway.
416
417  DEBUG_ONLY(Thread* myThread = Thread::current();)
418  assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
419
420  if (PrintSafepointStatistics) {
421    end_statistics(os::javaTimeNanos());
422  }
423
424#ifdef ASSERT
425  // A pending_exception cannot be installed during a safepoint.  The threads
426  // may install an async exception after they come back from a safepoint into
427  // pending_exception after they unblock.  But that should happen later.
428  for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
429    assert (!(cur->has_pending_exception() &&
430              cur->safepoint_state()->is_at_poll_safepoint()),
431            "safepoint installed a pending exception");
432  }
433#endif // ASSERT
434
435  if (PageArmed) {
436    // Make polling safepoint aware
437    os::make_polling_page_readable();
438    PageArmed = 0 ;
439  }
440
441  // Remove safepoint check from interpreter
442  Interpreter::ignore_safepoints();
443
444  {
445    MutexLocker mu(Safepoint_lock);
446
447    assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
448
449    // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
450    // when they get restarted.
451    _state = _not_synchronized;
452    OrderAccess::fence();
453
454    if (TraceSafepoint) {
455       tty->print_cr("Leaving safepoint region");
456    }
457
458    // Start suspended threads
459    for(JavaThread *current = Threads::first(); current; current = current->next()) {
460      // A problem occurring on Solaris is when attempting to restart threads
461      // the first #cpus - 1 go well, but then the VMThread is preempted when we get
462      // to the next one (since it has been running the longest).  We then have
463      // to wait for a cpu to become available before we can continue restarting
464      // threads.
465      // FIXME: This causes the performance of the VM to degrade when active and with
466      // large numbers of threads.  Apparently this is due to the synchronous nature
467      // of suspending threads.
468      //
469      // TODO-FIXME: the comments above are vestigial and no longer apply.
470      // Furthermore, using solaris' schedctl in this particular context confers no benefit
471      if (VMThreadHintNoPreempt) {
472        os::hint_no_preempt();
473      }
474      ThreadSafepointState* cur_state = current->safepoint_state();
475      assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
476      cur_state->restart();
477      assert(cur_state->is_running(), "safepoint state has not been reset");
478    }
479
480    RuntimeService::record_safepoint_end();
481
482    // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
483    // blocked in signal_thread_blocked
484    Threads_lock->unlock();
485
486  }
487#if INCLUDE_ALL_GCS
488  // If there are any concurrent GC threads resume them.
489  if (UseConcMarkSweepGC) {
490    ConcurrentMarkSweepThread::desynchronize(false);
491  } else if (UseG1GC) {
492    SuspendibleThreadSet::desynchronize();
493  }
494#endif // INCLUDE_ALL_GCS
495  // record this time so VMThread can keep track how much time has elapsed
496  // since last safepoint.
497  _end_of_last_safepoint = os::javaTimeMillis();
498}
499
500bool SafepointSynchronize::is_cleanup_needed() {
501  // Need a safepoint if some inline cache buffers is non-empty
502  if (!InlineCacheBuffer::is_empty()) return true;
503  return false;
504}
505
506
507
508// Various cleaning tasks that should be done periodically at safepoints
509void SafepointSynchronize::do_cleanup_tasks() {
510  {
511    TraceTime t1("deflating idle monitors", TraceSafepointCleanupTime);
512    ObjectSynchronizer::deflate_idle_monitors();
513  }
514
515  {
516    TraceTime t2("updating inline caches", TraceSafepointCleanupTime);
517    InlineCacheBuffer::update_inline_caches();
518  }
519  {
520    TraceTime t3("compilation policy safepoint handler", TraceSafepointCleanupTime);
521    CompilationPolicy::policy()->do_safepoint_work();
522  }
523
524  {
525    TraceTime t4("mark nmethods", TraceSafepointCleanupTime);
526    NMethodSweeper::mark_active_nmethods();
527  }
528
529  if (SymbolTable::needs_rehashing()) {
530    TraceTime t5("rehashing symbol table", TraceSafepointCleanupTime);
531    SymbolTable::rehash_table();
532  }
533
534  if (StringTable::needs_rehashing()) {
535    TraceTime t6("rehashing string table", TraceSafepointCleanupTime);
536    StringTable::rehash_table();
537  }
538
539  // rotate log files?
