os.cpp revision 5266:40136aa2cdb1
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "gc_implementation/shared/vmGCOperations.hpp"
33#include "interpreter/interpreter.hpp"
34#include "memory/allocation.inline.hpp"
35#include "oops/oop.inline.hpp"
36#include "prims/jvm.h"
37#include "prims/jvm_misc.hpp"
38#include "prims/privilegedStack.hpp"
39#include "runtime/arguments.hpp"
40#include "runtime/frame.inline.hpp"
41#include "runtime/interfaceSupport.hpp"
42#include "runtime/java.hpp"
43#include "runtime/javaCalls.hpp"
44#include "runtime/mutexLocker.hpp"
45#include "runtime/os.hpp"
46#include "runtime/stubRoutines.hpp"
47#include "runtime/thread.inline.hpp"
48#include "services/attachListener.hpp"
49#include "services/memTracker.hpp"
50#include "services/threadService.hpp"
51#include "utilities/defaultStream.hpp"
52#include "utilities/events.hpp"
53#ifdef TARGET_OS_FAMILY_linux
54# include "os_linux.inline.hpp"
55#endif
56#ifdef TARGET_OS_FAMILY_solaris
57# include "os_solaris.inline.hpp"
58#endif
59#ifdef TARGET_OS_FAMILY_windows
60# include "os_windows.inline.hpp"
61#endif
62#ifdef TARGET_OS_FAMILY_bsd
63# include "os_bsd.inline.hpp"
64#endif
65
66# include <signal.h>
67
68OSThread*         os::_starting_thread    = NULL;
69address           os::_polling_page       = NULL;
70volatile int32_t* os::_mem_serialize_page = NULL;
71uintptr_t         os::_serialize_page_mask = 0;
72long              os::_rand_seed          = 1;
73int               os::_processor_count    = 0;
74size_t            os::_page_sizes[os::page_sizes_max];
75
76#ifndef PRODUCT
77julong os::num_mallocs = 0;         // # of calls to malloc/realloc
78julong os::alloc_bytes = 0;         // # of bytes allocated
79julong os::num_frees = 0;           // # of calls to free
80julong os::free_bytes = 0;          // # of bytes freed
81#endif
82
83static juint cur_malloc_words = 0;  // current size for MallocMaxTestWords
84
85void os_init_globals() {
86  // Called from init_globals().
87  // See Threads::create_vm() in thread.cpp, and init.cpp.
88  os::init_globals();
89}
90
91// Fill in buffer with current local time as an ISO-8601 string.
92// E.g., yyyy-mm-ddThh:mm:ss-zzzz.
93// Returns buffer, or NULL if it failed.
94// This would mostly be a call to
95//     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
96// except that on Windows the %z behaves badly, so we do it ourselves.
97// Also, people wanted milliseconds on there,
98// and strftime doesn't do milliseconds.
99char* os::iso8601_time(char* buffer, size_t buffer_length) {
100  // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
101  //                                      1         2
102  //                             12345678901234567890123456789
103  static const char* iso8601_format =
104    "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
105  static const size_t needed_buffer = 29;
106
107  // Sanity check the arguments
108  if (buffer == NULL) {
109    assert(false, "NULL buffer");
110    return NULL;
111  }
112  if (buffer_length < needed_buffer) {
113    assert(false, "buffer_length too small");
114    return NULL;
115  }
116  // Get the current time
117  jlong milliseconds_since_19700101 = javaTimeMillis();
118  const int milliseconds_per_microsecond = 1000;
119  const time_t seconds_since_19700101 =
120    milliseconds_since_19700101 / milliseconds_per_microsecond;
121  const int milliseconds_after_second =
122    milliseconds_since_19700101 % milliseconds_per_microsecond;
123  // Convert the time value to a tm and timezone variable
124  struct tm time_struct;
125  if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
126    assert(false, "Failed localtime_pd");
127    return NULL;
128  }
129#if defined(_ALLBSD_SOURCE)
130  const time_t zone = (time_t) time_struct.tm_gmtoff;
131#else
132  const time_t zone = timezone;
133#endif
134
135  // If daylight savings time is in effect,
136  // we are 1 hour East of our time zone
137  const time_t seconds_per_minute = 60;
138  const time_t minutes_per_hour = 60;
139  const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
140  time_t UTC_to_local = zone;
141  if (time_struct.tm_isdst > 0) {
142    UTC_to_local = UTC_to_local - seconds_per_hour;
143  }
144  // Compute the time zone offset.
145  //    localtime_pd() sets timezone to the difference (in seconds)
146  //    between UTC and and local time.
147  //    ISO 8601 says we need the difference between local time and UTC,
148  //    we change the sign of the localtime_pd() result.
149  const time_t local_to_UTC = -(UTC_to_local);
150  // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
151  char sign_local_to_UTC = '+';
152  time_t abs_local_to_UTC = local_to_UTC;
153  if (local_to_UTC < 0) {
154    sign_local_to_UTC = '-';
155    abs_local_to_UTC = -(abs_local_to_UTC);
156  }
157  // Convert time zone offset seconds to hours and minutes.
158  const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
159  const time_t zone_min =
160    ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
161
162  // Print an ISO 8601 date and time stamp into the buffer
163  const int year = 1900 + time_struct.tm_year;
164  const int month = 1 + time_struct.tm_mon;
165  const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
166                                   year,
167                                   month,
168                                   time_struct.tm_mday,
169                                   time_struct.tm_hour,
170                                   time_struct.tm_min,
171                                   time_struct.tm_sec,
172                                   milliseconds_after_second,
173                                   sign_local_to_UTC,
174                                   zone_hours,
175                                   zone_min);
176  if (printed == 0) {
177    assert(false, "Failed jio_printf");
178    return NULL;
179  }
180  return buffer;
181}
182
183OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
184#ifdef ASSERT
185  if (!(!thread->is_Java_thread() ||
186         Thread::current() == thread  ||
187         Threads_lock->owned_by_self()
188         || thread->is_Compiler_thread()
189        )) {
190    assert(false, "possibility of dangling Thread pointer");
191  }
192#endif
193
194  if (p >= MinPriority && p <= MaxPriority) {
195    int priority = java_to_os_priority[p];
196    return set_native_priority(thread, priority);
197  } else {
198    assert(false, "Should not happen");
199    return OS_ERR;
200  }
201}
202
203// The mapping from OS priority back to Java priority may be inexact because
204// Java priorities can map M:1 with native priorities. If you want the definite
205// Java priority then use JavaThread::java_priority()
206OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
207  int p;
208  int os_prio;
209  OSReturn ret = get_native_priority(thread, &os_prio);
210  if (ret != OS_OK) return ret;
211
212  if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
213    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
214  } else {
215    // niceness values are in reverse order
216    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
217  }
218  priority = (ThreadPriority)p;
219  return OS_OK;
220}
221
222
223// --------------------- sun.misc.Signal (optional) ---------------------
224
225
226// SIGBREAK is sent by the keyboard to query the VM state
227#ifndef SIGBREAK
228#define SIGBREAK SIGQUIT
229#endif
230
231// sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
232
233
234static void signal_thread_entry(JavaThread* thread, TRAPS) {
235  os::set_priority(thread, NearMaxPriority);
236  while (true) {
237    int sig;
238    {
239      // FIXME : Currently we have not decieded what should be the status
240      //         for this java thread blocked here. Once we decide about
241      //         that we should fix this.
