os.cpp revision 9814:22fd02fad88b
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/codeCache.hpp"
31#include "code/icBuffer.hpp"
32#include "code/vtableStubs.hpp"
33#include "gc/shared/vmGCOperations.hpp"
34#include "interpreter/interpreter.hpp"
35#include "logging/log.hpp"
36#include "memory/allocation.inline.hpp"
37#ifdef ASSERT
38#include "memory/guardedMemory.hpp"
39#endif
40#include "oops/oop.inline.hpp"
41#include "prims/jvm.h"
42#include "prims/jvm_misc.hpp"
43#include "prims/privilegedStack.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/frame.inline.hpp"
47#include "runtime/interfaceSupport.hpp"
48#include "runtime/java.hpp"
49#include "runtime/javaCalls.hpp"
50#include "runtime/mutexLocker.hpp"
51#include "runtime/os.inline.hpp"
52#include "runtime/stubRoutines.hpp"
53#include "runtime/thread.inline.hpp"
54#include "runtime/vm_version.hpp"
55#include "services/attachListener.hpp"
56#include "services/mallocTracker.hpp"
57#include "services/memTracker.hpp"
58#include "services/nmtCommon.hpp"
59#include "services/threadService.hpp"
60#include "utilities/defaultStream.hpp"
61#include "utilities/events.hpp"
62
63# include <signal.h>
64
65OSThread*         os::_starting_thread    = NULL;
66address           os::_polling_page       = NULL;
67volatile int32_t* os::_mem_serialize_page = NULL;
68uintptr_t         os::_serialize_page_mask = 0;
69long              os::_rand_seed          = 1;
70int               os::_processor_count    = 0;
71size_t            os::_page_sizes[os::page_sizes_max];
72
73#ifndef PRODUCT
74julong os::num_mallocs = 0;         // # of calls to malloc/realloc
75julong os::alloc_bytes = 0;         // # of bytes allocated
76julong os::num_frees = 0;           // # of calls to free
77julong os::free_bytes = 0;          // # of bytes freed
78#endif
79
80static juint cur_malloc_words = 0;  // current size for MallocMaxTestWords
81
82void os_init_globals() {
83  // Called from init_globals().
84  // See Threads::create_vm() in thread.cpp, and init.cpp.
85  os::init_globals();
86}
87
88// Fill in buffer with current local time as an ISO-8601 string.
89// E.g., yyyy-mm-ddThh:mm:ss-zzzz.
90// Returns buffer, or NULL if it failed.
91// This would mostly be a call to
92//     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
93// except that on Windows the %z behaves badly, so we do it ourselves.
94// Also, people wanted milliseconds on there,
95// and strftime doesn't do milliseconds.
96char* os::iso8601_time(char* buffer, size_t buffer_length) {
97  // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
98  //                                      1         2
99  //                             12345678901234567890123456789
100  // format string: "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d"
101  static const size_t needed_buffer = 29;
102
103  // Sanity check the arguments
104  if (buffer == NULL) {
105    assert(false, "NULL buffer");
106    return NULL;
107  }
108  if (buffer_length < needed_buffer) {
109    assert(false, "buffer_length too small");
110    return NULL;
111  }
112  // Get the current time
113  jlong milliseconds_since_19700101 = javaTimeMillis();
114  const int milliseconds_per_microsecond = 1000;
115  const time_t seconds_since_19700101 =
116    milliseconds_since_19700101 / milliseconds_per_microsecond;
117  const int milliseconds_after_second =
118    milliseconds_since_19700101 % milliseconds_per_microsecond;
119  // Convert the time value to a tm and timezone variable
120  struct tm time_struct;
121  if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
122    assert(false, "Failed localtime_pd");
123    return NULL;
124  }
125#if defined(_ALLBSD_SOURCE)
126  const time_t zone = (time_t) time_struct.tm_gmtoff;
127#else
128  const time_t zone = timezone;
129#endif
130
131  // If daylight savings time is in effect,
132  // we are 1 hour East of our time zone
133  const time_t seconds_per_minute = 60;
134  const time_t minutes_per_hour = 60;
135  const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
136  time_t UTC_to_local = zone;
137  if (time_struct.tm_isdst > 0) {
138    UTC_to_local = UTC_to_local - seconds_per_hour;
139  }
140  // Compute the time zone offset.
141  //    localtime_pd() sets timezone to the difference (in seconds)
142  //    between UTC and and local time.
143  //    ISO 8601 says we need the difference between local time and UTC,
144  //    we change the sign of the localtime_pd() result.
145  const time_t local_to_UTC = -(UTC_to_local);
146  // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
147  char sign_local_to_UTC = '+';
148  time_t abs_local_to_UTC = local_to_UTC;
149  if (local_to_UTC < 0) {
150    sign_local_to_UTC = '-';
151    abs_local_to_UTC = -(abs_local_to_UTC);
152  }
153  // Convert time zone offset seconds to hours and minutes.
154  const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
155  const time_t zone_min =
156    ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
157
158  // Print an ISO 8601 date and time stamp into the buffer
159  const int year = 1900 + time_struct.tm_year;
160  const int month = 1 + time_struct.tm_mon;
161  const int printed = jio_snprintf(buffer, buffer_length,
162                                   "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d",
163                                   year,
164                                   month,
165                                   time_struct.tm_mday,
166                                   time_struct.tm_hour,
167                                   time_struct.tm_min,
168                                   time_struct.tm_sec,
169                                   milliseconds_after_second,
170                                   sign_local_to_UTC,
171                                   zone_hours,
172                                   zone_min);
173  if (printed == 0) {
174    assert(false, "Failed jio_printf");
175    return NULL;
176  }
177  return buffer;
178}
179
180OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
181#ifdef ASSERT
182  if (!(!thread->is_Java_thread() ||
183         Thread::current() == thread  ||
184         Threads_lock->owned_by_self()
185         || thread->is_Compiler_thread()
186        )) {
187    assert(false, "possibility of dangling Thread pointer");
188  }
189#endif
190
191  if (p >= MinPriority && p <= MaxPriority) {
192    int priority = java_to_os_priority[p];
193    return set_native_priority(thread, priority);
194  } else {
195    assert(false, "Should not happen");
196    return OS_ERR;
197  }
198}
199
200// The mapping from OS priority back to Java priority may be inexact because
201// Java priorities can map M:1 with native priorities. If you want the definite
202// Java priority then use JavaThread::java_priority()
203OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
204  int p;
205  int os_prio;
206  OSReturn ret = get_native_priority(thread, &os_prio);
207  if (ret != OS_OK) return ret;
208
209  if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
210    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
211  } else {
212    // niceness values are in reverse order
213    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
214  }
215  priority = (ThreadPriority)p;
216  return OS_OK;
217}
218
219
220// --------------------- sun.misc.Signal (optional) ---------------------
221
222
223// SIGBREAK is sent by the keyboard to query the VM state
224#ifndef SIGBREAK
225#define SIGBREAK SIGQUIT
226#endif
227
228// sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
229
230
231static void signal_thread_entry(JavaThread* thread, TRAPS) {
232  os::set_priority(thread, NearMaxPriority);
233  while (true) {
234    int sig;
235    {
236      // FIXME : Currently we have not decided what should be the status
237      //         for this java thread blocked here. Once we decide about
238      //         that we should fix this.
