os.cpp revision 5253:8e94527f601e
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "gc_implementation/shared/vmGCOperations.hpp"
33#include "interpreter/interpreter.hpp"
34#include "memory/allocation.inline.hpp"
35#include "oops/oop.inline.hpp"
36#include "prims/jvm.h"
37#include "prims/jvm_misc.hpp"
38#include "prims/privilegedStack.hpp"
39#include "runtime/arguments.hpp"
40#include "runtime/frame.inline.hpp"
41#include "runtime/interfaceSupport.hpp"
42#include "runtime/java.hpp"
43#include "runtime/javaCalls.hpp"
44#include "runtime/mutexLocker.hpp"
45#include "runtime/os.hpp"
46#include "runtime/stubRoutines.hpp"
47#include "runtime/thread.inline.hpp"
48#include "services/attachListener.hpp"
49#include "services/memTracker.hpp"
50#include "services/threadService.hpp"
51#include "utilities/defaultStream.hpp"
52#include "utilities/events.hpp"
53#ifdef TARGET_OS_FAMILY_linux
54# include "os_linux.inline.hpp"
55#endif
56#ifdef TARGET_OS_FAMILY_solaris
57# include "os_solaris.inline.hpp"
58#endif
59#ifdef TARGET_OS_FAMILY_windows
60# include "os_windows.inline.hpp"
61#endif
62#ifdef TARGET_OS_FAMILY_bsd
63# include "os_bsd.inline.hpp"
64#endif
65
66# include <signal.h>
67
68OSThread*         os::_starting_thread    = NULL;
69address           os::_polling_page       = NULL;
70volatile int32_t* os::_mem_serialize_page = NULL;
71uintptr_t         os::_serialize_page_mask = 0;
72long              os::_rand_seed          = 1;
73int               os::_processor_count    = 0;
74size_t            os::_page_sizes[os::page_sizes_max];
75
76#ifndef PRODUCT
77julong os::num_mallocs = 0;         // # of calls to malloc/realloc
78julong os::alloc_bytes = 0;         // # of bytes allocated
79julong os::num_frees = 0;           // # of calls to free
80julong os::free_bytes = 0;          // # of bytes freed
81#endif
82
83static juint cur_malloc_words = 0;  // current size for MallocMaxTestWords
84
85void os_init_globals() {
86  // Called from init_globals().
87  // See Threads::create_vm() in thread.cpp, and init.cpp.
88  os::init_globals();
89}
90
91// Fill in buffer with current local time as an ISO-8601 string.
92// E.g., yyyy-mm-ddThh:mm:ss-zzzz.
93// Returns buffer, or NULL if it failed.
94// This would mostly be a call to
95//     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
96// except that on Windows the %z behaves badly, so we do it ourselves.
97// Also, people wanted milliseconds on there,
98// and strftime doesn't do milliseconds.
99char* os::iso8601_time(char* buffer, size_t buffer_length) {
100  // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
101  //                                      1         2
102  //                             12345678901234567890123456789
103  static const char* iso8601_format =
104    "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
105  static const size_t needed_buffer = 29;
106
107  // Sanity check the arguments
108  if (buffer == NULL) {
109    assert(false, "NULL buffer");
110    return NULL;
111  }
112  if (buffer_length < needed_buffer) {
113    assert(false, "buffer_length too small");
114    return NULL;
115  }
116  // Get the current time
117  jlong milliseconds_since_19700101 = javaTimeMillis();
118  const int milliseconds_per_microsecond = 1000;
119  const time_t seconds_since_19700101 =
120    milliseconds_since_19700101 / milliseconds_per_microsecond;
121  const int milliseconds_after_second =
122    milliseconds_since_19700101 % milliseconds_per_microsecond;
123  // Convert the time value to a tm and timezone variable
124  struct tm time_struct;
125  if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
126    assert(false, "Failed localtime_pd");
127    return NULL;
128  }
129#if defined(_ALLBSD_SOURCE)
130  const time_t zone = (time_t) time_struct.tm_gmtoff;
131#else
132  const time_t zone = timezone;
133#endif
134
135  // If daylight savings time is in effect,
136  // we are 1 hour East of our time zone
137  const time_t seconds_per_minute = 60;
138  const time_t minutes_per_hour = 60;
139  const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
140  time_t UTC_to_local = zone;
141  if (time_struct.tm_isdst > 0) {
142    UTC_to_local = UTC_to_local - seconds_per_hour;
143  }
144  // Compute the time zone offset.
145  //    localtime_pd() sets timezone to the difference (in seconds)
146  //    between UTC and and local time.
147  //    ISO 8601 says we need the difference between local time and UTC,
148  //    we change the sign of the localtime_pd() result.
149  const time_t local_to_UTC = -(UTC_to_local);
150  // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
151  char sign_local_to_UTC = '+';
152  time_t abs_local_to_UTC = local_to_UTC;
153  if (local_to_UTC < 0) {
154    sign_local_to_UTC = '-';
155    abs_local_to_UTC = -(abs_local_to_UTC);
156  }
157  // Convert time zone offset seconds to hours and minutes.
158  const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
159  const time_t zone_min =
160    ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
161
162  // Print an ISO 8601 date and time stamp into the buffer
163  const int year = 1900 + time_struct.tm_year;
164  const int month = 1 + time_struct.tm_mon;
165  const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
166                                   year,
167                                   month,
168                                   time_struct.tm_mday,
169                                   time_struct.tm_hour,
170                                   time_struct.tm_min,
171                                   time_struct.tm_sec,
172                                   milliseconds_after_second,
173                                   sign_local_to_UTC,
174                                   zone_hours,
175                                   zone_min);
176  if (printed == 0) {
177    assert(false, "Failed jio_printf");
178    return NULL;
179  }
180  return buffer;
181}
182
183OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
184#ifdef ASSERT
185  if (!(!thread->is_Java_thread() ||
186         Thread::current() == thread  ||
187         Threads_lock->owned_by_self()
188         || thread->is_Compiler_thread()
189        )) {
190    assert(false, "possibility of dangling Thread pointer");
191  }
192#endif
193
194  if (p >= MinPriority && p <= MaxPriority) {
195    int priority = java_to_os_priority[p];
196    return set_native_priority(thread, priority);
197  } else {
198    assert(false, "Should not happen");
199    return OS_ERR;
200  }
201}
202
203// The mapping from OS priority back to Java priority may be inexact because
204// Java priorities can map M:1 with native priorities. If you want the definite
205// Java priority then use JavaThread::java_priority()
206OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
207  int p;
208  int os_prio;
209  OSReturn ret = get_native_priority(thread, &os_prio);
210  if (ret != OS_OK) return ret;
211
212  if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
213    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
214  } else {
215    // niceness values are in reverse order
216    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
217  }
218  priority = (ThreadPriority)p;
219  return OS_OK;
220}
221
222
223// --------------------- sun.misc.Signal (optional) ---------------------
224
225
226// SIGBREAK is sent by the keyboard to query the VM state
227#ifndef SIGBREAK
228#define SIGBREAK SIGQUIT
229#endif
230
231// sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
232
233
234static void signal_thread_entry(JavaThread* thread, TRAPS) {
235  os::set_priority(thread, NearMaxPriority);
236  while (true) {
237    int sig;
238    {
239      // FIXME : Currently we have not decieded what should be the status
240      //         for this java thread blocked here. Once we decide about
241      //         that we should fix this.