242      sig = os::signal_wait();
243    }
244    if (sig == os::sigexitnum_pd()) {
245       // Terminate the signal thread
246       return;
247    }
248
249    switch (sig) {
250      case SIGBREAK: {
251        // Check if the signal is a trigger to start the Attach Listener - in that
252        // case don't print stack traces.
253        if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
254          continue;
255        }
256        // Print stack traces
257        // Any SIGBREAK operations added here should make sure to flush
258        // the output stream (e.g. tty->flush()) after output.  See 4803766.
259        // Each module also prints an extra carriage return after its output.
260        VM_PrintThreads op;
261        VMThread::execute(&op);
262        VM_PrintJNI jni_op;
263        VMThread::execute(&jni_op);
264        VM_FindDeadlocks op1(tty);
265        VMThread::execute(&op1);
266        Universe::print_heap_at_SIGBREAK();
267        if (PrintClassHistogram) {
268          VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */);
269          VMThread::execute(&op1);
270        }
271        if (JvmtiExport::should_post_data_dump()) {
272          JvmtiExport::post_data_dump();
273        }
274        break;
275      }
276      default: {
277        // Dispatch the signal to java
278        HandleMark hm(THREAD);
279        Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
280        KlassHandle klass (THREAD, k);
281        if (klass.not_null()) {
282          JavaValue result(T_VOID);
283          JavaCallArguments args;
284          args.push_int(sig);
285          JavaCalls::call_static(
286            &result,
287            klass,
288            vmSymbols::dispatch_name(),
289            vmSymbols::int_void_signature(),
290            &args,
291            THREAD
292          );
293        }
294        if (HAS_PENDING_EXCEPTION) {
295          // tty is initialized early so we don't expect it to be null, but
296          // if it is we can't risk doing an initialization that might
297          // trigger additional out-of-memory conditions
298          if (tty != NULL) {
299            char klass_name[256];
300            char tmp_sig_name[16];
301            const char* sig_name = "UNKNOWN";
302            InstanceKlass::cast(PENDING_EXCEPTION->klass())->
303              name()->as_klass_external_name(klass_name, 256);
304            if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
305              sig_name = tmp_sig_name;
306            warning("Exception %s occurred dispatching signal %s to handler"
307                    "- the VM may need to be forcibly terminated",
308                    klass_name, sig_name );
309          }
310          CLEAR_PENDING_EXCEPTION;
311        }
312      }
313    }
314  }
315}
316
317void os::init_before_ergo() {
318  // We need to initialize large page support here because ergonomics takes some
319  // decisions depending on large page support and the calculated large page size.
320  large_page_init();
321}
322
323void os::signal_init() {
324  if (!ReduceSignalUsage) {
325    // Setup JavaThread for processing signals
326    EXCEPTION_MARK;
327    Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
328    instanceKlassHandle klass (THREAD, k);
329    instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
330
331    const char thread_name[] = "Signal Dispatcher";
332    Handle string = java_lang_String::create_from_str(thread_name, CHECK);
333
334    // Initialize thread_oop to put it into the system threadGroup
335    Handle thread_group (THREAD, Universe::system_thread_group());
336    JavaValue result(T_VOID);
337    JavaCalls::call_special(&result, thread_oop,
338                           klass,
339                           vmSymbols::object_initializer_name(),
340                           vmSymbols::threadgroup_string_void_signature(),
341                           thread_group,
342                           string,
343                           CHECK);
344
345    KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
346    JavaCalls::call_special(&result,
347                            thread_group,
348                            group,
349                            vmSymbols::add_method_name(),
350                            vmSymbols::thread_void_signature(),
351                            thread_oop,         // ARG 1
352                            CHECK);
353
354    os::signal_init_pd();
355
356    { MutexLocker mu(Threads_lock);
357      JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
358
359      // At this point it may be possible that no osthread was created for the
360      // JavaThread due to lack of memory. We would have to throw an exception
361      // in that case. However, since this must work and we do not allow
362      // exceptions anyway, check and abort if this fails.
363      if (signal_thread == NULL || signal_thread->osthread() == NULL) {
364        vm_exit_during_initialization("java.lang.OutOfMemoryError",
365                                      "unable to create new native thread");
366      }
367
368      java_lang_Thread::set_thread(thread_oop(), signal_thread);
369      java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
370      java_lang_Thread::set_daemon(thread_oop());
371
372      signal_thread->set_threadObj(thread_oop());
373      Threads::add(signal_thread);
374      Thread::start(signal_thread);
375    }
376    // Handle ^BREAK
377    os::signal(SIGBREAK, os::user_handler());
378  }
379}
380
381
382void os::terminate_signal_thread() {
383  if (!ReduceSignalUsage)
384    signal_notify(sigexitnum_pd());
385}
386
387
388// --------------------- loading libraries ---------------------
389
390typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
391extern struct JavaVM_ main_vm;
392
393static void* _native_java_library = NULL;
394
395void* os::native_java_library() {
396  if (_native_java_library == NULL) {
397    char buffer[JVM_MAXPATHLEN];
398    char ebuf[1024];
399
400    // Try to load verify dll first. In 1.3 java dll depends on it and is not
401    // always able to find it when the loading executable is outside the JDK.
402    // In order to keep working with 1.2 we ignore any loading errors.
403    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
404                       "verify")) {
405      dll_load(buffer, ebuf, sizeof(ebuf));
406    }
407
408    // Load java dll
409    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
410                       "java")) {
411      _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
412    }
413    if (_native_java_library == NULL) {
414      vm_exit_during_initialization("Unable to load native library", ebuf);
415    }
416
417#if defined(__OpenBSD__)
418    // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
419    // ignore errors
420    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
421                       "net")) {
422      dll_load(buffer, ebuf, sizeof(ebuf));
423    }
424#endif
425  }
426  static jboolean onLoaded = JNI_FALSE;
427  if (onLoaded) {
428    // We may have to wait to fire OnLoad until TLS is initialized.
