os.cpp revision 3602:da91efe96a93
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "gc_implementation/shared/vmGCOperations.hpp"
33#include "interpreter/interpreter.hpp"
34#include "memory/allocation.inline.hpp"
35#include "oops/oop.inline.hpp"
36#include "prims/jvm.h"
37#include "prims/jvm_misc.hpp"
38#include "prims/privilegedStack.hpp"
39#include "runtime/arguments.hpp"
40#include "runtime/frame.inline.hpp"
41#include "runtime/interfaceSupport.hpp"
42#include "runtime/java.hpp"
43#include "runtime/javaCalls.hpp"
44#include "runtime/mutexLocker.hpp"
45#include "runtime/os.hpp"
46#include "runtime/stubRoutines.hpp"
47#include "services/attachListener.hpp"
48#include "services/memTracker.hpp"
49#include "services/threadService.hpp"
50#include "utilities/defaultStream.hpp"
51#include "utilities/events.hpp"
52#ifdef TARGET_OS_FAMILY_linux
53# include "os_linux.inline.hpp"
54# include "thread_linux.inline.hpp"
55#endif
56#ifdef TARGET_OS_FAMILY_solaris
57# include "os_solaris.inline.hpp"
58# include "thread_solaris.inline.hpp"
59#endif
60#ifdef TARGET_OS_FAMILY_windows
61# include "os_windows.inline.hpp"
62# include "thread_windows.inline.hpp"
63#endif
64#ifdef TARGET_OS_FAMILY_bsd
65# include "os_bsd.inline.hpp"
66# include "thread_bsd.inline.hpp"
67#endif
68
69# include <signal.h>
70
71OSThread*         os::_starting_thread    = NULL;
72address           os::_polling_page       = NULL;
73volatile int32_t* os::_mem_serialize_page = NULL;
74uintptr_t         os::_serialize_page_mask = 0;
75long              os::_rand_seed          = 1;
76int               os::_processor_count    = 0;
77size_t            os::_page_sizes[os::page_sizes_max];
78
79#ifndef PRODUCT
80julong os::num_mallocs = 0;         // # of calls to malloc/realloc
81julong os::alloc_bytes = 0;         // # of bytes allocated
82julong os::num_frees = 0;           // # of calls to free
83julong os::free_bytes = 0;          // # of bytes freed
84#endif
85
86void os_init_globals() {
87  // Called from init_globals().
88  // See Threads::create_vm() in thread.cpp, and init.cpp.
89  os::init_globals();
90}
91
92// Fill in buffer with current local time as an ISO-8601 string.
93// E.g., yyyy-mm-ddThh:mm:ss-zzzz.
94// Returns buffer, or NULL if it failed.
95// This would mostly be a call to
96//     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
97// except that on Windows the %z behaves badly, so we do it ourselves.
98// Also, people wanted milliseconds on there,
99// and strftime doesn't do milliseconds.
100char* os::iso8601_time(char* buffer, size_t buffer_length) {
101  // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
102  //                                      1         2
103  //                             12345678901234567890123456789
104  static const char* iso8601_format =
105    "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
106  static const size_t needed_buffer = 29;
107
108  // Sanity check the arguments
109  if (buffer == NULL) {
110    assert(false, "NULL buffer");
111    return NULL;
112  }
113  if (buffer_length < needed_buffer) {
114    assert(false, "buffer_length too small");
115    return NULL;
116  }
117  // Get the current time
118  jlong milliseconds_since_19700101 = javaTimeMillis();
119  const int milliseconds_per_microsecond = 1000;
120  const time_t seconds_since_19700101 =
121    milliseconds_since_19700101 / milliseconds_per_microsecond;
122  const int milliseconds_after_second =
123    milliseconds_since_19700101 % milliseconds_per_microsecond;
124  // Convert the time value to a tm and timezone variable
125  struct tm time_struct;
126  if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
127    assert(false, "Failed localtime_pd");
128    return NULL;
129  }
130#if defined(_ALLBSD_SOURCE)
131  const time_t zone = (time_t) time_struct.tm_gmtoff;
132#else
133  const time_t zone = timezone;
134#endif
135
136  // If daylight savings time is in effect,
137  // we are 1 hour East of our time zone
138  const time_t seconds_per_minute = 60;
139  const time_t minutes_per_hour = 60;
140  const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
141  time_t UTC_to_local = zone;
142  if (time_struct.tm_isdst > 0) {
143    UTC_to_local = UTC_to_local - seconds_per_hour;
144  }
145  // Compute the time zone offset.
146  //    localtime_pd() sets timezone to the difference (in seconds)
147  //    between UTC and and local time.
148  //    ISO 8601 says we need the difference between local time and UTC,
149  //    we change the sign of the localtime_pd() result.
150  const time_t local_to_UTC = -(UTC_to_local);
151  // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
152  char sign_local_to_UTC = '+';
153  time_t abs_local_to_UTC = local_to_UTC;
154  if (local_to_UTC < 0) {
155    sign_local_to_UTC = '-';
156    abs_local_to_UTC = -(abs_local_to_UTC);
157  }
158  // Convert time zone offset seconds to hours and minutes.
159  const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
160  const time_t zone_min =
161    ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
162
163  // Print an ISO 8601 date and time stamp into the buffer
164  const int year = 1900 + time_struct.tm_year;
165  const int month = 1 + time_struct.tm_mon;
166  const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
167                                   year,
168                                   month,
169                                   time_struct.tm_mday,
170                                   time_struct.tm_hour,
171                                   time_struct.tm_min,
172                                   time_struct.tm_sec,
173                                   milliseconds_after_second,
174                                   sign_local_to_UTC,
175                                   zone_hours,
176                                   zone_min);
177  if (printed == 0) {
178    assert(false, "Failed jio_printf");
179    return NULL;
180  }
181  return buffer;
182}
183
184OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
185#ifdef ASSERT
186  if (!(!thread->is_Java_thread() ||
187         Thread::current() == thread  ||
188         Threads_lock->owned_by_self()
189         || thread->is_Compiler_thread()
190        )) {
191    assert(false, "possibility of dangling Thread pointer");
192  }
193#endif
194
195  if (p >= MinPriority && p <= MaxPriority) {
196    int priority = java_to_os_priority[p];
197    return set_native_priority(thread, priority);
198  } else {
199    assert(false, "Should not happen");
200    return OS_ERR;
201  }
202}
203
204
205OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
206  int p;
207  int os_prio;
208  OSReturn ret = get_native_priority(thread, &os_prio);
209  if (ret != OS_OK) return ret;
210
211  for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
212  priority = (ThreadPriority)p;
213  return OS_OK;
214}
215
216
217// --------------------- sun.misc.Signal (optional) ---------------------
218
219
220// SIGBREAK is sent by the keyboard to query the VM state
221#ifndef SIGBREAK
222#define SIGBREAK SIGQUIT
223#endif
224
225// sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
226
227
228static void signal_thread_entry(JavaThread* thread, TRAPS) {
229  os::set_priority(thread, NearMaxPriority);
230  while (true) {
231    int sig;
232    {
233      // FIXME : Currently we have not decieded what should be the status
234      //         for this java thread blocked here. Once we decide about
235      //         that we should fix this.