239      sig = os::signal_wait();
240    }
241    if (sig == os::sigexitnum_pd()) {
242       // Terminate the signal thread
243       return;
244    }
245
246    switch (sig) {
247      case SIGBREAK: {
248        // Check if the signal is a trigger to start the Attach Listener - in that
249        // case don't print stack traces.
250        if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
251          continue;
252        }
253        // Print stack traces
254        // Any SIGBREAK operations added here should make sure to flush
255        // the output stream (e.g. tty->flush()) after output.  See 4803766.
256        // Each module also prints an extra carriage return after its output.
257        VM_PrintThreads op;
258        VMThread::execute(&op);
259        VM_PrintJNI jni_op;
260        VMThread::execute(&jni_op);
261        VM_FindDeadlocks op1(tty);
262        VMThread::execute(&op1);
263        Universe::print_heap_at_SIGBREAK();
264        if (PrintClassHistogram) {
265          VM_GC_HeapInspection op1(tty, true /* force full GC before heap inspection */);
266          VMThread::execute(&op1);
267        }
268        if (JvmtiExport::should_post_data_dump()) {
269          JvmtiExport::post_data_dump();
270        }
271        break;
272      }
273      default: {
274        // Dispatch the signal to java
275        HandleMark hm(THREAD);
276        Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
277        KlassHandle klass (THREAD, k);
278        if (klass.not_null()) {
279          JavaValue result(T_VOID);
280          JavaCallArguments args;
281          args.push_int(sig);
282          JavaCalls::call_static(
283            &result,
284            klass,
285            vmSymbols::dispatch_name(),
286            vmSymbols::int_void_signature(),
287            &args,
288            THREAD
289          );
290        }
291        if (HAS_PENDING_EXCEPTION) {
292          // tty is initialized early so we don't expect it to be null, but
293          // if it is we can't risk doing an initialization that might
294          // trigger additional out-of-memory conditions
295          if (tty != NULL) {
296            char klass_name[256];
297            char tmp_sig_name[16];
298            const char* sig_name = "UNKNOWN";
299            InstanceKlass::cast(PENDING_EXCEPTION->klass())->
300              name()->as_klass_external_name(klass_name, 256);
301            if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
302              sig_name = tmp_sig_name;
303            warning("Exception %s occurred dispatching signal %s to handler"
304                    "- the VM may need to be forcibly terminated",
305                    klass_name, sig_name );
306          }
307          CLEAR_PENDING_EXCEPTION;
308        }
309      }
310    }
311  }
312}
313
314void os::init_before_ergo() {
315  // We need to initialize large page support here because ergonomics takes some
316  // decisions depending on large page support and the calculated large page size.
317  large_page_init();
318
319  // VM version initialization identifies some characteristics of the
320  // the platform that are used during ergonomic decisions.
321  VM_Version::init_before_ergo();
322}
323
324void os::signal_init() {
325  if (!ReduceSignalUsage) {
326    // Setup JavaThread for processing signals
327    EXCEPTION_MARK;
328    Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
329    instanceKlassHandle klass (THREAD, k);
330    instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
331
332    const char thread_name[] = "Signal Dispatcher";
333    Handle string = java_lang_String::create_from_str(thread_name, CHECK);
334
335    // Initialize thread_oop to put it into the system threadGroup
336    Handle thread_group (THREAD, Universe::system_thread_group());
337    JavaValue result(T_VOID);
338    JavaCalls::call_special(&result, thread_oop,
339                           klass,
340                           vmSymbols::object_initializer_name(),
341                           vmSymbols::threadgroup_string_void_signature(),
342                           thread_group,
343                           string,
344                           CHECK);
345
346    KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
347    JavaCalls::call_special(&result,
348                            thread_group,
349                            group,
350                            vmSymbols::add_method_name(),
351                            vmSymbols::thread_void_signature(),
352                            thread_oop,         // ARG 1
353                            CHECK);
354
355    os::signal_init_pd();
356
357    { MutexLocker mu(Threads_lock);
358      JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
359
360      // At this point it may be possible that no osthread was created for the
361      // JavaThread due to lack of memory. We would have to throw an exception
362      // in that case. However, since this must work and we do not allow
363      // exceptions anyway, check and abort if this fails.
364      if (signal_thread == NULL || signal_thread->osthread() == NULL) {
365        vm_exit_during_initialization("java.lang.OutOfMemoryError",
366                                      os::native_thread_creation_failed_msg());
367      }
368
369      java_lang_Thread::set_thread(thread_oop(), signal_thread);
370      java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
371      java_lang_Thread::set_daemon(thread_oop());
372
373      signal_thread->set_threadObj(thread_oop());
374      Threads::add(signal_thread);
375      Thread::start(signal_thread);
376    }
377    // Handle ^BREAK
378    os::signal(SIGBREAK, os::user_handler());
379  }
380}
381
382
383void os::terminate_signal_thread() {
384  if (!ReduceSignalUsage)
385    signal_notify(sigexitnum_pd());
386}
387
388
389// --------------------- loading libraries ---------------------
390
391typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
392extern struct JavaVM_ main_vm;
393
394static void* _native_java_library = NULL;
395
396void* os::native_java_library() {
397  if (_native_java_library == NULL) {
398    char buffer[JVM_MAXPATHLEN];
399    char ebuf[1024];
400
401    // Try to load verify dll first. In 1.3 java dll depends on it and is not
402    // always able to find it when the loading executable is outside the JDK.
403    // In order to keep working with 1.2 we ignore any loading errors.
404    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
405                       "verify")) {
406      dll_load(buffer, ebuf, sizeof(ebuf));
407    }
408
409    // Load java dll
410    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
411                       "java")) {
412      _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
413    }
414    if (_native_java_library == NULL) {
415      vm_exit_during_initialization("Unable to load native library", ebuf);
416    }
417
418#if defined(__OpenBSD__)
419    // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
420    // ignore errors
421    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
422                       "net")) {
423      dll_load(buffer, ebuf, sizeof(ebuf));
424    }
425#endif
426  }
427  return _native_java_library;
428}
429
430/*
431 * Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists.
432 * If check_lib == true then we are looking for an
433 * Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if
434 * this library is statically linked into the image.
435 * If check_lib == false then we will look for the appropriate symbol in the
436 * executable if agent_lib->is_static_lib() == true or in the shared library
437 * referenced by 'handle'.
438 */
439void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib,
440                              const char *syms[], size_t syms_len) {
441  assert(agent_lib != NULL, "sanity check");
442  const char *lib_name;
443  void *handle = agent_lib->os_lib();
444  void *entryName = NULL;
445  char *agent_function_name;
446  size_t i;
447
448  // If checking then use the agent name otherwise test is_static_lib() to
449  // see how to process this lookup
450  lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL);
451  for (i = 0; i < syms_len; i++) {
452    agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path());
453    if (agent_function_name == NULL) {
454      break;
455    }
456    entryName = dll_lookup(handle, agent_function_name);
457    FREE_C_HEAP_ARRAY(char, agent_function_name);
458    if (entryName != NULL) {
459      break;
460    }
461  }
462  return entryName;
463}
464
465// See if the passed in agent is statically linked into the VM image.
466bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[],
467                            size_t syms_len) {
468  void *ret;
469  void *proc_handle;
470  void *save_handle;
471
472  assert(agent_lib != NULL, "sanity check");
473  if (agent_lib->name() == NULL) {
474    return false;
475  }
476  proc_handle = get_default_process_handle();
477  // Check for Agent_OnLoad/Attach_lib_name function
478  save_handle = agent_lib->os_lib();
479  // We want to look in this process' symbol table.
480  agent_lib->set_os_lib(proc_handle);
481  ret = find_agent_function(agent_lib, true, syms, syms_len);
482  if (ret != NULL) {
483    // Found an entry point like Agent_OnLoad_lib_name so we have a static agent
484    agent_lib->set_valid();
485    agent_lib->set_static_lib(true);
486    return true;
487  }
488  agent_lib->set_os_lib(save_handle);
489  return false;
490}
491
492// --------------------- heap allocation utilities ---------------------
493
494char *os::strdup(const char *str, MEMFLAGS flags) {
495  size_t size = strlen(str);
496  char *dup_str = (char *)malloc(size + 1, flags);
497  if (dup_str == NULL) return NULL;
498  strcpy(dup_str, str);
499  return dup_str;
500}
501
502char* os::strdup_check_oom(const char* str, MEMFLAGS flags) {
503  char* p = os::strdup(str, flags);
504  if (p == NULL) {
505    vm_exit_out_of_memory(strlen(str) + 1, OOM_MALLOC_ERROR, "os::strdup_check_oom");
506  }
507  return p;
508}
509
510
511#define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
512
513#ifdef ASSERT
514
515static void verify_memory(void* ptr) {
516  GuardedMemory guarded(ptr);
517  if (!guarded.verify_guards()) {
518    tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
519    tty->print_cr("## memory stomp:");
520    guarded.print_on(tty);
521    fatal("memory stomping error");
522  }
523}
524
525#endif
526
527//
528// This function supports testing of the malloc out of memory
529// condition without really running the system out of memory.
530//
531static bool has_reached_max_malloc_test_peak(size_t alloc_size) {
532  if (MallocMaxTestWords > 0) {
533    jint words = (jint)(alloc_size / BytesPerWord);
534
535    if ((cur_malloc_words + words) > MallocMaxTestWords) {
536      return true;
537    }
538    Atomic::add(words, (volatile jint *)&cur_malloc_words);
539  }
540  return false;
541}
542
543void* os::malloc(size_t size, MEMFLAGS flags) {
544  return os::malloc(size, flags, CALLER_PC);
545}
546
547void* os::malloc(size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
548  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
549  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
550
551#ifdef ASSERT
552  // checking for the WatcherThread and crash_protection first
553  // since os::malloc can be called when the libjvm.{dll,so} is
554  // first loaded and we don't have a thread yet.
555  // try to find the thread after we see that the watcher thread
556  // exists and has crash protection.
557  WatcherThread *wt = WatcherThread::watcher_thread();
558  if (wt != NULL && wt->has_crash_protection()) {
559    Thread* thread = Thread::current_or_null();
560    if (thread == wt) {
561      assert(!wt->has_crash_protection(),
562          "Can't malloc with crash protection from WatcherThread");
563    }
564  }
565#endif
566
567  if (size == 0) {
568    // return a valid pointer if size is zero
569    // if NULL is returned the calling functions assume out of memory.
570    size = 1;
571  }
572
573  // NMT support
574  NMT_TrackingLevel level = MemTracker::tracking_level();
575  size_t            nmt_header_size = MemTracker::malloc_header_size(level);
576
577#ifndef ASSERT
578  const size_t alloc_size = size + nmt_header_size;
579#else
580  const size_t alloc_size = GuardedMemory::get_total_size(size + nmt_header_size);
581  if (size + nmt_header_size > alloc_size) { // Check for rollover.
582    return NULL;
583  }
584#endif
585
586  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
587
588  // For the test flag -XX:MallocMaxTestWords
589  if (has_reached_max_malloc_test_peak(size)) {
590    return NULL;
591  }
592
593  u_char* ptr;
594  ptr = (u_char*)::malloc(alloc_size);
595
596#ifdef ASSERT
597  if (ptr == NULL) {
598    return NULL;
599  }
600  // Wrap memory with guard
601  GuardedMemory guarded(ptr, size + nmt_header_size);
602  ptr = guarded.get_user_ptr();
603#endif
604  if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
605    tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
606    breakpoint();
607  }
608  debug_only(if (paranoid) verify_memory(ptr));
609  if (PrintMalloc && tty != NULL) {
610    tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
611  }
612
613  // we do not track guard memory
614  return MemTracker::record_malloc((address)ptr, size, memflags, stack, level);
615}
616
617void* os::realloc(void *memblock, size_t size, MEMFLAGS flags) {
618  return os::realloc(memblock, size, flags, CALLER_PC);
619}
620
621void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
622
623  // For the test flag -XX:MallocMaxTestWords
624  if (has_reached_max_malloc_test_peak(size)) {
625    return NULL;
626  }
627
628#ifndef ASSERT
629  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
630  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
631   // NMT support
632  void* membase = MemTracker::record_free(memblock);
633  NMT_TrackingLevel level = MemTracker::tracking_level();
634  size_t  nmt_header_size = MemTracker::malloc_header_size(level);
635  void* ptr = ::realloc(membase, size + nmt_header_size);
636  return MemTracker::record_malloc(ptr, size, memflags, stack, level);
637#else
638  if (memblock == NULL) {
639    return os::malloc(size, memflags, stack);
640  }
641  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
642    tty->print_cr("os::realloc caught " PTR_FORMAT, p2i(memblock));
643    breakpoint();
644  }
645  // NMT support
646  void* membase = MemTracker::malloc_base(memblock);
647  verify_memory(membase);
648  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
649  if (size == 0) {
650    return NULL;
651  }
652  // always move the block
653  void* ptr = os::malloc(size, memflags, stack);
654  if (PrintMalloc && tty != NULL) {
655    tty->print_cr("os::realloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, p2i(memblock), p2i(ptr));
656  }
657  // Copy to new memory if malloc didn't fail
658  if ( ptr != NULL ) {
659    GuardedMemory guarded(MemTracker::malloc_base(memblock));
660    // Guard's user data contains NMT header
661    size_t memblock_size = guarded.get_user_size() - MemTracker::malloc_header_size(memblock);
662    memcpy(ptr, memblock, MIN2(size, memblock_size));
663    if (paranoid) verify_memory(MemTracker::malloc_base(ptr));
664    if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
665      tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
666      breakpoint();
667    }
668    os::free(memblock);
669  }
670  return ptr;
671#endif
672}
673
674
675void  os::free(void *memblock) {
676  NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
677#ifdef ASSERT
678  if (memblock == NULL) return;
679  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
680    if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, p2i(memblock));
681    breakpoint();
682  }
683  void* membase = MemTracker::record_free(memblock);
684  verify_memory(membase);
685  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
686
687  GuardedMemory guarded(membase);
688  size_t size = guarded.get_user_size();
689  inc_stat_counter(&free_bytes, size);
690  membase = guarded.release_for_freeing();
691  if (PrintMalloc && tty != NULL) {
692      fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)membase);
693  }
694  ::free(membase);
695#else
696  void* membase = MemTracker::record_free(memblock);
697  ::free(membase);
698#endif
699}
700
701void os::init_random(long initval) {
702  _rand_seed = initval;
703}
704
705
706long os::random() {
707  /* standard, well-known linear congruential random generator with
708   * next_rand = (16807*seed) mod (2**31-1)
709   * see
710   * (1) "Random Number Generators: Good Ones Are Hard to Find",
711   *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
712   * (2) "Two Fast Implementations of the 'Minimal Standard' Random
713   *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
714  */
715  const long a = 16807;
716  const unsigned long m = 2147483647;
717  const long q = m / a;        assert(q == 127773, "weird math");
718  const long r = m % a;        assert(r == 2836, "weird math");
719
720  // compute az=2^31p+q
721  unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
722  unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
723  lo += (hi & 0x7FFF) << 16;
724
725  // if q overflowed, ignore the overflow and increment q
726  if (lo > m) {
727    lo &= m;
728    ++lo;
729  }
730  lo += hi >> 15;
731
732  // if (p+q) overflowed, ignore the overflow and increment (p+q)
733  if (lo > m) {
734    lo &= m;
735    ++lo;
736  }
737  return (_rand_seed = lo);
738}
739
740// The INITIALIZED state is distinguished from the SUSPENDED state because the
741// conditions in which a thread is first started are different from those in which
742// a suspension is resumed.  These differences make it hard for us to apply the
743// tougher checks when starting threads that we want to do when resuming them.