429    if (ThreadLocalStorage::is_initialized()) {
430      // The JNI_OnLoad handling is normally done by method load in
431      // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
432      // explicitly so we have to check for JNI_OnLoad as well
433      const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
434      JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
435          JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
436      if (JNI_OnLoad != NULL) {
437        JavaThread* thread = JavaThread::current();
438        ThreadToNativeFromVM ttn(thread);
439        HandleMark hm(thread);
440        jint ver = (*JNI_OnLoad)(&main_vm, NULL);
441        onLoaded = JNI_TRUE;
442        if (!Threads::is_supported_jni_version_including_1_1(ver)) {
443          vm_exit_during_initialization("Unsupported JNI version");
444        }
445      }
446    }
447  }
448  return _native_java_library;
449}
450
451/*
452 * Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists.
453 * If check_lib == true then we are looking for an
454 * Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if
455 * this library is statically linked into the image.
456 * If check_lib == false then we will look for the appropriate symbol in the
457 * executable if agent_lib->is_static_lib() == true or in the shared library
458 * referenced by 'handle'.
459 */
460void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib,
461                              const char *syms[], size_t syms_len) {
462  const char *lib_name;
463  void *handle = agent_lib->os_lib();
464  void *entryName = NULL;
465  char *agent_function_name;
466  size_t i;
467
468  // If checking then use the agent name otherwise test is_static_lib() to
469  // see how to process this lookup
470  lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL);
471  for (i = 0; i < syms_len; i++) {
472    agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path());
473    if (agent_function_name == NULL) {
474      break;
475    }
476    entryName = dll_lookup(handle, agent_function_name);
477    FREE_C_HEAP_ARRAY(char, agent_function_name, mtThread);
478    if (entryName != NULL) {
479      break;
480    }
481  }
482  return entryName;
483}
484
485// See if the passed in agent is statically linked into the VM image.
486bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[],
487                            size_t syms_len) {
488  void *ret;
489  void *proc_handle;
490  void *save_handle;
491
492  if (agent_lib->name() == NULL) {
493    return false;
494  }
495  proc_handle = get_default_process_handle();
496  // Check for Agent_OnLoad/Attach_lib_name function
497  save_handle = agent_lib->os_lib();
498  // We want to look in this process' symbol table.
499  agent_lib->set_os_lib(proc_handle);
500  ret = find_agent_function(agent_lib, true, syms, syms_len);
501  agent_lib->set_os_lib(save_handle);
502  if (ret != NULL) {
503    // Found an entry point like Agent_OnLoad_lib_name so we have a static agent
504    agent_lib->set_os_lib(proc_handle);
505    agent_lib->set_valid();
506    agent_lib->set_static_lib(true);
507    return true;
508  }
509  return false;
510}
511
512// --------------------- heap allocation utilities ---------------------
513
514char *os::strdup(const char *str, MEMFLAGS flags) {
515  size_t size = strlen(str);
516  char *dup_str = (char *)malloc(size + 1, flags);
517  if (dup_str == NULL) return NULL;
518  strcpy(dup_str, str);
519  return dup_str;
520}
521
522
523
524#ifdef ASSERT
525#define space_before             (MallocCushion + sizeof(double))
526#define space_after              MallocCushion
527#define size_addr_from_base(p)   (size_t*)(p + space_before - sizeof(size_t))
528#define size_addr_from_obj(p)    ((size_t*)p - 1)
529// MallocCushion: size of extra cushion allocated around objects with +UseMallocOnly
530// NB: cannot be debug variable, because these aren't set from the command line until
531// *after* the first few allocs already happened
532#define MallocCushion            16
533#else
534#define space_before             0
535#define space_after              0
536#define size_addr_from_base(p)   should not use w/o ASSERT
537#define size_addr_from_obj(p)    should not use w/o ASSERT
538#define MallocCushion            0
539#endif
540#define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
541
542#ifdef ASSERT
543inline size_t get_size(void* obj) {
544  size_t size = *size_addr_from_obj(obj);
545  if (size < 0) {
546    fatal(err_msg("free: size field of object #" PTR_FORMAT " was overwritten ("
547                  SIZE_FORMAT ")", obj, size));
548  }
549  return size;
550}
551
552u_char* find_cushion_backwards(u_char* start) {
553  u_char* p = start;
554  while (p[ 0] != badResourceValue || p[-1] != badResourceValue ||
555         p[-2] != badResourceValue || p[-3] != badResourceValue) p--;
556  // ok, we have four consecutive marker bytes; find start
557  u_char* q = p - 4;
558  while (*q == badResourceValue) q--;
559  return q + 1;
560}
561
562u_char* find_cushion_forwards(u_char* start) {
563  u_char* p = start;
564  while (p[0] != badResourceValue || p[1] != badResourceValue ||
565         p[2] != badResourceValue || p[3] != badResourceValue) p++;
566  // ok, we have four consecutive marker bytes; find end of cushion
567  u_char* q = p + 4;
568  while (*q == badResourceValue) q++;
569  return q - MallocCushion;
570}
571
572void print_neighbor_blocks(void* ptr) {
573  // find block allocated before ptr (not entirely crash-proof)
574  if (MallocCushion < 4) {
575    tty->print_cr("### cannot find previous block (MallocCushion < 4)");
576    return;
577  }
578  u_char* start_of_this_block = (u_char*)ptr - space_before;
579  u_char* end_of_prev_block_data = start_of_this_block - space_after -1;
580  // look for cushion in front of prev. block
581  u_char* start_of_prev_block = find_cushion_backwards(end_of_prev_block_data);
582  ptrdiff_t size = *size_addr_from_base(start_of_prev_block);
583  u_char* obj = start_of_prev_block + space_before;
584  if (size <= 0 ) {
585    // start is bad; mayhave been confused by OS data inbetween objects
586    // search one more backwards
587    start_of_prev_block = find_cushion_backwards(start_of_prev_block);
588    size = *size_addr_from_base(start_of_prev_block);
589    obj = start_of_prev_block + space_before;
590  }
591
592  if (start_of_prev_block + space_before + size + space_after == start_of_this_block) {
593    tty->print_cr("### previous object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
594  } else {
595    tty->print_cr("### previous object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
596  }
597
598  // now find successor block
599  u_char* start_of_next_block = (u_char*)ptr + *size_addr_from_obj(ptr) + space_after;
600  start_of_next_block = find_cushion_forwards(start_of_next_block);
601  u_char* next_obj = start_of_next_block + space_before;
602  ptrdiff_t next_size = *size_addr_from_base(start_of_next_block);
603  if (start_of_next_block[0] == badResourceValue &&
604      start_of_next_block[1] == badResourceValue &&
605      start_of_next_block[2] == badResourceValue &&
606      start_of_next_block[3] == badResourceValue) {
607    tty->print_cr("### next object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
608  } else {
609    tty->print_cr("### next object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
610  }
611}
612
613
614void report_heap_error(void* memblock, void* bad, const char* where) {
615  tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
616  tty->print_cr("## memory stomp: byte at " PTR_FORMAT " %s object " PTR_FORMAT, bad, where, memblock);
617  print_neighbor_blocks(memblock);
618  fatal("memory stomping error");
619}
620
621void verify_block(void* memblock) {
622  size_t size = get_size(memblock);
623  if (MallocCushion) {
624    u_char* ptr = (u_char*)memblock - space_before;
625    for (int i = 0; i < MallocCushion; i++) {
626      if (ptr[i] != badResourceValue) {
627        report_heap_error(memblock, ptr+i, "in front of");
628      }
629    }
630    u_char* end = (u_char*)memblock + size + space_after;
631    for (int j = -MallocCushion; j < 0; j++) {
632      if (end[j] != badResourceValue) {
633        report_heap_error(memblock, end+j, "after");
634      }
635    }
636  }
637}
638#endif
639
640//
641// This function supports testing of the malloc out of memory
642// condition without really running the system out of memory.
