safepoint.cpp revision 605:98cb887364d3
1/*
2 * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25# include "incls/_precompiled.incl"
26# include "incls/_safepoint.cpp.incl"
27
28// --------------------------------------------------------------------------------------------------
29// Implementation of Safepoint begin/end
30
31SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
32volatile int  SafepointSynchronize::_waiting_to_block = 0;
33jlong SafepointSynchronize::_last_safepoint = 0;
34volatile int SafepointSynchronize::_safepoint_counter = 0;
35static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
36static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
37static bool timeout_error_printed = false;
38
39// Roll all threads forward to a safepoint and suspend them all
40void SafepointSynchronize::begin() {
41
42  Thread* myThread = Thread::current();
43  assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
44
45  _last_safepoint = os::javaTimeNanos();
46
47#ifndef SERIALGC
48  if (UseConcMarkSweepGC) {
49    // In the future we should investigate whether CMS can use the
50    // more-general mechanism below.  DLD (01/05).
51    ConcurrentMarkSweepThread::synchronize(false);
52  } else {
53    ConcurrentGCThread::safepoint_synchronize();
54  }
55#endif // SERIALGC
56
57  // By getting the Threads_lock, we assure that no threads are about to start or
58  // exit. It is released again in SafepointSynchronize::end().
59  Threads_lock->lock();
60
61  assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
62
63  int nof_threads = Threads::number_of_threads();
64
65  if (TraceSafepoint) {
66    tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
67  }
68
69  RuntimeService::record_safepoint_begin();
70
71  {
72  MutexLocker mu(Safepoint_lock);
73
74  // Set number of threads to wait for, before we initiate the callbacks
75  _waiting_to_block = nof_threads;
76  TryingToBlock     = 0 ;
77  int still_running = nof_threads;
78
79  // Save the starting time, so that it can be compared to see if this has taken
80  // too long to complete.
81  jlong safepoint_limit_time;
82  timeout_error_printed = false;
83
84  // Begin the process of bringing the system to a safepoint.
85  // Java threads can be in several different states and are
86  // stopped by different mechanisms:
87  //
88  //  1. Running interpreted
89  //     The interpeter dispatch table is changed to force it to
90  //     check for a safepoint condition between bytecodes.
91  //  2. Running in native code
92  //     When returning from the native code, a Java thread must check
93  //     the safepoint _state to see if we must block.  If the
94  //     VM thread sees a Java thread in native, it does
95  //     not wait for this thread to block.  The order of the memory
96  //     writes and reads of both the safepoint state and the Java
97  //     threads state is critical.  In order to guarantee that the
98  //     memory writes are serialized with respect to each other,
99  //     the VM thread issues a memory barrier instruction
100  //     (on MP systems).  In order to avoid the overhead of issuing
101  //     a memory barrier for each Java thread making native calls, each Java
102  //     thread performs a write to a single memory page after changing
103  //     the thread state.  The VM thread performs a sequence of
104  //     mprotect OS calls which forces all previous writes from all
105  //     Java threads to be serialized.  This is done in the
106  //     os::serialize_thread_states() call.  This has proven to be
107  //     much more efficient than executing a membar instruction
108  //     on every call to native code.
109  //  3. Running compiled Code
110  //     Compiled code reads a global (Safepoint Polling) page that
111  //     is set to fault if we are trying to get to a safepoint.
112  //  4. Blocked
113  //     A thread which is blocked will not be allowed to return from the
114  //     block condition until the safepoint operation is complete.
115  //  5. In VM or Transitioning between states
116  //     If a Java thread is currently running in the VM or transitioning
117  //     between states, the safepointing code will wait for the thread to
118  //     block itself when it attempts transitions to a new state.
119  //
120  _state            = _synchronizing;
121  OrderAccess::fence();
122
123  // Flush all thread states to memory
124  if (!UseMembar) {
125    os::serialize_thread_states();
126  }
127
128  // Make interpreter safepoint aware
129  Interpreter::notice_safepoints();
130
131  if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
132    // Make polling safepoint aware
133    guarantee (PageArmed == 0, "invariant") ;
134    PageArmed = 1 ;
135    os::make_polling_page_unreadable();
136  }
137
138  // Consider using active_processor_count() ... but that call is expensive.
139  int ncpus = os::processor_count() ;
140
141#ifdef ASSERT
142  for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
143    assert(cur->safepoint_state()->is_running(), "Illegal initial state");
144  }
145#endif // ASSERT
146
147  if (SafepointTimeout)
148    safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
149
150  // Iterate through all threads until it have been determined how to stop them all at a safepoint
151  unsigned int iterations = 0;
152  int steps = 0 ;
153  while(still_running > 0) {
154    for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
155      assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
156      ThreadSafepointState *cur_state = cur->safepoint_state();
157      if (cur_state->is_running()) {
158        cur_state->examine_state_of_thread();
159        if (!cur_state->is_running()) {
160           still_running--;
161           // consider adjusting steps downward:
162           //   steps = 0
163           //   steps -= NNN
164           //   steps >>= 1
165           //   steps = MIN(steps, 2000-100)
166           //   if (iterations != 0) steps -= NNN
167        }
168        if (TraceSafepoint && Verbose) cur_state->print();
169      }
170    }
171
172    if ( (PrintSafepointStatistics || (PrintSafepointStatisticsTimeout > 0))
173         && iterations == 0) {
174      begin_statistics(nof_threads, still_running);
175    }
176
177    if (still_running > 0) {
178      // Check for if it takes to long
179      if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
180        print_safepoint_timeout(_spinning_timeout);
181      }
182
183      // Spin to avoid context switching.
