os.cpp revision 6683:08a2164660fb
1169691Skan/*
2169691Skan * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3169691Skan * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4169691Skan *
5169691Skan * This code is free software; you can redistribute it and/or modify it
6169691Skan * under the terms of the GNU General Public License version 2 only, as
7169691Skan * published by the Free Software Foundation.
8169691Skan *
9169691Skan * This code is distributed in the hope that it will be useful, but WITHOUT
10169691Skan * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11169691Skan * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12169691Skan * version 2 for more details (a copy is included in the LICENSE file that
13169691Skan * accompanied this code).
14169691Skan *
15169691Skan * You should have received a copy of the GNU General Public License version
16169691Skan * 2 along with this work; if not, write to the Free Software Foundation,
17169691Skan * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18169691Skan *
19169691Skan * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20169691Skan * or visit www.oracle.com if you need additional information or have any
21169691Skan * questions.
22169691Skan *
23169691Skan */
24169691Skan
25169691Skan#include "precompiled.hpp"
26169691Skan#include "classfile/classLoader.hpp"
27169691Skan#include "classfile/javaClasses.hpp"
28169691Skan#include "classfile/systemDictionary.hpp"
29169691Skan#include "classfile/vmSymbols.hpp"
30169691Skan#include "code/icBuffer.hpp"
31169691Skan#include "code/vtableStubs.hpp"
32169691Skan#include "gc_implementation/shared/vmGCOperations.hpp"
33169691Skan#include "interpreter/interpreter.hpp"
34169691Skan#include "memory/allocation.inline.hpp"
35169691Skan#ifdef ASSERT
36169691Skan#include "memory/guardedMemory.hpp"
37169691Skan#endif
38169691Skan#include "oops/oop.inline.hpp"
39169691Skan#include "prims/jvm.h"
40169691Skan#include "prims/jvm_misc.hpp"
41169691Skan#include "prims/privilegedStack.hpp"
42169691Skan#include "runtime/arguments.hpp"
43169691Skan#include "runtime/atomic.inline.hpp"
44169691Skan#include "runtime/frame.inline.hpp"
45169691Skan#include "runtime/interfaceSupport.hpp"
46169691Skan#include "runtime/java.hpp"
47169691Skan#include "runtime/javaCalls.hpp"
48169691Skan#include "runtime/mutexLocker.hpp"
49169691Skan#include "runtime/os.inline.hpp"
50169691Skan#include "runtime/stubRoutines.hpp"
51169691Skan#include "runtime/thread.inline.hpp"
52169691Skan#include "services/attachListener.hpp"
53169691Skan#include "services/memTracker.hpp"
54169691Skan#include "services/threadService.hpp"
55169691Skan#include "utilities/defaultStream.hpp"
56169691Skan#include "utilities/events.hpp"
57169691Skan
58169691Skan# include <signal.h>
59169691Skan
60169691SkanPRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
61
62OSThread*         os::_starting_thread    = NULL;
63address           os::_polling_page       = NULL;
64volatile int32_t* os::_mem_serialize_page = NULL;
65uintptr_t         os::_serialize_page_mask = 0;
66long              os::_rand_seed          = 1;
67int               os::_processor_count    = 0;
68size_t            os::_page_sizes[os::page_sizes_max];
69
70#ifndef PRODUCT
71julong os::num_mallocs = 0;         // # of calls to malloc/realloc
72julong os::alloc_bytes = 0;         // # of bytes allocated
73julong os::num_frees = 0;           // # of calls to free
74julong os::free_bytes = 0;          // # of bytes freed
75#endif
76
77static juint cur_malloc_words = 0;  // current size for MallocMaxTestWords
78
79void os_init_globals() {
80  // Called from init_globals().
81  // See Threads::create_vm() in thread.cpp, and init.cpp.
82  os::init_globals();
83}
84
85// Fill in buffer with current local time as an ISO-8601 string.
86// E.g., yyyy-mm-ddThh:mm:ss-zzzz.
87// Returns buffer, or NULL if it failed.
88// This would mostly be a call to
89//     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
90// except that on Windows the %z behaves badly, so we do it ourselves.
91// Also, people wanted milliseconds on there,
92// and strftime doesn't do milliseconds.
93char* os::iso8601_time(char* buffer, size_t buffer_length) {
94  // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
95  //                                      1         2
96  //                             12345678901234567890123456789
97  static const char* iso8601_format =
98    "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
99  static const size_t needed_buffer = 29;
100
101  // Sanity check the arguments
102  if (buffer == NULL) {
103    assert(false, "NULL buffer");
104    return NULL;
105  }
106  if (buffer_length < needed_buffer) {
107    assert(false, "buffer_length too small");
108    return NULL;
109  }
110  // Get the current time
111  jlong milliseconds_since_19700101 = javaTimeMillis();
112  const int milliseconds_per_microsecond = 1000;
113  const time_t seconds_since_19700101 =
114    milliseconds_since_19700101 / milliseconds_per_microsecond;
115  const int milliseconds_after_second =
116    milliseconds_since_19700101 % milliseconds_per_microsecond;
117  // Convert the time value to a tm and timezone variable
118  struct tm time_struct;
119  if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
120    assert(false, "Failed localtime_pd");
121    return NULL;
122  }
123#if defined(_ALLBSD_SOURCE)
124  const time_t zone = (time_t) time_struct.tm_gmtoff;
125#else
126  const time_t zone = timezone;
127#endif
128
129  // If daylight savings time is in effect,
130  // we are 1 hour East of our time zone
131  const time_t seconds_per_minute = 60;
132  const time_t minutes_per_hour = 60;
133  const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
134  time_t UTC_to_local = zone;
135  if (time_struct.tm_isdst > 0) {
136    UTC_to_local = UTC_to_local - seconds_per_hour;
137  }
138  // Compute the time zone offset.
139  //    localtime_pd() sets timezone to the difference (in seconds)
140  //    between UTC and and local time.
141  //    ISO 8601 says we need the difference between local time and UTC,
142  //    we change the sign of the localtime_pd() result.
143  const time_t local_to_UTC = -(UTC_to_local);
144  // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
145  char sign_local_to_UTC = '+';
146  time_t abs_local_to_UTC = local_to_UTC;
147  if (local_to_UTC < 0) {
148    sign_local_to_UTC = '-';
149    abs_local_to_UTC = -(abs_local_to_UTC);
150  }
151  // Convert time zone offset seconds to hours and minutes.