236      sig = os::signal_wait();
237    }
238    if (sig == os::sigexitnum_pd()) {
239       // Terminate the signal thread
240       return;
241    }
242
243    switch (sig) {
244      case SIGBREAK: {
245        // Check if the signal is a trigger to start the Attach Listener - in that
246        // case don't print stack traces.
247        if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
248          continue;
249        }
250        // Print stack traces
251        // Any SIGBREAK operations added here should make sure to flush
252        // the output stream (e.g. tty->flush()) after output.  See 4803766.
253        // Each module also prints an extra carriage return after its output.
254        VM_PrintThreads op;
255        VMThread::execute(&op);
256        VM_PrintJNI jni_op;
257        VMThread::execute(&jni_op);
258        VM_FindDeadlocks op1(tty);
259        VMThread::execute(&op1);
260        Universe::print_heap_at_SIGBREAK();
261        if (PrintClassHistogram) {
262          VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */,
263                                   true /* need_prologue */);
264          VMThread::execute(&op1);
265        }
266        if (JvmtiExport::should_post_data_dump()) {
267          JvmtiExport::post_data_dump();
268        }
269        break;
270      }
271      default: {
272        // Dispatch the signal to java
273        HandleMark hm(THREAD);
274        Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
275        KlassHandle klass (THREAD, k);
276        if (klass.not_null()) {
277          JavaValue result(T_VOID);
278          JavaCallArguments args;
279          args.push_int(sig);
280          JavaCalls::call_static(
281            &result,
282            klass,
283            vmSymbols::dispatch_name(),
284            vmSymbols::int_void_signature(),
285            &args,
286            THREAD
287          );
288        }
289        if (HAS_PENDING_EXCEPTION) {
290          // tty is initialized early so we don't expect it to be null, but
291          // if it is we can't risk doing an initialization that might
292          // trigger additional out-of-memory conditions
293          if (tty != NULL) {
294            char klass_name[256];
295            char tmp_sig_name[16];
296            const char* sig_name = "UNKNOWN";
297            InstanceKlass::cast(PENDING_EXCEPTION->klass())->
298              name()->as_klass_external_name(klass_name, 256);
299            if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
300              sig_name = tmp_sig_name;
301            warning("Exception %s occurred dispatching signal %s to handler"
302                    "- the VM may need to be forcibly terminated",
303                    klass_name, sig_name );
304          }
305          CLEAR_PENDING_EXCEPTION;
306        }
307      }
308    }
309  }
310}
311
312
313void os::signal_init() {
314  if (!ReduceSignalUsage) {
315    // Setup JavaThread for processing signals
316    EXCEPTION_MARK;
317    Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
318    instanceKlassHandle klass (THREAD, k);
319    instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
320
321    const char thread_name[] = "Signal Dispatcher";
322    Handle string = java_lang_String::create_from_str(thread_name, CHECK);
323
324    // Initialize thread_oop to put it into the system threadGroup
325    Handle thread_group (THREAD, Universe::system_thread_group());
326    JavaValue result(T_VOID);
327    JavaCalls::call_special(&result, thread_oop,
328                           klass,
329                           vmSymbols::object_initializer_name(),
330                           vmSymbols::threadgroup_string_void_signature(),
331                           thread_group,
332                           string,
333                           CHECK);
334
335    KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
336    JavaCalls::call_special(&result,
337                            thread_group,
338                            group,
339                            vmSymbols::add_method_name(),
340                            vmSymbols::thread_void_signature(),
341                            thread_oop,         // ARG 1
342                            CHECK);
343
344    os::signal_init_pd();
345
346    { MutexLocker mu(Threads_lock);
347      JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
348
349      // At this point it may be possible that no osthread was created for the
350      // JavaThread due to lack of memory. We would have to throw an exception
351      // in that case. However, since this must work and we do not allow
352      // exceptions anyway, check and abort if this fails.
353      if (signal_thread == NULL || signal_thread->osthread() == NULL) {
354        vm_exit_during_initialization("java.lang.OutOfMemoryError",
355                                      "unable to create new native thread");
356      }
357
358      java_lang_Thread::set_thread(thread_oop(), signal_thread);
359      java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
360      java_lang_Thread::set_daemon(thread_oop());
361
362      signal_thread->set_threadObj(thread_oop());
363      Threads::add(signal_thread);
364      Thread::start(signal_thread);
365    }
366    // Handle ^BREAK
367    os::signal(SIGBREAK, os::user_handler());
368  }
369}
370
371
372void os::terminate_signal_thread() {
373  if (!ReduceSignalUsage)
374    signal_notify(sigexitnum_pd());
375}
376
377
378// --------------------- loading libraries ---------------------
379
380typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
381extern struct JavaVM_ main_vm;
382
383static void* _native_java_library = NULL;
384
385void* os::native_java_library() {
386  if (_native_java_library == NULL) {
387    char buffer[JVM_MAXPATHLEN];
388    char ebuf[1024];
389
390    // Try to load verify dll first. In 1.3 java dll depends on it and is not
391    // always able to find it when the loading executable is outside the JDK.
392    // In order to keep working with 1.2 we ignore any loading errors.
