os.cpp revision 9099:115188e14c15
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/codeCache.hpp"
31#include "code/icBuffer.hpp"
32#include "code/vtableStubs.hpp"
33#include "gc/shared/vmGCOperations.hpp"
34#include "interpreter/interpreter.hpp"
35#include "memory/allocation.inline.hpp"
36#ifdef ASSERT
37#include "memory/guardedMemory.hpp"
38#endif
39#include "oops/oop.inline.hpp"
40#include "prims/jvm.h"
41#include "prims/jvm_misc.hpp"
42#include "prims/privilegedStack.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/atomic.inline.hpp"
45#include "runtime/frame.inline.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/java.hpp"
48#include "runtime/javaCalls.hpp"
49#include "runtime/mutexLocker.hpp"
50#include "runtime/os.inline.hpp"
51#include "runtime/stubRoutines.hpp"
52#include "runtime/thread.inline.hpp"
53#include "runtime/vm_version.hpp"
54#include "services/attachListener.hpp"
55#include "services/mallocTracker.hpp"
56#include "services/memTracker.hpp"
57#include "services/nmtCommon.hpp"
58#include "services/threadService.hpp"
59#include "utilities/defaultStream.hpp"
60#include "utilities/events.hpp"
61
62# include <signal.h>
63
64OSThread*         os::_starting_thread    = NULL;
65address           os::_polling_page       = NULL;
66volatile int32_t* os::_mem_serialize_page = NULL;
67uintptr_t         os::_serialize_page_mask = 0;
68long              os::_rand_seed          = 1;
69int               os::_processor_count    = 0;
70size_t            os::_page_sizes[os::page_sizes_max];
71
72#ifndef PRODUCT
73julong os::num_mallocs = 0;         // # of calls to malloc/realloc
74julong os::alloc_bytes = 0;         // # of bytes allocated
75julong os::num_frees = 0;           // # of calls to free
76julong os::free_bytes = 0;          // # of bytes freed
77#endif
78
79static juint cur_malloc_words = 0;  // current size for MallocMaxTestWords
80
81void os_init_globals() {
82  // Called from init_globals().
83  // See Threads::create_vm() in thread.cpp, and init.cpp.
84  os::init_globals();
85}
86
87// Fill in buffer with current local time as an ISO-8601 string.
88// E.g., yyyy-mm-ddThh:mm:ss-zzzz.
89// Returns buffer, or NULL if it failed.
90// This would mostly be a call to
91//     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
92// except that on Windows the %z behaves badly, so we do it ourselves.
93// Also, people wanted milliseconds on there,
94// and strftime doesn't do milliseconds.
95char* os::iso8601_time(char* buffer, size_t buffer_length) {
96  // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
97  //                                      1         2
98  //                             12345678901234567890123456789
99  static const char* iso8601_format =
100    "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
101  static const size_t needed_buffer = 29;
102
103  // Sanity check the arguments
104  if (buffer == NULL) {
105    assert(false, "NULL buffer");
106    return NULL;
107  }
108  if (buffer_length < needed_buffer) {
109    assert(false, "buffer_length too small");
110    return NULL;
111  }
112  // Get the current time
113  jlong milliseconds_since_19700101 = javaTimeMillis();
114  const int milliseconds_per_microsecond = 1000;
115  const time_t seconds_since_19700101 =
116    milliseconds_since_19700101 / milliseconds_per_microsecond;
117  const int milliseconds_after_second =
118    milliseconds_since_19700101 % milliseconds_per_microsecond;
119  // Convert the time value to a tm and timezone variable
120  struct tm time_struct;
121  if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
122    assert(false, "Failed localtime_pd");
123    return NULL;
124  }
125#if defined(_ALLBSD_SOURCE)
126  const time_t zone = (time_t) time_struct.tm_gmtoff;
127#else
128  const time_t zone = timezone;
129#endif
130
131  // If daylight savings time is in effect,
132  // we are 1 hour East of our time zone
133  const time_t seconds_per_minute = 60;
134  const time_t minutes_per_hour = 60;
135  const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
136  time_t UTC_to_local = zone;
137  if (time_struct.tm_isdst > 0) {
138    UTC_to_local = UTC_to_local - seconds_per_hour;
139  }
140  // Compute the time zone offset.
141  //    localtime_pd() sets timezone to the difference (in seconds)
142  //    between UTC and and local time.
143  //    ISO 8601 says we need the difference between local time and UTC,
144  //    we change the sign of the localtime_pd() result.
145  const time_t local_to_UTC = -(UTC_to_local);
146  // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
147  char sign_local_to_UTC = '+';
148  time_t abs_local_to_UTC = local_to_UTC;
149  if (local_to_UTC < 0) {
150    sign_local_to_UTC = '-';
151    abs_local_to_UTC = -(abs_local_to_UTC);
152  }
153  // Convert time zone offset seconds to hours and minutes.
154  const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
155  const time_t zone_min =
156    ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
157
158  // Print an ISO 8601 date and time stamp into the buffer
159  const int year = 1900 + time_struct.tm_year;
160  const int month = 1 + time_struct.tm_mon;
161  const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
162                                   year,
163                                   month,
164                                   time_struct.tm_mday,
165                                   time_struct.tm_hour,
166                                   time_struct.tm_min,
167                                   time_struct.tm_sec,
168                                   milliseconds_after_second,
169                                   sign_local_to_UTC,
170                                   zone_hours,
171                                   zone_min);
172  if (printed == 0) {
173    assert(false, "Failed jio_printf");
174    return NULL;
175  }
176  return buffer;
177}
178
179OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
180#ifdef ASSERT
181  if (!(!thread->is_Java_thread() ||
182         Thread::current() == thread  ||
183         Threads_lock->owned_by_self()
184         || thread->is_Compiler_thread()
185        )) {
186    assert(false, "possibility of dangling Thread pointer");
187  }
188#endif
189
190  if (p >= MinPriority && p <= MaxPriority) {
191    int priority = java_to_os_priority[p];
192    return set_native_priority(thread, priority);
193  } else {
194    assert(false, "Should not happen");
195    return OS_ERR;
196  }
197}
198
199// The mapping from OS priority back to Java priority may be inexact because
200// Java priorities can map M:1 with native priorities. If you want the definite
201// Java priority then use JavaThread::java_priority()
202OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
203  int p;
204  int os_prio;
205  OSReturn ret = get_native_priority(thread, &os_prio);
206  if (ret != OS_OK) return ret;
207
208  if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
209    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
210  } else {
211    // niceness values are in reverse order
212    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
213  }
214  priority = (ThreadPriority)p;
215  return OS_OK;
216}
217
218
219// --------------------- sun.misc.Signal (optional) ---------------------
220
221
222// SIGBREAK is sent by the keyboard to query the VM state
223#ifndef SIGBREAK
224#define SIGBREAK SIGQUIT
225#endif
226
227// sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
228
229
230static void signal_thread_entry(JavaThread* thread, TRAPS) {
231  os::set_priority(thread, NearMaxPriority);
232  while (true) {
233    int sig;
234    {
235      // FIXME : Currently we have not decided what should be the status
236      //         for this java thread blocked here. Once we decide about
237      //         that we should fix this.
238      sig = os::signal_wait();
239    }
240    if (sig == os::sigexitnum_pd()) {
241       // Terminate the signal thread
242       return;
243    }
244
245    switch (sig) {
246      case SIGBREAK: {
247        // Check if the signal is a trigger to start the Attach Listener - in that
248        // case don't print stack traces.
