os.cpp revision 3758:716c64bda5ba
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "gc_implementation/shared/vmGCOperations.hpp"
33#include "interpreter/interpreter.hpp"
34#include "memory/allocation.inline.hpp"
35#include "oops/oop.inline.hpp"
36#include "prims/jvm.h"
37#include "prims/jvm_misc.hpp"
38#include "prims/privilegedStack.hpp"
39#include "runtime/arguments.hpp"
40#include "runtime/frame.inline.hpp"
41#include "runtime/interfaceSupport.hpp"
42#include "runtime/java.hpp"
43#include "runtime/javaCalls.hpp"
44#include "runtime/mutexLocker.hpp"
45#include "runtime/os.hpp"
46#include "runtime/stubRoutines.hpp"
47#include "services/attachListener.hpp"
48#include "services/memTracker.hpp"
49#include "services/threadService.hpp"
50#include "utilities/defaultStream.hpp"
51#include "utilities/events.hpp"
52#ifdef TARGET_OS_FAMILY_linux
53# include "os_linux.inline.hpp"
54# include "thread_linux.inline.hpp"
55#endif
56#ifdef TARGET_OS_FAMILY_solaris
57# include "os_solaris.inline.hpp"
58# include "thread_solaris.inline.hpp"
59#endif
60#ifdef TARGET_OS_FAMILY_windows
61# include "os_windows.inline.hpp"
62# include "thread_windows.inline.hpp"
63#endif
64#ifdef TARGET_OS_FAMILY_bsd
65# include "os_bsd.inline.hpp"
66# include "thread_bsd.inline.hpp"
67#endif
68
69# include <signal.h>
70
71OSThread*         os::_starting_thread    = NULL;
72address           os::_polling_page       = NULL;
73volatile int32_t* os::_mem_serialize_page = NULL;
74uintptr_t         os::_serialize_page_mask = 0;
75long              os::_rand_seed          = 1;
76int               os::_processor_count    = 0;
77size_t            os::_page_sizes[os::page_sizes_max];
78
79#ifndef PRODUCT
80julong os::num_mallocs = 0;         // # of calls to malloc/realloc
81julong os::alloc_bytes = 0;         // # of bytes allocated
82julong os::num_frees = 0;           // # of calls to free
83julong os::free_bytes = 0;          // # of bytes freed
84#endif
85
86void os_init_globals() {
87  // Called from init_globals().
88  // See Threads::create_vm() in thread.cpp, and init.cpp.
89  os::init_globals();
90}
91
92// Fill in buffer with current local time as an ISO-8601 string.
93// E.g., yyyy-mm-ddThh:mm:ss-zzzz.
94// Returns buffer, or NULL if it failed.
95// This would mostly be a call to
96//     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
97// except that on Windows the %z behaves badly, so we do it ourselves.
98// Also, people wanted milliseconds on there,
99// and strftime doesn't do milliseconds.
100char* os::iso8601_time(char* buffer, size_t buffer_length) {
101  // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
102  //                                      1         2
103  //                             12345678901234567890123456789
104  static const char* iso8601_format =
105    "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
106  static const size_t needed_buffer = 29;
107
108  // Sanity check the arguments
109  if (buffer == NULL) {
110    assert(false, "NULL buffer");
111    return NULL;
112  }
113  if (buffer_length < needed_buffer) {
114    assert(false, "buffer_length too small");
115    return NULL;
116  }
117  // Get the current time
118  jlong milliseconds_since_19700101 = javaTimeMillis();
119  const int milliseconds_per_microsecond = 1000;
120  const time_t seconds_since_19700101 =
121    milliseconds_since_19700101 / milliseconds_per_microsecond;
122  const int milliseconds_after_second =
123    milliseconds_since_19700101 % milliseconds_per_microsecond;
124  // Convert the time value to a tm and timezone variable
125  struct tm time_struct;
126  if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
127    assert(false, "Failed localtime_pd");
128    return NULL;
129  }
130#if defined(_ALLBSD_SOURCE)
131  const time_t zone = (time_t) time_struct.tm_gmtoff;
132#else
133  const time_t zone = timezone;
134#endif
135
136  // If daylight savings time is in effect,
137  // we are 1 hour East of our time zone
138  const time_t seconds_per_minute = 60;
139  const time_t minutes_per_hour = 60;
140  const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
141  time_t UTC_to_local = zone;
142  if (time_struct.tm_isdst > 0) {
143    UTC_to_local = UTC_to_local - seconds_per_hour;
144  }
145  // Compute the time zone offset.
146  //    localtime_pd() sets timezone to the difference (in seconds)
147  //    between UTC and and local time.
148  //    ISO 8601 says we need the difference between local time and UTC,
149  //    we change the sign of the localtime_pd() result.
150  const time_t local_to_UTC = -(UTC_to_local);
151  // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
152  char sign_local_to_UTC = '+';
153  time_t abs_local_to_UTC = local_to_UTC;
154  if (local_to_UTC < 0) {
155    sign_local_to_UTC = '-';
156    abs_local_to_UTC = -(abs_local_to_UTC);
157  }
158  // Convert time zone offset seconds to hours and minutes.
