os.cpp revision 4802:f2110083203d
155714Skris/*
255714Skris * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
355714Skris * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
455714Skris *
555714Skris * This code is free software; you can redistribute it and/or modify it
655714Skris * under the terms of the GNU General Public License version 2 only, as
755714Skris * published by the Free Software Foundation.
855714Skris *
955714Skris * This code is distributed in the hope that it will be useful, but WITHOUT
1055714Skris * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
1155714Skris * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
1255714Skris * version 2 for more details (a copy is included in the LICENSE file that
1355714Skris * accompanied this code).
1455714Skris *
1555714Skris * You should have received a copy of the GNU General Public License version
1655714Skris * 2 along with this work; if not, write to the Free Software Foundation,
1755714Skris * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
1855714Skris *
1955714Skris * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
2055714Skris * or visit www.oracle.com if you need additional information or have any
2155714Skris * questions.
2255714Skris *
2355714Skris */
2455714Skris
2555714Skris#include "precompiled.hpp"
2655714Skris#include "classfile/classLoader.hpp"
2755714Skris#include "classfile/javaClasses.hpp"
2855714Skris#include "classfile/systemDictionary.hpp"
2955714Skris#include "classfile/vmSymbols.hpp"
3055714Skris#include "code/icBuffer.hpp"
3155714Skris#include "code/vtableStubs.hpp"
3255714Skris#include "gc_implementation/shared/vmGCOperations.hpp"
3355714Skris#include "interpreter/interpreter.hpp"
3455714Skris#include "memory/allocation.inline.hpp"
3555714Skris#include "oops/oop.inline.hpp"
3655714Skris#include "prims/jvm.h"
3755714Skris#include "prims/jvm_misc.hpp"
3855714Skris#include "prims/privilegedStack.hpp"
3955714Skris#include "runtime/arguments.hpp"
4055714Skris#include "runtime/frame.inline.hpp"
4155714Skris#include "runtime/interfaceSupport.hpp"
4255714Skris#include "runtime/java.hpp"
4355714Skris#include "runtime/javaCalls.hpp"
4455714Skris#include "runtime/mutexLocker.hpp"
4555714Skris#include "runtime/os.hpp"
4655714Skris#include "runtime/stubRoutines.hpp"
4755714Skris#include "runtime/thread.inline.hpp"
4855714Skris#include "services/attachListener.hpp"
4955714Skris#include "services/memTracker.hpp"
5055714Skris#include "services/threadService.hpp"
5155714Skris#include "utilities/defaultStream.hpp"
5255714Skris#include "utilities/events.hpp"
5355714Skris#ifdef TARGET_OS_FAMILY_linux
5455714Skris# include "os_linux.inline.hpp"
5555714Skris#endif
5655714Skris#ifdef TARGET_OS_FAMILY_solaris
5755714Skris# include "os_solaris.inline.hpp"
5855714Skris#endif
59127128Snectar#ifdef TARGET_OS_FAMILY_windows
60246772Sjkim# include "os_windows.inline.hpp"
61160814Ssimon#endif
62246772Sjkim#ifdef TARGET_OS_FAMILY_bsd
63127128Snectar# include "os_bsd.inline.hpp"
6455714Skris#endif
6555714Skris
6655714Skris# include <signal.h>
6755714Skris
6855714SkrisOSThread*         os::_starting_thread    = NULL;
69109998Smarkmaddress           os::_polling_page       = NULL;
70109998Smarkmvolatile int32_t* os::_mem_serialize_page = NULL;
71109998Smarkmuintptr_t         os::_serialize_page_mask = 0;
72127128Snectarlong              os::_rand_seed          = 1;
73109998Smarkmint               os::_processor_count    = 0;
74109998Smarkmsize_t            os::_page_sizes[os::page_sizes_max];
7559191Skris
7659191Skris#ifndef PRODUCT
7759191Skrisjulong os::num_mallocs = 0;         // # of calls to malloc/realloc
7859191Skrisjulong os::alloc_bytes = 0;         // # of bytes allocated
7959191Skrisjulong os::num_frees = 0;           // # of calls to free
80238405Sjkimjulong os::free_bytes = 0;          // # of bytes freed
8159191Skris#endif
82279264Sdelphij
8359191Skrisstatic juint cur_malloc_words = 0;  // current size for MallocMaxTestWords
8459191Skris
85194206Ssimonvoid os_init_globals() {
86194206Ssimon  // Called from init_globals().
87194206Ssimon  // See Threads::create_vm() in thread.cpp, and init.cpp.
88194206Ssimon  os::init_globals();
89194206Ssimon}
90194206Ssimon
91194206Ssimon// Fill in buffer with current local time as an ISO-8601 string.
9255714Skris// E.g., yyyy-mm-ddThh:mm:ss-zzzz.
9355714Skris// Returns buffer, or NULL if it failed.
9455714Skris// This would mostly be a call to
9555714Skris//     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
96194206Ssimon// except that on Windows the %z behaves badly, so we do it ourselves.
97194206Ssimon// Also, people wanted milliseconds on there,
98194206Ssimon// and strftime doesn't do milliseconds.
99194206Ssimonchar* os::iso8601_time(char* buffer, size_t buffer_length) {
100194206Ssimon  // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
101194206Ssimon  //                                      1         2
102194206Ssimon  //                             12345678901234567890123456789
103194206Ssimon  static const char* iso8601_format =
10459191Skris    "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
10555714Skris  static const size_t needed_buffer = 29;
10672613Skris
10772613Skris  // Sanity check the arguments
10872613Skris  if (buffer == NULL) {
10955714Skris    assert(false, "NULL buffer");
11055714Skris    return NULL;
11159191Skris  }
11259191Skris  if (buffer_length < needed_buffer) {
11359191Skris    assert(false, "buffer_length too small");
11455714Skris    return NULL;
115238405Sjkim  }
11655714Skris  // Get the current time
117238405Sjkim  jlong milliseconds_since_19700101 = javaTimeMillis();
11855714Skris  const int milliseconds_per_microsecond = 1000;
11955714Skris  const time_t seconds_since_19700101 =
12055714Skris    milliseconds_since_19700101 / milliseconds_per_microsecond;
12155714Skris  const int milliseconds_after_second =
12255714Skris    milliseconds_since_19700101 % milliseconds_per_microsecond;
123238405Sjkim  // Convert the time value to a tm and timezone variable
124205128Ssimon  struct tm time_struct;
125205128Ssimon  if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
126205128Ssimon    assert(false, "Failed localtime_pd");
127205128Ssimon    return NULL;
128205128Ssimon  }
129205128Ssimon#if defined(_ALLBSD_SOURCE)
130205128Ssimon  const time_t zone = (time_t) time_struct.tm_gmtoff;
131205128Ssimon#else
132194206Ssimon  const time_t zone = timezone;
133160814Ssimon#endif
134238405Sjkim
13559191Skris  // If daylight savings time is in effect,
13655714Skris  // we are 1 hour East of our time zone
137194206Ssimon  const time_t seconds_per_minute = 60;
138194206Ssimon  const time_t minutes_per_hour = 60;
139194206Ssimon  const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
14055714Skris  time_t UTC_to_local = zone;
141194206Ssimon  if (time_struct.tm_isdst > 0) {
14255714Skris    UTC_to_local = UTC_to_local - seconds_per_hour;
143238405Sjkim  }
144238405Sjkim  // Compute the time zone offset.