643//
644static u_char* testMalloc(size_t alloc_size) {
645  assert(MallocMaxTestWords > 0, "sanity check");
646
647  if ((cur_malloc_words + (alloc_size / BytesPerWord)) > MallocMaxTestWords) {
648    return NULL;
649  }
650
651  u_char* ptr = (u_char*)::malloc(alloc_size);
652
653  if (ptr != NULL) {
654    Atomic::add(((jint) (alloc_size / BytesPerWord)),
655                (volatile jint *) &cur_malloc_words);
656  }
657  return ptr;
658}
659
660void* os::malloc(size_t size, MEMFLAGS memflags, address caller) {
661  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
662  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
663
664#ifdef ASSERT
665  // checking for the WatcherThread and crash_protection first
666  // since os::malloc can be called when the libjvm.{dll,so} is
667  // first loaded and we don't have a thread yet.
668  // try to find the thread after we see that the watcher thread
669  // exists and has crash protection.
670  WatcherThread *wt = WatcherThread::watcher_thread();
671  if (wt != NULL && wt->has_crash_protection()) {
672    Thread* thread = ThreadLocalStorage::get_thread_slow();
673    if (thread == wt) {
674      assert(!wt->has_crash_protection(),
675          "Can't malloc with crash protection from WatcherThread");
676    }
677  }
678#endif
679
680  if (size == 0) {
681    // return a valid pointer if size is zero
682    // if NULL is returned the calling functions assume out of memory.
683    size = 1;
684  }
685
686  const size_t alloc_size = size + space_before + space_after;
687
688  if (size > alloc_size) { // Check for rollover.
689    return NULL;
690  }
691
692  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
693
694  u_char* ptr;
695
696  if (MallocMaxTestWords > 0) {
697    ptr = testMalloc(alloc_size);
698  } else {
699    ptr = (u_char*)::malloc(alloc_size);
700  }
701
702#ifdef ASSERT
703  if (ptr == NULL) return NULL;
704  if (MallocCushion) {
705    for (u_char* p = ptr; p < ptr + MallocCushion; p++) *p = (u_char)badResourceValue;
706    u_char* end = ptr + space_before + size;
707    for (u_char* pq = ptr+MallocCushion; pq < end; pq++) *pq = (u_char)uninitBlockPad;
708    for (u_char* q = end; q < end + MallocCushion; q++) *q = (u_char)badResourceValue;
709  }
710  // put size just before data
711  *size_addr_from_base(ptr) = size;
712#endif
713  u_char* memblock = ptr + space_before;
714  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
715    tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
716    breakpoint();
717  }
718  debug_only(if (paranoid) verify_block(memblock));
719  if (PrintMalloc && tty != NULL) tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
720
721  // we do not track MallocCushion memory
722    MemTracker::record_malloc((address)memblock, size, memflags, caller == 0 ? CALLER_PC : caller);
723
724  return memblock;
725}
726
727
728void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, address caller) {
729#ifndef ASSERT
730  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
731  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
732  MemTracker::Tracker tkr = MemTracker::get_realloc_tracker();
733  void* ptr = ::realloc(memblock, size);
734  if (ptr != NULL) {
735    tkr.record((address)memblock, (address)ptr, size, memflags,
736     caller == 0 ? CALLER_PC : caller);
737  } else {
738    tkr.discard();
739  }
740  return ptr;
741#else
742  if (memblock == NULL) {
743    return malloc(size, memflags, (caller == 0 ? CALLER_PC : caller));
744  }
745  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
746    tty->print_cr("os::realloc caught " PTR_FORMAT, memblock);
747    breakpoint();
748  }
749  verify_block(memblock);
750  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
751  if (size == 0) return NULL;
752  // always move the block
753  void* ptr = malloc(size, memflags, caller == 0 ? CALLER_PC : caller);
754  if (PrintMalloc) tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr);
755  // Copy to new memory if malloc didn't fail
756  if ( ptr != NULL ) {
757    memcpy(ptr, memblock, MIN2(size, get_size(memblock)));
758    if (paranoid) verify_block(ptr);
759    if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
760      tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
761      breakpoint();
762    }
763    free(memblock);
764  }
765  return ptr;
766#endif
767}
768
769
770void  os::free(void *memblock, MEMFLAGS memflags) {
771  NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
772#ifdef ASSERT
773  if (memblock == NULL) return;
774  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
775    if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock);
776    breakpoint();
777  }
778  verify_block(memblock);
779  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
780  // Added by detlefs.
781  if (MallocCushion) {
782    u_char* ptr = (u_char*)memblock - space_before;
783    for (u_char* p = ptr; p < ptr + MallocCushion; p++) {
784      guarantee(*p == badResourceValue,
785                "Thing freed should be malloc result.");
786      *p = (u_char)freeBlockPad;
787    }
788    size_t size = get_size(memblock);
789    inc_stat_counter(&free_bytes, size);
790    u_char* end = ptr + space_before + size;
791    for (u_char* q = end; q < end + MallocCushion; q++) {
792      guarantee(*q == badResourceValue,
793                "Thing freed should be malloc result.");
794      *q = (u_char)freeBlockPad;
795    }
796    if (PrintMalloc && tty != NULL)
797      fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)memblock);
798  } else if (PrintMalloc && tty != NULL) {
799    // tty->print_cr("os::free %p", memblock);
800    fprintf(stderr, "os::free " PTR_FORMAT "\n", (uintptr_t)memblock);
801  }
802#endif
803  MemTracker::record_free((address)memblock, memflags);
804
805  ::free((char*)memblock - space_before);
806}
807
808void os::init_random(long initval) {
809  _rand_seed = initval;
810}
811
812
813long os::random() {
814  /* standard, well-known linear congruential random generator with
815   * next_rand = (16807*seed) mod (2**31-1)
816   * see
817   * (1) "Random Number Generators: Good Ones Are Hard to Find",
818   *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
819   * (2) "Two Fast Implementations of the 'Minimal Standard' Random
820   *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
821  */
822  const long a = 16807;
823  const unsigned long m = 2147483647;
824  const long q = m / a;        assert(q == 127773, "weird math");
825  const long r = m % a;        assert(r == 2836, "weird math");
826
827  // compute az=2^31p+q
828  unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
829  unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
830  lo += (hi & 0x7FFF) << 16;
831
832  // if q overflowed, ignore the overflow and increment q
833  if (lo > m) {
834    lo &= m;
835    ++lo;
836  }
837  lo += hi >> 15;
838
839  // if (p+q) overflowed, ignore the overflow and increment (p+q)
840  if (lo > m) {
841    lo &= m;
842    ++lo;
843  }
844  return (_rand_seed = lo);
845}
846
847// The INITIALIZED state is distinguished from the SUSPENDED state because the
848// conditions in which a thread is first started are different from those in which
849// a suspension is resumed.  These differences make it hard for us to apply the
850// tougher checks when starting threads that we want to do when resuming them.