159  const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
160  const time_t zone_min =
161    ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
162
163  // Print an ISO 8601 date and time stamp into the buffer
164  const int year = 1900 + time_struct.tm_year;
165  const int month = 1 + time_struct.tm_mon;
166  const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
167                                   year,
168                                   month,
169                                   time_struct.tm_mday,
170                                   time_struct.tm_hour,
171                                   time_struct.tm_min,
172                                   time_struct.tm_sec,
173                                   milliseconds_after_second,
174                                   sign_local_to_UTC,
175                                   zone_hours,
176                                   zone_min);
177  if (printed == 0) {
178    assert(false, "Failed jio_printf");
179    return NULL;
180  }
181  return buffer;
182}
183
184OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
185#ifdef ASSERT
186  if (!(!thread->is_Java_thread() ||
187         Thread::current() == thread  ||
188         Threads_lock->owned_by_self()
189         || thread->is_Compiler_thread()
190        )) {
191    assert(false, "possibility of dangling Thread pointer");
192  }
193#endif
194
195  if (p >= MinPriority && p <= MaxPriority) {
196    int priority = java_to_os_priority[p];
197    return set_native_priority(thread, priority);
198  } else {
199    assert(false, "Should not happen");
200    return OS_ERR;
201  }
202}
203
204// The mapping from OS priority back to Java priority may be inexact because
205// Java priorities can map M:1 with native priorities. If you want the definite
206// Java priority then use JavaThread::java_priority()
207OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
208  int p;
209  int os_prio;
210  OSReturn ret = get_native_priority(thread, &os_prio);
211  if (ret != OS_OK) return ret;
212
213  if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
214    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
215  } else {
216    // niceness values are in reverse order
217    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
218  }
219  priority = (ThreadPriority)p;
220  return OS_OK;
221}
222
223
224// --------------------- sun.misc.Signal (optional) ---------------------
225
226
227// SIGBREAK is sent by the keyboard to query the VM state
228#ifndef SIGBREAK
229#define SIGBREAK SIGQUIT
230#endif
231
232// sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
233
234
235static void signal_thread_entry(JavaThread* thread, TRAPS) {
236  os::set_priority(thread, NearMaxPriority);
237  while (true) {
238    int sig;
239    {
240      // FIXME : Currently we have not decieded what should be the status
241      //         for this java thread blocked here. Once we decide about
242      //         that we should fix this.
243      sig = os::signal_wait();
244    }
245    if (sig == os::sigexitnum_pd()) {
246       // Terminate the signal thread
247       return;
248    }
249
250    switch (sig) {
251      case SIGBREAK: {
252        // Check if the signal is a trigger to start the Attach Listener - in that
253        // case don't print stack traces.
254        if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
255          continue;
256        }
257        // Print stack traces
258        // Any SIGBREAK operations added here should make sure to flush
259        // the output stream (e.g. tty->flush()) after output.  See 4803766.
260        // Each module also prints an extra carriage return after its output.
261        VM_PrintThreads op;
262        VMThread::execute(&op);
263        VM_PrintJNI jni_op;
264        VMThread::execute(&jni_op);
265        VM_FindDeadlocks op1(tty);
266        VMThread::execute(&op1);
267        Universe::print_heap_at_SIGBREAK();
268        if (PrintClassHistogram) {
269          VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */,
270                                   true /* need_prologue */);
271          VMThread::execute(&op1);
272        }
273        if (JvmtiExport::should_post_data_dump()) {
274          JvmtiExport::post_data_dump();
275        }
276        break;
277      }
278      default: {
279        // Dispatch the signal to java
280        HandleMark hm(THREAD);
281        Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
282        KlassHandle klass (THREAD, k);
283        if (klass.not_null()) {
284          JavaValue result(T_VOID);
285          JavaCallArguments args;
286          args.push_int(sig);
287          JavaCalls::call_static(
288            &result,
289            klass,
290            vmSymbols::dispatch_name(),
291            vmSymbols::int_void_signature(),
292            &args,
293            THREAD
294          );
295        }
296        if (HAS_PENDING_EXCEPTION) {
297          // tty is initialized early so we don't expect it to be null, but
298          // if it is we can't risk doing an initialization that might
299          // trigger additional out-of-memory conditions
300          if (tty != NULL) {
301            char klass_name[256];
302            char tmp_sig_name[16];
303            const char* sig_name = "UNKNOWN";
304            InstanceKlass::cast(PENDING_EXCEPTION->klass())->
305              name()->as_klass_external_name(klass_name, 256);
306            if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
307              sig_name = tmp_sig_name;
308            warning("Exception %s occurred dispatching signal %s to handler"
309                    "- the VM may need to be forcibly terminated",
310                    klass_name, sig_name );
311          }
312          CLEAR_PENDING_EXCEPTION;
313        }
314      }
315    }
316  }
317}
318
319
320void os::signal_init() {
321  if (!ReduceSignalUsage) {
322    // Setup JavaThread for processing signals
323    EXCEPTION_MARK;
324    Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
325    instanceKlassHandle klass (THREAD, k);
326    instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
327
328    const char thread_name[] = "Signal Dispatcher";
329    Handle string = java_lang_String::create_from_str(thread_name, CHECK);
330
331    // Initialize thread_oop to put it into the system threadGroup
332    Handle thread_group (THREAD, Universe::system_thread_group());
333    JavaValue result(T_VOID);
334    JavaCalls::call_special(&result, thread_oop,
335                           klass,
336                           vmSymbols::object_initializer_name(),
337                           vmSymbols::threadgroup_string_void_signature(),
338                           thread_group,
339                           string,
340                           CHECK);
341
342    KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
343    JavaCalls::call_special(&result,
344                            thread_group,
345                            group,
346                            vmSymbols::add_method_name(),
347                            vmSymbols::thread_void_signature(),
348                            thread_oop,         // ARG 1
349                            CHECK);
350
351    os::signal_init_pd();
352
353    { MutexLocker mu(Threads_lock);
354      JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
355
356      // At this point it may be possible that no osthread was created for the
357      // JavaThread due to lack of memory. We would have to throw an exception
358      // in that case. However, since this must work and we do not allow
359      // exceptions anyway, check and abort if this fails.
360      if (signal_thread == NULL || signal_thread->osthread() == NULL) {
361        vm_exit_during_initialization("java.lang.OutOfMemoryError",
362                                      "unable to create new native thread");
363      }
364
365      java_lang_Thread::set_thread(thread_oop(), signal_thread);
366      java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
367      java_lang_Thread::set_daemon(thread_oop());
368
369      signal_thread->set_threadObj(thread_oop());
370      Threads::add(signal_thread);
371      Thread::start(signal_thread);
372    }
373    // Handle ^BREAK
374    os::signal(SIGBREAK, os::user_handler());
375  }
376}
377
378
379void os::terminate_signal_thread() {
380  if (!ReduceSignalUsage)
381    signal_notify(sigexitnum_pd());
382}
383
384
385// --------------------- loading libraries ---------------------
386
387typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
388extern struct JavaVM_ main_vm;
389
390static void* _native_java_library = NULL;
391
392void* os::native_java_library() {
393  if (_native_java_library == NULL) {
394    char buffer[JVM_MAXPATHLEN];
395    char ebuf[1024];
396
397    // Try to load verify dll first. In 1.3 java dll depends on it and is not
398    // always able to find it when the loading executable is outside the JDK.
