safepoint.cpp revision 2273:1d1603768966
1/*
2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "code/codeCache.hpp"
28#include "code/icBuffer.hpp"
29#include "code/nmethod.hpp"
30#include "code/pcDesc.hpp"
31#include "code/scopeDesc.hpp"
32#include "gc_interface/collectedHeap.hpp"
33#include "interpreter/interpreter.hpp"
34#include "memory/resourceArea.hpp"
35#include "memory/universe.inline.hpp"
36#include "oops/oop.inline.hpp"
37#include "oops/symbol.hpp"
38#include "runtime/compilationPolicy.hpp"
39#include "runtime/deoptimization.hpp"
40#include "runtime/frame.inline.hpp"
41#include "runtime/interfaceSupport.hpp"
42#include "runtime/mutexLocker.hpp"
43#include "runtime/osThread.hpp"
44#include "runtime/safepoint.hpp"
45#include "runtime/signature.hpp"
46#include "runtime/stubCodeGenerator.hpp"
47#include "runtime/stubRoutines.hpp"
48#include "runtime/sweeper.hpp"
49#include "runtime/synchronizer.hpp"
50#include "services/runtimeService.hpp"
51#include "utilities/events.hpp"
52#ifdef TARGET_ARCH_x86
53# include "nativeInst_x86.hpp"
54# include "vmreg_x86.inline.hpp"
55#endif
56#ifdef TARGET_ARCH_sparc
57# include "nativeInst_sparc.hpp"
58# include "vmreg_sparc.inline.hpp"
59#endif
60#ifdef TARGET_ARCH_zero
61# include "nativeInst_zero.hpp"
62# include "vmreg_zero.inline.hpp"
63#endif
64#ifdef TARGET_ARCH_arm
65# include "nativeInst_arm.hpp"
66# include "vmreg_arm.inline.hpp"
67#endif
68#ifdef TARGET_ARCH_ppc
69# include "nativeInst_ppc.hpp"
70# include "vmreg_ppc.inline.hpp"
71#endif
72#ifdef TARGET_OS_FAMILY_linux
73# include "thread_linux.inline.hpp"
74#endif
75#ifdef TARGET_OS_FAMILY_solaris
76# include "thread_solaris.inline.hpp"
77#endif
78#ifdef TARGET_OS_FAMILY_windows
79# include "thread_windows.inline.hpp"
80#endif
81#ifndef SERIALGC
82#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
83#include "gc_implementation/shared/concurrentGCThread.hpp"
84#endif
85#ifdef COMPILER1
86#include "c1/c1_globals.hpp"
87#endif
88
89// --------------------------------------------------------------------------------------------------
90// Implementation of Safepoint begin/end
91
92SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
93volatile int  SafepointSynchronize::_waiting_to_block = 0;
94volatile int SafepointSynchronize::_safepoint_counter = 0;
95long  SafepointSynchronize::_end_of_last_safepoint = 0;
96static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
97static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
98static bool timeout_error_printed = false;
99
100// Roll all threads forward to a safepoint and suspend them all
101void SafepointSynchronize::begin() {
102
103  Thread* myThread = Thread::current();
104  assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
105
106  if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
107    _safepoint_begin_time = os::javaTimeNanos();
108    _ts_of_current_safepoint = tty->time_stamp().seconds();
109  }
110
111#ifndef SERIALGC
112  if (UseConcMarkSweepGC) {
113    // In the future we should investigate whether CMS can use the
114    // more-general mechanism below.  DLD (01/05).
115    ConcurrentMarkSweepThread::synchronize(false);
116  } else if (UseG1GC) {
117    ConcurrentGCThread::safepoint_synchronize();
118  }
119#endif // SERIALGC
120
121  // By getting the Threads_lock, we assure that no threads are about to start or
122  // exit. It is released again in SafepointSynchronize::end().
123  Threads_lock->lock();
124
125  assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
126
127  int nof_threads = Threads::number_of_threads();
128
129  if (TraceSafepoint) {
130    tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
131  }
132
133  RuntimeService::record_safepoint_begin();
134
135  {
136  MutexLocker mu(Safepoint_lock);
137
138  // Set number of threads to wait for, before we initiate the callbacks
139  _waiting_to_block = nof_threads;
140  TryingToBlock     = 0 ;
141  int still_running = nof_threads;
142
143  // Save the starting time, so that it can be compared to see if this has taken
144  // too long to complete.
145  jlong safepoint_limit_time;
146  timeout_error_printed = false;
147
148  // PrintSafepointStatisticsTimeout can be specified separately. When
149  // specified, PrintSafepointStatistics will be set to true in
150  // deferred_initialize_stat method. The initialization has to be done
151  // early enough to avoid any races. See bug 6880029 for details.
152  if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
153    deferred_initialize_stat();
154  }
155
156  // Begin the process of bringing the system to a safepoint.
157  // Java threads can be in several different states and are
158  // stopped by different mechanisms:
159  //
160  //  1. Running interpreted
161  //     The interpeter dispatch table is changed to force it to
162  //     check for a safepoint condition between bytecodes.
163  //  2. Running in native code
164  //     When returning from the native code, a Java thread must check
165  //     the safepoint _state to see if we must block.  If the
166  //     VM thread sees a Java thread in native, it does
167  //     not wait for this thread to block.  The order of the memory
168  //     writes and reads of both the safepoint state and the Java
169  //     threads state is critical.  In order to guarantee that the
170  //     memory writes are serialized with respect to each other,
171  //     the VM thread issues a memory barrier instruction
172  //     (on MP systems).  In order to avoid the overhead of issuing
173  //     a memory barrier for each Java thread making native calls, each Java
174  //     thread performs a write to a single memory page after changing
175  //     the thread state.  The VM thread performs a sequence of
176  //     mprotect OS calls which forces all previous writes from all
177  //     Java threads to be serialized.  This is done in the
178  //     os::serialize_thread_states() call.  This has proven to be
179  //     much more efficient than executing a membar instruction
180  //     on every call to native code.