152  const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
153  const time_t zone_min =
154    ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
155
156  // Print an ISO 8601 date and time stamp into the buffer
157  const int year = 1900 + time_struct.tm_year;
158  const int month = 1 + time_struct.tm_mon;
159  const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
160                                   year,
161                                   month,
162                                   time_struct.tm_mday,
163                                   time_struct.tm_hour,
164                                   time_struct.tm_min,
165                                   time_struct.tm_sec,
166                                   milliseconds_after_second,
167                                   sign_local_to_UTC,
168                                   zone_hours,
169                                   zone_min);
170  if (printed == 0) {
171    assert(false, "Failed jio_printf");
172    return NULL;
173  }
174  return buffer;
175}
176
177OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
178#ifdef ASSERT
179  if (!(!thread->is_Java_thread() ||
180         Thread::current() == thread  ||
181         Threads_lock->owned_by_self()
182         || thread->is_Compiler_thread()
183        )) {
184    assert(false, "possibility of dangling Thread pointer");
185  }
186#endif
187
188  if (p >= MinPriority && p <= MaxPriority) {
189    int priority = java_to_os_priority[p];
190    return set_native_priority(thread, priority);
191  } else {
192    assert(false, "Should not happen");
193    return OS_ERR;
194  }
195}
196
197// The mapping from OS priority back to Java priority may be inexact because
198// Java priorities can map M:1 with native priorities. If you want the definite
199// Java priority then use JavaThread::java_priority()
200OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
201  int p;
202  int os_prio;
203  OSReturn ret = get_native_priority(thread, &os_prio);
204  if (ret != OS_OK) return ret;
205
206  if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
207    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
208  } else {
209    // niceness values are in reverse order
210    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
211  }
212  priority = (ThreadPriority)p;
213  return OS_OK;
214}
215
216
217// --------------------- sun.misc.Signal (optional) ---------------------
218
219
220// SIGBREAK is sent by the keyboard to query the VM state
221#ifndef SIGBREAK
222#define SIGBREAK SIGQUIT
223#endif
224
225// sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
226
227
228static void signal_thread_entry(JavaThread* thread, TRAPS) {
229  os::set_priority(thread, NearMaxPriority);
230  while (true) {
231    int sig;
232    {
233      // FIXME : Currently we have not decided what should be the status
234      //         for this java thread blocked here. Once we decide about
235      //         that we should fix this.
236      sig = os::signal_wait();
237    }
238    if (sig == os::sigexitnum_pd()) {
239       // Terminate the signal thread
240       return;
241    }
242
243    switch (sig) {
244      case SIGBREAK: {
245        // Check if the signal is a trigger to start the Attach Listener - in that
246        // case don't print stack traces.
247        if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
248          continue;
249        }
250        // Print stack traces
251        // Any SIGBREAK operations added here should make sure to flush
252        // the output stream (e.g. tty->flush()) after output.  See 4803766.
253        // Each module also prints an extra carriage return after its output.
254        VM_PrintThreads op;
255        VMThread::execute(&op);
256        VM_PrintJNI jni_op;
257        VMThread::execute(&jni_op);
258        VM_FindDeadlocks op1(tty);
259        VMThread::execute(&op1);
260        Universe::print_heap_at_SIGBREAK();
261        if (PrintClassHistogram) {
262          VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */);
263          VMThread::execute(&op1);
264        }
265        if (JvmtiExport::should_post_data_dump()) {
266          JvmtiExport::post_data_dump();
267        }
268        break;
269      }
270      default: {
271        // Dispatch the signal to java
272        HandleMark hm(THREAD);
273        Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
274        KlassHandle klass (THREAD, k);
275        if (klass.not_null()) {
276          JavaValue result(T_VOID);
277          JavaCallArguments args;
278          args.push_int(sig);
279          JavaCalls::call_static(
280            &result,
281            klass,
282            vmSymbols::dispatch_name(),
283            vmSymbols::int_void_signature(),
284            &args,
285            THREAD
286          );
287        }
288        if (HAS_PENDING_EXCEPTION) {
289          // tty is initialized early so we don't expect it to be null, but
290          // if it is we can't risk doing an initialization that might
291          // trigger additional out-of-memory conditions
292          if (tty != NULL) {
293            char klass_name[256];
294            char tmp_sig_name[16];
295            const char* sig_name = "UNKNOWN";
296            InstanceKlass::cast(PENDING_EXCEPTION->klass())->
297              name()->as_klass_external_name(klass_name, 256);
298            if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
299              sig_name = tmp_sig_name;
300            warning("Exception %s occurred dispatching signal %s to handler"
301                    "- the VM may need to be forcibly terminated",
302                    klass_name, sig_name );
303          }
304          CLEAR_PENDING_EXCEPTION;
305        }
306      }
307    }
308  }
309}
310
311void os::init_before_ergo() {
312  // We need to initialize large page support here because ergonomics takes some
313  // decisions depending on large page support and the calculated large page size.
314  large_page_init();
315}
316
317void os::signal_init() {
318  if (!ReduceSignalUsage) {
319    // Setup JavaThread for processing signals
320    EXCEPTION_MARK;
321    Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
322    instanceKlassHandle klass (THREAD, k);
323    instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
324
325    const char thread_name[] = "Signal Dispatcher";
326    Handle string = java_lang_String::create_from_str(thread_name, CHECK);
327
328    // Initialize thread_oop to put it into the system threadGroup
329    Handle thread_group (THREAD, Universe::system_thread_group());
330    JavaValue result(T_VOID);
331    JavaCalls::call_special(&result, thread_oop,
332                           klass,
333                           vmSymbols::object_initializer_name(),
334                           vmSymbols::threadgroup_string_void_signature(),
335                           thread_group,
336                           string,
337                           CHECK);
338
339    KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
340    JavaCalls::call_special(&result,
341                            thread_group,
342                            group,
343                            vmSymbols::add_method_name(),
344                            vmSymbols::thread_void_signature(),
345                            thread_oop,         // ARG 1
346                            CHECK);
347
348    os::signal_init_pd();
349
350    { MutexLocker mu(Threads_lock);
351      JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
352
353      // At this point it may be possible that no osthread was created for the
354      // JavaThread due to lack of memory. We would have to throw an exception
355      // in that case. However, since this must work and we do not allow
356      // exceptions anyway, check and abort if this fails.