744// However, when start_thread is called as a result of Thread.start, on a Java
745// thread, the operation is synchronized on the Java Thread object.  So there
746// cannot be a race to start the thread and hence for the thread to exit while
747// we are working on it.  Non-Java threads that start Java threads either have
748// to do so in a context in which races are impossible, or should do appropriate
749// locking.
750
751void os::start_thread(Thread* thread) {
752  // guard suspend/resume
753  MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
754  OSThread* osthread = thread->osthread();
755  osthread->set_state(RUNNABLE);
756  pd_start_thread(thread);
757}
758
759void os::abort(bool dump_core) {
760  abort(dump_core && CreateCoredumpOnCrash, NULL, NULL);
761}
762
763//---------------------------------------------------------------------------
764// Helper functions for fatal error handler
765
766void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
767  assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
768
769  int cols = 0;
770  int cols_per_line = 0;
771  switch (unitsize) {
772    case 1: cols_per_line = 16; break;
773    case 2: cols_per_line = 8;  break;
774    case 4: cols_per_line = 4;  break;
775    case 8: cols_per_line = 2;  break;
776    default: return;
777  }
778
779  address p = start;
780  st->print(PTR_FORMAT ":   ", p2i(start));
781  while (p < end) {
782    switch (unitsize) {
783      case 1: st->print("%02x", *(u1*)p); break;
784      case 2: st->print("%04x", *(u2*)p); break;
785      case 4: st->print("%08x", *(u4*)p); break;
786      case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
787    }
788    p += unitsize;
789    cols++;
790    if (cols >= cols_per_line && p < end) {
791       cols = 0;
792       st->cr();
793       st->print(PTR_FORMAT ":   ", p2i(p));
794    } else {
795       st->print(" ");
796    }
797  }
798  st->cr();
799}
800
801void os::print_environment_variables(outputStream* st, const char** env_list) {
802  if (env_list) {
803    st->print_cr("Environment Variables:");
804
805    for (int i = 0; env_list[i] != NULL; i++) {
806      char *envvar = ::getenv(env_list[i]);
807      if (envvar != NULL) {
808        st->print("%s", env_list[i]);
809        st->print("=");
810        st->print_cr("%s", envvar);
811      }
812    }
813  }
814}
815
816void os::print_cpu_info(outputStream* st, char* buf, size_t buflen) {
817  // cpu
818  st->print("CPU:");
819  st->print("total %d", os::processor_count());
820  // It's not safe to query number of active processors after crash
821  // st->print("(active %d)", os::active_processor_count());
822  st->print(" %s", VM_Version::features_string());
823  st->cr();
824  pd_print_cpu_info(st, buf, buflen);
825}
826
827// Print a one line string summarizing the cpu, number of cores, memory, and operating system version
828void os::print_summary_info(outputStream* st, char* buf, size_t buflen) {
829  st->print("Host: ");
830#ifndef PRODUCT
831  if (get_host_name(buf, buflen)) {
832    st->print("%s, ", buf);
833  }
834#endif // PRODUCT
835  get_summary_cpu_info(buf, buflen);
836  st->print("%s, ", buf);
837  size_t mem = physical_memory()/G;
838  if (mem == 0) {  // for low memory systems
839    mem = physical_memory()/M;
840    st->print("%d cores, " SIZE_FORMAT "M, ", processor_count(), mem);
841  } else {
842    st->print("%d cores, " SIZE_FORMAT "G, ", processor_count(), mem);
843  }
844  get_summary_os_info(buf, buflen);
845  st->print_raw(buf);
846  st->cr();
847}
848
849void os::print_date_and_time(outputStream *st, char* buf, size_t buflen) {
850  const int secs_per_day  = 86400;
851  const int secs_per_hour = 3600;
852  const int secs_per_min  = 60;
853
854  time_t tloc;
855  (void)time(&tloc);
856  char* timestring = ctime(&tloc);  // ctime adds newline.
857  // edit out the newline
858  char* nl = strchr(timestring, '\n');
859  if (nl != NULL) {
860    *nl = '\0';
861  }
862
863  struct tm tz;
864  if (localtime_pd(&tloc, &tz) != NULL) {
865    ::strftime(buf, buflen, "%Z", &tz);
866    st->print("Time: %s %s", timestring, buf);
867  } else {
868    st->print("Time: %s", timestring);
869  }
870
871  double t = os::elapsedTime();
872  // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
873  //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
874  //       before printf. We lost some precision, but who cares?