242      sig = os::signal_wait();
243    }
244    if (sig == os::sigexitnum_pd()) {
245       // Terminate the signal thread
246       return;
247    }
248
249    switch (sig) {
250      case SIGBREAK: {
251        // Check if the signal is a trigger to start the Attach Listener - in that
252        // case don't print stack traces.
253        if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
254          continue;
255        }
256        // Print stack traces
257        // Any SIGBREAK operations added here should make sure to flush
258        // the output stream (e.g. tty->flush()) after output.  See 4803766.
259        // Each module also prints an extra carriage return after its output.
260        VM_PrintThreads op;
261        VMThread::execute(&op);
262        VM_PrintJNI jni_op;
263        VMThread::execute(&jni_op);
264        VM_FindDeadlocks op1(tty);
265        VMThread::execute(&op1);
266        Universe::print_heap_at_SIGBREAK();
267        if (PrintClassHistogram) {
268          VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */);
269          VMThread::execute(&op1);
270        }
271        if (JvmtiExport::should_post_data_dump()) {
272          JvmtiExport::post_data_dump();
273        }
274        break;
275      }
276      default: {
277        // Dispatch the signal to java
278        HandleMark hm(THREAD);
279        Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
280        KlassHandle klass (THREAD, k);
281        if (klass.not_null()) {
282          JavaValue result(T_VOID);
283          JavaCallArguments args;
284          args.push_int(sig);
285          JavaCalls::call_static(
286            &result,
287            klass,
288            vmSymbols::dispatch_name(),
289            vmSymbols::int_void_signature(),
290            &args,
291            THREAD
292          );
293        }
294        if (HAS_PENDING_EXCEPTION) {
295          // tty is initialized early so we don't expect it to be null, but
296          // if it is we can't risk doing an initialization that might
297          // trigger additional out-of-memory conditions
298          if (tty != NULL) {
299            char klass_name[256];
300            char tmp_sig_name[16];
301            const char* sig_name = "UNKNOWN";
302            InstanceKlass::cast(PENDING_EXCEPTION->klass())->
303              name()->as_klass_external_name(klass_name, 256);
304            if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
305              sig_name = tmp_sig_name;
306            warning("Exception %s occurred dispatching signal %s to handler"
307                    "- the VM may need to be forcibly terminated",
308                    klass_name, sig_name );
309          }
310          CLEAR_PENDING_EXCEPTION;
311        }
312      }
313    }
314  }
315}
316
317
318void os::signal_init() {
319  if (!ReduceSignalUsage) {
320    // Setup JavaThread for processing signals
321    EXCEPTION_MARK;
322    Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
323    instanceKlassHandle klass (THREAD, k);
324    instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
325
326    const char thread_name[] = "Signal Dispatcher";
327    Handle string = java_lang_String::create_from_str(thread_name, CHECK);
328
329    // Initialize thread_oop to put it into the system threadGroup
330    Handle thread_group (THREAD, Universe::system_thread_group());
331    JavaValue result(T_VOID);
332    JavaCalls::call_special(&result, thread_oop,
333                           klass,
334                           vmSymbols::object_initializer_name(),
335                           vmSymbols::threadgroup_string_void_signature(),
336                           thread_group,
337                           string,
338                           CHECK);
339
340    KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
341    JavaCalls::call_special(&result,
342                            thread_group,
343                            group,
344                            vmSymbols::add_method_name(),
345                            vmSymbols::thread_void_signature(),
346                            thread_oop,         // ARG 1
347                            CHECK);
348
349    os::signal_init_pd();
350
351    { MutexLocker mu(Threads_lock);
352      JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
353
354      // At this point it may be possible that no osthread was created for the
355      // JavaThread due to lack of memory. We would have to throw an exception
356      // in that case. However, since this must work and we do not allow
357      // exceptions anyway, check and abort if this fails.
358      if (signal_thread == NULL || signal_thread->osthread() == NULL) {
359        vm_exit_during_initialization("java.lang.OutOfMemoryError",
360                                      "unable to create new native thread");
361      }
362
363      java_lang_Thread::set_thread(thread_oop(), signal_thread);
364      java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
365      java_lang_Thread::set_daemon(thread_oop());
366
367      signal_thread->set_threadObj(thread_oop());
368      Threads::add(signal_thread);
369      Thread::start(signal_thread);
370    }
371    // Handle ^BREAK
372    os::signal(SIGBREAK, os::user_handler());
373  }
374}
375
376
377void os::terminate_signal_thread() {
378  if (!ReduceSignalUsage)
379    signal_notify(sigexitnum_pd());
380}
381
382
383// --------------------- loading libraries ---------------------
384
385typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
386extern struct JavaVM_ main_vm;
387
388static void* _native_java_library = NULL;
389
390void* os::native_java_library() {
391  if (_native_java_library == NULL) {
392    char buffer[JVM_MAXPATHLEN];
393    char ebuf[1024];
394
395    // Try to load verify dll first. In 1.3 java dll depends on it and is not
396    // always able to find it when the loading executable is outside the JDK.
397    // In order to keep working with 1.2 we ignore any loading errors.
398    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
399                       "verify")) {
400      dll_load(buffer, ebuf, sizeof(ebuf));
401    }
402
403    // Load java dll
404    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
405                       "java")) {
406      _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
407    }
408    if (_native_java_library == NULL) {
409      vm_exit_during_initialization("Unable to load native library", ebuf);
410    }
411
412#if defined(__OpenBSD__)
413    // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
414    // ignore errors
415    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
416                       "net")) {
417      dll_load(buffer, ebuf, sizeof(ebuf));
418    }
419#endif
420  }
421  static jboolean onLoaded = JNI_FALSE;
422  if (onLoaded) {
423    // We may have to wait to fire OnLoad until TLS is initialized.