540  if (UseGCLogFileRotation) {
541    gclog_or_tty->rotate_log(false);
542  }
543
544  if (MemTracker::is_on()) {
545    MemTracker::sync();
546  }
547}
548
549
550bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
551  switch(state) {
552  case _thread_in_native:
553    // native threads are safe if they have no java stack or have walkable stack
554    return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
555
556   // blocked threads should have already have walkable stack
557  case _thread_blocked:
558    assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
559    return true;
560
561  default:
562    return false;
563  }
564}
565
566
567// See if the thread is running inside a lazy critical native and
568// update the thread critical count if so.  Also set a suspend flag to
569// cause the native wrapper to return into the JVM to do the unlock
570// once the native finishes.
571void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
572  if (state == _thread_in_native &&
573      thread->has_last_Java_frame() &&
574      thread->frame_anchor()->walkable()) {
575    // This thread might be in a critical native nmethod so look at
576    // the top of the stack and increment the critical count if it
577    // is.
578    frame wrapper_frame = thread->last_frame();
579    CodeBlob* stub_cb = wrapper_frame.cb();
580    if (stub_cb != NULL &&
581        stub_cb->is_nmethod() &&
582        stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
583      // A thread could potentially be in a critical native across
584      // more than one safepoint, so only update the critical state on
585      // the first one.  When it returns it will perform the unlock.
586      if (!thread->do_critical_native_unlock()) {
587#ifdef ASSERT
588        if (!thread->in_critical()) {
589          GC_locker::increment_debug_jni_lock_count();
590        }
591#endif
592        thread->enter_critical();
593        // Make sure the native wrapper calls back on return to
594        // perform the needed critical unlock.
595        thread->set_critical_native_unlock();
596      }
597    }
598  }
599}
600
601
602
603// -------------------------------------------------------------------------------------------------------
604// Implementation of Safepoint callback point
605
606void SafepointSynchronize::block(JavaThread *thread) {
607  assert(thread != NULL, "thread must be set");
608  assert(thread->is_Java_thread(), "not a Java thread");
609
610  // Threads shouldn't block if they are in the middle of printing, but...
611  ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
612
613  // Only bail from the block() call if the thread is gone from the
614  // thread list; starting to exit should still block.
615  if (thread->is_terminated()) {
616     // block current thread if we come here from native code when VM is gone
617     thread->block_if_vm_exited();
618
619     // otherwise do nothing
620     return;
621  }
622
623  JavaThreadState state = thread->thread_state();
624  thread->frame_anchor()->make_walkable(thread);
625
626  // Check that we have a valid thread_state at this point
627  switch(state) {
628    case _thread_in_vm_trans:
629    case _thread_in_Java:        // From compiled code
630
631      // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
632      // we pretend we are still in the VM.
633      thread->set_thread_state(_thread_in_vm);
634
635      if (is_synchronizing()) {
636         Atomic::inc (&TryingToBlock) ;
637      }
638
639      // We will always be holding the Safepoint_lock when we are examine the state
640      // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
641      // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
642      Safepoint_lock->lock_without_safepoint_check();
643      if (is_synchronizing()) {
644        // Decrement the number of threads to wait for and signal vm thread
645        assert(_waiting_to_block > 0, "sanity check");
646        _waiting_to_block--;
647        thread->safepoint_state()->set_has_called_back(true);
648
649        DEBUG_ONLY(thread->set_visited_for_critical_count(true));
650        if (thread->in_critical()) {
651          // Notice that this thread is in a critical section
652          increment_jni_active_count();
653        }
654
655        // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
656        if (_waiting_to_block == 0) {
657          Safepoint_lock->notify_all();
658        }
659      }
660
661      // We transition the thread to state _thread_blocked here, but
662      // we can't do our usual check for external suspension and then
663      // self-suspend after the lock_without_safepoint_check() call
664      // below because we are often called during transitions while
665      // we hold different locks. That would leave us suspended while
666      // holding a resource which results in deadlocks.
667      thread->set_thread_state(_thread_blocked);
668      Safepoint_lock->unlock();
669
670      // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
671      // the entire safepoint, the threads will all line up here during the safepoint.
672      Threads_lock->lock_without_safepoint_check();
673      // restore original state. This is important if the thread comes from compiled code, so it
674      // will continue to execute with the _thread_in_Java state.
