os.cpp revision 9898:2794bc7859f5
1303231Sdim/*
2303231Sdim * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3353358Sdim * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4353358Sdim *
5353358Sdim * This code is free software; you can redistribute it and/or modify it
6303231Sdim * under the terms of the GNU General Public License version 2 only, as
7303231Sdim * published by the Free Software Foundation.
8303231Sdim *
9303231Sdim * This code is distributed in the hope that it will be useful, but WITHOUT
10321369Sdim * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11321369Sdim * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12321369Sdim * version 2 for more details (a copy is included in the LICENSE file that
13321369Sdim * accompanied this code).
14321369Sdim *
15303231Sdim * You should have received a copy of the GNU General Public License version
16303231Sdim * 2 along with this work; if not, write to the Free Software Foundation,
17303231Sdim * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18314564Sdim *
19321369Sdim * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20321369Sdim * or visit www.oracle.com if you need additional information or have any
21321369Sdim * questions.
22321369Sdim *
23321369Sdim */
24321369Sdim
25321369Sdim#include "precompiled.hpp"
26321369Sdim#include "classfile/classLoader.hpp"
27321369Sdim#include "classfile/javaClasses.hpp"
28321369Sdim#include "classfile/systemDictionary.hpp"
29321369Sdim#include "classfile/vmSymbols.hpp"
30321369Sdim#include "code/codeCache.hpp"
31321369Sdim#include "code/icBuffer.hpp"
32321369Sdim#include "code/vtableStubs.hpp"
33321369Sdim#include "gc/shared/vmGCOperations.hpp"
34321369Sdim#include "interpreter/interpreter.hpp"
35321369Sdim#include "logging/log.hpp"
36321369Sdim#include "memory/allocation.inline.hpp"
37321369Sdim#ifdef ASSERT
38321369Sdim#include "memory/guardedMemory.hpp"
39321369Sdim#endif
40321369Sdim#include "oops/oop.inline.hpp"
41321369Sdim#include "prims/jvm.h"
42321369Sdim#include "prims/jvm_misc.hpp"
43321369Sdim#include "prims/privilegedStack.hpp"
44321369Sdim#include "runtime/arguments.hpp"
45321369Sdim#include "runtime/atomic.inline.hpp"
46321369Sdim#include "runtime/frame.inline.hpp"
47321369Sdim#include "runtime/interfaceSupport.hpp"
48321369Sdim#include "runtime/java.hpp"
49321369Sdim#include "runtime/javaCalls.hpp"
50#include "runtime/mutexLocker.hpp"
51#include "runtime/os.inline.hpp"
52#include "runtime/stubRoutines.hpp"
53#include "runtime/thread.inline.hpp"
54#include "runtime/vm_version.hpp"
55#include "services/attachListener.hpp"
56#include "services/mallocTracker.hpp"
57#include "services/memTracker.hpp"
58#include "services/nmtCommon.hpp"
59#include "services/threadService.hpp"
60#include "utilities/defaultStream.hpp"
61#include "utilities/events.hpp"
62
63# include <signal.h>
64
65OSThread*         os::_starting_thread    = NULL;
66address           os::_polling_page       = NULL;
67volatile int32_t* os::_mem_serialize_page = NULL;
68uintptr_t         os::_serialize_page_mask = 0;
69long              os::_rand_seed          = 1;
70int               os::_processor_count    = 0;
71size_t            os::_page_sizes[os::page_sizes_max];
72
73#ifndef PRODUCT
74julong os::num_mallocs = 0;         // # of calls to malloc/realloc
75julong os::alloc_bytes = 0;         // # of bytes allocated
76julong os::num_frees = 0;           // # of calls to free
77julong os::free_bytes = 0;          // # of bytes freed
78#endif
79
80static juint cur_malloc_words = 0;  // current size for MallocMaxTestWords
81
82void os_init_globals() {
83  // Called from init_globals().
84  // See Threads::create_vm() in thread.cpp, and init.cpp.
85  os::init_globals();
86}
87
88// Fill in buffer with current local time as an ISO-8601 string.
89// E.g., yyyy-mm-ddThh:mm:ss-zzzz.
90// Returns buffer, or NULL if it failed.
91// This would mostly be a call to
92//     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
93// except that on Windows the %z behaves badly, so we do it ourselves.
94// Also, people wanted milliseconds on there,
95// and strftime doesn't do milliseconds.
96char* os::iso8601_time(char* buffer, size_t buffer_length) {
97  // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
98  //                                      1         2
99  //                             12345678901234567890123456789
100  // format string: "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d"
101  static const size_t needed_buffer = 29;
102
103  // Sanity check the arguments
104  if (buffer == NULL) {
105    assert(false, "NULL buffer");
106    return NULL;
107  }
108  if (buffer_length < needed_buffer) {
109    assert(false, "buffer_length too small");
110    return NULL;
111  }
112  // Get the current time
113  jlong milliseconds_since_19700101 = javaTimeMillis();
114  const int milliseconds_per_microsecond = 1000;
115  const time_t seconds_since_19700101 =
116    milliseconds_since_19700101 / milliseconds_per_microsecond;
117  const int milliseconds_after_second =
118    milliseconds_since_19700101 % milliseconds_per_microsecond;
119  // Convert the time value to a tm and timezone variable
120  struct tm time_struct;
121  if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
122    assert(false, "Failed localtime_pd");
123    return NULL;
124  }
125#if defined(_ALLBSD_SOURCE)
126  const time_t zone = (time_t) time_struct.tm_gmtoff;
127#else
128  const time_t zone = timezone;
129#endif
130
131  // If daylight savings time is in effect,
132  // we are 1 hour East of our time zone
133  const time_t seconds_per_minute = 60;
134  const time_t minutes_per_hour = 60;
135  const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
136  time_t UTC_to_local = zone;
137  if (time_struct.tm_isdst > 0) {
138    UTC_to_local = UTC_to_local - seconds_per_hour;
139  }
140  // Compute the time zone offset.
141  //    localtime_pd() sets timezone to the difference (in seconds)
142  //    between UTC and and local time.
143  //    ISO 8601 says we need the difference between local time and UTC,
144  //    we change the sign of the localtime_pd() result.
145  const time_t local_to_UTC = -(UTC_to_local);
146  // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
147  char sign_local_to_UTC = '+';
148  time_t abs_local_to_UTC = local_to_UTC;
149  if (local_to_UTC < 0) {
150    sign_local_to_UTC = '-';
151    abs_local_to_UTC = -(abs_local_to_UTC);
152  }
153  // Convert time zone offset seconds to hours and minutes.