393    dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "verify");
394    dll_load(buffer, ebuf, sizeof(ebuf));
395
396    // Load java dll
397    dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "java");
398    _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
399    if (_native_java_library == NULL) {
400      vm_exit_during_initialization("Unable to load native library", ebuf);
401    }
402
403#if defined(__OpenBSD__)
404    // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
405    // ignore errors
406    dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "net");
407    dll_load(buffer, ebuf, sizeof(ebuf));
408#endif
409  }
410  static jboolean onLoaded = JNI_FALSE;
411  if (onLoaded) {
412    // We may have to wait to fire OnLoad until TLS is initialized.
413    if (ThreadLocalStorage::is_initialized()) {
414      // The JNI_OnLoad handling is normally done by method load in
415      // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
416      // explicitly so we have to check for JNI_OnLoad as well
417      const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
418      JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
419          JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
420      if (JNI_OnLoad != NULL) {
421        JavaThread* thread = JavaThread::current();
422        ThreadToNativeFromVM ttn(thread);
423        HandleMark hm(thread);
424        jint ver = (*JNI_OnLoad)(&main_vm, NULL);
425        onLoaded = JNI_TRUE;
426        if (!Threads::is_supported_jni_version_including_1_1(ver)) {
427          vm_exit_during_initialization("Unsupported JNI version");
428        }
429      }
430    }
431  }
432  return _native_java_library;
433}
434
435// --------------------- heap allocation utilities ---------------------
436
437char *os::strdup(const char *str, MEMFLAGS flags) {
438  size_t size = strlen(str);
439  char *dup_str = (char *)malloc(size + 1, flags);
440  if (dup_str == NULL) return NULL;
441  strcpy(dup_str, str);
442  return dup_str;
443}
444
445
446
447#ifdef ASSERT
448#define space_before             (MallocCushion + sizeof(double))
449#define space_after              MallocCushion
450#define size_addr_from_base(p)   (size_t*)(p + space_before - sizeof(size_t))
451#define size_addr_from_obj(p)    ((size_t*)p - 1)
452// MallocCushion: size of extra cushion allocated around objects with +UseMallocOnly
453// NB: cannot be debug variable, because these aren't set from the command line until
454// *after* the first few allocs already happened
455#define MallocCushion            16
456#else
457#define space_before             0
458#define space_after              0
459#define size_addr_from_base(p)   should not use w/o ASSERT
460#define size_addr_from_obj(p)    should not use w/o ASSERT
461#define MallocCushion            0
462#endif
463#define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
464
465#ifdef ASSERT
466inline size_t get_size(void* obj) {
467  size_t size = *size_addr_from_obj(obj);
468  if (size < 0) {
469    fatal(err_msg("free: size field of object #" PTR_FORMAT " was overwritten ("
470                  SIZE_FORMAT ")", obj, size));
471  }
472  return size;
473}
474
475u_char* find_cushion_backwards(u_char* start) {
476  u_char* p = start;
477  while (p[ 0] != badResourceValue || p[-1] != badResourceValue ||
478         p[-2] != badResourceValue || p[-3] != badResourceValue) p--;
479  // ok, we have four consecutive marker bytes; find start
480  u_char* q = p - 4;
481  while (*q == badResourceValue) q--;
482  return q + 1;
483}
484
485u_char* find_cushion_forwards(u_char* start) {
486  u_char* p = start;
487  while (p[0] != badResourceValue || p[1] != badResourceValue ||
488         p[2] != badResourceValue || p[3] != badResourceValue) p++;
489  // ok, we have four consecutive marker bytes; find end of cushion
490  u_char* q = p + 4;
491  while (*q == badResourceValue) q++;
492  return q - MallocCushion;
493}
494
495void print_neighbor_blocks(void* ptr) {
496  // find block allocated before ptr (not entirely crash-proof)
497  if (MallocCushion < 4) {
498    tty->print_cr("### cannot find previous block (MallocCushion < 4)");
499    return;
500  }
501  u_char* start_of_this_block = (u_char*)ptr - space_before;
502  u_char* end_of_prev_block_data = start_of_this_block - space_after -1;
503  // look for cushion in front of prev. block
504  u_char* start_of_prev_block = find_cushion_backwards(end_of_prev_block_data);
505  ptrdiff_t size = *size_addr_from_base(start_of_prev_block);
506  u_char* obj = start_of_prev_block + space_before;
507  if (size <= 0 ) {
508    // start is bad; mayhave been confused by OS data inbetween objects
509    // search one more backwards
510    start_of_prev_block = find_cushion_backwards(start_of_prev_block);
511    size = *size_addr_from_base(start_of_prev_block);
512    obj = start_of_prev_block + space_before;
513  }
514
515  if (start_of_prev_block + space_before + size + space_after == start_of_this_block) {
516    tty->print_cr("### previous object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
517  } else {
518    tty->print_cr("### previous object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
519  }
520
521  // now find successor block
522  u_char* start_of_next_block = (u_char*)ptr + *size_addr_from_obj(ptr) + space_after;
523  start_of_next_block = find_cushion_forwards(start_of_next_block);
524  u_char* next_obj = start_of_next_block + space_before;
525  ptrdiff_t next_size = *size_addr_from_base(start_of_next_block);
526  if (start_of_next_block[0] == badResourceValue &&
527      start_of_next_block[1] == badResourceValue &&
528      start_of_next_block[2] == badResourceValue &&
529      start_of_next_block[3] == badResourceValue) {
530    tty->print_cr("### next object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
531  } else {
532    tty->print_cr("### next object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
533  }
534}
535
536
537void report_heap_error(void* memblock, void* bad, const char* where) {
538  tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
539  tty->print_cr("## memory stomp: byte at " PTR_FORMAT " %s object " PTR_FORMAT, bad, where, memblock);
540  print_neighbor_blocks(memblock);
541  fatal("memory stomping error");
542}
543
544void verify_block(void* memblock) {
545  size_t size = get_size(memblock);
546  if (MallocCushion) {
547    u_char* ptr = (u_char*)memblock - space_before;
548    for (int i = 0; i < MallocCushion; i++) {
549      if (ptr[i] != badResourceValue) {
550        report_heap_error(memblock, ptr+i, "in front of");
551      }
552    }
553    u_char* end = (u_char*)memblock + size + space_after;
554    for (int j = -MallocCushion; j < 0; j++) {
555      if (end[j] != badResourceValue) {
556        report_heap_error(memblock, end+j, "after");
557      }
558    }
559  }
560}
561#endif
562
563void* os::malloc(size_t size, MEMFLAGS memflags, address caller) {
564  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
565  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
566
567  if (size == 0) {
568    // return a valid pointer if size is zero
569    // if NULL is returned the calling functions assume out of memory.