249        if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
250          continue;
251        }
252        // Print stack traces
253        // Any SIGBREAK operations added here should make sure to flush
254        // the output stream (e.g. tty->flush()) after output.  See 4803766.
255        // Each module also prints an extra carriage return after its output.
256        VM_PrintThreads op;
257        VMThread::execute(&op);
258        VM_PrintJNI jni_op;
259        VMThread::execute(&jni_op);
260        VM_FindDeadlocks op1(tty);
261        VMThread::execute(&op1);
262        Universe::print_heap_at_SIGBREAK();
263        if (PrintClassHistogram) {
264          VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */);
265          VMThread::execute(&op1);
266        }
267        if (JvmtiExport::should_post_data_dump()) {
268          JvmtiExport::post_data_dump();
269        }
270        break;
271      }
272      default: {
273        // Dispatch the signal to java
274        HandleMark hm(THREAD);
275        Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
276        KlassHandle klass (THREAD, k);
277        if (klass.not_null()) {
278          JavaValue result(T_VOID);
279          JavaCallArguments args;
280          args.push_int(sig);
281          JavaCalls::call_static(
282            &result,
283            klass,
284            vmSymbols::dispatch_name(),
285            vmSymbols::int_void_signature(),
286            &args,
287            THREAD
288          );
289        }
290        if (HAS_PENDING_EXCEPTION) {
291          // tty is initialized early so we don't expect it to be null, but
292          // if it is we can't risk doing an initialization that might
293          // trigger additional out-of-memory conditions
294          if (tty != NULL) {
295            char klass_name[256];
296            char tmp_sig_name[16];
297            const char* sig_name = "UNKNOWN";
298            InstanceKlass::cast(PENDING_EXCEPTION->klass())->
299              name()->as_klass_external_name(klass_name, 256);
300            if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
301              sig_name = tmp_sig_name;
302            warning("Exception %s occurred dispatching signal %s to handler"
303                    "- the VM may need to be forcibly terminated",
304                    klass_name, sig_name );
305          }
306          CLEAR_PENDING_EXCEPTION;
307        }
308      }
309    }
310  }
311}
312
313void os::init_before_ergo() {
314  // We need to initialize large page support here because ergonomics takes some
315  // decisions depending on large page support and the calculated large page size.
316  large_page_init();
317}
318
319void os::signal_init() {
320  if (!ReduceSignalUsage) {
321    // Setup JavaThread for processing signals
322    EXCEPTION_MARK;
323    Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
324    instanceKlassHandle klass (THREAD, k);
325    instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
326
327    const char thread_name[] = "Signal Dispatcher";
328    Handle string = java_lang_String::create_from_str(thread_name, CHECK);
329
330    // Initialize thread_oop to put it into the system threadGroup
331    Handle thread_group (THREAD, Universe::system_thread_group());
332    JavaValue result(T_VOID);
333    JavaCalls::call_special(&result, thread_oop,
334                           klass,
335                           vmSymbols::object_initializer_name(),
336                           vmSymbols::threadgroup_string_void_signature(),
337                           thread_group,
338                           string,
339                           CHECK);
340
341    KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
342    JavaCalls::call_special(&result,
343                            thread_group,
344                            group,
345                            vmSymbols::add_method_name(),
346                            vmSymbols::thread_void_signature(),
347                            thread_oop,         // ARG 1
348                            CHECK);
349
350    os::signal_init_pd();
351
352    { MutexLocker mu(Threads_lock);
353      JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
354
355      // At this point it may be possible that no osthread was created for the
356      // JavaThread due to lack of memory. We would have to throw an exception
357      // in that case. However, since this must work and we do not allow
358      // exceptions anyway, check and abort if this fails.
359      if (signal_thread == NULL || signal_thread->osthread() == NULL) {
360        vm_exit_during_initialization("java.lang.OutOfMemoryError",
361                                      os::native_thread_creation_failed_msg());
362      }
363
364      java_lang_Thread::set_thread(thread_oop(), signal_thread);
365      java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
366      java_lang_Thread::set_daemon(thread_oop());
367
368      signal_thread->set_threadObj(thread_oop());
369      Threads::add(signal_thread);
370      Thread::start(signal_thread);
371    }
372    // Handle ^BREAK
373    os::signal(SIGBREAK, os::user_handler());
374  }
375}
376
377
378void os::terminate_signal_thread() {
379  if (!ReduceSignalUsage)
380    signal_notify(sigexitnum_pd());
381}
382
383
384// --------------------- loading libraries ---------------------
385
386typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
387extern struct JavaVM_ main_vm;
388
389static void* _native_java_library = NULL;
390
391void* os::native_java_library() {
392  if (_native_java_library == NULL) {
393    char buffer[JVM_MAXPATHLEN];
394    char ebuf[1024];
395
396    // Try to load verify dll first. In 1.3 java dll depends on it and is not
397    // always able to find it when the loading executable is outside the JDK.
398    // In order to keep working with 1.2 we ignore any loading errors.
399    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
400                       "verify")) {
401      dll_load(buffer, ebuf, sizeof(ebuf));
402    }
403
404    // Load java dll
405    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
406                       "java")) {
407      _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
408    }
409    if (_native_java_library == NULL) {
410      vm_exit_during_initialization("Unable to load native library", ebuf);
411    }
412
413#if defined(__OpenBSD__)
414    // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
415    // ignore errors
416    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
417                       "net")) {
418      dll_load(buffer, ebuf, sizeof(ebuf));
419    }
420#endif
421  }
422  static jboolean onLoaded = JNI_FALSE;
423  if (onLoaded) {
424    // We may have to wait to fire OnLoad until TLS is initialized.
425    if (ThreadLocalStorage::is_initialized()) {
426      // The JNI_OnLoad handling is normally done by method load in
427      // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
428      // explicitly so we have to check for JNI_OnLoad as well
429      const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
430      JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
431          JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
432      if (JNI_OnLoad != NULL) {
433        JavaThread* thread = JavaThread::current();
434        ThreadToNativeFromVM ttn(thread);
435        HandleMark hm(thread);
436        jint ver = (*JNI_OnLoad)(&main_vm, NULL);
437        onLoaded = JNI_TRUE;
438        if (!Threads::is_supported_jni_version_including_1_1(ver)) {
439          vm_exit_during_initialization("Unsupported JNI version");
440        }
441      }
442    }
443  }
444  return _native_java_library;
445}
446
447/*
448 * Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists.
449 * If check_lib == true then we are looking for an
450 * Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if
451 * this library is statically linked into the image.
452 * If check_lib == false then we will look for the appropriate symbol in the
453 * executable if agent_lib->is_static_lib() == true or in the shared library
454 * referenced by 'handle'.
455 */
456void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib,
457                              const char *syms[], size_t syms_len) {
458  assert(agent_lib != NULL, "sanity check");
459  const char *lib_name;
460  void *handle = agent_lib->os_lib();
461  void *entryName = NULL;
462  char *agent_function_name;
463  size_t i;
464
465  // If checking then use the agent name otherwise test is_static_lib() to
466  // see how to process this lookup
467  lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL);
468  for (i = 0; i < syms_len; i++) {
469    agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path());
470    if (agent_function_name == NULL) {
471      break;
472    }
473    entryName = dll_lookup(handle, agent_function_name);
474    FREE_C_HEAP_ARRAY(char, agent_function_name);
475    if (entryName != NULL) {
476      break;
477    }
478  }
479  return entryName;
480}
481
482// See if the passed in agent is statically linked into the VM image.
483bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[],
484                            size_t syms_len) {
485  void *ret;
486  void *proc_handle;
487  void *save_handle;
488
489  assert(agent_lib != NULL, "sanity check");
490  if (agent_lib->name() == NULL) {
491    return false;
492  }
493  proc_handle = get_default_process_handle();
494  // Check for Agent_OnLoad/Attach_lib_name function
495  save_handle = agent_lib->os_lib();
496  // We want to look in this process' symbol table.
497  agent_lib->set_os_lib(proc_handle);
498  ret = find_agent_function(agent_lib, true, syms, syms_len);
499  if (ret != NULL) {
500    // Found an entry point like Agent_OnLoad_lib_name so we have a static agent
501    agent_lib->set_valid();
502    agent_lib->set_static_lib(true);
503    return true;
504  }
505  agent_lib->set_os_lib(save_handle);
506  return false;
507}
508
509// --------------------- heap allocation utilities ---------------------
510
511char *os::strdup(const char *str, MEMFLAGS flags) {
512  size_t size = strlen(str);
513  char *dup_str = (char *)malloc(size + 1, flags);
514  if (dup_str == NULL) return NULL;
515  strcpy(dup_str, str);
516  return dup_str;
517}
518
519char* os::strdup_check_oom(const char* str, MEMFLAGS flags) {
520  char* p = os::strdup(str, flags);
521  if (p == NULL) {
522    vm_exit_out_of_memory(strlen(str) + 1, OOM_MALLOC_ERROR, "os::strdup_check_oom");
523  }
524  return p;
525}
526
527
528#define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
529
530#ifdef ASSERT
531
532static void verify_memory(void* ptr) {
533  GuardedMemory guarded(ptr);
534  if (!guarded.verify_guards()) {
535    tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
536    tty->print_cr("## memory stomp:");
537    guarded.print_on(tty);
538    fatal("memory stomping error");
539  }
540}
541
542#endif
543
544//
545// This function supports testing of the malloc out of memory
546// condition without really running the system out of memory.
547//
548static bool has_reached_max_malloc_test_peak(size_t alloc_size) {
549  if (MallocMaxTestWords > 0) {
550    jint words = (jint)(alloc_size / BytesPerWord);
551
552    if ((cur_malloc_words + words) > MallocMaxTestWords) {
553      return true;
554    }
555    Atomic::add(words, (volatile jint *)&cur_malloc_words);
556  }
557  return false;
558}
559
560void* os::malloc(size_t size, MEMFLAGS flags) {
561  return os::malloc(size, flags, CALLER_PC);
562}
563
564void* os::malloc(size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
565  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
566  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
567
568#ifdef ASSERT
569  // checking for the WatcherThread and crash_protection first
570  // since os::malloc can be called when the libjvm.{dll,so} is
571  // first loaded and we don't have a thread yet.
572  // try to find the thread after we see that the watcher thread
573  // exists and has crash protection.
574  WatcherThread *wt = WatcherThread::watcher_thread();
575  if (wt != NULL && wt->has_crash_protection()) {
576    Thread* thread = ThreadLocalStorage::get_thread_slow();
577    if (thread == wt) {
578      assert(!wt->has_crash_protection(),
579          "Can't malloc with crash protection from WatcherThread");
580    }
581  }
582#endif
583
584  if (size == 0) {
585    // return a valid pointer if size is zero
586    // if NULL is returned the calling functions assume out of memory.
587    size = 1;
588  }
589
590  // NMT support
591  NMT_TrackingLevel level = MemTracker::tracking_level();
592  size_t            nmt_header_size = MemTracker::malloc_header_size(level);
593
594#ifndef ASSERT
595  const size_t alloc_size = size + nmt_header_size;
596#else
597  const size_t alloc_size = GuardedMemory::get_total_size(size + nmt_header_size);
598  if (size + nmt_header_size > alloc_size) { // Check for rollover.
599    return NULL;
600  }
601#endif
602
603  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
604
605  // For the test flag -XX:MallocMaxTestWords
606  if (has_reached_max_malloc_test_peak(size)) {
607    return NULL;
608  }
609
610  u_char* ptr;
611  ptr = (u_char*)::malloc(alloc_size);
612
613#ifdef ASSERT
614  if (ptr == NULL) {
615    return NULL;
616  }
617  // Wrap memory with guard
618  GuardedMemory guarded(ptr, size + nmt_header_size);
619  ptr = guarded.get_user_ptr();
620#endif
621  if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
622    tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
623    breakpoint();
624  }
625  debug_only(if (paranoid) verify_memory(ptr));
626  if (PrintMalloc && tty != NULL) {
627    tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
628  }
629
630  // we do not track guard memory
631  return MemTracker::record_malloc((address)ptr, size, memflags, stack, level);
632}
633
634void* os::realloc(void *memblock, size_t size, MEMFLAGS flags) {
635  return os::realloc(memblock, size, flags, CALLER_PC);
636}
637
638void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
639
640  // For the test flag -XX:MallocMaxTestWords
641  if (has_reached_max_malloc_test_peak(size)) {
642    return NULL;
643  }
644
645#ifndef ASSERT
646  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
647  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
648   // NMT support
649  void* membase = MemTracker::record_free(memblock);
650  NMT_TrackingLevel level = MemTracker::tracking_level();
651  size_t  nmt_header_size = MemTracker::malloc_header_size(level);
652  void* ptr = ::realloc(membase, size + nmt_header_size);
653  return MemTracker::record_malloc(ptr, size, memflags, stack, level);
654#else
655  if (memblock == NULL) {
656    return os::malloc(size, memflags, stack);
657  }
658  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
659    tty->print_cr("os::realloc caught " PTR_FORMAT, p2i(memblock));
660    breakpoint();
661  }
662  // NMT support
663  void* membase = MemTracker::malloc_base(memblock);
664  verify_memory(membase);
665  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
666  if (size == 0) {
667    return NULL;
668  }
669  // always move the block
670  void* ptr = os::malloc(size, memflags, stack);
671  if (PrintMalloc && tty != NULL) {
672    tty->print_cr("os::realloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, p2i(memblock), p2i(ptr));
673  }
674  // Copy to new memory if malloc didn't fail
675  if ( ptr != NULL ) {
676    GuardedMemory guarded(MemTracker::malloc_base(memblock));
677    // Guard's user data contains NMT header
678    size_t memblock_size = guarded.get_user_size() - MemTracker::malloc_header_size(memblock);
679    memcpy(ptr, memblock, MIN2(size, memblock_size));
680    if (paranoid) verify_memory(MemTracker::malloc_base(ptr));
681    if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
682      tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
683      breakpoint();
684    }
685    os::free(memblock);
686  }
687  return ptr;
688#endif
689}
690
691
692void  os::free(void *memblock) {
693  NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
694#ifdef ASSERT
695  if (memblock == NULL) return;
696  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
697    if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, p2i(memblock));
698    breakpoint();
699  }
700  void* membase = MemTracker::record_free(memblock);
701  verify_memory(membase);
702  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
703
704  GuardedMemory guarded(membase);
705  size_t size = guarded.get_user_size();
706  inc_stat_counter(&free_bytes, size);
707  membase = guarded.release_for_freeing();
708  if (PrintMalloc && tty != NULL) {
709      fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)membase);
710  }
711  ::free(membase);
712#else
713  void* membase = MemTracker::record_free(memblock);
714  ::free(membase);
715#endif
716}
717
718void os::init_random(long initval) {
719  _rand_seed = initval;
720}
721
722
723long os::random() {
724  /* standard, well-known linear congruential random generator with
725   * next_rand = (16807*seed) mod (2**31-1)
726   * see
727   * (1) "Random Number Generators: Good Ones Are Hard to Find",
728   *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
729   * (2) "Two Fast Implementations of the 'Minimal Standard' Random
730   *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
731  */
732  const long a = 16807;
733  const unsigned long m = 2147483647;
734  const long q = m / a;        assert(q == 127773, "weird math");
735  const long r = m % a;        assert(r == 2836, "weird math");
736
737  // compute az=2^31p+q
738  unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
739  unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
740  lo += (hi & 0x7FFF) << 16;
741
742  // if q overflowed, ignore the overflow and increment q
743  if (lo > m) {
744    lo &= m;
745    ++lo;
746  }
747  lo += hi >> 15;
748
749  // if (p+q) overflowed, ignore the overflow and increment (p+q)
750  if (lo > m) {
751    lo &= m;
752    ++lo;
753  }
754  return (_rand_seed = lo);
755}
756
757// The INITIALIZED state is distinguished from the SUSPENDED state because the
758// conditions in which a thread is first started are different from those in which
759// a suspension is resumed.  These differences make it hard for us to apply the
760// tougher checks when starting threads that we want to do when resuming them.