181  //  3. Running compiled Code
182  //     Compiled code reads a global (Safepoint Polling) page that
183  //     is set to fault if we are trying to get to a safepoint.
184  //  4. Blocked
185  //     A thread which is blocked will not be allowed to return from the
186  //     block condition until the safepoint operation is complete.
187  //  5. In VM or Transitioning between states
188  //     If a Java thread is currently running in the VM or transitioning
189  //     between states, the safepointing code will wait for the thread to
190  //     block itself when it attempts transitions to a new state.
191  //
192  _state            = _synchronizing;
193  OrderAccess::fence();
194
195  // Flush all thread states to memory
196  if (!UseMembar) {
197    os::serialize_thread_states();
198  }
199
200  // Make interpreter safepoint aware
201  Interpreter::notice_safepoints();
202
203  if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
204    // Make polling safepoint aware
205    guarantee (PageArmed == 0, "invariant") ;
206    PageArmed = 1 ;
207    os::make_polling_page_unreadable();
208  }
209
210  // Consider using active_processor_count() ... but that call is expensive.
211  int ncpus = os::processor_count() ;
212
213#ifdef ASSERT
214  for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
215    assert(cur->safepoint_state()->is_running(), "Illegal initial state");
216  }
217#endif // ASSERT
218
219  if (SafepointTimeout)
220    safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
221
222  // Iterate through all threads until it have been determined how to stop them all at a safepoint
223  unsigned int iterations = 0;
224  int steps = 0 ;
225  while(still_running > 0) {
226    for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
227      assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
228      ThreadSafepointState *cur_state = cur->safepoint_state();
229      if (cur_state->is_running()) {
230        cur_state->examine_state_of_thread();
231        if (!cur_state->is_running()) {
232           still_running--;
233           // consider adjusting steps downward:
234           //   steps = 0
235           //   steps -= NNN
236           //   steps >>= 1
237           //   steps = MIN(steps, 2000-100)
238           //   if (iterations != 0) steps -= NNN
239        }
240        if (TraceSafepoint && Verbose) cur_state->print();
241      }
242    }
243
244    if (PrintSafepointStatistics && iterations == 0) {
245      begin_statistics(nof_threads, still_running);
246    }
247
248    if (still_running > 0) {
249      // Check for if it takes to long
250      if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
251        print_safepoint_timeout(_spinning_timeout);
252      }
253
254      // Spin to avoid context switching.
255      // There's a tension between allowing the mutators to run (and rendezvous)
256      // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
257      // a mutator might otherwise use profitably to reach a safepoint.  Excessive
258      // spinning by the VM thread on a saturated system can increase rendezvous latency.
259      // Blocking or yielding incur their own penalties in the form of context switching
260      // and the resultant loss of $ residency.
261      //
262      // Further complicating matters is that yield() does not work as naively expected
263      // on many platforms -- yield() does not guarantee that any other ready threads
264      // will run.   As such we revert yield_all() after some number of iterations.
265      // Yield_all() is implemented as a short unconditional sleep on some platforms.
266      // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
267      // can actually increase the time it takes the VM thread to detect that a system-wide
268      // stop-the-world safepoint has been reached.  In a pathological scenario such as that
269      // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
270      // In that case the mutators will be stalled waiting for the safepoint to complete and the
271      // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
272      // will eventually wake up and detect that all mutators are safe, at which point
273      // we'll again make progress.
274      //
275      // Beware too that that the VMThread typically runs at elevated priority.
276      // Its default priority is higher than the default mutator priority.
277      // Obviously, this complicates spinning.
278      //
279      // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
280      // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
281      //
282      // See the comments in synchronizer.cpp for additional remarks on spinning.
283      //
284      // In the future we might:
285      // 1. Modify the safepoint scheme to avoid potentally unbounded spinning.
286      //    This is tricky as the path used by a thread exiting the JVM (say on
287      //    on JNI call-out) simply stores into its state field.  The burden
288      //    is placed on the VM thread, which must poll (spin).
289      // 2. Find something useful to do while spinning.  If the safepoint is GC-related
290      //    we might aggressively scan the stacks of threads that are already safe.
291      // 3. Use Solaris schedctl to examine the state of the still-running mutators.
292      //    If all the mutators are ONPROC there's no reason to sleep or yield.
293      // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
294      // 5. Check system saturation.  If the system is not fully saturated then
295      //    simply spin and avoid sleep/yield.
296      // 6. As still-running mutators rendezvous they could unpark the sleeping
297      //    VMthread.  This works well for still-running mutators that become
298      //    safe.  The VMthread must still poll for mutators that call-out.
299      // 7. Drive the policy on time-since-begin instead of iterations.
300      // 8. Consider making the spin duration a function of the # of CPUs:
301      //    Spin = (((ncpus-1) * M) + K) + F(still_running)
302      //    Alternately, instead of counting iterations of the outer loop
303      //    we could count the # of threads visited in the inner loop, above.
304      // 9. On windows consider using the return value from SwitchThreadTo()
305      //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
306
307      if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
308         guarantee (PageArmed == 0, "invariant") ;
309         PageArmed = 1 ;
310         os::make_polling_page_unreadable();
311      }
312
313      // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
314      // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
315      ++steps ;
316      if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
317        SpinPause() ;     // MP-Polite spin
318      } else
319      if (steps < DeferThrSuspendLoopCount) {
320        os::NakedYield() ;
321      } else {
322        os::yield_all(steps) ;
323        // Alternately, the VM thread could transiently depress its scheduling priority or
324        // transiently increase the priority of the tardy mutator(s).