424    if (ThreadLocalStorage::is_initialized()) {
425      // The JNI_OnLoad handling is normally done by method load in
426      // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
427      // explicitly so we have to check for JNI_OnLoad as well
428      const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
429      JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
430          JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
431      if (JNI_OnLoad != NULL) {
432        JavaThread* thread = JavaThread::current();
433        ThreadToNativeFromVM ttn(thread);
434        HandleMark hm(thread);
435        jint ver = (*JNI_OnLoad)(&main_vm, NULL);
436        onLoaded = JNI_TRUE;
437        if (!Threads::is_supported_jni_version_including_1_1(ver)) {
438          vm_exit_during_initialization("Unsupported JNI version");
439        }
440      }
441    }
442  }
443  return _native_java_library;
444}
445
446/*
447 * Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists.
448 * If check_lib == true then we are looking for an
449 * Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if
450 * this library is statically linked into the image.
451 * If check_lib == false then we will look for the appropriate symbol in the
452 * executable if agent_lib->is_static_lib() == true or in the shared library
453 * referenced by 'handle'.
454 */
455void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib,
456                              const char *syms[], size_t syms_len) {
457  assert(agent_lib != NULL, "sanity check");
458  const char *lib_name;
459  void *handle = agent_lib->os_lib();
460  void *entryName = NULL;
461  char *agent_function_name;
462  size_t i;
463
464  // If checking then use the agent name otherwise test is_static_lib() to
465  // see how to process this lookup
466  lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL);
467  for (i = 0; i < syms_len; i++) {
468    agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path());
469    if (agent_function_name == NULL) {
470      break;
471    }
472    entryName = dll_lookup(handle, agent_function_name);
473    FREE_C_HEAP_ARRAY(char, agent_function_name, mtThread);
474    if (entryName != NULL) {
475      break;
476    }
477  }
478  return entryName;
479}
480
481// See if the passed in agent is statically linked into the VM image.
482bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[],
483                            size_t syms_len) {
484  void *ret;
485  void *proc_handle;
486  void *save_handle;
487
488  assert(agent_lib != NULL, "sanity check");
489  if (agent_lib->name() == NULL) {
490    return false;
491  }
492  proc_handle = get_default_process_handle();
493  // Check for Agent_OnLoad/Attach_lib_name function
494  save_handle = agent_lib->os_lib();
495  // We want to look in this process' symbol table.
496  agent_lib->set_os_lib(proc_handle);
497  ret = find_agent_function(agent_lib, true, syms, syms_len);
498  if (ret != NULL) {
499    // Found an entry point like Agent_OnLoad_lib_name so we have a static agent
500    agent_lib->set_valid();
501    agent_lib->set_static_lib(true);
502    return true;
503  }
504  agent_lib->set_os_lib(save_handle);
505  return false;
506}
507
508// --------------------- heap allocation utilities ---------------------
509
510char *os::strdup(const char *str, MEMFLAGS flags) {
511  size_t size = strlen(str);
512  char *dup_str = (char *)malloc(size + 1, flags);
513  if (dup_str == NULL) return NULL;
514  strcpy(dup_str, str);
515  return dup_str;
516}
517
518
519
520#ifdef ASSERT
521#define space_before             (MallocCushion + sizeof(double))
522#define space_after              MallocCushion
523#define size_addr_from_base(p)   (size_t*)(p + space_before - sizeof(size_t))
524#define size_addr_from_obj(p)    ((size_t*)p - 1)
525// MallocCushion: size of extra cushion allocated around objects with +UseMallocOnly
526// NB: cannot be debug variable, because these aren't set from the command line until
527// *after* the first few allocs already happened
528#define MallocCushion            16
529#else
530#define space_before             0
531#define space_after              0
532#define size_addr_from_base(p)   should not use w/o ASSERT
533#define size_addr_from_obj(p)    should not use w/o ASSERT
534#define MallocCushion            0
535#endif
536#define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
537
538#ifdef ASSERT
539inline size_t get_size(void* obj) {
540  size_t size = *size_addr_from_obj(obj);
541  if (size < 0) {
542    fatal(err_msg("free: size field of object #" PTR_FORMAT " was overwritten ("
543                  SIZE_FORMAT ")", obj, size));
544  }
545  return size;
546}
547
548u_char* find_cushion_backwards(u_char* start) {
549  u_char* p = start;
550  while (p[ 0] != badResourceValue || p[-1] != badResourceValue ||
551         p[-2] != badResourceValue || p[-3] != badResourceValue) p--;
552  // ok, we have four consecutive marker bytes; find start
553  u_char* q = p - 4;
554  while (*q == badResourceValue) q--;
555  return q + 1;
556}
557
558u_char* find_cushion_forwards(u_char* start) {
559  u_char* p = start;
560  while (p[0] != badResourceValue || p[1] != badResourceValue ||
561         p[2] != badResourceValue || p[3] != badResourceValue) p++;
562  // ok, we have four consecutive marker bytes; find end of cushion
563  u_char* q = p + 4;
564  while (*q == badResourceValue) q++;
565  return q - MallocCushion;
566}
567
568void print_neighbor_blocks(void* ptr) {
569  // find block allocated before ptr (not entirely crash-proof)
570  if (MallocCushion < 4) {
571    tty->print_cr("### cannot find previous block (MallocCushion < 4)");
572    return;
573  }
574  u_char* start_of_this_block = (u_char*)ptr - space_before;
575  u_char* end_of_prev_block_data = start_of_this_block - space_after -1;
576  // look for cushion in front of prev. block
577  u_char* start_of_prev_block = find_cushion_backwards(end_of_prev_block_data);
578  ptrdiff_t size = *size_addr_from_base(start_of_prev_block);
579  u_char* obj = start_of_prev_block + space_before;
580  if (size <= 0 ) {
581    // start is bad; mayhave been confused by OS data inbetween objects
582    // search one more backwards
583    start_of_prev_block = find_cushion_backwards(start_of_prev_block);
584    size = *size_addr_from_base(start_of_prev_block);
585    obj = start_of_prev_block + space_before;
586  }
587
588  if (start_of_prev_block + space_before + size + space_after == start_of_this_block) {
589    tty->print_cr("### previous object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
590  } else {
591    tty->print_cr("### previous object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
592  }
593
594  // now find successor block
595  u_char* start_of_next_block = (u_char*)ptr + *size_addr_from_obj(ptr) + space_after;
596  start_of_next_block = find_cushion_forwards(start_of_next_block);
597  u_char* next_obj = start_of_next_block + space_before;
598  ptrdiff_t next_size = *size_addr_from_base(start_of_next_block);
599  if (start_of_next_block[0] == badResourceValue &&
600      start_of_next_block[1] == badResourceValue &&
601      start_of_next_block[2] == badResourceValue &&
602      start_of_next_block[3] == badResourceValue) {
603    tty->print_cr("### next object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
604  } else {
605    tty->print_cr("### next object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
606  }
607}
608
609
610void report_heap_error(void* memblock, void* bad, const char* where) {
611  tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
612  tty->print_cr("## memory stomp: byte at " PTR_FORMAT " %s object " PTR_FORMAT, bad, where, memblock);
613  print_neighbor_blocks(memblock);
614  fatal("memory stomping error");
615}
616
617void verify_block(void* memblock) {
618  size_t size = get_size(memblock);
619  if (MallocCushion) {
620    u_char* ptr = (u_char*)memblock - space_before;
621    for (int i = 0; i < MallocCushion; i++) {
622      if (ptr[i] != badResourceValue) {
623        report_heap_error(memblock, ptr+i, "in front of");
624      }
625    }
626    u_char* end = (u_char*)memblock + size + space_after;
627    for (int j = -MallocCushion; j < 0; j++) {
628      if (end[j] != badResourceValue) {
629        report_heap_error(memblock, end+j, "after");
630      }
631    }
632  }
633}
634#endif
635
636//
637// This function supports testing of the malloc out of memory
638// condition without really running the system out of memory.