570    size = 1;
571  }
572
573  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
574  u_char* ptr = (u_char*)::malloc(size + space_before + space_after);
575
576#ifdef ASSERT
577  if (ptr == NULL) return NULL;
578  if (MallocCushion) {
579    for (u_char* p = ptr; p < ptr + MallocCushion; p++) *p = (u_char)badResourceValue;
580    u_char* end = ptr + space_before + size;
581    for (u_char* pq = ptr+MallocCushion; pq < end; pq++) *pq = (u_char)uninitBlockPad;
582    for (u_char* q = end; q < end + MallocCushion; q++) *q = (u_char)badResourceValue;
583  }
584  // put size just before data
585  *size_addr_from_base(ptr) = size;
586#endif
587  u_char* memblock = ptr + space_before;
588  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
589    tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
590    breakpoint();
591  }
592  debug_only(if (paranoid) verify_block(memblock));
593  if (PrintMalloc && tty != NULL) tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
594
595  // we do not track MallocCushion memory
596  if (MemTracker::is_on()) {
597    MemTracker::record_malloc((address)memblock, size, memflags, caller == 0 ? CALLER_PC : caller);
598  }
599
600  return memblock;
601}
602
603
604void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, address caller) {
605#ifndef ASSERT
606  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
607  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
608  void* ptr = ::realloc(memblock, size);
609  if (ptr != NULL && MemTracker::is_on()) {
610    MemTracker::record_realloc((address)memblock, (address)ptr, size, memflags,
611     caller == 0 ? CALLER_PC : caller);
612  }
613  return ptr;
614#else
615  if (memblock == NULL) {
616    return malloc(size, memflags, (caller == 0 ? CALLER_PC : caller));
617  }
618  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
619    tty->print_cr("os::realloc caught " PTR_FORMAT, memblock);
620    breakpoint();
621  }
622  verify_block(memblock);
623  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
624  if (size == 0) return NULL;
625  // always move the block
626  void* ptr = malloc(size, memflags, caller == 0 ? CALLER_PC : caller);
627  if (PrintMalloc) tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr);
628  // Copy to new memory if malloc didn't fail
629  if ( ptr != NULL ) {
630    memcpy(ptr, memblock, MIN2(size, get_size(memblock)));
631    if (paranoid) verify_block(ptr);
632    if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
633      tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
634      breakpoint();
635    }
636    free(memblock);
637  }
638  return ptr;
639#endif
640}
641
642
643void  os::free(void *memblock, MEMFLAGS memflags) {
644  NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
645#ifdef ASSERT
646  if (memblock == NULL) return;
647  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
648    if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock);
649    breakpoint();
650  }
651  verify_block(memblock);
652  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
653  // Added by detlefs.
654  if (MallocCushion) {
655    u_char* ptr = (u_char*)memblock - space_before;
656    for (u_char* p = ptr; p < ptr + MallocCushion; p++) {
657      guarantee(*p == badResourceValue,
658                "Thing freed should be malloc result.");
659      *p = (u_char)freeBlockPad;
660    }
661    size_t size = get_size(memblock);
662    inc_stat_counter(&free_bytes, size);
663    u_char* end = ptr + space_before + size;
664    for (u_char* q = end; q < end + MallocCushion; q++) {
665      guarantee(*q == badResourceValue,
666                "Thing freed should be malloc result.");
667      *q = (u_char)freeBlockPad;
668    }
669    if (PrintMalloc && tty != NULL)
670      fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)memblock);
671  } else if (PrintMalloc && tty != NULL) {
672    // tty->print_cr("os::free %p", memblock);
673    fprintf(stderr, "os::free " PTR_FORMAT "\n", (uintptr_t)memblock);
674  }
675#endif
676  MemTracker::record_free((address)memblock, memflags);
677
678  ::free((char*)memblock - space_before);
679}
680
681void os::init_random(long initval) {
682  _rand_seed = initval;
683}
684
685
686long os::random() {
687  /* standard, well-known linear congruential random generator with
688   * next_rand = (16807*seed) mod (2**31-1)
689   * see
690   * (1) "Random Number Generators: Good Ones Are Hard to Find",
691   *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
692   * (2) "Two Fast Implementations of the 'Minimal Standard' Random
693   *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
694  */
695  const long a = 16807;
696  const unsigned long m = 2147483647;
697  const long q = m / a;        assert(q == 127773, "weird math");
698  const long r = m % a;        assert(r == 2836, "weird math");
699
700  // compute az=2^31p+q
701  unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
702  unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
703  lo += (hi & 0x7FFF) << 16;
704
705  // if q overflowed, ignore the overflow and increment q
706  if (lo > m) {
707    lo &= m;
708    ++lo;
709  }
710  lo += hi >> 15;
711
712  // if (p+q) overflowed, ignore the overflow and increment (p+q)
713  if (lo > m) {
714    lo &= m;
715    ++lo;
716  }
717  return (_rand_seed = lo);
718}
719
720// The INITIALIZED state is distinguished from the SUSPENDED state because the
721// conditions in which a thread is first started are different from those in which
722// a suspension is resumed.  These differences make it hard for us to apply the
723// tougher checks when starting threads that we want to do when resuming them.
724// However, when start_thread is called as a result of Thread.start, on a Java
725// thread, the operation is synchronized on the Java Thread object.  So there
726// cannot be a race to start the thread and hence for the thread to exit while
727// we are working on it.  Non-Java threads that start Java threads either have
728// to do so in a context in which races are impossible, or should do appropriate
729// locking.
