safepoint.cpp revision 2721:f08d439fab8c
1/*
2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "code/codeCache.hpp"
28#include "code/icBuffer.hpp"
29#include "code/nmethod.hpp"
30#include "code/pcDesc.hpp"
31#include "code/scopeDesc.hpp"
32#include "gc_interface/collectedHeap.hpp"
33#include "interpreter/interpreter.hpp"
34#include "memory/resourceArea.hpp"
35#include "memory/universe.inline.hpp"
36#include "oops/oop.inline.hpp"
37#include "oops/symbol.hpp"
38#include "runtime/compilationPolicy.hpp"
39#include "runtime/deoptimization.hpp"
40#include "runtime/frame.inline.hpp"
41#include "runtime/interfaceSupport.hpp"
42#include "runtime/mutexLocker.hpp"
43#include "runtime/osThread.hpp"
44#include "runtime/safepoint.hpp"
45#include "runtime/signature.hpp"
46#include "runtime/stubCodeGenerator.hpp"
47#include "runtime/stubRoutines.hpp"
48#include "runtime/sweeper.hpp"
49#include "runtime/synchronizer.hpp"
50#include "services/runtimeService.hpp"
51#include "utilities/events.hpp"
52#ifdef TARGET_ARCH_x86
53# include "nativeInst_x86.hpp"
54# include "vmreg_x86.inline.hpp"
55#endif
56#ifdef TARGET_ARCH_sparc
57# include "nativeInst_sparc.hpp"
58# include "vmreg_sparc.inline.hpp"
59#endif
60#ifdef TARGET_ARCH_zero
61# include "nativeInst_zero.hpp"
62# include "vmreg_zero.inline.hpp"
63#endif
64#ifdef TARGET_ARCH_arm
65# include "nativeInst_arm.hpp"
66# include "vmreg_arm.inline.hpp"
67#endif
68#ifdef TARGET_ARCH_ppc
69# include "nativeInst_ppc.hpp"
70# include "vmreg_ppc.inline.hpp"
71#endif
72#ifdef TARGET_OS_FAMILY_linux
73# include "thread_linux.inline.hpp"
74#endif
75#ifdef TARGET_OS_FAMILY_solaris
76# include "thread_solaris.inline.hpp"
77#endif
78#ifdef TARGET_OS_FAMILY_windows
79# include "thread_windows.inline.hpp"
80#endif
81#ifdef TARGET_OS_FAMILY_bsd
82# include "thread_bsd.inline.hpp"
83#endif
84#ifndef SERIALGC
85#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
86#include "gc_implementation/shared/concurrentGCThread.hpp"
87#endif
88#ifdef COMPILER1
89#include "c1/c1_globals.hpp"
90#endif
91
92// --------------------------------------------------------------------------------------------------
93// Implementation of Safepoint begin/end
94
95SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
96volatile int  SafepointSynchronize::_waiting_to_block = 0;
97volatile int SafepointSynchronize::_safepoint_counter = 0;
98long  SafepointSynchronize::_end_of_last_safepoint = 0;
99static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
100static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
101static bool timeout_error_printed = false;
102
103// Roll all threads forward to a safepoint and suspend them all
104void SafepointSynchronize::begin() {
105
106  Thread* myThread = Thread::current();
107  assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
108
109  if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
110    _safepoint_begin_time = os::javaTimeNanos();
111    _ts_of_current_safepoint = tty->time_stamp().seconds();
112  }
113
114#ifndef SERIALGC
115  if (UseConcMarkSweepGC) {
116    // In the future we should investigate whether CMS can use the
117    // more-general mechanism below.  DLD (01/05).
118    ConcurrentMarkSweepThread::synchronize(false);
119  } else if (UseG1GC) {
120    ConcurrentGCThread::safepoint_synchronize();
121  }
122#endif // SERIALGC
123
124  // By getting the Threads_lock, we assure that no threads are about to start or
125  // exit. It is released again in SafepointSynchronize::end().
126  Threads_lock->lock();
127
128  assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
129
130  int nof_threads = Threads::number_of_threads();
131
132  if (TraceSafepoint) {
133    tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
134  }
135
136  RuntimeService::record_safepoint_begin();
137
138  {
139  MutexLocker mu(Safepoint_lock);
140
141  // Set number of threads to wait for, before we initiate the callbacks
142  _waiting_to_block = nof_threads;
143  TryingToBlock     = 0 ;
144  int still_running = nof_threads;
145
146  // Save the starting time, so that it can be compared to see if this has taken
147  // too long to complete.
148  jlong safepoint_limit_time;
149  timeout_error_printed = false;
150
151  // PrintSafepointStatisticsTimeout can be specified separately. When
152  // specified, PrintSafepointStatistics will be set to true in
153  // deferred_initialize_stat method. The initialization has to be done
154  // early enough to avoid any races. See bug 6880029 for details.
155  if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
156    deferred_initialize_stat();
157  }
158
159  // Begin the process of bringing the system to a safepoint.
160  // Java threads can be in several different states and are
161  // stopped by different mechanisms:
162  //
163  //  1. Running interpreted
164  //     The interpeter dispatch table is changed to force it to
165  //     check for a safepoint condition between bytecodes.
166  //  2. Running in native code
167  //     When returning from the native code, a Java thread must check
168  //     the safepoint _state to see if we must block.  If the
169  //     VM thread sees a Java thread in native, it does
170  //     not wait for this thread to block.  The order of the memory
171  //     writes and reads of both the safepoint state and the Java
172  //     threads state is critical.  In order to guarantee that the
173  //     memory writes are serialized with respect to each other,
174  //     the VM thread issues a memory barrier instruction
175  //     (on MP systems).  In order to avoid the overhead of issuing
176  //     a memory barrier for each Java thread making native calls, each Java
177  //     thread performs a write to a single memory page after changing
178  //     the thread state.  The VM thread performs a sequence of
179  //     mprotect OS calls which forces all previous writes from all
180  //     Java threads to be serialized.  This is done in the
181  //     os::serialize_thread_states() call.  This has proven to be
182  //     much more efficient than executing a membar instruction
183  //     on every call to native code.