325      }
326
327      iterations ++ ;
328    }
329    assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
330  }
331  assert(still_running == 0, "sanity check");
332
333  if (PrintSafepointStatistics) {
334    update_statistics_on_spin_end();
335  }
336
337  // wait until all threads are stopped
338  while (_waiting_to_block > 0) {
339    if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
340    if (!SafepointTimeout || timeout_error_printed) {
341      Safepoint_lock->wait(true);  // true, means with no safepoint checks
342    } else {
343      // Compute remaining time
344      jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
345
346      // If there is no remaining time, then there is an error
347      if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
348        print_safepoint_timeout(_blocking_timeout);
349      }
350    }
351  }
352  assert(_waiting_to_block == 0, "sanity check");
353
354#ifndef PRODUCT
355  if (SafepointTimeout) {
356    jlong current_time = os::javaTimeNanos();
357    if (safepoint_limit_time < current_time) {
358      tty->print_cr("# SafepointSynchronize: Finished after "
359                    INT64_FORMAT_W(6) " ms",
360                    ((current_time - safepoint_limit_time) / MICROUNITS +
361                     SafepointTimeoutDelay));
362    }
363  }
364#endif
365
366  assert((_safepoint_counter & 0x1) == 0, "must be even");
367  assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
368  _safepoint_counter ++;
369
370  // Record state
371  _state = _synchronized;
372
373  OrderAccess::fence();
374
375  if (TraceSafepoint) {
376    VM_Operation *op = VMThread::vm_operation();
377    tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
378  }
379
380  RuntimeService::record_safepoint_synchronized();
381  if (PrintSafepointStatistics) {
382    update_statistics_on_sync_end(os::javaTimeNanos());
383  }
384
385  // Call stuff that needs to be run when a safepoint is just about to be completed
386  do_cleanup_tasks();
387
388  if (PrintSafepointStatistics) {
389    // Record how much time spend on the above cleanup tasks
390    update_statistics_on_cleanup_end(os::javaTimeNanos());
391  }
392  }
393}
394
395// Wake up all threads, so they are ready to resume execution after the safepoint
396// operation has been carried out
397void SafepointSynchronize::end() {
398
399  assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
400  assert((_safepoint_counter & 0x1) == 1, "must be odd");
401  _safepoint_counter ++;
402  // memory fence isn't required here since an odd _safepoint_counter
403  // value can do no harm and a fence is issued below anyway.
404
405  DEBUG_ONLY(Thread* myThread = Thread::current();)
406  assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
407
408  if (PrintSafepointStatistics) {
409    end_statistics(os::javaTimeNanos());
410  }
411
412#ifdef ASSERT
413  // A pending_exception cannot be installed during a safepoint.  The threads
414  // may install an async exception after they come back from a safepoint into
415  // pending_exception after they unblock.  But that should happen later.
416  for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
417    assert (!(cur->has_pending_exception() &&
418              cur->safepoint_state()->is_at_poll_safepoint()),
419            "safepoint installed a pending exception");
420  }
421#endif // ASSERT
422
423  if (PageArmed) {
424    // Make polling safepoint aware
425    os::make_polling_page_readable();
426    PageArmed = 0 ;
427  }
428
429  // Remove safepoint check from interpreter
430  Interpreter::ignore_safepoints();
431
432  {
433    MutexLocker mu(Safepoint_lock);
434
435    assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
436
437    // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
438    // when they get restarted.
439    _state = _not_synchronized;
440    OrderAccess::fence();
441
442    if (TraceSafepoint) {
443       tty->print_cr("Leaving safepoint region");
444    }
445
446    // Start suspended threads
447    for(JavaThread *current = Threads::first(); current; current = current->next()) {
448      // A problem occurring on Solaris is when attempting to restart threads
449      // the first #cpus - 1 go well, but then the VMThread is preempted when we get
450      // to the next one (since it has been running the longest).  We then have
451      // to wait for a cpu to become available before we can continue restarting
452      // threads.
453      // FIXME: This causes the performance of the VM to degrade when active and with
454      // large numbers of threads.  Apparently this is due to the synchronous nature
455      // of suspending threads.
456      //
457      // TODO-FIXME: the comments above are vestigial and no longer apply.
458      // Furthermore, using solaris' schedctl in this particular context confers no benefit
459      if (VMThreadHintNoPreempt) {
460        os::hint_no_preempt();
461      }
462      ThreadSafepointState* cur_state = current->safepoint_state();
463      assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
464      cur_state->restart();
465      assert(cur_state->is_running(), "safepoint state has not been reset");
466    }
467
468    RuntimeService::record_safepoint_end();
469
470    // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
471    // blocked in signal_thread_blocked
472    Threads_lock->unlock();
473
474  }
475#ifndef SERIALGC
476  // If there are any concurrent GC threads resume them.
477  if (UseConcMarkSweepGC) {
478    ConcurrentMarkSweepThread::desynchronize(false);
479  } else if (UseG1GC) {
480    ConcurrentGCThread::safepoint_desynchronize();
481  }
482#endif // SERIALGC
483  // record this time so VMThread can keep track how much time has elasped
484  // since last safepoint.