761// However, when start_thread is called as a result of Thread.start, on a Java
762// thread, the operation is synchronized on the Java Thread object.  So there
763// cannot be a race to start the thread and hence for the thread to exit while
764// we are working on it.  Non-Java threads that start Java threads either have
765// to do so in a context in which races are impossible, or should do appropriate
766// locking.
767
768void os::start_thread(Thread* thread) {
769  // guard suspend/resume
770  MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
771  OSThread* osthread = thread->osthread();
772  osthread->set_state(RUNNABLE);
773  pd_start_thread(thread);
774}
775
776void os::abort(bool dump_core) {
777  abort(dump_core && CreateCoredumpOnCrash, NULL, NULL);
778}
779
780//---------------------------------------------------------------------------
781// Helper functions for fatal error handler
782
783void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
784  assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
785
786  int cols = 0;
787  int cols_per_line = 0;
788  switch (unitsize) {
789    case 1: cols_per_line = 16; break;
790    case 2: cols_per_line = 8;  break;
791    case 4: cols_per_line = 4;  break;
792    case 8: cols_per_line = 2;  break;
793    default: return;
794  }
795
796  address p = start;
797  st->print(PTR_FORMAT ":   ", p2i(start));
798  while (p < end) {
799    switch (unitsize) {
800      case 1: st->print("%02x", *(u1*)p); break;
801      case 2: st->print("%04x", *(u2*)p); break;
802      case 4: st->print("%08x", *(u4*)p); break;
803      case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
804    }
805    p += unitsize;
806    cols++;
807    if (cols >= cols_per_line && p < end) {
808       cols = 0;
809       st->cr();
810       st->print(PTR_FORMAT ":   ", p2i(p));
811    } else {
812       st->print(" ");
813    }
814  }
815  st->cr();
816}
817
818void os::print_environment_variables(outputStream* st, const char** env_list) {
819  if (env_list) {
820    st->print_cr("Environment Variables:");
821
822    for (int i = 0; env_list[i] != NULL; i++) {
823      char *envvar = ::getenv(env_list[i]);
824      if (envvar != NULL) {
825        st->print("%s", env_list[i]);
826        st->print("=");
827        st->print_cr("%s", envvar);
828      }
829    }
830  }
831}
832
833void os::print_cpu_info(outputStream* st, char* buf, size_t buflen) {
834  // cpu
835  st->print("CPU:");
836  st->print("total %d", os::processor_count());
837  // It's not safe to query number of active processors after crash
838  // st->print("(active %d)", os::active_processor_count());
839  st->print(" %s", VM_Version::cpu_features());
840  st->cr();
841  pd_print_cpu_info(st, buf, buflen);
842}
843
844// Print a one line string summarizing the cpu, number of cores, memory, and operating system version
845void os::print_summary_info(outputStream* st, char* buf, size_t buflen) {
846  st->print("Host: ");
847#ifndef PRODUCT
848  if (get_host_name(buf, buflen)) {
849    st->print("%s, ", buf);
850  }
851#endif // PRODUCT
852  get_summary_cpu_info(buf, buflen);
853  st->print("%s, ", buf);
854  size_t mem = physical_memory()/G;
855  if (mem == 0) {  // for low memory systems
856    mem = physical_memory()/M;
857    st->print("%d cores, " SIZE_FORMAT "M, ", processor_count(), mem);
858  } else {
859    st->print("%d cores, " SIZE_FORMAT "G, ", processor_count(), mem);
860  }
861  get_summary_os_info(buf, buflen);
862  st->print_raw(buf);
863  st->cr();
864}
865
866void os::print_date_and_time(outputStream *st, char* buf, size_t buflen) {
867  const int secs_per_day  = 86400;
868  const int secs_per_hour = 3600;
869  const int secs_per_min  = 60;
870
871  time_t tloc;
872  (void)time(&tloc);
873  char* timestring = ctime(&tloc);  // ctime adds newline.
874  // edit out the newline
875  char* nl = strchr(timestring, '\n');
876  if (nl != NULL) {
877    *nl = '\0';
878  }
879
880  struct tm tz;
881  if (localtime_pd(&tloc, &tz) != NULL) {
882    ::strftime(buf, buflen, "%Z", &tz);
883    st->print("Time: %s %s", timestring, buf);
884  } else {
885    st->print("Time: %s", timestring);
886  }
887
888  double t = os::elapsedTime();
889  // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
890  //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
891  //       before printf. We lost some precision, but who cares?