675      thread->set_thread_state(state);
676      Threads_lock->unlock();
677      break;
678
679    case _thread_in_native_trans:
680    case _thread_blocked_trans:
681    case _thread_new_trans:
682      if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
683        thread->print_thread_state();
684        fatal("Deadlock in safepoint code.  "
685              "Should have called back to the VM before blocking.");
686      }
687
688      // We transition the thread to state _thread_blocked here, but
689      // we can't do our usual check for external suspension and then
690      // self-suspend after the lock_without_safepoint_check() call
691      // below because we are often called during transitions while
692      // we hold different locks. That would leave us suspended while
693      // holding a resource which results in deadlocks.
694      thread->set_thread_state(_thread_blocked);
695
696      // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
697      // the safepoint code might still be waiting for it to block. We need to change the state here,
698      // so it can see that it is at a safepoint.
699
700      // Block until the safepoint operation is completed.
701      Threads_lock->lock_without_safepoint_check();
702
703      // Restore state
704      thread->set_thread_state(state);
705
706      Threads_lock->unlock();
707      break;
708
709    default:
710     fatal(err_msg("Illegal threadstate encountered: %d", state));
711  }
712
713  // Check for pending. async. exceptions or suspends - except if the
714  // thread was blocked inside the VM. has_special_runtime_exit_condition()
715  // is called last since it grabs a lock and we only want to do that when
716  // we must.
717  //
718  // Note: we never deliver an async exception at a polling point as the
719  // compiler may not have an exception handler for it. The polling
720  // code will notice the async and deoptimize and the exception will
721  // be delivered. (Polling at a return point is ok though). Sure is
722  // a lot of bother for a deprecated feature...
723  //
724  // We don't deliver an async exception if the thread state is
725  // _thread_in_native_trans so JNI functions won't be called with
726  // a surprising pending exception. If the thread state is going back to java,
727  // async exception is checked in check_special_condition_for_native_trans().
728
729  if (state != _thread_blocked_trans &&
730      state != _thread_in_vm_trans &&
731      thread->has_special_runtime_exit_condition()) {
732    thread->handle_special_runtime_exit_condition(
733      !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
734  }
735}
736
737// ------------------------------------------------------------------------------------------------------
738// Exception handlers
739
740#ifndef PRODUCT
741
742#ifdef SPARC
743
744#ifdef _LP64
745#define PTR_PAD ""
746#else
747#define PTR_PAD "        "
748#endif
749
750static void print_ptrs(intptr_t oldptr, intptr_t newptr, bool wasoop) {
751  bool is_oop = newptr ? (cast_to_oop(newptr))->is_oop() : false;
752  tty->print_cr(PTR_FORMAT PTR_PAD " %s %c " PTR_FORMAT PTR_PAD " %s %s",
753                oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
754                newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
755}
756
757static void print_longs(jlong oldptr, jlong newptr, bool wasoop) {
758  bool is_oop = newptr ? (cast_to_oop(newptr))->is_oop() : false;
759  tty->print_cr(PTR64_FORMAT " %s %c " PTR64_FORMAT " %s %s",
760                oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
761                newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
762}
763
764static void print_me(intptr_t *new_sp, intptr_t *old_sp, bool *was_oops) {
765#ifdef _LP64
766  tty->print_cr("--------+------address-----+------before-----------+-------after----------+");
767  const int incr = 1;           // Increment to skip a long, in units of intptr_t
768#else
769  tty->print_cr("--------+--address-+------before-----------+-------after----------+");
770  const int incr = 2;           // Increment to skip a long, in units of intptr_t
771#endif
772  tty->print_cr("---SP---|");
773  for( int i=0; i<16; i++ ) {
774    tty->print("blob %c%d |"PTR_FORMAT" ","LO"[i>>3],i&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
775  tty->print_cr("--------|");
776  for( int i1=0; i1<frame::memory_parameter_word_sp_offset-16; i1++ ) {
777    tty->print("argv pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
778  tty->print("     pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++);
779  tty->print_cr("--------|");
780  tty->print(" G1     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
781  tty->print(" G3     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
782  tty->print(" G4     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
783  tty->print(" G5     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
784  tty->print_cr(" FSR    |"PTR_FORMAT" "PTR64_FORMAT"       "PTR64_FORMAT,new_sp,*(jlong*)old_sp,*(jlong*)new_sp);
785  old_sp += incr; new_sp += incr; was_oops += incr;
786  // Skip the floats
787  tty->print_cr("--Float-|"PTR_FORMAT,new_sp);
788  tty->print_cr("---FP---|");
789  old_sp += incr*32;  new_sp += incr*32;  was_oops += incr*32;
790  for( int i2=0; i2<16; i2++ ) {
791    tty->print("call %c%d |"PTR_FORMAT" ","LI"[i2>>3],i2&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
792  tty->cr();
793}
794#endif  // SPARC
795#endif  // PRODUCT
796
797
798void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
799  assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
800  assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
801  assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
802
803  // Uncomment this to get some serious before/after printing of the
804  // Sparc safepoint-blob frame structure.
