os.cpp revision 6760:22b98ab2a69f
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/codeCache.hpp"
31#include "code/icBuffer.hpp"
32#include "code/vtableStubs.hpp"
33#include "gc_implementation/shared/vmGCOperations.hpp"
34#include "interpreter/interpreter.hpp"
35#include "memory/allocation.inline.hpp"
36#ifdef ASSERT
37#include "memory/guardedMemory.hpp"
38#endif
39#include "oops/oop.inline.hpp"
40#include "prims/jvm.h"
41#include "prims/jvm_misc.hpp"
42#include "prims/privilegedStack.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/atomic.inline.hpp"
45#include "runtime/frame.inline.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/java.hpp"
48#include "runtime/javaCalls.hpp"
49#include "runtime/mutexLocker.hpp"
50#include "runtime/os.inline.hpp"
51#include "runtime/stubRoutines.hpp"
52#include "runtime/thread.inline.hpp"
53#include "runtime/vm_version.hpp"
54#include "services/attachListener.hpp"
55#include "services/memTracker.hpp"
56#include "services/threadService.hpp"
57#include "utilities/defaultStream.hpp"
58#include "utilities/events.hpp"
59
60# include <signal.h>
61
62PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
63
64OSThread*         os::_starting_thread    = NULL;
65address           os::_polling_page       = NULL;
66volatile int32_t* os::_mem_serialize_page = NULL;
67uintptr_t         os::_serialize_page_mask = 0;
68long              os::_rand_seed          = 1;
69int               os::_processor_count    = 0;
70size_t            os::_page_sizes[os::page_sizes_max];
71
72#ifndef PRODUCT
73julong os::num_mallocs = 0;         // # of calls to malloc/realloc
74julong os::alloc_bytes = 0;         // # of bytes allocated
75julong os::num_frees = 0;           // # of calls to free
76julong os::free_bytes = 0;          // # of bytes freed
77#endif
78
79static juint cur_malloc_words = 0;  // current size for MallocMaxTestWords
80
81void os_init_globals() {
82  // Called from init_globals().
83  // See Threads::create_vm() in thread.cpp, and init.cpp.
84  os::init_globals();
85}
86
87// Fill in buffer with current local time as an ISO-8601 string.
88// E.g., yyyy-mm-ddThh:mm:ss-zzzz.
89// Returns buffer, or NULL if it failed.
90// This would mostly be a call to
91//     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
92// except that on Windows the %z behaves badly, so we do it ourselves.
93// Also, people wanted milliseconds on there,
94// and strftime doesn't do milliseconds.
95char* os::iso8601_time(char* buffer, size_t buffer_length) {
96  // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
97  //                                      1         2
98  //                             12345678901234567890123456789
99  static const char* iso8601_format =
100    "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
101  static const size_t needed_buffer = 29;
102
103  // Sanity check the arguments
104  if (buffer == NULL) {
105    assert(false, "NULL buffer");
106    return NULL;
107  }
108  if (buffer_length < needed_buffer) {
109    assert(false, "buffer_length too small");
110    return NULL;
111  }
112  // Get the current time
113  jlong milliseconds_since_19700101 = javaTimeMillis();
114  const int milliseconds_per_microsecond = 1000;
115  const time_t seconds_since_19700101 =
116    milliseconds_since_19700101 / milliseconds_per_microsecond;
117  const int milliseconds_after_second =
118    milliseconds_since_19700101 % milliseconds_per_microsecond;
119  // Convert the time value to a tm and timezone variable
120  struct tm time_struct;
121  if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
122    assert(false, "Failed localtime_pd");
123    return NULL;
124  }
125#if defined(_ALLBSD_SOURCE)
126  const time_t zone = (time_t) time_struct.tm_gmtoff;
127#else
128  const time_t zone = timezone;
129#endif
130
131  // If daylight savings time is in effect,
132  // we are 1 hour East of our time zone
133  const time_t seconds_per_minute = 60;
134  const time_t minutes_per_hour = 60;
135  const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
136  time_t UTC_to_local = zone;
137  if (time_struct.tm_isdst > 0) {
138    UTC_to_local = UTC_to_local - seconds_per_hour;
139  }
140  // Compute the time zone offset.
141  //    localtime_pd() sets timezone to the difference (in seconds)
142  //    between UTC and and local time.
143  //    ISO 8601 says we need the difference between local time and UTC,
144  //    we change the sign of the localtime_pd() result.
145  const time_t local_to_UTC = -(UTC_to_local);
146  // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
147  char sign_local_to_UTC = '+';
148  time_t abs_local_to_UTC = local_to_UTC;
149  if (local_to_UTC < 0) {
150    sign_local_to_UTC = '-';
151    abs_local_to_UTC = -(abs_local_to_UTC);
152  }
153  // Convert time zone offset seconds to hours and minutes.
154  const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
155  const time_t zone_min =
156    ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
157
158  // Print an ISO 8601 date and time stamp into the buffer
159  const int year = 1900 + time_struct.tm_year;
160  const int month = 1 + time_struct.tm_mon;
161  const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
162                                   year,
163                                   month,
164                                   time_struct.tm_mday,
165                                   time_struct.tm_hour,
166                                   time_struct.tm_min,
167                                   time_struct.tm_sec,
168                                   milliseconds_after_second,
169                                   sign_local_to_UTC,
170                                   zone_hours,
171                                   zone_min);
172  if (printed == 0) {
173    assert(false, "Failed jio_printf");
174    return NULL;
175  }
176  return buffer;
177}
178
179OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
180#ifdef ASSERT
181  if (!(!thread->is_Java_thread() ||
182         Thread::current() == thread  ||
183         Threads_lock->owned_by_self()
184         || thread->is_Compiler_thread()
185        )) {
186    assert(false, "possibility of dangling Thread pointer");
187  }
188#endif
189
190  if (p >= MinPriority && p <= MaxPriority) {
191    int priority = java_to_os_priority[p];
192    return set_native_priority(thread, priority);
193  } else {
194    assert(false, "Should not happen");
195    return OS_ERR;
196  }
197}
198
199// The mapping from OS priority back to Java priority may be inexact because
200// Java priorities can map M:1 with native priorities. If you want the definite
201// Java priority then use JavaThread::java_priority()
202OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
203  int p;
204  int os_prio;
205  OSReturn ret = get_native_priority(thread, &os_prio);
206  if (ret != OS_OK) return ret;
207
208  if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
209    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
210  } else {
211    // niceness values are in reverse order
212    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
213  }
214  priority = (ThreadPriority)p;
215  return OS_OK;
216}
217
218
219// --------------------- sun.misc.Signal (optional) ---------------------
220
221
222// SIGBREAK is sent by the keyboard to query the VM state
223#ifndef SIGBREAK
224#define SIGBREAK SIGQUIT
225#endif
226
227// sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
228
229
230static void signal_thread_entry(JavaThread* thread, TRAPS) {
231  os::set_priority(thread, NearMaxPriority);
232  while (true) {
233    int sig;
234    {
235      // FIXME : Currently we have not decided what should be the status
236      //         for this java thread blocked here. Once we decide about
237      //         that we should fix this.