357      if (signal_thread == NULL || signal_thread->osthread() == NULL) {
358        vm_exit_during_initialization("java.lang.OutOfMemoryError",
359                                      os::native_thread_creation_failed_msg());
360      }
361
362      java_lang_Thread::set_thread(thread_oop(), signal_thread);
363      java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
364      java_lang_Thread::set_daemon(thread_oop());
365
366      signal_thread->set_threadObj(thread_oop());
367      Threads::add(signal_thread);
368      Thread::start(signal_thread);
369    }
370    // Handle ^BREAK
371    os::signal(SIGBREAK, os::user_handler());
372  }
373}
374
375
376void os::terminate_signal_thread() {
377  if (!ReduceSignalUsage)
378    signal_notify(sigexitnum_pd());
379}
380
381
382// --------------------- loading libraries ---------------------
383
384typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
385extern struct JavaVM_ main_vm;
386
387static void* _native_java_library = NULL;
388
389void* os::native_java_library() {
390  if (_native_java_library == NULL) {
391    char buffer[JVM_MAXPATHLEN];
392    char ebuf[1024];
393
394    // Try to load verify dll first. In 1.3 java dll depends on it and is not
395    // always able to find it when the loading executable is outside the JDK.
396    // In order to keep working with 1.2 we ignore any loading errors.
397    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
398                       "verify")) {
399      dll_load(buffer, ebuf, sizeof(ebuf));
400    }
401
402    // Load java dll
403    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
404                       "java")) {
405      _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
406    }
407    if (_native_java_library == NULL) {
408      vm_exit_during_initialization("Unable to load native library", ebuf);
409    }
410
411#if defined(__OpenBSD__)
412    // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
413    // ignore errors
414    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
415                       "net")) {
416      dll_load(buffer, ebuf, sizeof(ebuf));
417    }
418#endif
419  }
420  static jboolean onLoaded = JNI_FALSE;
421  if (onLoaded) {
422    // We may have to wait to fire OnLoad until TLS is initialized.
423    if (ThreadLocalStorage::is_initialized()) {
424      // The JNI_OnLoad handling is normally done by method load in
425      // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
426      // explicitly so we have to check for JNI_OnLoad as well
427      const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
428      JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
429          JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
430      if (JNI_OnLoad != NULL) {
431        JavaThread* thread = JavaThread::current();
432        ThreadToNativeFromVM ttn(thread);
433        HandleMark hm(thread);
434        jint ver = (*JNI_OnLoad)(&main_vm, NULL);
435        onLoaded = JNI_TRUE;
436        if (!Threads::is_supported_jni_version_including_1_1(ver)) {
437          vm_exit_during_initialization("Unsupported JNI version");
438        }
439      }
440    }
441  }
442  return _native_java_library;
443}
444
445/*
446 * Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists.
447 * If check_lib == true then we are looking for an
448 * Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if
449 * this library is statically linked into the image.
450 * If check_lib == false then we will look for the appropriate symbol in the
451 * executable if agent_lib->is_static_lib() == true or in the shared library
452 * referenced by 'handle'.
453 */
454void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib,
455                              const char *syms[], size_t syms_len) {
456  assert(agent_lib != NULL, "sanity check");
457  const char *lib_name;
458  void *handle = agent_lib->os_lib();
459  void *entryName = NULL;
460  char *agent_function_name;
461  size_t i;
462
463  // If checking then use the agent name otherwise test is_static_lib() to
464  // see how to process this lookup
465  lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL);
466  for (i = 0; i < syms_len; i++) {
467    agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path());
468    if (agent_function_name == NULL) {
469      break;
470    }
471    entryName = dll_lookup(handle, agent_function_name);
472    FREE_C_HEAP_ARRAY(char, agent_function_name, mtThread);
473    if (entryName != NULL) {
474      break;
475    }
476  }
477  return entryName;
478}
479
480// See if the passed in agent is statically linked into the VM image.
481bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[],
482                            size_t syms_len) {
483  void *ret;
484  void *proc_handle;
485  void *save_handle;
486
487  assert(agent_lib != NULL, "sanity check");
488  if (agent_lib->name() == NULL) {
489    return false;
490  }
491  proc_handle = get_default_process_handle();
492  // Check for Agent_OnLoad/Attach_lib_name function
493  save_handle = agent_lib->os_lib();
494  // We want to look in this process' symbol table.
495  agent_lib->set_os_lib(proc_handle);
496  ret = find_agent_function(agent_lib, true, syms, syms_len);
497  if (ret != NULL) {
498    // Found an entry point like Agent_OnLoad_lib_name so we have a static agent
499    agent_lib->set_valid();
500    agent_lib->set_static_lib(true);
501    return true;
502  }
503  agent_lib->set_os_lib(save_handle);
504  return false;
505}
506
507// --------------------- heap allocation utilities ---------------------
508
509char *os::strdup(const char *str, MEMFLAGS flags) {
510  size_t size = strlen(str);
511  char *dup_str = (char *)malloc(size + 1, flags);
512  if (dup_str == NULL) return NULL;
513  strcpy(dup_str, str);
514  return dup_str;
515}
516
517
518#define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
519
520#ifdef ASSERT
521
522static void verify_memory(void* ptr) {
523  GuardedMemory guarded(ptr);
524  if (!guarded.verify_guards()) {
525    tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
526    tty->print_cr("## memory stomp:");
527    guarded.print_on(tty);
528    fatal("memory stomping error");
529  }
530}
531
532#endif
533
534//
535// This function supports testing of the malloc out of memory
536// condition without really running the system out of memory.
537//
538static u_char* testMalloc(size_t alloc_size) {
539  assert(MallocMaxTestWords > 0, "sanity check");
540
541  if ((cur_malloc_words + (alloc_size / BytesPerWord)) > MallocMaxTestWords) {
542    return NULL;
543  }
544
545  u_char* ptr = (u_char*)::malloc(alloc_size);
546
547  if (ptr != NULL) {
548    Atomic::add(((jint) (alloc_size / BytesPerWord)),
549                (volatile jint *) &cur_malloc_words);
550  }
551  return ptr;
552}
553
554void* os::malloc(size_t size, MEMFLAGS memflags, address caller) {
555  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
556  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
557
558#ifdef ASSERT
559  // checking for the WatcherThread and crash_protection first
560  // since os::malloc can be called when the libjvm.{dll,so} is
561  // first loaded and we don't have a thread yet.
562  // try to find the thread after we see that the watcher thread
563  // exists and has crash protection.
564  WatcherThread *wt = WatcherThread::watcher_thread();
565  if (wt != NULL && wt->has_crash_protection()) {
566    Thread* thread = ThreadLocalStorage::get_thread_slow();
567    if (thread == wt) {
568      assert(!wt->has_crash_protection(),
569          "Can't malloc with crash protection from WatcherThread");
570    }
571  }
572#endif
573
574  if (size == 0) {
575    // return a valid pointer if size is zero
576    // if NULL is returned the calling functions assume out of memory.