154  const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
155  const time_t zone_min =
156    ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
157
158  // Print an ISO 8601 date and time stamp into the buffer
159  const int year = 1900 + time_struct.tm_year;
160  const int month = 1 + time_struct.tm_mon;
161  const int printed = jio_snprintf(buffer, buffer_length,
162                                   "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d",
163                                   year,
164                                   month,
165                                   time_struct.tm_mday,
166                                   time_struct.tm_hour,
167                                   time_struct.tm_min,
168                                   time_struct.tm_sec,
169                                   milliseconds_after_second,
170                                   sign_local_to_UTC,
171                                   zone_hours,
172                                   zone_min);
173  if (printed == 0) {
174    assert(false, "Failed jio_printf");
175    return NULL;
176  }
177  return buffer;
178}
179
180OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
181#ifdef ASSERT
182  if (!(!thread->is_Java_thread() ||
183         Thread::current() == thread  ||
184         Threads_lock->owned_by_self()
185         || thread->is_Compiler_thread()
186        )) {
187    assert(false, "possibility of dangling Thread pointer");
188  }
189#endif
190
191  if (p >= MinPriority && p <= MaxPriority) {
192    int priority = java_to_os_priority[p];
193    return set_native_priority(thread, priority);
194  } else {
195    assert(false, "Should not happen");
196    return OS_ERR;
197  }
198}
199
200// The mapping from OS priority back to Java priority may be inexact because
201// Java priorities can map M:1 with native priorities. If you want the definite
202// Java priority then use JavaThread::java_priority()
203OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
204  int p;
205  int os_prio;
206  OSReturn ret = get_native_priority(thread, &os_prio);
207  if (ret != OS_OK) return ret;
208
209  if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
210    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
211  } else {
212    // niceness values are in reverse order
213    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
214  }
215  priority = (ThreadPriority)p;
216  return OS_OK;
217}
218
219
220// --------------------- sun.misc.Signal (optional) ---------------------
221
222
223// SIGBREAK is sent by the keyboard to query the VM state
224#ifndef SIGBREAK
225#define SIGBREAK SIGQUIT
226#endif
227
228// sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
229
230
231static void signal_thread_entry(JavaThread* thread, TRAPS) {
232  os::set_priority(thread, NearMaxPriority);
233  while (true) {
234    int sig;
235    {
236      // FIXME : Currently we have not decided what should be the status
237      //         for this java thread blocked here. Once we decide about
238      //         that we should fix this.
239      sig = os::signal_wait();
240    }
241    if (sig == os::sigexitnum_pd()) {
242       // Terminate the signal thread
243       return;
244    }
245
246    switch (sig) {
247      case SIGBREAK: {
248        // Check if the signal is a trigger to start the Attach Listener - in that
249        // case don't print stack traces.
250        if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
251          continue;
252        }
253        // Print stack traces
254        // Any SIGBREAK operations added here should make sure to flush
255        // the output stream (e.g. tty->flush()) after output.  See 4803766.
256        // Each module also prints an extra carriage return after its output.
257        VM_PrintThreads op;
258        VMThread::execute(&op);
259        VM_PrintJNI jni_op;
260        VMThread::execute(&jni_op);
261        VM_FindDeadlocks op1(tty);
262        VMThread::execute(&op1);
263        Universe::print_heap_at_SIGBREAK();
264        if (PrintClassHistogram) {
265          VM_GC_HeapInspection op1(tty, true /* force full GC before heap inspection */);
266          VMThread::execute(&op1);
267        }
268        if (JvmtiExport::should_post_data_dump()) {
269          JvmtiExport::post_data_dump();
270        }
271        break;
272      }
273      default: {
274        // Dispatch the signal to java
275        HandleMark hm(THREAD);
276        Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
277        KlassHandle klass (THREAD, k);
278        if (klass.not_null()) {
279          JavaValue result(T_VOID);
280          JavaCallArguments args;
281          args.push_int(sig);
282          JavaCalls::call_static(
283            &result,
284            klass,
285            vmSymbols::dispatch_name(),
286            vmSymbols::int_void_signature(),
287            &args,
288            THREAD
289          );
290        }
291        if (HAS_PENDING_EXCEPTION) {
292          // tty is initialized early so we don't expect it to be null, but
293          // if it is we can't risk doing an initialization that might
294          // trigger additional out-of-memory conditions
295          if (tty != NULL) {
296            char klass_name[256];
297            char tmp_sig_name[16];
298            const char* sig_name = "UNKNOWN";
299            InstanceKlass::cast(PENDING_EXCEPTION->klass())->
300              name()->as_klass_external_name(klass_name, 256);
301            if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
302              sig_name = tmp_sig_name;
303            warning("Exception %s occurred dispatching signal %s to handler"
304                    "- the VM may need to be forcibly terminated",
305                    klass_name, sig_name );
306          }
307          CLEAR_PENDING_EXCEPTION;
308        }
309      }
310    }
311  }
312}
313
314void os::init_before_ergo() {
315  // We need to initialize large page support here because ergonomics takes some
316  // decisions depending on large page support and the calculated large page size.
317  large_page_init();
318
319  // We need to adapt the configured number of stack protection pages given
320  // in 4K pages to the actual os page size. We must do this before setting
321  // up minimal stack sizes etc. in os::init_2().
322  JavaThread::set_stack_red_zone_size     (align_size_up(StackRedPages      * 4 * K, vm_page_size()));
323  JavaThread::set_stack_yellow_zone_size  (align_size_up(StackYellowPages   * 4 * K, vm_page_size()));
324  JavaThread::set_stack_reserved_zone_size(align_size_up(StackReservedPages * 4 * K, vm_page_size()));
325  JavaThread::set_stack_shadow_zone_size  (align_size_up(StackShadowPages   * 4 * K, vm_page_size()));
326
327  // VM version initialization identifies some characteristics of the
328  // platform that are used during ergonomic decisions.
329  VM_Version::init_before_ergo();
330}
331
332void os::signal_init() {
333  if (!ReduceSignalUsage) {
334    // Setup JavaThread for processing signals
335    EXCEPTION_MARK;
336    Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
337    instanceKlassHandle klass (THREAD, k);
338    instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
339
340    const char thread_name[] = "Signal Dispatcher";
341    Handle string = java_lang_String::create_from_str(thread_name, CHECK);
342
343    // Initialize thread_oop to put it into the system threadGroup
344    Handle thread_group (THREAD, Universe::system_thread_group());
345    JavaValue result(T_VOID);
346    JavaCalls::call_special(&result, thread_oop,
347                           klass,
348                           vmSymbols::object_initializer_name(),
349                           vmSymbols::threadgroup_string_void_signature(),
350                           thread_group,
351                           string,
352                           CHECK);
353
354    KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
355    JavaCalls::call_special(&result,
356                            thread_group,
357                            group,
358                            vmSymbols::add_method_name(),
359                            vmSymbols::thread_void_signature(),
360                            thread_oop,         // ARG 1
361                            CHECK);
362
363    os::signal_init_pd();
364
365    { MutexLocker mu(Threads_lock);
366      JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
367
368      // At this point it may be possible that no osthread was created for the
369      // JavaThread due to lack of memory. We would have to throw an exception
370      // in that case. However, since this must work and we do not allow
371      // exceptions anyway, check and abort if this fails.
372      if (signal_thread == NULL || signal_thread->osthread() == NULL) {
373        vm_exit_during_initialization("java.lang.OutOfMemoryError",
374                                      os::native_thread_creation_failed_msg());
375      }
376
377      java_lang_Thread::set_thread(thread_oop(), signal_thread);
378      java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
379      java_lang_Thread::set_daemon(thread_oop());
380
381      signal_thread->set_threadObj(thread_oop());
382      Threads::add(signal_thread);
383      Thread::start(signal_thread);
384    }
385    // Handle ^BREAK
386    os::signal(SIGBREAK, os::user_handler());
387  }
388}
389
390
391void os::terminate_signal_thread() {
392  if (!ReduceSignalUsage)
393    signal_notify(sigexitnum_pd());
394}
395
396
397// --------------------- loading libraries ---------------------
398
399typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
400extern struct JavaVM_ main_vm;
401
402static void* _native_java_library = NULL;
403
404void* os::native_java_library() {
405  if (_native_java_library == NULL) {
406    char buffer[JVM_MAXPATHLEN];
407    char ebuf[1024];
408
409    // Try to load verify dll first. In 1.3 java dll depends on it and is not
410    // always able to find it when the loading executable is outside the JDK.
411    // In order to keep working with 1.2 we ignore any loading errors.