485  _end_of_last_safepoint = os::javaTimeMillis();
486}
487
488bool SafepointSynchronize::is_cleanup_needed() {
489  // Need a safepoint if some inline cache buffers is non-empty
490  if (!InlineCacheBuffer::is_empty()) return true;
491  return false;
492}
493
494
495
496// Various cleaning tasks that should be done periodically at safepoints
497void SafepointSynchronize::do_cleanup_tasks() {
498  {
499    TraceTime t1("deflating idle monitors", TraceSafepointCleanupTime);
500    ObjectSynchronizer::deflate_idle_monitors();
501  }
502
503  {
504    TraceTime t2("updating inline caches", TraceSafepointCleanupTime);
505    InlineCacheBuffer::update_inline_caches();
506  }
507  {
508    TraceTime t3("compilation policy safepoint handler", TraceSafepointCleanupTime);
509    CompilationPolicy::policy()->do_safepoint_work();
510  }
511
512  TraceTime t4("sweeping nmethods", TraceSafepointCleanupTime);
513  NMethodSweeper::scan_stacks();
514}
515
516
517bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
518  switch(state) {
519  case _thread_in_native:
520    // native threads are safe if they have no java stack or have walkable stack
521    return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
522
523   // blocked threads should have already have walkable stack
524  case _thread_blocked:
525    assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
526    return true;
527
528  default:
529    return false;
530  }
531}
532
533
534// -------------------------------------------------------------------------------------------------------
535// Implementation of Safepoint callback point
536
537void SafepointSynchronize::block(JavaThread *thread) {
538  assert(thread != NULL, "thread must be set");
539  assert(thread->is_Java_thread(), "not a Java thread");
540
541  // Threads shouldn't block if they are in the middle of printing, but...
542  ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
543
544  // Only bail from the block() call if the thread is gone from the
545  // thread list; starting to exit should still block.
546  if (thread->is_terminated()) {
547     // block current thread if we come here from native code when VM is gone
548     thread->block_if_vm_exited();
549
550     // otherwise do nothing
551     return;
552  }
553
554  JavaThreadState state = thread->thread_state();
555  thread->frame_anchor()->make_walkable(thread);
556
557  // Check that we have a valid thread_state at this point
558  switch(state) {
559    case _thread_in_vm_trans:
560    case _thread_in_Java:        // From compiled code
561
562      // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
563      // we pretend we are still in the VM.
564      thread->set_thread_state(_thread_in_vm);
565
566      if (is_synchronizing()) {
567         Atomic::inc (&TryingToBlock) ;
568      }
569
570      // We will always be holding the Safepoint_lock when we are examine the state
571      // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
572      // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
573      Safepoint_lock->lock_without_safepoint_check();
574      if (is_synchronizing()) {
575        // Decrement the number of threads to wait for and signal vm thread
576        assert(_waiting_to_block > 0, "sanity check");
577        _waiting_to_block--;
578        thread->safepoint_state()->set_has_called_back(true);
579
580        // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
581        if (_waiting_to_block == 0) {
582          Safepoint_lock->notify_all();
583        }
584      }
585
586      // We transition the thread to state _thread_blocked here, but
587      // we can't do our usual check for external suspension and then
588      // self-suspend after the lock_without_safepoint_check() call
589      // below because we are often called during transitions while
590      // we hold different locks. That would leave us suspended while
591      // holding a resource which results in deadlocks.
592      thread->set_thread_state(_thread_blocked);
593      Safepoint_lock->unlock();
594
595      // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
596      // the entire safepoint, the threads will all line up here during the safepoint.
597      Threads_lock->lock_without_safepoint_check();
598      // restore original state. This is important if the thread comes from compiled code, so it
599      // will continue to execute with the _thread_in_Java state.
600      thread->set_thread_state(state);
601      Threads_lock->unlock();
602      break;
603
604    case _thread_in_native_trans:
605    case _thread_blocked_trans:
606    case _thread_new_trans:
607      if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
608        thread->print_thread_state();
609        fatal("Deadlock in safepoint code.  "
610              "Should have called back to the VM before blocking.");
611      }
612
613      // We transition the thread to state _thread_blocked here, but
614      // we can't do our usual check for external suspension and then
615      // self-suspend after the lock_without_safepoint_check() call
616      // below because we are often called during transitions while
617      // we hold different locks. That would leave us suspended while
618      // holding a resource which results in deadlocks.
619      thread->set_thread_state(_thread_blocked);
620
621      // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
622      // the safepoint code might still be waiting for it to block. We need to change the state here,
623      // so it can see that it is at a safepoint.
624
625      // Block until the safepoint operation is completed.
626      Threads_lock->lock_without_safepoint_check();
627
628      // Restore state
629      thread->set_thread_state(state);
630
631      Threads_lock->unlock();
632      break;
633
634    default:
635     fatal(err_msg("Illegal threadstate encountered: %d", state));
636  }
637
638  // Check for pending. async. exceptions or suspends - except if the
639  // thread was blocked inside the VM. has_special_runtime_exit_condition()
640  // is called last since it grabs a lock and we only want to do that when
641  // we must.
642  //
643  // Note: we never deliver an async exception at a polling point as the
644  // compiler may not have an exception handler for it. The polling
645  // code will notice the async and deoptimize and the exception will
646  // be delivered. (Polling at a return point is ok though). Sure is
647  // a lot of bother for a deprecated feature...
648  //
649  // We don't deliver an async exception if the thread state is
650  // _thread_in_native_trans so JNI functions won't be called with
651  // a surprising pending exception. If the thread state is going back to java,
652  // async exception is checked in check_special_condition_for_native_trans().