577    size = 1;
578  }
579
580#ifndef ASSERT
581  const size_t alloc_size = size;
582#else
583  const size_t alloc_size = GuardedMemory::get_total_size(size);
584  if (size > alloc_size) { // Check for rollover.
585    return NULL;
586  }
587#endif
588
589  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
590
591  u_char* ptr;
592  if (MallocMaxTestWords > 0) {
593    ptr = testMalloc(alloc_size);
594  } else {
595    ptr = (u_char*)::malloc(alloc_size);
596  }
597
598#ifdef ASSERT
599  if (ptr == NULL) {
600    return NULL;
601  }
602  // Wrap memory with guard
603  GuardedMemory guarded(ptr, size);
604  ptr = guarded.get_user_ptr();
605#endif
606  if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
607    tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
608    breakpoint();
609  }
610  debug_only(if (paranoid) verify_memory(ptr));
611  if (PrintMalloc && tty != NULL) {
612    tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
613  }
614
615  // we do not track guard memory
616  MemTracker::record_malloc((address)ptr, size, memflags, caller == 0 ? CALLER_PC : caller);
617
618  return ptr;
619}
620
621
622void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, address caller) {
623#ifndef ASSERT
624  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
625  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
626  MemTracker::Tracker tkr = MemTracker::get_realloc_tracker();
627  void* ptr = ::realloc(memblock, size);
628  if (ptr != NULL) {
629    tkr.record((address)memblock, (address)ptr, size, memflags,
630     caller == 0 ? CALLER_PC : caller);
631  } else {
632    tkr.discard();
633  }
634  return ptr;
635#else
636  if (memblock == NULL) {
637    return os::malloc(size, memflags, (caller == 0 ? CALLER_PC : caller));
638  }
639  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
640    tty->print_cr("os::realloc caught " PTR_FORMAT, memblock);
641    breakpoint();
642  }
643  verify_memory(memblock);
644  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
645  if (size == 0) {
646    return NULL;
647  }
648  // always move the block
649  void* ptr = os::malloc(size, memflags, caller == 0 ? CALLER_PC : caller);
650  if (PrintMalloc) {
651    tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr);
652  }
653  // Copy to new memory if malloc didn't fail
654  if ( ptr != NULL ) {
655    GuardedMemory guarded(memblock);
656    memcpy(ptr, memblock, MIN2(size, guarded.get_user_size()));
657    if (paranoid) verify_memory(ptr);
658    if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
659      tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
660      breakpoint();
661    }
662    os::free(memblock);
663  }
664  return ptr;
665#endif
666}
667
668
669void  os::free(void *memblock, MEMFLAGS memflags) {
670  address trackp = (address) memblock;
671  NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
672#ifdef ASSERT
673  if (memblock == NULL) return;
674  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
675    if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock);
676    breakpoint();
677  }
678  verify_memory(memblock);
679  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
680
681  GuardedMemory guarded(memblock);
682  size_t size = guarded.get_user_size();
683  inc_stat_counter(&free_bytes, size);
684  memblock = guarded.release_for_freeing();
685  if (PrintMalloc && tty != NULL) {
686      fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)memblock);
687  }
688#endif
689  MemTracker::record_free(trackp, memflags);
690
691  ::free(memblock);
692}
693
694void os::init_random(long initval) {
695  _rand_seed = initval;
696}
697
698
699long os::random() {
700  /* standard, well-known linear congruential random generator with
701   * next_rand = (16807*seed) mod (2**31-1)
702   * see
703   * (1) "Random Number Generators: Good Ones Are Hard to Find",
704   *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
705   * (2) "Two Fast Implementations of the 'Minimal Standard' Random
706   *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
707  */
708  const long a = 16807;
709  const unsigned long m = 2147483647;
710  const long q = m / a;        assert(q == 127773, "weird math");
711  const long r = m % a;        assert(r == 2836, "weird math");
712
713  // compute az=2^31p+q
714  unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
715  unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
716  lo += (hi & 0x7FFF) << 16;
717
718  // if q overflowed, ignore the overflow and increment q
719  if (lo > m) {
720    lo &= m;
721    ++lo;
722  }
723  lo += hi >> 15;
724
725  // if (p+q) overflowed, ignore the overflow and increment (p+q)
726  if (lo > m) {
727    lo &= m;
728    ++lo;
729  }
730  return (_rand_seed = lo);
731}
732
733// The INITIALIZED state is distinguished from the SUSPENDED state because the
734// conditions in which a thread is first started are different from those in which
735// a suspension is resumed.  These differences make it hard for us to apply the
736// tougher checks when starting threads that we want to do when resuming them.
737// However, when start_thread is called as a result of Thread.start, on a Java
738// thread, the operation is synchronized on the Java Thread object.  So there
739// cannot be a race to start the thread and hence for the thread to exit while
740// we are working on it.  Non-Java threads that start Java threads either have
741// to do so in a context in which races are impossible, or should do appropriate
742// locking.
743
744void os::start_thread(Thread* thread) {
745  // guard suspend/resume
746  MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
747  OSThread* osthread = thread->osthread();
748  osthread->set_state(RUNNABLE);
749  pd_start_thread(thread);
750}
751
752//---------------------------------------------------------------------------
753// Helper functions for fatal error handler
754
755void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
756  assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
757
758  int cols = 0;
759  int cols_per_line = 0;
760  switch (unitsize) {
761    case 1: cols_per_line = 16; break;
762    case 2: cols_per_line = 8;  break;
763    case 4: cols_per_line = 4;  break;
764    case 8: cols_per_line = 2;  break;
765    default: return;
766  }
767
768  address p = start;
769  st->print(PTR_FORMAT ":   ", start);
770  while (p < end) {
771    switch (unitsize) {
772      case 1: st->print("%02x", *(u1*)p); break;
773      case 2: st->print("%04x", *(u2*)p); break;
774      case 4: st->print("%08x", *(u4*)p); break;
775      case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
776    }
777    p += unitsize;
778    cols++;
779    if (cols >= cols_per_line && p < end) {
780       cols = 0;
781       st->cr();
782       st->print(PTR_FORMAT ":   ", p);
783    } else {
784       st->print(" ");
785    }
786  }
787  st->cr();
788}
789
790void os::print_environment_variables(outputStream* st, const char** env_list,
791                                     char* buffer, int len) {
792  if (env_list) {
793    st->print_cr("Environment Variables:");
794
795    for (int i = 0; env_list[i] != NULL; i++) {
796      if (getenv(env_list[i], buffer, len)) {
797        st->print("%s", env_list[i]);
798        st->print("=");
799        st->print_cr("%s", buffer);
800      }
801    }
802  }
803}
804
805void os::print_cpu_info(outputStream* st) {
806  // cpu
807  st->print("CPU:");
808  st->print("total %d", os::processor_count());
809  // It's not safe to query number of active processors after crash
810  // st->print("(active %d)", os::active_processor_count());
811  st->print(" %s", VM_Version::cpu_features());
812  st->cr();
813  pd_print_cpu_info(st);
814}
815
816void os::print_date_and_time(outputStream *st) {
817  const int secs_per_day  = 86400;
818  const int secs_per_hour = 3600;
819  const int secs_per_min  = 60;
820
821  time_t tloc;
822  (void)time(&tloc);
823  st->print("time: %s", ctime(&tloc));  // ctime adds newline.