399    // In order to keep working with 1.2 we ignore any loading errors.
400    dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "verify");
401    dll_load(buffer, ebuf, sizeof(ebuf));
402
403    // Load java dll
404    dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "java");
405    _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
406    if (_native_java_library == NULL) {
407      vm_exit_during_initialization("Unable to load native library", ebuf);
408    }
409
410#if defined(__OpenBSD__)
411    // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
412    // ignore errors
413    dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "net");
414    dll_load(buffer, ebuf, sizeof(ebuf));
415#endif
416  }
417  static jboolean onLoaded = JNI_FALSE;
418  if (onLoaded) {
419    // We may have to wait to fire OnLoad until TLS is initialized.
420    if (ThreadLocalStorage::is_initialized()) {
421      // The JNI_OnLoad handling is normally done by method load in
422      // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
423      // explicitly so we have to check for JNI_OnLoad as well
424      const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
425      JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
426          JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
427      if (JNI_OnLoad != NULL) {
428        JavaThread* thread = JavaThread::current();
429        ThreadToNativeFromVM ttn(thread);
430        HandleMark hm(thread);
431        jint ver = (*JNI_OnLoad)(&main_vm, NULL);
432        onLoaded = JNI_TRUE;
433        if (!Threads::is_supported_jni_version_including_1_1(ver)) {
434          vm_exit_during_initialization("Unsupported JNI version");
435        }
436      }
437    }
438  }
439  return _native_java_library;
440}
441
442// --------------------- heap allocation utilities ---------------------
443
444char *os::strdup(const char *str, MEMFLAGS flags) {
445  size_t size = strlen(str);
446  char *dup_str = (char *)malloc(size + 1, flags);
447  if (dup_str == NULL) return NULL;
448  strcpy(dup_str, str);
449  return dup_str;
450}
451
452
453
454#ifdef ASSERT
455#define space_before             (MallocCushion + sizeof(double))
456#define space_after              MallocCushion
457#define size_addr_from_base(p)   (size_t*)(p + space_before - sizeof(size_t))
458#define size_addr_from_obj(p)    ((size_t*)p - 1)
459// MallocCushion: size of extra cushion allocated around objects with +UseMallocOnly
460// NB: cannot be debug variable, because these aren't set from the command line until
461// *after* the first few allocs already happened
462#define MallocCushion            16
463#else
464#define space_before             0
465#define space_after              0
466#define size_addr_from_base(p)   should not use w/o ASSERT
467#define size_addr_from_obj(p)    should not use w/o ASSERT
468#define MallocCushion            0
469#endif
470#define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
471
472#ifdef ASSERT
473inline size_t get_size(void* obj) {
474  size_t size = *size_addr_from_obj(obj);
475  if (size < 0) {
476    fatal(err_msg("free: size field of object #" PTR_FORMAT " was overwritten ("
477                  SIZE_FORMAT ")", obj, size));
478  }
479  return size;
480}
481
482u_char* find_cushion_backwards(u_char* start) {
483  u_char* p = start;
484  while (p[ 0] != badResourceValue || p[-1] != badResourceValue ||
485         p[-2] != badResourceValue || p[-3] != badResourceValue) p--;
486  // ok, we have four consecutive marker bytes; find start
487  u_char* q = p - 4;
488  while (*q == badResourceValue) q--;
489  return q + 1;
490}
491
492u_char* find_cushion_forwards(u_char* start) {
493  u_char* p = start;
494  while (p[0] != badResourceValue || p[1] != badResourceValue ||
495         p[2] != badResourceValue || p[3] != badResourceValue) p++;
496  // ok, we have four consecutive marker bytes; find end of cushion
497  u_char* q = p + 4;
498  while (*q == badResourceValue) q++;
499  return q - MallocCushion;
500}
501
502void print_neighbor_blocks(void* ptr) {
503  // find block allocated before ptr (not entirely crash-proof)
504  if (MallocCushion < 4) {
505    tty->print_cr("### cannot find previous block (MallocCushion < 4)");
506    return;
507  }
508  u_char* start_of_this_block = (u_char*)ptr - space_before;
509  u_char* end_of_prev_block_data = start_of_this_block - space_after -1;
510  // look for cushion in front of prev. block
511  u_char* start_of_prev_block = find_cushion_backwards(end_of_prev_block_data);
512  ptrdiff_t size = *size_addr_from_base(start_of_prev_block);
513  u_char* obj = start_of_prev_block + space_before;
514  if (size <= 0 ) {
515    // start is bad; mayhave been confused by OS data inbetween objects
516    // search one more backwards
517    start_of_prev_block = find_cushion_backwards(start_of_prev_block);
518    size = *size_addr_from_base(start_of_prev_block);
519    obj = start_of_prev_block + space_before;
520  }
521
522  if (start_of_prev_block + space_before + size + space_after == start_of_this_block) {
523    tty->print_cr("### previous object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
524  } else {
525    tty->print_cr("### previous object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
526  }
527
528  // now find successor block
529  u_char* start_of_next_block = (u_char*)ptr + *size_addr_from_obj(ptr) + space_after;
530  start_of_next_block = find_cushion_forwards(start_of_next_block);
531  u_char* next_obj = start_of_next_block + space_before;
532  ptrdiff_t next_size = *size_addr_from_base(start_of_next_block);
533  if (start_of_next_block[0] == badResourceValue &&
534      start_of_next_block[1] == badResourceValue &&
535      start_of_next_block[2] == badResourceValue &&
536      start_of_next_block[3] == badResourceValue) {
537    tty->print_cr("### next object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
538  } else {
539    tty->print_cr("### next object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
540  }
541}
542
543
544void report_heap_error(void* memblock, void* bad, const char* where) {
545  tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
546  tty->print_cr("## memory stomp: byte at " PTR_FORMAT " %s object " PTR_FORMAT, bad, where, memblock);
547  print_neighbor_blocks(memblock);
548  fatal("memory stomping error");
549}
550
551void verify_block(void* memblock) {
552  size_t size = get_size(memblock);
553  if (MallocCushion) {
554    u_char* ptr = (u_char*)memblock - space_before;
555    for (int i = 0; i < MallocCushion; i++) {
556      if (ptr[i] != badResourceValue) {
557        report_heap_error(memblock, ptr+i, "in front of");
558      }
559    }
560    u_char* end = (u_char*)memblock + size + space_after;
561    for (int j = -MallocCushion; j < 0; j++) {
562      if (end[j] != badResourceValue) {
563        report_heap_error(memblock, end+j, "after");
564      }
565    }
566  }
567}
568#endif
569
570void* os::malloc(size_t size, MEMFLAGS memflags, address caller) {
571  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
572  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
573
574  if (size == 0) {
575    // return a valid pointer if size is zero
576    // if NULL is returned the calling functions assume out of memory.