730
731void os::start_thread(Thread* thread) {
732  // guard suspend/resume
733  MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
734  OSThread* osthread = thread->osthread();
735  osthread->set_state(RUNNABLE);
736  pd_start_thread(thread);
737}
738
739//---------------------------------------------------------------------------
740// Helper functions for fatal error handler
741
742void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
743  assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
744
745  int cols = 0;
746  int cols_per_line = 0;
747  switch (unitsize) {
748    case 1: cols_per_line = 16; break;
749    case 2: cols_per_line = 8;  break;
750    case 4: cols_per_line = 4;  break;
751    case 8: cols_per_line = 2;  break;
752    default: return;
753  }
754
755  address p = start;
756  st->print(PTR_FORMAT ":   ", start);
757  while (p < end) {
758    switch (unitsize) {
759      case 1: st->print("%02x", *(u1*)p); break;
760      case 2: st->print("%04x", *(u2*)p); break;
761      case 4: st->print("%08x", *(u4*)p); break;
762      case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
763    }
764    p += unitsize;
765    cols++;
766    if (cols >= cols_per_line && p < end) {
767       cols = 0;
768       st->cr();
769       st->print(PTR_FORMAT ":   ", p);
770    } else {
771       st->print(" ");
772    }
773  }
774  st->cr();
775}
776
777void os::print_environment_variables(outputStream* st, const char** env_list,
778                                     char* buffer, int len) {
779  if (env_list) {
780    st->print_cr("Environment Variables:");
781
782    for (int i = 0; env_list[i] != NULL; i++) {
783      if (getenv(env_list[i], buffer, len)) {
784        st->print(env_list[i]);
785        st->print("=");
786        st->print_cr(buffer);
787      }
788    }
789  }
790}
791
792void os::print_cpu_info(outputStream* st) {
793  // cpu
794  st->print("CPU:");
795  st->print("total %d", os::processor_count());
796  // It's not safe to query number of active processors after crash
797  // st->print("(active %d)", os::active_processor_count());
798  st->print(" %s", VM_Version::cpu_features());
799  st->cr();
800  pd_print_cpu_info(st);
801}
802
803void os::print_date_and_time(outputStream *st) {
804  time_t tloc;
805  (void)time(&tloc);
806  st->print("time: %s", ctime(&tloc));  // ctime adds newline.
807
808  double t = os::elapsedTime();
809  // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
810  //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
811  //       before printf. We lost some precision, but who cares?
812  st->print_cr("elapsed time: %d seconds", (int)t);
813}
814
815// moved from debug.cpp (used to be find()) but still called from there
816// The verbose parameter is only set by the debug code in one case
817void os::print_location(outputStream* st, intptr_t x, bool verbose) {
818  address addr = (address)x;
819  CodeBlob* b = CodeCache::find_blob_unsafe(addr);
820  if (b != NULL) {
821    if (b->is_buffer_blob()) {
822      // the interpreter is generated into a buffer blob
823      InterpreterCodelet* i = Interpreter::codelet_containing(addr);
824      if (i != NULL) {
825        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", addr, (int)(addr - i->code_begin()));
826        i->print_on(st);
827        return;
828      }
829      if (Interpreter::contains(addr)) {
830        st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
831                     " (not bytecode specific)", addr);
832        return;
833      }
834      //
835      if (AdapterHandlerLibrary::contains(b)) {
836        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", addr, (int)(addr - b->code_begin()));
837        AdapterHandlerLibrary::print_handler_on(st, b);
838      }
839      // the stubroutines are generated into a buffer blob
840      StubCodeDesc* d = StubCodeDesc::desc_for(addr);
841      if (d != NULL) {
842        st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", addr, (int)(addr - d->begin()));
843        d->print_on(st);
844        st->cr();
845        return;
846      }
847      if (StubRoutines::contains(addr)) {
848        st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) "
849                     "stub routine", addr);
850        return;
851      }
852      // the InlineCacheBuffer is using stubs generated into a buffer blob
853      if (InlineCacheBuffer::contains(addr)) {
854        st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
855        return;
856      }
857      VtableStub* v = VtableStubs::stub_containing(addr);
858      if (v != NULL) {
859        st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", addr, (int)(addr - v->entry_point()));
860        v->print_on(st);
861        st->cr();
862        return;
863      }
864    }
865    nmethod* nm = b->as_nmethod_or_null();
866    if (nm != NULL) {
867      ResourceMark rm;
868      st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
869                addr, (int)(addr - nm->entry_point()), nm);
870      if (verbose) {
871        st->print(" for ");
872        nm->method()->print_value_on(st);
873      }
874      nm->print_nmethod(verbose);
875      return;
876    }
877    st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", addr, (int)(addr - b->code_begin()));
878    b->print_on(st);
879    return;
880  }
881
882  if (Universe::heap()->is_in(addr)) {
883    HeapWord* p = Universe::heap()->block_start(addr);
884    bool print = false;
885    // If we couldn't find it it just may mean that heap wasn't parseable
886    // See if we were just given an oop directly
887    if (p != NULL && Universe::heap()->block_is_obj(p)) {
888      print = true;
889    } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
890      p = (HeapWord*) addr;
891      print = true;
892    }
893    if (print) {
894      st->print_cr(INTPTR_FORMAT " is an oop", addr);
895      oop(p)->print_on(st);
896      return;
897    }
898  } else {
899    if (Universe::heap()->is_in_reserved(addr)) {
900      st->print_cr(INTPTR_FORMAT " is an unallocated location "
901                   "in the heap", addr);
902      return;
903    }
904  }
905  if (JNIHandles::is_global_handle((jobject) addr)) {
906    st->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
907    return;
908  }
909  if (JNIHandles::is_weak_global_handle((jobject) addr)) {
910    st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
911    return;
912  }
913#ifndef PRODUCT
914  // we don't keep the block list in product mode
915  if (JNIHandleBlock::any_contains((jobject) addr)) {
916    st->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
917    return;
918  }
919#endif
920
921  for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
922    // Check for privilege stack
923    if (thread->privileged_stack_top() != NULL &&
924        thread->privileged_stack_top()->contains(addr)) {
925      st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
926                   "for thread: " INTPTR_FORMAT, addr, thread);
927      if (verbose) thread->print_on(st);
928      return;
929    }
930    // If the addr is a java thread print information about that.