824
825  double t = os::elapsedTime();
826  // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
827  //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
828  //       before printf. We lost some precision, but who cares?
829  int eltime = (int)t;  // elapsed time in seconds
830
831  // print elapsed time in a human-readable format:
832  int eldays = eltime / secs_per_day;
833  int day_secs = eldays * secs_per_day;
834  int elhours = (eltime - day_secs) / secs_per_hour;
835  int hour_secs = elhours * secs_per_hour;
836  int elmins = (eltime - day_secs - hour_secs) / secs_per_min;
837  int minute_secs = elmins * secs_per_min;
838  int elsecs = (eltime - day_secs - hour_secs - minute_secs);
839  st->print_cr("elapsed time: %d seconds (%dd %dh %dm %ds)", eltime, eldays, elhours, elmins, elsecs);
840}
841
842// moved from debug.cpp (used to be find()) but still called from there
843// The verbose parameter is only set by the debug code in one case
844void os::print_location(outputStream* st, intptr_t x, bool verbose) {
845  address addr = (address)x;
846  CodeBlob* b = CodeCache::find_blob_unsafe(addr);
847  if (b != NULL) {
848    if (b->is_buffer_blob()) {
849      // the interpreter is generated into a buffer blob
850      InterpreterCodelet* i = Interpreter::codelet_containing(addr);
851      if (i != NULL) {
852        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", addr, (int)(addr - i->code_begin()));
853        i->print_on(st);
854        return;
855      }
856      if (Interpreter::contains(addr)) {
857        st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
858                     " (not bytecode specific)", addr);
859        return;
860      }
861      //
862      if (AdapterHandlerLibrary::contains(b)) {
863        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", addr, (int)(addr - b->code_begin()));
864        AdapterHandlerLibrary::print_handler_on(st, b);
865      }
866      // the stubroutines are generated into a buffer blob
867      StubCodeDesc* d = StubCodeDesc::desc_for(addr);
868      if (d != NULL) {
869        st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", addr, (int)(addr - d->begin()));
870        d->print_on(st);
871        st->cr();
872        return;
873      }
874      if (StubRoutines::contains(addr)) {
875        st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) "
876                     "stub routine", addr);
877        return;
878      }
879      // the InlineCacheBuffer is using stubs generated into a buffer blob
880      if (InlineCacheBuffer::contains(addr)) {
881        st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
882        return;
883      }
884      VtableStub* v = VtableStubs::stub_containing(addr);
885      if (v != NULL) {
886        st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", addr, (int)(addr - v->entry_point()));
887        v->print_on(st);
888        st->cr();
889        return;
890      }
891    }
892    nmethod* nm = b->as_nmethod_or_null();
893    if (nm != NULL) {
894      ResourceMark rm;
895      st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
896                addr, (int)(addr - nm->entry_point()), nm);
897      if (verbose) {
898        st->print(" for ");
899        nm->method()->print_value_on(st);
900      }
901      st->cr();
902      nm->print_nmethod(verbose);
903      return;
904    }
905    st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", addr, (int)(addr - b->code_begin()));
906    b->print_on(st);
907    return;
908  }
909
910  if (Universe::heap()->is_in(addr)) {
911    HeapWord* p = Universe::heap()->block_start(addr);
912    bool print = false;
913    // If we couldn't find it it just may mean that heap wasn't parsable
914    // See if we were just given an oop directly
915    if (p != NULL && Universe::heap()->block_is_obj(p)) {
916      print = true;
917    } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
918      p = (HeapWord*) addr;
919      print = true;
920    }
921    if (print) {
922      if (p == (HeapWord*) addr) {
923        st->print_cr(INTPTR_FORMAT " is an oop", addr);
924      } else {
925        st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, addr, p);
926      }
927      oop(p)->print_on(st);
928      return;
929    }
930  } else {
931    if (Universe::heap()->is_in_reserved(addr)) {
932      st->print_cr(INTPTR_FORMAT " is an unallocated location "
933                   "in the heap", addr);
934      return;
935    }
936  }
937  if (JNIHandles::is_global_handle((jobject) addr)) {
938    st->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
939    return;
940  }
941  if (JNIHandles::is_weak_global_handle((jobject) addr)) {
942    st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
943    return;
944  }
945#ifndef PRODUCT
946  // we don't keep the block list in product mode
947  if (JNIHandleBlock::any_contains((jobject) addr)) {
948    st->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
949    return;
950  }
951#endif
952
953  for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
954    // Check for privilege stack
955    if (thread->privileged_stack_top() != NULL &&
956        thread->privileged_stack_top()->contains(addr)) {
957      st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
958                   "for thread: " INTPTR_FORMAT, addr, thread);
959      if (verbose) thread->print_on(st);
960      return;
961    }
962    // If the addr is a java thread print information about that.
963    if (addr == (address)thread) {
964      if (verbose) {
965        thread->print_on(st);
966      } else {
967        st->print_cr(INTPTR_FORMAT " is a thread", addr);
968      }
969      return;
970    }
971    // If the addr is in the stack region for this thread then report that
972    // and print thread info
973    if (thread->stack_base() >= addr &&
974        addr > (thread->stack_base() - thread->stack_size())) {
975      st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
976                   INTPTR_FORMAT, addr, thread);
977      if (verbose) thread->print_on(st);
978      return;
979    }
980
981  }
982
983  // Check if in metaspace and print types that have vptrs (only method now)
984  if (Metaspace::contains(addr)) {
985    if (Method::has_method_vptr((const void*)addr)) {
986      ((Method*)addr)->print_value_on(st);
987      st->cr();
988    } else {
989      // Use addr->print() from the debugger instead (not here)
990      st->print_cr(INTPTR_FORMAT " is pointing into metadata", addr);
991    }
992    return;
993  }
994
995  // Try an OS specific find
996  if (os::find(addr, st)) {
997    return;
998  }
999
1000  st->print_cr(INTPTR_FORMAT " is an unknown value", addr);
1001}
1002
1003// Looks like all platforms except IA64 can use the same function to check
1004// if C stack is walkable beyond current frame. The check for fp() is not
1005// necessary on Sparc, but it's harmless.