412    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
413                       "verify")) {
414      dll_load(buffer, ebuf, sizeof(ebuf));
415    }
416
417    // Load java dll
418    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
419                       "java")) {
420      _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
421    }
422    if (_native_java_library == NULL) {
423      vm_exit_during_initialization("Unable to load native library", ebuf);
424    }
425
426#if defined(__OpenBSD__)
427    // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
428    // ignore errors
429    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
430                       "net")) {
431      dll_load(buffer, ebuf, sizeof(ebuf));
432    }
433#endif
434  }
435  return _native_java_library;
436}
437
438/*
439 * Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists.
440 * If check_lib == true then we are looking for an
441 * Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if
442 * this library is statically linked into the image.
443 * If check_lib == false then we will look for the appropriate symbol in the
444 * executable if agent_lib->is_static_lib() == true or in the shared library
445 * referenced by 'handle'.
446 */
447void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib,
448                              const char *syms[], size_t syms_len) {
449  assert(agent_lib != NULL, "sanity check");
450  const char *lib_name;
451  void *handle = agent_lib->os_lib();
452  void *entryName = NULL;
453  char *agent_function_name;
454  size_t i;
455
456  // If checking then use the agent name otherwise test is_static_lib() to
457  // see how to process this lookup
458  lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL);
459  for (i = 0; i < syms_len; i++) {
460    agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path());
461    if (agent_function_name == NULL) {
462      break;
463    }
464    entryName = dll_lookup(handle, agent_function_name);
465    FREE_C_HEAP_ARRAY(char, agent_function_name);
466    if (entryName != NULL) {
467      break;
468    }
469  }
470  return entryName;
471}
472
473// See if the passed in agent is statically linked into the VM image.
474bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[],
475                            size_t syms_len) {
476  void *ret;
477  void *proc_handle;
478  void *save_handle;
479
480  assert(agent_lib != NULL, "sanity check");
481  if (agent_lib->name() == NULL) {
482    return false;
483  }
484  proc_handle = get_default_process_handle();
485  // Check for Agent_OnLoad/Attach_lib_name function
486  save_handle = agent_lib->os_lib();
487  // We want to look in this process' symbol table.
488  agent_lib->set_os_lib(proc_handle);
489  ret = find_agent_function(agent_lib, true, syms, syms_len);
490  if (ret != NULL) {
491    // Found an entry point like Agent_OnLoad_lib_name so we have a static agent
492    agent_lib->set_valid();
493    agent_lib->set_static_lib(true);
494    return true;
495  }
496  agent_lib->set_os_lib(save_handle);
497  return false;
498}
499
500// --------------------- heap allocation utilities ---------------------
501
502char *os::strdup(const char *str, MEMFLAGS flags) {
503  size_t size = strlen(str);
504  char *dup_str = (char *)malloc(size + 1, flags);
505  if (dup_str == NULL) return NULL;
506  strcpy(dup_str, str);
507  return dup_str;
508}
509
510char* os::strdup_check_oom(const char* str, MEMFLAGS flags) {
511  char* p = os::strdup(str, flags);
512  if (p == NULL) {
513    vm_exit_out_of_memory(strlen(str) + 1, OOM_MALLOC_ERROR, "os::strdup_check_oom");
514  }
515  return p;
516}
517
518
519#define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
520
521#ifdef ASSERT
522
523static void verify_memory(void* ptr) {
524  GuardedMemory guarded(ptr);
525  if (!guarded.verify_guards()) {
526    tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
527    tty->print_cr("## memory stomp:");
528    guarded.print_on(tty);
529    fatal("memory stomping error");
530  }
531}
532
533#endif
534
535//
536// This function supports testing of the malloc out of memory
537// condition without really running the system out of memory.
538//
539static bool has_reached_max_malloc_test_peak(size_t alloc_size) {
540  if (MallocMaxTestWords > 0) {
541    jint words = (jint)(alloc_size / BytesPerWord);
542
543    if ((cur_malloc_words + words) > MallocMaxTestWords) {
544      return true;
545    }
546    Atomic::add(words, (volatile jint *)&cur_malloc_words);
547  }
548  return false;
549}
550
551void* os::malloc(size_t size, MEMFLAGS flags) {
552  return os::malloc(size, flags, CALLER_PC);
553}
554
555void* os::malloc(size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
556  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
557  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
558
559#ifdef ASSERT
560  // checking for the WatcherThread and crash_protection first
561  // since os::malloc can be called when the libjvm.{dll,so} is
562  // first loaded and we don't have a thread yet.
563  // try to find the thread after we see that the watcher thread
564  // exists and has crash protection.
565  WatcherThread *wt = WatcherThread::watcher_thread();
566  if (wt != NULL && wt->has_crash_protection()) {
567    Thread* thread = Thread::current_or_null();
568    if (thread == wt) {
569      assert(!wt->has_crash_protection(),
570          "Can't malloc with crash protection from WatcherThread");
571    }
572  }
573#endif
574
575  if (size == 0) {
576    // return a valid pointer if size is zero
577    // if NULL is returned the calling functions assume out of memory.
578    size = 1;
579  }
580
581  // NMT support
582  NMT_TrackingLevel level = MemTracker::tracking_level();
583  size_t            nmt_header_size = MemTracker::malloc_header_size(level);
584
585#ifndef ASSERT
586  const size_t alloc_size = size + nmt_header_size;
587#else
588  const size_t alloc_size = GuardedMemory::get_total_size(size + nmt_header_size);
589  if (size + nmt_header_size > alloc_size) { // Check for rollover.