805  /*
806  intptr_t* sp = thread->last_Java_sp();
807  intptr_t stack_copy[150];
808  for( int i=0; i<150; i++ ) stack_copy[i] = sp[i];
809  bool was_oops[150];
810  for( int i=0; i<150; i++ )
811    was_oops[i] = stack_copy[i] ? ((oop)stack_copy[i])->is_oop() : false;
812  */
813
814  if (ShowSafepointMsgs) {
815    tty->print("handle_polling_page_exception: ");
816  }
817
818  if (PrintSafepointStatistics) {
819    inc_page_trap_count();
820  }
821
822  ThreadSafepointState* state = thread->safepoint_state();
823
824  state->handle_polling_page_exception();
825  // print_me(sp,stack_copy,was_oops);
826}
827
828
829void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
830  if (!timeout_error_printed) {
831    timeout_error_printed = true;
832    // Print out the thread info which didn't reach the safepoint for debugging
833    // purposes (useful when there are lots of threads in the debugger).
834    tty->cr();
835    tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
836    if (reason ==  _spinning_timeout) {
837      tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
838    } else if (reason == _blocking_timeout) {
839      tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
840    }
841
842    tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
843    ThreadSafepointState *cur_state;
844    ResourceMark rm;
845    for(JavaThread *cur_thread = Threads::first(); cur_thread;
846        cur_thread = cur_thread->next()) {
847      cur_state = cur_thread->safepoint_state();
848
849      if (cur_thread->thread_state() != _thread_blocked &&
850          ((reason == _spinning_timeout && cur_state->is_running()) ||
851           (reason == _blocking_timeout && !cur_state->has_called_back()))) {
852        tty->print("# ");
853        cur_thread->print();
854        tty->cr();
855      }
856    }
857    tty->print_cr("# SafepointSynchronize::begin: (End of list)");
858  }
859
860  // To debug the long safepoint, specify both DieOnSafepointTimeout &
861  // ShowMessageBoxOnError.
862  if (DieOnSafepointTimeout) {
863    char msg[1024];
864    VM_Operation *op = VMThread::vm_operation();
865    sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
866            SafepointTimeoutDelay,
867            op != NULL ? op->name() : "no vm operation");
868    fatal(msg);
869  }
870}
871
872
873// -------------------------------------------------------------------------------------------------------
874// Implementation of ThreadSafepointState
875
876ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
877  _thread = thread;
878  _type   = _running;
879  _has_called_back = false;
880  _at_poll_safepoint = false;
881}
882
883void ThreadSafepointState::create(JavaThread *thread) {
884  ThreadSafepointState *state = new ThreadSafepointState(thread);
885  thread->set_safepoint_state(state);
886}
887
888void ThreadSafepointState::destroy(JavaThread *thread) {
889  if (thread->safepoint_state()) {
890    delete(thread->safepoint_state());
891    thread->set_safepoint_state(NULL);
892  }
893}
894
895void ThreadSafepointState::examine_state_of_thread() {
896  assert(is_running(), "better be running or just have hit safepoint poll");
897
898  JavaThreadState state = _thread->thread_state();
899
900  // Save the state at the start of safepoint processing.
901  _orig_thread_state = state;
902
903  // Check for a thread that is suspended. Note that thread resume tries
904  // to grab the Threads_lock which we own here, so a thread cannot be
905  // resumed during safepoint synchronization.