184  //  3. Running compiled Code
185  //     Compiled code reads a global (Safepoint Polling) page that
186  //     is set to fault if we are trying to get to a safepoint.
187  //  4. Blocked
188  //     A thread which is blocked will not be allowed to return from the
189  //     block condition until the safepoint operation is complete.
190  //  5. In VM or Transitioning between states
191  //     If a Java thread is currently running in the VM or transitioning
192  //     between states, the safepointing code will wait for the thread to
193  //     block itself when it attempts transitions to a new state.
194  //
195  _state            = _synchronizing;
196  OrderAccess::fence();
197
198  // Flush all thread states to memory
199  if (!UseMembar) {
200    os::serialize_thread_states();
201  }
202
203  // Make interpreter safepoint aware
204  Interpreter::notice_safepoints();
205
206  if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
207    // Make polling safepoint aware
208    guarantee (PageArmed == 0, "invariant") ;
209    PageArmed = 1 ;
210    os::make_polling_page_unreadable();
211  }
212
213  // Consider using active_processor_count() ... but that call is expensive.
214  int ncpus = os::processor_count() ;
215
216#ifdef ASSERT
217  for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
218    assert(cur->safepoint_state()->is_running(), "Illegal initial state");
219  }
220#endif // ASSERT
221
222  if (SafepointTimeout)
223    safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
224
225  // Iterate through all threads until it have been determined how to stop them all at a safepoint
226  unsigned int iterations = 0;
227  int steps = 0 ;
228  while(still_running > 0) {
229    for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
230      assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
231      ThreadSafepointState *cur_state = cur->safepoint_state();
232      if (cur_state->is_running()) {
233        cur_state->examine_state_of_thread();
234        if (!cur_state->is_running()) {
235           still_running--;
236           // consider adjusting steps downward:
237           //   steps = 0
238           //   steps -= NNN
239           //   steps >>= 1
240           //   steps = MIN(steps, 2000-100)
241           //   if (iterations != 0) steps -= NNN
242        }
243        if (TraceSafepoint && Verbose) cur_state->print();
244      }
245    }
246
247    if (PrintSafepointStatistics && iterations == 0) {
248      begin_statistics(nof_threads, still_running);
249    }
250
251    if (still_running > 0) {
252      // Check for if it takes to long
253      if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
254        print_safepoint_timeout(_spinning_timeout);
255      }
256
257      // Spin to avoid context switching.
258      // There's a tension between allowing the mutators to run (and rendezvous)
259      // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
260      // a mutator might otherwise use profitably to reach a safepoint.  Excessive
261      // spinning by the VM thread on a saturated system can increase rendezvous latency.
262      // Blocking or yielding incur their own penalties in the form of context switching
263      // and the resultant loss of $ residency.
264      //
265      // Further complicating matters is that yield() does not work as naively expected
266      // on many platforms -- yield() does not guarantee that any other ready threads
267      // will run.   As such we revert yield_all() after some number of iterations.
268      // Yield_all() is implemented as a short unconditional sleep on some platforms.
269      // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
270      // can actually increase the time it takes the VM thread to detect that a system-wide
271      // stop-the-world safepoint has been reached.  In a pathological scenario such as that
272      // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
273      // In that case the mutators will be stalled waiting for the safepoint to complete and the
274      // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
275      // will eventually wake up and detect that all mutators are safe, at which point
276      // we'll again make progress.
277      //
278      // Beware too that that the VMThread typically runs at elevated priority.
279      // Its default priority is higher than the default mutator priority.
280      // Obviously, this complicates spinning.
281      //
282      // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
283      // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
284      //
285      // See the comments in synchronizer.cpp for additional remarks on spinning.
286      //
287      // In the future we might:
288      // 1. Modify the safepoint scheme to avoid potentally unbounded spinning.
289      //    This is tricky as the path used by a thread exiting the JVM (say on
290      //    on JNI call-out) simply stores into its state field.  The burden
291      //    is placed on the VM thread, which must poll (spin).
292      // 2. Find something useful to do while spinning.  If the safepoint is GC-related
293      //    we might aggressively scan the stacks of threads that are already safe.
294      // 3. Use Solaris schedctl to examine the state of the still-running mutators.
295      //    If all the mutators are ONPROC there's no reason to sleep or yield.
296      // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
297      // 5. Check system saturation.  If the system is not fully saturated then
298      //    simply spin and avoid sleep/yield.
299      // 6. As still-running mutators rendezvous they could unpark the sleeping
300      //    VMthread.  This works well for still-running mutators that become
301      //    safe.  The VMthread must still poll for mutators that call-out.
302      // 7. Drive the policy on time-since-begin instead of iterations.
303      // 8. Consider making the spin duration a function of the # of CPUs:
304      //    Spin = (((ncpus-1) * M) + K) + F(still_running)
305      //    Alternately, instead of counting iterations of the outer loop
306      //    we could count the # of threads visited in the inner loop, above.
307      // 9. On windows consider using the return value from SwitchThreadTo()
308      //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
309
310      if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
311         guarantee (PageArmed == 0, "invariant") ;
312         PageArmed = 1 ;
313         os::make_polling_page_unreadable();
314      }
315
316      // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
317      // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
318      ++steps ;
319      if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
320        SpinPause() ;     // MP-Polite spin
321      } else
322      if (steps < DeferThrSuspendLoopCount) {
323        os::NakedYield() ;
324      } else {
325        os::yield_all(steps) ;
326        // Alternately, the VM thread could transiently depress its scheduling priority or
327        // transiently increase the priority of the tardy mutator(s).