653
654  if (state != _thread_blocked_trans &&
655      state != _thread_in_vm_trans &&
656      thread->has_special_runtime_exit_condition()) {
657    thread->handle_special_runtime_exit_condition(
658      !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
659  }
660}
661
662// ------------------------------------------------------------------------------------------------------
663// Exception handlers
664
665#ifndef PRODUCT
666#ifdef _LP64
667#define PTR_PAD ""
668#else
669#define PTR_PAD "        "
670#endif
671
672static void print_ptrs(intptr_t oldptr, intptr_t newptr, bool wasoop) {
673  bool is_oop = newptr ? ((oop)newptr)->is_oop() : false;
674  tty->print_cr(PTR_FORMAT PTR_PAD " %s %c " PTR_FORMAT PTR_PAD " %s %s",
675                oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
676                newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
677}
678
679static void print_longs(jlong oldptr, jlong newptr, bool wasoop) {
680  bool is_oop = newptr ? ((oop)(intptr_t)newptr)->is_oop() : false;
681  tty->print_cr(PTR64_FORMAT " %s %c " PTR64_FORMAT " %s %s",
682                oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
683                newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
684}
685
686#ifdef SPARC
687static void print_me(intptr_t *new_sp, intptr_t *old_sp, bool *was_oops) {
688#ifdef _LP64
689  tty->print_cr("--------+------address-----+------before-----------+-------after----------+");
690  const int incr = 1;           // Increment to skip a long, in units of intptr_t
691#else
692  tty->print_cr("--------+--address-+------before-----------+-------after----------+");
693  const int incr = 2;           // Increment to skip a long, in units of intptr_t
694#endif
695  tty->print_cr("---SP---|");
696  for( int i=0; i<16; i++ ) {
697    tty->print("blob %c%d |"PTR_FORMAT" ","LO"[i>>3],i&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
698  tty->print_cr("--------|");
699  for( int i1=0; i1<frame::memory_parameter_word_sp_offset-16; i1++ ) {
700    tty->print("argv pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
701  tty->print("     pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++);
702  tty->print_cr("--------|");
703  tty->print(" G1     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
704  tty->print(" G3     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
705  tty->print(" G4     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
706  tty->print(" G5     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
707  tty->print_cr(" FSR    |"PTR_FORMAT" "PTR64_FORMAT"       "PTR64_FORMAT,new_sp,*(jlong*)old_sp,*(jlong*)new_sp);
708  old_sp += incr; new_sp += incr; was_oops += incr;
709  // Skip the floats
710  tty->print_cr("--Float-|"PTR_FORMAT,new_sp);
711  tty->print_cr("---FP---|");
712  old_sp += incr*32;  new_sp += incr*32;  was_oops += incr*32;
713  for( int i2=0; i2<16; i2++ ) {
714    tty->print("call %c%d |"PTR_FORMAT" ","LI"[i2>>3],i2&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
715  tty->print_cr("");
716}
717#endif  // SPARC
718#endif  // PRODUCT
719
720
721void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
722  assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
723  assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
724  assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
725
726  // Uncomment this to get some serious before/after printing of the
727  // Sparc safepoint-blob frame structure.
728  /*
729  intptr_t* sp = thread->last_Java_sp();
730  intptr_t stack_copy[150];
731  for( int i=0; i<150; i++ ) stack_copy[i] = sp[i];
732  bool was_oops[150];
733  for( int i=0; i<150; i++ )
734    was_oops[i] = stack_copy[i] ? ((oop)stack_copy[i])->is_oop() : false;
735  */
736
737  if (ShowSafepointMsgs) {
738    tty->print("handle_polling_page_exception: ");
739  }
740
741  if (PrintSafepointStatistics) {
742    inc_page_trap_count();
743  }
744
745  ThreadSafepointState* state = thread->safepoint_state();
746
747  state->handle_polling_page_exception();
748  // print_me(sp,stack_copy,was_oops);
749}
750
751
752void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
753  if (!timeout_error_printed) {
754    timeout_error_printed = true;
755    // Print out the thread infor which didn't reach the safepoint for debugging
756    // purposes (useful when there are lots of threads in the debugger).
757    tty->print_cr("");
758    tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
759    if (reason ==  _spinning_timeout) {
760      tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
761    } else if (reason == _blocking_timeout) {
762      tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
763    }
764
765    tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
766    ThreadSafepointState *cur_state;
767    ResourceMark rm;
768    for(JavaThread *cur_thread = Threads::first(); cur_thread;
769        cur_thread = cur_thread->next()) {
770      cur_state = cur_thread->safepoint_state();
771
772      if (cur_thread->thread_state() != _thread_blocked &&
773          ((reason == _spinning_timeout && cur_state->is_running()) ||
774           (reason == _blocking_timeout && !cur_state->has_called_back()))) {
775        tty->print("# ");
776        cur_thread->print();
777        tty->print_cr("");
778      }
779    }
780    tty->print_cr("# SafepointSynchronize::begin: (End of list)");
781  }
782
783  // To debug the long safepoint, specify both DieOnSafepointTimeout &
784  // ShowMessageBoxOnError.
785  if (DieOnSafepointTimeout) {
786    char msg[1024];
787    VM_Operation *op = VMThread::vm_operation();
788    sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
789            SafepointTimeoutDelay,
790            op != NULL ? op->name() : "no vm operation");
791    fatal(msg);
792  }
793}
794
795
796// -------------------------------------------------------------------------------------------------------
797// Implementation of ThreadSafepointState
798
799ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
800  _thread = thread;
801  _type   = _running;
802  _has_called_back = false;
803  _at_poll_safepoint = false;
804}
805
806void ThreadSafepointState::create(JavaThread *thread) {
807  ThreadSafepointState *state = new ThreadSafepointState(thread);
808  thread->set_safepoint_state(state);
809}
810
811void ThreadSafepointState::destroy(JavaThread *thread) {
812  if (thread->safepoint_state()) {
813    delete(thread->safepoint_state());
814    thread->set_safepoint_state(NULL);
815  }
816}
817
818void ThreadSafepointState::examine_state_of_thread() {
819  assert(is_running(), "better be running or just have hit safepoint poll");
820
821  JavaThreadState state = _thread->thread_state();
822
823  // Save the state at the start of safepoint processing.