639//
640static u_char* testMalloc(size_t alloc_size) {
641  assert(MallocMaxTestWords > 0, "sanity check");
642
643  if ((cur_malloc_words + (alloc_size / BytesPerWord)) > MallocMaxTestWords) {
644    return NULL;
645  }
646
647  u_char* ptr = (u_char*)::malloc(alloc_size);
648
649  if (ptr != NULL) {
650    Atomic::add(((jint) (alloc_size / BytesPerWord)),
651                (volatile jint *) &cur_malloc_words);
652  }
653  return ptr;
654}
655
656void* os::malloc(size_t size, MEMFLAGS memflags, address caller) {
657  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
658  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
659
660#ifdef ASSERT
661  // checking for the WatcherThread and crash_protection first
662  // since os::malloc can be called when the libjvm.{dll,so} is
663  // first loaded and we don't have a thread yet.
664  // try to find the thread after we see that the watcher thread
665  // exists and has crash protection.
666  WatcherThread *wt = WatcherThread::watcher_thread();
667  if (wt != NULL && wt->has_crash_protection()) {
668    Thread* thread = ThreadLocalStorage::get_thread_slow();
669    if (thread == wt) {
670      assert(!wt->has_crash_protection(),
671          "Can't malloc with crash protection from WatcherThread");
672    }
673  }
674#endif
675
676  if (size == 0) {
677    // return a valid pointer if size is zero
678    // if NULL is returned the calling functions assume out of memory.
679    size = 1;
680  }
681
682  const size_t alloc_size = size + space_before + space_after;
683
684  if (size > alloc_size) { // Check for rollover.
685    return NULL;
686  }
687
688  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
689
690  u_char* ptr;
691
692  if (MallocMaxTestWords > 0) {
693    ptr = testMalloc(alloc_size);
694  } else {
695    ptr = (u_char*)::malloc(alloc_size);
696  }
697
698#ifdef ASSERT
699  if (ptr == NULL) return NULL;
700  if (MallocCushion) {
701    for (u_char* p = ptr; p < ptr + MallocCushion; p++) *p = (u_char)badResourceValue;
702    u_char* end = ptr + space_before + size;
703    for (u_char* pq = ptr+MallocCushion; pq < end; pq++) *pq = (u_char)uninitBlockPad;
704    for (u_char* q = end; q < end + MallocCushion; q++) *q = (u_char)badResourceValue;
705  }
706  // put size just before data
707  *size_addr_from_base(ptr) = size;
708#endif
709  u_char* memblock = ptr + space_before;
710  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
711    tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
712    breakpoint();
713  }
714  debug_only(if (paranoid) verify_block(memblock));
715  if (PrintMalloc && tty != NULL) tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
716
717  // we do not track MallocCushion memory
718    MemTracker::record_malloc((address)memblock, size, memflags, caller == 0 ? CALLER_PC : caller);
719
720  return memblock;
721}
722
723
724void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, address caller) {
725#ifndef ASSERT
726  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
727  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
728  MemTracker::Tracker tkr = MemTracker::get_realloc_tracker();
729  void* ptr = ::realloc(memblock, size);
730  if (ptr != NULL) {
731    tkr.record((address)memblock, (address)ptr, size, memflags,
732     caller == 0 ? CALLER_PC : caller);
733  } else {
734    tkr.discard();
735  }
736  return ptr;
737#else
738  if (memblock == NULL) {
739    return malloc(size, memflags, (caller == 0 ? CALLER_PC : caller));
740  }
741  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
742    tty->print_cr("os::realloc caught " PTR_FORMAT, memblock);
743    breakpoint();
744  }
745  verify_block(memblock);
746  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
747  if (size == 0) return NULL;
748  // always move the block
749  void* ptr = malloc(size, memflags, caller == 0 ? CALLER_PC : caller);
750  if (PrintMalloc) tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr);
751  // Copy to new memory if malloc didn't fail
752  if ( ptr != NULL ) {
753    memcpy(ptr, memblock, MIN2(size, get_size(memblock)));
754    if (paranoid) verify_block(ptr);
755    if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
756      tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
757      breakpoint();
758    }
759    free(memblock);
760  }
761  return ptr;
762#endif
763}
764
765
766void  os::free(void *memblock, MEMFLAGS memflags) {
767  NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
768#ifdef ASSERT
769  if (memblock == NULL) return;
770  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
771    if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock);
772    breakpoint();
773  }
774  verify_block(memblock);
775  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
776  // Added by detlefs.
777  if (MallocCushion) {
778    u_char* ptr = (u_char*)memblock - space_before;
779    for (u_char* p = ptr; p < ptr + MallocCushion; p++) {
780      guarantee(*p == badResourceValue,
781                "Thing freed should be malloc result.");
782      *p = (u_char)freeBlockPad;
783    }
784    size_t size = get_size(memblock);
785    inc_stat_counter(&free_bytes, size);
786    u_char* end = ptr + space_before + size;
787    for (u_char* q = end; q < end + MallocCushion; q++) {
788      guarantee(*q == badResourceValue,
789                "Thing freed should be malloc result.");
790      *q = (u_char)freeBlockPad;
791    }
792    if (PrintMalloc && tty != NULL)
793      fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)memblock);
794  } else if (PrintMalloc && tty != NULL) {
795    // tty->print_cr("os::free %p", memblock);
796    fprintf(stderr, "os::free " PTR_FORMAT "\n", (uintptr_t)memblock);
797  }
798#endif
799  MemTracker::record_free((address)memblock, memflags);
800
801  ::free((char*)memblock - space_before);
802}
803
804void os::init_random(long initval) {
805  _rand_seed = initval;
806}
807
808
809long os::random() {
810  /* standard, well-known linear congruential random generator with
811   * next_rand = (16807*seed) mod (2**31-1)
812   * see
813   * (1) "Random Number Generators: Good Ones Are Hard to Find",
814   *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
815   * (2) "Two Fast Implementations of the 'Minimal Standard' Random
816   *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
817  */
818  const long a = 16807;
819  const unsigned long m = 2147483647;
820  const long q = m / a;        assert(q == 127773, "weird math");
821  const long r = m % a;        assert(r == 2836, "weird math");
822
823  // compute az=2^31p+q
824  unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
825  unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
826  lo += (hi & 0x7FFF) << 16;
827
828  // if q overflowed, ignore the overflow and increment q
829  if (lo > m) {
830    lo &= m;
831    ++lo;
832  }
833  lo += hi >> 15;
834
835  // if (p+q) overflowed, ignore the overflow and increment (p+q)
836  if (lo > m) {
837    lo &= m;
838    ++lo;
839  }
840  return (_rand_seed = lo);
841}
842
843// The INITIALIZED state is distinguished from the SUSPENDED state because the
844// conditions in which a thread is first started are different from those in which
845// a suspension is resumed.  These differences make it hard for us to apply the
846// tougher checks when starting threads that we want to do when resuming them.