184      // There's a tension between allowing the mutators to run (and rendezvous)
185      // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
186      // a mutator might otherwise use profitably to reach a safepoint.  Excessive
187      // spinning by the VM thread on a saturated system can increase rendezvous latency.
188      // Blocking or yielding incur their own penalties in the form of context switching
189      // and the resultant loss of $ residency.
190      //
191      // Further complicating matters is that yield() does not work as naively expected
192      // on many platforms -- yield() does not guarantee that any other ready threads
193      // will run.   As such we revert yield_all() after some number of iterations.
194      // Yield_all() is implemented as a short unconditional sleep on some platforms.
195      // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
196      // can actually increase the time it takes the VM thread to detect that a system-wide
197      // stop-the-world safepoint has been reached.  In a pathological scenario such as that
198      // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
199      // In that case the mutators will be stalled waiting for the safepoint to complete and the
200      // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
201      // will eventually wake up and detect that all mutators are safe, at which point
202      // we'll again make progress.
203      //
204      // Beware too that that the VMThread typically runs at elevated priority.
205      // Its default priority is higher than the default mutator priority.
206      // Obviously, this complicates spinning.
207      //
208      // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
209      // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
210      //
211      // See the comments in synchronizer.cpp for additional remarks on spinning.
212      //
213      // In the future we might:
214      // 1. Modify the safepoint scheme to avoid potentally unbounded spinning.
215      //    This is tricky as the path used by a thread exiting the JVM (say on
216      //    on JNI call-out) simply stores into its state field.  The burden
217      //    is placed on the VM thread, which must poll (spin).
218      // 2. Find something useful to do while spinning.  If the safepoint is GC-related
219      //    we might aggressively scan the stacks of threads that are already safe.
220      // 3. Use Solaris schedctl to examine the state of the still-running mutators.
221      //    If all the mutators are ONPROC there's no reason to sleep or yield.
222      // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
223      // 5. Check system saturation.  If the system is not fully saturated then
224      //    simply spin and avoid sleep/yield.
225      // 6. As still-running mutators rendezvous they could unpark the sleeping
226      //    VMthread.  This works well for still-running mutators that become
227      //    safe.  The VMthread must still poll for mutators that call-out.
228      // 7. Drive the policy on time-since-begin instead of iterations.
229      // 8. Consider making the spin duration a function of the # of CPUs:
230      //    Spin = (((ncpus-1) * M) + K) + F(still_running)
231      //    Alternately, instead of counting iterations of the outer loop
232      //    we could count the # of threads visited in the inner loop, above.
233      // 9. On windows consider using the return value from SwitchThreadTo()
234      //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
235
236      if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
237         guarantee (PageArmed == 0, "invariant") ;
238         PageArmed = 1 ;
239         os::make_polling_page_unreadable();
240      }
241
242      // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
243      // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
244      ++steps ;
245      if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
246        SpinPause() ;     // MP-Polite spin
247      } else
248      if (steps < DeferThrSuspendLoopCount) {
249        os::NakedYield() ;
250      } else {
251        os::yield_all(steps) ;
252        // Alternately, the VM thread could transiently depress its scheduling priority or
253        // transiently increase the priority of the tardy mutator(s).
254      }
255
256      iterations ++ ;
257    }
258    assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
259  }
260  assert(still_running == 0, "sanity check");
261
262  if (PrintSafepointStatistics) {
263    update_statistics_on_spin_end();
264  }
265
266  // wait until all threads are stopped
267  while (_waiting_to_block > 0) {
268    if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
269    if (!SafepointTimeout || timeout_error_printed) {
270      Safepoint_lock->wait(true);  // true, means with no safepoint checks
271    } else {
272      // Compute remaining time
273      jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
274
275      // If there is no remaining time, then there is an error
276      if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
277        print_safepoint_timeout(_blocking_timeout);
278      }
279    }
280  }
281  assert(_waiting_to_block == 0, "sanity check");
282
283#ifndef PRODUCT
284  if (SafepointTimeout) {
285    jlong current_time = os::javaTimeNanos();
286    if (safepoint_limit_time < current_time) {
287      tty->print_cr("# SafepointSynchronize: Finished after "
288                    INT64_FORMAT_W(6) " ms",
289                    ((current_time - safepoint_limit_time) / MICROUNITS +
290                     SafepointTimeoutDelay));
291    }
292  }
293#endif
294
295  assert((_safepoint_counter & 0x1) == 0, "must be even");
296  assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
297  _safepoint_counter ++;
298
299  // Record state
300  _state = _synchronized;
301
302  OrderAccess::fence();
303
304  if (TraceSafepoint) {
305    VM_Operation *op = VMThread::vm_operation();
306    tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
307  }
308
309  RuntimeService::record_safepoint_synchronized();
310  if (PrintSafepointStatistics) {
311    update_statistics_on_sync_end(os::javaTimeNanos());
312  }
313
314  // Call stuff that needs to be run when a safepoint is just about to be completed
315  do_cleanup_tasks();
316  }
317}
318
319// Wake up all threads, so they are ready to resume execution after the safepoint
320// operation has been carried out
321void SafepointSynchronize::end() {
322
323  assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
324  assert((_safepoint_counter & 0x1) == 1, "must be odd");
325  _safepoint_counter ++;
326  // memory fence isn't required here since an odd _safepoint_counter
327  // value can do no harm and a fence is issued below anyway.