892  int eltime = (int)t;  // elapsed time in seconds
893
894  // print elapsed time in a human-readable format:
895  int eldays = eltime / secs_per_day;
896  int day_secs = eldays * secs_per_day;
897  int elhours = (eltime - day_secs) / secs_per_hour;
898  int hour_secs = elhours * secs_per_hour;
899  int elmins = (eltime - day_secs - hour_secs) / secs_per_min;
900  int minute_secs = elmins * secs_per_min;
901  int elsecs = (eltime - day_secs - hour_secs - minute_secs);
902  st->print_cr(" elapsed time: %d seconds (%dd %dh %dm %ds)", eltime, eldays, elhours, elmins, elsecs);
903}
904
905// moved from debug.cpp (used to be find()) but still called from there
906// The verbose parameter is only set by the debug code in one case
907void os::print_location(outputStream* st, intptr_t x, bool verbose) {
908  address addr = (address)x;
909  CodeBlob* b = CodeCache::find_blob_unsafe(addr);
910  if (b != NULL) {
911    if (b->is_buffer_blob()) {
912      // the interpreter is generated into a buffer blob
913      InterpreterCodelet* i = Interpreter::codelet_containing(addr);
914      if (i != NULL) {
915        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", p2i(addr), (int)(addr - i->code_begin()));
916        i->print_on(st);
917        return;
918      }
919      if (Interpreter::contains(addr)) {
920        st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
921                     " (not bytecode specific)", p2i(addr));
922        return;
923      }
924      //
925      if (AdapterHandlerLibrary::contains(b)) {
926        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", p2i(addr), (int)(addr - b->code_begin()));
927        AdapterHandlerLibrary::print_handler_on(st, b);
928      }
929      // the stubroutines are generated into a buffer blob
930      StubCodeDesc* d = StubCodeDesc::desc_for(addr);
931      if (d != NULL) {
932        st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", p2i(addr), (int)(addr - d->begin()));
933        d->print_on(st);
934        st->cr();
935        return;
936      }
937      if (StubRoutines::contains(addr)) {
938        st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) stub routine", p2i(addr));
939        return;
940      }
941      // the InlineCacheBuffer is using stubs generated into a buffer blob
942      if (InlineCacheBuffer::contains(addr)) {
943        st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", p2i(addr));
944        return;
945      }
946      VtableStub* v = VtableStubs::stub_containing(addr);
947      if (v != NULL) {
948        st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", p2i(addr), (int)(addr - v->entry_point()));
949        v->print_on(st);
950        st->cr();
951        return;
952      }
953    }
954    nmethod* nm = b->as_nmethod_or_null();
955    if (nm != NULL) {
956      ResourceMark rm;
957      st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
958                p2i(addr), (int)(addr - nm->entry_point()), p2i(nm));
959      if (verbose) {
960        st->print(" for ");
961        nm->method()->print_value_on(st);
962      }
963      st->cr();
964      nm->print_nmethod(verbose);
965      return;
966    }
967    st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", p2i(addr), (int)(addr - b->code_begin()));
968    b->print_on(st);
969    return;
970  }
971
972  if (Universe::heap()->is_in(addr)) {
973    HeapWord* p = Universe::heap()->block_start(addr);
974    bool print = false;
975    // If we couldn't find it it just may mean that heap wasn't parsable
976    // See if we were just given an oop directly
977    if (p != NULL && Universe::heap()->block_is_obj(p)) {
978      print = true;
979    } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
980      p = (HeapWord*) addr;
981      print = true;
982    }
983    if (print) {
984      if (p == (HeapWord*) addr) {
985        st->print_cr(INTPTR_FORMAT " is an oop", p2i(addr));
986      } else {
987        st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, p2i(addr), p2i(p));
988      }
989      oop(p)->print_on(st);
990      return;
991    }
992  } else {
993    if (Universe::heap()->is_in_reserved(addr)) {
994      st->print_cr(INTPTR_FORMAT " is an unallocated location "
995                   "in the heap", p2i(addr));
996      return;
997    }
998  }
999  if (JNIHandles::is_global_handle((jobject) addr)) {
1000    st->print_cr(INTPTR_FORMAT " is a global jni handle", p2i(addr));
1001    return;
1002  }
1003  if (JNIHandles::is_weak_global_handle((jobject) addr)) {
1004    st->print_cr(INTPTR_FORMAT " is a weak global jni handle", p2i(addr));
1005    return;
1006  }
1007#ifndef PRODUCT
1008  // we don't keep the block list in product mode
1009  if (JNIHandleBlock::any_contains((jobject) addr)) {
1010    st->print_cr(INTPTR_FORMAT " is a local jni handle", p2i(addr));
1011    return;
1012  }
1013#endif
1014
1015  for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
1016    // Check for privilege stack
1017    if (thread->privileged_stack_top() != NULL &&
1018        thread->privileged_stack_top()->contains(addr)) {
1019      st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
1020                   "for thread: " INTPTR_FORMAT, p2i(addr), p2i(thread));
1021      if (verbose) thread->print_on(st);
1022      return;
1023    }
1024    // If the addr is a java thread print information about that.
1025    if (addr == (address)thread) {
1026      if (verbose) {
1027        thread->print_on(st);
1028      } else {
1029        st->print_cr(INTPTR_FORMAT " is a thread", p2i(addr));
1030      }
1031      return;
1032    }
1033    // If the addr is in the stack region for this thread then report that
1034    // and print thread info
1035    if (thread->stack_base() >= addr &&
1036        addr > (thread->stack_base() - thread->stack_size())) {
1037      st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
1038                   INTPTR_FORMAT, p2i(addr), p2i(thread));
1039      if (verbose) thread->print_on(st);
1040      return;
1041    }
1042
1043  }
1044
1045  // Check if in metaspace and print types that have vptrs (only method now)
1046  if (Metaspace::contains(addr)) {
1047    if (Method::has_method_vptr((const void*)addr)) {
1048      ((Method*)addr)->print_value_on(st);
1049      st->cr();
1050    } else {
1051      // Use addr->print() from the debugger instead (not here)
1052      st->print_cr(INTPTR_FORMAT " is pointing into metadata", p2i(addr));
1053    }
1054    return;
1055  }
1056
1057  // Try an OS specific find
1058  if (os::find(addr, st)) {
1059    return;
1060  }
1061
1062  st->print_cr(INTPTR_FORMAT " is an unknown value", p2i(addr));
1063}
1064
1065// Looks like all platforms except IA64 can use the same function to check
1066// if C stack is walkable beyond current frame. The check for fp() is not
1067// necessary on Sparc, but it's harmless.
1068bool os::is_first_C_frame(frame* fr) {
1069#if (defined(IA64) && !defined(AIX)) && !defined(_WIN32)
1070  // On IA64 we have to check if the callers bsp is still valid
1071  // (i.e. within the register stack bounds).
1072  // Notice: this only works for threads created by the VM and only if
1073  // we walk the current stack!!! If we want to be able to walk
1074  // arbitrary other threads, we'll have to somehow store the thread
1075  // object in the frame.
1076  Thread *thread = Thread::current();
1077  if ((address)fr->fp() <=
1078      thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
1079    // This check is a little hacky, because on Linux the first C
1080    // frame's ('start_thread') register stack frame starts at
1081    // "register_stack_base + 0x48" while on HPUX, the first C frame's
1082    // ('__pthread_bound_body') register stack frame seems to really
1083    // start at "register_stack_base".
1084    return true;
1085  } else {
1086    return false;
1087  }
1088#elif defined(IA64) && defined(_WIN32)
1089  return true;
1090#else
1091  // Load up sp, fp, sender sp and sender fp, check for reasonable values.
1092  // Check usp first, because if that's bad the other accessors may fault
1093  // on some architectures.  Ditto ufp second, etc.
1094  uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
1095  // sp on amd can be 32 bit aligned.
1096  uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
1097
1098  uintptr_t usp    = (uintptr_t)fr->sp();
1099  if ((usp & sp_align_mask) != 0) return true;
1100
1101  uintptr_t ufp    = (uintptr_t)fr->fp();
1102  if ((ufp & fp_align_mask) != 0) return true;
1103
1104  uintptr_t old_sp = (uintptr_t)fr->sender_sp();
1105  if ((old_sp & sp_align_mask) != 0) return true;
1106  if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
1107
1108  uintptr_t old_fp = (uintptr_t)fr->link();
1109  if ((old_fp & fp_align_mask) != 0) return true;
1110  if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
1111
1112  // stack grows downwards; if old_fp is below current fp or if the stack
1113  // frame is too large, either the stack is corrupted or fp is not saved
1114  // on stack (i.e. on x86, ebp may be used as general register). The stack
1115  // is not walkable beyond current frame.