851// However, when start_thread is called as a result of Thread.start, on a Java
852// thread, the operation is synchronized on the Java Thread object.  So there
853// cannot be a race to start the thread and hence for the thread to exit while
854// we are working on it.  Non-Java threads that start Java threads either have
855// to do so in a context in which races are impossible, or should do appropriate
856// locking.
857
858void os::start_thread(Thread* thread) {
859  // guard suspend/resume
860  MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
861  OSThread* osthread = thread->osthread();
862  osthread->set_state(RUNNABLE);
863  pd_start_thread(thread);
864}
865
866//---------------------------------------------------------------------------
867// Helper functions for fatal error handler
868
869void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
870  assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
871
872  int cols = 0;
873  int cols_per_line = 0;
874  switch (unitsize) {
875    case 1: cols_per_line = 16; break;
876    case 2: cols_per_line = 8;  break;
877    case 4: cols_per_line = 4;  break;
878    case 8: cols_per_line = 2;  break;
879    default: return;
880  }
881
882  address p = start;
883  st->print(PTR_FORMAT ":   ", start);
884  while (p < end) {
885    switch (unitsize) {
886      case 1: st->print("%02x", *(u1*)p); break;
887      case 2: st->print("%04x", *(u2*)p); break;
888      case 4: st->print("%08x", *(u4*)p); break;
889      case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
890    }
891    p += unitsize;
892    cols++;
893    if (cols >= cols_per_line && p < end) {
894       cols = 0;
895       st->cr();
896       st->print(PTR_FORMAT ":   ", p);
897    } else {
898       st->print(" ");
899    }
900  }
901  st->cr();
902}
903
904void os::print_environment_variables(outputStream* st, const char** env_list,
905                                     char* buffer, int len) {
906  if (env_list) {
907    st->print_cr("Environment Variables:");
908
909    for (int i = 0; env_list[i] != NULL; i++) {
910      if (getenv(env_list[i], buffer, len)) {
911        st->print(env_list[i]);
912        st->print("=");
913        st->print_cr(buffer);
914      }
915    }
916  }
917}
918
919void os::print_cpu_info(outputStream* st) {
920  // cpu
921  st->print("CPU:");
922  st->print("total %d", os::processor_count());
923  // It's not safe to query number of active processors after crash
924  // st->print("(active %d)", os::active_processor_count());
925  st->print(" %s", VM_Version::cpu_features());
926  st->cr();
927  pd_print_cpu_info(st);
928}
929
930void os::print_date_and_time(outputStream *st) {
931  time_t tloc;
932  (void)time(&tloc);
933  st->print("time: %s", ctime(&tloc));  // ctime adds newline.
934
935  double t = os::elapsedTime();
936  // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
937  //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
938  //       before printf. We lost some precision, but who cares?
939  st->print_cr("elapsed time: %d seconds", (int)t);
940}
941
942// moved from debug.cpp (used to be find()) but still called from there
943// The verbose parameter is only set by the debug code in one case
944void os::print_location(outputStream* st, intptr_t x, bool verbose) {
945  address addr = (address)x;
946  CodeBlob* b = CodeCache::find_blob_unsafe(addr);
947  if (b != NULL) {
948    if (b->is_buffer_blob()) {
949      // the interpreter is generated into a buffer blob
950      InterpreterCodelet* i = Interpreter::codelet_containing(addr);
951      if (i != NULL) {
952        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", addr, (int)(addr - i->code_begin()));
953        i->print_on(st);
954        return;
955      }
956      if (Interpreter::contains(addr)) {
957        st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
958                     " (not bytecode specific)", addr);
959        return;
960      }
961      //
962      if (AdapterHandlerLibrary::contains(b)) {
963        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", addr, (int)(addr - b->code_begin()));
964        AdapterHandlerLibrary::print_handler_on(st, b);
965      }
966      // the stubroutines are generated into a buffer blob
967      StubCodeDesc* d = StubCodeDesc::desc_for(addr);
968      if (d != NULL) {
969        st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", addr, (int)(addr - d->begin()));
970        d->print_on(st);
971        st->cr();
972        return;
973      }
974      if (StubRoutines::contains(addr)) {
975        st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) "
976                     "stub routine", addr);
977        return;
978      }
979      // the InlineCacheBuffer is using stubs generated into a buffer blob
980      if (InlineCacheBuffer::contains(addr)) {
981        st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
982        return;
983      }
984      VtableStub* v = VtableStubs::stub_containing(addr);
985      if (v != NULL) {
986        st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", addr, (int)(addr - v->entry_point()));
987        v->print_on(st);
988        st->cr();
989        return;
990      }
991    }
992    nmethod* nm = b->as_nmethod_or_null();
993    if (nm != NULL) {
994      ResourceMark rm;
995      st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
996                addr, (int)(addr - nm->entry_point()), nm);
997      if (verbose) {
998        st->print(" for ");
999        nm->method()->print_value_on(st);
1000      }
1001      st->cr();
1002      nm->print_nmethod(verbose);
1003      return;
1004    }
1005    st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", addr, (int)(addr - b->code_begin()));
1006    b->print_on(st);
1007    return;
1008  }
1009
1010  if (Universe::heap()->is_in(addr)) {
1011    HeapWord* p = Universe::heap()->block_start(addr);
1012    bool print = false;
1013    // If we couldn't find it it just may mean that heap wasn't parseable
1014    // See if we were just given an oop directly
1015    if (p != NULL && Universe::heap()->block_is_obj(p)) {
1016      print = true;
1017    } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
1018      p = (HeapWord*) addr;
1019      print = true;
1020    }
1021    if (print) {
1022      if (p == (HeapWord*) addr) {
1023        st->print_cr(INTPTR_FORMAT " is an oop", addr);
1024      } else {
1025        st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, addr, p);
1026      }
1027      oop(p)->print_on(st);
1028      return;
1029    }
1030  } else {
1031    if (Universe::heap()->is_in_reserved(addr)) {
1032      st->print_cr(INTPTR_FORMAT " is an unallocated location "
1033                   "in the heap", addr);
1034      return;
1035    }
1036  }
1037  if (JNIHandles::is_global_handle((jobject) addr)) {
1038    st->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
1039    return;
1040  }
1041  if (JNIHandles::is_weak_global_handle((jobject) addr)) {
1042    st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
1043    return;
1044  }
1045#ifndef PRODUCT
1046  // we don't keep the block list in product mode
1047  if (JNIHandleBlock::any_contains((jobject) addr)) {
1048    st->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
1049    return;
1050  }
1051#endif
1052
1053  for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
1054    // Check for privilege stack
1055    if (thread->privileged_stack_top() != NULL &&
1056        thread->privileged_stack_top()->contains(addr)) {
1057      st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
1058                   "for thread: " INTPTR_FORMAT, addr, thread);
1059      if (verbose) thread->print_on(st);
1060      return;
1061    }
1062    // If the addr is a java thread print information about that.