328      }
329
330      iterations ++ ;
331    }
332    assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
333  }
334  assert(still_running == 0, "sanity check");
335
336  if (PrintSafepointStatistics) {
337    update_statistics_on_spin_end();
338  }
339
340  // wait until all threads are stopped
341  while (_waiting_to_block > 0) {
342    if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
343    if (!SafepointTimeout || timeout_error_printed) {
344      Safepoint_lock->wait(true);  // true, means with no safepoint checks
345    } else {
346      // Compute remaining time
347      jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
348
349      // If there is no remaining time, then there is an error
350      if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
351        print_safepoint_timeout(_blocking_timeout);
352      }
353    }
354  }
355  assert(_waiting_to_block == 0, "sanity check");
356
357#ifndef PRODUCT
358  if (SafepointTimeout) {
359    jlong current_time = os::javaTimeNanos();
360    if (safepoint_limit_time < current_time) {
361      tty->print_cr("# SafepointSynchronize: Finished after "
362                    INT64_FORMAT_W(6) " ms",
363                    ((current_time - safepoint_limit_time) / MICROUNITS +
364                     SafepointTimeoutDelay));
365    }
366  }
367#endif
368
369  assert((_safepoint_counter & 0x1) == 0, "must be even");
370  assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
371  _safepoint_counter ++;
372
373  // Record state
374  _state = _synchronized;
375
376  OrderAccess::fence();
377
378  if (TraceSafepoint) {
379    VM_Operation *op = VMThread::vm_operation();
380    tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
381  }
382
383  RuntimeService::record_safepoint_synchronized();
384  if (PrintSafepointStatistics) {
385    update_statistics_on_sync_end(os::javaTimeNanos());
386  }
387
388  // Call stuff that needs to be run when a safepoint is just about to be completed
389  do_cleanup_tasks();
390
391  if (PrintSafepointStatistics) {
392    // Record how much time spend on the above cleanup tasks
393    update_statistics_on_cleanup_end(os::javaTimeNanos());
394  }
395  }
396}
397
398// Wake up all threads, so they are ready to resume execution after the safepoint
399// operation has been carried out
400void SafepointSynchronize::end() {
401
402  assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
403  assert((_safepoint_counter & 0x1) == 1, "must be odd");
404  _safepoint_counter ++;
405  // memory fence isn't required here since an odd _safepoint_counter
406  // value can do no harm and a fence is issued below anyway.
407
408  DEBUG_ONLY(Thread* myThread = Thread::current();)
409  assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
410
411  if (PrintSafepointStatistics) {
412    end_statistics(os::javaTimeNanos());
413  }
414
415#ifdef ASSERT
416  // A pending_exception cannot be installed during a safepoint.  The threads
417  // may install an async exception after they come back from a safepoint into
418  // pending_exception after they unblock.  But that should happen later.
419  for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
420    assert (!(cur->has_pending_exception() &&
421              cur->safepoint_state()->is_at_poll_safepoint()),
422            "safepoint installed a pending exception");
423  }
424#endif // ASSERT
425
426  if (PageArmed) {
427    // Make polling safepoint aware
428    os::make_polling_page_readable();
429    PageArmed = 0 ;
430  }
431
432  // Remove safepoint check from interpreter
433  Interpreter::ignore_safepoints();
434
435  {
436    MutexLocker mu(Safepoint_lock);
437
438    assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
439
440    // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
441    // when they get restarted.
442    _state = _not_synchronized;
443    OrderAccess::fence();
444
445    if (TraceSafepoint) {
446       tty->print_cr("Leaving safepoint region");
447    }
448
449    // Start suspended threads
450    for(JavaThread *current = Threads::first(); current; current = current->next()) {
451      // A problem occurring on Solaris is when attempting to restart threads
452      // the first #cpus - 1 go well, but then the VMThread is preempted when we get
453      // to the next one (since it has been running the longest).  We then have
454      // to wait for a cpu to become available before we can continue restarting
455      // threads.
456      // FIXME: This causes the performance of the VM to degrade when active and with
457      // large numbers of threads.  Apparently this is due to the synchronous nature
458      // of suspending threads.
459      //
460      // TODO-FIXME: the comments above are vestigial and no longer apply.
461      // Furthermore, using solaris' schedctl in this particular context confers no benefit
462      if (VMThreadHintNoPreempt) {
463        os::hint_no_preempt();
464      }
465      ThreadSafepointState* cur_state = current->safepoint_state();
466      assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
467      cur_state->restart();
468      assert(cur_state->is_running(), "safepoint state has not been reset");
469    }
470
471    RuntimeService::record_safepoint_end();
472
473    // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
474    // blocked in signal_thread_blocked
475    Threads_lock->unlock();
476
477  }
478#ifndef SERIALGC
479  // If there are any concurrent GC threads resume them.
480  if (UseConcMarkSweepGC) {
481    ConcurrentMarkSweepThread::desynchronize(false);
482  } else if (UseG1GC) {
483    ConcurrentGCThread::safepoint_desynchronize();
484  }
485#endif // SERIALGC
486  // record this time so VMThread can keep track how much time has elasped
487  // since last safepoint.