931    if (addr == (address)thread) {
932      if (verbose) {
933        thread->print_on(st);
934      } else {
935        st->print_cr(INTPTR_FORMAT " is a thread", addr);
936      }
937      return;
938    }
939    // If the addr is in the stack region for this thread then report that
940    // and print thread info
941    if (thread->stack_base() >= addr &&
942        addr > (thread->stack_base() - thread->stack_size())) {
943      st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
944                   INTPTR_FORMAT, addr, thread);
945      if (verbose) thread->print_on(st);
946      return;
947    }
948
949  }
950
951#ifndef PRODUCT
952  // Check if in metaspace.
953  if (ClassLoaderDataGraph::contains((address)addr)) {
954    // Use addr->print() from the debugger instead (not here)
955    st->print_cr(INTPTR_FORMAT
956                 " is pointing into metadata", addr);
957    return;
958  }
959#endif
960
961  // Try an OS specific find
962  if (os::find(addr, st)) {
963    return;
964  }
965
966  st->print_cr(INTPTR_FORMAT " is an unknown value", addr);
967}
968
969// Looks like all platforms except IA64 can use the same function to check
970// if C stack is walkable beyond current frame. The check for fp() is not
971// necessary on Sparc, but it's harmless.
972bool os::is_first_C_frame(frame* fr) {
973#ifdef IA64
974  // In order to walk native frames on Itanium, we need to access the unwind
975  // table, which is inside ELF. We don't want to parse ELF after fatal error,
976  // so return true for IA64. If we need to support C stack walking on IA64,
977  // this function needs to be moved to CPU specific files, as fp() on IA64
978  // is register stack, which grows towards higher memory address.
979  return true;
980#endif
981
982  // Load up sp, fp, sender sp and sender fp, check for reasonable values.
983  // Check usp first, because if that's bad the other accessors may fault
984  // on some architectures.  Ditto ufp second, etc.
985  uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
986  // sp on amd can be 32 bit aligned.
987  uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
988
989  uintptr_t usp    = (uintptr_t)fr->sp();
990  if ((usp & sp_align_mask) != 0) return true;
991
992  uintptr_t ufp    = (uintptr_t)fr->fp();
993  if ((ufp & fp_align_mask) != 0) return true;
994
995  uintptr_t old_sp = (uintptr_t)fr->sender_sp();
996  if ((old_sp & sp_align_mask) != 0) return true;
997  if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
998
999  uintptr_t old_fp = (uintptr_t)fr->link();
1000  if ((old_fp & fp_align_mask) != 0) return true;
1001  if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
1002
1003  // stack grows downwards; if old_fp is below current fp or if the stack
1004  // frame is too large, either the stack is corrupted or fp is not saved
1005  // on stack (i.e. on x86, ebp may be used as general register). The stack
1006  // is not walkable beyond current frame.
1007  if (old_fp < ufp) return true;
1008  if (old_fp - ufp > 64 * K) return true;
1009
1010  return false;
1011}
1012
1013#ifdef ASSERT
1014extern "C" void test_random() {
1015  const double m = 2147483647;
1016  double mean = 0.0, variance = 0.0, t;
1017  long reps = 10000;
1018  unsigned long seed = 1;
1019
1020  tty->print_cr("seed %ld for %ld repeats...", seed, reps);
1021  os::init_random(seed);
1022  long num;
1023  for (int k = 0; k < reps; k++) {
1024    num = os::random();
1025    double u = (double)num / m;
1026    assert(u >= 0.0 && u <= 1.0, "bad random number!");
1027
1028    // calculate mean and variance of the random sequence
1029    mean += u;
1030    variance += (u*u);
1031  }
1032  mean /= reps;
1033  variance /= (reps - 1);
1034
1035  assert(num == 1043618065, "bad seed");
1036  tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
1037  tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
1038  const double eps = 0.0001;
1039  t = fabsd(mean - 0.5018);
1040  assert(t < eps, "bad mean");
1041  t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
1042  assert(t < eps, "bad variance");
1043}
1044#endif
1045
1046
1047// Set up the boot classpath.
1048
1049char* os::format_boot_path(const char* format_string,
1050                           const char* home,
1051                           int home_len,
1052                           char fileSep,
1053                           char pathSep) {
1054    assert((fileSep == '/' && pathSep == ':') ||
1055           (fileSep == '\\' && pathSep == ';'), "unexpected seperator chars");
1056
1057    // Scan the format string to determine the length of the actual
1058    // boot classpath, and handle platform dependencies as well.
1059    int formatted_path_len = 0;
1060    const char* p;
1061    for (p = format_string; *p != 0; ++p) {
1062        if (*p == '%') formatted_path_len += home_len - 1;
1063        ++formatted_path_len;
1064    }
1065
1066    char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
1067    if (formatted_path == NULL) {
1068        return NULL;
1069    }
1070
1071    // Create boot classpath from format, substituting separator chars and
1072    // java home directory.
1073    char* q = formatted_path;
1074    for (p = format_string; *p != 0; ++p) {
1075        switch (*p) {
1076        case '%':
1077            strcpy(q, home);
1078            q += home_len;
1079            break;
1080        case '/':
1081            *q++ = fileSep;
1082            break;
1083        case ':':
1084            *q++ = pathSep;
1085            break;
1086        default:
1087            *q++ = *p;
1088        }
1089    }
1090    *q = '\0';
1091
1092    assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1093    return formatted_path;
1094}
1095
1096
1097bool os::set_boot_path(char fileSep, char pathSep) {
1098    const char* home = Arguments::get_java_home();
1099    int home_len = (int)strlen(home);
1100
1101    static const char* meta_index_dir_format = "%/lib/";
1102    static const char* meta_index_format = "%/lib/meta-index";
1103    char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
1104    if (meta_index == NULL) return false;
1105    char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
1106    if (meta_index_dir == NULL) return false;
1107    Arguments::set_meta_index_path(meta_index, meta_index_dir);
1108
1109    // Any modification to the JAR-file list, for the boot classpath must be
1110    // aligned with install/install/make/common/Pack.gmk. Note: boot class
1111    // path class JARs, are stripped for StackMapTable to reduce download size.