1006bool os::is_first_C_frame(frame* fr) {
1007#if (defined(IA64) && !defined(AIX)) && !defined(_WIN32)
1008  // On IA64 we have to check if the callers bsp is still valid
1009  // (i.e. within the register stack bounds).
1010  // Notice: this only works for threads created by the VM and only if
1011  // we walk the current stack!!! If we want to be able to walk
1012  // arbitrary other threads, we'll have to somehow store the thread
1013  // object in the frame.
1014  Thread *thread = Thread::current();
1015  if ((address)fr->fp() <=
1016      thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
1017    // This check is a little hacky, because on Linux the first C
1018    // frame's ('start_thread') register stack frame starts at
1019    // "register_stack_base + 0x48" while on HPUX, the first C frame's
1020    // ('__pthread_bound_body') register stack frame seems to really
1021    // start at "register_stack_base".
1022    return true;
1023  } else {
1024    return false;
1025  }
1026#elif defined(IA64) && defined(_WIN32)
1027  return true;
1028#else
1029  // Load up sp, fp, sender sp and sender fp, check for reasonable values.
1030  // Check usp first, because if that's bad the other accessors may fault
1031  // on some architectures.  Ditto ufp second, etc.
1032  uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
1033  // sp on amd can be 32 bit aligned.
1034  uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
1035
1036  uintptr_t usp    = (uintptr_t)fr->sp();
1037  if ((usp & sp_align_mask) != 0) return true;
1038
1039  uintptr_t ufp    = (uintptr_t)fr->fp();
1040  if ((ufp & fp_align_mask) != 0) return true;
1041
1042  uintptr_t old_sp = (uintptr_t)fr->sender_sp();
1043  if ((old_sp & sp_align_mask) != 0) return true;
1044  if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
1045
1046  uintptr_t old_fp = (uintptr_t)fr->link();
1047  if ((old_fp & fp_align_mask) != 0) return true;
1048  if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
1049
1050  // stack grows downwards; if old_fp is below current fp or if the stack
1051  // frame is too large, either the stack is corrupted or fp is not saved
1052  // on stack (i.e. on x86, ebp may be used as general register). The stack
1053  // is not walkable beyond current frame.
1054  if (old_fp < ufp) return true;
1055  if (old_fp - ufp > 64 * K) return true;
1056
1057  return false;
1058#endif
1059}
1060
1061#ifdef ASSERT
1062extern "C" void test_random() {
1063  const double m = 2147483647;
1064  double mean = 0.0, variance = 0.0, t;
1065  long reps = 10000;
1066  unsigned long seed = 1;
1067
1068  tty->print_cr("seed %ld for %ld repeats...", seed, reps);
1069  os::init_random(seed);
1070  long num;
1071  for (int k = 0; k < reps; k++) {
1072    num = os::random();
1073    double u = (double)num / m;
1074    assert(u >= 0.0 && u <= 1.0, "bad random number!");
1075
1076    // calculate mean and variance of the random sequence
1077    mean += u;
1078    variance += (u*u);
1079  }
1080  mean /= reps;
1081  variance /= (reps - 1);
1082
1083  assert(num == 1043618065, "bad seed");
1084  tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
1085  tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
1086  const double eps = 0.0001;
1087  t = fabsd(mean - 0.5018);
1088  assert(t < eps, "bad mean");
1089  t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
1090  assert(t < eps, "bad variance");
1091}
1092#endif
1093
1094
1095// Set up the boot classpath.
1096
1097char* os::format_boot_path(const char* format_string,
1098                           const char* home,
1099                           int home_len,
1100                           char fileSep,
1101                           char pathSep) {
1102    assert((fileSep == '/' && pathSep == ':') ||
1103           (fileSep == '\\' && pathSep == ';'), "unexpected separator chars");
1104
1105    // Scan the format string to determine the length of the actual
1106    // boot classpath, and handle platform dependencies as well.
1107    int formatted_path_len = 0;
1108    const char* p;
1109    for (p = format_string; *p != 0; ++p) {
1110        if (*p == '%') formatted_path_len += home_len - 1;
1111        ++formatted_path_len;
1112    }
1113
1114    char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
1115    if (formatted_path == NULL) {
1116        return NULL;
1117    }
1118
1119    // Create boot classpath from format, substituting separator chars and
1120    // java home directory.
1121    char* q = formatted_path;
1122    for (p = format_string; *p != 0; ++p) {
1123        switch (*p) {
1124        case '%':
1125            strcpy(q, home);
1126            q += home_len;
1127            break;
1128        case '/':
1129            *q++ = fileSep;
1130            break;
1131        case ':':
1132            *q++ = pathSep;
1133            break;
1134        default:
1135            *q++ = *p;
1136        }
1137    }
1138    *q = '\0';
1139
1140    assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1141    return formatted_path;
1142}
1143
1144
1145bool os::set_boot_path(char fileSep, char pathSep) {
1146    const char* home = Arguments::get_java_home();
1147    int home_len = (int)strlen(home);
1148
1149    static const char* meta_index_dir_format = "%/lib/";
1150    static const char* meta_index_format = "%/lib/meta-index";
1151    char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
1152    if (meta_index == NULL) return false;
1153    char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
1154    if (meta_index_dir == NULL) return false;
1155    Arguments::set_meta_index_path(meta_index, meta_index_dir);
1156
1157    // Any modification to the JAR-file list, for the boot classpath must be
1158    // aligned with install/install/make/common/Pack.gmk. Note: boot class
1159    // path class JARs, are stripped for StackMapTable to reduce download size.
1160    static const char classpath_format[] =
1161        "%/lib/resources.jar:"
1162        "%/lib/rt.jar:"
1163        "%/lib/sunrsasign.jar:"
1164        "%/lib/jsse.jar:"
1165        "%/lib/jce.jar:"
1166        "%/lib/charsets.jar:"
1167        "%/lib/jfr.jar:"
1168        "%/classes";
1169    char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
1170    if (sysclasspath == NULL) return false;
1171    Arguments::set_sysclasspath(sysclasspath);
1172
1173    return true;
1174}
1175
1176/*
1177 * Splits a path, based on its separator, the number of
1178 * elements is returned back in n.
1179 * It is the callers responsibility to:
1180 *   a> check the value of n, and n may be 0.