145127128Snectar  //    localtime_pd() sets timezone to the difference (in seconds)
146127128Snectar  //    between UTC and and local time.
147127128Snectar  //    ISO 8601 says we need the difference between local time and UTC,
148127128Snectar  //    we change the sign of the localtime_pd() result.
149127128Snectar  const time_t local_to_UTC = -(UTC_to_local);
150238405Sjkim  // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
151127128Snectar  char sign_local_to_UTC = '+';
152238405Sjkim  time_t abs_local_to_UTC = local_to_UTC;
153127128Snectar  if (local_to_UTC < 0) {
154127128Snectar    sign_local_to_UTC = '-';
15555714Skris    abs_local_to_UTC = -(abs_local_to_UTC);
15655714Skris  }
15759191Skris  // Convert time zone offset seconds to hours and minutes.
15859191Skris  const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
15959191Skris  const time_t zone_min =
16059191Skris    ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
16155714Skris
16255714Skris  // Print an ISO 8601 date and time stamp into the buffer
163194206Ssimon  const int year = 1900 + time_struct.tm_year;
164194206Ssimon  const int month = 1 + time_struct.tm_mon;
165194206Ssimon  const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
16655714Skris                                   year,
167160814Ssimon                                   month,
168194206Ssimon                                   time_struct.tm_mday,
16955714Skris                                   time_struct.tm_hour,
17059191Skris                                   time_struct.tm_min,
17159191Skris                                   time_struct.tm_sec,
17259191Skris                                   milliseconds_after_second,
17372613Skris                                   sign_local_to_UTC,
17459191Skris                                   zone_hours,
17555714Skris                                   zone_min);
17655714Skris  if (printed == 0) {
177109998Smarkm    assert(false, "Failed jio_printf");
17855714Skris    return NULL;
17955714Skris  }
18055714Skris  return buffer;
18155714Skris}
18255714Skris
18355714SkrisOSReturn os::set_priority(Thread* thread, ThreadPriority p) {
18455714Skris#ifdef ASSERT
18568651Skris  if (!(!thread->is_Java_thread() ||
18659191Skris         Thread::current() == thread  ||
18755714Skris         Threads_lock->owned_by_self()
188238405Sjkim         || thread->is_Compiler_thread()
189127128Snectar        )) {
19059191Skris    assert(false, "possibility of dangling Thread pointer");
191127128Snectar  }
192127128Snectar#endif
193205128Ssimon
194205128Ssimon  if (p >= MinPriority && p <= MaxPriority) {
195127128Snectar    int priority = java_to_os_priority[p];
196127128Snectar    return set_native_priority(thread, priority);
197127128Snectar  } else {
198127128Snectar    assert(false, "Should not happen");
199127128Snectar    return OS_ERR;
200127128Snectar  }
201127128Snectar}
202127128Snectar
203127128Snectar// The mapping from OS priority back to Java priority may be inexact because
204238405Sjkim// Java priorities can map M:1 with native priorities. If you want the definite
205127128Snectar// Java priority then use JavaThread::java_priority()
206238405SjkimOSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
207142425Snectar  int p;
208238405Sjkim  int os_prio;
209238405Sjkim  OSReturn ret = get_native_priority(thread, &os_prio);
210238405Sjkim  if (ret != OS_OK) return ret;
21168651Skris
21268651Skris  if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
213238405Sjkim    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
21468651Skris  } else {
21568651Skris    // niceness values are in reverse order
216142425Snectar    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
21759191Skris  }
218194206Ssimon  priority = (ThreadPriority)p;
219194206Ssimon  return OS_OK;
220194206Ssimon}
221194206Ssimon
222194206Ssimon
223194206Ssimon// --------------------- sun.misc.Signal (optional) ---------------------
224194206Ssimon
225194206Ssimon
226194206Ssimon// SIGBREAK is sent by the keyboard to query the VM state
227194206Ssimon#ifndef SIGBREAK
228194206Ssimon#define SIGBREAK SIGQUIT
229194206Ssimon#endif
230194206Ssimon
231194206Ssimon// sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
232194206Ssimon
233194206Ssimon
234194206Ssimonstatic void signal_thread_entry(JavaThread* thread, TRAPS) {
235194206Ssimon  os::set_priority(thread, NearMaxPriority);
236194206Ssimon  while (true) {
237194206Ssimon    int sig;
238194206Ssimon    {
239194206Ssimon      // FIXME : Currently we have not decieded what should be the status
24068651Skris      //         for this java thread blocked here. Once we decide about
241194206Ssimon      //         that we should fix this.
242194206Ssimon      sig = os::signal_wait();
243194206Ssimon    }
24468651Skris    if (sig == os::sigexitnum_pd()) {
245194206Ssimon       // Terminate the signal thread
24668651Skris       return;
24759191Skris    }
24859191Skris
24955714Skris    switch (sig) {
25059191Skris      case SIGBREAK: {
25155714Skris        // Check if the signal is a trigger to start the Attach Listener - in that
25255714Skris        // case don't print stack traces.
25355714Skris        if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
25455714Skris          continue;
25555714Skris        }
25659191Skris        // Print stack traces
25768651Skris        // Any SIGBREAK operations added here should make sure to flush
25855714Skris        // the output stream (e.g. tty->flush()) after output.  See 4803766.
25955714Skris        // Each module also prints an extra carriage return after its output.