590    return NULL;
591  }
592#endif
593
594  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
595
596  // For the test flag -XX:MallocMaxTestWords
597  if (has_reached_max_malloc_test_peak(size)) {
598    return NULL;
599  }
600
601  u_char* ptr;
602  ptr = (u_char*)::malloc(alloc_size);
603
604#ifdef ASSERT
605  if (ptr == NULL) {
606    return NULL;
607  }
608  // Wrap memory with guard
609  GuardedMemory guarded(ptr, size + nmt_header_size);
610  ptr = guarded.get_user_ptr();
611#endif
612  if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
613    tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
614    breakpoint();
615  }
616  debug_only(if (paranoid) verify_memory(ptr));
617  if (PrintMalloc && tty != NULL) {
618    tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
619  }
620
621  // we do not track guard memory
622  return MemTracker::record_malloc((address)ptr, size, memflags, stack, level);
623}
624
625void* os::realloc(void *memblock, size_t size, MEMFLAGS flags) {
626  return os::realloc(memblock, size, flags, CALLER_PC);
627}
628
629void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
630
631  // For the test flag -XX:MallocMaxTestWords
632  if (has_reached_max_malloc_test_peak(size)) {
633    return NULL;
634  }
635
636#ifndef ASSERT
637  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
638  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
639   // NMT support
640  void* membase = MemTracker::record_free(memblock);
641  NMT_TrackingLevel level = MemTracker::tracking_level();
642  size_t  nmt_header_size = MemTracker::malloc_header_size(level);
643  void* ptr = ::realloc(membase, size + nmt_header_size);
644  return MemTracker::record_malloc(ptr, size, memflags, stack, level);
645#else
646  if (memblock == NULL) {
647    return os::malloc(size, memflags, stack);
648  }
649  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
650    tty->print_cr("os::realloc caught " PTR_FORMAT, p2i(memblock));
651    breakpoint();
652  }
653  // NMT support
654  void* membase = MemTracker::malloc_base(memblock);
655  verify_memory(membase);
656  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
657  if (size == 0) {
658    return NULL;
659  }
660  // always move the block
661  void* ptr = os::malloc(size, memflags, stack);
662  if (PrintMalloc && tty != NULL) {
663    tty->print_cr("os::realloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, p2i(memblock), p2i(ptr));
664  }
665  // Copy to new memory if malloc didn't fail
666  if ( ptr != NULL ) {
667    GuardedMemory guarded(MemTracker::malloc_base(memblock));
668    // Guard's user data contains NMT header
669    size_t memblock_size = guarded.get_user_size() - MemTracker::malloc_header_size(memblock);
670    memcpy(ptr, memblock, MIN2(size, memblock_size));
671    if (paranoid) verify_memory(MemTracker::malloc_base(ptr));
672    if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
673      tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
674      breakpoint();
675    }
676    os::free(memblock);
677  }
678  return ptr;
679#endif
680}
681
682
683void  os::free(void *memblock) {
684  NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
685#ifdef ASSERT
686  if (memblock == NULL) return;
687  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
688    if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, p2i(memblock));
689    breakpoint();
690  }
691  void* membase = MemTracker::record_free(memblock);
692  verify_memory(membase);
693  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
694
695  GuardedMemory guarded(membase);
696  size_t size = guarded.get_user_size();
697  inc_stat_counter(&free_bytes, size);
698  membase = guarded.release_for_freeing();
699  if (PrintMalloc && tty != NULL) {
700      fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)membase);
701  }
702  ::free(membase);
703#else
704  void* membase = MemTracker::record_free(memblock);
705  ::free(membase);
706#endif
707}
708
709void os::init_random(long initval) {
710  _rand_seed = initval;
711}
712
713
714long os::random() {
715  /* standard, well-known linear congruential random generator with
716   * next_rand = (16807*seed) mod (2**31-1)
717   * see
718   * (1) "Random Number Generators: Good Ones Are Hard to Find",
719   *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
720   * (2) "Two Fast Implementations of the 'Minimal Standard' Random
721   *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
722  */
723  const long a = 16807;
724  const unsigned long m = 2147483647;
725  const long q = m / a;        assert(q == 127773, "weird math");
726  const long r = m % a;        assert(r == 2836, "weird math");
727
728  // compute az=2^31p+q
729  unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
730  unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
731  lo += (hi & 0x7FFF) << 16;
732
733  // if q overflowed, ignore the overflow and increment q
734  if (lo > m) {
735    lo &= m;
736    ++lo;
737  }
738  lo += hi >> 15;
739
740  // if (p+q) overflowed, ignore the overflow and increment (p+q)
741  if (lo > m) {
742    lo &= m;
743    ++lo;
744  }
745  return (_rand_seed = lo);
746}
747
748// The INITIALIZED state is distinguished from the SUSPENDED state because the
749// conditions in which a thread is first started are different from those in which
750// a suspension is resumed.  These differences make it hard for us to apply the
751// tougher checks when starting threads that we want to do when resuming them.
752// However, when start_thread is called as a result of Thread.start, on a Java
753// thread, the operation is synchronized on the Java Thread object.  So there
754// cannot be a race to start the thread and hence for the thread to exit while
755// we are working on it.  Non-Java threads that start Java threads either have
756// to do so in a context in which races are impossible, or should do appropriate
757// locking.
758
759void os::start_thread(Thread* thread) {
760  // guard suspend/resume
761  MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
762  OSThread* osthread = thread->osthread();
763  osthread->set_state(RUNNABLE);
764  pd_start_thread(thread);
765}
766
767void os::abort(bool dump_core) {
768  abort(dump_core && CreateCoredumpOnCrash, NULL, NULL);
769}
770
771//---------------------------------------------------------------------------
772// Helper functions for fatal error handler
773
774void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
775  assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
776
777  int cols = 0;
778  int cols_per_line = 0;
779  switch (unitsize) {
780    case 1: cols_per_line = 16; break;
781    case 2: cols_per_line = 8;  break;
782    case 4: cols_per_line = 4;  break;
783    case 8: cols_per_line = 2;  break;
784    default: return;
785  }
786
787  address p = start;
788  st->print(PTR_FORMAT ":   ", p2i(start));
789  while (p < end) {
790    switch (unitsize) {
791      case 1: st->print("%02x", *(u1*)p); break;
792      case 2: st->print("%04x", *(u2*)p); break;
793      case 4: st->print("%08x", *(u4*)p); break;
794      case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
795    }
796    p += unitsize;
797    cols++;
798    if (cols >= cols_per_line && p < end) {
799       cols = 0;
800       st->cr();
801       st->print(PTR_FORMAT ":   ", p2i(p));
802    } else {
803       st->print(" ");
804    }
805  }
806  st->cr();
807}
808
809void os::print_environment_variables(outputStream* st, const char** env_list) {
810  if (env_list) {
811    st->print_cr("Environment Variables:");
812
813    for (int i = 0; env_list[i] != NULL; i++) {
814      char *envvar = ::getenv(env_list[i]);
815      if (envvar != NULL) {
816        st->print("%s", env_list[i]);
817        st->print("=");
818        st->print_cr("%s", envvar);
819      }
820    }
821  }
822}
823
824void os::print_cpu_info(outputStream* st, char* buf, size_t buflen) {
825  // cpu
826  st->print("CPU:");
827  st->print("total %d", os::processor_count());
828  // It's not safe to query number of active processors after crash
829  // st->print("(active %d)", os::active_processor_count());
830  st->print(" %s", VM_Version::features_string());
831  st->cr();
832  pd_print_cpu_info(st, buf, buflen);
833}
834
835// Print a one line string summarizing the cpu, number of cores, memory, and operating system version
836void os::print_summary_info(outputStream* st, char* buf, size_t buflen) {
837  st->print("Host: ");
838#ifndef PRODUCT
839  if (get_host_name(buf, buflen)) {
840    st->print("%s, ", buf);
841  }
842#endif // PRODUCT
843  get_summary_cpu_info(buf, buflen);
844  st->print("%s, ", buf);
845  size_t mem = physical_memory()/G;
846  if (mem == 0) {  // for low memory systems
847    mem = physical_memory()/M;
848    st->print("%d cores, " SIZE_FORMAT "M, ", processor_count(), mem);
849  } else {
850    st->print("%d cores, " SIZE_FORMAT "G, ", processor_count(), mem);
851  }
852  get_summary_os_info(buf, buflen);
853  st->print_raw(buf);
854  st->cr();
855}
856
857void os::print_date_and_time(outputStream *st, char* buf, size_t buflen) {
858  const int secs_per_day  = 86400;
859  const int secs_per_hour = 3600;
860  const int secs_per_min  = 60;
861
862  time_t tloc;
863  (void)time(&tloc);
864  char* timestring = ctime(&tloc);  // ctime adds newline.
865  // edit out the newline
866  char* nl = strchr(timestring, '\n');
867  if (nl != NULL) {
868    *nl = '\0';
869  }
870
871  struct tm tz;
872  if (localtime_pd(&tloc, &tz) != NULL) {
873    ::strftime(buf, buflen, "%Z", &tz);
874    st->print("Time: %s %s", timestring, buf);
875  } else {
876    st->print("Time: %s", timestring);
877  }
878
879  double t = os::elapsedTime();
880  // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
881  //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
882  //       before printf. We lost some precision, but who cares?