577    size = 1;
578  }
579
580  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
581  u_char* ptr = (u_char*)::malloc(size + space_before + space_after);
582
583#ifdef ASSERT
584  if (ptr == NULL) return NULL;
585  if (MallocCushion) {
586    for (u_char* p = ptr; p < ptr + MallocCushion; p++) *p = (u_char)badResourceValue;
587    u_char* end = ptr + space_before + size;
588    for (u_char* pq = ptr+MallocCushion; pq < end; pq++) *pq = (u_char)uninitBlockPad;
589    for (u_char* q = end; q < end + MallocCushion; q++) *q = (u_char)badResourceValue;
590  }
591  // put size just before data
592  *size_addr_from_base(ptr) = size;
593#endif
594  u_char* memblock = ptr + space_before;
595  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
596    tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
597    breakpoint();
598  }
599  debug_only(if (paranoid) verify_block(memblock));
600  if (PrintMalloc && tty != NULL) tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
601
602  // we do not track MallocCushion memory
603    MemTracker::record_malloc((address)memblock, size, memflags, caller == 0 ? CALLER_PC : caller);
604
605  return memblock;
606}
607
608
609void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, address caller) {
610#ifndef ASSERT
611  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
612  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
613  void* ptr = ::realloc(memblock, size);
614  if (ptr != NULL) {
615    MemTracker::record_realloc((address)memblock, (address)ptr, size, memflags,
616     caller == 0 ? CALLER_PC : caller);
617  }
618  return ptr;
619#else
620  if (memblock == NULL) {
621    return malloc(size, memflags, (caller == 0 ? CALLER_PC : caller));
622  }
623  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
624    tty->print_cr("os::realloc caught " PTR_FORMAT, memblock);
625    breakpoint();
626  }
627  verify_block(memblock);
628  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
629  if (size == 0) return NULL;
630  // always move the block
631  void* ptr = malloc(size, memflags, caller == 0 ? CALLER_PC : caller);
632  if (PrintMalloc) tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr);
633  // Copy to new memory if malloc didn't fail
634  if ( ptr != NULL ) {
635    memcpy(ptr, memblock, MIN2(size, get_size(memblock)));
636    if (paranoid) verify_block(ptr);
637    if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
638      tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
639      breakpoint();
640    }
641    free(memblock);
642  }
643  return ptr;
644#endif
645}
646
647
648void  os::free(void *memblock, MEMFLAGS memflags) {
649  NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
650#ifdef ASSERT
651  if (memblock == NULL) return;
652  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
653    if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock);
654    breakpoint();
655  }
656  verify_block(memblock);
657  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
658  // Added by detlefs.
659  if (MallocCushion) {
660    u_char* ptr = (u_char*)memblock - space_before;
661    for (u_char* p = ptr; p < ptr + MallocCushion; p++) {
662      guarantee(*p == badResourceValue,
663                "Thing freed should be malloc result.");
664      *p = (u_char)freeBlockPad;
665    }
666    size_t size = get_size(memblock);
667    inc_stat_counter(&free_bytes, size);
668    u_char* end = ptr + space_before + size;
669    for (u_char* q = end; q < end + MallocCushion; q++) {
670      guarantee(*q == badResourceValue,
671                "Thing freed should be malloc result.");
672      *q = (u_char)freeBlockPad;
673    }
674    if (PrintMalloc && tty != NULL)
675      fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)memblock);
676  } else if (PrintMalloc && tty != NULL) {
677    // tty->print_cr("os::free %p", memblock);
678    fprintf(stderr, "os::free " PTR_FORMAT "\n", (uintptr_t)memblock);
679  }
680#endif
681  MemTracker::record_free((address)memblock, memflags);
682
683  ::free((char*)memblock - space_before);
684}
685
686void os::init_random(long initval) {
687  _rand_seed = initval;
688}
689
690
691long os::random() {
692  /* standard, well-known linear congruential random generator with
693   * next_rand = (16807*seed) mod (2**31-1)
694   * see
695   * (1) "Random Number Generators: Good Ones Are Hard to Find",
696   *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
697   * (2) "Two Fast Implementations of the 'Minimal Standard' Random
698   *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
699  */
700  const long a = 16807;
701  const unsigned long m = 2147483647;
702  const long q = m / a;        assert(q == 127773, "weird math");
703  const long r = m % a;        assert(r == 2836, "weird math");
704
705  // compute az=2^31p+q
706  unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
707  unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
708  lo += (hi & 0x7FFF) << 16;
709
710  // if q overflowed, ignore the overflow and increment q
711  if (lo > m) {
712    lo &= m;
713    ++lo;
714  }
715  lo += hi >> 15;
716
717  // if (p+q) overflowed, ignore the overflow and increment (p+q)
718  if (lo > m) {
719    lo &= m;
720    ++lo;
721  }
722  return (_rand_seed = lo);
723}
724
725// The INITIALIZED state is distinguished from the SUSPENDED state because the
726// conditions in which a thread is first started are different from those in which
727// a suspension is resumed.  These differences make it hard for us to apply the
728// tougher checks when starting threads that we want to do when resuming them.
729// However, when start_thread is called as a result of Thread.start, on a Java
730// thread, the operation is synchronized on the Java Thread object.  So there
731// cannot be a race to start the thread and hence for the thread to exit while
732// we are working on it.  Non-Java threads that start Java threads either have
733// to do so in a context in which races are impossible, or should do appropriate
734// locking.