26055714Skris        VM_PrintThreads op;
26155714Skris        VMThread::execute(&op);
26255714Skris        VM_PrintJNI jni_op;
26355714Skris        VMThread::execute(&jni_op);
26455714Skris        VM_FindDeadlocks op1(tty);
26555714Skris        VMThread::execute(&op1);
26659191Skris        Universe::print_heap_at_SIGBREAK();
26759191Skris        if (PrintClassHistogram) {
26855714Skris          VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */);
269109998Smarkm          VMThread::execute(&op1);
27055714Skris        }
27168651Skris        if (JvmtiExport::should_post_data_dump()) {
27255714Skris          JvmtiExport::post_data_dump();
27355714Skris        }
27476866Skris        break;
27555714Skris      }
27676866Skris      default: {
277215697Ssimon        // Dispatch the signal to java
278127128Snectar        HandleMark hm(THREAD);
279127128Snectar        Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
28055714Skris        KlassHandle klass (THREAD, k);
28176866Skris        if (klass.not_null()) {
28276866Skris          JavaValue result(T_VOID);
283127128Snectar          JavaCallArguments args;
28455714Skris          args.push_int(sig);
285127128Snectar          JavaCalls::call_static(
286109998Smarkm            &result,
28755714Skris            klass,
28855714Skris            vmSymbols::dispatch_name(),
28955714Skris            vmSymbols::int_void_signature(),
29076866Skris            &args,
29176866Skris            THREAD
29279998Skris          );
29379998Skris        }
29479998Skris        if (HAS_PENDING_EXCEPTION) {
29579998Skris          // tty is initialized early so we don't expect it to be null, but
29679998Skris          // if it is we can't risk doing an initialization that might
29779998Skris          // trigger additional out-of-memory conditions
298127128Snectar          if (tty != NULL) {
29976866Skris            char klass_name[256];
300127128Snectar            char tmp_sig_name[16];
301109998Smarkm            const char* sig_name = "UNKNOWN";
302127128Snectar            InstanceKlass::cast(PENDING_EXCEPTION->klass())->
30355714Skris              name()->as_klass_external_name(klass_name, 256);
304127128Snectar            if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
30576866Skris              sig_name = tmp_sig_name;
30679998Skris            warning("Exception %s occurred dispatching signal %s to handler"
30776866Skris                    "- the VM may need to be forcibly terminated",
30855714Skris                    klass_name, sig_name );
309127128Snectar          }
310127128Snectar          CLEAR_PENDING_EXCEPTION;
311127128Snectar        }
312127128Snectar      }
313127128Snectar    }
314127128Snectar  }
315127128Snectar}
316127128Snectar
317127128Snectar
318238405Sjkimvoid os::signal_init() {
319127128Snectar  if (!ReduceSignalUsage) {
320127128Snectar    // Setup JavaThread for processing signals
321127128Snectar    EXCEPTION_MARK;
322127128Snectar    Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
323127128Snectar    instanceKlassHandle klass (THREAD, k);
324127128Snectar    instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
325127128Snectar
326127128Snectar    const char thread_name[] = "Signal Dispatcher";
327127128Snectar    Handle string = java_lang_String::create_from_str(thread_name, CHECK);
328127128Snectar
32955714Skris    // Initialize thread_oop to put it into the system threadGroup
330    Handle thread_group (THREAD, Universe::system_thread_group());
331    JavaValue result(T_VOID);
332    JavaCalls::call_special(&result, thread_oop,
333                           klass,
334                           vmSymbols::object_initializer_name(),
335                           vmSymbols::threadgroup_string_void_signature(),
336                           thread_group,
337                           string,
338                           CHECK);
339
340    KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
341    JavaCalls::call_special(&result,
342                            thread_group,
343                            group,
344                            vmSymbols::add_method_name(),
345                            vmSymbols::thread_void_signature(),
346                            thread_oop,         // ARG 1
347                            CHECK);
348
349    os::signal_init_pd();
350
351    { MutexLocker mu(Threads_lock);
352      JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
353
354      // At this point it may be possible that no osthread was created for the
355      // JavaThread due to lack of memory. We would have to throw an exception
356      // in that case. However, since this must work and we do not allow
357      // exceptions anyway, check and abort if this fails.
358      if (signal_thread == NULL || signal_thread->osthread() == NULL) {
359        vm_exit_during_initialization("java.lang.OutOfMemoryError",
360                                      "unable to create new native thread");
361      }
362
363      java_lang_Thread::set_thread(thread_oop(), signal_thread);
364      java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
365      java_lang_Thread::set_daemon(thread_oop());
366
367      signal_thread->set_threadObj(thread_oop());
368      Threads::add(signal_thread);
369      Thread::start(signal_thread);
370    }
371    // Handle ^BREAK
372    os::signal(SIGBREAK, os::user_handler());
373  }
374}
375
376
377void os::terminate_signal_thread() {
378  if (!ReduceSignalUsage)
379    signal_notify(sigexitnum_pd());
380}
381
382
383// --------------------- loading libraries ---------------------
384
385typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
386extern struct JavaVM_ main_vm;
387
388static void* _native_java_library = NULL;
389
390void* os::native_java_library() {
391  if (_native_java_library == NULL) {
392    char buffer[JVM_MAXPATHLEN];
393    char ebuf[1024];
394
395    // Try to load verify dll first. In 1.3 java dll depends on it and is not
396    // always able to find it when the loading executable is outside the JDK.
397    // In order to keep working with 1.2 we ignore any loading errors.
398    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
399                       "verify")) {
400      dll_load(buffer, ebuf, sizeof(ebuf));
401    }
402
403    // Load java dll
404    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
405                       "java")) {
406      _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
407    }
408    if (_native_java_library == NULL) {
409      vm_exit_during_initialization("Unable to load native library", ebuf);
410    }
411
412#if defined(__OpenBSD__)
413    // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
414    // ignore errors
415    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
416                       "net")) {
417      dll_load(buffer, ebuf, sizeof(ebuf));
418    }
419#endif
420  }
421  static jboolean onLoaded = JNI_FALSE;
422  if (onLoaded) {
423    // We may have to wait to fire OnLoad until TLS is initialized.
424    if (ThreadLocalStorage::is_initialized()) {
425      // The JNI_OnLoad handling is normally done by method load in
426      // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
427      // explicitly so we have to check for JNI_OnLoad as well
428      const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
429      JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
430          JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
431      if (JNI_OnLoad != NULL) {
432        JavaThread* thread = JavaThread::current();
433        ThreadToNativeFromVM ttn(thread);
434        HandleMark hm(thread);
435        jint ver = (*JNI_OnLoad)(&main_vm, NULL);
436        onLoaded = JNI_TRUE;
437        if (!Threads::is_supported_jni_version_including_1_1(ver)) {
438          vm_exit_during_initialization("Unsupported JNI version");
439        }
440      }
441    }
442  }
443  return _native_java_library;
444}
445
446// --------------------- heap allocation utilities ---------------------
447
448char *os::strdup(const char *str, MEMFLAGS flags) {
449  size_t size = strlen(str);
450  char *dup_str = (char *)malloc(size + 1, flags);
451  if (dup_str == NULL) return NULL;
452  strcpy(dup_str, str);
453  return dup_str;
454}
455
456
457
458#ifdef ASSERT
459#define space_before             (MallocCushion + sizeof(double))
460#define space_after              MallocCushion
461#define size_addr_from_base(p)   (size_t*)(p + space_before - sizeof(size_t))
462#define size_addr_from_obj(p)    ((size_t*)p - 1)
463// MallocCushion: size of extra cushion allocated around objects with +UseMallocOnly