1063    if (addr == (address)thread) {
1064      if (verbose) {
1065        thread->print_on(st);
1066      } else {
1067        st->print_cr(INTPTR_FORMAT " is a thread", addr);
1068      }
1069      return;
1070    }
1071    // If the addr is in the stack region for this thread then report that
1072    // and print thread info
1073    if (thread->stack_base() >= addr &&
1074        addr > (thread->stack_base() - thread->stack_size())) {
1075      st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
1076                   INTPTR_FORMAT, addr, thread);
1077      if (verbose) thread->print_on(st);
1078      return;
1079    }
1080
1081  }
1082
1083#ifndef PRODUCT
1084  // Check if in metaspace.
1085  if (ClassLoaderDataGraph::contains((address)addr)) {
1086    // Use addr->print() from the debugger instead (not here)
1087    st->print_cr(INTPTR_FORMAT
1088                 " is pointing into metadata", addr);
1089    return;
1090  }
1091#endif
1092
1093  // Try an OS specific find
1094  if (os::find(addr, st)) {
1095    return;
1096  }
1097
1098  st->print_cr(INTPTR_FORMAT " is an unknown value", addr);
1099}
1100
1101// Looks like all platforms except IA64 can use the same function to check
1102// if C stack is walkable beyond current frame. The check for fp() is not
1103// necessary on Sparc, but it's harmless.
1104bool os::is_first_C_frame(frame* fr) {
1105#if defined(IA64) && !defined(_WIN32)
1106  // On IA64 we have to check if the callers bsp is still valid
1107  // (i.e. within the register stack bounds).
1108  // Notice: this only works for threads created by the VM and only if
1109  // we walk the current stack!!! If we want to be able to walk
1110  // arbitrary other threads, we'll have to somehow store the thread
1111  // object in the frame.
1112  Thread *thread = Thread::current();
1113  if ((address)fr->fp() <=
1114      thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
1115    // This check is a little hacky, because on Linux the first C
1116    // frame's ('start_thread') register stack frame starts at
1117    // "register_stack_base + 0x48" while on HPUX, the first C frame's
1118    // ('__pthread_bound_body') register stack frame seems to really
1119    // start at "register_stack_base".
1120    return true;
1121  } else {
1122    return false;
1123  }
1124#elif defined(IA64) && defined(_WIN32)
1125  return true;
1126#else
1127  // Load up sp, fp, sender sp and sender fp, check for reasonable values.
1128  // Check usp first, because if that's bad the other accessors may fault
1129  // on some architectures.  Ditto ufp second, etc.
1130  uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
1131  // sp on amd can be 32 bit aligned.
1132  uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
1133
1134  uintptr_t usp    = (uintptr_t)fr->sp();
1135  if ((usp & sp_align_mask) != 0) return true;
1136
1137  uintptr_t ufp    = (uintptr_t)fr->fp();
1138  if ((ufp & fp_align_mask) != 0) return true;
1139
1140  uintptr_t old_sp = (uintptr_t)fr->sender_sp();
1141  if ((old_sp & sp_align_mask) != 0) return true;
1142  if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
1143
1144  uintptr_t old_fp = (uintptr_t)fr->link();
1145  if ((old_fp & fp_align_mask) != 0) return true;
1146  if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
1147
1148  // stack grows downwards; if old_fp is below current fp or if the stack
1149  // frame is too large, either the stack is corrupted or fp is not saved
1150  // on stack (i.e. on x86, ebp may be used as general register). The stack
1151  // is not walkable beyond current frame.
1152  if (old_fp < ufp) return true;
1153  if (old_fp - ufp > 64 * K) return true;
1154
1155  return false;
1156#endif
1157}
1158
1159#ifdef ASSERT
1160extern "C" void test_random() {
1161  const double m = 2147483647;
1162  double mean = 0.0, variance = 0.0, t;
1163  long reps = 10000;
1164  unsigned long seed = 1;
1165
1166  tty->print_cr("seed %ld for %ld repeats...", seed, reps);
1167  os::init_random(seed);
1168  long num;
1169  for (int k = 0; k < reps; k++) {
1170    num = os::random();
1171    double u = (double)num / m;
1172    assert(u >= 0.0 && u <= 1.0, "bad random number!");
1173
1174    // calculate mean and variance of the random sequence
1175    mean += u;
1176    variance += (u*u);
1177  }
1178  mean /= reps;
1179  variance /= (reps - 1);
1180
1181  assert(num == 1043618065, "bad seed");
1182  tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
1183  tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
1184  const double eps = 0.0001;
1185  t = fabsd(mean - 0.5018);
1186  assert(t < eps, "bad mean");
1187  t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
1188  assert(t < eps, "bad variance");
1189}
1190#endif
1191
1192
1193// Set up the boot classpath.
1194
1195char* os::format_boot_path(const char* format_string,
1196                           const char* home,
1197                           int home_len,
1198                           char fileSep,
1199                           char pathSep) {
1200    assert((fileSep == '/' && pathSep == ':') ||
1201           (fileSep == '\\' && pathSep == ';'), "unexpected seperator chars");
1202
1203    // Scan the format string to determine the length of the actual
1204    // boot classpath, and handle platform dependencies as well.
1205    int formatted_path_len = 0;
1206    const char* p;
1207    for (p = format_string; *p != 0; ++p) {
1208        if (*p == '%') formatted_path_len += home_len - 1;
1209        ++formatted_path_len;
1210    }
1211
1212    char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
1213    if (formatted_path == NULL) {
1214        return NULL;
1215    }
1216
1217    // Create boot classpath from format, substituting separator chars and
1218    // java home directory.