735
736void os::start_thread(Thread* thread) {
737  // guard suspend/resume
738  MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
739  OSThread* osthread = thread->osthread();
740  osthread->set_state(RUNNABLE);
741  pd_start_thread(thread);
742}
743
744//---------------------------------------------------------------------------
745// Helper functions for fatal error handler
746
747void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
748  assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
749
750  int cols = 0;
751  int cols_per_line = 0;
752  switch (unitsize) {
753    case 1: cols_per_line = 16; break;
754    case 2: cols_per_line = 8;  break;
755    case 4: cols_per_line = 4;  break;
756    case 8: cols_per_line = 2;  break;
757    default: return;
758  }
759
760  address p = start;
761  st->print(PTR_FORMAT ":   ", start);
762  while (p < end) {
763    switch (unitsize) {
764      case 1: st->print("%02x", *(u1*)p); break;
765      case 2: st->print("%04x", *(u2*)p); break;
766      case 4: st->print("%08x", *(u4*)p); break;
767      case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
768    }
769    p += unitsize;
770    cols++;
771    if (cols >= cols_per_line && p < end) {
772       cols = 0;
773       st->cr();
774       st->print(PTR_FORMAT ":   ", p);
775    } else {
776       st->print(" ");
777    }
778  }
779  st->cr();
780}
781
782void os::print_environment_variables(outputStream* st, const char** env_list,
783                                     char* buffer, int len) {
784  if (env_list) {
785    st->print_cr("Environment Variables:");
786
787    for (int i = 0; env_list[i] != NULL; i++) {
788      if (getenv(env_list[i], buffer, len)) {
789        st->print(env_list[i]);
790        st->print("=");
791        st->print_cr(buffer);
792      }
793    }
794  }
795}
796
797void os::print_cpu_info(outputStream* st) {
798  // cpu
799  st->print("CPU:");
800  st->print("total %d", os::processor_count());
801  // It's not safe to query number of active processors after crash
802  // st->print("(active %d)", os::active_processor_count());
803  st->print(" %s", VM_Version::cpu_features());
804  st->cr();
805  pd_print_cpu_info(st);
806}
807
808void os::print_date_and_time(outputStream *st) {
809  time_t tloc;
810  (void)time(&tloc);
811  st->print("time: %s", ctime(&tloc));  // ctime adds newline.
812
813  double t = os::elapsedTime();
814  // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
815  //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
816  //       before printf. We lost some precision, but who cares?
817  st->print_cr("elapsed time: %d seconds", (int)t);
818}
819
820// moved from debug.cpp (used to be find()) but still called from there
821// The verbose parameter is only set by the debug code in one case
822void os::print_location(outputStream* st, intptr_t x, bool verbose) {
823  address addr = (address)x;
824  CodeBlob* b = CodeCache::find_blob_unsafe(addr);
825  if (b != NULL) {
826    if (b->is_buffer_blob()) {
827      // the interpreter is generated into a buffer blob
828      InterpreterCodelet* i = Interpreter::codelet_containing(addr);
829      if (i != NULL) {
830        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", addr, (int)(addr - i->code_begin()));
831        i->print_on(st);
832        return;
833      }
834      if (Interpreter::contains(addr)) {
835        st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
836                     " (not bytecode specific)", addr);
837        return;
838      }
839      //
840      if (AdapterHandlerLibrary::contains(b)) {
841        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", addr, (int)(addr - b->code_begin()));
842        AdapterHandlerLibrary::print_handler_on(st, b);
843      }
844      // the stubroutines are generated into a buffer blob
845      StubCodeDesc* d = StubCodeDesc::desc_for(addr);
846      if (d != NULL) {
847        st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", addr, (int)(addr - d->begin()));
848        d->print_on(st);
849        st->cr();
850        return;
851      }
852      if (StubRoutines::contains(addr)) {
853        st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) "
854                     "stub routine", addr);
855        return;
856      }
857      // the InlineCacheBuffer is using stubs generated into a buffer blob
858      if (InlineCacheBuffer::contains(addr)) {
859        st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
860        return;
861      }
862      VtableStub* v = VtableStubs::stub_containing(addr);
863      if (v != NULL) {
864        st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", addr, (int)(addr - v->entry_point()));
865        v->print_on(st);
866        st->cr();
867        return;
868      }
869    }
870    nmethod* nm = b->as_nmethod_or_null();
871    if (nm != NULL) {
872      ResourceMark rm;
873      st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
874                addr, (int)(addr - nm->entry_point()), nm);
875      if (verbose) {
876        st->print(" for ");
877        nm->method()->print_value_on(st);
878      }
879      st->cr();
880      nm->print_nmethod(verbose);
881      return;
882    }
883    st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", addr, (int)(addr - b->code_begin()));
884    b->print_on(st);
885    return;
886  }
887
888  if (Universe::heap()->is_in(addr)) {
889    HeapWord* p = Universe::heap()->block_start(addr);
890    bool print = false;
891    // If we couldn't find it it just may mean that heap wasn't parseable
892    // See if we were just given an oop directly
893    if (p != NULL && Universe::heap()->block_is_obj(p)) {
894      print = true;
895    } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
896      p = (HeapWord*) addr;
897      print = true;
898    }
899    if (print) {
900      if (p == (HeapWord*) addr) {
901        st->print_cr(INTPTR_FORMAT " is an oop", addr);
902      } else {
903        st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, addr, p);
904      }
905      oop(p)->print_on(st);
906      return;
907    }
908  } else {
909    if (Universe::heap()->is_in_reserved(addr)) {
910      st->print_cr(INTPTR_FORMAT " is an unallocated location "
911                   "in the heap", addr);
912      return;
913    }
914  }
915  if (JNIHandles::is_global_handle((jobject) addr)) {
916    st->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
917    return;
918  }
919  if (JNIHandles::is_weak_global_handle((jobject) addr)) {
920    st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
921    return;
922  }
923#ifndef PRODUCT
924  // we don't keep the block list in product mode
925  if (JNIHandleBlock::any_contains((jobject) addr)) {
926    st->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
927    return;
928  }
929#endif
930
931  for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
932    // Check for privilege stack
933    if (thread->privileged_stack_top() != NULL &&
934        thread->privileged_stack_top()->contains(addr)) {
935      st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
936                   "for thread: " INTPTR_FORMAT, addr, thread);
937      if (verbose) thread->print_on(st);
938      return;
939    }
940    // If the addr is a java thread print information about that.