488  _end_of_last_safepoint = os::javaTimeMillis();
489}
490
491bool SafepointSynchronize::is_cleanup_needed() {
492  // Need a safepoint if some inline cache buffers is non-empty
493  if (!InlineCacheBuffer::is_empty()) return true;
494  return false;
495}
496
497
498
499// Various cleaning tasks that should be done periodically at safepoints
500void SafepointSynchronize::do_cleanup_tasks() {
501  {
502    TraceTime t1("deflating idle monitors", TraceSafepointCleanupTime);
503    ObjectSynchronizer::deflate_idle_monitors();
504  }
505
506  {
507    TraceTime t2("updating inline caches", TraceSafepointCleanupTime);
508    InlineCacheBuffer::update_inline_caches();
509  }
510  {
511    TraceTime t3("compilation policy safepoint handler", TraceSafepointCleanupTime);
512    CompilationPolicy::policy()->do_safepoint_work();
513  }
514
515  TraceTime t4("sweeping nmethods", TraceSafepointCleanupTime);
516  NMethodSweeper::scan_stacks();
517
518  // rotate log files?
519  if (UseGCLogFileRotation) {
520    gclog_or_tty->rotate_log();
521  }
522}
523
524
525bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
526  switch(state) {
527  case _thread_in_native:
528    // native threads are safe if they have no java stack or have walkable stack
529    return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
530
531   // blocked threads should have already have walkable stack
532  case _thread_blocked:
533    assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
534    return true;
535
536  default:
537    return false;
538  }
539}
540
541
542// -------------------------------------------------------------------------------------------------------
543// Implementation of Safepoint callback point
544
545void SafepointSynchronize::block(JavaThread *thread) {
546  assert(thread != NULL, "thread must be set");
547  assert(thread->is_Java_thread(), "not a Java thread");
548
549  // Threads shouldn't block if they are in the middle of printing, but...
550  ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
551
552  // Only bail from the block() call if the thread is gone from the
553  // thread list; starting to exit should still block.
554  if (thread->is_terminated()) {
555     // block current thread if we come here from native code when VM is gone
556     thread->block_if_vm_exited();
557
558     // otherwise do nothing
559     return;
560  }
561
562  JavaThreadState state = thread->thread_state();
563  thread->frame_anchor()->make_walkable(thread);
564
565  // Check that we have a valid thread_state at this point
566  switch(state) {
567    case _thread_in_vm_trans:
568    case _thread_in_Java:        // From compiled code
569
570      // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
571      // we pretend we are still in the VM.
572      thread->set_thread_state(_thread_in_vm);
573
574      if (is_synchronizing()) {
575         Atomic::inc (&TryingToBlock) ;
576      }
577
578      // We will always be holding the Safepoint_lock when we are examine the state
579      // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
580      // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
581      Safepoint_lock->lock_without_safepoint_check();
582      if (is_synchronizing()) {
583        // Decrement the number of threads to wait for and signal vm thread
584        assert(_waiting_to_block > 0, "sanity check");
585        _waiting_to_block--;
586        thread->safepoint_state()->set_has_called_back(true);
587
588        // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
589        if (_waiting_to_block == 0) {
590          Safepoint_lock->notify_all();
591        }
592      }
593
594      // We transition the thread to state _thread_blocked here, but
595      // we can't do our usual check for external suspension and then
596      // self-suspend after the lock_without_safepoint_check() call
597      // below because we are often called during transitions while
598      // we hold different locks. That would leave us suspended while
599      // holding a resource which results in deadlocks.
600      thread->set_thread_state(_thread_blocked);
601      Safepoint_lock->unlock();
602
603      // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
604      // the entire safepoint, the threads will all line up here during the safepoint.
605      Threads_lock->lock_without_safepoint_check();
606      // restore original state. This is important if the thread comes from compiled code, so it
607      // will continue to execute with the _thread_in_Java state.
608      thread->set_thread_state(state);
609      Threads_lock->unlock();
610      break;
611
612    case _thread_in_native_trans:
613    case _thread_blocked_trans:
614    case _thread_new_trans:
615      if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
616        thread->print_thread_state();
617        fatal("Deadlock in safepoint code.  "
618              "Should have called back to the VM before blocking.");
619      }
620
621      // We transition the thread to state _thread_blocked here, but
622      // we can't do our usual check for external suspension and then
623      // self-suspend after the lock_without_safepoint_check() call
624      // below because we are often called during transitions while
625      // we hold different locks. That would leave us suspended while
626      // holding a resource which results in deadlocks.
627      thread->set_thread_state(_thread_blocked);
628
629      // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
630      // the safepoint code might still be waiting for it to block. We need to change the state here,
631      // so it can see that it is at a safepoint.
632
633      // Block until the safepoint operation is completed.
634      Threads_lock->lock_without_safepoint_check();
635
636      // Restore state
637      thread->set_thread_state(state);
638
639      Threads_lock->unlock();
640      break;
641
642    default:
643     fatal(err_msg("Illegal threadstate encountered: %d", state));
644  }
645
646  // Check for pending. async. exceptions or suspends - except if the
647  // thread was blocked inside the VM. has_special_runtime_exit_condition()
648  // is called last since it grabs a lock and we only want to do that when
649  // we must.
650  //
651  // Note: we never deliver an async exception at a polling point as the
652  // compiler may not have an exception handler for it. The polling
653  // code will notice the async and deoptimize and the exception will
654  // be delivered. (Polling at a return point is ok though). Sure is
655  // a lot of bother for a deprecated feature...
656  //
657  // We don't deliver an async exception if the thread state is
658  // _thread_in_native_trans so JNI functions won't be called with
659  // a surprising pending exception. If the thread state is going back to java,
660  // async exception is checked in check_special_condition_for_native_trans().