906
907  // We check to see if this thread is suspended without locking to
908  // avoid deadlocking with a third thread that is waiting for this
909  // thread to be suspended. The third thread can notice the safepoint
910  // that we're trying to start at the beginning of its SR_lock->wait()
911  // call. If that happens, then the third thread will block on the
912  // safepoint while still holding the underlying SR_lock. We won't be
913  // able to get the SR_lock and we'll deadlock.
914  //
915  // We don't need to grab the SR_lock here for two reasons:
916  // 1) The suspend flags are both volatile and are set with an
917  //    Atomic::cmpxchg() call so we should see the suspended
918  //    state right away.
919  // 2) We're being called from the safepoint polling loop; if
920  //    we don't see the suspended state on this iteration, then
921  //    we'll come around again.
922  //
923  bool is_suspended = _thread->is_ext_suspended();
924  if (is_suspended) {
925    roll_forward(_at_safepoint);
926    return;
927  }
928
929  // Some JavaThread states have an initial safepoint state of
930  // running, but are actually at a safepoint. We will happily
931  // agree and update the safepoint state here.
932  if (SafepointSynchronize::safepoint_safe(_thread, state)) {
933    SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
934    roll_forward(_at_safepoint);
935    return;
936  }
937
938  if (state == _thread_in_vm) {
939    roll_forward(_call_back);
940    return;
941  }
942
943  // All other thread states will continue to run until they
944  // transition and self-block in state _blocked
945  // Safepoint polling in compiled code causes the Java threads to do the same.
946  // Note: new threads may require a malloc so they must be allowed to finish
947
948  assert(is_running(), "examine_state_of_thread on non-running thread");
949  return;
950}
951
952// Returns true is thread could not be rolled forward at present position.
953void ThreadSafepointState::roll_forward(suspend_type type) {
954  _type = type;
955
956  switch(_type) {
957    case _at_safepoint:
958      SafepointSynchronize::signal_thread_at_safepoint();
959      DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
960      if (_thread->in_critical()) {
961        // Notice that this thread is in a critical section
962        SafepointSynchronize::increment_jni_active_count();
963      }
964      break;
965
966    case _call_back:
967      set_has_called_back(false);
968      break;
969
970    case _running:
971    default:
972      ShouldNotReachHere();
973  }
974}
975
976void ThreadSafepointState::restart() {
977  switch(type()) {
978    case _at_safepoint:
979    case _call_back:
980      break;
981
982    case _running:
983    default:
984       tty->print_cr("restart thread "INTPTR_FORMAT" with state %d",
985                      _thread, _type);
986       _thread->print();
987      ShouldNotReachHere();
988  }
989  _type = _running;
990  set_has_called_back(false);
991}
992
993
994void ThreadSafepointState::print_on(outputStream *st) const {
995  const char *s;
996
997  switch(_type) {
998    case _running                : s = "_running";              break;
999    case _at_safepoint           : s = "_at_safepoint";         break;
1000    case _call_back              : s = "_call_back";            break;
1001    default:
1002      ShouldNotReachHere();
1003  }
1004
1005  st->print_cr("Thread: " INTPTR_FORMAT
1006              "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
1007               _thread, _thread->osthread()->thread_id(), s, _has_called_back,
1008               _at_poll_safepoint);
1009
1010  _thread->print_thread_state_on(st);
1011}
1012
1013
1014// ---------------------------------------------------------------------------------------------------------------------
1015
1016// Block the thread at the safepoint poll or poll return.
1017void ThreadSafepointState::handle_polling_page_exception() {
1018
1019  // Check state.  block() will set thread state to thread_in_vm which will
1020  // cause the safepoint state _type to become _call_back.
1021  assert(type() == ThreadSafepointState::_running,
1022         "polling page exception on thread not running state");
1023
1024  // Step 1: Find the nmethod from the return address
1025  if (ShowSafepointMsgs && Verbose) {
1026    tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
1027  }
1028  address real_return_addr = thread()->saved_exception_pc();
1029
1030  CodeBlob *cb = CodeCache::find_blob(real_return_addr);
1031  assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
1032  nmethod* nm = (nmethod*)cb;
1033
1034  // Find frame of caller
1035  frame stub_fr = thread()->last_frame();
1036  CodeBlob* stub_cb = stub_fr.cb();
1037  assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
1038  RegisterMap map(thread(), true);
1039  frame caller_fr = stub_fr.sender(&map);
1040
1041  // Should only be poll_return or poll
1042  assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
1043
1044  // This is a poll immediately before a return. The exception handling code
1045  // has already had the effect of causing the return to occur, so the execution
1046  // will continue immediately after the call. In addition, the oopmap at the
1047  // return point does not mark the return value as an oop (if it is), so
1048  // it needs a handle here to be updated.