847// However, when start_thread is called as a result of Thread.start, on a Java
848// thread, the operation is synchronized on the Java Thread object.  So there
849// cannot be a race to start the thread and hence for the thread to exit while
850// we are working on it.  Non-Java threads that start Java threads either have
851// to do so in a context in which races are impossible, or should do appropriate
852// locking.
853
854void os::start_thread(Thread* thread) {
855  // guard suspend/resume
856  MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
857  OSThread* osthread = thread->osthread();
858  osthread->set_state(RUNNABLE);
859  pd_start_thread(thread);
860}
861
862//---------------------------------------------------------------------------
863// Helper functions for fatal error handler
864
865void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
866  assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
867
868  int cols = 0;
869  int cols_per_line = 0;
870  switch (unitsize) {
871    case 1: cols_per_line = 16; break;
872    case 2: cols_per_line = 8;  break;
873    case 4: cols_per_line = 4;  break;
874    case 8: cols_per_line = 2;  break;
875    default: return;
876  }
877
878  address p = start;
879  st->print(PTR_FORMAT ":   ", start);
880  while (p < end) {
881    switch (unitsize) {
882      case 1: st->print("%02x", *(u1*)p); break;
883      case 2: st->print("%04x", *(u2*)p); break;
884      case 4: st->print("%08x", *(u4*)p); break;
885      case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
886    }
887    p += unitsize;
888    cols++;
889    if (cols >= cols_per_line && p < end) {
890       cols = 0;
891       st->cr();
892       st->print(PTR_FORMAT ":   ", p);
893    } else {
894       st->print(" ");
895    }
896  }
897  st->cr();
898}
899
900void os::print_environment_variables(outputStream* st, const char** env_list,
901                                     char* buffer, int len) {
902  if (env_list) {
903    st->print_cr("Environment Variables:");
904
905    for (int i = 0; env_list[i] != NULL; i++) {
906      if (getenv(env_list[i], buffer, len)) {
907        st->print(env_list[i]);
908        st->print("=");
909        st->print_cr(buffer);
910      }
911    }
912  }
913}
914
915void os::print_cpu_info(outputStream* st) {
916  // cpu
917  st->print("CPU:");
918  st->print("total %d", os::processor_count());
919  // It's not safe to query number of active processors after crash
920  // st->print("(active %d)", os::active_processor_count());
921  st->print(" %s", VM_Version::cpu_features());
922  st->cr();
923  pd_print_cpu_info(st);
924}
925
926void os::print_date_and_time(outputStream *st) {
927  time_t tloc;
928  (void)time(&tloc);
929  st->print("time: %s", ctime(&tloc));  // ctime adds newline.
930
931  double t = os::elapsedTime();
932  // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
933  //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
934  //       before printf. We lost some precision, but who cares?
935  st->print_cr("elapsed time: %d seconds", (int)t);
936}
937
938// moved from debug.cpp (used to be find()) but still called from there
939// The verbose parameter is only set by the debug code in one case
940void os::print_location(outputStream* st, intptr_t x, bool verbose) {
941  address addr = (address)x;
942  CodeBlob* b = CodeCache::find_blob_unsafe(addr);
943  if (b != NULL) {
944    if (b->is_buffer_blob()) {
945      // the interpreter is generated into a buffer blob
946      InterpreterCodelet* i = Interpreter::codelet_containing(addr);
947      if (i != NULL) {
948        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", addr, (int)(addr - i->code_begin()));
949        i->print_on(st);
950        return;
951      }
952      if (Interpreter::contains(addr)) {
953        st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
954                     " (not bytecode specific)", addr);
955        return;
956      }
957      //
958      if (AdapterHandlerLibrary::contains(b)) {
959        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", addr, (int)(addr - b->code_begin()));
960        AdapterHandlerLibrary::print_handler_on(st, b);
961      }
962      // the stubroutines are generated into a buffer blob
963      StubCodeDesc* d = StubCodeDesc::desc_for(addr);
964      if (d != NULL) {
965        st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", addr, (int)(addr - d->begin()));
966        d->print_on(st);
967        st->cr();
968        return;
969      }
970      if (StubRoutines::contains(addr)) {
971        st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) "
972                     "stub routine", addr);
973        return;
974      }
975      // the InlineCacheBuffer is using stubs generated into a buffer blob
976      if (InlineCacheBuffer::contains(addr)) {
977        st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
978        return;
979      }
980      VtableStub* v = VtableStubs::stub_containing(addr);
981      if (v != NULL) {
982        st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", addr, (int)(addr - v->entry_point()));
983        v->print_on(st);
984        st->cr();
985        return;
986      }
987    }
988    nmethod* nm = b->as_nmethod_or_null();
989    if (nm != NULL) {
990      ResourceMark rm;
991      st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
992                addr, (int)(addr - nm->entry_point()), nm);
993      if (verbose) {
994        st->print(" for ");
995        nm->method()->print_value_on(st);
996      }
997      st->cr();
998      nm->print_nmethod(verbose);
999      return;
1000    }
1001    st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", addr, (int)(addr - b->code_begin()));
1002    b->print_on(st);
1003    return;
1004  }
1005
1006  if (Universe::heap()->is_in(addr)) {
1007    HeapWord* p = Universe::heap()->block_start(addr);
1008    bool print = false;
1009    // If we couldn't find it it just may mean that heap wasn't parseable
1010    // See if we were just given an oop directly
1011    if (p != NULL && Universe::heap()->block_is_obj(p)) {
1012      print = true;
1013    } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
1014      p = (HeapWord*) addr;
1015      print = true;
1016    }
1017    if (print) {
1018      if (p == (HeapWord*) addr) {
1019        st->print_cr(INTPTR_FORMAT " is an oop", addr);
1020      } else {
1021        st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, addr, p);
1022      }
1023      oop(p)->print_on(st);
1024      return;
1025    }
1026  } else {
1027    if (Universe::heap()->is_in_reserved(addr)) {
1028      st->print_cr(INTPTR_FORMAT " is an unallocated location "
1029                   "in the heap", addr);
1030      return;
1031    }
1032  }
1033  if (JNIHandles::is_global_handle((jobject) addr)) {
1034    st->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
1035    return;
1036  }
1037  if (JNIHandles::is_weak_global_handle((jobject) addr)) {
1038    st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
1039    return;
1040  }
1041#ifndef PRODUCT
1042  // we don't keep the block list in product mode
1043  if (JNIHandleBlock::any_contains((jobject) addr)) {
1044    st->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
1045    return;
1046  }
1047#endif
1048
1049  for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
1050    // Check for privilege stack
1051    if (thread->privileged_stack_top() != NULL &&
1052        thread->privileged_stack_top()->contains(addr)) {
1053      st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
1054                   "for thread: " INTPTR_FORMAT, addr, thread);
1055      if (verbose) thread->print_on(st);
1056      return;
1057    }
1058    // If the addr is a java thread print information about that.