875  int eltime = (int)t;  // elapsed time in seconds
876
877  // print elapsed time in a human-readable format:
878  int eldays = eltime / secs_per_day;
879  int day_secs = eldays * secs_per_day;
880  int elhours = (eltime - day_secs) / secs_per_hour;
881  int hour_secs = elhours * secs_per_hour;
882  int elmins = (eltime - day_secs - hour_secs) / secs_per_min;
883  int minute_secs = elmins * secs_per_min;
884  int elsecs = (eltime - day_secs - hour_secs - minute_secs);
885  st->print_cr(" elapsed time: %d seconds (%dd %dh %dm %ds)", eltime, eldays, elhours, elmins, elsecs);
886}
887
888// moved from debug.cpp (used to be find()) but still called from there
889// The verbose parameter is only set by the debug code in one case
890void os::print_location(outputStream* st, intptr_t x, bool verbose) {
891  address addr = (address)x;
892  CodeBlob* b = CodeCache::find_blob_unsafe(addr);
893  if (b != NULL) {
894    if (b->is_buffer_blob()) {
895      // the interpreter is generated into a buffer blob
896      InterpreterCodelet* i = Interpreter::codelet_containing(addr);
897      if (i != NULL) {
898        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", p2i(addr), (int)(addr - i->code_begin()));
899        i->print_on(st);
900        return;
901      }
902      if (Interpreter::contains(addr)) {
903        st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
904                     " (not bytecode specific)", p2i(addr));
905        return;
906      }
907      //
908      if (AdapterHandlerLibrary::contains(b)) {
909        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", p2i(addr), (int)(addr - b->code_begin()));
910        AdapterHandlerLibrary::print_handler_on(st, b);
911      }
912      // the stubroutines are generated into a buffer blob
913      StubCodeDesc* d = StubCodeDesc::desc_for(addr);
914      if (d != NULL) {
915        st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", p2i(addr), (int)(addr - d->begin()));
916        d->print_on(st);
917        st->cr();
918        return;
919      }
920      if (StubRoutines::contains(addr)) {
921        st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) stub routine", p2i(addr));
922        return;
923      }
924      // the InlineCacheBuffer is using stubs generated into a buffer blob
925      if (InlineCacheBuffer::contains(addr)) {
926        st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", p2i(addr));
927        return;
928      }
929      VtableStub* v = VtableStubs::stub_containing(addr);
930      if (v != NULL) {
931        st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", p2i(addr), (int)(addr - v->entry_point()));
932        v->print_on(st);
933        st->cr();
934        return;
935      }
936    }
937    nmethod* nm = b->as_nmethod_or_null();
938    if (nm != NULL) {
939      ResourceMark rm;
940      st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
941                p2i(addr), (int)(addr - nm->entry_point()), p2i(nm));
942      if (verbose) {
943        st->print(" for ");
944        nm->method()->print_value_on(st);
945      }
946      st->cr();
947      nm->print_nmethod(verbose);
948      return;
949    }
950    st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", p2i(addr), (int)(addr - b->code_begin()));
951    b->print_on(st);
952    return;
953  }
954
955  if (Universe::heap()->is_in(addr)) {
956    HeapWord* p = Universe::heap()->block_start(addr);
957    bool print = false;
958    // If we couldn't find it it just may mean that heap wasn't parsable
959    // See if we were just given an oop directly
960    if (p != NULL && Universe::heap()->block_is_obj(p)) {
961      print = true;
962    } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
963      p = (HeapWord*) addr;
964      print = true;
965    }
966    if (print) {
967      if (p == (HeapWord*) addr) {
968        st->print_cr(INTPTR_FORMAT " is an oop", p2i(addr));
969      } else {
970        st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, p2i(addr), p2i(p));
971      }
972      oop(p)->print_on(st);
973      return;
974    }
975  } else {
976    if (Universe::heap()->is_in_reserved(addr)) {
977      st->print_cr(INTPTR_FORMAT " is an unallocated location "
978                   "in the heap", p2i(addr));
979      return;
980    }
981  }
982  if (JNIHandles::is_global_handle((jobject) addr)) {
983    st->print_cr(INTPTR_FORMAT " is a global jni handle", p2i(addr));
984    return;
985  }
986  if (JNIHandles::is_weak_global_handle((jobject) addr)) {
987    st->print_cr(INTPTR_FORMAT " is a weak global jni handle", p2i(addr));
988    return;
989  }
990#ifndef PRODUCT
991  // we don't keep the block list in product mode
992  if (JNIHandleBlock::any_contains((jobject) addr)) {
993    st->print_cr(INTPTR_FORMAT " is a local jni handle", p2i(addr));
994    return;
995  }
996#endif
997
998  for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
999    // Check for privilege stack
1000    if (thread->privileged_stack_top() != NULL &&
1001        thread->privileged_stack_top()->contains(addr)) {
1002      st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
1003                   "for thread: " INTPTR_FORMAT, p2i(addr), p2i(thread));
1004      if (verbose) thread->print_on(st);
1005      return;
1006    }
1007    // If the addr is a java thread print information about that.
1008    if (addr == (address)thread) {
1009      if (verbose) {
1010        thread->print_on(st);
1011      } else {
1012        st->print_cr(INTPTR_FORMAT " is a thread", p2i(addr));
1013      }
1014      return;
1015    }
1016    // If the addr is in the stack region for this thread then report that
1017    // and print thread info
1018    if (thread->stack_base() >= addr &&
1019        addr > (thread->stack_base() - thread->stack_size())) {
1020      st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
1021                   INTPTR_FORMAT, p2i(addr), p2i(thread));
1022      if (verbose) thread->print_on(st);
1023      return;
1024    }
1025
1026  }
1027
1028  // Check if in metaspace and print types that have vptrs (only method now)
1029  if (Metaspace::contains(addr)) {
1030    if (Method::has_method_vptr((const void*)addr)) {
1031      ((Method*)addr)->print_value_on(st);
1032      st->cr();
1033    } else {
1034      // Use addr->print() from the debugger instead (not here)
1035      st->print_cr(INTPTR_FORMAT " is pointing into metadata", p2i(addr));
1036    }
1037    return;
1038  }
1039
1040  // Try an OS specific find
1041  if (os::find(addr, st)) {
1042    return;
1043  }
1044
1045  st->print_cr(INTPTR_FORMAT " is an unknown value", p2i(addr));
1046}
1047
1048// Looks like all platforms except IA64 can use the same function to check
1049// if C stack is walkable beyond current frame. The check for fp() is not
1050// necessary on Sparc, but it's harmless.
1051bool os::is_first_C_frame(frame* fr) {
1052#if (defined(IA64) && !defined(AIX)) && !defined(_WIN32)
1053  // On IA64 we have to check if the callers bsp is still valid
1054  // (i.e. within the register stack bounds).
1055  // Notice: this only works for threads created by the VM and only if
1056  // we walk the current stack!!! If we want to be able to walk
1057  // arbitrary other threads, we'll have to somehow store the thread
1058  // object in the frame.
1059  Thread *thread = Thread::current();
1060  if ((address)fr->fp() <=
1061      thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
1062    // This check is a little hacky, because on Linux the first C
1063    // frame's ('start_thread') register stack frame starts at
1064    // "register_stack_base + 0x48" while on HPUX, the first C frame's
1065    // ('__pthread_bound_body') register stack frame seems to really
1066    // start at "register_stack_base".
1067    return true;
1068  } else {
1069    return false;
1070  }
1071#elif defined(IA64) && defined(_WIN32)
1072  return true;
1073#else
1074  // Load up sp, fp, sender sp and sender fp, check for reasonable values.
1075  // Check usp first, because if that's bad the other accessors may fault
1076  // on some architectures.  Ditto ufp second, etc.
1077  uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
1078  // sp on amd can be 32 bit aligned.
1079  uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
1080
1081  uintptr_t usp    = (uintptr_t)fr->sp();
1082  if ((usp & sp_align_mask) != 0) return true;
1083
1084  uintptr_t ufp    = (uintptr_t)fr->fp();
1085  if ((ufp & fp_align_mask) != 0) return true;
1086
1087  uintptr_t old_sp = (uintptr_t)fr->sender_sp();
1088  if ((old_sp & sp_align_mask) != 0) return true;
1089  if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
1090
1091  uintptr_t old_fp = (uintptr_t)fr->link();
1092  if ((old_fp & fp_align_mask) != 0) return true;
1093  if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
1094
1095  // stack grows downwards; if old_fp is below current fp or if the stack
1096  // frame is too large, either the stack is corrupted or fp is not saved
1097  // on stack (i.e. on x86, ebp may be used as general register). The stack
1098  // is not walkable beyond current frame.