661
662  if (state != _thread_blocked_trans &&
663      state != _thread_in_vm_trans &&
664      thread->has_special_runtime_exit_condition()) {
665    thread->handle_special_runtime_exit_condition(
666      !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
667  }
668}
669
670// ------------------------------------------------------------------------------------------------------
671// Exception handlers
672
673#ifndef PRODUCT
674#ifdef _LP64
675#define PTR_PAD ""
676#else
677#define PTR_PAD "        "
678#endif
679
680static void print_ptrs(intptr_t oldptr, intptr_t newptr, bool wasoop) {
681  bool is_oop = newptr ? ((oop)newptr)->is_oop() : false;
682  tty->print_cr(PTR_FORMAT PTR_PAD " %s %c " PTR_FORMAT PTR_PAD " %s %s",
683                oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
684                newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
685}
686
687static void print_longs(jlong oldptr, jlong newptr, bool wasoop) {
688  bool is_oop = newptr ? ((oop)(intptr_t)newptr)->is_oop() : false;
689  tty->print_cr(PTR64_FORMAT " %s %c " PTR64_FORMAT " %s %s",
690                oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
691                newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
692}
693
694#ifdef SPARC
695static void print_me(intptr_t *new_sp, intptr_t *old_sp, bool *was_oops) {
696#ifdef _LP64
697  tty->print_cr("--------+------address-----+------before-----------+-------after----------+");
698  const int incr = 1;           // Increment to skip a long, in units of intptr_t
699#else
700  tty->print_cr("--------+--address-+------before-----------+-------after----------+");
701  const int incr = 2;           // Increment to skip a long, in units of intptr_t
702#endif
703  tty->print_cr("---SP---|");
704  for( int i=0; i<16; i++ ) {
705    tty->print("blob %c%d |"PTR_FORMAT" ","LO"[i>>3],i&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
706  tty->print_cr("--------|");
707  for( int i1=0; i1<frame::memory_parameter_word_sp_offset-16; i1++ ) {
708    tty->print("argv pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
709  tty->print("     pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++);
710  tty->print_cr("--------|");
711  tty->print(" G1     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
712  tty->print(" G3     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
713  tty->print(" G4     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
714  tty->print(" G5     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
715  tty->print_cr(" FSR    |"PTR_FORMAT" "PTR64_FORMAT"       "PTR64_FORMAT,new_sp,*(jlong*)old_sp,*(jlong*)new_sp);
716  old_sp += incr; new_sp += incr; was_oops += incr;
717  // Skip the floats
718  tty->print_cr("--Float-|"PTR_FORMAT,new_sp);
719  tty->print_cr("---FP---|");
720  old_sp += incr*32;  new_sp += incr*32;  was_oops += incr*32;
721  for( int i2=0; i2<16; i2++ ) {
722    tty->print("call %c%d |"PTR_FORMAT" ","LI"[i2>>3],i2&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
723  tty->print_cr("");
724}
725#endif  // SPARC
726#endif  // PRODUCT
727
728
729void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
730  assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
731  assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
732  assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
733
734  // Uncomment this to get some serious before/after printing of the
735  // Sparc safepoint-blob frame structure.
736  /*
737  intptr_t* sp = thread->last_Java_sp();
738  intptr_t stack_copy[150];
739  for( int i=0; i<150; i++ ) stack_copy[i] = sp[i];
740  bool was_oops[150];
741  for( int i=0; i<150; i++ )
742    was_oops[i] = stack_copy[i] ? ((oop)stack_copy[i])->is_oop() : false;
743  */
744
745  if (ShowSafepointMsgs) {
746    tty->print("handle_polling_page_exception: ");
747  }
748
749  if (PrintSafepointStatistics) {
750    inc_page_trap_count();
751  }
752
753  ThreadSafepointState* state = thread->safepoint_state();
754
755  state->handle_polling_page_exception();
756  // print_me(sp,stack_copy,was_oops);
757}
758
759
760void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
761  if (!timeout_error_printed) {
762    timeout_error_printed = true;
763    // Print out the thread infor which didn't reach the safepoint for debugging
764    // purposes (useful when there are lots of threads in the debugger).
765    tty->print_cr("");
766    tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
767    if (reason ==  _spinning_timeout) {
768      tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
769    } else if (reason == _blocking_timeout) {
770      tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
771    }
772
773    tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
774    ThreadSafepointState *cur_state;
775    ResourceMark rm;
776    for(JavaThread *cur_thread = Threads::first(); cur_thread;
777        cur_thread = cur_thread->next()) {
778      cur_state = cur_thread->safepoint_state();
779
780      if (cur_thread->thread_state() != _thread_blocked &&
781          ((reason == _spinning_timeout && cur_state->is_running()) ||
782           (reason == _blocking_timeout && !cur_state->has_called_back()))) {
783        tty->print("# ");
784        cur_thread->print();
785        tty->print_cr("");
786      }
787    }
788    tty->print_cr("# SafepointSynchronize::begin: (End of list)");
789  }
790
791  // To debug the long safepoint, specify both DieOnSafepointTimeout &
792  // ShowMessageBoxOnError.
793  if (DieOnSafepointTimeout) {
794    char msg[1024];
795    VM_Operation *op = VMThread::vm_operation();
796    sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
797            SafepointTimeoutDelay,
798            op != NULL ? op->name() : "no vm operation");
799    fatal(msg);
800  }
801}
802
803
804// -------------------------------------------------------------------------------------------------------
805// Implementation of ThreadSafepointState
806
807ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
808  _thread = thread;
809  _type   = _running;
810  _has_called_back = false;
811  _at_poll_safepoint = false;
812}
813
814void ThreadSafepointState::create(JavaThread *thread) {
815  ThreadSafepointState *state = new ThreadSafepointState(thread);
816  thread->set_safepoint_state(state);
817}
818
819void ThreadSafepointState::destroy(JavaThread *thread) {
820  if (thread->safepoint_state()) {
821    delete(thread->safepoint_state());
822    thread->set_safepoint_state(NULL);
823  }
824}
825
826void ThreadSafepointState::examine_state_of_thread() {
827  assert(is_running(), "better be running or just have hit safepoint poll");
828
829  JavaThreadState state = _thread->thread_state();
830
831  // Save the state at the start of safepoint processing.