328
329  DEBUG_ONLY(Thread* myThread = Thread::current();)
330  assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
331
332  if (PrintSafepointStatistics) {
333    end_statistics(os::javaTimeNanos());
334  }
335
336#ifdef ASSERT
337  // A pending_exception cannot be installed during a safepoint.  The threads
338  // may install an async exception after they come back from a safepoint into
339  // pending_exception after they unblock.  But that should happen later.
340  for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
341    assert (!(cur->has_pending_exception() &&
342              cur->safepoint_state()->is_at_poll_safepoint()),
343            "safepoint installed a pending exception");
344  }
345#endif // ASSERT
346
347  if (PageArmed) {
348    // Make polling safepoint aware
349    os::make_polling_page_readable();
350    PageArmed = 0 ;
351  }
352
353  // Remove safepoint check from interpreter
354  Interpreter::ignore_safepoints();
355
356  {
357    MutexLocker mu(Safepoint_lock);
358
359    assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
360
361    // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
362    // when they get restarted.
363    _state = _not_synchronized;
364    OrderAccess::fence();
365
366    if (TraceSafepoint) {
367       tty->print_cr("Leaving safepoint region");
368    }
369
370    // Start suspended threads
371    for(JavaThread *current = Threads::first(); current; current = current->next()) {
372      // A problem occurring on Solaris is when attempting to restart threads
373      // the first #cpus - 1 go well, but then the VMThread is preempted when we get
374      // to the next one (since it has been running the longest).  We then have
375      // to wait for a cpu to become available before we can continue restarting
376      // threads.
377      // FIXME: This causes the performance of the VM to degrade when active and with
378      // large numbers of threads.  Apparently this is due to the synchronous nature
379      // of suspending threads.
380      //
381      // TODO-FIXME: the comments above are vestigial and no longer apply.
382      // Furthermore, using solaris' schedctl in this particular context confers no benefit
383      if (VMThreadHintNoPreempt) {
384        os::hint_no_preempt();
385      }
386      ThreadSafepointState* cur_state = current->safepoint_state();
387      assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
388      cur_state->restart();
389      assert(cur_state->is_running(), "safepoint state has not been reset");
390    }
391
392    RuntimeService::record_safepoint_end();
393
394    // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
395    // blocked in signal_thread_blocked
396    Threads_lock->unlock();
397
398  }
399#ifndef SERIALGC
400  // If there are any concurrent GC threads resume them.
401  if (UseConcMarkSweepGC) {
402    ConcurrentMarkSweepThread::desynchronize(false);
403  } else {
404    ConcurrentGCThread::safepoint_desynchronize();
405  }
406#endif // SERIALGC
407}
408
409bool SafepointSynchronize::is_cleanup_needed() {
410  // Need a safepoint if some inline cache buffers is non-empty
411  if (!InlineCacheBuffer::is_empty()) return true;
412  return false;
413}
414
415jlong CounterDecay::_last_timestamp = 0;
416
417static void do_method(methodOop m) {
418  m->invocation_counter()->decay();
419}
420
421void CounterDecay::decay() {
422  _last_timestamp = os::javaTimeMillis();
423
424  // This operation is going to be performed only at the end of a safepoint
425  // and hence GC's will not be going on, all Java mutators are suspended
426  // at this point and hence SystemDictionary_lock is also not needed.
427  assert(SafepointSynchronize::is_at_safepoint(), "can only be executed at a safepoint");
428  int nclasses = SystemDictionary::number_of_classes();
429  double classes_per_tick = nclasses * (CounterDecayMinIntervalLength * 1e-3 /
430                                        CounterHalfLifeTime);
431  for (int i = 0; i < classes_per_tick; i++) {
432    klassOop k = SystemDictionary::try_get_next_class();
433    if (k != NULL && k->klass_part()->oop_is_instance()) {
434      instanceKlass::cast(k)->methods_do(do_method);
435    }
436  }
437}
438
439// Various cleaning tasks that should be done periodically at safepoints
440void SafepointSynchronize::do_cleanup_tasks() {
441  jlong cleanup_time;
442
443  // Update fat-monitor pool, since this is a safepoint.
444  if (TraceSafepoint) {
445    cleanup_time = os::javaTimeNanos();
446  }
447
448  ObjectSynchronizer::deflate_idle_monitors();
449  InlineCacheBuffer::update_inline_caches();
450  if(UseCounterDecay && CounterDecay::is_decay_needed()) {
451    CounterDecay::decay();
452  }
453  NMethodSweeper::sweep();
454
455  if (TraceSafepoint) {
456    tty->print_cr("do_cleanup_tasks takes "INT64_FORMAT_W(6) "ms",
457                  (os::javaTimeNanos() - cleanup_time) / MICROUNITS);
458  }
459}
460
461
462bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
463  switch(state) {
464  case _thread_in_native:
465    // native threads are safe if they have no java stack or have walkable stack
466    return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
467
468   // blocked threads should have already have walkable stack
469  case _thread_blocked:
470    assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
471    return true;
472
473  default:
474    return false;
475  }
476}
477
478
479// -------------------------------------------------------------------------------------------------------
480// Implementation of Safepoint callback point
481
482void SafepointSynchronize::block(JavaThread *thread) {
483  assert(thread != NULL, "thread must be set");
484  assert(thread->is_Java_thread(), "not a Java thread");
485
486  // Threads shouldn't block if they are in the middle of printing, but...