238      sig = os::signal_wait();
239    }
240    if (sig == os::sigexitnum_pd()) {
241       // Terminate the signal thread
242       return;
243    }
244
245    switch (sig) {
246      case SIGBREAK: {
247        // Check if the signal is a trigger to start the Attach Listener - in that
248        // case don't print stack traces.
249        if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
250          continue;
251        }
252        // Print stack traces
253        // Any SIGBREAK operations added here should make sure to flush
254        // the output stream (e.g. tty->flush()) after output.  See 4803766.
255        // Each module also prints an extra carriage return after its output.
256        VM_PrintThreads op;
257        VMThread::execute(&op);
258        VM_PrintJNI jni_op;
259        VMThread::execute(&jni_op);
260        VM_FindDeadlocks op1(tty);
261        VMThread::execute(&op1);
262        Universe::print_heap_at_SIGBREAK();
263        if (PrintClassHistogram) {
264          VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */);
265          VMThread::execute(&op1);
266        }
267        if (JvmtiExport::should_post_data_dump()) {
268          JvmtiExport::post_data_dump();
269        }
270        break;
271      }
272      default: {
273        // Dispatch the signal to java
274        HandleMark hm(THREAD);
275        Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
276        KlassHandle klass (THREAD, k);
277        if (klass.not_null()) {
278          JavaValue result(T_VOID);
279          JavaCallArguments args;
280          args.push_int(sig);
281          JavaCalls::call_static(
282            &result,
283            klass,
284            vmSymbols::dispatch_name(),
285            vmSymbols::int_void_signature(),
286            &args,
287            THREAD
288          );
289        }
290        if (HAS_PENDING_EXCEPTION) {
291          // tty is initialized early so we don't expect it to be null, but
292          // if it is we can't risk doing an initialization that might
293          // trigger additional out-of-memory conditions
294          if (tty != NULL) {
295            char klass_name[256];
296            char tmp_sig_name[16];
297            const char* sig_name = "UNKNOWN";
298            InstanceKlass::cast(PENDING_EXCEPTION->klass())->
299              name()->as_klass_external_name(klass_name, 256);
300            if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
301              sig_name = tmp_sig_name;
302            warning("Exception %s occurred dispatching signal %s to handler"
303                    "- the VM may need to be forcibly terminated",
304                    klass_name, sig_name );
305          }
306          CLEAR_PENDING_EXCEPTION;
307        }
308      }
309    }
310  }
311}
312
313void os::init_before_ergo() {
314  // We need to initialize large page support here because ergonomics takes some
315  // decisions depending on large page support and the calculated large page size.
316  large_page_init();
317}
318
319void os::signal_init() {
320  if (!ReduceSignalUsage) {
321    // Setup JavaThread for processing signals
322    EXCEPTION_MARK;
323    Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
324    instanceKlassHandle klass (THREAD, k);
325    instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
326
327    const char thread_name[] = "Signal Dispatcher";
328    Handle string = java_lang_String::create_from_str(thread_name, CHECK);
329
330    // Initialize thread_oop to put it into the system threadGroup
331    Handle thread_group (THREAD, Universe::system_thread_group());
332    JavaValue result(T_VOID);
333    JavaCalls::call_special(&result, thread_oop,
334                           klass,
335                           vmSymbols::object_initializer_name(),
336                           vmSymbols::threadgroup_string_void_signature(),
337                           thread_group,
338                           string,
339                           CHECK);
340
341    KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
342    JavaCalls::call_special(&result,
343                            thread_group,
344                            group,
345                            vmSymbols::add_method_name(),
346                            vmSymbols::thread_void_signature(),
347                            thread_oop,         // ARG 1
348                            CHECK);
349
350    os::signal_init_pd();
351
352    { MutexLocker mu(Threads_lock);
353      JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
354
355      // At this point it may be possible that no osthread was created for the
356      // JavaThread due to lack of memory. We would have to throw an exception
357      // in that case. However, since this must work and we do not allow
358      // exceptions anyway, check and abort if this fails.
359      if (signal_thread == NULL || signal_thread->osthread() == NULL) {
360        vm_exit_during_initialization("java.lang.OutOfMemoryError",
361                                      os::native_thread_creation_failed_msg());
362      }
363
364      java_lang_Thread::set_thread(thread_oop(), signal_thread);
365      java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
366      java_lang_Thread::set_daemon(thread_oop());
367
368      signal_thread->set_threadObj(thread_oop());
369      Threads::add(signal_thread);
370      Thread::start(signal_thread);
371    }
372    // Handle ^BREAK
373    os::signal(SIGBREAK, os::user_handler());
374  }
375}
376
377
378void os::terminate_signal_thread() {
379  if (!ReduceSignalUsage)
380    signal_notify(sigexitnum_pd());
381}
382
383
384// --------------------- loading libraries ---------------------
385
386typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
387extern struct JavaVM_ main_vm;
388
389static void* _native_java_library = NULL;
390
391void* os::native_java_library() {
392  if (_native_java_library == NULL) {
393    char buffer[JVM_MAXPATHLEN];
394    char ebuf[1024];
395
396    // Try to load verify dll first. In 1.3 java dll depends on it and is not
397    // always able to find it when the loading executable is outside the JDK.