832  _orig_thread_state = state;
833
834  // Check for a thread that is suspended. Note that thread resume tries
835  // to grab the Threads_lock which we own here, so a thread cannot be
836  // resumed during safepoint synchronization.
837
838  // We check to see if this thread is suspended without locking to
839  // avoid deadlocking with a third thread that is waiting for this
840  // thread to be suspended. The third thread can notice the safepoint
841  // that we're trying to start at the beginning of its SR_lock->wait()
842  // call. If that happens, then the third thread will block on the
843  // safepoint while still holding the underlying SR_lock. We won't be
844  // able to get the SR_lock and we'll deadlock.
845  //
846  // We don't need to grab the SR_lock here for two reasons:
847  // 1) The suspend flags are both volatile and are set with an
848  //    Atomic::cmpxchg() call so we should see the suspended
849  //    state right away.
850  // 2) We're being called from the safepoint polling loop; if
851  //    we don't see the suspended state on this iteration, then
852  //    we'll come around again.
853  //
854  bool is_suspended = _thread->is_ext_suspended();
855  if (is_suspended) {
856    roll_forward(_at_safepoint);
857    return;
858  }
859
860  // Some JavaThread states have an initial safepoint state of
861  // running, but are actually at a safepoint. We will happily
862  // agree and update the safepoint state here.
863  if (SafepointSynchronize::safepoint_safe(_thread, state)) {
864      roll_forward(_at_safepoint);
865      return;
866  }
867
868  if (state == _thread_in_vm) {
869    roll_forward(_call_back);
870    return;
871  }
872
873  // All other thread states will continue to run until they
874  // transition and self-block in state _blocked
875  // Safepoint polling in compiled code causes the Java threads to do the same.
876  // Note: new threads may require a malloc so they must be allowed to finish
877
878  assert(is_running(), "examine_state_of_thread on non-running thread");
879  return;
880}
881
882// Returns true is thread could not be rolled forward at present position.
883void ThreadSafepointState::roll_forward(suspend_type type) {
884  _type = type;
885
886  switch(_type) {
887    case _at_safepoint:
888      SafepointSynchronize::signal_thread_at_safepoint();
889      break;
890
891    case _call_back:
892      set_has_called_back(false);
893      break;
894
895    case _running:
896    default:
897      ShouldNotReachHere();
898  }
899}
900
901void ThreadSafepointState::restart() {
902  switch(type()) {
903    case _at_safepoint:
904    case _call_back:
905      break;
906
907    case _running:
908    default:
909       tty->print_cr("restart thread "INTPTR_FORMAT" with state %d",
910                      _thread, _type);
911       _thread->print();
912      ShouldNotReachHere();
913  }
914  _type = _running;
915  set_has_called_back(false);
916}
917
918
919void ThreadSafepointState::print_on(outputStream *st) const {
920  const char *s;
921
922  switch(_type) {
923    case _running                : s = "_running";              break;
924    case _at_safepoint           : s = "_at_safepoint";         break;
925    case _call_back              : s = "_call_back";            break;
926    default:
927      ShouldNotReachHere();
928  }
929
930  st->print_cr("Thread: " INTPTR_FORMAT
931              "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
932               _thread, _thread->osthread()->thread_id(), s, _has_called_back,
933               _at_poll_safepoint);
934
935  _thread->print_thread_state_on(st);
936}
937
938
939// ---------------------------------------------------------------------------------------------------------------------
940
941// Block the thread at the safepoint poll or poll return.
942void ThreadSafepointState::handle_polling_page_exception() {
943
944  // Check state.  block() will set thread state to thread_in_vm which will
945  // cause the safepoint state _type to become _call_back.
946  assert(type() == ThreadSafepointState::_running,
947         "polling page exception on thread not running state");
948
949  // Step 1: Find the nmethod from the return address
950  if (ShowSafepointMsgs && Verbose) {
951    tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
952  }
953  address real_return_addr = thread()->saved_exception_pc();
954
955  CodeBlob *cb = CodeCache::find_blob(real_return_addr);
956  assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
957  nmethod* nm = (nmethod*)cb;
958
959  // Find frame of caller
960  frame stub_fr = thread()->last_frame();
961  CodeBlob* stub_cb = stub_fr.cb();
962  assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
963  RegisterMap map(thread(), true);
964  frame caller_fr = stub_fr.sender(&map);
965
966  // Should only be poll_return or poll
967  assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
968
969  // This is a poll immediately before a return. The exception handling code
970  // has already had the effect of causing the return to occur, so the execution
971  // will continue immediately after the call. In addition, the oopmap at the
972  // return point does not mark the return value as an oop (if it is), so
973  // it needs a handle here to be updated.
974  if( nm->is_at_poll_return(real_return_addr) ) {
975    // See if return type is an oop.
976    bool return_oop = nm->method()->is_returning_oop();
977    Handle return_value;
978    if (return_oop) {
979      // The oop result has been saved on the stack together with all
980      // the other registers. In order to preserve it over GCs we need
981      // to keep it in a handle.
982      oop result = caller_fr.saved_oop_result(&map);
983      assert(result == NULL || result->is_oop(), "must be oop");
984      return_value = Handle(thread(), result);
985      assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
986    }
987
988    // Block the thread
989    SafepointSynchronize::block(thread());
990
991    // restore oop result, if any
992    if (return_oop) {
993      caller_fr.set_saved_oop_result(&map, return_value());
994    }
995  }
996
997  // This is a safepoint poll. Verify the return address and block.