464// NB: cannot be debug variable, because these aren't set from the command line until
465// *after* the first few allocs already happened
466#define MallocCushion            16
467#else
468#define space_before             0
469#define space_after              0
470#define size_addr_from_base(p)   should not use w/o ASSERT
471#define size_addr_from_obj(p)    should not use w/o ASSERT
472#define MallocCushion            0
473#endif
474#define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
475
476#ifdef ASSERT
477inline size_t get_size(void* obj) {
478  size_t size = *size_addr_from_obj(obj);
479  if (size < 0) {
480    fatal(err_msg("free: size field of object #" PTR_FORMAT " was overwritten ("
481                  SIZE_FORMAT ")", obj, size));
482  }
483  return size;
484}
485
486u_char* find_cushion_backwards(u_char* start) {
487  u_char* p = start;
488  while (p[ 0] != badResourceValue || p[-1] != badResourceValue ||
489         p[-2] != badResourceValue || p[-3] != badResourceValue) p--;
490  // ok, we have four consecutive marker bytes; find start
491  u_char* q = p - 4;
492  while (*q == badResourceValue) q--;
493  return q + 1;
494}
495
496u_char* find_cushion_forwards(u_char* start) {
497  u_char* p = start;
498  while (p[0] != badResourceValue || p[1] != badResourceValue ||
499         p[2] != badResourceValue || p[3] != badResourceValue) p++;
500  // ok, we have four consecutive marker bytes; find end of cushion
501  u_char* q = p + 4;
502  while (*q == badResourceValue) q++;
503  return q - MallocCushion;
504}
505
506void print_neighbor_blocks(void* ptr) {
507  // find block allocated before ptr (not entirely crash-proof)
508  if (MallocCushion < 4) {
509    tty->print_cr("### cannot find previous block (MallocCushion < 4)");
510    return;
511  }
512  u_char* start_of_this_block = (u_char*)ptr - space_before;
513  u_char* end_of_prev_block_data = start_of_this_block - space_after -1;
514  // look for cushion in front of prev. block
515  u_char* start_of_prev_block = find_cushion_backwards(end_of_prev_block_data);
516  ptrdiff_t size = *size_addr_from_base(start_of_prev_block);
517  u_char* obj = start_of_prev_block + space_before;
518  if (size <= 0 ) {
519    // start is bad; mayhave been confused by OS data inbetween objects
520    // search one more backwards
521    start_of_prev_block = find_cushion_backwards(start_of_prev_block);
522    size = *size_addr_from_base(start_of_prev_block);
523    obj = start_of_prev_block + space_before;
524  }
525
526  if (start_of_prev_block + space_before + size + space_after == start_of_this_block) {
527    tty->print_cr("### previous object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
528  } else {
529    tty->print_cr("### previous object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
530  }
531
532  // now find successor block
533  u_char* start_of_next_block = (u_char*)ptr + *size_addr_from_obj(ptr) + space_after;
534  start_of_next_block = find_cushion_forwards(start_of_next_block);
535  u_char* next_obj = start_of_next_block + space_before;
536  ptrdiff_t next_size = *size_addr_from_base(start_of_next_block);
537  if (start_of_next_block[0] == badResourceValue &&
538      start_of_next_block[1] == badResourceValue &&
539      start_of_next_block[2] == badResourceValue &&
540      start_of_next_block[3] == badResourceValue) {
541    tty->print_cr("### next object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
542  } else {
543    tty->print_cr("### next object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
544  }
545}
546
547
548void report_heap_error(void* memblock, void* bad, const char* where) {
549  tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
550  tty->print_cr("## memory stomp: byte at " PTR_FORMAT " %s object " PTR_FORMAT, bad, where, memblock);
551  print_neighbor_blocks(memblock);
552  fatal("memory stomping error");
553}
554
555void verify_block(void* memblock) {
556  size_t size = get_size(memblock);
557  if (MallocCushion) {
558    u_char* ptr = (u_char*)memblock - space_before;
559    for (int i = 0; i < MallocCushion; i++) {
560      if (ptr[i] != badResourceValue) {
561        report_heap_error(memblock, ptr+i, "in front of");
562      }
563    }
564    u_char* end = (u_char*)memblock + size + space_after;
565    for (int j = -MallocCushion; j < 0; j++) {
566      if (end[j] != badResourceValue) {
567        report_heap_error(memblock, end+j, "after");
568      }
569    }
570  }
571}
572#endif
573
574//
575// This function supports testing of the malloc out of memory
576// condition without really running the system out of memory.
577//
578static u_char* testMalloc(size_t alloc_size) {
579  assert(MallocMaxTestWords > 0, "sanity check");
580
581  if ((cur_malloc_words + (alloc_size / BytesPerWord)) > MallocMaxTestWords) {
582    return NULL;
583  }
584
585  u_char* ptr = (u_char*)::malloc(alloc_size);
586
587  if (ptr != NULL) {
588    Atomic::add(((jint) (alloc_size / BytesPerWord)),
589                (volatile jint *) &cur_malloc_words);
590  }
591  return ptr;
592}
593
594void* os::malloc(size_t size, MEMFLAGS memflags, address caller) {
595  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
596  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
597
598  if (size == 0) {
599    // return a valid pointer if size is zero
600    // if NULL is returned the calling functions assume out of memory.
601    size = 1;
602  }
603
604  const size_t alloc_size = size + space_before + space_after;
605
606  if (size > alloc_size) { // Check for rollover.
607    return NULL;
608  }
609
610  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
611
612  u_char* ptr;
613
614  if (MallocMaxTestWords > 0) {
615    ptr = testMalloc(alloc_size);
616  } else {
617    ptr = (u_char*)::malloc(alloc_size);
618  }
619
620#ifdef ASSERT
621  if (ptr == NULL) return NULL;
622  if (MallocCushion) {
623    for (u_char* p = ptr; p < ptr + MallocCushion; p++) *p = (u_char)badResourceValue;
624    u_char* end = ptr + space_before + size;
625    for (u_char* pq = ptr+MallocCushion; pq < end; pq++) *pq = (u_char)uninitBlockPad;
626    for (u_char* q = end; q < end + MallocCushion; q++) *q = (u_char)badResourceValue;
627  }
628  // put size just before data
629  *size_addr_from_base(ptr) = size;
630#endif
631  u_char* memblock = ptr + space_before;
632  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
633    tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
634    breakpoint();
635  }
636  debug_only(if (paranoid) verify_block(memblock));
637  if (PrintMalloc && tty != NULL) tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
638
639  // we do not track MallocCushion memory
640    MemTracker::record_malloc((address)memblock, size, memflags, caller == 0 ? CALLER_PC : caller);
641
642  return memblock;
643}
644
645
646void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, address caller) {
647#ifndef ASSERT
648  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
649  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
650  void* ptr = ::realloc(memblock, size);
651  if (ptr != NULL) {
652    MemTracker::record_realloc((address)memblock, (address)ptr, size, memflags,
653     caller == 0 ? CALLER_PC : caller);
654  }
655  return ptr;
656#else
657  if (memblock == NULL) {
658    return malloc(size, memflags, (caller == 0 ? CALLER_PC : caller));
659  }
660  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
661    tty->print_cr("os::realloc caught " PTR_FORMAT, memblock);
662    breakpoint();
663  }
664  verify_block(memblock);
665  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
666  if (size == 0) return NULL;
667  // always move the block
668  void* ptr = malloc(size, memflags, caller == 0 ? CALLER_PC : caller);
669  if (PrintMalloc) tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr);
670  // Copy to new memory if malloc didn't fail
671  if ( ptr != NULL ) {
672    memcpy(ptr, memblock, MIN2(size, get_size(memblock)));
673    if (paranoid) verify_block(ptr);
674    if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
675      tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
676      breakpoint();
677    }
678    free(memblock);
679  }
680  return ptr;
681#endif
682}
683
684
685void  os::free(void *memblock, MEMFLAGS memflags) {
686  NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
687#ifdef ASSERT
688  if (memblock == NULL) return;
689  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
690    if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock);
691    breakpoint();
692  }
693  verify_block(memblock);
694  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
695  // Added by detlefs.