1219    char* q = formatted_path;
1220    for (p = format_string; *p != 0; ++p) {
1221        switch (*p) {
1222        case '%':
1223            strcpy(q, home);
1224            q += home_len;
1225            break;
1226        case '/':
1227            *q++ = fileSep;
1228            break;
1229        case ':':
1230            *q++ = pathSep;
1231            break;
1232        default:
1233            *q++ = *p;
1234        }
1235    }
1236    *q = '\0';
1237
1238    assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1239    return formatted_path;
1240}
1241
1242
1243bool os::set_boot_path(char fileSep, char pathSep) {
1244    const char* home = Arguments::get_java_home();
1245    int home_len = (int)strlen(home);
1246
1247    static const char* meta_index_dir_format = "%/lib/";
1248    static const char* meta_index_format = "%/lib/meta-index";
1249    char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
1250    if (meta_index == NULL) return false;
1251    char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
1252    if (meta_index_dir == NULL) return false;
1253    Arguments::set_meta_index_path(meta_index, meta_index_dir);
1254
1255    // Any modification to the JAR-file list, for the boot classpath must be
1256    // aligned with install/install/make/common/Pack.gmk. Note: boot class
1257    // path class JARs, are stripped for StackMapTable to reduce download size.
1258    static const char classpath_format[] =
1259        "%/lib/resources.jar:"
1260        "%/lib/rt.jar:"
1261        "%/lib/sunrsasign.jar:"
1262        "%/lib/jsse.jar:"
1263        "%/lib/jce.jar:"
1264        "%/lib/charsets.jar:"
1265        "%/lib/jfr.jar:"
1266#ifdef __APPLE__
1267        "%/lib/JObjC.jar:"
1268#endif
1269        "%/classes";
1270    char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
1271    if (sysclasspath == NULL) return false;
1272    Arguments::set_sysclasspath(sysclasspath);
1273
1274    return true;
1275}
1276
1277/*
1278 * Splits a path, based on its separator, the number of
1279 * elements is returned back in n.
1280 * It is the callers responsibility to:
1281 *   a> check the value of n, and n may be 0.
1282 *   b> ignore any empty path elements
1283 *   c> free up the data.
1284 */
1285char** os::split_path(const char* path, int* n) {
1286  *n = 0;
1287  if (path == NULL || strlen(path) == 0) {
1288    return NULL;
1289  }
1290  const char psepchar = *os::path_separator();
1291  char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
1292  if (inpath == NULL) {
1293    return NULL;
1294  }
1295  strcpy(inpath, path);
1296  int count = 1;
1297  char* p = strchr(inpath, psepchar);
1298  // Get a count of elements to allocate memory
1299  while (p != NULL) {
1300    count++;
1301    p++;
1302    p = strchr(p, psepchar);
1303  }
1304  char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
1305  if (opath == NULL) {
1306    return NULL;
1307  }
1308
1309  // do the actual splitting
1310  p = inpath;
1311  for (int i = 0 ; i < count ; i++) {
1312    size_t len = strcspn(p, os::path_separator());
1313    if (len > JVM_MAXPATHLEN) {
1314      return NULL;
1315    }
1316    // allocate the string and add terminator storage
1317    char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
1318    if (s == NULL) {
1319      return NULL;
1320    }
1321    strncpy(s, p, len);
1322    s[len] = '\0';
1323    opath[i] = s;
1324    p += len + 1;
1325  }
1326  FREE_C_HEAP_ARRAY(char, inpath, mtInternal);
1327  *n = count;
1328  return opath;
1329}
1330
1331void os::set_memory_serialize_page(address page) {
1332  int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
1333  _mem_serialize_page = (volatile int32_t *)page;
1334  // We initialize the serialization page shift count here
1335  // We assume a cache line size of 64 bytes
1336  assert(SerializePageShiftCount == count,
1337         "thread size changed, fix SerializePageShiftCount constant");
1338  set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
1339}
1340
1341static volatile intptr_t SerializePageLock = 0;
1342
1343// This method is called from signal handler when SIGSEGV occurs while the current
1344// thread tries to store to the "read-only" memory serialize page during state
1345// transition.
1346void os::block_on_serialize_page_trap() {
1347  if (TraceSafepoint) {
1348    tty->print_cr("Block until the serialize page permission restored");
1349  }
1350  // When VMThread is holding the SerializePageLock during modifying the
1351  // access permission of the memory serialize page, the following call
1352  // will block until the permission of that page is restored to rw.
1353  // Generally, it is unsafe to manipulate locks in signal handlers, but in
1354  // this case, it's OK as the signal is synchronous and we know precisely when
1355  // it can occur.
1356  Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
1357  Thread::muxRelease(&SerializePageLock);
1358}
1359
1360// Serialize all thread state variables
1361void os::serialize_thread_states() {
1362  // On some platforms such as Solaris & Linux, the time duration of the page
1363  // permission restoration is observed to be much longer than expected  due to
1364  // scheduler starvation problem etc. To avoid the long synchronization
1365  // time and expensive page trap spinning, 'SerializePageLock' is used to block
1366  // the mutator thread if such case is encountered. See bug 6546278 for details.
1367  Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
1368  os::protect_memory((char *)os::get_memory_serialize_page(),
1369                     os::vm_page_size(), MEM_PROT_READ);
1370  os::protect_memory((char *)os::get_memory_serialize_page(),
1371                     os::vm_page_size(), MEM_PROT_RW);
1372  Thread::muxRelease(&SerializePageLock);
1373}
1374
1375// Returns true if the current stack pointer is above the stack shadow
1376// pages, false otherwise.
1377
1378bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
1379  assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
1380  address sp = current_stack_pointer();
1381  // Check if we have StackShadowPages above the yellow zone.  This parameter
1382  // is dependent on the depth of the maximum VM call stack possible from
1383  // the handler for stack overflow.  'instanceof' in the stack overflow
1384  // handler or a println uses at least 8k stack of VM and native code
1385  // respectively.
1386  const int framesize_in_bytes =
1387    Interpreter::size_top_interpreter_activation(method()) * wordSize;
1388  int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
1389                      * vm_page_size()) + framesize_in_bytes;
1390  // The very lower end of the stack
1391  address stack_limit = thread->stack_base() - thread->stack_size();
1392  return (sp > (stack_limit + reserved_area));
1393}
1394
1395size_t os::page_size_for_region(size_t region_min_size, size_t region_max_size,
1396                                uint min_pages)
1397{
1398  assert(min_pages > 0, "sanity");
1399  if (UseLargePages) {
1400    const size_t max_page_size = region_max_size / min_pages;
1401
1402    for (unsigned int i = 0; _page_sizes[i] != 0; ++i) {
1403      const size_t sz = _page_sizes[i];
1404      const size_t mask = sz - 1;
1405      if ((region_min_size & mask) == 0 && (region_max_size & mask) == 0) {
1406        // The largest page size with no fragmentation.