883  int eltime = (int)t;  // elapsed time in seconds
884
885  // print elapsed time in a human-readable format:
886  int eldays = eltime / secs_per_day;
887  int day_secs = eldays * secs_per_day;
888  int elhours = (eltime - day_secs) / secs_per_hour;
889  int hour_secs = elhours * secs_per_hour;
890  int elmins = (eltime - day_secs - hour_secs) / secs_per_min;
891  int minute_secs = elmins * secs_per_min;
892  int elsecs = (eltime - day_secs - hour_secs - minute_secs);
893  st->print_cr(" elapsed time: %d seconds (%dd %dh %dm %ds)", eltime, eldays, elhours, elmins, elsecs);
894}
895
896// moved from debug.cpp (used to be find()) but still called from there
897// The verbose parameter is only set by the debug code in one case
898void os::print_location(outputStream* st, intptr_t x, bool verbose) {
899  address addr = (address)x;
900  CodeBlob* b = CodeCache::find_blob_unsafe(addr);
901  if (b != NULL) {
902    if (b->is_buffer_blob()) {
903      // the interpreter is generated into a buffer blob
904      InterpreterCodelet* i = Interpreter::codelet_containing(addr);
905      if (i != NULL) {
906        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", p2i(addr), (int)(addr - i->code_begin()));
907        i->print_on(st);
908        return;
909      }
910      if (Interpreter::contains(addr)) {
911        st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
912                     " (not bytecode specific)", p2i(addr));
913        return;
914      }
915      //
916      if (AdapterHandlerLibrary::contains(b)) {
917        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", p2i(addr), (int)(addr - b->code_begin()));
918        AdapterHandlerLibrary::print_handler_on(st, b);
919      }
920      // the stubroutines are generated into a buffer blob
921      StubCodeDesc* d = StubCodeDesc::desc_for(addr);
922      if (d != NULL) {
923        st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", p2i(addr), (int)(addr - d->begin()));
924        d->print_on(st);
925        st->cr();
926        return;
927      }
928      if (StubRoutines::contains(addr)) {
929        st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) stub routine", p2i(addr));
930        return;
931      }
932      // the InlineCacheBuffer is using stubs generated into a buffer blob
933      if (InlineCacheBuffer::contains(addr)) {
934        st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", p2i(addr));
935        return;
936      }
937      VtableStub* v = VtableStubs::stub_containing(addr);
938      if (v != NULL) {
939        st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", p2i(addr), (int)(addr - v->entry_point()));
940        v->print_on(st);
941        st->cr();
942        return;
943      }
944    }
945    nmethod* nm = b->as_nmethod_or_null();
946    if (nm != NULL) {
947      ResourceMark rm;
948      st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
949                p2i(addr), (int)(addr - nm->entry_point()), p2i(nm));
950      if (verbose) {
951        st->print(" for ");
952        nm->method()->print_value_on(st);
953      }
954      st->cr();
955      nm->print_nmethod(verbose);
956      return;
957    }
958    st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", p2i(addr), (int)(addr - b->code_begin()));
959    b->print_on(st);
960    return;
961  }
962
963  if (Universe::heap()->is_in(addr)) {
964    HeapWord* p = Universe::heap()->block_start(addr);
965    bool print = false;
966    // If we couldn't find it it just may mean that heap wasn't parsable
967    // See if we were just given an oop directly
968    if (p != NULL && Universe::heap()->block_is_obj(p)) {
969      print = true;
970    } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
971      p = (HeapWord*) addr;
972      print = true;
973    }
974    if (print) {
975      if (p == (HeapWord*) addr) {
976        st->print_cr(INTPTR_FORMAT " is an oop", p2i(addr));
977      } else {
978        st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, p2i(addr), p2i(p));
979      }
980      oop(p)->print_on(st);
981      return;
982    }
983  } else {
984    if (Universe::heap()->is_in_reserved(addr)) {
985      st->print_cr(INTPTR_FORMAT " is an unallocated location "
986                   "in the heap", p2i(addr));
987      return;
988    }
989  }
990  if (JNIHandles::is_global_handle((jobject) addr)) {
991    st->print_cr(INTPTR_FORMAT " is a global jni handle", p2i(addr));
992    return;
993  }
994  if (JNIHandles::is_weak_global_handle((jobject) addr)) {
995    st->print_cr(INTPTR_FORMAT " is a weak global jni handle", p2i(addr));
996    return;
997  }
998#ifndef PRODUCT
999  // we don't keep the block list in product mode
1000  if (JNIHandleBlock::any_contains((jobject) addr)) {
1001    st->print_cr(INTPTR_FORMAT " is a local jni handle", p2i(addr));
1002    return;
1003  }
1004#endif
1005
1006  for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
1007    // Check for privilege stack
1008    if (thread->privileged_stack_top() != NULL &&
1009        thread->privileged_stack_top()->contains(addr)) {
1010      st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
1011                   "for thread: " INTPTR_FORMAT, p2i(addr), p2i(thread));
1012      if (verbose) thread->print_on(st);
1013      return;
1014    }
1015    // If the addr is a java thread print information about that.
1016    if (addr == (address)thread) {
1017      if (verbose) {
1018        thread->print_on(st);
1019      } else {
1020        st->print_cr(INTPTR_FORMAT " is a thread", p2i(addr));
1021      }
1022      return;
1023    }
1024    // If the addr is in the stack region for this thread then report that
1025    // and print thread info
1026    if (thread->on_local_stack(addr)) {
1027      st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
1028                   INTPTR_FORMAT, p2i(addr), p2i(thread));
1029      if (verbose) thread->print_on(st);
1030      return;
1031    }
1032
1033  }
1034
1035  // Check if in metaspace and print types that have vptrs (only method now)
1036  if (Metaspace::contains(addr)) {
1037    if (Method::has_method_vptr((const void*)addr)) {
1038      ((Method*)addr)->print_value_on(st);
1039      st->cr();
1040    } else {
1041      // Use addr->print() from the debugger instead (not here)
1042      st->print_cr(INTPTR_FORMAT " is pointing into metadata", p2i(addr));
1043    }
1044    return;
1045  }
1046
1047  // Try an OS specific find
1048  if (os::find(addr, st)) {
1049    return;
1050  }
1051
1052  st->print_cr(INTPTR_FORMAT " is an unknown value", p2i(addr));
1053}
1054
1055// Looks like all platforms except IA64 can use the same function to check
1056// if C stack is walkable beyond current frame. The check for fp() is not
1057// necessary on Sparc, but it's harmless.
1058bool os::is_first_C_frame(frame* fr) {
1059#if (defined(IA64) && !defined(AIX)) && !defined(_WIN32)
1060  // On IA64 we have to check if the callers bsp is still valid
1061  // (i.e. within the register stack bounds).
1062  // Notice: this only works for threads created by the VM and only if
1063  // we walk the current stack!!! If we want to be able to walk
1064  // arbitrary other threads, we'll have to somehow store the thread
1065  // object in the frame.
1066  Thread *thread = Thread::current();
1067  if ((address)fr->fp() <=
1068      thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
1069    // This check is a little hacky, because on Linux the first C
1070    // frame's ('start_thread') register stack frame starts at
1071    // "register_stack_base + 0x48" while on HPUX, the first C frame's
1072    // ('__pthread_bound_body') register stack frame seems to really
1073    // start at "register_stack_base".
1074    return true;
1075  } else {
1076    return false;
1077  }
1078#elif defined(IA64) && defined(_WIN32)
1079  return true;
1080#else
1081  // Load up sp, fp, sender sp and sender fp, check for reasonable values.
1082  // Check usp first, because if that's bad the other accessors may fault
1083  // on some architectures.  Ditto ufp second, etc.
1084  uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
1085  // sp on amd can be 32 bit aligned.