1049  if( nm->is_at_poll_return(real_return_addr) ) {
1050    // See if return type is an oop.
1051    bool return_oop = nm->method()->is_returning_oop();
1052    Handle return_value;
1053    if (return_oop) {
1054      // The oop result has been saved on the stack together with all
1055      // the other registers. In order to preserve it over GCs we need
1056      // to keep it in a handle.
1057      oop result = caller_fr.saved_oop_result(&map);
1058      assert(result == NULL || result->is_oop(), "must be oop");
1059      return_value = Handle(thread(), result);
1060      assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
1061    }
1062
1063    // Block the thread
1064    SafepointSynchronize::block(thread());
1065
1066    // restore oop result, if any
1067    if (return_oop) {
1068      caller_fr.set_saved_oop_result(&map, return_value());
1069    }
1070  }
1071
1072  // This is a safepoint poll. Verify the return address and block.
1073  else {
1074    set_at_poll_safepoint(true);
1075
1076    // verify the blob built the "return address" correctly
1077    assert(real_return_addr == caller_fr.pc(), "must match");
1078
1079    // Block the thread
1080    SafepointSynchronize::block(thread());
1081    set_at_poll_safepoint(false);
1082
1083    // If we have a pending async exception deoptimize the frame
1084    // as otherwise we may never deliver it.
1085    if (thread()->has_async_condition()) {
1086      ThreadInVMfromJavaNoAsyncException __tiv(thread());
1087      Deoptimization::deoptimize_frame(thread(), caller_fr.id());
1088    }
1089
1090    // If an exception has been installed we must check for a pending deoptimization
1091    // Deoptimize frame if exception has been thrown.
1092
1093    if (thread()->has_pending_exception() ) {
1094      RegisterMap map(thread(), true);
1095      frame caller_fr = stub_fr.sender(&map);
1096      if (caller_fr.is_deoptimized_frame()) {
1097        // The exception patch will destroy registers that are still
1098        // live and will be needed during deoptimization. Defer the
1099        // Async exception should have deferred the exception until the
1100        // next safepoint which will be detected when we get into
1101        // the interpreter so if we have an exception now things
1102        // are messed up.
1103
1104        fatal("Exception installed and deoptimization is pending");
1105      }
1106    }
1107  }
1108}
1109
1110
1111//
1112//                     Statistics & Instrumentations
1113//
1114SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
1115jlong  SafepointSynchronize::_safepoint_begin_time = 0;
1116int    SafepointSynchronize::_cur_stat_index = 0;
1117julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
1118julong SafepointSynchronize::_coalesced_vmop_count = 0;
1119jlong  SafepointSynchronize::_max_sync_time = 0;
1120jlong  SafepointSynchronize::_max_vmop_time = 0;
1121float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
1122
1123static jlong  cleanup_end_time = 0;
1124static bool   need_to_track_page_armed_status = false;
1125static bool   init_done = false;
1126
1127// Helper method to print the header.
1128static void print_header() {
1129  tty->print("         vmop                    "
1130             "[threads: total initially_running wait_to_block]    ");
1131  tty->print("[time: spin block sync cleanup vmop] ");
1132
1133  // no page armed status printed out if it is always armed.
1134  if (need_to_track_page_armed_status) {
1135    tty->print("page_armed ");
1136  }
1137
1138  tty->print_cr("page_trap_count");
1139}
1140
1141void SafepointSynchronize::deferred_initialize_stat() {
1142  if (init_done) return;
1143
1144  if (PrintSafepointStatisticsCount <= 0) {
1145    fatal("Wrong PrintSafepointStatisticsCount");
1146  }
1147
1148  // If PrintSafepointStatisticsTimeout is specified, the statistics data will
1149  // be printed right away, in which case, _safepoint_stats will regress to
1150  // a single element array. Otherwise, it is a circular ring buffer with default
1151  // size of PrintSafepointStatisticsCount.