398    // In order to keep working with 1.2 we ignore any loading errors.
399    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
400                       "verify")) {
401      dll_load(buffer, ebuf, sizeof(ebuf));
402    }
403
404    // Load java dll
405    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
406                       "java")) {
407      _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
408    }
409    if (_native_java_library == NULL) {
410      vm_exit_during_initialization("Unable to load native library", ebuf);
411    }
412
413#if defined(__OpenBSD__)
414    // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
415    // ignore errors
416    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
417                       "net")) {
418      dll_load(buffer, ebuf, sizeof(ebuf));
419    }
420#endif
421  }
422  static jboolean onLoaded = JNI_FALSE;
423  if (onLoaded) {
424    // We may have to wait to fire OnLoad until TLS is initialized.
425    if (ThreadLocalStorage::is_initialized()) {
426      // The JNI_OnLoad handling is normally done by method load in
427      // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
428      // explicitly so we have to check for JNI_OnLoad as well
429      const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
430      JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
431          JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
432      if (JNI_OnLoad != NULL) {
433        JavaThread* thread = JavaThread::current();
434        ThreadToNativeFromVM ttn(thread);
435        HandleMark hm(thread);
436        jint ver = (*JNI_OnLoad)(&main_vm, NULL);
437        onLoaded = JNI_TRUE;
438        if (!Threads::is_supported_jni_version_including_1_1(ver)) {
439          vm_exit_during_initialization("Unsupported JNI version");
440        }
441      }
442    }
443  }
444  return _native_java_library;
445}
446
447/*
448 * Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists.
449 * If check_lib == true then we are looking for an
450 * Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if
451 * this library is statically linked into the image.
452 * If check_lib == false then we will look for the appropriate symbol in the
453 * executable if agent_lib->is_static_lib() == true or in the shared library
454 * referenced by 'handle'.
455 */
456void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib,
457                              const char *syms[], size_t syms_len) {
458  assert(agent_lib != NULL, "sanity check");
459  const char *lib_name;
460  void *handle = agent_lib->os_lib();
461  void *entryName = NULL;
462  char *agent_function_name;
463  size_t i;
464
465  // If checking then use the agent name otherwise test is_static_lib() to
466  // see how to process this lookup
467  lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL);
468  for (i = 0; i < syms_len; i++) {
469    agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path());
470    if (agent_function_name == NULL) {
471      break;
472    }
473    entryName = dll_lookup(handle, agent_function_name);
474    FREE_C_HEAP_ARRAY(char, agent_function_name, mtThread);
475    if (entryName != NULL) {
476      break;
477    }
478  }
479  return entryName;
480}
481
482// See if the passed in agent is statically linked into the VM image.
483bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[],
484                            size_t syms_len) {
485  void *ret;
486  void *proc_handle;
487  void *save_handle;
488
489  assert(agent_lib != NULL, "sanity check");
490  if (agent_lib->name() == NULL) {
491    return false;
492  }
493  proc_handle = get_default_process_handle();
494  // Check for Agent_OnLoad/Attach_lib_name function
495  save_handle = agent_lib->os_lib();
496  // We want to look in this process' symbol table.
497  agent_lib->set_os_lib(proc_handle);
498  ret = find_agent_function(agent_lib, true, syms, syms_len);
499  if (ret != NULL) {
500    // Found an entry point like Agent_OnLoad_lib_name so we have a static agent
501    agent_lib->set_valid();
502    agent_lib->set_static_lib(true);
503    return true;
504  }
505  agent_lib->set_os_lib(save_handle);
506  return false;
507}
508
509// --------------------- heap allocation utilities ---------------------
510
511char *os::strdup(const char *str, MEMFLAGS flags) {
512  size_t size = strlen(str);
513  char *dup_str = (char *)malloc(size + 1, flags);
514  if (dup_str == NULL) return NULL;
515  strcpy(dup_str, str);
516  return dup_str;
517}
518
519
520#define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
521
522#ifdef ASSERT
523
524static void verify_memory(void* ptr) {
525  GuardedMemory guarded(ptr);
526  if (!guarded.verify_guards()) {
527    tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
528    tty->print_cr("## memory stomp:");
529    guarded.print_on(tty);
530    fatal("memory stomping error");
531  }
532}
533
534#endif
535
536//
537// This function supports testing of the malloc out of memory
538// condition without really running the system out of memory.
539//
540static u_char* testMalloc(size_t alloc_size) {
541  assert(MallocMaxTestWords > 0, "sanity check");
542
543  if ((cur_malloc_words + (alloc_size / BytesPerWord)) > MallocMaxTestWords) {
544    return NULL;
545  }
546
547  u_char* ptr = (u_char*)::malloc(alloc_size);
548
549  if (ptr != NULL) {
550    Atomic::add(((jint) (alloc_size / BytesPerWord)),
551                (volatile jint *) &cur_malloc_words);
552  }
553  return ptr;
554}
555
556void* os::malloc(size_t size, MEMFLAGS memflags, address caller) {
557  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
558  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
559
560#ifdef ASSERT
561  // checking for the WatcherThread and crash_protection first
562  // since os::malloc can be called when the libjvm.{dll,so} is
563  // first loaded and we don't have a thread yet.
564  // try to find the thread after we see that the watcher thread
565  // exists and has crash protection.
566  WatcherThread *wt = WatcherThread::watcher_thread();
567  if (wt != NULL && wt->has_crash_protection()) {
568    Thread* thread = ThreadLocalStorage::get_thread_slow();
569    if (thread == wt) {
570      assert(!wt->has_crash_protection(),
571          "Can't malloc with crash protection from WatcherThread");
572    }
573  }
574#endif
575
576  if (size == 0) {
577    // return a valid pointer if size is zero
578    // if NULL is returned the calling functions assume out of memory.
579    size = 1;
580  }
581
582#ifndef ASSERT
583  const size_t alloc_size = size;
584#else
585  const size_t alloc_size = GuardedMemory::get_total_size(size);
586  if (size > alloc_size) { // Check for rollover.