1181 *   b> ignore any empty path elements
1182 *   c> free up the data.
1183 */
1184char** os::split_path(const char* path, int* n) {
1185  *n = 0;
1186  if (path == NULL || strlen(path) == 0) {
1187    return NULL;
1188  }
1189  const char psepchar = *os::path_separator();
1190  char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
1191  if (inpath == NULL) {
1192    return NULL;
1193  }
1194  strcpy(inpath, path);
1195  int count = 1;
1196  char* p = strchr(inpath, psepchar);
1197  // Get a count of elements to allocate memory
1198  while (p != NULL) {
1199    count++;
1200    p++;
1201    p = strchr(p, psepchar);
1202  }
1203  char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
1204  if (opath == NULL) {
1205    return NULL;
1206  }
1207
1208  // do the actual splitting
1209  p = inpath;
1210  for (int i = 0 ; i < count ; i++) {
1211    size_t len = strcspn(p, os::path_separator());
1212    if (len > JVM_MAXPATHLEN) {
1213      return NULL;
1214    }
1215    // allocate the string and add terminator storage
1216    char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
1217    if (s == NULL) {
1218      return NULL;
1219    }
1220    strncpy(s, p, len);
1221    s[len] = '\0';
1222    opath[i] = s;
1223    p += len + 1;
1224  }
1225  FREE_C_HEAP_ARRAY(char, inpath, mtInternal);
1226  *n = count;
1227  return opath;
1228}
1229
1230void os::set_memory_serialize_page(address page) {
1231  int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
1232  _mem_serialize_page = (volatile int32_t *)page;
1233  // We initialize the serialization page shift count here
1234  // We assume a cache line size of 64 bytes
1235  assert(SerializePageShiftCount == count,
1236         "thread size changed, fix SerializePageShiftCount constant");
1237  set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
1238}
1239
1240static volatile intptr_t SerializePageLock = 0;
1241
1242// This method is called from signal handler when SIGSEGV occurs while the current
1243// thread tries to store to the "read-only" memory serialize page during state
1244// transition.
1245void os::block_on_serialize_page_trap() {
1246  if (TraceSafepoint) {
1247    tty->print_cr("Block until the serialize page permission restored");
1248  }
1249  // When VMThread is holding the SerializePageLock during modifying the
1250  // access permission of the memory serialize page, the following call
1251  // will block until the permission of that page is restored to rw.
1252  // Generally, it is unsafe to manipulate locks in signal handlers, but in
1253  // this case, it's OK as the signal is synchronous and we know precisely when
1254  // it can occur.
1255  Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
1256  Thread::muxRelease(&SerializePageLock);
1257}
1258
1259// Serialize all thread state variables
1260void os::serialize_thread_states() {
1261  // On some platforms such as Solaris & Linux, the time duration of the page
1262  // permission restoration is observed to be much longer than expected  due to
1263  // scheduler starvation problem etc. To avoid the long synchronization
1264  // time and expensive page trap spinning, 'SerializePageLock' is used to block
1265  // the mutator thread if such case is encountered. See bug 6546278 for details.
1266  Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
1267  os::protect_memory((char *)os::get_memory_serialize_page(),
1268                     os::vm_page_size(), MEM_PROT_READ);
1269  os::protect_memory((char *)os::get_memory_serialize_page(),
1270                     os::vm_page_size(), MEM_PROT_RW);
1271  Thread::muxRelease(&SerializePageLock);
1272}
1273
1274// Returns true if the current stack pointer is above the stack shadow
1275// pages, false otherwise.
1276
1277bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
1278  assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
1279  address sp = current_stack_pointer();
1280  // Check if we have StackShadowPages above the yellow zone.  This parameter
1281  // is dependent on the depth of the maximum VM call stack possible from
1282  // the handler for stack overflow.  'instanceof' in the stack overflow
1283  // handler or a println uses at least 8k stack of VM and native code
1284  // respectively.
1285  const int framesize_in_bytes =
1286    Interpreter::size_top_interpreter_activation(method()) * wordSize;
1287  int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
1288                      * vm_page_size()) + framesize_in_bytes;
1289  // The very lower end of the stack
1290  address stack_limit = thread->stack_base() - thread->stack_size();
1291  return (sp > (stack_limit + reserved_area));
1292}
1293
1294size_t os::page_size_for_region(size_t region_size, size_t min_pages) {
1295  assert(min_pages > 0, "sanity");
1296  if (UseLargePages) {
1297    const size_t max_page_size = region_size / min_pages;
1298
1299    for (size_t i = 0; _page_sizes[i] != 0; ++i) {
1300      const size_t page_size = _page_sizes[i];
1301      if (page_size <= max_page_size && is_size_aligned(region_size, page_size)) {
1302        return page_size;
1303      }
1304    }
1305  }
1306
1307  return vm_page_size();
1308}
1309
1310#ifndef PRODUCT
1311void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
1312{
1313  if (TracePageSizes) {
1314    tty->print("%s: ", str);
1315    for (int i = 0; i < count; ++i) {
1316      tty->print(" " SIZE_FORMAT, page_sizes[i]);
1317    }
1318    tty->cr();
1319  }
1320}
1321
1322void os::trace_page_sizes(const char* str, const size_t region_min_size,
1323                          const size_t region_max_size, const size_t page_size,
1324                          const char* base, const size_t size)
1325{
1326  if (TracePageSizes) {
1327    tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
1328                  " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
1329                  " size=" SIZE_FORMAT,
1330                  str, region_min_size, region_max_size,
1331                  page_size, base, size);
1332  }
1333}
1334#endif  // #ifndef PRODUCT
1335
1336// This is the working definition of a server class machine:
1337// >= 2 physical CPU's and >=2GB of memory, with some fuzz
1338// because the graphics memory (?) sometimes masks physical memory.
1339// If you want to change the definition of a server class machine
1340// on some OS or platform, e.g., >=4GB on Windows platforms,
1341// then you'll have to parameterize this method based on that state,
1342// as was done for logical processors here, or replicate and
1343// specialize this method for each platform.  (Or fix os to have
1344// some inheritance structure and use subclassing.  Sigh.)
1345// If you want some platform to always or never behave as a server
1346// class machine, change the setting of AlwaysActAsServerClassMachine
1347// and NeverActAsServerClassMachine in globals*.hpp.
1348bool os::is_server_class_machine() {
1349  // First check for the early returns
1350  if (NeverActAsServerClassMachine) {
1351    return false;
1352  }
1353  if (AlwaysActAsServerClassMachine) {
1354    return true;
1355  }
1356  // Then actually look at the machine
1357  bool         result            = false;
1358  const unsigned int    server_processors = 2;
1359  const julong server_memory     = 2UL * G;
1360  // We seem not to get our full complement of memory.