487  ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
488
489  // Only bail from the block() call if the thread is gone from the
490  // thread list; starting to exit should still block.
491  if (thread->is_terminated()) {
492     // block current thread if we come here from native code when VM is gone
493     thread->block_if_vm_exited();
494
495     // otherwise do nothing
496     return;
497  }
498
499  JavaThreadState state = thread->thread_state();
500  thread->frame_anchor()->make_walkable(thread);
501
502  // Check that we have a valid thread_state at this point
503  switch(state) {
504    case _thread_in_vm_trans:
505    case _thread_in_Java:        // From compiled code
506
507      // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
508      // we pretend we are still in the VM.
509      thread->set_thread_state(_thread_in_vm);
510
511      if (is_synchronizing()) {
512         Atomic::inc (&TryingToBlock) ;
513      }
514
515      // We will always be holding the Safepoint_lock when we are examine the state
516      // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
517      // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
518      Safepoint_lock->lock_without_safepoint_check();
519      if (is_synchronizing()) {
520        // Decrement the number of threads to wait for and signal vm thread
521        assert(_waiting_to_block > 0, "sanity check");
522        _waiting_to_block--;
523        thread->safepoint_state()->set_has_called_back(true);
524
525        // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
526        if (_waiting_to_block == 0) {
527          Safepoint_lock->notify_all();
528        }
529      }
530
531      // We transition the thread to state _thread_blocked here, but
532      // we can't do our usual check for external suspension and then
533      // self-suspend after the lock_without_safepoint_check() call
534      // below because we are often called during transitions while
535      // we hold different locks. That would leave us suspended while
536      // holding a resource which results in deadlocks.
537      thread->set_thread_state(_thread_blocked);
538      Safepoint_lock->unlock();
539
540      // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
541      // the entire safepoint, the threads will all line up here during the safepoint.
542      Threads_lock->lock_without_safepoint_check();
543      // restore original state. This is important if the thread comes from compiled code, so it
544      // will continue to execute with the _thread_in_Java state.
545      thread->set_thread_state(state);
546      Threads_lock->unlock();
547      break;
548
549    case _thread_in_native_trans:
550    case _thread_blocked_trans:
551    case _thread_new_trans:
552      if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
553        thread->print_thread_state();
554        fatal("Deadlock in safepoint code.  "
555              "Should have called back to the VM before blocking.");
556      }
557
558      // We transition the thread to state _thread_blocked here, but
559      // we can't do our usual check for external suspension and then
560      // self-suspend after the lock_without_safepoint_check() call
561      // below because we are often called during transitions while
562      // we hold different locks. That would leave us suspended while
563      // holding a resource which results in deadlocks.
564      thread->set_thread_state(_thread_blocked);
565
566      // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
567      // the safepoint code might still be waiting for it to block. We need to change the state here,
568      // so it can see that it is at a safepoint.
569
570      // Block until the safepoint operation is completed.
571      Threads_lock->lock_without_safepoint_check();
572
573      // Restore state
574      thread->set_thread_state(state);
575
576      Threads_lock->unlock();
577      break;
578
579    default:
580     fatal1("Illegal threadstate encountered: %d", state);
581  }
582
583  // Check for pending. async. exceptions or suspends - except if the
584  // thread was blocked inside the VM. has_special_runtime_exit_condition()
585  // is called last since it grabs a lock and we only want to do that when
586  // we must.
587  //
588  // Note: we never deliver an async exception at a polling point as the
589  // compiler may not have an exception handler for it. The polling
590  // code will notice the async and deoptimize and the exception will
591  // be delivered. (Polling at a return point is ok though). Sure is
592  // a lot of bother for a deprecated feature...
593  //
594  // We don't deliver an async exception if the thread state is
595  // _thread_in_native_trans so JNI functions won't be called with
596  // a surprising pending exception. If the thread state is going back to java,
597  // async exception is checked in check_special_condition_for_native_trans().