1086  uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
1087
1088  uintptr_t usp    = (uintptr_t)fr->sp();
1089  if ((usp & sp_align_mask) != 0) return true;
1090
1091  uintptr_t ufp    = (uintptr_t)fr->fp();
1092  if ((ufp & fp_align_mask) != 0) return true;
1093
1094  uintptr_t old_sp = (uintptr_t)fr->sender_sp();
1095  if ((old_sp & sp_align_mask) != 0) return true;
1096  if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
1097
1098  uintptr_t old_fp = (uintptr_t)fr->link();
1099  if ((old_fp & fp_align_mask) != 0) return true;
1100  if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
1101
1102  // stack grows downwards; if old_fp is below current fp or if the stack
1103  // frame is too large, either the stack is corrupted or fp is not saved
1104  // on stack (i.e. on x86, ebp may be used as general register). The stack
1105  // is not walkable beyond current frame.
1106  if (old_fp < ufp) return true;
1107  if (old_fp - ufp > 64 * K) return true;
1108
1109  return false;
1110#endif
1111}
1112
1113#ifdef ASSERT
1114extern "C" void test_random() {
1115  const double m = 2147483647;
1116  double mean = 0.0, variance = 0.0, t;
1117  long reps = 10000;
1118  unsigned long seed = 1;
1119
1120  tty->print_cr("seed %ld for %ld repeats...", seed, reps);
1121  os::init_random(seed);
1122  long num;
1123  for (int k = 0; k < reps; k++) {
1124    num = os::random();
1125    double u = (double)num / m;
1126    assert(u >= 0.0 && u <= 1.0, "bad random number!");
1127
1128    // calculate mean and variance of the random sequence
1129    mean += u;
1130    variance += (u*u);
1131  }
1132  mean /= reps;
1133  variance /= (reps - 1);
1134
1135  assert(num == 1043618065, "bad seed");
1136  tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
1137  tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
1138  const double eps = 0.0001;
1139  t = fabsd(mean - 0.5018);
1140  assert(t < eps, "bad mean");
1141  t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
1142  assert(t < eps, "bad variance");
1143}
1144#endif
1145
1146
1147// Set up the boot classpath.
1148
1149char* os::format_boot_path(const char* format_string,
1150                           const char* home,
1151                           int home_len,
1152                           char fileSep,
1153                           char pathSep) {
1154    assert((fileSep == '/' && pathSep == ':') ||
1155           (fileSep == '\\' && pathSep == ';'), "unexpected separator chars");
1156
1157    // Scan the format string to determine the length of the actual
1158    // boot classpath, and handle platform dependencies as well.
1159    int formatted_path_len = 0;
1160    const char* p;
1161    for (p = format_string; *p != 0; ++p) {
1162        if (*p == '%') formatted_path_len += home_len - 1;
1163        ++formatted_path_len;
1164    }
1165
1166    char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
1167    if (formatted_path == NULL) {
1168        return NULL;
1169    }
1170
1171    // Create boot classpath from format, substituting separator chars and
1172    // java home directory.
1173    char* q = formatted_path;
1174    for (p = format_string; *p != 0; ++p) {
1175        switch (*p) {
1176        case '%':
1177            strcpy(q, home);
1178            q += home_len;
1179            break;
1180        case '/':
1181            *q++ = fileSep;
1182            break;
1183        case ':':
1184            *q++ = pathSep;
1185            break;
1186        default:
1187            *q++ = *p;
1188        }
1189    }
1190    *q = '\0';
1191
1192    assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1193    return formatted_path;
1194}
1195
1196// returns a PATH of all entries in the given directory that do not start with a '.'
1197static char* expand_entries_to_path(char* directory, char fileSep, char pathSep) {
1198  DIR* dir = os::opendir(directory);
1199  if (dir == NULL) return NULL;
1200
1201  char* path = NULL;
1202  size_t path_len = 0;  // path length including \0 terminator
1203
1204  size_t directory_len = strlen(directory);
1205  struct dirent *entry;
1206  char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(directory), mtInternal);
1207  while ((entry = os::readdir(dir, (dirent *) dbuf)) != NULL) {
1208    const char* name = entry->d_name;
1209    if (name[0] == '.') continue;
1210
1211    size_t name_len = strlen(name);
1212    size_t needed = directory_len + name_len + 2;
1213    size_t new_len = path_len + needed;
1214    if (path == NULL) {
1215      path = NEW_C_HEAP_ARRAY(char, new_len, mtInternal);
1216    } else {
1217      path = REALLOC_C_HEAP_ARRAY(char, path, new_len, mtInternal);
1218    }
1219    if (path == NULL)
1220      break;
1221
1222    // append <pathSep>directory<fileSep>name
1223    char* p = path;
1224    if (path_len > 0) {
1225      p += (path_len -1);
1226      *p = pathSep;
1227      p++;
1228    }
1229
1230    strcpy(p, directory);
1231    p += directory_len;
1232
1233    *p = fileSep;
1234    p++;
1235
1236    strcpy(p, name);
1237    p += name_len;
1238
1239    path_len = new_len;
1240  }
1241
1242  FREE_C_HEAP_ARRAY(char, dbuf);
1243  os::closedir(dir);
1244
1245  return path;
1246}
1247
1248bool os::set_boot_path(char fileSep, char pathSep) {
1249  const char* home = Arguments::get_java_home();
1250  int home_len = (int)strlen(home);
1251
1252  char* sysclasspath = NULL;
1253  struct stat st;
1254
1255  // modular image if bootmodules.jimage exists
1256  char* jimage = format_boot_path("%/lib/modules/" BOOT_IMAGE_NAME, home, home_len, fileSep, pathSep);
1257  if (jimage == NULL) return false;
1258  bool has_jimage = (os::stat(jimage, &st) == 0);
1259  if (has_jimage) {
1260    Arguments::set_sysclasspath(jimage);
1261    FREE_C_HEAP_ARRAY(char, jimage);
1262    return true;
1263  }
1264  FREE_C_HEAP_ARRAY(char, jimage);
1265
1266  // check if developer build with exploded modules
1267  char* modules_dir = format_boot_path("%/modules", home, home_len, fileSep, pathSep);
1268  if (os::stat(modules_dir, &st) == 0) {
1269    if ((st.st_mode & S_IFDIR) == S_IFDIR) {
1270      sysclasspath = expand_entries_to_path(modules_dir, fileSep, pathSep);
1271    }
1272  }
1273  FREE_C_HEAP_ARRAY(char, modules_dir);
1274
1275  // fallback to classes
1276  if (sysclasspath == NULL)
1277    sysclasspath = format_boot_path("%/classes", home, home_len, fileSep, pathSep);
1278
1279  if (sysclasspath == NULL) return false;
1280  Arguments::set_sysclasspath(sysclasspath);
1281  FREE_C_HEAP_ARRAY(char, sysclasspath);
1282
1283  return true;
1284}
1285
1286/*
1287 * Splits a path, based on its separator, the number of
1288 * elements is returned back in n.
1289 * It is the callers responsibility to:
1290 *   a> check the value of n, and n may be 0.
1291 *   b> ignore any empty path elements
1292 *   c> free up the data.