587    return NULL;
588  }
589#endif
590
591  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
592
593  u_char* ptr;
594  if (MallocMaxTestWords > 0) {
595    ptr = testMalloc(alloc_size);
596  } else {
597    ptr = (u_char*)::malloc(alloc_size);
598  }
599
600#ifdef ASSERT
601  if (ptr == NULL) {
602    return NULL;
603  }
604  // Wrap memory with guard
605  GuardedMemory guarded(ptr, size);
606  ptr = guarded.get_user_ptr();
607#endif
608  if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
609    tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
610    breakpoint();
611  }
612  debug_only(if (paranoid) verify_memory(ptr));
613  if (PrintMalloc && tty != NULL) {
614    tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
615  }
616
617  // we do not track guard memory
618  MemTracker::record_malloc((address)ptr, size, memflags, caller == 0 ? CALLER_PC : caller);
619
620  return ptr;
621}
622
623
624void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, address caller) {
625#ifndef ASSERT
626  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
627  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
628  MemTracker::Tracker tkr = MemTracker::get_realloc_tracker();
629  void* ptr = ::realloc(memblock, size);
630  if (ptr != NULL) {
631    tkr.record((address)memblock, (address)ptr, size, memflags,
632     caller == 0 ? CALLER_PC : caller);
633  } else {
634    tkr.discard();
635  }
636  return ptr;
637#else
638  if (memblock == NULL) {
639    return os::malloc(size, memflags, (caller == 0 ? CALLER_PC : caller));
640  }
641  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
642    tty->print_cr("os::realloc caught " PTR_FORMAT, memblock);
643    breakpoint();
644  }
645  verify_memory(memblock);
646  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
647  if (size == 0) {
648    return NULL;
649  }
650  // always move the block
651  void* ptr = os::malloc(size, memflags, caller == 0 ? CALLER_PC : caller);
652  if (PrintMalloc) {
653    tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr);
654  }
655  // Copy to new memory if malloc didn't fail
656  if ( ptr != NULL ) {
657    GuardedMemory guarded(memblock);
658    memcpy(ptr, memblock, MIN2(size, guarded.get_user_size()));
659    if (paranoid) verify_memory(ptr);
660    if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
661      tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
662      breakpoint();
663    }
664    os::free(memblock);
665  }
666  return ptr;
667#endif
668}
669
670
671void  os::free(void *memblock, MEMFLAGS memflags) {
672  address trackp = (address) memblock;
673  NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
674#ifdef ASSERT
675  if (memblock == NULL) return;
676  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
677    if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock);
678    breakpoint();
679  }
680  verify_memory(memblock);
681  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
682
683  GuardedMemory guarded(memblock);
684  size_t size = guarded.get_user_size();
685  inc_stat_counter(&free_bytes, size);
686  memblock = guarded.release_for_freeing();
687  if (PrintMalloc && tty != NULL) {
688      fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)memblock);
689  }
690#endif
691  MemTracker::record_free(trackp, memflags);
692
693  ::free(memblock);
694}
695
696void os::init_random(long initval) {
697  _rand_seed = initval;
698}
699
700
701long os::random() {
702  /* standard, well-known linear congruential random generator with
703   * next_rand = (16807*seed) mod (2**31-1)
704   * see
705   * (1) "Random Number Generators: Good Ones Are Hard to Find",
706   *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
707   * (2) "Two Fast Implementations of the 'Minimal Standard' Random
708   *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
709  */
710  const long a = 16807;
711  const unsigned long m = 2147483647;
712  const long q = m / a;        assert(q == 127773, "weird math");
713  const long r = m % a;        assert(r == 2836, "weird math");
714
715  // compute az=2^31p+q
716  unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
717  unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
718  lo += (hi & 0x7FFF) << 16;
719
720  // if q overflowed, ignore the overflow and increment q
721  if (lo > m) {
722    lo &= m;
723    ++lo;
724  }
725  lo += hi >> 15;
726
727  // if (p+q) overflowed, ignore the overflow and increment (p+q)
728  if (lo > m) {
729    lo &= m;
730    ++lo;
731  }
732  return (_rand_seed = lo);
733}
734
735// The INITIALIZED state is distinguished from the SUSPENDED state because the
736// conditions in which a thread is first started are different from those in which
737// a suspension is resumed.  These differences make it hard for us to apply the
738// tougher checks when starting threads that we want to do when resuming them.
739// However, when start_thread is called as a result of Thread.start, on a Java
740// thread, the operation is synchronized on the Java Thread object.  So there
741// cannot be a race to start the thread and hence for the thread to exit while
742// we are working on it.  Non-Java threads that start Java threads either have
743// to do so in a context in which races are impossible, or should do appropriate
744// locking.
745
746void os::start_thread(Thread* thread) {
747  // guard suspend/resume
748  MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
749  OSThread* osthread = thread->osthread();
750  osthread->set_state(RUNNABLE);
751  pd_start_thread(thread);
752}
753
754//---------------------------------------------------------------------------
755// Helper functions for fatal error handler
756
757void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
758  assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
759
760  int cols = 0;
761  int cols_per_line = 0;
762  switch (unitsize) {
763    case 1: cols_per_line = 16; break;
764    case 2: cols_per_line = 8;  break;
765    case 4: cols_per_line = 4;  break;
766    case 8: cols_per_line = 2;  break;
767    default: return;
768  }
769
770  address p = start;
771  st->print(PTR_FORMAT ":   ", start);
772  while (p < end) {
773    switch (unitsize) {
774      case 1: st->print("%02x", *(u1*)p); break;
775      case 2: st->print("%04x", *(u2*)p); break;
776      case 4: st->print("%08x", *(u4*)p); break;
777      case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
778    }
779    p += unitsize;
780    cols++;
781    if (cols >= cols_per_line && p < end) {
782       cols = 0;
783       st->cr();
784       st->print(PTR_FORMAT ":   ", p);
785    } else {
786       st->print(" ");
787    }
788  }
789  st->cr();
790}
791
792void os::print_environment_variables(outputStream* st, const char** env_list,
793                                     char* buffer, int len) {
794  if (env_list) {
795    st->print_cr("Environment Variables:");
796
797    for (int i = 0; env_list[i] != NULL; i++) {
798      if (getenv(env_list[i], buffer, len)) {
799        st->print("%s", env_list[i]);
800        st->print("=");
801        st->print_cr("%s", buffer);
802      }
803    }
804  }
805}
806
807void os::print_cpu_info(outputStream* st) {
808  // cpu
809  st->print("CPU:");
810  st->print("total %d", os::processor_count());
811  // It's not safe to query number of active processors after crash
812  // st->print("(active %d)", os::active_processor_count());
813  st->print(" %s", VM_Version::cpu_features());
814  st->cr();
815  pd_print_cpu_info(st);
816}
817
818void os::print_date_and_time(outputStream *st) {
819  const int secs_per_day  = 86400;
820  const int secs_per_hour = 3600;
821  const int secs_per_min  = 60;
822
823  time_t tloc;
824  (void)time(&tloc);
825  st->print("time: %s", ctime(&tloc));  // ctime adds newline.