696  if (MallocCushion) {
697    u_char* ptr = (u_char*)memblock - space_before;
698    for (u_char* p = ptr; p < ptr + MallocCushion; p++) {
699      guarantee(*p == badResourceValue,
700                "Thing freed should be malloc result.");
701      *p = (u_char)freeBlockPad;
702    }
703    size_t size = get_size(memblock);
704    inc_stat_counter(&free_bytes, size);
705    u_char* end = ptr + space_before + size;
706    for (u_char* q = end; q < end + MallocCushion; q++) {
707      guarantee(*q == badResourceValue,
708                "Thing freed should be malloc result.");
709      *q = (u_char)freeBlockPad;
710    }
711    if (PrintMalloc && tty != NULL)
712      fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)memblock);
713  } else if (PrintMalloc && tty != NULL) {
714    // tty->print_cr("os::free %p", memblock);
715    fprintf(stderr, "os::free " PTR_FORMAT "\n", (uintptr_t)memblock);
716  }
717#endif
718  MemTracker::record_free((address)memblock, memflags);
719
720  ::free((char*)memblock - space_before);
721}
722
723void os::init_random(long initval) {
724  _rand_seed = initval;
725}
726
727
728long os::random() {
729  /* standard, well-known linear congruential random generator with
730   * next_rand = (16807*seed) mod (2**31-1)
731   * see
732   * (1) "Random Number Generators: Good Ones Are Hard to Find",
733   *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
734   * (2) "Two Fast Implementations of the 'Minimal Standard' Random
735   *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
736  */
737  const long a = 16807;
738  const unsigned long m = 2147483647;
739  const long q = m / a;        assert(q == 127773, "weird math");
740  const long r = m % a;        assert(r == 2836, "weird math");
741
742  // compute az=2^31p+q
743  unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
744  unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
745  lo += (hi & 0x7FFF) << 16;
746
747  // if q overflowed, ignore the overflow and increment q
748  if (lo > m) {
749    lo &= m;
750    ++lo;
751  }
752  lo += hi >> 15;
753
754  // if (p+q) overflowed, ignore the overflow and increment (p+q)
755  if (lo > m) {
756    lo &= m;
757    ++lo;
758  }
759  return (_rand_seed = lo);
760}
761
762// The INITIALIZED state is distinguished from the SUSPENDED state because the
763// conditions in which a thread is first started are different from those in which
764// a suspension is resumed.  These differences make it hard for us to apply the
765// tougher checks when starting threads that we want to do when resuming them.
766// However, when start_thread is called as a result of Thread.start, on a Java
767// thread, the operation is synchronized on the Java Thread object.  So there
768// cannot be a race to start the thread and hence for the thread to exit while
769// we are working on it.  Non-Java threads that start Java threads either have
770// to do so in a context in which races are impossible, or should do appropriate
771// locking.
772
773void os::start_thread(Thread* thread) {
774  // guard suspend/resume
775  MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
776  OSThread* osthread = thread->osthread();
777  osthread->set_state(RUNNABLE);
778  pd_start_thread(thread);
779}
780
781//---------------------------------------------------------------------------
782// Helper functions for fatal error handler
783
784void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
785  assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
786
787  int cols = 0;
788  int cols_per_line = 0;
789  switch (unitsize) {
790    case 1: cols_per_line = 16; break;
791    case 2: cols_per_line = 8;  break;
792    case 4: cols_per_line = 4;  break;
793    case 8: cols_per_line = 2;  break;
794    default: return;
795  }
796
797  address p = start;
798  st->print(PTR_FORMAT ":   ", start);
799  while (p < end) {
800    switch (unitsize) {
801      case 1: st->print("%02x", *(u1*)p); break;
802      case 2: st->print("%04x", *(u2*)p); break;
803      case 4: st->print("%08x", *(u4*)p); break;
804      case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
805    }
806    p += unitsize;
807    cols++;
808    if (cols >= cols_per_line && p < end) {
809       cols = 0;
810       st->cr();
811       st->print(PTR_FORMAT ":   ", p);
812    } else {
813       st->print(" ");
814    }
815  }
816  st->cr();
817}
818
819void os::print_environment_variables(outputStream* st, const char** env_list,
820                                     char* buffer, int len) {
821  if (env_list) {
822    st->print_cr("Environment Variables:");
823
824    for (int i = 0; env_list[i] != NULL; i++) {
825      if (getenv(env_list[i], buffer, len)) {
826        st->print(env_list[i]);
827        st->print("=");
828        st->print_cr(buffer);
829      }
830    }
831  }
832}
833
834void os::print_cpu_info(outputStream* st) {
835  // cpu
836  st->print("CPU:");
837  st->print("total %d", os::processor_count());
838  // It's not safe to query number of active processors after crash
839  // st->print("(active %d)", os::active_processor_count());
840  st->print(" %s", VM_Version::cpu_features());
841  st->cr();
842  pd_print_cpu_info(st);
843}
844
845void os::print_date_and_time(outputStream *st) {
846  time_t tloc;
847  (void)time(&tloc);
848  st->print("time: %s", ctime(&tloc));  // ctime adds newline.
849
850  double t = os::elapsedTime();
851  // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
852  //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
853  //       before printf. We lost some precision, but who cares?
854  st->print_cr("elapsed time: %d seconds", (int)t);
855}
856
857// moved from debug.cpp (used to be find()) but still called from there
858// The verbose parameter is only set by the debug code in one case
859void os::print_location(outputStream* st, intptr_t x, bool verbose) {
860  address addr = (address)x;
861  CodeBlob* b = CodeCache::find_blob_unsafe(addr);
862  if (b != NULL) {
863    if (b->is_buffer_blob()) {
864      // the interpreter is generated into a buffer blob
865      InterpreterCodelet* i = Interpreter::codelet_containing(addr);
866      if (i != NULL) {
867        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", addr, (int)(addr - i->code_begin()));
868        i->print_on(st);
869        return;
870      }
871      if (Interpreter::contains(addr)) {
872        st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
873                     " (not bytecode specific)", addr);
874        return;
875      }
876      //
877      if (AdapterHandlerLibrary::contains(b)) {
878        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", addr, (int)(addr - b->code_begin()));
879        AdapterHandlerLibrary::print_handler_on(st, b);
880      }
881      // the stubroutines are generated into a buffer blob
882      StubCodeDesc* d = StubCodeDesc::desc_for(addr);
883      if (d != NULL) {
884        st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", addr, (int)(addr - d->begin()));
885        d->print_on(st);
886        st->cr();
887        return;
888      }
889      if (StubRoutines::contains(addr)) {
890        st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) "
891                     "stub routine", addr);
892        return;
893      }
894      // the InlineCacheBuffer is using stubs generated into a buffer blob
895      if (InlineCacheBuffer::contains(addr)) {
896        st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
897        return;
898      }
899      VtableStub* v = VtableStubs::stub_containing(addr);
900      if (v != NULL) {
901        st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", addr, (int)(addr - v->entry_point()));
902        v->print_on(st);
903        st->cr();
904        return;
905      }
906    }
907    nmethod* nm = b->as_nmethod_or_null();
908    if (nm != NULL) {
909      ResourceMark rm;
910      st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
911                addr, (int)(addr - nm->entry_point()), nm);
912      if (verbose) {
913        st->print(" for ");
914        nm->method()->print_value_on(st);
915      }
916      st->cr();
917      nm->print_nmethod(verbose);
918      return;
919    }
920    st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", addr, (int)(addr - b->code_begin()));
921    b->print_on(st);
922    return;
923  }
924
925  if (Universe::heap()->is_in(addr)) {
926    HeapWord* p = Universe::heap()->block_start(addr);
927    bool print = false;
928    // If we couldn't find it it just may mean that heap wasn't parseable
929    // See if we were just given an oop directly
930    if (p != NULL && Universe::heap()->block_is_obj(p)) {
931      print = true;
932    } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
933      p = (HeapWord*) addr;
934      print = true;
935    }
936    if (print) {
937      if (p == (HeapWord*) addr) {
938        st->print_cr(INTPTR_FORMAT " is an oop", addr);
939      } else {
940        st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, addr, p);
941      }
942      oop(p)->print_on(st);
943      return;
944    }
945  } else {
946    if (Universe::heap()->is_in_reserved(addr)) {
947      st->print_cr(INTPTR_FORMAT " is an unallocated location "
948                   "in the heap", addr);
949      return;
950    }
951  }
952  if (JNIHandles::is_global_handle((jobject) addr)) {
953    st->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
954    return;
955  }
956  if (JNIHandles::is_weak_global_handle((jobject) addr)) {
957    st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
958    return;
959  }
960#ifndef PRODUCT
961  // we don't keep the block list in product mode
962  if (JNIHandleBlock::any_contains((jobject) addr)) {
963    st->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
964    return;
965  }
966#endif
967
968  for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
969    // Check for privilege stack
970    if (thread->privileged_stack_top() != NULL &&
971        thread->privileged_stack_top()->contains(addr)) {
972      st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
973                   "for thread: " INTPTR_FORMAT, addr, thread);
974      if (verbose) thread->print_on(st);
975      return;
976    }
977    // If the addr is a java thread print information about that.