1116  if (old_fp < ufp) return true;
1117  if (old_fp - ufp > 64 * K) return true;
1118
1119  return false;
1120#endif
1121}
1122
1123#ifdef ASSERT
1124extern "C" void test_random() {
1125  const double m = 2147483647;
1126  double mean = 0.0, variance = 0.0, t;
1127  long reps = 10000;
1128  unsigned long seed = 1;
1129
1130  tty->print_cr("seed %ld for %ld repeats...", seed, reps);
1131  os::init_random(seed);
1132  long num;
1133  for (int k = 0; k < reps; k++) {
1134    num = os::random();
1135    double u = (double)num / m;
1136    assert(u >= 0.0 && u <= 1.0, "bad random number!");
1137
1138    // calculate mean and variance of the random sequence
1139    mean += u;
1140    variance += (u*u);
1141  }
1142  mean /= reps;
1143  variance /= (reps - 1);
1144
1145  assert(num == 1043618065, "bad seed");
1146  tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
1147  tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
1148  const double eps = 0.0001;
1149  t = fabsd(mean - 0.5018);
1150  assert(t < eps, "bad mean");
1151  t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
1152  assert(t < eps, "bad variance");
1153}
1154#endif
1155
1156
1157// Set up the boot classpath.
1158
1159char* os::format_boot_path(const char* format_string,
1160                           const char* home,
1161                           int home_len,
1162                           char fileSep,
1163                           char pathSep) {
1164    assert((fileSep == '/' && pathSep == ':') ||
1165           (fileSep == '\\' && pathSep == ';'), "unexpected separator chars");
1166
1167    // Scan the format string to determine the length of the actual
1168    // boot classpath, and handle platform dependencies as well.
1169    int formatted_path_len = 0;
1170    const char* p;
1171    for (p = format_string; *p != 0; ++p) {
1172        if (*p == '%') formatted_path_len += home_len - 1;
1173        ++formatted_path_len;
1174    }
1175
1176    char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
1177    if (formatted_path == NULL) {
1178        return NULL;
1179    }
1180
1181    // Create boot classpath from format, substituting separator chars and
1182    // java home directory.
1183    char* q = formatted_path;
1184    for (p = format_string; *p != 0; ++p) {
1185        switch (*p) {
1186        case '%':
1187            strcpy(q, home);
1188            q += home_len;
1189            break;
1190        case '/':
1191            *q++ = fileSep;
1192            break;
1193        case ':':
1194            *q++ = pathSep;
1195            break;
1196        default:
1197            *q++ = *p;
1198        }
1199    }
1200    *q = '\0';
1201
1202    assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1203    return formatted_path;
1204}
1205
1206// returns a PATH of all entries in the given directory that do not start with a '.'
1207static char* expand_entries_to_path(char* directory, char fileSep, char pathSep) {
1208  DIR* dir = os::opendir(directory);
1209  if (dir == NULL) return NULL;
1210
1211  char* path = NULL;
1212  size_t path_len = 0;  // path length including \0 terminator
1213
1214  size_t directory_len = strlen(directory);
1215  struct dirent *entry;
1216  char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(directory), mtInternal);
1217  while ((entry = os::readdir(dir, (dirent *) dbuf)) != NULL) {
1218    const char* name = entry->d_name;
1219    if (name[0] == '.') continue;
1220
1221    size_t name_len = strlen(name);
1222    size_t needed = directory_len + name_len + 2;
1223    size_t new_len = path_len + needed;
1224    if (path == NULL) {
1225      path = NEW_C_HEAP_ARRAY(char, new_len, mtInternal);
1226    } else {
1227      path = REALLOC_C_HEAP_ARRAY(char, path, new_len, mtInternal);
1228    }
1229    if (path == NULL)
1230      break;
1231
1232    // append <pathSep>directory<fileSep>name
1233    char* p = path;
1234    if (path_len > 0) {
1235      p += (path_len -1);
1236      *p = pathSep;
1237      p++;
1238    }
1239
1240    strcpy(p, directory);
1241    p += directory_len;
1242
1243    *p = fileSep;
1244    p++;
1245
1246    strcpy(p, name);
1247    p += name_len;
1248
1249    path_len = new_len;
1250  }
1251
1252  FREE_C_HEAP_ARRAY(char, dbuf);
1253  os::closedir(dir);
1254
1255  return path;
1256}
1257
1258bool os::set_boot_path(char fileSep, char pathSep) {
1259  const char* home = Arguments::get_java_home();
1260  int home_len = (int)strlen(home);
1261
1262  char* sysclasspath = NULL;
1263  struct stat st;
1264
1265  // modular image if bootmodules.jimage exists
1266  char* jimage = format_boot_path("%/lib/modules/" BOOT_IMAGE_NAME, home, home_len, fileSep, pathSep);
1267  if (jimage == NULL) return false;
1268  bool has_jimage = (os::stat(jimage, &st) == 0);
1269  if (has_jimage) {
1270    Arguments::set_sysclasspath(jimage);
1271    FREE_C_HEAP_ARRAY(char, jimage);
1272    return true;
1273  }
1274  FREE_C_HEAP_ARRAY(char, jimage);
1275
1276  // check if developer build with exploded modules
1277  char* modules_dir = format_boot_path("%/modules", home, home_len, fileSep, pathSep);
1278  if (os::stat(modules_dir, &st) == 0) {
1279    if ((st.st_mode & S_IFDIR) == S_IFDIR) {
1280      sysclasspath = expand_entries_to_path(modules_dir, fileSep, pathSep);
1281    }
1282  }
1283  FREE_C_HEAP_ARRAY(char, modules_dir);
1284
1285  // fallback to classes
1286  if (sysclasspath == NULL)
1287    sysclasspath = format_boot_path("%/classes", home, home_len, fileSep, pathSep);
1288
1289  if (sysclasspath == NULL) return false;
1290  Arguments::set_sysclasspath(sysclasspath);
1291  FREE_C_HEAP_ARRAY(char, sysclasspath);
1292
1293  return true;
1294}
1295
1296/*
1297 * Splits a path, based on its separator, the number of
1298 * elements is returned back in n.
1299 * It is the callers responsibility to:
1300 *   a> check the value of n, and n may be 0.
1301 *   b> ignore any empty path elements
1302 *   c> free up the data.