826
827  double t = os::elapsedTime();
828  // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
829  //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
830  //       before printf. We lost some precision, but who cares?
831  int eltime = (int)t;  // elapsed time in seconds
832
833  // print elapsed time in a human-readable format:
834  int eldays = eltime / secs_per_day;
835  int day_secs = eldays * secs_per_day;
836  int elhours = (eltime - day_secs) / secs_per_hour;
837  int hour_secs = elhours * secs_per_hour;
838  int elmins = (eltime - day_secs - hour_secs) / secs_per_min;
839  int minute_secs = elmins * secs_per_min;
840  int elsecs = (eltime - day_secs - hour_secs - minute_secs);
841  st->print_cr("elapsed time: %d seconds (%dd %dh %dm %ds)", eltime, eldays, elhours, elmins, elsecs);
842}
843
844// moved from debug.cpp (used to be find()) but still called from there
845// The verbose parameter is only set by the debug code in one case
846void os::print_location(outputStream* st, intptr_t x, bool verbose) {
847  address addr = (address)x;
848  CodeBlob* b = CodeCache::find_blob_unsafe(addr);
849  if (b != NULL) {
850    if (b->is_buffer_blob()) {
851      // the interpreter is generated into a buffer blob
852      InterpreterCodelet* i = Interpreter::codelet_containing(addr);
853      if (i != NULL) {
854        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", addr, (int)(addr - i->code_begin()));
855        i->print_on(st);
856        return;
857      }
858      if (Interpreter::contains(addr)) {
859        st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
860                     " (not bytecode specific)", addr);
861        return;
862      }
863      //
864      if (AdapterHandlerLibrary::contains(b)) {
865        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", addr, (int)(addr - b->code_begin()));
866        AdapterHandlerLibrary::print_handler_on(st, b);
867      }
868      // the stubroutines are generated into a buffer blob
869      StubCodeDesc* d = StubCodeDesc::desc_for(addr);
870      if (d != NULL) {
871        st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", addr, (int)(addr - d->begin()));
872        d->print_on(st);
873        st->cr();
874        return;
875      }
876      if (StubRoutines::contains(addr)) {
877        st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) "
878                     "stub routine", addr);
879        return;
880      }
881      // the InlineCacheBuffer is using stubs generated into a buffer blob
882      if (InlineCacheBuffer::contains(addr)) {
883        st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
884        return;
885      }
886      VtableStub* v = VtableStubs::stub_containing(addr);
887      if (v != NULL) {
888        st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", addr, (int)(addr - v->entry_point()));
889        v->print_on(st);
890        st->cr();
891        return;
892      }
893    }
894    nmethod* nm = b->as_nmethod_or_null();
895    if (nm != NULL) {
896      ResourceMark rm;
897      st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
898                addr, (int)(addr - nm->entry_point()), nm);
899      if (verbose) {
900        st->print(" for ");
901        nm->method()->print_value_on(st);
902      }
903      st->cr();
904      nm->print_nmethod(verbose);
905      return;
906    }
907    st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", addr, (int)(addr - b->code_begin()));
908    b->print_on(st);
909    return;
910  }
911
912  if (Universe::heap()->is_in(addr)) {
913    HeapWord* p = Universe::heap()->block_start(addr);
914    bool print = false;
915    // If we couldn't find it it just may mean that heap wasn't parsable
916    // See if we were just given an oop directly
917    if (p != NULL && Universe::heap()->block_is_obj(p)) {
918      print = true;
919    } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
920      p = (HeapWord*) addr;
921      print = true;
922    }
923    if (print) {
924      if (p == (HeapWord*) addr) {
925        st->print_cr(INTPTR_FORMAT " is an oop", addr);
926      } else {
927        st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, addr, p);
928      }
929      oop(p)->print_on(st);
930      return;
931    }
932  } else {
933    if (Universe::heap()->is_in_reserved(addr)) {
934      st->print_cr(INTPTR_FORMAT " is an unallocated location "
935                   "in the heap", addr);
936      return;
937    }
938  }
939  if (JNIHandles::is_global_handle((jobject) addr)) {
940    st->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
941    return;
942  }
943  if (JNIHandles::is_weak_global_handle((jobject) addr)) {
944    st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
945    return;
946  }
947#ifndef PRODUCT
948  // we don't keep the block list in product mode
949  if (JNIHandleBlock::any_contains((jobject) addr)) {
950    st->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
951    return;
952  }
953#endif
954
955  for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
956    // Check for privilege stack
957    if (thread->privileged_stack_top() != NULL &&
958        thread->privileged_stack_top()->contains(addr)) {
959      st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
960                   "for thread: " INTPTR_FORMAT, addr, thread);
961      if (verbose) thread->print_on(st);
962      return;
963    }
964    // If the addr is a java thread print information about that.