1059    if (addr == (address)thread) {
1060      if (verbose) {
1061        thread->print_on(st);
1062      } else {
1063        st->print_cr(INTPTR_FORMAT " is a thread", addr);
1064      }
1065      return;
1066    }
1067    // If the addr is in the stack region for this thread then report that
1068    // and print thread info
1069    if (thread->stack_base() >= addr &&
1070        addr > (thread->stack_base() - thread->stack_size())) {
1071      st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
1072                   INTPTR_FORMAT, addr, thread);
1073      if (verbose) thread->print_on(st);
1074      return;
1075    }
1076
1077  }
1078
1079#ifndef PRODUCT
1080  // Check if in metaspace.
1081  if (ClassLoaderDataGraph::contains((address)addr)) {
1082    // Use addr->print() from the debugger instead (not here)
1083    st->print_cr(INTPTR_FORMAT
1084                 " is pointing into metadata", addr);
1085    return;
1086  }
1087#endif
1088
1089  // Try an OS specific find
1090  if (os::find(addr, st)) {
1091    return;
1092  }
1093
1094  st->print_cr(INTPTR_FORMAT " is an unknown value", addr);
1095}
1096
1097// Looks like all platforms except IA64 can use the same function to check
1098// if C stack is walkable beyond current frame. The check for fp() is not
1099// necessary on Sparc, but it's harmless.
1100bool os::is_first_C_frame(frame* fr) {
1101#if defined(IA64) && !defined(_WIN32)
1102  // On IA64 we have to check if the callers bsp is still valid
1103  // (i.e. within the register stack bounds).
1104  // Notice: this only works for threads created by the VM and only if
1105  // we walk the current stack!!! If we want to be able to walk
1106  // arbitrary other threads, we'll have to somehow store the thread
1107  // object in the frame.
1108  Thread *thread = Thread::current();
1109  if ((address)fr->fp() <=
1110      thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
1111    // This check is a little hacky, because on Linux the first C
1112    // frame's ('start_thread') register stack frame starts at
1113    // "register_stack_base + 0x48" while on HPUX, the first C frame's
1114    // ('__pthread_bound_body') register stack frame seems to really
1115    // start at "register_stack_base".
1116    return true;
1117  } else {
1118    return false;
1119  }
1120#elif defined(IA64) && defined(_WIN32)
1121  return true;
1122#else
1123  // Load up sp, fp, sender sp and sender fp, check for reasonable values.
1124  // Check usp first, because if that's bad the other accessors may fault
1125  // on some architectures.  Ditto ufp second, etc.
1126  uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
1127  // sp on amd can be 32 bit aligned.
1128  uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
1129
1130  uintptr_t usp    = (uintptr_t)fr->sp();
1131  if ((usp & sp_align_mask) != 0) return true;
1132
1133  uintptr_t ufp    = (uintptr_t)fr->fp();
1134  if ((ufp & fp_align_mask) != 0) return true;
1135
1136  uintptr_t old_sp = (uintptr_t)fr->sender_sp();
1137  if ((old_sp & sp_align_mask) != 0) return true;
1138  if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
1139
1140  uintptr_t old_fp = (uintptr_t)fr->link();
1141  if ((old_fp & fp_align_mask) != 0) return true;
1142  if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
1143
1144  // stack grows downwards; if old_fp is below current fp or if the stack
1145  // frame is too large, either the stack is corrupted or fp is not saved
1146  // on stack (i.e. on x86, ebp may be used as general register). The stack
1147  // is not walkable beyond current frame.
1148  if (old_fp < ufp) return true;
1149  if (old_fp - ufp > 64 * K) return true;
1150
1151  return false;
1152#endif
1153}
1154
1155#ifdef ASSERT
1156extern "C" void test_random() {
1157  const double m = 2147483647;
1158  double mean = 0.0, variance = 0.0, t;
1159  long reps = 10000;
1160  unsigned long seed = 1;
1161
1162  tty->print_cr("seed %ld for %ld repeats...", seed, reps);
1163  os::init_random(seed);
1164  long num;
1165  for (int k = 0; k < reps; k++) {
1166    num = os::random();
1167    double u = (double)num / m;
1168    assert(u >= 0.0 && u <= 1.0, "bad random number!");
1169
1170    // calculate mean and variance of the random sequence
1171    mean += u;
1172    variance += (u*u);
1173  }
1174  mean /= reps;
1175  variance /= (reps - 1);
1176
1177  assert(num == 1043618065, "bad seed");
1178  tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
1179  tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
1180  const double eps = 0.0001;
1181  t = fabsd(mean - 0.5018);
1182  assert(t < eps, "bad mean");
1183  t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
1184  assert(t < eps, "bad variance");
1185}
1186#endif
1187
1188
1189// Set up the boot classpath.
1190
1191char* os::format_boot_path(const char* format_string,
1192                           const char* home,
1193                           int home_len,
1194                           char fileSep,
1195                           char pathSep) {
1196    assert((fileSep == '/' && pathSep == ':') ||
1197           (fileSep == '\\' && pathSep == ';'), "unexpected seperator chars");
1198
1199    // Scan the format string to determine the length of the actual
1200    // boot classpath, and handle platform dependencies as well.
1201    int formatted_path_len = 0;
1202    const char* p;
1203    for (p = format_string; *p != 0; ++p) {
1204        if (*p == '%') formatted_path_len += home_len - 1;
1205        ++formatted_path_len;
1206    }
1207
1208    char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
1209    if (formatted_path == NULL) {
1210        return NULL;
1211    }
1212
1213    // Create boot classpath from format, substituting separator chars and
1214    // java home directory.