1303 */
1304char** os::split_path(const char* path, int* n) {
1305  *n = 0;
1306  if (path == NULL || strlen(path) == 0) {
1307    return NULL;
1308  }
1309  const char psepchar = *os::path_separator();
1310  char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
1311  if (inpath == NULL) {
1312    return NULL;
1313  }
1314  strcpy(inpath, path);
1315  int count = 1;
1316  char* p = strchr(inpath, psepchar);
1317  // Get a count of elements to allocate memory
1318  while (p != NULL) {
1319    count++;
1320    p++;
1321    p = strchr(p, psepchar);
1322  }
1323  char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
1324  if (opath == NULL) {
1325    return NULL;
1326  }
1327
1328  // do the actual splitting
1329  p = inpath;
1330  for (int i = 0 ; i < count ; i++) {
1331    size_t len = strcspn(p, os::path_separator());
1332    if (len > JVM_MAXPATHLEN) {
1333      return NULL;
1334    }
1335    // allocate the string and add terminator storage
1336    char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
1337    if (s == NULL) {
1338      return NULL;
1339    }
1340    strncpy(s, p, len);
1341    s[len] = '\0';
1342    opath[i] = s;
1343    p += len + 1;
1344  }
1345  FREE_C_HEAP_ARRAY(char, inpath);
1346  *n = count;
1347  return opath;
1348}
1349
1350void os::set_memory_serialize_page(address page) {
1351  int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
1352  _mem_serialize_page = (volatile int32_t *)page;
1353  // We initialize the serialization page shift count here
1354  // We assume a cache line size of 64 bytes
1355  assert(SerializePageShiftCount == count,
1356         "thread size changed, fix SerializePageShiftCount constant");
1357  set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
1358}
1359
1360static volatile intptr_t SerializePageLock = 0;
1361
1362// This method is called from signal handler when SIGSEGV occurs while the current
1363// thread tries to store to the "read-only" memory serialize page during state
1364// transition.
1365void os::block_on_serialize_page_trap() {
1366  if (TraceSafepoint) {
1367    tty->print_cr("Block until the serialize page permission restored");
1368  }
1369  // When VMThread is holding the SerializePageLock during modifying the
1370  // access permission of the memory serialize page, the following call
1371  // will block until the permission of that page is restored to rw.
1372  // Generally, it is unsafe to manipulate locks in signal handlers, but in
1373  // this case, it's OK as the signal is synchronous and we know precisely when
1374  // it can occur.
1375  Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
1376  Thread::muxRelease(&SerializePageLock);
1377}
1378
1379// Serialize all thread state variables
1380void os::serialize_thread_states() {
1381  // On some platforms such as Solaris & Linux, the time duration of the page
1382  // permission restoration is observed to be much longer than expected  due to
1383  // scheduler starvation problem etc. To avoid the long synchronization
1384  // time and expensive page trap spinning, 'SerializePageLock' is used to block
1385  // the mutator thread if such case is encountered. See bug 6546278 for details.
1386  Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
1387  os::protect_memory((char *)os::get_memory_serialize_page(),
1388                     os::vm_page_size(), MEM_PROT_READ);
1389  os::protect_memory((char *)os::get_memory_serialize_page(),
1390                     os::vm_page_size(), MEM_PROT_RW);
1391  Thread::muxRelease(&SerializePageLock);
1392}
1393
1394// Returns true if the current stack pointer is above the stack shadow
1395// pages, false otherwise.
1396
1397bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
1398  assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
1399  address sp = current_stack_pointer();
1400  // Check if we have StackShadowPages above the yellow zone.  This parameter
1401  // is dependent on the depth of the maximum VM call stack possible from
1402  // the handler for stack overflow.  'instanceof' in the stack overflow
1403  // handler or a println uses at least 8k stack of VM and native code
1404  // respectively.
1405  const int framesize_in_bytes =
1406    Interpreter::size_top_interpreter_activation(method()) * wordSize;
1407  int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
1408                      * vm_page_size()) + framesize_in_bytes;
1409  // The very lower end of the stack
1410  address stack_limit = thread->stack_base() - thread->stack_size();
1411  return (sp > (stack_limit + reserved_area));
1412}
1413
1414size_t os::page_size_for_region(size_t region_size, size_t min_pages, bool must_be_aligned) {
1415  assert(min_pages > 0, "sanity");
1416  if (UseLargePages) {
1417    const size_t max_page_size = region_size / min_pages;
1418
1419    for (size_t i = 0; _page_sizes[i] != 0; ++i) {
1420      const size_t page_size = _page_sizes[i];
1421      if (page_size <= max_page_size) {
1422        if (!must_be_aligned || is_size_aligned(region_size, page_size)) {
1423          return page_size;
1424        }
1425      }
1426    }
1427  }
1428
1429  return vm_page_size();
1430}
1431
1432size_t os::page_size_for_region_aligned(size_t region_size, size_t min_pages) {
1433  return page_size_for_region(region_size, min_pages, true);
1434}
1435
1436size_t os::page_size_for_region_unaligned(size_t region_size, size_t min_pages) {
1437  return page_size_for_region(region_size, min_pages, false);
1438}
1439
1440#ifndef PRODUCT
1441void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
1442{
1443  if (TracePageSizes) {
1444    tty->print("%s: ", str);
1445    for (int i = 0; i < count; ++i) {
1446      tty->print(" " SIZE_FORMAT, page_sizes[i]);
1447    }
1448    tty->cr();
1449  }
1450}
1451
1452void os::trace_page_sizes(const char* str, const size_t region_min_size,
1453                          const size_t region_max_size, const size_t page_size,
1454                          const char* base, const size_t size)
1455{
1456  if (TracePageSizes) {
1457    tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
1458                  " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
1459                  " size=" SIZE_FORMAT,
1460                  str, region_min_size, region_max_size,
1461                  page_size, p2i(base), size);
1462  }
1463}
1464#endif  // #ifndef PRODUCT
1465
1466// This is the working definition of a server class machine:
1467// >= 2 physical CPU's and >=2GB of memory, with some fuzz
1468// because the graphics memory (?) sometimes masks physical memory.
1469// If you want to change the definition of a server class machine
1470// on some OS or platform, e.g., >=4GB on Windows platforms,
1471// then you'll have to parameterize this method based on that state,
1472// as was done for logical processors here, or replicate and
1473// specialize this method for each platform.  (Or fix os to have
1474// some inheritance structure and use subclassing.  Sigh.)
1475// If you want some platform to always or never behave as a server
1476// class machine, change the setting of AlwaysActAsServerClassMachine
1477// and NeverActAsServerClassMachine in globals*.hpp.
1478bool os::is_server_class_machine() {
1479  // First check for the early returns
1480  if (NeverActAsServerClassMachine) {
1481    return false;
1482  }
1483  if (AlwaysActAsServerClassMachine) {
1484    return true;
1485  }
1486  // Then actually look at the machine
1487  bool         result            = false;
1488  const unsigned int    server_processors = 2;
1489  const julong server_memory     = 2UL * G;
1490  // We seem not to get our full complement of memory.
1491  //     We allow some part (1/8?) of the memory to be "missing",
1492  //     based on the sizes of DIMMs, and maybe graphics cards.