1099  if (old_fp < ufp) return true;
1100  if (old_fp - ufp > 64 * K) return true;
1101
1102  return false;
1103#endif
1104}
1105
1106#ifdef ASSERT
1107extern "C" void test_random() {
1108  const double m = 2147483647;
1109  double mean = 0.0, variance = 0.0, t;
1110  long reps = 10000;
1111  unsigned long seed = 1;
1112
1113  tty->print_cr("seed %ld for %ld repeats...", seed, reps);
1114  os::init_random(seed);
1115  long num;
1116  for (int k = 0; k < reps; k++) {
1117    num = os::random();
1118    double u = (double)num / m;
1119    assert(u >= 0.0 && u <= 1.0, "bad random number!");
1120
1121    // calculate mean and variance of the random sequence
1122    mean += u;
1123    variance += (u*u);
1124  }
1125  mean /= reps;
1126  variance /= (reps - 1);
1127
1128  assert(num == 1043618065, "bad seed");
1129  tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
1130  tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
1131  const double eps = 0.0001;
1132  t = fabsd(mean - 0.5018);
1133  assert(t < eps, "bad mean");
1134  t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
1135  assert(t < eps, "bad variance");
1136}
1137#endif
1138
1139
1140// Set up the boot classpath.
1141
1142char* os::format_boot_path(const char* format_string,
1143                           const char* home,
1144                           int home_len,
1145                           char fileSep,
1146                           char pathSep) {
1147    assert((fileSep == '/' && pathSep == ':') ||
1148           (fileSep == '\\' && pathSep == ';'), "unexpected separator chars");
1149
1150    // Scan the format string to determine the length of the actual
1151    // boot classpath, and handle platform dependencies as well.
1152    int formatted_path_len = 0;
1153    const char* p;
1154    for (p = format_string; *p != 0; ++p) {
1155        if (*p == '%') formatted_path_len += home_len - 1;
1156        ++formatted_path_len;
1157    }
1158
1159    char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
1160    if (formatted_path == NULL) {
1161        return NULL;
1162    }
1163
1164    // Create boot classpath from format, substituting separator chars and
1165    // java home directory.
1166    char* q = formatted_path;
1167    for (p = format_string; *p != 0; ++p) {
1168        switch (*p) {
1169        case '%':
1170            strcpy(q, home);
1171            q += home_len;
1172            break;
1173        case '/':
1174            *q++ = fileSep;
1175            break;
1176        case ':':
1177            *q++ = pathSep;
1178            break;
1179        default:
1180            *q++ = *p;
1181        }
1182    }
1183    *q = '\0';
1184
1185    assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1186    return formatted_path;
1187}
1188
1189// returns a PATH of all entries in the given directory that do not start with a '.'
1190static char* expand_entries_to_path(char* directory, char fileSep, char pathSep) {
1191  DIR* dir = os::opendir(directory);
1192  if (dir == NULL) return NULL;
1193
1194  char* path = NULL;
1195  size_t path_len = 0;  // path length including \0 terminator
1196
1197  size_t directory_len = strlen(directory);
1198  struct dirent *entry;
1199  char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(directory), mtInternal);
1200  while ((entry = os::readdir(dir, (dirent *) dbuf)) != NULL) {
1201    const char* name = entry->d_name;
1202    if (name[0] == '.') continue;
1203
1204    size_t name_len = strlen(name);
1205    size_t needed = directory_len + name_len + 2;
1206    size_t new_len = path_len + needed;
1207    if (path == NULL) {
1208      path = NEW_C_HEAP_ARRAY(char, new_len, mtInternal);
1209    } else {
1210      path = REALLOC_C_HEAP_ARRAY(char, path, new_len, mtInternal);
1211    }
1212    if (path == NULL)
1213      break;
1214
1215    // append <pathSep>directory<fileSep>name
1216    char* p = path;
1217    if (path_len > 0) {
1218      p += (path_len -1);
1219      *p = pathSep;
1220      p++;
1221    }
1222
1223    strcpy(p, directory);
1224    p += directory_len;
1225
1226    *p = fileSep;
1227    p++;
1228
1229    strcpy(p, name);
1230    p += name_len;
1231
1232    path_len = new_len;
1233  }
1234
1235  FREE_C_HEAP_ARRAY(char, dbuf);
1236  os::closedir(dir);
1237
1238  return path;
1239}
1240
1241bool os::set_boot_path(char fileSep, char pathSep) {
1242  const char* home = Arguments::get_java_home();
1243  int home_len = (int)strlen(home);
1244
1245  char* sysclasspath = NULL;
1246  struct stat st;
1247
1248  // modular image if bootmodules.jimage exists
1249  char* jimage = format_boot_path("%/lib/modules/" BOOT_IMAGE_NAME, home, home_len, fileSep, pathSep);
1250  if (jimage == NULL) return false;
1251  bool has_jimage = (os::stat(jimage, &st) == 0);
1252  if (has_jimage) {
1253    Arguments::set_sysclasspath(jimage);
1254    FREE_C_HEAP_ARRAY(char, jimage);
1255    return true;
1256  }
1257  FREE_C_HEAP_ARRAY(char, jimage);
1258
1259  // check if developer build with exploded modules
1260  char* modules_dir = format_boot_path("%/modules", home, home_len, fileSep, pathSep);
1261  if (os::stat(modules_dir, &st) == 0) {
1262    if ((st.st_mode & S_IFDIR) == S_IFDIR) {
1263      sysclasspath = expand_entries_to_path(modules_dir, fileSep, pathSep);
1264    }
1265  }
1266  FREE_C_HEAP_ARRAY(char, modules_dir);
1267
1268  // fallback to classes
1269  if (sysclasspath == NULL)
1270    sysclasspath = format_boot_path("%/classes", home, home_len, fileSep, pathSep);
1271
1272  if (sysclasspath == NULL) return false;
1273  Arguments::set_sysclasspath(sysclasspath);
1274  FREE_C_HEAP_ARRAY(char, sysclasspath);
1275
1276  return true;
1277}
1278
1279/*
1280 * Splits a path, based on its separator, the number of
1281 * elements is returned back in n.
1282 * It is the callers responsibility to:
1283 *   a> check the value of n, and n may be 0.
1284 *   b> ignore any empty path elements
1285 *   c> free up the data.
1286 */
1287char** os::split_path(const char* path, int* n) {
1288  *n = 0;
1289  if (path == NULL || strlen(path) == 0) {
1290    return NULL;
1291  }
1292  const char psepchar = *os::path_separator();
1293  char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
1294  if (inpath == NULL) {
1295    return NULL;
1296  }
1297  strcpy(inpath, path);
1298  int count = 1;
1299  char* p = strchr(inpath, psepchar);
1300  // Get a count of elements to allocate memory
1301  while (p != NULL) {
1302    count++;
1303    p++;
1304    p = strchr(p, psepchar);
1305  }
1306  char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
1307  if (opath == NULL) {
1308    return NULL;
1309  }
1310
1311  // do the actual splitting
1312  p = inpath;
1313  for (int i = 0 ; i < count ; i++) {
1314    size_t len = strcspn(p, os::path_separator());
1315    if (len > JVM_MAXPATHLEN) {
1316      return NULL;
1317    }
1318    // allocate the string and add terminator storage
1319    char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
1320    if (s == NULL) {
1321      return NULL;
1322    }
1323    strncpy(s, p, len);
1324    s[len] = '\0';
1325    opath[i] = s;
1326    p += len + 1;
1327  }
1328  FREE_C_HEAP_ARRAY(char, inpath);
1329  *n = count;
1330  return opath;
1331}
1332
1333void os::set_memory_serialize_page(address page) {
1334  int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
1335  _mem_serialize_page = (volatile int32_t *)page;
1336  // We initialize the serialization page shift count here
1337  // We assume a cache line size of 64 bytes
1338  assert(SerializePageShiftCount == count,
1339         "thread size changed, fix SerializePageShiftCount constant");
1340  set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
1341}
1342
1343static volatile intptr_t SerializePageLock = 0;
1344
1345// This method is called from signal handler when SIGSEGV occurs while the current
1346// thread tries to store to the "read-only" memory serialize page during state
1347// transition.