941    if (addr == (address)thread) {
942      if (verbose) {
943        thread->print_on(st);
944      } else {
945        st->print_cr(INTPTR_FORMAT " is a thread", addr);
946      }
947      return;
948    }
949    // If the addr is in the stack region for this thread then report that
950    // and print thread info
951    if (thread->stack_base() >= addr &&
952        addr > (thread->stack_base() - thread->stack_size())) {
953      st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
954                   INTPTR_FORMAT, addr, thread);
955      if (verbose) thread->print_on(st);
956      return;
957    }
958
959  }
960
961#ifndef PRODUCT
962  // Check if in metaspace.
963  if (ClassLoaderDataGraph::contains((address)addr)) {
964    // Use addr->print() from the debugger instead (not here)
965    st->print_cr(INTPTR_FORMAT
966                 " is pointing into metadata", addr);
967    return;
968  }
969#endif
970
971  // Try an OS specific find
972  if (os::find(addr, st)) {
973    return;
974  }
975
976  st->print_cr(INTPTR_FORMAT " is an unknown value", addr);
977}
978
979// Looks like all platforms except IA64 can use the same function to check
980// if C stack is walkable beyond current frame. The check for fp() is not
981// necessary on Sparc, but it's harmless.
982bool os::is_first_C_frame(frame* fr) {
983#ifdef IA64
984  // In order to walk native frames on Itanium, we need to access the unwind
985  // table, which is inside ELF. We don't want to parse ELF after fatal error,
986  // so return true for IA64. If we need to support C stack walking on IA64,
987  // this function needs to be moved to CPU specific files, as fp() on IA64
988  // is register stack, which grows towards higher memory address.
989  return true;
990#endif
991
992  // Load up sp, fp, sender sp and sender fp, check for reasonable values.
993  // Check usp first, because if that's bad the other accessors may fault
994  // on some architectures.  Ditto ufp second, etc.
995  uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
996  // sp on amd can be 32 bit aligned.
997  uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
998
999  uintptr_t usp    = (uintptr_t)fr->sp();
1000  if ((usp & sp_align_mask) != 0) return true;
1001
1002  uintptr_t ufp    = (uintptr_t)fr->fp();
1003  if ((ufp & fp_align_mask) != 0) return true;
1004
1005  uintptr_t old_sp = (uintptr_t)fr->sender_sp();
1006  if ((old_sp & sp_align_mask) != 0) return true;
1007  if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
1008
1009  uintptr_t old_fp = (uintptr_t)fr->link();
1010  if ((old_fp & fp_align_mask) != 0) return true;
1011  if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
1012
1013  // stack grows downwards; if old_fp is below current fp or if the stack
1014  // frame is too large, either the stack is corrupted or fp is not saved
1015  // on stack (i.e. on x86, ebp may be used as general register). The stack
1016  // is not walkable beyond current frame.
1017  if (old_fp < ufp) return true;
1018  if (old_fp - ufp > 64 * K) return true;
1019
1020  return false;
1021}
1022
1023#ifdef ASSERT
1024extern "C" void test_random() {
1025  const double m = 2147483647;
1026  double mean = 0.0, variance = 0.0, t;
1027  long reps = 10000;
1028  unsigned long seed = 1;
1029
1030  tty->print_cr("seed %ld for %ld repeats...", seed, reps);
1031  os::init_random(seed);
1032  long num;
1033  for (int k = 0; k < reps; k++) {
1034    num = os::random();
1035    double u = (double)num / m;
1036    assert(u >= 0.0 && u <= 1.0, "bad random number!");
1037
1038    // calculate mean and variance of the random sequence
1039    mean += u;
1040    variance += (u*u);
1041  }
1042  mean /= reps;
1043  variance /= (reps - 1);
1044
1045  assert(num == 1043618065, "bad seed");
1046  tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
1047  tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
1048  const double eps = 0.0001;
1049  t = fabsd(mean - 0.5018);
1050  assert(t < eps, "bad mean");
1051  t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
1052  assert(t < eps, "bad variance");
1053}
1054#endif
1055
1056
1057// Set up the boot classpath.
1058
1059char* os::format_boot_path(const char* format_string,
1060                           const char* home,
1061                           int home_len,
1062                           char fileSep,
1063                           char pathSep) {
1064    assert((fileSep == '/' && pathSep == ':') ||
1065           (fileSep == '\\' && pathSep == ';'), "unexpected seperator chars");
1066
1067    // Scan the format string to determine the length of the actual
1068    // boot classpath, and handle platform dependencies as well.
1069    int formatted_path_len = 0;
1070    const char* p;
1071    for (p = format_string; *p != 0; ++p) {
1072        if (*p == '%') formatted_path_len += home_len - 1;
1073        ++formatted_path_len;
1074    }
1075
1076    char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
1077    if (formatted_path == NULL) {
1078        return NULL;
1079    }
1080
1081    // Create boot classpath from format, substituting separator chars and
1082    // java home directory.
1083    char* q = formatted_path;
1084    for (p = format_string; *p != 0; ++p) {
1085        switch (*p) {
1086        case '%':
1087            strcpy(q, home);
1088            q += home_len;
1089            break;
1090        case '/':
1091            *q++ = fileSep;
1092            break;
1093        case ':':
1094            *q++ = pathSep;
1095            break;
1096        default:
1097            *q++ = *p;
1098        }
1099    }
1100    *q = '\0';
1101
1102    assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1103    return formatted_path;
1104}
1105
1106
1107bool os::set_boot_path(char fileSep, char pathSep) {
1108    const char* home = Arguments::get_java_home();
1109    int home_len = (int)strlen(home);
1110
1111    static const char* meta_index_dir_format = "%/lib/";
1112    static const char* meta_index_format = "%/lib/meta-index";
1113    char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
1114    if (meta_index == NULL) return false;
1115    char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
1116    if (meta_index_dir == NULL) return false;
1117    Arguments::set_meta_index_path(meta_index, meta_index_dir);
1118
1119    // Any modification to the JAR-file list, for the boot classpath must be
1120    // aligned with install/install/make/common/Pack.gmk. Note: boot class
1121    // path class JARs, are stripped for StackMapTable to reduce download size.