1293 */
1294char** os::split_path(const char* path, int* n) {
1295  *n = 0;
1296  if (path == NULL || strlen(path) == 0) {
1297    return NULL;
1298  }
1299  const char psepchar = *os::path_separator();
1300  char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
1301  if (inpath == NULL) {
1302    return NULL;
1303  }
1304  strcpy(inpath, path);
1305  int count = 1;
1306  char* p = strchr(inpath, psepchar);
1307  // Get a count of elements to allocate memory
1308  while (p != NULL) {
1309    count++;
1310    p++;
1311    p = strchr(p, psepchar);
1312  }
1313  char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
1314  if (opath == NULL) {
1315    return NULL;
1316  }
1317
1318  // do the actual splitting
1319  p = inpath;
1320  for (int i = 0 ; i < count ; i++) {
1321    size_t len = strcspn(p, os::path_separator());
1322    if (len > JVM_MAXPATHLEN) {
1323      return NULL;
1324    }
1325    // allocate the string and add terminator storage
1326    char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
1327    if (s == NULL) {
1328      return NULL;
1329    }
1330    strncpy(s, p, len);
1331    s[len] = '\0';
1332    opath[i] = s;
1333    p += len + 1;
1334  }
1335  FREE_C_HEAP_ARRAY(char, inpath);
1336  *n = count;
1337  return opath;
1338}
1339
1340void os::set_memory_serialize_page(address page) {
1341  int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
1342  _mem_serialize_page = (volatile int32_t *)page;
1343  // We initialize the serialization page shift count here
1344  // We assume a cache line size of 64 bytes
1345  assert(SerializePageShiftCount == count,
1346         "thread size changed, fix SerializePageShiftCount constant");
1347  set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
1348}
1349
1350static volatile intptr_t SerializePageLock = 0;
1351
1352// This method is called from signal handler when SIGSEGV occurs while the current
1353// thread tries to store to the "read-only" memory serialize page during state
1354// transition.
1355void os::block_on_serialize_page_trap() {
1356  log_debug(safepoint)("Block until the serialize page permission restored");
1357
1358  // When VMThread is holding the SerializePageLock during modifying the
1359  // access permission of the memory serialize page, the following call
1360  // will block until the permission of that page is restored to rw.
1361  // Generally, it is unsafe to manipulate locks in signal handlers, but in
1362  // this case, it's OK as the signal is synchronous and we know precisely when
1363  // it can occur.
1364  Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
1365  Thread::muxRelease(&SerializePageLock);
1366}
1367
1368// Serialize all thread state variables
1369void os::serialize_thread_states() {
1370  // On some platforms such as Solaris & Linux, the time duration of the page
1371  // permission restoration is observed to be much longer than expected  due to
1372  // scheduler starvation problem etc. To avoid the long synchronization
1373  // time and expensive page trap spinning, 'SerializePageLock' is used to block
1374  // the mutator thread if such case is encountered. See bug 6546278 for details.
1375  Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
1376  os::protect_memory((char *)os::get_memory_serialize_page(),
1377                     os::vm_page_size(), MEM_PROT_READ);
1378  os::protect_memory((char *)os::get_memory_serialize_page(),
1379                     os::vm_page_size(), MEM_PROT_RW);
1380  Thread::muxRelease(&SerializePageLock);
1381}
1382
1383// Returns true if the current stack pointer is above the stack shadow
1384// pages, false otherwise.
1385bool os::stack_shadow_pages_available(Thread *thread, const methodHandle& method) {
1386  if (!thread->is_Java_thread()) return false;
1387  address sp = current_stack_pointer();
1388  // Check if we have StackShadowPages above the yellow zone.  This parameter
1389  // is dependent on the depth of the maximum VM call stack possible from
1390  // the handler for stack overflow.  'instanceof' in the stack overflow
1391  // handler or a println uses at least 8k stack of VM and native code
1392  // respectively.
1393  const int framesize_in_bytes =
1394    Interpreter::size_top_interpreter_activation(method()) * wordSize;
1395
1396  assert((thread->stack_base() - thread->stack_size()) +
1397         (JavaThread::stack_guard_zone_size() +
1398          JavaThread::stack_shadow_zone_size() + framesize_in_bytes) ==
1399         ((JavaThread*)thread)->stack_overflow_limit() + framesize_in_bytes, "sanity");
1400
1401  return (sp > ((JavaThread*)thread)->stack_overflow_limit() + framesize_in_bytes);
1402}
1403
1404size_t os::page_size_for_region(size_t region_size, size_t min_pages, bool must_be_aligned) {
1405  assert(min_pages > 0, "sanity");
1406  if (UseLargePages) {
1407    const size_t max_page_size = region_size / min_pages;
1408
1409    for (size_t i = 0; _page_sizes[i] != 0; ++i) {
1410      const size_t page_size = _page_sizes[i];
1411      if (page_size <= max_page_size) {
1412        if (!must_be_aligned || is_size_aligned(region_size, page_size)) {
1413          return page_size;
1414        }
1415      }
1416    }
1417  }
1418
1419  return vm_page_size();
1420}
1421
1422size_t os::page_size_for_region_aligned(size_t region_size, size_t min_pages) {
1423  return page_size_for_region(region_size, min_pages, true);
1424}
1425
1426size_t os::page_size_for_region_unaligned(size_t region_size, size_t min_pages) {
1427  return page_size_for_region(region_size, min_pages, false);
1428}
1429
1430#ifndef PRODUCT
1431void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
1432{
1433  if (TracePageSizes) {
1434    tty->print("%s: ", str);
1435    for (int i = 0; i < count; ++i) {
1436      tty->print(" " SIZE_FORMAT, page_sizes[i]);
1437    }
1438    tty->cr();
1439  }
1440}
1441
1442void os::trace_page_sizes(const char* str, const size_t region_min_size,
1443                          const size_t region_max_size, const size_t page_size,
1444                          const char* base, const size_t size)
1445{
1446  if (TracePageSizes) {
1447    tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
1448                  " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
1449                  " size=" SIZE_FORMAT,
1450                  str, region_min_size, region_max_size,
1451                  page_size, p2i(base), size);
1452  }
1453}
1454#endif  // #ifndef PRODUCT
1455
1456// This is the working definition of a server class machine:
1457// >= 2 physical CPU's and >=2GB of memory, with some fuzz
1458// because the graphics memory (?) sometimes masks physical memory.
1459// If you want to change the definition of a server class machine
1460// on some OS or platform, e.g., >=4GB on Windows platforms,
1461// then you'll have to parameterize this method based on that state,
1462// as was done for logical processors here, or replicate and
1463// specialize this method for each platform.  (Or fix os to have
1464// some inheritance structure and use subclassing.  Sigh.)
1465// If you want some platform to always or never behave as a server
1466// class machine, change the setting of AlwaysActAsServerClassMachine
1467// and NeverActAsServerClassMachine in globals*.hpp.
1468bool os::is_server_class_machine() {
1469  // First check for the early returns
1470  if (NeverActAsServerClassMachine) {
1471    return false;
1472  }
1473  if (AlwaysActAsServerClassMachine) {
1474    return true;
1475  }
1476  // Then actually look at the machine
1477  bool         result            = false;
1478  const unsigned int    server_processors = 2;
1479  const julong server_memory     = 2UL * G;
1480  // We seem not to get our full complement of memory.
1481  //     We allow some part (1/8?) of the memory to be "missing",
1482  //     based on the sizes of DIMMs, and maybe graphics cards.