824  _orig_thread_state = state;
825
826  // Check for a thread that is suspended. Note that thread resume tries
827  // to grab the Threads_lock which we own here, so a thread cannot be
828  // resumed during safepoint synchronization.
829
830  // We check to see if this thread is suspended without locking to
831  // avoid deadlocking with a third thread that is waiting for this
832  // thread to be suspended. The third thread can notice the safepoint
833  // that we're trying to start at the beginning of its SR_lock->wait()
834  // call. If that happens, then the third thread will block on the
835  // safepoint while still holding the underlying SR_lock. We won't be
836  // able to get the SR_lock and we'll deadlock.
837  //
838  // We don't need to grab the SR_lock here for two reasons:
839  // 1) The suspend flags are both volatile and are set with an
840  //    Atomic::cmpxchg() call so we should see the suspended
841  //    state right away.
842  // 2) We're being called from the safepoint polling loop; if
843  //    we don't see the suspended state on this iteration, then
844  //    we'll come around again.
845  //
846  bool is_suspended = _thread->is_ext_suspended();
847  if (is_suspended) {
848    roll_forward(_at_safepoint);
849    return;
850  }
851
852  // Some JavaThread states have an initial safepoint state of
853  // running, but are actually at a safepoint. We will happily
854  // agree and update the safepoint state here.
855  if (SafepointSynchronize::safepoint_safe(_thread, state)) {
856      roll_forward(_at_safepoint);
857      return;
858  }
859
860  if (state == _thread_in_vm) {
861    roll_forward(_call_back);
862    return;
863  }
864
865  // All other thread states will continue to run until they
866  // transition and self-block in state _blocked
867  // Safepoint polling in compiled code causes the Java threads to do the same.
868  // Note: new threads may require a malloc so they must be allowed to finish
869
870  assert(is_running(), "examine_state_of_thread on non-running thread");
871  return;
872}
873
874// Returns true is thread could not be rolled forward at present position.
875void ThreadSafepointState::roll_forward(suspend_type type) {
876  _type = type;
877
878  switch(_type) {
879    case _at_safepoint:
880      SafepointSynchronize::signal_thread_at_safepoint();
881      break;
882
883    case _call_back:
884      set_has_called_back(false);
885      break;
886
887    case _running:
888    default:
889      ShouldNotReachHere();
890  }
891}
892
893void ThreadSafepointState::restart() {
894  switch(type()) {
895    case _at_safepoint:
896    case _call_back:
897      break;
898
899    case _running:
900    default:
901       tty->print_cr("restart thread "INTPTR_FORMAT" with state %d",
902                      _thread, _type);
903       _thread->print();
904      ShouldNotReachHere();
905  }
906  _type = _running;
907  set_has_called_back(false);
908}
909
910
911void ThreadSafepointState::print_on(outputStream *st) const {
912  const char *s;
913
914  switch(_type) {
915    case _running                : s = "_running";              break;
916    case _at_safepoint           : s = "_at_safepoint";         break;
917    case _call_back              : s = "_call_back";            break;
918    default:
919      ShouldNotReachHere();
920  }
921
922  st->print_cr("Thread: " INTPTR_FORMAT
923              "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
924               _thread, _thread->osthread()->thread_id(), s, _has_called_back,
925               _at_poll_safepoint);
926
927  _thread->print_thread_state_on(st);
928}
929
930
931// ---------------------------------------------------------------------------------------------------------------------
932
933// Block the thread at the safepoint poll or poll return.
934void ThreadSafepointState::handle_polling_page_exception() {
935
936  // Check state.  block() will set thread state to thread_in_vm which will
937  // cause the safepoint state _type to become _call_back.
938  assert(type() == ThreadSafepointState::_running,
939         "polling page exception on thread not running state");
940
941  // Step 1: Find the nmethod from the return address
942  if (ShowSafepointMsgs && Verbose) {
943    tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
944  }
945  address real_return_addr = thread()->saved_exception_pc();
946
947  CodeBlob *cb = CodeCache::find_blob(real_return_addr);
948  assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
949  nmethod* nm = (nmethod*)cb;
950
951  // Find frame of caller
952  frame stub_fr = thread()->last_frame();
953  CodeBlob* stub_cb = stub_fr.cb();
954  assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
955  RegisterMap map(thread(), true);
956  frame caller_fr = stub_fr.sender(&map);
957
958  // Should only be poll_return or poll
959  assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
960
961  // This is a poll immediately before a return. The exception handling code
962  // has already had the effect of causing the return to occur, so the execution
963  // will continue immediately after the call. In addition, the oopmap at the
964  // return point does not mark the return value as an oop (if it is), so
965  // it needs a handle here to be updated.
966  if( nm->is_at_poll_return(real_return_addr) ) {
967    // See if return type is an oop.
968    bool return_oop = nm->method()->is_returning_oop();
969    Handle return_value;
970    if (return_oop) {
971      // The oop result has been saved on the stack together with all
972      // the other registers. In order to preserve it over GCs we need
973      // to keep it in a handle.
974      oop result = caller_fr.saved_oop_result(&map);
975      assert(result == NULL || result->is_oop(), "must be oop");
976      return_value = Handle(thread(), result);
977      assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
978    }
979
980    // Block the thread
981    SafepointSynchronize::block(thread());
982
983    // restore oop result, if any
984    if (return_oop) {
985      caller_fr.set_saved_oop_result(&map, return_value());
986    }
987  }
988
989  // This is a safepoint poll. Verify the return address and block.