1493  const julong missing_memory   = 256UL * M;
1494
1495  /* Is this a server class machine? */
1496  if ((os::active_processor_count() >= (int)server_processors) &&
1497      (os::physical_memory() >= (server_memory - missing_memory))) {
1498    const unsigned int logical_processors =
1499      VM_Version::logical_processors_per_package();
1500    if (logical_processors > 1) {
1501      const unsigned int physical_packages =
1502        os::active_processor_count() / logical_processors;
1503      if (physical_packages > server_processors) {
1504        result = true;
1505      }
1506    } else {
1507      result = true;
1508    }
1509  }
1510  return result;
1511}
1512
1513void os::SuspendedThreadTask::run() {
1514  assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
1515  internal_do_task();
1516  _done = true;
1517}
1518
1519bool os::create_stack_guard_pages(char* addr, size_t bytes) {
1520  return os::pd_create_stack_guard_pages(addr, bytes);
1521}
1522
1523char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
1524  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1525  if (result != NULL) {
1526    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1527  }
1528
1529  return result;
1530}
1531
1532char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
1533   MEMFLAGS flags) {
1534  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1535  if (result != NULL) {
1536    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1537    MemTracker::record_virtual_memory_type((address)result, flags);
1538  }
1539
1540  return result;
1541}
1542
1543char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
1544  char* result = pd_attempt_reserve_memory_at(bytes, addr);
1545  if (result != NULL) {
1546    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1547  }
1548  return result;
1549}
1550
1551void os::split_reserved_memory(char *base, size_t size,
1552                                 size_t split, bool realloc) {
1553  pd_split_reserved_memory(base, size, split, realloc);
1554}
1555
1556bool os::commit_memory(char* addr, size_t bytes, bool executable) {
1557  bool res = pd_commit_memory(addr, bytes, executable);
1558  if (res) {
1559    MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1560  }
1561  return res;
1562}
1563
1564bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1565                              bool executable) {
1566  bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
1567  if (res) {
1568    MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1569  }
1570  return res;
1571}
1572
1573void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
1574                               const char* mesg) {
1575  pd_commit_memory_or_exit(addr, bytes, executable, mesg);
1576  MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1577}
1578
1579void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
1580                               bool executable, const char* mesg) {
1581  os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
1582  MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1583}
1584
1585bool os::uncommit_memory(char* addr, size_t bytes) {
1586  bool res;
1587  if (MemTracker::tracking_level() > NMT_minimal) {
1588    Tracker tkr = MemTracker::get_virtual_memory_uncommit_tracker();
1589    res = pd_uncommit_memory(addr, bytes);
1590    if (res) {
1591      tkr.record((address)addr, bytes);
1592    }
1593  } else {
1594    res = pd_uncommit_memory(addr, bytes);
1595  }
1596  return res;
1597}
1598
1599bool os::release_memory(char* addr, size_t bytes) {
1600  bool res;
1601  if (MemTracker::tracking_level() > NMT_minimal) {
1602    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1603    res = pd_release_memory(addr, bytes);
1604    if (res) {
1605      tkr.record((address)addr, bytes);
1606    }
1607  } else {
1608    res = pd_release_memory(addr, bytes);
1609  }
1610  return res;
1611}
1612
1613void os::pretouch_memory(char* start, char* end) {
1614  for (volatile char *p = start; p < end; p += os::vm_page_size()) {
1615    *p = 0;
1616  }
1617}
1618
1619char* os::map_memory(int fd, const char* file_name, size_t file_offset,
1620                           char *addr, size_t bytes, bool read_only,
1621                           bool allow_exec) {
1622  char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
1623  if (result != NULL) {
1624    MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, CALLER_PC);
1625  }
1626  return result;
1627}
1628
1629char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
1630                             char *addr, size_t bytes, bool read_only,
1631                             bool allow_exec) {
1632  return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
1633                    read_only, allow_exec);
1634}
1635
1636bool os::unmap_memory(char *addr, size_t bytes) {
1637  bool result;
1638  if (MemTracker::tracking_level() > NMT_minimal) {
1639    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1640    result = pd_unmap_memory(addr, bytes);
1641    if (result) {
1642      tkr.record((address)addr, bytes);
1643    }
1644  } else {
1645    result = pd_unmap_memory(addr, bytes);
1646  }
1647  return result;
1648}
1649
1650void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
1651  pd_free_memory(addr, bytes, alignment_hint);
1652}
1653
1654void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1655  pd_realign_memory(addr, bytes, alignment_hint);
1656}
1657
1658#ifndef TARGET_OS_FAMILY_windows
1659/* try to switch state from state "from" to state "to"
1660 * returns the state set after the method is complete
1661 */
1662os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
1663                                                         os::SuspendResume::State to)
1664{
1665  os::SuspendResume::State result =
1666    (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
1667  if (result == from) {
1668    // success
1669    return to;
1670  }
1671  return result;
1672}
1673#endif
1674
1675/////////////// Unit tests ///////////////
1676
1677#ifndef PRODUCT
1678
1679#define assert_eq(a,b) assert(a == b, SIZE_FORMAT " != " SIZE_FORMAT, a, b)
1680
1681class TestOS : AllStatic {
1682  static size_t small_page_size() {
1683    return os::vm_page_size();
1684  }
1685
1686  static size_t large_page_size() {
1687    const size_t large_page_size_example = 4 * M;
1688    return os::page_size_for_region_aligned(large_page_size_example, 1);
1689  }
1690
1691  static void test_page_size_for_region_aligned() {
1692    if (UseLargePages) {
1693      const size_t small_page = small_page_size();
1694      const size_t large_page = large_page_size();
1695
1696      if (large_page > small_page) {
1697        size_t num_small_pages_in_large = large_page / small_page;
1698        size_t page = os::page_size_for_region_aligned(large_page, num_small_pages_in_large);
1699
1700        assert_eq(page, small_page);
1701      }
1702    }
1703  }
1704
1705  static void test_page_size_for_region_alignment() {
1706    if (UseLargePages) {
1707      const size_t small_page = small_page_size();
1708      const size_t large_page = large_page_size();
1709      if (large_page > small_page) {
1710        const size_t unaligned_region = large_page + 17;
1711        size_t page = os::page_size_for_region_aligned(unaligned_region, 1);
1712        assert_eq(page, small_page);
1713
1714        const size_t num_pages = 5;
1715        const size_t aligned_region = large_page * num_pages;
1716        page = os::page_size_for_region_aligned(aligned_region, num_pages);
1717        assert_eq(page, large_page);
1718      }
1719    }
1720  }
1721
1722  static void test_page_size_for_region_unaligned() {
1723    if (UseLargePages) {
1724      // Given exact page size, should return that page size.
1725      for (size_t i = 0; os::_page_sizes[i] != 0; i++) {
1726        size_t expected = os::_page_sizes[i];
1727        size_t actual = os::page_size_for_region_unaligned(expected, 1);
1728        assert_eq(expected, actual);
1729      }
1730
1731      // Given slightly larger size than a page size, return the page size.
1732      for (size_t i = 0; os::_page_sizes[i] != 0; i++) {
1733        size_t expected = os::_page_sizes[i];
1734        size_t actual = os::page_size_for_region_unaligned(expected + 17, 1);
1735        assert_eq(expected, actual);
1736      }
1737
1738      // Given a slightly smaller size than a page size,
1739      // return the next smaller page size.
1740      if (os::_page_sizes[1] > os::_page_sizes[0]) {
1741        size_t expected = os::_page_sizes[0];
1742        size_t actual = os::page_size_for_region_unaligned(os::_page_sizes[1] - 17, 1);
1743        assert_eq(actual, expected);
1744      }
1745
1746      // Return small page size for values less than a small page.
1747      size_t small_page = small_page_size();
1748      size_t actual = os::page_size_for_region_unaligned(small_page - 17, 1);
1749      assert_eq(small_page, actual);
1750    }
1751  }
1752
1753 public:
1754  static void run_tests() {
1755    test_page_size_for_region_aligned();
1756    test_page_size_for_region_alignment();
1757    test_page_size_for_region_unaligned();
1758  }
1759};
1760
1761void TestOS_test() {
1762  TestOS::run_tests();
1763}
1764
1765#endif // PRODUCT
1766