965    if (addr == (address)thread) {
966      if (verbose) {
967        thread->print_on(st);
968      } else {
969        st->print_cr(INTPTR_FORMAT " is a thread", addr);
970      }
971      return;
972    }
973    // If the addr is in the stack region for this thread then report that
974    // and print thread info
975    if (thread->stack_base() >= addr &&
976        addr > (thread->stack_base() - thread->stack_size())) {
977      st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
978                   INTPTR_FORMAT, addr, thread);
979      if (verbose) thread->print_on(st);
980      return;
981    }
982
983  }
984
985  // Check if in metaspace and print types that have vptrs (only method now)
986  if (Metaspace::contains(addr)) {
987    if (Method::has_method_vptr((const void*)addr)) {
988      ((Method*)addr)->print_value_on(st);
989      st->cr();
990    } else {
991      // Use addr->print() from the debugger instead (not here)
992      st->print_cr(INTPTR_FORMAT " is pointing into metadata", addr);
993    }
994    return;
995  }
996
997  // Try an OS specific find
998  if (os::find(addr, st)) {
999    return;
1000  }
1001
1002  st->print_cr(INTPTR_FORMAT " is an unknown value", addr);
1003}
1004
1005// Looks like all platforms except IA64 can use the same function to check
1006// if C stack is walkable beyond current frame. The check for fp() is not
1007// necessary on Sparc, but it's harmless.
1008bool os::is_first_C_frame(frame* fr) {
1009#if (defined(IA64) && !defined(AIX)) && !defined(_WIN32)
1010  // On IA64 we have to check if the callers bsp is still valid
1011  // (i.e. within the register stack bounds).
1012  // Notice: this only works for threads created by the VM and only if
1013  // we walk the current stack!!! If we want to be able to walk
1014  // arbitrary other threads, we'll have to somehow store the thread
1015  // object in the frame.
1016  Thread *thread = Thread::current();
1017  if ((address)fr->fp() <=
1018      thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
1019    // This check is a little hacky, because on Linux the first C
1020    // frame's ('start_thread') register stack frame starts at
1021    // "register_stack_base + 0x48" while on HPUX, the first C frame's
1022    // ('__pthread_bound_body') register stack frame seems to really
1023    // start at "register_stack_base".
1024    return true;
1025  } else {
1026    return false;
1027  }
1028#elif defined(IA64) && defined(_WIN32)
1029  return true;
1030#else
1031  // Load up sp, fp, sender sp and sender fp, check for reasonable values.
1032  // Check usp first, because if that's bad the other accessors may fault
1033  // on some architectures.  Ditto ufp second, etc.
1034  uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
1035  // sp on amd can be 32 bit aligned.
1036  uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
1037
1038  uintptr_t usp    = (uintptr_t)fr->sp();
1039  if ((usp & sp_align_mask) != 0) return true;
1040
1041  uintptr_t ufp    = (uintptr_t)fr->fp();
1042  if ((ufp & fp_align_mask) != 0) return true;
1043
1044  uintptr_t old_sp = (uintptr_t)fr->sender_sp();
1045  if ((old_sp & sp_align_mask) != 0) return true;
1046  if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
1047
1048  uintptr_t old_fp = (uintptr_t)fr->link();
1049  if ((old_fp & fp_align_mask) != 0) return true;
1050  if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
1051
1052  // stack grows downwards; if old_fp is below current fp or if the stack
1053  // frame is too large, either the stack is corrupted or fp is not saved
1054  // on stack (i.e. on x86, ebp may be used as general register). The stack
1055  // is not walkable beyond current frame.
1056  if (old_fp < ufp) return true;
1057  if (old_fp - ufp > 64 * K) return true;
1058
1059  return false;
1060#endif
1061}
1062
1063#ifdef ASSERT
1064extern "C" void test_random() {
1065  const double m = 2147483647;
1066  double mean = 0.0, variance = 0.0, t;
1067  long reps = 10000;
1068  unsigned long seed = 1;
1069
1070  tty->print_cr("seed %ld for %ld repeats...", seed, reps);
1071  os::init_random(seed);
1072  long num;
1073  for (int k = 0; k < reps; k++) {
1074    num = os::random();
1075    double u = (double)num / m;
1076    assert(u >= 0.0 && u <= 1.0, "bad random number!");
1077
1078    // calculate mean and variance of the random sequence
1079    mean += u;
1080    variance += (u*u);
1081  }
1082  mean /= reps;
1083  variance /= (reps - 1);
1084
1085  assert(num == 1043618065, "bad seed");
1086  tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
1087  tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
1088  const double eps = 0.0001;
1089  t = fabsd(mean - 0.5018);
1090  assert(t < eps, "bad mean");
1091  t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
1092  assert(t < eps, "bad variance");
1093}
1094#endif
1095
1096
1097// Set up the boot classpath.
1098
1099char* os::format_boot_path(const char* format_string,
1100                           const char* home,
1101                           int home_len,
1102                           char fileSep,
1103                           char pathSep) {
1104    assert((fileSep == '/' && pathSep == ':') ||
1105           (fileSep == '\\' && pathSep == ';'), "unexpected separator chars");
1106
1107    // Scan the format string to determine the length of the actual
1108    // boot classpath, and handle platform dependencies as well.
1109    int formatted_path_len = 0;
1110    const char* p;
1111    for (p = format_string; *p != 0; ++p) {
1112        if (*p == '%') formatted_path_len += home_len - 1;
1113        ++formatted_path_len;
1114    }
1115
1116    char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
1117    if (formatted_path == NULL) {
1118        return NULL;
1119    }
1120
1121    // Create boot classpath from format, substituting separator chars and
1122    // java home directory.
1123    char* q = formatted_path;
1124    for (p = format_string; *p != 0; ++p) {
1125        switch (*p) {
1126        case '%':
1127            strcpy(q, home);
1128            q += home_len;
1129            break;
1130        case '/':
1131            *q++ = fileSep;
1132            break;
1133        case ':':
1134            *q++ = pathSep;
1135            break;
1136        default:
1137            *q++ = *p;
1138        }
1139    }
1140    *q = '\0';
1141
1142    assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1143    return formatted_path;
1144}
1145
1146
1147bool os::set_boot_path(char fileSep, char pathSep) {
1148    const char* home = Arguments::get_java_home();
1149    int home_len = (int)strlen(home);
1150
1151    static const char* meta_index_dir_format = "%/lib/";
1152    static const char* meta_index_format = "%/lib/meta-index";
1153    char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
1154    if (meta_index == NULL) return false;
1155    char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
1156    if (meta_index_dir == NULL) return false;
1157    Arguments::set_meta_index_path(meta_index, meta_index_dir);
1158
1159    // Any modification to the JAR-file list, for the boot classpath must be
1160    // aligned with install/install/make/common/Pack.gmk. Note: boot class
1161    // path class JARs, are stripped for StackMapTable to reduce download size.