598
599  if (state != _thread_blocked_trans &&
600      state != _thread_in_vm_trans &&
601      thread->has_special_runtime_exit_condition()) {
602    thread->handle_special_runtime_exit_condition(
603      !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
604  }
605}
606
607// ------------------------------------------------------------------------------------------------------
608// Exception handlers
609
610#ifndef PRODUCT
611#ifdef _LP64
612#define PTR_PAD ""
613#else
614#define PTR_PAD "        "
615#endif
616
617static void print_ptrs(intptr_t oldptr, intptr_t newptr, bool wasoop) {
618  bool is_oop = newptr ? ((oop)newptr)->is_oop() : false;
619  tty->print_cr(PTR_FORMAT PTR_PAD " %s %c " PTR_FORMAT PTR_PAD " %s %s",
620                oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
621                newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
622}
623
624static void print_longs(jlong oldptr, jlong newptr, bool wasoop) {
625  bool is_oop = newptr ? ((oop)(intptr_t)newptr)->is_oop() : false;
626  tty->print_cr(PTR64_FORMAT " %s %c " PTR64_FORMAT " %s %s",
627                oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
628                newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
629}
630
631#ifdef SPARC
632static void print_me(intptr_t *new_sp, intptr_t *old_sp, bool *was_oops) {
633#ifdef _LP64
634  tty->print_cr("--------+------address-----+------before-----------+-------after----------+");
635  const int incr = 1;           // Increment to skip a long, in units of intptr_t
636#else
637  tty->print_cr("--------+--address-+------before-----------+-------after----------+");
638  const int incr = 2;           // Increment to skip a long, in units of intptr_t
639#endif
640  tty->print_cr("---SP---|");
641  for( int i=0; i<16; i++ ) {
642    tty->print("blob %c%d |"PTR_FORMAT" ","LO"[i>>3],i&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
643  tty->print_cr("--------|");
644  for( int i1=0; i1<frame::memory_parameter_word_sp_offset-16; i1++ ) {
645    tty->print("argv pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
646  tty->print("     pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++);
647  tty->print_cr("--------|");
648  tty->print(" G1     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
649  tty->print(" G3     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
650  tty->print(" G4     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
651  tty->print(" G5     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
652  tty->print_cr(" FSR    |"PTR_FORMAT" "PTR64_FORMAT"       "PTR64_FORMAT,new_sp,*(jlong*)old_sp,*(jlong*)new_sp);
653  old_sp += incr; new_sp += incr; was_oops += incr;
654  // Skip the floats
655  tty->print_cr("--Float-|"PTR_FORMAT,new_sp);
656  tty->print_cr("---FP---|");
657  old_sp += incr*32;  new_sp += incr*32;  was_oops += incr*32;
658  for( int i2=0; i2<16; i2++ ) {
659    tty->print("call %c%d |"PTR_FORMAT" ","LI"[i2>>3],i2&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
660  tty->print_cr("");
661}
662#endif  // SPARC
663#endif  // PRODUCT
664
665
666void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
667  assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
668  assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
669  assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
670
671  // Uncomment this to get some serious before/after printing of the
672  // Sparc safepoint-blob frame structure.
673  /*
674  intptr_t* sp = thread->last_Java_sp();
675  intptr_t stack_copy[150];
676  for( int i=0; i<150; i++ ) stack_copy[i] = sp[i];
677  bool was_oops[150];
678  for( int i=0; i<150; i++ )
679    was_oops[i] = stack_copy[i] ? ((oop)stack_copy[i])->is_oop() : false;
680  */
681
682  if (ShowSafepointMsgs) {
683    tty->print("handle_polling_page_exception: ");
684  }
685
686  if (PrintSafepointStatistics) {
687    inc_page_trap_count();
688  }
689
690  ThreadSafepointState* state = thread->safepoint_state();
691
692  state->handle_polling_page_exception();
693  // print_me(sp,stack_copy,was_oops);
694}
695
696
697void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
698  if (!timeout_error_printed) {
699    timeout_error_printed = true;
700    // Print out the thread infor which didn't reach the safepoint for debugging
701    // purposes (useful when there are lots of threads in the debugger).
702    tty->print_cr("");
703    tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
704    if (reason ==  _spinning_timeout) {
705      tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
706    } else if (reason == _blocking_timeout) {
707      tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
708    }
709
710    tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
711    ThreadSafepointState *cur_state;
712    ResourceMark rm;
713    for(JavaThread *cur_thread = Threads::first(); cur_thread;
714        cur_thread = cur_thread->next()) {
715      cur_state = cur_thread->safepoint_state();
716
717      if (cur_thread->thread_state() != _thread_blocked &&
718          ((reason == _spinning_timeout && cur_state->is_running()) ||
719           (reason == _blocking_timeout && !cur_state->has_called_back()))) {
720        tty->print("# ");
721        cur_thread->print();
722        tty->print_cr("");
723      }
724    }
725    tty->print_cr("# SafepointSynchronize::begin: (End of list)");
726  }
727
728  // To debug the long safepoint, specify both DieOnSafepointTimeout &
729  // ShowMessageBoxOnError.
730  if (DieOnSafepointTimeout) {
731    char msg[1024];
732    VM_Operation *op = VMThread::vm_operation();
733    sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
734            SafepointTimeoutDelay,
735            op != NULL ? op->name() : "no vm operation");
736    fatal(msg);
737  }
738}
739
740
741// -------------------------------------------------------------------------------------------------------
742// Implementation of ThreadSafepointState
743
744ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
745  _thread = thread;
746  _type   = _running;
747  _has_called_back = false;
748  _at_poll_safepoint = false;
749}
750
751void ThreadSafepointState::create(JavaThread *thread) {
752  ThreadSafepointState *state = new ThreadSafepointState(thread);
753  thread->set_safepoint_state(state);
754}
755
756void ThreadSafepointState::destroy(JavaThread *thread) {
757  if (thread->safepoint_state()) {
758    delete(thread->safepoint_state());
759    thread->set_safepoint_state(NULL);
760  }
761}
762
763void ThreadSafepointState::examine_state_of_thread() {
764  assert(is_running(), "better be running or just have hit safepoint poll");
765
766  JavaThreadState state = _thread->thread_state();
767
768  // Check for a thread that is suspended. Note that thread resume tries
769  // to grab the Threads_lock which we own here, so a thread cannot be
770  // resumed during safepoint synchronization.