978    if (addr == (address)thread) {
979      if (verbose) {
980        thread->print_on(st);
981      } else {
982        st->print_cr(INTPTR_FORMAT " is a thread", addr);
983      }
984      return;
985    }
986    // If the addr is in the stack region for this thread then report that
987    // and print thread info
988    if (thread->stack_base() >= addr &&
989        addr > (thread->stack_base() - thread->stack_size())) {
990      st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
991                   INTPTR_FORMAT, addr, thread);
992      if (verbose) thread->print_on(st);
993      return;
994    }
995
996  }
997
998#ifndef PRODUCT
999  // Check if in metaspace.
1000  if (ClassLoaderDataGraph::contains((address)addr)) {
1001    // Use addr->print() from the debugger instead (not here)
1002    st->print_cr(INTPTR_FORMAT
1003                 " is pointing into metadata", addr);
1004    return;
1005  }
1006#endif
1007
1008  // Try an OS specific find
1009  if (os::find(addr, st)) {
1010    return;
1011  }
1012
1013  st->print_cr(INTPTR_FORMAT " is an unknown value", addr);
1014}
1015
1016// Looks like all platforms except IA64 can use the same function to check
1017// if C stack is walkable beyond current frame. The check for fp() is not
1018// necessary on Sparc, but it's harmless.
1019bool os::is_first_C_frame(frame* fr) {
1020#if defined(IA64) && !defined(_WIN32)
1021  // On IA64 we have to check if the callers bsp is still valid
1022  // (i.e. within the register stack bounds).
1023  // Notice: this only works for threads created by the VM and only if
1024  // we walk the current stack!!! If we want to be able to walk
1025  // arbitrary other threads, we'll have to somehow store the thread
1026  // object in the frame.
1027  Thread *thread = Thread::current();
1028  if ((address)fr->fp() <=
1029      thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
1030    // This check is a little hacky, because on Linux the first C
1031    // frame's ('start_thread') register stack frame starts at
1032    // "register_stack_base + 0x48" while on HPUX, the first C frame's
1033    // ('__pthread_bound_body') register stack frame seems to really
1034    // start at "register_stack_base".
1035    return true;
1036  } else {
1037    return false;
1038  }
1039#elif defined(IA64) && defined(_WIN32)
1040  return true;
1041#else
1042  // Load up sp, fp, sender sp and sender fp, check for reasonable values.
1043  // Check usp first, because if that's bad the other accessors may fault
1044  // on some architectures.  Ditto ufp second, etc.
1045  uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
1046  // sp on amd can be 32 bit aligned.
1047  uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
1048
1049  uintptr_t usp    = (uintptr_t)fr->sp();
1050  if ((usp & sp_align_mask) != 0) return true;
1051
1052  uintptr_t ufp    = (uintptr_t)fr->fp();
1053  if ((ufp & fp_align_mask) != 0) return true;
1054
1055  uintptr_t old_sp = (uintptr_t)fr->sender_sp();
1056  if ((old_sp & sp_align_mask) != 0) return true;
1057  if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
1058
1059  uintptr_t old_fp = (uintptr_t)fr->link();
1060  if ((old_fp & fp_align_mask) != 0) return true;
1061  if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
1062
1063  // stack grows downwards; if old_fp is below current fp or if the stack
1064  // frame is too large, either the stack is corrupted or fp is not saved
1065  // on stack (i.e. on x86, ebp may be used as general register). The stack
1066  // is not walkable beyond current frame.
1067  if (old_fp < ufp) return true;
1068  if (old_fp - ufp > 64 * K) return true;
1069
1070  return false;
1071#endif
1072}
1073
1074#ifdef ASSERT
1075extern "C" void test_random() {
1076  const double m = 2147483647;
1077  double mean = 0.0, variance = 0.0, t;
1078  long reps = 10000;
1079  unsigned long seed = 1;
1080
1081  tty->print_cr("seed %ld for %ld repeats...", seed, reps);
1082  os::init_random(seed);
1083  long num;
1084  for (int k = 0; k < reps; k++) {
1085    num = os::random();
1086    double u = (double)num / m;
1087    assert(u >= 0.0 && u <= 1.0, "bad random number!");
1088
1089    // calculate mean and variance of the random sequence
1090    mean += u;
1091    variance += (u*u);
1092  }
1093  mean /= reps;
1094  variance /= (reps - 1);
1095
1096  assert(num == 1043618065, "bad seed");
1097  tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
1098  tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
1099  const double eps = 0.0001;
1100  t = fabsd(mean - 0.5018);
1101  assert(t < eps, "bad mean");
1102  t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
1103  assert(t < eps, "bad variance");
1104}
1105#endif
1106
1107
1108// Set up the boot classpath.
1109
1110char* os::format_boot_path(const char* format_string,
1111                           const char* home,
1112                           int home_len,
1113                           char fileSep,
1114                           char pathSep) {
1115    assert((fileSep == '/' && pathSep == ':') ||
1116           (fileSep == '\\' && pathSep == ';'), "unexpected seperator chars");
1117
1118    // Scan the format string to determine the length of the actual
1119    // boot classpath, and handle platform dependencies as well.
1120    int formatted_path_len = 0;
1121    const char* p;
1122    for (p = format_string; *p != 0; ++p) {
1123        if (*p == '%') formatted_path_len += home_len - 1;
1124        ++formatted_path_len;
1125    }
1126
1127    char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
1128    if (formatted_path == NULL) {
1129        return NULL;
1130    }
1131
1132    // Create boot classpath from format, substituting separator chars and
1133    // java home directory.