1122    static const char classpath_format[] =
1123        "%/lib/resources.jar:"
1124        "%/lib/rt.jar:"
1125        "%/lib/sunrsasign.jar:"
1126        "%/lib/jsse.jar:"
1127        "%/lib/jce.jar:"
1128        "%/lib/charsets.jar:"
1129        "%/lib/jfr.jar:"
1130#ifdef __APPLE__
1131        "%/lib/JObjC.jar:"
1132#endif
1133        "%/classes";
1134    char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
1135    if (sysclasspath == NULL) return false;
1136    Arguments::set_sysclasspath(sysclasspath);
1137
1138    return true;
1139}
1140
1141/*
1142 * Splits a path, based on its separator, the number of
1143 * elements is returned back in n.
1144 * It is the callers responsibility to:
1145 *   a> check the value of n, and n may be 0.
1146 *   b> ignore any empty path elements
1147 *   c> free up the data.
1148 */
1149char** os::split_path(const char* path, int* n) {
1150  *n = 0;
1151  if (path == NULL || strlen(path) == 0) {
1152    return NULL;
1153  }
1154  const char psepchar = *os::path_separator();
1155  char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
1156  if (inpath == NULL) {
1157    return NULL;
1158  }
1159  strncpy(inpath, path, strlen(path));
1160  int count = 1;
1161  char* p = strchr(inpath, psepchar);
1162  // Get a count of elements to allocate memory
1163  while (p != NULL) {
1164    count++;
1165    p++;
1166    p = strchr(p, psepchar);
1167  }
1168  char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
1169  if (opath == NULL) {
1170    return NULL;
1171  }
1172
1173  // do the actual splitting
1174  p = inpath;
1175  for (int i = 0 ; i < count ; i++) {
1176    size_t len = strcspn(p, os::path_separator());
1177    if (len > JVM_MAXPATHLEN) {
1178      return NULL;
1179    }
1180    // allocate the string and add terminator storage
1181    char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
1182    if (s == NULL) {
1183      return NULL;
1184    }
1185    strncpy(s, p, len);
1186    s[len] = '\0';
1187    opath[i] = s;
1188    p += len + 1;
1189  }
1190  FREE_C_HEAP_ARRAY(char, inpath, mtInternal);
1191  *n = count;
1192  return opath;
1193}
1194
1195void os::set_memory_serialize_page(address page) {
1196  int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
1197  _mem_serialize_page = (volatile int32_t *)page;
1198  // We initialize the serialization page shift count here
1199  // We assume a cache line size of 64 bytes
1200  assert(SerializePageShiftCount == count,
1201         "thread size changed, fix SerializePageShiftCount constant");
1202  set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
1203}
1204
1205static volatile intptr_t SerializePageLock = 0;
1206
1207// This method is called from signal handler when SIGSEGV occurs while the current
1208// thread tries to store to the "read-only" memory serialize page during state
1209// transition.
1210void os::block_on_serialize_page_trap() {
1211  if (TraceSafepoint) {
1212    tty->print_cr("Block until the serialize page permission restored");
1213  }
1214  // When VMThread is holding the SerializePageLock during modifying the
1215  // access permission of the memory serialize page, the following call
1216  // will block until the permission of that page is restored to rw.
1217  // Generally, it is unsafe to manipulate locks in signal handlers, but in
1218  // this case, it's OK as the signal is synchronous and we know precisely when
1219  // it can occur.
1220  Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
1221  Thread::muxRelease(&SerializePageLock);
1222}
1223
1224// Serialize all thread state variables
1225void os::serialize_thread_states() {
1226  // On some platforms such as Solaris & Linux, the time duration of the page
1227  // permission restoration is observed to be much longer than expected  due to
1228  // scheduler starvation problem etc. To avoid the long synchronization
1229  // time and expensive page trap spinning, 'SerializePageLock' is used to block
1230  // the mutator thread if such case is encountered. See bug 6546278 for details.
1231  Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
1232  os::protect_memory((char *)os::get_memory_serialize_page(),
1233                     os::vm_page_size(), MEM_PROT_READ);
1234  os::protect_memory((char *)os::get_memory_serialize_page(),
1235                     os::vm_page_size(), MEM_PROT_RW);
1236  Thread::muxRelease(&SerializePageLock);
1237}
1238
1239// Returns true if the current stack pointer is above the stack shadow
1240// pages, false otherwise.
1241
1242bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
1243  assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
1244  address sp = current_stack_pointer();
1245  // Check if we have StackShadowPages above the yellow zone.  This parameter
1246  // is dependent on the depth of the maximum VM call stack possible from
1247  // the handler for stack overflow.  'instanceof' in the stack overflow
1248  // handler or a println uses at least 8k stack of VM and native code
1249  // respectively.
1250  const int framesize_in_bytes =
1251    Interpreter::size_top_interpreter_activation(method()) * wordSize;
1252  int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
1253                      * vm_page_size()) + framesize_in_bytes;
1254  // The very lower end of the stack
1255  address stack_limit = thread->stack_base() - thread->stack_size();
1256  return (sp > (stack_limit + reserved_area));
1257}
1258
1259size_t os::page_size_for_region(size_t region_min_size, size_t region_max_size,
1260                                uint min_pages)
1261{
1262  assert(min_pages > 0, "sanity");
1263  if (UseLargePages) {
1264    const size_t max_page_size = region_max_size / min_pages;
1265
1266    for (unsigned int i = 0; _page_sizes[i] != 0; ++i) {
1267      const size_t sz = _page_sizes[i];
1268      const size_t mask = sz - 1;
1269      if ((region_min_size & mask) == 0 && (region_max_size & mask) == 0) {
1270        // The largest page size with no fragmentation.
1271        return sz;
1272      }
1273
1274      if (sz <= max_page_size) {
1275        // The largest page size that satisfies the min_pages requirement.