1215    char* q = formatted_path;
1216    for (p = format_string; *p != 0; ++p) {
1217        switch (*p) {
1218        case '%':
1219            strcpy(q, home);
1220            q += home_len;
1221            break;
1222        case '/':
1223            *q++ = fileSep;
1224            break;
1225        case ':':
1226            *q++ = pathSep;
1227            break;
1228        default:
1229            *q++ = *p;
1230        }
1231    }
1232    *q = '\0';
1233
1234    assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1235    return formatted_path;
1236}
1237
1238
1239bool os::set_boot_path(char fileSep, char pathSep) {
1240    const char* home = Arguments::get_java_home();
1241    int home_len = (int)strlen(home);
1242
1243    static const char* meta_index_dir_format = "%/lib/";
1244    static const char* meta_index_format = "%/lib/meta-index";
1245    char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
1246    if (meta_index == NULL) return false;
1247    char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
1248    if (meta_index_dir == NULL) return false;
1249    Arguments::set_meta_index_path(meta_index, meta_index_dir);
1250
1251    // Any modification to the JAR-file list, for the boot classpath must be
1252    // aligned with install/install/make/common/Pack.gmk. Note: boot class
1253    // path class JARs, are stripped for StackMapTable to reduce download size.
1254    static const char classpath_format[] =
1255        "%/lib/resources.jar:"
1256        "%/lib/rt.jar:"
1257        "%/lib/sunrsasign.jar:"
1258        "%/lib/jsse.jar:"
1259        "%/lib/jce.jar:"
1260        "%/lib/charsets.jar:"
1261        "%/lib/jfr.jar:"
1262#ifdef __APPLE__
1263        "%/lib/JObjC.jar:"
1264#endif
1265        "%/classes";
1266    char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
1267    if (sysclasspath == NULL) return false;
1268    Arguments::set_sysclasspath(sysclasspath);
1269
1270    return true;
1271}
1272
1273/*
1274 * Splits a path, based on its separator, the number of
1275 * elements is returned back in n.
1276 * It is the callers responsibility to:
1277 *   a> check the value of n, and n may be 0.
1278 *   b> ignore any empty path elements
1279 *   c> free up the data.
1280 */
1281char** os::split_path(const char* path, int* n) {
1282  *n = 0;
1283  if (path == NULL || strlen(path) == 0) {
1284    return NULL;
1285  }
1286  const char psepchar = *os::path_separator();
1287  char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
1288  if (inpath == NULL) {
1289    return NULL;
1290  }
1291  strcpy(inpath, path);
1292  int count = 1;
1293  char* p = strchr(inpath, psepchar);
1294  // Get a count of elements to allocate memory
1295  while (p != NULL) {
1296    count++;
1297    p++;
1298    p = strchr(p, psepchar);
1299  }
1300  char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
1301  if (opath == NULL) {
1302    return NULL;
1303  }
1304
1305  // do the actual splitting
1306  p = inpath;
1307  for (int i = 0 ; i < count ; i++) {
1308    size_t len = strcspn(p, os::path_separator());
1309    if (len > JVM_MAXPATHLEN) {
1310      return NULL;
1311    }
1312    // allocate the string and add terminator storage
1313    char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
1314    if (s == NULL) {
1315      return NULL;
1316    }
1317    strncpy(s, p, len);
1318    s[len] = '\0';
1319    opath[i] = s;
1320    p += len + 1;
1321  }
1322  FREE_C_HEAP_ARRAY(char, inpath, mtInternal);
1323  *n = count;
1324  return opath;
1325}
1326
1327void os::set_memory_serialize_page(address page) {
1328  int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
1329  _mem_serialize_page = (volatile int32_t *)page;
1330  // We initialize the serialization page shift count here
1331  // We assume a cache line size of 64 bytes
1332  assert(SerializePageShiftCount == count,
1333         "thread size changed, fix SerializePageShiftCount constant");
1334  set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
1335}
1336
1337static volatile intptr_t SerializePageLock = 0;
1338
1339// This method is called from signal handler when SIGSEGV occurs while the current
1340// thread tries to store to the "read-only" memory serialize page during state
1341// transition.
1342void os::block_on_serialize_page_trap() {
1343  if (TraceSafepoint) {
1344    tty->print_cr("Block until the serialize page permission restored");
1345  }
1346  // When VMThread is holding the SerializePageLock during modifying the
1347  // access permission of the memory serialize page, the following call
1348  // will block until the permission of that page is restored to rw.
1349  // Generally, it is unsafe to manipulate locks in signal handlers, but in
1350  // this case, it's OK as the signal is synchronous and we know precisely when
1351  // it can occur.
1352  Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
1353  Thread::muxRelease(&SerializePageLock);
1354}
1355
1356// Serialize all thread state variables
1357void os::serialize_thread_states() {
1358  // On some platforms such as Solaris & Linux, the time duration of the page
1359  // permission restoration is observed to be much longer than expected  due to
1360  // scheduler starvation problem etc. To avoid the long synchronization
1361  // time and expensive page trap spinning, 'SerializePageLock' is used to block
1362  // the mutator thread if such case is encountered. See bug 6546278 for details.
1363  Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
1364  os::protect_memory((char *)os::get_memory_serialize_page(),
1365                     os::vm_page_size(), MEM_PROT_READ);
1366  os::protect_memory((char *)os::get_memory_serialize_page(),
1367                     os::vm_page_size(), MEM_PROT_RW);
1368  Thread::muxRelease(&SerializePageLock);
1369}
1370
1371// Returns true if the current stack pointer is above the stack shadow
1372// pages, false otherwise.
1373
1374bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
1375  assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
1376  address sp = current_stack_pointer();
1377  // Check if we have StackShadowPages above the yellow zone.  This parameter
1378  // is dependent on the depth of the maximum VM call stack possible from
1379  // the handler for stack overflow.  'instanceof' in the stack overflow
1380  // handler or a println uses at least 8k stack of VM and native code
1381  // respectively.
1382  const int framesize_in_bytes =
1383    Interpreter::size_top_interpreter_activation(method()) * wordSize;
1384  int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
1385                      * vm_page_size()) + framesize_in_bytes;
1386  // The very lower end of the stack
1387  address stack_limit = thread->stack_base() - thread->stack_size();
1388  return (sp > (stack_limit + reserved_area));
1389}
1390
1391size_t os::page_size_for_region(size_t region_min_size, size_t region_max_size,
1392                                uint min_pages)
1393{
1394  assert(min_pages > 0, "sanity");
1395  if (UseLargePages) {
1396    const size_t max_page_size = region_max_size / min_pages;
1397
1398    for (unsigned int i = 0; _page_sizes[i] != 0; ++i) {
1399      const size_t sz = _page_sizes[i];
1400      const size_t mask = sz - 1;
1401      if ((region_min_size & mask) == 0 && (region_max_size & mask) == 0) {
1402        // The largest page size with no fragmentation.