1134    char* q = formatted_path;
1135    for (p = format_string; *p != 0; ++p) {
1136        switch (*p) {
1137        case '%':
1138            strcpy(q, home);
1139            q += home_len;
1140            break;
1141        case '/':
1142            *q++ = fileSep;
1143            break;
1144        case ':':
1145            *q++ = pathSep;
1146            break;
1147        default:
1148            *q++ = *p;
1149        }
1150    }
1151    *q = '\0';
1152
1153    assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1154    return formatted_path;
1155}
1156
1157
1158bool os::set_boot_path(char fileSep, char pathSep) {
1159    const char* home = Arguments::get_java_home();
1160    int home_len = (int)strlen(home);
1161
1162    static const char* meta_index_dir_format = "%/lib/";
1163    static const char* meta_index_format = "%/lib/meta-index";
1164    char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
1165    if (meta_index == NULL) return false;
1166    char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
1167    if (meta_index_dir == NULL) return false;
1168    Arguments::set_meta_index_path(meta_index, meta_index_dir);
1169
1170    // Any modification to the JAR-file list, for the boot classpath must be
1171    // aligned with install/install/make/common/Pack.gmk. Note: boot class
1172    // path class JARs, are stripped for StackMapTable to reduce download size.
1173    static const char classpath_format[] =
1174        "%/lib/resources.jar:"
1175        "%/lib/rt.jar:"
1176        "%/lib/sunrsasign.jar:"
1177        "%/lib/jsse.jar:"
1178        "%/lib/jce.jar:"
1179        "%/lib/charsets.jar:"
1180        "%/lib/jfr.jar:"
1181#ifdef __APPLE__
1182        "%/lib/JObjC.jar:"
1183#endif
1184        "%/classes";
1185    char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
1186    if (sysclasspath == NULL) return false;
1187    Arguments::set_sysclasspath(sysclasspath);
1188
1189    return true;
1190}
1191
1192/*
1193 * Splits a path, based on its separator, the number of
1194 * elements is returned back in n.
1195 * It is the callers responsibility to:
1196 *   a> check the value of n, and n may be 0.
1197 *   b> ignore any empty path elements
1198 *   c> free up the data.
1199 */
1200char** os::split_path(const char* path, int* n) {
1201  *n = 0;
1202  if (path == NULL || strlen(path) == 0) {
1203    return NULL;
1204  }
1205  const char psepchar = *os::path_separator();
1206  char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
1207  if (inpath == NULL) {
1208    return NULL;
1209  }
1210  strcpy(inpath, path);
1211  int count = 1;
1212  char* p = strchr(inpath, psepchar);
1213  // Get a count of elements to allocate memory
1214  while (p != NULL) {
1215    count++;
1216    p++;
1217    p = strchr(p, psepchar);
1218  }
1219  char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
1220  if (opath == NULL) {
1221    return NULL;
1222  }
1223
1224  // do the actual splitting
1225  p = inpath;
1226  for (int i = 0 ; i < count ; i++) {
1227    size_t len = strcspn(p, os::path_separator());
1228    if (len > JVM_MAXPATHLEN) {
1229      return NULL;
1230    }
1231    // allocate the string and add terminator storage
1232    char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
1233    if (s == NULL) {
1234      return NULL;
1235    }
1236    strncpy(s, p, len);
1237    s[len] = '\0';
1238    opath[i] = s;
1239    p += len + 1;
1240  }
1241  FREE_C_HEAP_ARRAY(char, inpath, mtInternal);
1242  *n = count;
1243  return opath;
1244}
1245
1246void os::set_memory_serialize_page(address page) {
1247  int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
1248  _mem_serialize_page = (volatile int32_t *)page;
1249  // We initialize the serialization page shift count here
1250  // We assume a cache line size of 64 bytes
1251  assert(SerializePageShiftCount == count,
1252         "thread size changed, fix SerializePageShiftCount constant");
1253  set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
1254}
1255
1256static volatile intptr_t SerializePageLock = 0;
1257
1258// This method is called from signal handler when SIGSEGV occurs while the current
1259// thread tries to store to the "read-only" memory serialize page during state
1260// transition.
1261void os::block_on_serialize_page_trap() {
1262  if (TraceSafepoint) {
1263    tty->print_cr("Block until the serialize page permission restored");
1264  }
1265  // When VMThread is holding the SerializePageLock during modifying the
1266  // access permission of the memory serialize page, the following call
1267  // will block until the permission of that page is restored to rw.
1268  // Generally, it is unsafe to manipulate locks in signal handlers, but in
1269  // this case, it's OK as the signal is synchronous and we know precisely when
1270  // it can occur.
1271  Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
1272  Thread::muxRelease(&SerializePageLock);
1273}
1274
1275// Serialize all thread state variables
1276void os::serialize_thread_states() {
1277  // On some platforms such as Solaris & Linux, the time duration of the page
1278  // permission restoration is observed to be much longer than expected  due to
1279  // scheduler starvation problem etc. To avoid the long synchronization
1280  // time and expensive page trap spinning, 'SerializePageLock' is used to block
1281  // the mutator thread if such case is encountered. See bug 6546278 for details.
1282  Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
1283  os::protect_memory((char *)os::get_memory_serialize_page(),
1284                     os::vm_page_size(), MEM_PROT_READ);
1285  os::protect_memory((char *)os::get_memory_serialize_page(),
1286                     os::vm_page_size(), MEM_PROT_RW);
1287  Thread::muxRelease(&SerializePageLock);
1288}
1289
1290// Returns true if the current stack pointer is above the stack shadow
1291// pages, false otherwise.
1292
1293bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
1294  assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
1295  address sp = current_stack_pointer();
1296  // Check if we have StackShadowPages above the yellow zone.  This parameter
1297  // is dependent on the depth of the maximum VM call stack possible from
1298  // the handler for stack overflow.  'instanceof' in the stack overflow
1299  // handler or a println uses at least 8k stack of VM and native code
1300  // respectively.
1301  const int framesize_in_bytes =
1302    Interpreter::size_top_interpreter_activation(method()) * wordSize;
1303  int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
1304                      * vm_page_size()) + framesize_in_bytes;
1305  // The very lower end of the stack
1306  address stack_limit = thread->stack_base() - thread->stack_size();
1307  return (sp > (stack_limit + reserved_area));
1308}
1309
1310size_t os::page_size_for_region(size_t region_min_size, size_t region_max_size,
1311                                uint min_pages)
1312{
1313  assert(min_pages > 0, "sanity");
1314  if (UseLargePages) {
1315    const size_t max_page_size = region_max_size / min_pages;
1316
1317    for (unsigned int i = 0; _page_sizes[i] != 0; ++i) {
1318      const size_t sz = _page_sizes[i];
1319      const size_t mask = sz - 1;
1320      if ((region_min_size & mask) == 0 && (region_max_size & mask) == 0) {
1321        // The largest page size with no fragmentation.
1322        return sz;
1323      }
1324
1325      if (sz <= max_page_size) {
1326        // The largest page size that satisfies the min_pages requirement.