1152  int stats_array_size;
1153  if (PrintSafepointStatisticsTimeout > 0) {
1154    stats_array_size = 1;
1155    PrintSafepointStatistics = true;
1156  } else {
1157    stats_array_size = PrintSafepointStatisticsCount;
1158  }
1159  _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
1160                                                 * sizeof(SafepointStats), mtInternal);
1161  guarantee(_safepoint_stats != NULL,
1162            "not enough memory for safepoint instrumentation data");
1163
1164  if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
1165    need_to_track_page_armed_status = true;
1166  }
1167  init_done = true;
1168}
1169
1170void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1171  assert(init_done, "safepoint statistics array hasn't been initialized");
1172  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1173
1174  spstat->_time_stamp = _ts_of_current_safepoint;
1175
1176  VM_Operation *op = VMThread::vm_operation();
1177  spstat->_vmop_type = (op != NULL ? op->type() : -1);
1178  if (op != NULL) {
1179    _safepoint_reasons[spstat->_vmop_type]++;
1180  }
1181
1182  spstat->_nof_total_threads = nof_threads;
1183  spstat->_nof_initial_running_threads = nof_running;
1184  spstat->_nof_threads_hit_page_trap = 0;
1185
1186  // Records the start time of spinning. The real time spent on spinning
1187  // will be adjusted when spin is done. Same trick is applied for time
1188  // spent on waiting for threads to block.
1189  if (nof_running != 0) {
1190    spstat->_time_to_spin = os::javaTimeNanos();
1191  }  else {
1192    spstat->_time_to_spin = 0;
1193  }
1194}
1195
1196void SafepointSynchronize::update_statistics_on_spin_end() {
1197  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1198
1199  jlong cur_time = os::javaTimeNanos();
1200
1201  spstat->_nof_threads_wait_to_block = _waiting_to_block;
1202  if (spstat->_nof_initial_running_threads != 0) {
1203    spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1204  }
1205
1206  if (need_to_track_page_armed_status) {
1207    spstat->_page_armed = (PageArmed == 1);
1208  }
1209
1210  // Records the start time of waiting for to block. Updated when block is done.
1211  if (_waiting_to_block != 0) {
1212    spstat->_time_to_wait_to_block = cur_time;
1213  } else {
1214    spstat->_time_to_wait_to_block = 0;
1215  }
1216}
1217
1218void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1219  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1220
1221  if (spstat->_nof_threads_wait_to_block != 0) {
1222    spstat->_time_to_wait_to_block = end_time -
1223      spstat->_time_to_wait_to_block;
1224  }
1225
1226  // Records the end time of sync which will be used to calculate the total
1227  // vm operation time. Again, the real time spending in syncing will be deducted
1228  // from the start of the sync time later when end_statistics is called.
1229  spstat->_time_to_sync = end_time - _safepoint_begin_time;
1230  if (spstat->_time_to_sync > _max_sync_time) {
1231    _max_sync_time = spstat->_time_to_sync;
1232  }
1233
1234  spstat->_time_to_do_cleanups = end_time;
1235}
1236
1237void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
1238  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1239
1240  // Record how long spent in cleanup tasks.
1241  spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
1242
1243  cleanup_end_time = end_time;
1244}
1245
1246void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1247  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1248
1249  // Update the vm operation time.
1250  spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
1251  if (spstat->_time_to_exec_vmop > _max_vmop_time) {
1252    _max_vmop_time = spstat->_time_to_exec_vmop;
1253  }
1254  // Only the sync time longer than the specified
1255  // PrintSafepointStatisticsTimeout will be printed out right away.
1256  // By default, it is -1 meaning all samples will be put into the list.
1257  if ( PrintSafepointStatisticsTimeout > 0) {
1258    if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1259      print_statistics();
1260    }
1261  } else {
1262    // The safepoint statistics will be printed out when the _safepoin_stats
1263    // array fills up.