1403        return sz;
1404      }
1405
1406      if (sz <= max_page_size) {
1407        // The largest page size that satisfies the min_pages requirement.
1408        return sz;
1409      }
1410    }
1411  }
1412
1413  return vm_page_size();
1414}
1415
1416#ifndef PRODUCT
1417void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
1418{
1419  if (TracePageSizes) {
1420    tty->print("%s: ", str);
1421    for (int i = 0; i < count; ++i) {
1422      tty->print(" " SIZE_FORMAT, page_sizes[i]);
1423    }
1424    tty->cr();
1425  }
1426}
1427
1428void os::trace_page_sizes(const char* str, const size_t region_min_size,
1429                          const size_t region_max_size, const size_t page_size,
1430                          const char* base, const size_t size)
1431{
1432  if (TracePageSizes) {
1433    tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
1434                  " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
1435                  " size=" SIZE_FORMAT,
1436                  str, region_min_size, region_max_size,
1437                  page_size, base, size);
1438  }
1439}
1440#endif  // #ifndef PRODUCT
1441
1442// This is the working definition of a server class machine:
1443// >= 2 physical CPU's and >=2GB of memory, with some fuzz
1444// because the graphics memory (?) sometimes masks physical memory.
1445// If you want to change the definition of a server class machine
1446// on some OS or platform, e.g., >=4GB on Windohs platforms,
1447// then you'll have to parameterize this method based on that state,
1448// as was done for logical processors here, or replicate and
1449// specialize this method for each platform.  (Or fix os to have
1450// some inheritance structure and use subclassing.  Sigh.)
1451// If you want some platform to always or never behave as a server
1452// class machine, change the setting of AlwaysActAsServerClassMachine
1453// and NeverActAsServerClassMachine in globals*.hpp.
1454bool os::is_server_class_machine() {
1455  // First check for the early returns
1456  if (NeverActAsServerClassMachine) {
1457    return false;
1458  }
1459  if (AlwaysActAsServerClassMachine) {
1460    return true;
1461  }
1462  // Then actually look at the machine
1463  bool         result            = false;
1464  const unsigned int    server_processors = 2;
1465  const julong server_memory     = 2UL * G;
1466  // We seem not to get our full complement of memory.
1467  //     We allow some part (1/8?) of the memory to be "missing",
1468  //     based on the sizes of DIMMs, and maybe graphics cards.
1469  const julong missing_memory   = 256UL * M;
1470
1471  /* Is this a server class machine? */
1472  if ((os::active_processor_count() >= (int)server_processors) &&
1473      (os::physical_memory() >= (server_memory - missing_memory))) {
1474    const unsigned int logical_processors =
1475      VM_Version::logical_processors_per_package();
1476    if (logical_processors > 1) {
1477      const unsigned int physical_packages =
1478        os::active_processor_count() / logical_processors;
1479      if (physical_packages > server_processors) {
1480        result = true;
1481      }
1482    } else {
1483      result = true;
1484    }
1485  }
1486  return result;
1487}
1488
1489void os::SuspendedThreadTask::run() {
1490  assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
1491  internal_do_task();
1492  _done = true;
1493}
1494
1495bool os::create_stack_guard_pages(char* addr, size_t bytes) {
1496  return os::pd_create_stack_guard_pages(addr, bytes);
1497}
1498
1499char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
1500  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1501  if (result != NULL) {
1502    MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
1503  }
1504
1505  return result;
1506}
1507
1508char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
1509   MEMFLAGS flags) {
1510  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1511  if (result != NULL) {
1512    MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
1513    MemTracker::record_virtual_memory_type((address)result, flags);
1514  }
1515
1516  return result;
1517}
1518
1519char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
1520  char* result = pd_attempt_reserve_memory_at(bytes, addr);
1521  if (result != NULL) {
1522    MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
1523  }
1524  return result;
1525}
1526
1527void os::split_reserved_memory(char *base, size_t size,
1528                                 size_t split, bool realloc) {
1529  pd_split_reserved_memory(base, size, split, realloc);
1530}
1531
1532bool os::commit_memory(char* addr, size_t bytes, bool executable) {
1533  bool res = pd_commit_memory(addr, bytes, executable);
1534  if (res) {
1535    MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1536  }
1537  return res;
1538}
1539
1540bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1541                              bool executable) {
1542  bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
1543  if (res) {
1544    MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1545  }
1546  return res;
1547}
1548
1549void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
1550                               const char* mesg) {
1551  pd_commit_memory_or_exit(addr, bytes, executable, mesg);
1552  MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1553}
1554
1555void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
1556                               bool executable, const char* mesg) {
1557  os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
1558  MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1559}
1560
1561bool os::uncommit_memory(char* addr, size_t bytes) {
1562  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_uncommit_tracker();
1563  bool res = pd_uncommit_memory(addr, bytes);
1564  if (res) {
1565    tkr.record((address)addr, bytes);
1566  } else {
1567    tkr.discard();
1568  }
1569  return res;
1570}
1571
1572bool os::release_memory(char* addr, size_t bytes) {
1573  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1574  bool res = pd_release_memory(addr, bytes);
1575  if (res) {
1576    tkr.record((address)addr, bytes);
1577  } else {
1578    tkr.discard();
1579  }
1580  return res;
1581}
1582
1583
1584char* os::map_memory(int fd, const char* file_name, size_t file_offset,
1585                           char *addr, size_t bytes, bool read_only,
1586                           bool allow_exec) {
1587  char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
1588  if (result != NULL) {
1589    MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, mtNone, CALLER_PC);
1590  }
1591  return result;
1592}
1593
1594char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
1595                             char *addr, size_t bytes, bool read_only,
1596                             bool allow_exec) {
1597  return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
1598                    read_only, allow_exec);
1599}
1600
1601bool os::unmap_memory(char *addr, size_t bytes) {
1602  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1603  bool result = pd_unmap_memory(addr, bytes);
1604  if (result) {
1605    tkr.record((address)addr, bytes);
1606  } else {
1607    tkr.discard();
1608  }
1609  return result;
1610}
1611
1612void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
1613  pd_free_memory(addr, bytes, alignment_hint);
1614}
1615
1616void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1617  pd_realign_memory(addr, bytes, alignment_hint);
1618}
1619
1620#ifndef TARGET_OS_FAMILY_windows
1621/* try to switch state from state "from" to state "to"
1622 * returns the state set after the method is complete
1623 */
1624os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
1625                                                         os::SuspendResume::State to)
1626{
1627  os::SuspendResume::State result =
1628    (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
1629  if (result == from) {
1630    // success
1631    return to;
1632  }
1633  return result;
1634}
1635#endif
1636