998  else {
999    set_at_poll_safepoint(true);
1000
1001    // verify the blob built the "return address" correctly
1002    assert(real_return_addr == caller_fr.pc(), "must match");
1003
1004    // Block the thread
1005    SafepointSynchronize::block(thread());
1006    set_at_poll_safepoint(false);
1007
1008    // If we have a pending async exception deoptimize the frame
1009    // as otherwise we may never deliver it.
1010    if (thread()->has_async_condition()) {
1011      ThreadInVMfromJavaNoAsyncException __tiv(thread());
1012      Deoptimization::deoptimize_frame(thread(), caller_fr.id());
1013    }
1014
1015    // If an exception has been installed we must check for a pending deoptimization
1016    // Deoptimize frame if exception has been thrown.
1017
1018    if (thread()->has_pending_exception() ) {
1019      RegisterMap map(thread(), true);
1020      frame caller_fr = stub_fr.sender(&map);
1021      if (caller_fr.is_deoptimized_frame()) {
1022        // The exception patch will destroy registers that are still
1023        // live and will be needed during deoptimization. Defer the
1024        // Async exception should have defered the exception until the
1025        // next safepoint which will be detected when we get into
1026        // the interpreter so if we have an exception now things
1027        // are messed up.
1028
1029        fatal("Exception installed and deoptimization is pending");
1030      }
1031    }
1032  }
1033}
1034
1035
1036//
1037//                     Statistics & Instrumentations
1038//
1039SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
1040jlong  SafepointSynchronize::_safepoint_begin_time = 0;
1041int    SafepointSynchronize::_cur_stat_index = 0;
1042julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
1043julong SafepointSynchronize::_coalesced_vmop_count = 0;
1044jlong  SafepointSynchronize::_max_sync_time = 0;
1045jlong  SafepointSynchronize::_max_vmop_time = 0;
1046float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
1047
1048static jlong  cleanup_end_time = 0;
1049static bool   need_to_track_page_armed_status = false;
1050static bool   init_done = false;
1051
1052// Helper method to print the header.
1053static void print_header() {
1054  tty->print("         vmop                    "
1055             "[threads: total initially_running wait_to_block]    ");
1056  tty->print("[time: spin block sync cleanup vmop] ");
1057
1058  // no page armed status printed out if it is always armed.
1059  if (need_to_track_page_armed_status) {
1060    tty->print("page_armed ");
1061  }
1062
1063  tty->print_cr("page_trap_count");
1064}
1065
1066void SafepointSynchronize::deferred_initialize_stat() {
1067  if (init_done) return;
1068
1069  if (PrintSafepointStatisticsCount <= 0) {
1070    fatal("Wrong PrintSafepointStatisticsCount");
1071  }
1072
1073  // If PrintSafepointStatisticsTimeout is specified, the statistics data will
1074  // be printed right away, in which case, _safepoint_stats will regress to
1075  // a single element array. Otherwise, it is a circular ring buffer with default
1076  // size of PrintSafepointStatisticsCount.
1077  int stats_array_size;
1078  if (PrintSafepointStatisticsTimeout > 0) {
1079    stats_array_size = 1;
1080    PrintSafepointStatistics = true;
1081  } else {
1082    stats_array_size = PrintSafepointStatisticsCount;
1083  }
1084  _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
1085                                                 * sizeof(SafepointStats));
1086  guarantee(_safepoint_stats != NULL,
1087            "not enough memory for safepoint instrumentation data");
1088
1089  if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
1090    need_to_track_page_armed_status = true;
1091  }
1092  init_done = true;
1093}
1094
1095void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1096  assert(init_done, "safepoint statistics array hasn't been initialized");
1097  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1098
1099  spstat->_time_stamp = _ts_of_current_safepoint;
1100
1101  VM_Operation *op = VMThread::vm_operation();
1102  spstat->_vmop_type = (op != NULL ? op->type() : -1);
1103  if (op != NULL) {
1104    _safepoint_reasons[spstat->_vmop_type]++;
1105  }
1106
1107  spstat->_nof_total_threads = nof_threads;
1108  spstat->_nof_initial_running_threads = nof_running;
1109  spstat->_nof_threads_hit_page_trap = 0;
1110
1111  // Records the start time of spinning. The real time spent on spinning
1112  // will be adjusted when spin is done. Same trick is applied for time
1113  // spent on waiting for threads to block.
1114  if (nof_running != 0) {
1115    spstat->_time_to_spin = os::javaTimeNanos();
1116  }  else {
1117    spstat->_time_to_spin = 0;
1118  }
1119}
1120
1121void SafepointSynchronize::update_statistics_on_spin_end() {
1122  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1123
1124  jlong cur_time = os::javaTimeNanos();
1125
1126  spstat->_nof_threads_wait_to_block = _waiting_to_block;
1127  if (spstat->_nof_initial_running_threads != 0) {
1128    spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1129  }
1130
1131  if (need_to_track_page_armed_status) {
1132    spstat->_page_armed = (PageArmed == 1);
1133  }
1134
1135  // Records the start time of waiting for to block. Updated when block is done.
1136  if (_waiting_to_block != 0) {
1137    spstat->_time_to_wait_to_block = cur_time;
1138  } else {
1139    spstat->_time_to_wait_to_block = 0;
1140  }
1141}
1142
1143void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1144  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1145
1146  if (spstat->_nof_threads_wait_to_block != 0) {
1147    spstat->_time_to_wait_to_block = end_time -
1148      spstat->_time_to_wait_to_block;
1149  }
1150
1151  // Records the end time of sync which will be used to calculate the total
1152  // vm operation time. Again, the real time spending in syncing will be deducted
1153  // from the start of the sync time later when end_statistics is called.