1264    if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
1265      print_statistics();
1266      _cur_stat_index = 0;
1267    } else {
1268      _cur_stat_index++;
1269    }
1270  }
1271}
1272
1273void SafepointSynchronize::print_statistics() {
1274  SafepointStats* sstats = _safepoint_stats;
1275
1276  for (int index = 0; index <= _cur_stat_index; index++) {
1277    if (index % 30 == 0) {
1278      print_header();
1279    }
1280    sstats = &_safepoint_stats[index];
1281    tty->print("%.3f: ", sstats->_time_stamp);
1282    tty->print("%-26s       ["
1283               INT32_FORMAT_W(8)INT32_FORMAT_W(11)INT32_FORMAT_W(15)
1284               "    ]    ",
1285               sstats->_vmop_type == -1 ? "no vm operation" :
1286               VM_Operation::name(sstats->_vmop_type),
1287               sstats->_nof_total_threads,
1288               sstats->_nof_initial_running_threads,
1289               sstats->_nof_threads_wait_to_block);
1290    // "/ MICROUNITS " is to convert the unit from nanos to millis.
1291    tty->print("  ["
1292               INT64_FORMAT_W(6)INT64_FORMAT_W(6)
1293               INT64_FORMAT_W(6)INT64_FORMAT_W(6)
1294               INT64_FORMAT_W(6)"    ]  ",
1295               sstats->_time_to_spin / MICROUNITS,
1296               sstats->_time_to_wait_to_block / MICROUNITS,
1297               sstats->_time_to_sync / MICROUNITS,
1298               sstats->_time_to_do_cleanups / MICROUNITS,
1299               sstats->_time_to_exec_vmop / MICROUNITS);
1300
1301    if (need_to_track_page_armed_status) {
1302      tty->print(INT32_FORMAT"         ", sstats->_page_armed);
1303    }
1304    tty->print_cr(INT32_FORMAT"   ", sstats->_nof_threads_hit_page_trap);
1305  }
1306}
1307
1308// This method will be called when VM exits. It will first call
1309// print_statistics to print out the rest of the sampling.  Then
1310// it tries to summarize the sampling.
1311void SafepointSynchronize::print_stat_on_exit() {
1312  if (_safepoint_stats == NULL) return;
1313
1314  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1315
1316  // During VM exit, end_statistics may not get called and in that
1317  // case, if the sync time is less than PrintSafepointStatisticsTimeout,
1318  // don't print it out.
1319  // Approximate the vm op time.
1320  _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
1321    os::javaTimeNanos() - cleanup_end_time;
1322
1323  if ( PrintSafepointStatisticsTimeout < 0 ||
1324       spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1325    print_statistics();
1326  }
1327  tty->cr();
1328
1329  // Print out polling page sampling status.
1330  if (!need_to_track_page_armed_status) {
1331    if (UseCompilerSafepoints) {
1332      tty->print_cr("Polling page always armed");
1333    }
1334  } else {
1335    tty->print_cr("Defer polling page loop count = %d\n",
1336                 DeferPollingPageLoopCount);
1337  }
1338
1339  for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1340    if (_safepoint_reasons[index] != 0) {
1341      tty->print_cr("%-26s"UINT64_FORMAT_W(10), VM_Operation::name(index),
1342                    _safepoint_reasons[index]);
1343    }
1344  }
1345
1346  tty->print_cr(UINT64_FORMAT_W(5)" VM operations coalesced during safepoint",
1347                _coalesced_vmop_count);
1348  tty->print_cr("Maximum sync time  "INT64_FORMAT_W(5)" ms",
1349                _max_sync_time / MICROUNITS);
1350  tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
1351                INT64_FORMAT_W(5)" ms",
1352                _max_vmop_time / MICROUNITS);
1353}
1354
1355// ------------------------------------------------------------------------------------------------
1356// Non-product code
1357
1358#ifndef PRODUCT
1359
1360void SafepointSynchronize::print_state() {
1361  if (_state == _not_synchronized) {
1362    tty->print_cr("not synchronized");
1363  } else if (_state == _synchronizing || _state == _synchronized) {
1364    tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
1365                  "synchronized");
1366
1367    for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
1368       cur->safepoint_state()->print();
1369    }
1370  }
1371}
1372
1373void SafepointSynchronize::safepoint_msg(const char* format, ...) {
1374  if (ShowSafepointMsgs) {
1375    va_list ap;
1376    va_start(ap, format);
1377    tty->vprint_cr(format, ap);
1378    va_end(ap);
1379  }
1380}
1381
1382#endif // !PRODUCT
1383