1348void os::block_on_serialize_page_trap() {
1349  log_debug(safepoint)("Block until the serialize page permission restored");
1350
1351  // When VMThread is holding the SerializePageLock during modifying the
1352  // access permission of the memory serialize page, the following call
1353  // will block until the permission of that page is restored to rw.
1354  // Generally, it is unsafe to manipulate locks in signal handlers, but in
1355  // this case, it's OK as the signal is synchronous and we know precisely when
1356  // it can occur.
1357  Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
1358  Thread::muxRelease(&SerializePageLock);
1359}
1360
1361// Serialize all thread state variables
1362void os::serialize_thread_states() {
1363  // On some platforms such as Solaris & Linux, the time duration of the page
1364  // permission restoration is observed to be much longer than expected  due to
1365  // scheduler starvation problem etc. To avoid the long synchronization
1366  // time and expensive page trap spinning, 'SerializePageLock' is used to block
1367  // the mutator thread if such case is encountered. See bug 6546278 for details.
1368  Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
1369  os::protect_memory((char *)os::get_memory_serialize_page(),
1370                     os::vm_page_size(), MEM_PROT_READ);
1371  os::protect_memory((char *)os::get_memory_serialize_page(),
1372                     os::vm_page_size(), MEM_PROT_RW);
1373  Thread::muxRelease(&SerializePageLock);
1374}
1375
1376// Returns true if the current stack pointer is above the stack shadow
1377// pages, false otherwise.
1378
1379bool os::stack_shadow_pages_available(Thread *thread, const methodHandle& method) {
1380  assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
1381  address sp = current_stack_pointer();
1382  // Check if we have StackShadowPages above the yellow zone.  This parameter
1383  // is dependent on the depth of the maximum VM call stack possible from
1384  // the handler for stack overflow.  'instanceof' in the stack overflow
1385  // handler or a println uses at least 8k stack of VM and native code
1386  // respectively.
1387  const int framesize_in_bytes =
1388    Interpreter::size_top_interpreter_activation(method()) * wordSize;
1389  int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages
1390                      + StackReservedPages) * vm_page_size())
1391                      + framesize_in_bytes;
1392  // The very lower end of the stack
1393  address stack_limit = thread->stack_base() - thread->stack_size();
1394  return (sp > (stack_limit + reserved_area));
1395}
1396
1397size_t os::page_size_for_region(size_t region_size, size_t min_pages, bool must_be_aligned) {
1398  assert(min_pages > 0, "sanity");
1399  if (UseLargePages) {
1400    const size_t max_page_size = region_size / min_pages;
1401
1402    for (size_t i = 0; _page_sizes[i] != 0; ++i) {
1403      const size_t page_size = _page_sizes[i];
1404      if (page_size <= max_page_size) {
1405        if (!must_be_aligned || is_size_aligned(region_size, page_size)) {
1406          return page_size;
1407        }
1408      }
1409    }
1410  }
1411
1412  return vm_page_size();
1413}
1414
1415size_t os::page_size_for_region_aligned(size_t region_size, size_t min_pages) {
1416  return page_size_for_region(region_size, min_pages, true);
1417}
1418
1419size_t os::page_size_for_region_unaligned(size_t region_size, size_t min_pages) {
1420  return page_size_for_region(region_size, min_pages, false);
1421}
1422
1423#ifndef PRODUCT
1424void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
1425{
1426  if (TracePageSizes) {
1427    tty->print("%s: ", str);
1428    for (int i = 0; i < count; ++i) {
1429      tty->print(" " SIZE_FORMAT, page_sizes[i]);
1430    }
1431    tty->cr();
1432  }
1433}
1434
1435void os::trace_page_sizes(const char* str, const size_t region_min_size,
1436                          const size_t region_max_size, const size_t page_size,
1437                          const char* base, const size_t size)
1438{
1439  if (TracePageSizes) {
1440    tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
1441                  " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
1442                  " size=" SIZE_FORMAT,
1443                  str, region_min_size, region_max_size,
1444                  page_size, p2i(base), size);
1445  }
1446}
1447#endif  // #ifndef PRODUCT
1448
1449// This is the working definition of a server class machine:
1450// >= 2 physical CPU's and >=2GB of memory, with some fuzz
1451// because the graphics memory (?) sometimes masks physical memory.
1452// If you want to change the definition of a server class machine
1453// on some OS or platform, e.g., >=4GB on Windows platforms,
1454// then you'll have to parameterize this method based on that state,
1455// as was done for logical processors here, or replicate and
1456// specialize this method for each platform.  (Or fix os to have
1457// some inheritance structure and use subclassing.  Sigh.)
1458// If you want some platform to always or never behave as a server
1459// class machine, change the setting of AlwaysActAsServerClassMachine
1460// and NeverActAsServerClassMachine in globals*.hpp.
1461bool os::is_server_class_machine() {
1462  // First check for the early returns
1463  if (NeverActAsServerClassMachine) {
1464    return false;
1465  }
1466  if (AlwaysActAsServerClassMachine) {
1467    return true;
1468  }
1469  // Then actually look at the machine
1470  bool         result            = false;
1471  const unsigned int    server_processors = 2;
1472  const julong server_memory     = 2UL * G;
1473  // We seem not to get our full complement of memory.
1474  //     We allow some part (1/8?) of the memory to be "missing",
1475  //     based on the sizes of DIMMs, and maybe graphics cards.