990  else {
991    set_at_poll_safepoint(true);
992
993    // verify the blob built the "return address" correctly
994    assert(real_return_addr == caller_fr.pc(), "must match");
995
996    // Block the thread
997    SafepointSynchronize::block(thread());
998    set_at_poll_safepoint(false);
999
1000    // If we have a pending async exception deoptimize the frame
1001    // as otherwise we may never deliver it.
1002    if (thread()->has_async_condition()) {
1003      ThreadInVMfromJavaNoAsyncException __tiv(thread());
1004      Deoptimization::deoptimize_frame(thread(), caller_fr.id());
1005    }
1006
1007    // If an exception has been installed we must check for a pending deoptimization
1008    // Deoptimize frame if exception has been thrown.
1009
1010    if (thread()->has_pending_exception() ) {
1011      RegisterMap map(thread(), true);
1012      frame caller_fr = stub_fr.sender(&map);
1013      if (caller_fr.is_deoptimized_frame()) {
1014        // The exception patch will destroy registers that are still
1015        // live and will be needed during deoptimization. Defer the
1016        // Async exception should have defered the exception until the
1017        // next safepoint which will be detected when we get into
1018        // the interpreter so if we have an exception now things
1019        // are messed up.
1020
1021        fatal("Exception installed and deoptimization is pending");
1022      }
1023    }
1024  }
1025}
1026
1027
1028//
1029//                     Statistics & Instrumentations
1030//
1031SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
1032jlong  SafepointSynchronize::_safepoint_begin_time = 0;
1033int    SafepointSynchronize::_cur_stat_index = 0;
1034julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
1035julong SafepointSynchronize::_coalesced_vmop_count = 0;
1036jlong  SafepointSynchronize::_max_sync_time = 0;
1037jlong  SafepointSynchronize::_max_vmop_time = 0;
1038float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
1039
1040static jlong  cleanup_end_time = 0;
1041static bool   need_to_track_page_armed_status = false;
1042static bool   init_done = false;
1043
1044// Helper method to print the header.
1045static void print_header() {
1046  tty->print("         vmop                    "
1047             "[threads: total initially_running wait_to_block]    ");
1048  tty->print("[time: spin block sync cleanup vmop] ");
1049
1050  // no page armed status printed out if it is always armed.
1051  if (need_to_track_page_armed_status) {
1052    tty->print("page_armed ");
1053  }
1054
1055  tty->print_cr("page_trap_count");
1056}
1057
1058void SafepointSynchronize::deferred_initialize_stat() {
1059  if (init_done) return;
1060
1061  if (PrintSafepointStatisticsCount <= 0) {
1062    fatal("Wrong PrintSafepointStatisticsCount");
1063  }
1064
1065  // If PrintSafepointStatisticsTimeout is specified, the statistics data will
1066  // be printed right away, in which case, _safepoint_stats will regress to
1067  // a single element array. Otherwise, it is a circular ring buffer with default
1068  // size of PrintSafepointStatisticsCount.
1069  int stats_array_size;
1070  if (PrintSafepointStatisticsTimeout > 0) {
1071    stats_array_size = 1;
1072    PrintSafepointStatistics = true;
1073  } else {
1074    stats_array_size = PrintSafepointStatisticsCount;
1075  }
1076  _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
1077                                                 * sizeof(SafepointStats));
1078  guarantee(_safepoint_stats != NULL,
1079            "not enough memory for safepoint instrumentation data");
1080
1081  if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
1082    need_to_track_page_armed_status = true;
1083  }
1084  init_done = true;
1085}
1086
1087void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1088  assert(init_done, "safepoint statistics array hasn't been initialized");
1089  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1090
1091  spstat->_time_stamp = _ts_of_current_safepoint;
1092
1093  VM_Operation *op = VMThread::vm_operation();
1094  spstat->_vmop_type = (op != NULL ? op->type() : -1);
1095  if (op != NULL) {
1096    _safepoint_reasons[spstat->_vmop_type]++;
1097  }
1098
1099  spstat->_nof_total_threads = nof_threads;
1100  spstat->_nof_initial_running_threads = nof_running;
1101  spstat->_nof_threads_hit_page_trap = 0;
1102
1103  // Records the start time of spinning. The real time spent on spinning
1104  // will be adjusted when spin is done. Same trick is applied for time
1105  // spent on waiting for threads to block.
1106  if (nof_running != 0) {
1107    spstat->_time_to_spin = os::javaTimeNanos();
1108  }  else {
1109    spstat->_time_to_spin = 0;
1110  }
1111}
1112
1113void SafepointSynchronize::update_statistics_on_spin_end() {
1114  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1115
1116  jlong cur_time = os::javaTimeNanos();
1117
1118  spstat->_nof_threads_wait_to_block = _waiting_to_block;
1119  if (spstat->_nof_initial_running_threads != 0) {
1120    spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1121  }
1122
1123  if (need_to_track_page_armed_status) {
1124    spstat->_page_armed = (PageArmed == 1);
1125  }
1126
1127  // Records the start time of waiting for to block. Updated when block is done.
1128  if (_waiting_to_block != 0) {
1129    spstat->_time_to_wait_to_block = cur_time;
1130  } else {
1131    spstat->_time_to_wait_to_block = 0;
1132  }
1133}
1134
1135void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1136  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1137
1138  if (spstat->_nof_threads_wait_to_block != 0) {
1139    spstat->_time_to_wait_to_block = end_time -
1140      spstat->_time_to_wait_to_block;
1141  }
1142
1143  // Records the end time of sync which will be used to calculate the total
1144  // vm operation time. Again, the real time spending in syncing will be deducted
1145  // from the start of the sync time later when end_statistics is called.