1407        return sz;
1408      }
1409
1410      if (sz <= max_page_size) {
1411        // The largest page size that satisfies the min_pages requirement.
1412        return sz;
1413      }
1414    }
1415  }
1416
1417  return vm_page_size();
1418}
1419
1420#ifndef PRODUCT
1421void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
1422{
1423  if (TracePageSizes) {
1424    tty->print("%s: ", str);
1425    for (int i = 0; i < count; ++i) {
1426      tty->print(" " SIZE_FORMAT, page_sizes[i]);
1427    }
1428    tty->cr();
1429  }
1430}
1431
1432void os::trace_page_sizes(const char* str, const size_t region_min_size,
1433                          const size_t region_max_size, const size_t page_size,
1434                          const char* base, const size_t size)
1435{
1436  if (TracePageSizes) {
1437    tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
1438                  " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
1439                  " size=" SIZE_FORMAT,
1440                  str, region_min_size, region_max_size,
1441                  page_size, base, size);
1442  }
1443}
1444#endif  // #ifndef PRODUCT
1445
1446// This is the working definition of a server class machine:
1447// >= 2 physical CPU's and >=2GB of memory, with some fuzz
1448// because the graphics memory (?) sometimes masks physical memory.
1449// If you want to change the definition of a server class machine
1450// on some OS or platform, e.g., >=4GB on Windohs platforms,
1451// then you'll have to parameterize this method based on that state,
1452// as was done for logical processors here, or replicate and
1453// specialize this method for each platform.  (Or fix os to have
1454// some inheritance structure and use subclassing.  Sigh.)
1455// If you want some platform to always or never behave as a server
1456// class machine, change the setting of AlwaysActAsServerClassMachine
1457// and NeverActAsServerClassMachine in globals*.hpp.
1458bool os::is_server_class_machine() {
1459  // First check for the early returns
1460  if (NeverActAsServerClassMachine) {
1461    return false;
1462  }
1463  if (AlwaysActAsServerClassMachine) {
1464    return true;
1465  }
1466  // Then actually look at the machine
1467  bool         result            = false;
1468  const unsigned int    server_processors = 2;
1469  const julong server_memory     = 2UL * G;
1470  // We seem not to get our full complement of memory.
1471  //     We allow some part (1/8?) of the memory to be "missing",
1472  //     based on the sizes of DIMMs, and maybe graphics cards.
1473  const julong missing_memory   = 256UL * M;
1474
1475  /* Is this a server class machine? */
1476  if ((os::active_processor_count() >= (int)server_processors) &&
1477      (os::physical_memory() >= (server_memory - missing_memory))) {
1478    const unsigned int logical_processors =
1479      VM_Version::logical_processors_per_package();
1480    if (logical_processors > 1) {
1481      const unsigned int physical_packages =
1482        os::active_processor_count() / logical_processors;
1483      if (physical_packages > server_processors) {
1484        result = true;
1485      }
1486    } else {
1487      result = true;
1488    }
1489  }
1490  return result;
1491}
1492
1493void os::SuspendedThreadTask::run() {
1494  assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
1495  internal_do_task();
1496  _done = true;
1497}
1498
1499bool os::create_stack_guard_pages(char* addr, size_t bytes) {
1500  return os::pd_create_stack_guard_pages(addr, bytes);
1501}
1502
1503char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
1504  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1505  if (result != NULL) {
1506    MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
1507  }
1508
1509  return result;
1510}
1511
1512char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
1513   MEMFLAGS flags) {
1514  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1515  if (result != NULL) {
1516    MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
1517    MemTracker::record_virtual_memory_type((address)result, flags);
1518  }
1519
1520  return result;
1521}
1522
1523char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
1524  char* result = pd_attempt_reserve_memory_at(bytes, addr);
1525  if (result != NULL) {
1526    MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
1527  }
1528  return result;
1529}
1530
1531void os::split_reserved_memory(char *base, size_t size,
1532                                 size_t split, bool realloc) {
1533  pd_split_reserved_memory(base, size, split, realloc);
1534}
1535
1536bool os::commit_memory(char* addr, size_t bytes, bool executable) {
1537  bool res = pd_commit_memory(addr, bytes, executable);
1538  if (res) {
1539    MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1540  }
1541  return res;
1542}
1543
1544bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1545                              bool executable) {
1546  bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
1547  if (res) {
1548    MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1549  }
1550  return res;
1551}
1552
1553void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
1554                               const char* mesg) {
1555  pd_commit_memory_or_exit(addr, bytes, executable, mesg);
1556  MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1557}
1558
1559void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
1560                               bool executable, const char* mesg) {
1561  os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
1562  MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1563}
1564
1565bool os::uncommit_memory(char* addr, size_t bytes) {
1566  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_uncommit_tracker();
1567  bool res = pd_uncommit_memory(addr, bytes);
1568  if (res) {
1569    tkr.record((address)addr, bytes);
1570  } else {
1571    tkr.discard();
1572  }
1573  return res;
1574}
1575
1576bool os::release_memory(char* addr, size_t bytes) {
1577  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1578  bool res = pd_release_memory(addr, bytes);
1579  if (res) {
1580    tkr.record((address)addr, bytes);
1581  } else {
1582    tkr.discard();
1583  }
1584  return res;
1585}
1586
1587
1588char* os::map_memory(int fd, const char* file_name, size_t file_offset,
1589                           char *addr, size_t bytes, bool read_only,
1590                           bool allow_exec) {
1591  char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
1592  if (result != NULL) {
1593    MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, mtNone, CALLER_PC);
1594  }
1595  return result;
1596}
1597
1598char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
1599                             char *addr, size_t bytes, bool read_only,
1600                             bool allow_exec) {
1601  return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
1602                    read_only, allow_exec);
1603}
1604
1605bool os::unmap_memory(char *addr, size_t bytes) {
1606  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1607  bool result = pd_unmap_memory(addr, bytes);
1608  if (result) {
1609    tkr.record((address)addr, bytes);
1610  } else {
1611    tkr.discard();
1612  }
1613  return result;
1614}
1615
1616void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
1617  pd_free_memory(addr, bytes, alignment_hint);
1618}
1619
1620void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1621  pd_realign_memory(addr, bytes, alignment_hint);
1622}
1623
1624#ifndef TARGET_OS_FAMILY_windows
1625/* try to switch state from state "from" to state "to"
1626 * returns the state set after the method is complete
1627 */
1628os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
1629                                                         os::SuspendResume::State to)
1630{
1631  os::SuspendResume::State result =
1632    (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
1633  if (result == from) {
1634    // success
1635    return to;
1636  }
1637  return result;
1638}
1639#endif
1640