1276        return sz;
1277      }
1278    }
1279  }
1280
1281  return vm_page_size();
1282}
1283
1284#ifndef PRODUCT
1285void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
1286{
1287  if (TracePageSizes) {
1288    tty->print("%s: ", str);
1289    for (int i = 0; i < count; ++i) {
1290      tty->print(" " SIZE_FORMAT, page_sizes[i]);
1291    }
1292    tty->cr();
1293  }
1294}
1295
1296void os::trace_page_sizes(const char* str, const size_t region_min_size,
1297                          const size_t region_max_size, const size_t page_size,
1298                          const char* base, const size_t size)
1299{
1300  if (TracePageSizes) {
1301    tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
1302                  " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
1303                  " size=" SIZE_FORMAT,
1304                  str, region_min_size, region_max_size,
1305                  page_size, base, size);
1306  }
1307}
1308#endif  // #ifndef PRODUCT
1309
1310// This is the working definition of a server class machine:
1311// >= 2 physical CPU's and >=2GB of memory, with some fuzz
1312// because the graphics memory (?) sometimes masks physical memory.
1313// If you want to change the definition of a server class machine
1314// on some OS or platform, e.g., >=4GB on Windohs platforms,
1315// then you'll have to parameterize this method based on that state,
1316// as was done for logical processors here, or replicate and
1317// specialize this method for each platform.  (Or fix os to have
1318// some inheritance structure and use subclassing.  Sigh.)
1319// If you want some platform to always or never behave as a server
1320// class machine, change the setting of AlwaysActAsServerClassMachine
1321// and NeverActAsServerClassMachine in globals*.hpp.
1322bool os::is_server_class_machine() {
1323  // First check for the early returns
1324  if (NeverActAsServerClassMachine) {
1325    return false;
1326  }
1327  if (AlwaysActAsServerClassMachine) {
1328    return true;
1329  }
1330  // Then actually look at the machine
1331  bool         result            = false;
1332  const unsigned int    server_processors = 2;
1333  const julong server_memory     = 2UL * G;
1334  // We seem not to get our full complement of memory.
1335  //     We allow some part (1/8?) of the memory to be "missing",
1336  //     based on the sizes of DIMMs, and maybe graphics cards.
1337  const julong missing_memory   = 256UL * M;
1338
1339  /* Is this a server class machine? */
1340  if ((os::active_processor_count() >= (int)server_processors) &&
1341      (os::physical_memory() >= (server_memory - missing_memory))) {
1342    const unsigned int logical_processors =
1343      VM_Version::logical_processors_per_package();
1344    if (logical_processors > 1) {
1345      const unsigned int physical_packages =
1346        os::active_processor_count() / logical_processors;
1347      if (physical_packages > server_processors) {
1348        result = true;
1349      }
1350    } else {
1351      result = true;
1352    }
1353  }
1354  return result;
1355}
1356
1357// Read file line by line, if line is longer than bsize,
1358// skip rest of line.
1359int os::get_line_chars(int fd, char* buf, const size_t bsize){
1360  size_t sz, i = 0;
1361
1362  // read until EOF, EOL or buf is full
1363  while ((sz = (int) read(fd, &buf[i], 1)) == 1 && i < (bsize-2) && buf[i] != '\n') {
1364     ++i;
1365  }
1366
1367  if (buf[i] == '\n') {
1368    // EOL reached so ignore EOL character and return
1369
1370    buf[i] = 0;
1371    return (int) i;
1372  }
1373
1374  buf[i+1] = 0;
1375
1376  if (sz != 1) {
1377    // EOF reached. if we read chars before EOF return them and
1378    // return EOF on next call otherwise return EOF
1379
1380    return (i == 0) ? -1 : (int) i;
1381  }
1382
1383  // line is longer than size of buf, skip to EOL
1384  char ch;
1385  while (read(fd, &ch, 1) == 1 && ch != '\n') {
1386    // Do nothing
1387  }
1388
1389  // return initial part of line that fits in buf.
1390  // If we reached EOF, it will be returned on next call.
1391
1392  return (int) i;
1393}
1394
1395bool os::create_stack_guard_pages(char* addr, size_t bytes) {
1396  return os::pd_create_stack_guard_pages(addr, bytes);
1397}
1398
1399
1400char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
1401  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1402  if (result != NULL) {
1403    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1404  }
1405
1406  return result;
1407}
1408char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
1409  char* result = pd_attempt_reserve_memory_at(bytes, addr);
1410  if (result != NULL) {
1411    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1412  }
1413  return result;
1414}
1415
1416void os::split_reserved_memory(char *base, size_t size,
1417                                 size_t split, bool realloc) {
1418  pd_split_reserved_memory(base, size, split, realloc);
1419}
1420
1421bool os::commit_memory(char* addr, size_t bytes, bool executable) {
1422  bool res = pd_commit_memory(addr, bytes, executable);
1423  if (res) {
1424    MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1425  }
1426  return res;
1427}
1428
1429bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1430                              bool executable) {
1431  bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
1432  if (res) {
1433    MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1434  }
1435  return res;
1436}
1437
1438bool os::uncommit_memory(char* addr, size_t bytes) {
1439  bool res = pd_uncommit_memory(addr, bytes);
1440  if (res) {
1441    MemTracker::record_virtual_memory_uncommit((address)addr, bytes);
1442  }
1443  return res;
1444}
1445
1446bool os::release_memory(char* addr, size_t bytes) {
1447  bool res = pd_release_memory(addr, bytes);
1448  if (res) {
1449    MemTracker::record_virtual_memory_release((address)addr, bytes);
1450  }
1451  return res;
1452}
1453
1454
1455char* os::map_memory(int fd, const char* file_name, size_t file_offset,
1456                           char *addr, size_t bytes, bool read_only,
1457                           bool allow_exec) {
1458  char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
1459  if (result != NULL) {
1460    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1461    MemTracker::record_virtual_memory_commit((address)result, bytes, CALLER_PC);
1462  }
1463  return result;
1464}
1465
1466char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
1467                             char *addr, size_t bytes, bool read_only,
1468                             bool allow_exec) {
1469  return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
1470                    read_only, allow_exec);
1471}
1472
1473bool os::unmap_memory(char *addr, size_t bytes) {
1474  bool result = pd_unmap_memory(addr, bytes);
1475  if (result) {
1476    MemTracker::record_virtual_memory_uncommit((address)addr, bytes);
1477    MemTracker::record_virtual_memory_release((address)addr, bytes);
1478  }
1479  return result;
1480}
1481
1482void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
1483  pd_free_memory(addr, bytes, alignment_hint);
1484}
1485
1486void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1487  pd_realign_memory(addr, bytes, alignment_hint);
1488}
1489
1490