1146  spstat->_time_to_sync = end_time - _safepoint_begin_time;
1147  if (spstat->_time_to_sync > _max_sync_time) {
1148    _max_sync_time = spstat->_time_to_sync;
1149  }
1150
1151  spstat->_time_to_do_cleanups = end_time;
1152}
1153
1154void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
1155  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1156
1157  // Record how long spent in cleanup tasks.
1158  spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
1159
1160  cleanup_end_time = end_time;
1161}
1162
1163void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1164  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1165
1166  // Update the vm operation time.
1167  spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
1168  if (spstat->_time_to_exec_vmop > _max_vmop_time) {
1169    _max_vmop_time = spstat->_time_to_exec_vmop;
1170  }
1171  // Only the sync time longer than the specified
1172  // PrintSafepointStatisticsTimeout will be printed out right away.
1173  // By default, it is -1 meaning all samples will be put into the list.
1174  if ( PrintSafepointStatisticsTimeout > 0) {
1175    if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1176      print_statistics();
1177    }
1178  } else {
1179    // The safepoint statistics will be printed out when the _safepoin_stats
1180    // array fills up.
1181    if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
1182      print_statistics();
1183      _cur_stat_index = 0;
1184    } else {
1185      _cur_stat_index++;
1186    }
1187  }
1188}
1189
1190void SafepointSynchronize::print_statistics() {
1191  SafepointStats* sstats = _safepoint_stats;
1192
1193  for (int index = 0; index <= _cur_stat_index; index++) {
1194    if (index % 30 == 0) {
1195      print_header();
1196    }
1197    sstats = &_safepoint_stats[index];
1198    tty->print("%.3f: ", sstats->_time_stamp);
1199    tty->print("%-26s       ["
1200               INT32_FORMAT_W(8)INT32_FORMAT_W(11)INT32_FORMAT_W(15)
1201               "    ]    ",
1202               sstats->_vmop_type == -1 ? "no vm operation" :
1203               VM_Operation::name(sstats->_vmop_type),
1204               sstats->_nof_total_threads,
1205               sstats->_nof_initial_running_threads,
1206               sstats->_nof_threads_wait_to_block);
1207    // "/ MICROUNITS " is to convert the unit from nanos to millis.
1208    tty->print("  ["
1209               INT64_FORMAT_W(6)INT64_FORMAT_W(6)
1210               INT64_FORMAT_W(6)INT64_FORMAT_W(6)
1211               INT64_FORMAT_W(6)"    ]  ",
1212               sstats->_time_to_spin / MICROUNITS,
1213               sstats->_time_to_wait_to_block / MICROUNITS,
1214               sstats->_time_to_sync / MICROUNITS,
1215               sstats->_time_to_do_cleanups / MICROUNITS,
1216               sstats->_time_to_exec_vmop / MICROUNITS);
1217
1218    if (need_to_track_page_armed_status) {
1219      tty->print(INT32_FORMAT"         ", sstats->_page_armed);
1220    }
1221    tty->print_cr(INT32_FORMAT"   ", sstats->_nof_threads_hit_page_trap);
1222  }
1223}
1224
1225// This method will be called when VM exits. It will first call
1226// print_statistics to print out the rest of the sampling.  Then
1227// it tries to summarize the sampling.
1228void SafepointSynchronize::print_stat_on_exit() {
1229  if (_safepoint_stats == NULL) return;
1230
1231  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1232
1233  // During VM exit, end_statistics may not get called and in that
1234  // case, if the sync time is less than PrintSafepointStatisticsTimeout,
1235  // don't print it out.
1236  // Approximate the vm op time.
1237  _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
1238    os::javaTimeNanos() - cleanup_end_time;
1239
1240  if ( PrintSafepointStatisticsTimeout < 0 ||
1241       spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1242    print_statistics();
1243  }
1244  tty->print_cr("");
1245
1246  // Print out polling page sampling status.
1247  if (!need_to_track_page_armed_status) {
1248    if (UseCompilerSafepoints) {
1249      tty->print_cr("Polling page always armed");
1250    }
1251  } else {
1252    tty->print_cr("Defer polling page loop count = %d\n",
1253                 DeferPollingPageLoopCount);
1254  }
1255
1256  for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1257    if (_safepoint_reasons[index] != 0) {
1258      tty->print_cr("%-26s"UINT64_FORMAT_W(10), VM_Operation::name(index),
1259                    _safepoint_reasons[index]);
1260    }
1261  }
1262
1263  tty->print_cr(UINT64_FORMAT_W(5)" VM operations coalesced during safepoint",
1264                _coalesced_vmop_count);
1265  tty->print_cr("Maximum sync time  "INT64_FORMAT_W(5)" ms",
1266                _max_sync_time / MICROUNITS);
1267  tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
1268                INT64_FORMAT_W(5)" ms",
1269                _max_vmop_time / MICROUNITS);
1270}
1271
1272// ------------------------------------------------------------------------------------------------
1273// Non-product code
1274
1275#ifndef PRODUCT
1276
1277void SafepointSynchronize::print_state() {
1278  if (_state == _not_synchronized) {
1279    tty->print_cr("not synchronized");
1280  } else if (_state == _synchronizing || _state == _synchronized) {
1281    tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
1282                  "synchronized");
1283
1284    for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
1285       cur->safepoint_state()->print();
1286    }
1287  }
1288}
1289
1290void SafepointSynchronize::safepoint_msg(const char* format, ...) {
1291  if (ShowSafepointMsgs) {
1292    va_list ap;
1293    va_start(ap, format);
1294    tty->vprint_cr(format, ap);
1295    va_end(ap);
1296  }
1297}
1298
1299#endif // !PRODUCT
1300