1112    static const char classpath_format[] =
1113        "%/lib/resources.jar:"
1114        "%/lib/rt.jar:"
1115        "%/lib/sunrsasign.jar:"
1116        "%/lib/jsse.jar:"
1117        "%/lib/jce.jar:"
1118        "%/lib/charsets.jar:"
1119        "%/lib/jfr.jar:"
1120#ifdef __APPLE__
1121        "%/lib/JObjC.jar:"
1122#endif
1123        "%/classes";
1124    char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
1125    if (sysclasspath == NULL) return false;
1126    Arguments::set_sysclasspath(sysclasspath);
1127
1128    return true;
1129}
1130
1131/*
1132 * Splits a path, based on its separator, the number of
1133 * elements is returned back in n.
1134 * It is the callers responsibility to:
1135 *   a> check the value of n, and n may be 0.
1136 *   b> ignore any empty path elements
1137 *   c> free up the data.
1138 */
1139char** os::split_path(const char* path, int* n) {
1140  *n = 0;
1141  if (path == NULL || strlen(path) == 0) {
1142    return NULL;
1143  }
1144  const char psepchar = *os::path_separator();
1145  char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
1146  if (inpath == NULL) {
1147    return NULL;
1148  }
1149  strncpy(inpath, path, strlen(path));
1150  int count = 1;
1151  char* p = strchr(inpath, psepchar);
1152  // Get a count of elements to allocate memory
1153  while (p != NULL) {
1154    count++;
1155    p++;
1156    p = strchr(p, psepchar);
1157  }
1158  char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
1159  if (opath == NULL) {
1160    return NULL;
1161  }
1162
1163  // do the actual splitting
1164  p = inpath;
1165  for (int i = 0 ; i < count ; i++) {
1166    size_t len = strcspn(p, os::path_separator());
1167    if (len > JVM_MAXPATHLEN) {
1168      return NULL;
1169    }
1170    // allocate the string and add terminator storage
1171    char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
1172    if (s == NULL) {
1173      return NULL;
1174    }
1175    strncpy(s, p, len);
1176    s[len] = '\0';
1177    opath[i] = s;
1178    p += len + 1;
1179  }
1180  FREE_C_HEAP_ARRAY(char, inpath, mtInternal);
1181  *n = count;
1182  return opath;
1183}
1184
1185void os::set_memory_serialize_page(address page) {
1186  int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
1187  _mem_serialize_page = (volatile int32_t *)page;
1188  // We initialize the serialization page shift count here
1189  // We assume a cache line size of 64 bytes
1190  assert(SerializePageShiftCount == count,
1191         "thread size changed, fix SerializePageShiftCount constant");
1192  set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
1193}
1194
1195static volatile intptr_t SerializePageLock = 0;
1196
1197// This method is called from signal handler when SIGSEGV occurs while the current
1198// thread tries to store to the "read-only" memory serialize page during state
1199// transition.
1200void os::block_on_serialize_page_trap() {
1201  if (TraceSafepoint) {
1202    tty->print_cr("Block until the serialize page permission restored");
1203  }
1204  // When VMThread is holding the SerializePageLock during modifying the
1205  // access permission of the memory serialize page, the following call
1206  // will block until the permission of that page is restored to rw.
1207  // Generally, it is unsafe to manipulate locks in signal handlers, but in
1208  // this case, it's OK as the signal is synchronous and we know precisely when
1209  // it can occur.
1210  Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
1211  Thread::muxRelease(&SerializePageLock);
1212}
1213
1214// Serialize all thread state variables
1215void os::serialize_thread_states() {
1216  // On some platforms such as Solaris & Linux, the time duration of the page
1217  // permission restoration is observed to be much longer than expected  due to
1218  // scheduler starvation problem etc. To avoid the long synchronization
1219  // time and expensive page trap spinning, 'SerializePageLock' is used to block
1220  // the mutator thread if such case is encountered. See bug 6546278 for details.
1221  Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
1222  os::protect_memory((char *)os::get_memory_serialize_page(),
1223                     os::vm_page_size(), MEM_PROT_READ);
1224  os::protect_memory((char *)os::get_memory_serialize_page(),
1225                     os::vm_page_size(), MEM_PROT_RW);
1226  Thread::muxRelease(&SerializePageLock);
1227}
1228
1229// Returns true if the current stack pointer is above the stack shadow
1230// pages, false otherwise.
1231
1232bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
1233  assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
1234  address sp = current_stack_pointer();
1235  // Check if we have StackShadowPages above the yellow zone.  This parameter
1236  // is dependent on the depth of the maximum VM call stack possible from
1237  // the handler for stack overflow.  'instanceof' in the stack overflow
1238  // handler or a println uses at least 8k stack of VM and native code
1239  // respectively.
1240  const int framesize_in_bytes =
1241    Interpreter::size_top_interpreter_activation(method()) * wordSize;
1242  int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
1243                      * vm_page_size()) + framesize_in_bytes;
1244  // The very lower end of the stack
1245  address stack_limit = thread->stack_base() - thread->stack_size();
1246  return (sp > (stack_limit + reserved_area));
1247}
1248
1249size_t os::page_size_for_region(size_t region_min_size, size_t region_max_size,
1250                                uint min_pages)
1251{
1252  assert(min_pages > 0, "sanity");
1253  if (UseLargePages) {
1254    const size_t max_page_size = region_max_size / min_pages;
1255
1256    for (unsigned int i = 0; _page_sizes[i] != 0; ++i) {
1257      const size_t sz = _page_sizes[i];
1258      const size_t mask = sz - 1;
1259      if ((region_min_size & mask) == 0 && (region_max_size & mask) == 0) {
1260        // The largest page size with no fragmentation.
1261        return sz;
1262      }
1263
1264      if (sz <= max_page_size) {
1265        // The largest page size that satisfies the min_pages requirement.