1476  const julong missing_memory   = 256UL * M;
1477
1478  /* Is this a server class machine? */
1479  if ((os::active_processor_count() >= (int)server_processors) &&
1480      (os::physical_memory() >= (server_memory - missing_memory))) {
1481    const unsigned int logical_processors =
1482      VM_Version::logical_processors_per_package();
1483    if (logical_processors > 1) {
1484      const unsigned int physical_packages =
1485        os::active_processor_count() / logical_processors;
1486      if (physical_packages > server_processors) {
1487        result = true;
1488      }
1489    } else {
1490      result = true;
1491    }
1492  }
1493  return result;
1494}
1495
1496void os::SuspendedThreadTask::run() {
1497  assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
1498  internal_do_task();
1499  _done = true;
1500}
1501
1502bool os::create_stack_guard_pages(char* addr, size_t bytes) {
1503  return os::pd_create_stack_guard_pages(addr, bytes);
1504}
1505
1506char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
1507  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1508  if (result != NULL) {
1509    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1510  }
1511
1512  return result;
1513}
1514
1515char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
1516   MEMFLAGS flags) {
1517  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1518  if (result != NULL) {
1519    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1520    MemTracker::record_virtual_memory_type((address)result, flags);
1521  }
1522
1523  return result;
1524}
1525
1526char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
1527  char* result = pd_attempt_reserve_memory_at(bytes, addr);
1528  if (result != NULL) {
1529    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1530  }
1531  return result;
1532}
1533
1534void os::split_reserved_memory(char *base, size_t size,
1535                                 size_t split, bool realloc) {
1536  pd_split_reserved_memory(base, size, split, realloc);
1537}
1538
1539bool os::commit_memory(char* addr, size_t bytes, bool executable) {
1540  bool res = pd_commit_memory(addr, bytes, executable);
1541  if (res) {
1542    MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1543  }
1544  return res;
1545}
1546
1547bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1548                              bool executable) {
1549  bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
1550  if (res) {
1551    MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1552  }
1553  return res;
1554}
1555
1556void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
1557                               const char* mesg) {
1558  pd_commit_memory_or_exit(addr, bytes, executable, mesg);
1559  MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1560}
1561
1562void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
1563                               bool executable, const char* mesg) {
1564  os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
1565  MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1566}
1567
1568bool os::uncommit_memory(char* addr, size_t bytes) {
1569  bool res;
1570  if (MemTracker::tracking_level() > NMT_minimal) {
1571    Tracker tkr = MemTracker::get_virtual_memory_uncommit_tracker();
1572    res = pd_uncommit_memory(addr, bytes);
1573    if (res) {
1574      tkr.record((address)addr, bytes);
1575    }
1576  } else {
1577    res = pd_uncommit_memory(addr, bytes);
1578  }
1579  return res;
1580}
1581
1582bool os::release_memory(char* addr, size_t bytes) {
1583  bool res;
1584  if (MemTracker::tracking_level() > NMT_minimal) {
1585    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1586    res = pd_release_memory(addr, bytes);
1587    if (res) {
1588      tkr.record((address)addr, bytes);
1589    }
1590  } else {
1591    res = pd_release_memory(addr, bytes);
1592  }
1593  return res;
1594}
1595
1596void os::pretouch_memory(char* start, char* end) {
1597  for (volatile char *p = start; p < end; p += os::vm_page_size()) {
1598    *p = 0;
1599  }
1600}
1601
1602char* os::map_memory(int fd, const char* file_name, size_t file_offset,
1603                           char *addr, size_t bytes, bool read_only,
1604                           bool allow_exec) {
1605  char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
1606  if (result != NULL) {
1607    MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, CALLER_PC);
1608  }
1609  return result;
1610}
1611
1612char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
1613                             char *addr, size_t bytes, bool read_only,
1614                             bool allow_exec) {
1615  return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
1616                    read_only, allow_exec);
1617}
1618
1619bool os::unmap_memory(char *addr, size_t bytes) {
1620  bool result;
1621  if (MemTracker::tracking_level() > NMT_minimal) {
1622    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1623    result = pd_unmap_memory(addr, bytes);
1624    if (result) {
1625      tkr.record((address)addr, bytes);
1626    }
1627  } else {
1628    result = pd_unmap_memory(addr, bytes);
1629  }
1630  return result;
1631}
1632
1633void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
1634  pd_free_memory(addr, bytes, alignment_hint);
1635}
1636
1637void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1638  pd_realign_memory(addr, bytes, alignment_hint);
1639}
1640
1641#ifndef TARGET_OS_FAMILY_windows
1642/* try to switch state from state "from" to state "to"
1643 * returns the state set after the method is complete
1644 */
1645os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
1646                                                         os::SuspendResume::State to)
1647{
1648  os::SuspendResume::State result =
1649    (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
1650  if (result == from) {
1651    // success
1652    return to;
1653  }
1654  return result;
1655}
1656#endif
1657
1658/////////////// Unit tests ///////////////
1659
1660#ifndef PRODUCT
1661
1662#define assert_eq(a,b) assert(a == b, SIZE_FORMAT " != " SIZE_FORMAT, a, b)
1663
1664class TestOS : AllStatic {
1665  static size_t small_page_size() {
1666    return os::vm_page_size();
1667  }
1668
1669  static size_t large_page_size() {
1670    const size_t large_page_size_example = 4 * M;
1671    return os::page_size_for_region_aligned(large_page_size_example, 1);
1672  }
1673
1674  static void test_page_size_for_region_aligned() {
1675    if (UseLargePages) {
1676      const size_t small_page = small_page_size();
1677      const size_t large_page = large_page_size();
1678
1679      if (large_page > small_page) {
1680        size_t num_small_pages_in_large = large_page / small_page;
1681        size_t page = os::page_size_for_region_aligned(large_page, num_small_pages_in_large);
1682
1683        assert_eq(page, small_page);
1684      }
1685    }
1686  }
1687
1688  static void test_page_size_for_region_alignment() {
1689    if (UseLargePages) {
1690      const size_t small_page = small_page_size();
1691      const size_t large_page = large_page_size();
1692      if (large_page > small_page) {
1693        const size_t unaligned_region = large_page + 17;
1694        size_t page = os::page_size_for_region_aligned(unaligned_region, 1);
1695        assert_eq(page, small_page);
1696
1697        const size_t num_pages = 5;
1698        const size_t aligned_region = large_page * num_pages;
1699        page = os::page_size_for_region_aligned(aligned_region, num_pages);
1700        assert_eq(page, large_page);
1701      }
1702    }
1703  }
1704
1705  static void test_page_size_for_region_unaligned() {
1706    if (UseLargePages) {
1707      // Given exact page size, should return that page size.
1708      for (size_t i = 0; os::_page_sizes[i] != 0; i++) {
1709        size_t expected = os::_page_sizes[i];
1710        size_t actual = os::page_size_for_region_unaligned(expected, 1);
1711        assert_eq(expected, actual);
1712      }
1713
1714      // Given slightly larger size than a page size, return the page size.
1715      for (size_t i = 0; os::_page_sizes[i] != 0; i++) {
1716        size_t expected = os::_page_sizes[i];
1717        size_t actual = os::page_size_for_region_unaligned(expected + 17, 1);
1718        assert_eq(expected, actual);
1719      }
1720
1721      // Given a slightly smaller size than a page size,
1722      // return the next smaller page size.
1723      if (os::_page_sizes[1] > os::_page_sizes[0]) {
1724        size_t expected = os::_page_sizes[0];
1725        size_t actual = os::page_size_for_region_unaligned(os::_page_sizes[1] - 17, 1);
1726        assert_eq(actual, expected);
1727      }
1728
1729      // Return small page size for values less than a small page.
1730      size_t small_page = small_page_size();
1731      size_t actual = os::page_size_for_region_unaligned(small_page - 17, 1);
1732      assert_eq(small_page, actual);
1733    }
1734  }
1735
1736 public:
1737  static void run_tests() {
1738    test_page_size_for_region_aligned();
1739    test_page_size_for_region_alignment();
1740    test_page_size_for_region_unaligned();
1741  }
1742};
1743
1744void TestOS_test() {
1745  TestOS::run_tests();
1746}
1747
1748#endif // PRODUCT
1749