771
772  // We check with locking because another thread that has not yet
773  // synchronized may be trying to suspend this one.
774  bool is_suspended = _thread->is_any_suspended_with_lock();
775  if (is_suspended) {
776    roll_forward(_at_safepoint);
777    return;
778  }
779
780  // Some JavaThread states have an initial safepoint state of
781  // running, but are actually at a safepoint. We will happily
782  // agree and update the safepoint state here.
783  if (SafepointSynchronize::safepoint_safe(_thread, state)) {
784      roll_forward(_at_safepoint);
785      return;
786  }
787
788  if (state == _thread_in_vm) {
789    roll_forward(_call_back);
790    return;
791  }
792
793  // All other thread states will continue to run until they
794  // transition and self-block in state _blocked
795  // Safepoint polling in compiled code causes the Java threads to do the same.
796  // Note: new threads may require a malloc so they must be allowed to finish
797
798  assert(is_running(), "examine_state_of_thread on non-running thread");
799  return;
800}
801
802// Returns true is thread could not be rolled forward at present position.
803void ThreadSafepointState::roll_forward(suspend_type type) {
804  _type = type;
805
806  switch(_type) {
807    case _at_safepoint:
808      SafepointSynchronize::signal_thread_at_safepoint();
809      break;
810
811    case _call_back:
812      set_has_called_back(false);
813      break;
814
815    case _running:
816    default:
817      ShouldNotReachHere();
818  }
819}
820
821void ThreadSafepointState::restart() {
822  switch(type()) {
823    case _at_safepoint:
824    case _call_back:
825      break;
826
827    case _running:
828    default:
829       tty->print_cr("restart thread "INTPTR_FORMAT" with state %d",
830                      _thread, _type);
831       _thread->print();
832      ShouldNotReachHere();
833  }
834  _type = _running;
835  set_has_called_back(false);
836}
837
838
839void ThreadSafepointState::print_on(outputStream *st) const {
840  const char *s;
841
842  switch(_type) {
843    case _running                : s = "_running";              break;
844    case _at_safepoint           : s = "_at_safepoint";         break;
845    case _call_back              : s = "_call_back";            break;
846    default:
847      ShouldNotReachHere();
848  }
849
850  st->print_cr("Thread: " INTPTR_FORMAT
851              "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
852               _thread, _thread->osthread()->thread_id(), s, _has_called_back,
853               _at_poll_safepoint);
854
855  _thread->print_thread_state_on(st);
856}
857
858
859// ---------------------------------------------------------------------------------------------------------------------
860
861// Block the thread at the safepoint poll or poll return.
862void ThreadSafepointState::handle_polling_page_exception() {
863
864  // Check state.  block() will set thread state to thread_in_vm which will
865  // cause the safepoint state _type to become _call_back.
866  assert(type() == ThreadSafepointState::_running,
867         "polling page exception on thread not running state");
868
869  // Step 1: Find the nmethod from the return address
870  if (ShowSafepointMsgs && Verbose) {
871    tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
872  }
873  address real_return_addr = thread()->saved_exception_pc();
874
875  CodeBlob *cb = CodeCache::find_blob(real_return_addr);
876  assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
877  nmethod* nm = (nmethod*)cb;
878
879  // Find frame of caller
880  frame stub_fr = thread()->last_frame();
881  CodeBlob* stub_cb = stub_fr.cb();
882  assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
883  RegisterMap map(thread(), true);
884  frame caller_fr = stub_fr.sender(&map);
885
886  // Should only be poll_return or poll
887  assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
888
889  // This is a poll immediately before a return. The exception handling code
890  // has already had the effect of causing the return to occur, so the execution
891  // will continue immediately after the call. In addition, the oopmap at the
892  // return point does not mark the return value as an oop (if it is), so
893  // it needs a handle here to be updated.
894  if( nm->is_at_poll_return(real_return_addr) ) {
895    // See if return type is an oop.
896    bool return_oop = nm->method()->is_returning_oop();
897    Handle return_value;
898    if (return_oop) {
899      // The oop result has been saved on the stack together with all
900      // the other registers. In order to preserve it over GCs we need
901      // to keep it in a handle.
902      oop result = caller_fr.saved_oop_result(&map);
903      assert(result == NULL || result->is_oop(), "must be oop");
904      return_value = Handle(thread(), result);
905      assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
906    }
907
908    // Block the thread
909    SafepointSynchronize::block(thread());
910
911    // restore oop result, if any
912    if (return_oop) {
913      caller_fr.set_saved_oop_result(&map, return_value());
914    }
915  }
916
917  // This is a safepoint poll. Verify the return address and block.
918  else {
919    set_at_poll_safepoint(true);
920
921    // verify the blob built the "return address" correctly
922    assert(real_return_addr == caller_fr.pc(), "must match");
923
924    // Block the thread
925    SafepointSynchronize::block(thread());
926    set_at_poll_safepoint(false);
927
928    // If we have a pending async exception deoptimize the frame
929    // as otherwise we may never deliver it.