1162    static const char classpath_format[] =
1163        "%/lib/resources.jar:"
1164        "%/lib/rt.jar:"
1165        "%/lib/sunrsasign.jar:"
1166        "%/lib/jsse.jar:"
1167        "%/lib/jce.jar:"
1168        "%/lib/charsets.jar:"
1169        "%/lib/jfr.jar:"
1170        "%/classes";
1171    char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
1172    if (sysclasspath == NULL) return false;
1173    Arguments::set_sysclasspath(sysclasspath);
1174
1175    return true;
1176}
1177
1178/*
1179 * Splits a path, based on its separator, the number of
1180 * elements is returned back in n.
1181 * It is the callers responsibility to:
1182 *   a> check the value of n, and n may be 0.
1183 *   b> ignore any empty path elements
1184 *   c> free up the data.
1185 */
1186char** os::split_path(const char* path, int* n) {
1187  *n = 0;
1188  if (path == NULL || strlen(path) == 0) {
1189    return NULL;
1190  }
1191  const char psepchar = *os::path_separator();
1192  char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
1193  if (inpath == NULL) {
1194    return NULL;
1195  }
1196  strcpy(inpath, path);
1197  int count = 1;
1198  char* p = strchr(inpath, psepchar);
1199  // Get a count of elements to allocate memory
1200  while (p != NULL) {
1201    count++;
1202    p++;
1203    p = strchr(p, psepchar);
1204  }
1205  char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
1206  if (opath == NULL) {
1207    return NULL;
1208  }
1209
1210  // do the actual splitting
1211  p = inpath;
1212  for (int i = 0 ; i < count ; i++) {
1213    size_t len = strcspn(p, os::path_separator());
1214    if (len > JVM_MAXPATHLEN) {
1215      return NULL;
1216    }
1217    // allocate the string and add terminator storage
1218    char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
1219    if (s == NULL) {
1220      return NULL;
1221    }
1222    strncpy(s, p, len);
1223    s[len] = '\0';
1224    opath[i] = s;
1225    p += len + 1;
1226  }
1227  FREE_C_HEAP_ARRAY(char, inpath, mtInternal);
1228  *n = count;
1229  return opath;
1230}
1231
1232void os::set_memory_serialize_page(address page) {
1233  int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
1234  _mem_serialize_page = (volatile int32_t *)page;
1235  // We initialize the serialization page shift count here
1236  // We assume a cache line size of 64 bytes
1237  assert(SerializePageShiftCount == count,
1238         "thread size changed, fix SerializePageShiftCount constant");
1239  set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
1240}
1241
1242static volatile intptr_t SerializePageLock = 0;
1243
1244// This method is called from signal handler when SIGSEGV occurs while the current
1245// thread tries to store to the "read-only" memory serialize page during state
1246// transition.
1247void os::block_on_serialize_page_trap() {
1248  if (TraceSafepoint) {
1249    tty->print_cr("Block until the serialize page permission restored");
1250  }
1251  // When VMThread is holding the SerializePageLock during modifying the
1252  // access permission of the memory serialize page, the following call
1253  // will block until the permission of that page is restored to rw.
1254  // Generally, it is unsafe to manipulate locks in signal handlers, but in
1255  // this case, it's OK as the signal is synchronous and we know precisely when
1256  // it can occur.
1257  Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
1258  Thread::muxRelease(&SerializePageLock);
1259}
1260
1261// Serialize all thread state variables
1262void os::serialize_thread_states() {
1263  // On some platforms such as Solaris & Linux, the time duration of the page
1264  // permission restoration is observed to be much longer than expected  due to
1265  // scheduler starvation problem etc. To avoid the long synchronization
1266  // time and expensive page trap spinning, 'SerializePageLock' is used to block
1267  // the mutator thread if such case is encountered. See bug 6546278 for details.
1268  Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
1269  os::protect_memory((char *)os::get_memory_serialize_page(),
1270                     os::vm_page_size(), MEM_PROT_READ);
1271  os::protect_memory((char *)os::get_memory_serialize_page(),
1272                     os::vm_page_size(), MEM_PROT_RW);
1273  Thread::muxRelease(&SerializePageLock);
1274}
1275
1276// Returns true if the current stack pointer is above the stack shadow
1277// pages, false otherwise.
1278
1279bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
1280  assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
1281  address sp = current_stack_pointer();
1282  // Check if we have StackShadowPages above the yellow zone.  This parameter
1283  // is dependent on the depth of the maximum VM call stack possible from
1284  // the handler for stack overflow.  'instanceof' in the stack overflow
1285  // handler or a println uses at least 8k stack of VM and native code
1286  // respectively.
1287  const int framesize_in_bytes =
1288    Interpreter::size_top_interpreter_activation(method()) * wordSize;
1289  int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
1290                      * vm_page_size()) + framesize_in_bytes;
1291  // The very lower end of the stack
1292  address stack_limit = thread->stack_base() - thread->stack_size();
1293  return (sp > (stack_limit + reserved_area));
1294}
1295
1296size_t os::page_size_for_region(size_t region_min_size, size_t region_max_size,
1297                                uint min_pages)
1298{
1299  assert(min_pages > 0, "sanity");
1300  if (UseLargePages) {
1301    const size_t max_page_size = region_max_size / min_pages;
1302
1303    for (unsigned int i = 0; _page_sizes[i] != 0; ++i) {
1304      const size_t sz = _page_sizes[i];
1305      const size_t mask = sz - 1;
1306      if ((region_min_size & mask) == 0 && (region_max_size & mask) == 0) {
1307        // The largest page size with no fragmentation.
1308        return sz;
1309      }
1310
1311      if (sz <= max_page_size) {
1312        // The largest page size that satisfies the min_pages requirement.