1154  spstat->_time_to_sync = end_time - _safepoint_begin_time;
1155  if (spstat->_time_to_sync > _max_sync_time) {
1156    _max_sync_time = spstat->_time_to_sync;
1157  }
1158
1159  spstat->_time_to_do_cleanups = end_time;
1160}
1161
1162void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
1163  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1164
1165  // Record how long spent in cleanup tasks.
1166  spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
1167
1168  cleanup_end_time = end_time;
1169}
1170
1171void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1172  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1173
1174  // Update the vm operation time.
1175  spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
1176  if (spstat->_time_to_exec_vmop > _max_vmop_time) {
1177    _max_vmop_time = spstat->_time_to_exec_vmop;
1178  }
1179  // Only the sync time longer than the specified
1180  // PrintSafepointStatisticsTimeout will be printed out right away.
1181  // By default, it is -1 meaning all samples will be put into the list.
1182  if ( PrintSafepointStatisticsTimeout > 0) {
1183    if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1184      print_statistics();
1185    }
1186  } else {
1187    // The safepoint statistics will be printed out when the _safepoin_stats
1188    // array fills up.
1189    if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
1190      print_statistics();
1191      _cur_stat_index = 0;
1192    } else {
1193      _cur_stat_index++;
1194    }
1195  }
1196}
1197
1198void SafepointSynchronize::print_statistics() {
1199  SafepointStats* sstats = _safepoint_stats;
1200
1201  for (int index = 0; index <= _cur_stat_index; index++) {
1202    if (index % 30 == 0) {
1203      print_header();
1204    }
1205    sstats = &_safepoint_stats[index];
1206    tty->print("%.3f: ", sstats->_time_stamp);
1207    tty->print("%-26s       ["
1208               INT32_FORMAT_W(8)INT32_FORMAT_W(11)INT32_FORMAT_W(15)
1209               "    ]    ",
1210               sstats->_vmop_type == -1 ? "no vm operation" :
1211               VM_Operation::name(sstats->_vmop_type),
1212               sstats->_nof_total_threads,
1213               sstats->_nof_initial_running_threads,
1214               sstats->_nof_threads_wait_to_block);
1215    // "/ MICROUNITS " is to convert the unit from nanos to millis.
1216    tty->print("  ["
1217               INT64_FORMAT_W(6)INT64_FORMAT_W(6)
1218               INT64_FORMAT_W(6)INT64_FORMAT_W(6)
1219               INT64_FORMAT_W(6)"    ]  ",
1220               sstats->_time_to_spin / MICROUNITS,
1221               sstats->_time_to_wait_to_block / MICROUNITS,
1222               sstats->_time_to_sync / MICROUNITS,
1223               sstats->_time_to_do_cleanups / MICROUNITS,
1224               sstats->_time_to_exec_vmop / MICROUNITS);
1225
1226    if (need_to_track_page_armed_status) {
1227      tty->print(INT32_FORMAT"         ", sstats->_page_armed);
1228    }
1229    tty->print_cr(INT32_FORMAT"   ", sstats->_nof_threads_hit_page_trap);
1230  }
1231}
1232
1233// This method will be called when VM exits. It will first call
1234// print_statistics to print out the rest of the sampling.  Then
1235// it tries to summarize the sampling.
1236void SafepointSynchronize::print_stat_on_exit() {
1237  if (_safepoint_stats == NULL) return;
1238
1239  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1240
1241  // During VM exit, end_statistics may not get called and in that
1242  // case, if the sync time is less than PrintSafepointStatisticsTimeout,
1243  // don't print it out.
1244  // Approximate the vm op time.
1245  _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
1246    os::javaTimeNanos() - cleanup_end_time;
1247
1248  if ( PrintSafepointStatisticsTimeout < 0 ||
1249       spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1250    print_statistics();
1251  }
1252  tty->print_cr("");
1253
1254  // Print out polling page sampling status.
1255  if (!need_to_track_page_armed_status) {
1256    if (UseCompilerSafepoints) {
1257      tty->print_cr("Polling page always armed");
1258    }
1259  } else {
1260    tty->print_cr("Defer polling page loop count = %d\n",
1261                 DeferPollingPageLoopCount);
1262  }
1263
1264  for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1265    if (_safepoint_reasons[index] != 0) {
1266      tty->print_cr("%-26s"UINT64_FORMAT_W(10), VM_Operation::name(index),
1267                    _safepoint_reasons[index]);
1268    }
1269  }
1270
1271  tty->print_cr(UINT64_FORMAT_W(5)" VM operations coalesced during safepoint",
1272                _coalesced_vmop_count);
1273  tty->print_cr("Maximum sync time  "INT64_FORMAT_W(5)" ms",
1274                _max_sync_time / MICROUNITS);
1275  tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
1276                INT64_FORMAT_W(5)" ms",
1277                _max_vmop_time / MICROUNITS);
1278}
1279
1280// ------------------------------------------------------------------------------------------------
1281// Non-product code
1282
1283#ifndef PRODUCT
1284
1285void SafepointSynchronize::print_state() {
1286  if (_state == _not_synchronized) {
1287    tty->print_cr("not synchronized");
1288  } else if (_state == _synchronizing || _state == _synchronized) {
1289    tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
1290                  "synchronized");
1291
1292    for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
1293       cur->safepoint_state()->print();
1294    }
1295  }
1296}
1297
1298void SafepointSynchronize::safepoint_msg(const char* format, ...) {
1299  if (ShowSafepointMsgs) {
1300    va_list ap;
1301    va_start(ap, format);
1302    tty->vprint_cr(format, ap);
1303    va_end(ap);
1304  }
1305}
1306
1307#endif // !PRODUCT
1308