1327        return sz;
1328      }
1329    }
1330  }
1331
1332  return vm_page_size();
1333}
1334
1335#ifndef PRODUCT
1336void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
1337{
1338  if (TracePageSizes) {
1339    tty->print("%s: ", str);
1340    for (int i = 0; i < count; ++i) {
1341      tty->print(" " SIZE_FORMAT, page_sizes[i]);
1342    }
1343    tty->cr();
1344  }
1345}
1346
1347void os::trace_page_sizes(const char* str, const size_t region_min_size,
1348                          const size_t region_max_size, const size_t page_size,
1349                          const char* base, const size_t size)
1350{
1351  if (TracePageSizes) {
1352    tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
1353                  " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
1354                  " size=" SIZE_FORMAT,
1355                  str, region_min_size, region_max_size,
1356                  page_size, base, size);
1357  }
1358}
1359#endif  // #ifndef PRODUCT
1360
1361// This is the working definition of a server class machine:
1362// >= 2 physical CPU's and >=2GB of memory, with some fuzz
1363// because the graphics memory (?) sometimes masks physical memory.
1364// If you want to change the definition of a server class machine
1365// on some OS or platform, e.g., >=4GB on Windohs platforms,
1366// then you'll have to parameterize this method based on that state,
1367// as was done for logical processors here, or replicate and
1368// specialize this method for each platform.  (Or fix os to have
1369// some inheritance structure and use subclassing.  Sigh.)
1370// If you want some platform to always or never behave as a server
1371// class machine, change the setting of AlwaysActAsServerClassMachine
1372// and NeverActAsServerClassMachine in globals*.hpp.
1373bool os::is_server_class_machine() {
1374  // First check for the early returns
1375  if (NeverActAsServerClassMachine) {
1376    return false;
1377  }
1378  if (AlwaysActAsServerClassMachine) {
1379    return true;
1380  }
1381  // Then actually look at the machine
1382  bool         result            = false;
1383  const unsigned int    server_processors = 2;
1384  const julong server_memory     = 2UL * G;
1385  // We seem not to get our full complement of memory.
1386  //     We allow some part (1/8?) of the memory to be "missing",
1387  //     based on the sizes of DIMMs, and maybe graphics cards.
1388  const julong missing_memory   = 256UL * M;
1389
1390  /* Is this a server class machine? */
1391  if ((os::active_processor_count() >= (int)server_processors) &&
1392      (os::physical_memory() >= (server_memory - missing_memory))) {
1393    const unsigned int logical_processors =
1394      VM_Version::logical_processors_per_package();
1395    if (logical_processors > 1) {
1396      const unsigned int physical_packages =
1397        os::active_processor_count() / logical_processors;
1398      if (physical_packages > server_processors) {
1399        result = true;
1400      }
1401    } else {
1402      result = true;
1403    }
1404  }
1405  return result;
1406}
1407
1408// Read file line by line, if line is longer than bsize,
1409// skip rest of line.
1410int os::get_line_chars(int fd, char* buf, const size_t bsize){
1411  size_t sz, i = 0;
1412
1413  // read until EOF, EOL or buf is full
1414  while ((sz = (int) read(fd, &buf[i], 1)) == 1 && i < (bsize-2) && buf[i] != '\n') {
1415     ++i;
1416  }
1417
1418  if (buf[i] == '\n') {
1419    // EOL reached so ignore EOL character and return
1420
1421    buf[i] = 0;
1422    return (int) i;
1423  }
1424
1425  buf[i+1] = 0;
1426
1427  if (sz != 1) {
1428    // EOF reached. if we read chars before EOF return them and
1429    // return EOF on next call otherwise return EOF
1430
1431    return (i == 0) ? -1 : (int) i;
1432  }
1433
1434  // line is longer than size of buf, skip to EOL
1435  char ch;
1436  while (read(fd, &ch, 1) == 1 && ch != '\n') {
1437    // Do nothing
1438  }
1439
1440  // return initial part of line that fits in buf.
1441  // If we reached EOF, it will be returned on next call.
1442
1443  return (int) i;
1444}
1445
1446void os::SuspendedThreadTask::run() {
1447  assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
1448  internal_do_task();
1449  _done = true;
1450}
1451
1452bool os::create_stack_guard_pages(char* addr, size_t bytes) {
1453  return os::pd_create_stack_guard_pages(addr, bytes);
1454}
1455
1456char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
1457  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1458  if (result != NULL) {
1459    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1460  }
1461
1462  return result;
1463}
1464
1465char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
1466   MEMFLAGS flags) {
1467  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1468  if (result != NULL) {
1469    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1470    MemTracker::record_virtual_memory_type((address)result, flags);
1471  }
1472
1473  return result;
1474}
1475
1476char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
1477  char* result = pd_attempt_reserve_memory_at(bytes, addr);
1478  if (result != NULL) {
1479    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1480  }
1481  return result;
1482}
1483
1484void os::split_reserved_memory(char *base, size_t size,
1485                                 size_t split, bool realloc) {
1486  pd_split_reserved_memory(base, size, split, realloc);
1487}
1488
1489bool os::commit_memory(char* addr, size_t bytes, bool executable) {
1490  bool res = pd_commit_memory(addr, bytes, executable);
1491  if (res) {
1492    MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1493  }
1494  return res;
1495}
1496
1497bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1498                              bool executable) {
1499  bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
1500  if (res) {
1501    MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1502  }
1503  return res;
1504}
1505
1506bool os::uncommit_memory(char* addr, size_t bytes) {
1507  bool res = pd_uncommit_memory(addr, bytes);
1508  if (res) {
1509    MemTracker::record_virtual_memory_uncommit((address)addr, bytes);
1510  }
1511  return res;
1512}
1513
1514bool os::release_memory(char* addr, size_t bytes) {
1515  bool res = pd_release_memory(addr, bytes);
1516  if (res) {
1517    MemTracker::record_virtual_memory_release((address)addr, bytes);
1518  }
1519  return res;
1520}
1521
1522
1523char* os::map_memory(int fd, const char* file_name, size_t file_offset,
1524                           char *addr, size_t bytes, bool read_only,
1525                           bool allow_exec) {
1526  char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
1527  if (result != NULL) {
1528    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1529    MemTracker::record_virtual_memory_commit((address)result, bytes, CALLER_PC);
1530  }
1531  return result;
1532}
1533
1534char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
1535                             char *addr, size_t bytes, bool read_only,
1536                             bool allow_exec) {
1537  return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
1538                    read_only, allow_exec);
1539}
1540
1541bool os::unmap_memory(char *addr, size_t bytes) {
1542  bool result = pd_unmap_memory(addr, bytes);
1543  if (result) {
1544    MemTracker::record_virtual_memory_uncommit((address)addr, bytes);
1545    MemTracker::record_virtual_memory_release((address)addr, bytes);
1546  }
1547  return result;
1548}
1549
1550void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
1551  pd_free_memory(addr, bytes, alignment_hint);
1552}
1553
1554void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1555  pd_realign_memory(addr, bytes, alignment_hint);
1556}
1557
1558#ifndef TARGET_OS_FAMILY_windows
1559/* try to switch state from state "from" to state "to"
1560 * returns the state set after the method is complete
1561 */
1562os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
1563                                                         os::SuspendResume::State to)
1564{
1565  os::SuspendResume::State result =
1566    (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
1567  if (result == from) {
1568    // success
1569    return to;
1570  }
1571  return result;
1572}
1573#endif
1574