1313        return sz;
1314      }
1315    }
1316  }
1317
1318  return vm_page_size();
1319}
1320
1321#ifndef PRODUCT
1322void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
1323{
1324  if (TracePageSizes) {
1325    tty->print("%s: ", str);
1326    for (int i = 0; i < count; ++i) {
1327      tty->print(" " SIZE_FORMAT, page_sizes[i]);
1328    }
1329    tty->cr();
1330  }
1331}
1332
1333void os::trace_page_sizes(const char* str, const size_t region_min_size,
1334                          const size_t region_max_size, const size_t page_size,
1335                          const char* base, const size_t size)
1336{
1337  if (TracePageSizes) {
1338    tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
1339                  " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
1340                  " size=" SIZE_FORMAT,
1341                  str, region_min_size, region_max_size,
1342                  page_size, base, size);
1343  }
1344}
1345#endif  // #ifndef PRODUCT
1346
1347// This is the working definition of a server class machine:
1348// >= 2 physical CPU's and >=2GB of memory, with some fuzz
1349// because the graphics memory (?) sometimes masks physical memory.
1350// If you want to change the definition of a server class machine
1351// on some OS or platform, e.g., >=4GB on Windows platforms,
1352// then you'll have to parameterize this method based on that state,
1353// as was done for logical processors here, or replicate and
1354// specialize this method for each platform.  (Or fix os to have
1355// some inheritance structure and use subclassing.  Sigh.)
1356// If you want some platform to always or never behave as a server
1357// class machine, change the setting of AlwaysActAsServerClassMachine
1358// and NeverActAsServerClassMachine in globals*.hpp.
1359bool os::is_server_class_machine() {
1360  // First check for the early returns
1361  if (NeverActAsServerClassMachine) {
1362    return false;
1363  }
1364  if (AlwaysActAsServerClassMachine) {
1365    return true;
1366  }
1367  // Then actually look at the machine
1368  bool         result            = false;
1369  const unsigned int    server_processors = 2;
1370  const julong server_memory     = 2UL * G;
1371  // We seem not to get our full complement of memory.
1372  //     We allow some part (1/8?) of the memory to be "missing",
1373  //     based on the sizes of DIMMs, and maybe graphics cards.
1374  const julong missing_memory   = 256UL * M;
1375
1376  /* Is this a server class machine? */
1377  if ((os::active_processor_count() >= (int)server_processors) &&
1378      (os::physical_memory() >= (server_memory - missing_memory))) {
1379    const unsigned int logical_processors =
1380      VM_Version::logical_processors_per_package();
1381    if (logical_processors > 1) {
1382      const unsigned int physical_packages =
1383        os::active_processor_count() / logical_processors;
1384      if (physical_packages > server_processors) {
1385        result = true;
1386      }
1387    } else {
1388      result = true;
1389    }
1390  }
1391  return result;
1392}
1393
1394void os::SuspendedThreadTask::run() {
1395  assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
1396  internal_do_task();
1397  _done = true;
1398}
1399
1400bool os::create_stack_guard_pages(char* addr, size_t bytes) {
1401  return os::pd_create_stack_guard_pages(addr, bytes);
1402}
1403
1404char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
1405  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1406  if (result != NULL) {
1407    MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
1408  }
1409
1410  return result;
1411}
1412
1413char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
1414   MEMFLAGS flags) {
1415  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1416  if (result != NULL) {
1417    MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
1418    MemTracker::record_virtual_memory_type((address)result, flags);
1419  }
1420
1421  return result;
1422}
1423
1424char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
1425  char* result = pd_attempt_reserve_memory_at(bytes, addr);
1426  if (result != NULL) {
1427    MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
1428  }
1429  return result;
1430}
1431
1432void os::split_reserved_memory(char *base, size_t size,
1433                                 size_t split, bool realloc) {
1434  pd_split_reserved_memory(base, size, split, realloc);
1435}
1436
1437bool os::commit_memory(char* addr, size_t bytes, bool executable) {
1438  bool res = pd_commit_memory(addr, bytes, executable);
1439  if (res) {
1440    MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1441  }
1442  return res;
1443}
1444
1445bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1446                              bool executable) {
1447  bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
1448  if (res) {
1449    MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1450  }
1451  return res;
1452}
1453
1454void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
1455                               const char* mesg) {
1456  pd_commit_memory_or_exit(addr, bytes, executable, mesg);
1457  MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1458}
1459
1460void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
1461                               bool executable, const char* mesg) {
1462  os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
1463  MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1464}
1465
1466bool os::uncommit_memory(char* addr, size_t bytes) {
1467  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_uncommit_tracker();
1468  bool res = pd_uncommit_memory(addr, bytes);
1469  if (res) {
1470    tkr.record((address)addr, bytes);
1471  } else {
1472    tkr.discard();
1473  }
1474  return res;
1475}
1476
1477bool os::release_memory(char* addr, size_t bytes) {
1478  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1479  bool res = pd_release_memory(addr, bytes);
1480  if (res) {
1481    tkr.record((address)addr, bytes);
1482  } else {
1483    tkr.discard();
1484  }
1485  return res;
1486}
1487
1488
1489char* os::map_memory(int fd, const char* file_name, size_t file_offset,
1490                           char *addr, size_t bytes, bool read_only,
1491                           bool allow_exec) {
1492  char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
1493  if (result != NULL) {
1494    MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, mtNone, CALLER_PC);
1495  }
1496  return result;
1497}
1498
1499char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
1500                             char *addr, size_t bytes, bool read_only,
1501                             bool allow_exec) {
1502  return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
1503                    read_only, allow_exec);
1504}
1505
1506bool os::unmap_memory(char *addr, size_t bytes) {
1507  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1508  bool result = pd_unmap_memory(addr, bytes);
1509  if (result) {
1510    tkr.record((address)addr, bytes);
1511  } else {
1512    tkr.discard();
1513  }
1514  return result;
1515}
1516
1517void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
1518  pd_free_memory(addr, bytes, alignment_hint);
1519}
1520
1521void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1522  pd_realign_memory(addr, bytes, alignment_hint);
1523}
1524
1525#ifndef TARGET_OS_FAMILY_windows
1526/* try to switch state from state "from" to state "to"
1527 * returns the state set after the method is complete
1528 */
1529os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
1530                                                         os::SuspendResume::State to)
1531{
1532  os::SuspendResume::State result =
1533    (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
1534  if (result == from) {
1535    // success
1536    return to;
1537  }
1538  return result;
1539}
1540#endif
1541