930    if (thread()->has_async_condition()) {
931      ThreadInVMfromJavaNoAsyncException __tiv(thread());
932      VM_DeoptimizeFrame deopt(thread(), caller_fr.id());
933      VMThread::execute(&deopt);
934    }
935
936    // If an exception has been installed we must check for a pending deoptimization
937    // Deoptimize frame if exception has been thrown.
938
939    if (thread()->has_pending_exception() ) {
940      RegisterMap map(thread(), true);
941      frame caller_fr = stub_fr.sender(&map);
942      if (caller_fr.is_deoptimized_frame()) {
943        // The exception patch will destroy registers that are still
944        // live and will be needed during deoptimization. Defer the
945        // Async exception should have defered the exception until the
946        // next safepoint which will be detected when we get into
947        // the interpreter so if we have an exception now things
948        // are messed up.
949
950        fatal("Exception installed and deoptimization is pending");
951      }
952    }
953  }
954}
955
956
957//
958//                     Statistics & Instrumentations
959//
960SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
961int    SafepointSynchronize::_cur_stat_index = 0;
962julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
963julong SafepointSynchronize::_coalesced_vmop_count = 0;
964jlong  SafepointSynchronize::_max_sync_time = 0;
965
966// last_safepoint_start_time records the start time of last safepoint.
967static jlong  last_safepoint_start_time = 0;
968static jlong  sync_end_time = 0;
969static bool   need_to_track_page_armed_status = false;
970static bool   init_done = false;
971
972void SafepointSynchronize::deferred_initialize_stat() {
973  if (init_done) return;
974
975  if (PrintSafepointStatisticsCount <= 0) {
976    fatal("Wrong PrintSafepointStatisticsCount");
977  }
978
979  // If PrintSafepointStatisticsTimeout is specified, the statistics data will
980  // be printed right away, in which case, _safepoint_stats will regress to
981  // a single element array. Otherwise, it is a circular ring buffer with default
982  // size of PrintSafepointStatisticsCount.
983  int stats_array_size;
984  if (PrintSafepointStatisticsTimeout > 0) {
985    stats_array_size = 1;
986    PrintSafepointStatistics = true;
987  } else {
988    stats_array_size = PrintSafepointStatisticsCount;
989  }
990  _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
991                                                 * sizeof(SafepointStats));
992  guarantee(_safepoint_stats != NULL,
993            "not enough memory for safepoint instrumentation data");
994
995  if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
996    need_to_track_page_armed_status = true;
997  }
998
999  tty->print("     vmop_name               "
1000             "[threads: total initially_running wait_to_block] ");
1001  tty->print("[time: spin block sync] "
1002             "[vmop_time  time_elapsed] ");
1003
1004  // no page armed status printed out if it is always armed.
1005  if (need_to_track_page_armed_status) {
1006    tty->print("page_armed ");
1007  }
1008
1009  tty->print_cr("page_trap_count");
1010
1011  init_done = true;
1012}
1013
1014void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1015  deferred_initialize_stat();
1016
1017  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1018
1019  VM_Operation *op = VMThread::vm_operation();
1020  spstat->_vmop_type = (op != NULL ? op->type() : -1);
1021  if (op != NULL) {
1022    _safepoint_reasons[spstat->_vmop_type]++;
1023  }
1024
1025  spstat->_nof_total_threads = nof_threads;
1026  spstat->_nof_initial_running_threads = nof_running;
1027  spstat->_nof_threads_hit_page_trap = 0;
1028
1029  // Records the start time of spinning. The real time spent on spinning
1030  // will be adjusted when spin is done. Same trick is applied for time
1031  // spent on waiting for threads to block.
1032  if (nof_running != 0) {
1033    spstat->_time_to_spin = os::javaTimeNanos();
1034  }  else {
1035    spstat->_time_to_spin = 0;
1036  }
1037
1038  if (last_safepoint_start_time == 0) {
1039    spstat->_time_elapsed_since_last_safepoint = 0;
1040  } else {
1041    spstat->_time_elapsed_since_last_safepoint = _last_safepoint -
1042      last_safepoint_start_time;
1043  }
1044  last_safepoint_start_time = _last_safepoint;
1045}
1046
1047void SafepointSynchronize::update_statistics_on_spin_end() {
1048  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1049
1050  jlong cur_time = os::javaTimeNanos();
1051
1052  spstat->_nof_threads_wait_to_block = _waiting_to_block;
1053  if (spstat->_nof_initial_running_threads != 0) {
1054    spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1055  }
1056
1057  if (need_to_track_page_armed_status) {
1058    spstat->_page_armed = (PageArmed == 1);
1059  }
1060
1061  // Records the start time of waiting for to block. Updated when block is done.
1062  if (_waiting_to_block != 0) {
1063    spstat->_time_to_wait_to_block = cur_time;
1064  } else {
1065    spstat->_time_to_wait_to_block = 0;
1066  }
1067}
1068
1069void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1070  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1071
1072  if (spstat->_nof_threads_wait_to_block != 0) {
1073    spstat->_time_to_wait_to_block = end_time -
1074      spstat->_time_to_wait_to_block;
1075  }
1076
1077  // Records the end time of sync which will be used to calculate the total
1078  // vm operation time. Again, the real time spending in syncing will be deducted
1079  // from the start of the sync time later when end_statistics is called.