1483  const julong missing_memory   = 256UL * M;
1484
1485  /* Is this a server class machine? */
1486  if ((os::active_processor_count() >= (int)server_processors) &&
1487      (os::physical_memory() >= (server_memory - missing_memory))) {
1488    const unsigned int logical_processors =
1489      VM_Version::logical_processors_per_package();
1490    if (logical_processors > 1) {
1491      const unsigned int physical_packages =
1492        os::active_processor_count() / logical_processors;
1493      if (physical_packages > server_processors) {
1494        result = true;
1495      }
1496    } else {
1497      result = true;
1498    }
1499  }
1500  return result;
1501}
1502
1503void os::SuspendedThreadTask::run() {
1504  assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
1505  internal_do_task();
1506  _done = true;
1507}
1508
1509bool os::create_stack_guard_pages(char* addr, size_t bytes) {
1510  return os::pd_create_stack_guard_pages(addr, bytes);
1511}
1512
1513char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
1514  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1515  if (result != NULL) {
1516    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1517  }
1518
1519  return result;
1520}
1521
1522char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
1523   MEMFLAGS flags) {
1524  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1525  if (result != NULL) {
1526    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1527    MemTracker::record_virtual_memory_type((address)result, flags);
1528  }
1529
1530  return result;
1531}
1532
1533char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
1534  char* result = pd_attempt_reserve_memory_at(bytes, addr);
1535  if (result != NULL) {
1536    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1537  }
1538  return result;
1539}
1540
1541void os::split_reserved_memory(char *base, size_t size,
1542                                 size_t split, bool realloc) {
1543  pd_split_reserved_memory(base, size, split, realloc);
1544}
1545
1546bool os::commit_memory(char* addr, size_t bytes, bool executable) {
1547  bool res = pd_commit_memory(addr, bytes, executable);
1548  if (res) {
1549    MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1550  }
1551  return res;
1552}
1553
1554bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1555                              bool executable) {
1556  bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
1557  if (res) {
1558    MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1559  }
1560  return res;
1561}
1562
1563void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
1564                               const char* mesg) {
1565  pd_commit_memory_or_exit(addr, bytes, executable, mesg);
1566  MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1567}
1568
1569void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
1570                               bool executable, const char* mesg) {
1571  os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
1572  MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1573}
1574
1575bool os::uncommit_memory(char* addr, size_t bytes) {
1576  bool res;
1577  if (MemTracker::tracking_level() > NMT_minimal) {
1578    Tracker tkr = MemTracker::get_virtual_memory_uncommit_tracker();
1579    res = pd_uncommit_memory(addr, bytes);
1580    if (res) {
1581      tkr.record((address)addr, bytes);
1582    }
1583  } else {
1584    res = pd_uncommit_memory(addr, bytes);
1585  }
1586  return res;
1587}
1588
1589bool os::release_memory(char* addr, size_t bytes) {
1590  bool res;
1591  if (MemTracker::tracking_level() > NMT_minimal) {
1592    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1593    res = pd_release_memory(addr, bytes);
1594    if (res) {
1595      tkr.record((address)addr, bytes);
1596    }
1597  } else {
1598    res = pd_release_memory(addr, bytes);
1599  }
1600  return res;
1601}
1602
1603void os::pretouch_memory(char* start, char* end) {
1604  for (volatile char *p = start; p < end; p += os::vm_page_size()) {
1605    *p = 0;
1606  }
1607}
1608
1609char* os::map_memory(int fd, const char* file_name, size_t file_offset,
1610                           char *addr, size_t bytes, bool read_only,
1611                           bool allow_exec) {
1612  char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
1613  if (result != NULL) {
1614    MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, CALLER_PC);
1615  }
1616  return result;
1617}
1618
1619char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
1620                             char *addr, size_t bytes, bool read_only,
1621                             bool allow_exec) {
1622  return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
1623                    read_only, allow_exec);
1624}
1625
1626bool os::unmap_memory(char *addr, size_t bytes) {
1627  bool result;
1628  if (MemTracker::tracking_level() > NMT_minimal) {
1629    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1630    result = pd_unmap_memory(addr, bytes);
1631    if (result) {
1632      tkr.record((address)addr, bytes);
1633    }
1634  } else {
1635    result = pd_unmap_memory(addr, bytes);
1636  }
1637  return result;
1638}
1639
1640void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
1641  pd_free_memory(addr, bytes, alignment_hint);
1642}
1643
1644void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1645  pd_realign_memory(addr, bytes, alignment_hint);
1646}
1647
1648#ifndef TARGET_OS_FAMILY_windows
1649/* try to switch state from state "from" to state "to"
1650 * returns the state set after the method is complete
1651 */
1652os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
1653                                                         os::SuspendResume::State to)
1654{
1655  os::SuspendResume::State result =
1656    (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
1657  if (result == from) {
1658    // success
1659    return to;
1660  }
1661  return result;
1662}
1663#endif
1664
1665/////////////// Unit tests ///////////////
1666
1667#ifndef PRODUCT
1668
1669#define assert_eq(a,b) assert(a == b, SIZE_FORMAT " != " SIZE_FORMAT, a, b)
1670
1671class TestOS : AllStatic {
1672  static size_t small_page_size() {
1673    return os::vm_page_size();
1674  }
1675
1676  static size_t large_page_size() {
1677    const size_t large_page_size_example = 4 * M;
1678    return os::page_size_for_region_aligned(large_page_size_example, 1);
1679  }
1680
1681  static void test_page_size_for_region_aligned() {
1682    if (UseLargePages) {
1683      const size_t small_page = small_page_size();
1684      const size_t large_page = large_page_size();
1685
1686      if (large_page > small_page) {
1687        size_t num_small_pages_in_large = large_page / small_page;
1688        size_t page = os::page_size_for_region_aligned(large_page, num_small_pages_in_large);
1689
1690        assert_eq(page, small_page);
1691      }
1692    }
1693  }
1694
1695  static void test_page_size_for_region_alignment() {
1696    if (UseLargePages) {
1697      const size_t small_page = small_page_size();
1698      const size_t large_page = large_page_size();
1699      if (large_page > small_page) {
1700        const size_t unaligned_region = large_page + 17;
1701        size_t page = os::page_size_for_region_aligned(unaligned_region, 1);
1702        assert_eq(page, small_page);
1703
1704        const size_t num_pages = 5;
1705        const size_t aligned_region = large_page * num_pages;
1706        page = os::page_size_for_region_aligned(aligned_region, num_pages);
1707        assert_eq(page, large_page);
1708      }
1709    }
1710  }
1711
1712  static void test_page_size_for_region_unaligned() {
1713    if (UseLargePages) {
1714      // Given exact page size, should return that page size.
1715      for (size_t i = 0; os::_page_sizes[i] != 0; i++) {
1716        size_t expected = os::_page_sizes[i];
1717        size_t actual = os::page_size_for_region_unaligned(expected, 1);
1718        assert_eq(expected, actual);
1719      }
1720
1721      // Given slightly larger size than a page size, return the page size.
1722      for (size_t i = 0; os::_page_sizes[i] != 0; i++) {
1723        size_t expected = os::_page_sizes[i];
1724        size_t actual = os::page_size_for_region_unaligned(expected + 17, 1);
1725        assert_eq(expected, actual);
1726      }
1727
1728      // Given a slightly smaller size than a page size,
1729      // return the next smaller page size.
1730      if (os::_page_sizes[1] > os::_page_sizes[0]) {
1731        size_t expected = os::_page_sizes[0];
1732        size_t actual = os::page_size_for_region_unaligned(os::_page_sizes[1] - 17, 1);
1733        assert_eq(actual, expected);
1734      }
1735
1736      // Return small page size for values less than a small page.
1737      size_t small_page = small_page_size();
1738      size_t actual = os::page_size_for_region_unaligned(small_page - 17, 1);
1739      assert_eq(small_page, actual);
1740    }
1741  }
1742
1743 public:
1744  static void run_tests() {
1745    test_page_size_for_region_aligned();
1746    test_page_size_for_region_alignment();
1747    test_page_size_for_region_unaligned();
1748  }
1749};
1750
1751void TestOS_test() {
1752  TestOS::run_tests();
1753}
1754
1755#endif // PRODUCT
1756