1361  //     We allow some part (1/8?) of the memory to be "missing",
1362  //     based on the sizes of DIMMs, and maybe graphics cards.
1363  const julong missing_memory   = 256UL * M;
1364
1365  /* Is this a server class machine? */
1366  if ((os::active_processor_count() >= (int)server_processors) &&
1367      (os::physical_memory() >= (server_memory - missing_memory))) {
1368    const unsigned int logical_processors =
1369      VM_Version::logical_processors_per_package();
1370    if (logical_processors > 1) {
1371      const unsigned int physical_packages =
1372        os::active_processor_count() / logical_processors;
1373      if (physical_packages > server_processors) {
1374        result = true;
1375      }
1376    } else {
1377      result = true;
1378    }
1379  }
1380  return result;
1381}
1382
1383void os::SuspendedThreadTask::run() {
1384  assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
1385  internal_do_task();
1386  _done = true;
1387}
1388
1389bool os::create_stack_guard_pages(char* addr, size_t bytes) {
1390  return os::pd_create_stack_guard_pages(addr, bytes);
1391}
1392
1393char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
1394  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1395  if (result != NULL) {
1396    MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
1397  }
1398
1399  return result;
1400}
1401
1402char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
1403   MEMFLAGS flags) {
1404  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1405  if (result != NULL) {
1406    MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
1407    MemTracker::record_virtual_memory_type((address)result, flags);
1408  }
1409
1410  return result;
1411}
1412
1413char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
1414  char* result = pd_attempt_reserve_memory_at(bytes, addr);
1415  if (result != NULL) {
1416    MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
1417  }
1418  return result;
1419}
1420
1421void os::split_reserved_memory(char *base, size_t size,
1422                                 size_t split, bool realloc) {
1423  pd_split_reserved_memory(base, size, split, realloc);
1424}
1425
1426bool os::commit_memory(char* addr, size_t bytes, bool executable) {
1427  bool res = pd_commit_memory(addr, bytes, executable);
1428  if (res) {
1429    MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1430  }
1431  return res;
1432}
1433
1434bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1435                              bool executable) {
1436  bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
1437  if (res) {
1438    MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1439  }
1440  return res;
1441}
1442
1443void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
1444                               const char* mesg) {
1445  pd_commit_memory_or_exit(addr, bytes, executable, mesg);
1446  MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1447}
1448
1449void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
1450                               bool executable, const char* mesg) {
1451  os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
1452  MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1453}
1454
1455bool os::uncommit_memory(char* addr, size_t bytes) {
1456  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_uncommit_tracker();
1457  bool res = pd_uncommit_memory(addr, bytes);
1458  if (res) {
1459    tkr.record((address)addr, bytes);
1460  } else {
1461    tkr.discard();
1462  }
1463  return res;
1464}
1465
1466bool os::release_memory(char* addr, size_t bytes) {
1467  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1468  bool res = pd_release_memory(addr, bytes);
1469  if (res) {
1470    tkr.record((address)addr, bytes);
1471  } else {
1472    tkr.discard();
1473  }
1474  return res;
1475}
1476
1477
1478char* os::map_memory(int fd, const char* file_name, size_t file_offset,
1479                           char *addr, size_t bytes, bool read_only,
1480                           bool allow_exec) {
1481  char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
1482  if (result != NULL) {
1483    MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, mtNone, CALLER_PC);
1484  }
1485  return result;
1486}
1487
1488char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
1489                             char *addr, size_t bytes, bool read_only,
1490                             bool allow_exec) {
1491  return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
1492                    read_only, allow_exec);
1493}
1494
1495bool os::unmap_memory(char *addr, size_t bytes) {
1496  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1497  bool result = pd_unmap_memory(addr, bytes);
1498  if (result) {
1499    tkr.record((address)addr, bytes);
1500  } else {
1501    tkr.discard();
1502  }
1503  return result;
1504}
1505
1506void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
1507  pd_free_memory(addr, bytes, alignment_hint);
1508}
1509
1510void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1511  pd_realign_memory(addr, bytes, alignment_hint);
1512}
1513
1514#ifndef TARGET_OS_FAMILY_windows
1515/* try to switch state from state "from" to state "to"
1516 * returns the state set after the method is complete
1517 */
1518os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
1519                                                         os::SuspendResume::State to)
1520{
1521  os::SuspendResume::State result =
1522    (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
1523  if (result == from) {
1524    // success
1525    return to;
1526  }
1527  return result;
1528}
1529#endif
1530
1531/////////////// Unit tests ///////////////
1532
1533#ifndef PRODUCT
1534
1535#define assert_eq(a,b) assert(a == b, err_msg(SIZE_FORMAT " != " SIZE_FORMAT, a, b))
1536
1537class TestOS : AllStatic {
1538  static size_t small_page_size() {
1539    return os::vm_page_size();
1540  }
1541
1542  static size_t large_page_size() {
1543    const size_t large_page_size_example = 4 * M;
1544    return os::page_size_for_region(large_page_size_example, 1);
1545  }
1546
1547  static void test_page_size_for_region() {
1548    if (UseLargePages) {
1549      const size_t small_page = small_page_size();
1550      const size_t large_page = large_page_size();
1551
1552      if (large_page > small_page) {
1553        size_t num_small_pages_in_large = large_page / small_page;
1554        size_t page = os::page_size_for_region(large_page, num_small_pages_in_large);
1555
1556        assert_eq(page, small_page);
1557      }
1558    }
1559  }
1560
1561  static void test_page_size_for_region_alignment() {
1562    if (UseLargePages) {
1563      const size_t small_page = small_page_size();
1564      const size_t large_page = large_page_size();
1565      if (large_page > small_page) {
1566        const size_t unaligned_region = large_page + 17;
1567        size_t page = os::page_size_for_region(unaligned_region, 1);
1568        assert_eq(page, small_page);
1569
1570        const size_t num_pages = 5;
1571        const size_t aligned_region = large_page * num_pages;
1572        page = os::page_size_for_region(aligned_region, num_pages);
1573        assert_eq(page, large_page);
1574      }
1575    }
1576  }
1577
1578 public:
1579  static void run_tests() {
1580    test_page_size_for_region();
1581    test_page_size_for_region_alignment();
1582  }
1583};
1584
1585void TestOS_test() {
1586  TestOS::run_tests();
1587}
1588
1589#endif // PRODUCT
1590