1080  spstat->_time_to_sync = end_time - _last_safepoint;
1081  if (spstat->_time_to_sync > _max_sync_time) {
1082    _max_sync_time = spstat->_time_to_sync;
1083  }
1084  sync_end_time = end_time;
1085}
1086
1087void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1088  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1089
1090  // Update the vm operation time.
1091  spstat->_time_to_exec_vmop = vmop_end_time -  sync_end_time;
1092  // Only the sync time longer than the specified
1093  // PrintSafepointStatisticsTimeout will be printed out right away.
1094  // By default, it is -1 meaning all samples will be put into the list.
1095  if ( PrintSafepointStatisticsTimeout > 0) {
1096    if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1097      print_statistics();
1098    }
1099  } else {
1100    // The safepoint statistics will be printed out when the _safepoin_stats
1101    // array fills up.
1102    if (_cur_stat_index != PrintSafepointStatisticsCount - 1) {
1103      _cur_stat_index ++;
1104    } else {
1105      print_statistics();
1106      _cur_stat_index = 0;
1107      tty->print_cr("");
1108    }
1109  }
1110}
1111
1112void SafepointSynchronize::print_statistics() {
1113  int index;
1114  SafepointStats* sstats = _safepoint_stats;
1115
1116  for (index = 0; index <= _cur_stat_index; index++) {
1117    sstats = &_safepoint_stats[index];
1118    tty->print("%-28s       ["
1119               INT32_FORMAT_W(8)INT32_FORMAT_W(11)INT32_FORMAT_W(15)
1120               "]   ",
1121               sstats->_vmop_type == -1 ? "no vm operation" :
1122               VM_Operation::name(sstats->_vmop_type),
1123               sstats->_nof_total_threads,
1124               sstats->_nof_initial_running_threads,
1125               sstats->_nof_threads_wait_to_block);
1126    // "/ MICROUNITS " is to convert the unit from nanos to millis.
1127    tty->print("       ["
1128               INT64_FORMAT_W(6)INT64_FORMAT_W(6)INT64_FORMAT_W(6)
1129               "]     "
1130               "["INT64_FORMAT_W(6)INT64_FORMAT_W(9) "]          ",
1131               sstats->_time_to_spin / MICROUNITS,
1132               sstats->_time_to_wait_to_block / MICROUNITS,
1133               sstats->_time_to_sync / MICROUNITS,
1134               sstats->_time_to_exec_vmop / MICROUNITS,
1135               sstats->_time_elapsed_since_last_safepoint / MICROUNITS);
1136
1137    if (need_to_track_page_armed_status) {
1138      tty->print(INT32_FORMAT"         ", sstats->_page_armed);
1139    }
1140    tty->print_cr(INT32_FORMAT"   ", sstats->_nof_threads_hit_page_trap);
1141  }
1142}
1143
1144// This method will be called when VM exits. It will first call
1145// print_statistics to print out the rest of the sampling.  Then
1146// it tries to summarize the sampling.
1147void SafepointSynchronize::print_stat_on_exit() {
1148  if (_safepoint_stats == NULL) return;
1149
1150  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1151
1152  // During VM exit, end_statistics may not get called and in that
1153  // case, if the sync time is less than PrintSafepointStatisticsTimeout,
1154  // don't print it out.
1155  // Approximate the vm op time.
1156  _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
1157    os::javaTimeNanos() - sync_end_time;
1158
1159  if ( PrintSafepointStatisticsTimeout < 0 ||
1160       spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1161    print_statistics();
1162  }
1163  tty->print_cr("");
1164
1165  // Print out polling page sampling status.
1166  if (!need_to_track_page_armed_status) {
1167    if (UseCompilerSafepoints) {
1168      tty->print_cr("Polling page always armed");
1169    }
1170  } else {
1171    tty->print_cr("Defer polling page loop count = %d\n",
1172                 DeferPollingPageLoopCount);
1173  }
1174
1175  for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1176    if (_safepoint_reasons[index] != 0) {
1177      tty->print_cr("%-26s"UINT64_FORMAT_W(10), VM_Operation::name(index),
1178                    _safepoint_reasons[index]);
1179    }
1180  }
1181
1182  tty->print_cr(UINT64_FORMAT_W(5)" VM operations coalesced during safepoint",
1183                _coalesced_vmop_count);
1184  tty->print_cr("Maximum sync time  "INT64_FORMAT_W(5)" ms",
1185                _max_sync_time / MICROUNITS);
1186}
1187
1188// ------------------------------------------------------------------------------------------------
1189// Non-product code
1190
1191#ifndef PRODUCT
1192
1193void SafepointSynchronize::print_state() {
1194  if (_state == _not_synchronized) {
1195    tty->print_cr("not synchronized");
1196  } else if (_state == _synchronizing || _state == _synchronized) {
1197    tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
1198                  "synchronized");
1199
1200    for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
1201       cur->safepoint_state()->print();
1202    }
1203  }
1204}
1205
1206void SafepointSynchronize::safepoint_msg(const char* format, ...) {
1207  if (ShowSafepointMsgs) {
1208    va_list ap;
1209    va_start(ap, format);
1210    tty->vprint_cr(format, ap);
1211    va_end(ap);
1212  }
1213}
1214
1215#endif // !PRODUCT
1216