1266        return sz;
1267      }
1268    }
1269  }
1270
1271  return vm_page_size();
1272}
1273
1274#ifndef PRODUCT
1275void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
1276{
1277  if (TracePageSizes) {
1278    tty->print("%s: ", str);
1279    for (int i = 0; i < count; ++i) {
1280      tty->print(" " SIZE_FORMAT, page_sizes[i]);
1281    }
1282    tty->cr();
1283  }
1284}
1285
1286void os::trace_page_sizes(const char* str, const size_t region_min_size,
1287                          const size_t region_max_size, const size_t page_size,
1288                          const char* base, const size_t size)
1289{
1290  if (TracePageSizes) {
1291    tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
1292                  " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
1293                  " size=" SIZE_FORMAT,
1294                  str, region_min_size, region_max_size,
1295                  page_size, base, size);
1296  }
1297}
1298#endif  // #ifndef PRODUCT
1299
1300// This is the working definition of a server class machine:
1301// >= 2 physical CPU's and >=2GB of memory, with some fuzz
1302// because the graphics memory (?) sometimes masks physical memory.
1303// If you want to change the definition of a server class machine
1304// on some OS or platform, e.g., >=4GB on Windohs platforms,
1305// then you'll have to parameterize this method based on that state,
1306// as was done for logical processors here, or replicate and
1307// specialize this method for each platform.  (Or fix os to have
1308// some inheritance structure and use subclassing.  Sigh.)
1309// If you want some platform to always or never behave as a server
1310// class machine, change the setting of AlwaysActAsServerClassMachine
1311// and NeverActAsServerClassMachine in globals*.hpp.
1312bool os::is_server_class_machine() {
1313  // First check for the early returns
1314  if (NeverActAsServerClassMachine) {
1315    return false;
1316  }
1317  if (AlwaysActAsServerClassMachine) {
1318    return true;
1319  }
1320  // Then actually look at the machine
1321  bool         result            = false;
1322  const unsigned int    server_processors = 2;
1323  const julong server_memory     = 2UL * G;
1324  // We seem not to get our full complement of memory.
1325  //     We allow some part (1/8?) of the memory to be "missing",
1326  //     based on the sizes of DIMMs, and maybe graphics cards.
1327  const julong missing_memory   = 256UL * M;
1328
1329  /* Is this a server class machine? */
1330  if ((os::active_processor_count() >= (int)server_processors) &&
1331      (os::physical_memory() >= (server_memory - missing_memory))) {
1332    const unsigned int logical_processors =
1333      VM_Version::logical_processors_per_package();
1334    if (logical_processors > 1) {
1335      const unsigned int physical_packages =
1336        os::active_processor_count() / logical_processors;
1337      if (physical_packages > server_processors) {
1338        result = true;
1339      }
1340    } else {
1341      result = true;
1342    }
1343  }
1344  return result;
1345}
1346
1347// Read file line by line, if line is longer than bsize,
1348// skip rest of line.
1349int os::get_line_chars(int fd, char* buf, const size_t bsize){
1350  size_t sz, i = 0;
1351
1352  // read until EOF, EOL or buf is full
1353  while ((sz = (int) read(fd, &buf[i], 1)) == 1 && i < (bsize-2) && buf[i] != '\n') {
1354     ++i;
1355  }
1356
1357  if (buf[i] == '\n') {
1358    // EOL reached so ignore EOL character and return
1359
1360    buf[i] = 0;
1361    return (int) i;
1362  }
1363
1364  buf[i+1] = 0;
1365
1366  if (sz != 1) {
1367    // EOF reached. if we read chars before EOF return them and
1368    // return EOF on next call otherwise return EOF
1369
1370    return (i == 0) ? -1 : (int) i;
1371  }
1372
1373  // line is longer than size of buf, skip to EOL
1374  char ch;
1375  while (read(fd, &ch, 1) == 1 && ch != '\n') {
1376    // Do nothing
1377  }
1378
1379  // return initial part of line that fits in buf.
1380  // If we reached EOF, it will be returned on next call.
1381
1382  return (int) i;
1383}
1384
1385bool os::create_stack_guard_pages(char* addr, size_t bytes) {
1386  return os::pd_create_stack_guard_pages(addr, bytes);
1387}
1388
1389
1390char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
1391  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1392  if (result != NULL && MemTracker::is_on()) {
1393    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1394  }
1395
1396  return result;
1397}
1398char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
1399  char* result = pd_attempt_reserve_memory_at(bytes, addr);
1400  if (result != NULL && MemTracker::is_on()) {
1401    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1402  }
1403  return result;
1404}
1405
1406void os::split_reserved_memory(char *base, size_t size,
1407                                 size_t split, bool realloc) {
1408  pd_split_reserved_memory(base, size, split, realloc);
1409}
1410
1411bool os::commit_memory(char* addr, size_t bytes, bool executable) {
1412  bool res = pd_commit_memory(addr, bytes, executable);
1413  if (res && MemTracker::is_on()) {
1414    MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1415  }
1416  return res;
1417}
1418
1419bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1420                              bool executable) {
1421  bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
1422  if (res && MemTracker::is_on()) {
1423    MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1424  }
1425  return res;
1426}
1427
1428bool os::uncommit_memory(char* addr, size_t bytes) {
1429  bool res = pd_uncommit_memory(addr, bytes);
1430  if (res) {
1431    MemTracker::record_virtual_memory_uncommit((address)addr, bytes);
1432  }
1433  return res;
1434}
1435
1436bool os::release_memory(char* addr, size_t bytes) {
1437  bool res = pd_release_memory(addr, bytes);
1438  if (res) {
1439    MemTracker::record_virtual_memory_release((address)addr, bytes);
1440  }
1441  return res;
1442}
1443
1444
1445char* os::map_memory(int fd, const char* file_name, size_t file_offset,
1446                           char *addr, size_t bytes, bool read_only,
1447                           bool allow_exec) {
1448  char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
1449  if (result != NULL && MemTracker::is_on()) {
1450    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1451  }
1452  return result;
1453}
1454
1455char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
1456                             char *addr, size_t bytes, bool read_only,
1457                             bool allow_exec) {
1458  return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
1459                    read_only, allow_exec);
1460}
1461
1462bool os::unmap_memory(char *addr, size_t bytes) {
1463  bool result = pd_unmap_memory(addr, bytes);
1464  if (result) {
1465    MemTracker::record_virtual_memory_release((address)addr, bytes);
1466  }
1467  return result;
1468}
1469
1470void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
1471  pd_free_memory(addr, bytes, alignment_hint);
1472}
1473
1474void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1475  pd_realign_memory(addr, bytes, alignment_hint);
1476}
1477
1478