os.cpp revision 13477:4d61110c6046
1/*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/moduleEntry.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "classfile/vmSymbols.hpp"
31#include "code/codeCache.hpp"
32#include "code/icBuffer.hpp"
33#include "code/vtableStubs.hpp"
34#include "gc/shared/vmGCOperations.hpp"
35#include "interpreter/interpreter.hpp"
36#include "logging/log.hpp"
37#include "logging/logStream.hpp"
38#include "memory/allocation.inline.hpp"
39#ifdef ASSERT
40#include "memory/guardedMemory.hpp"
41#endif
42#include "memory/resourceArea.hpp"
43#include "oops/oop.inline.hpp"
44#include "prims/jvm.h"
45#include "prims/jvm_misc.hpp"
46#include "prims/privilegedStack.hpp"
47#include "runtime/arguments.hpp"
48#include "runtime/atomic.hpp"
49#include "runtime/frame.inline.hpp"
50#include "runtime/interfaceSupport.hpp"
51#include "runtime/java.hpp"
52#include "runtime/javaCalls.hpp"
53#include "runtime/mutexLocker.hpp"
54#include "runtime/os.inline.hpp"
55#include "runtime/stubRoutines.hpp"
56#include "runtime/thread.inline.hpp"
57#include "runtime/vm_version.hpp"
58#include "services/attachListener.hpp"
59#include "services/mallocTracker.hpp"
60#include "services/memTracker.hpp"
61#include "services/nmtCommon.hpp"
62#include "services/threadService.hpp"
63#include "utilities/align.hpp"
64#include "utilities/defaultStream.hpp"
65#include "utilities/events.hpp"
66
67# include <signal.h>
68# include <errno.h>
69
70OSThread*         os::_starting_thread    = NULL;
71address           os::_polling_page       = NULL;
72volatile int32_t* os::_mem_serialize_page = NULL;
73uintptr_t         os::_serialize_page_mask = 0;
74volatile unsigned int os::_rand_seed      = 1;
75int               os::_processor_count    = 0;
76int               os::_initial_active_processor_count = 0;
77size_t            os::_page_sizes[os::page_sizes_max];
78
79#ifndef PRODUCT
80julong os::num_mallocs = 0;         // # of calls to malloc/realloc
81julong os::alloc_bytes = 0;         // # of bytes allocated
82julong os::num_frees = 0;           // # of calls to free
83julong os::free_bytes = 0;          // # of bytes freed
84#endif
85
86static juint cur_malloc_words = 0;  // current size for MallocMaxTestWords
87
88void os_init_globals() {
89  // Called from init_globals().
90  // See Threads::create_vm() in thread.cpp, and init.cpp.
91  os::init_globals();
92}
93
94// Fill in buffer with current local time as an ISO-8601 string.
95// E.g., yyyy-mm-ddThh:mm:ss-zzzz.
96// Returns buffer, or NULL if it failed.
97// This would mostly be a call to
98//     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
99// except that on Windows the %z behaves badly, so we do it ourselves.
100// Also, people wanted milliseconds on there,
101// and strftime doesn't do milliseconds.
102char* os::iso8601_time(char* buffer, size_t buffer_length, bool utc) {
103  // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
104  //                                      1         2
105  //                             12345678901234567890123456789
106  // format string: "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d"
107  static const size_t needed_buffer = 29;
108
109  // Sanity check the arguments
110  if (buffer == NULL) {
111    assert(false, "NULL buffer");
112    return NULL;
113  }
114  if (buffer_length < needed_buffer) {
115    assert(false, "buffer_length too small");
116    return NULL;
117  }
118  // Get the current time
119  jlong milliseconds_since_19700101 = javaTimeMillis();
120  const int milliseconds_per_microsecond = 1000;
121  const time_t seconds_since_19700101 =
122    milliseconds_since_19700101 / milliseconds_per_microsecond;
123  const int milliseconds_after_second =
124    milliseconds_since_19700101 % milliseconds_per_microsecond;
125  // Convert the time value to a tm and timezone variable
126  struct tm time_struct;
127  if (utc) {
128    if (gmtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
129      assert(false, "Failed gmtime_pd");
130      return NULL;
131    }
132  } else {
133    if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
134      assert(false, "Failed localtime_pd");
135      return NULL;
136    }
137  }
138#if defined(_ALLBSD_SOURCE)
139  const time_t zone = (time_t) time_struct.tm_gmtoff;
140#else
141  const time_t zone = timezone;
142#endif
143
144  // If daylight savings time is in effect,
145  // we are 1 hour East of our time zone
146  const time_t seconds_per_minute = 60;
147  const time_t minutes_per_hour = 60;
148  const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
149  time_t UTC_to_local = zone;
150  if (time_struct.tm_isdst > 0) {
151    UTC_to_local = UTC_to_local - seconds_per_hour;
152  }
153
154  // No offset when dealing with UTC
155  if (utc) {
156    UTC_to_local = 0;
157  }
158
159  // Compute the time zone offset.
160  //    localtime_pd() sets timezone to the difference (in seconds)
161  //    between UTC and and local time.
162  //    ISO 8601 says we need the difference between local time and UTC,
163  //    we change the sign of the localtime_pd() result.
164  const time_t local_to_UTC = -(UTC_to_local);
165  // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
166  char sign_local_to_UTC = '+';
167  time_t abs_local_to_UTC = local_to_UTC;
168  if (local_to_UTC < 0) {
169    sign_local_to_UTC = '-';
170    abs_local_to_UTC = -(abs_local_to_UTC);
171  }
172  // Convert time zone offset seconds to hours and minutes.
173  const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
174  const time_t zone_min =
175    ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
176
177  // Print an ISO 8601 date and time stamp into the buffer
178  const int year = 1900 + time_struct.tm_year;
179  const int month = 1 + time_struct.tm_mon;
180  const int printed = jio_snprintf(buffer, buffer_length,
181                                   "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d",
182                                   year,
183                                   month,
184                                   time_struct.tm_mday,
185                                   time_struct.tm_hour,
186                                   time_struct.tm_min,
187                                   time_struct.tm_sec,
188                                   milliseconds_after_second,
189                                   sign_local_to_UTC,
190                                   zone_hours,
191                                   zone_min);
192  if (printed == 0) {
193    assert(false, "Failed jio_printf");
194    return NULL;
195  }
196  return buffer;
197}
198
199OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
200#ifdef ASSERT
201  if (!(!thread->is_Java_thread() ||
202         Thread::current() == thread  ||
203         Threads_lock->owned_by_self()
204         || thread->is_Compiler_thread()
205        )) {
206    assert(false, "possibility of dangling Thread pointer");
207  }
208#endif
209
210  if (p >= MinPriority && p <= MaxPriority) {
211    int priority = java_to_os_priority[p];
212    return set_native_priority(thread, priority);
213  } else {
214    assert(false, "Should not happen");
215    return OS_ERR;
216  }
217}
218
219// The mapping from OS priority back to Java priority may be inexact because
220// Java priorities can map M:1 with native priorities. If you want the definite
221// Java priority then use JavaThread::java_priority()
222OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
223  int p;
224  int os_prio;
225  OSReturn ret = get_native_priority(thread, &os_prio);
226  if (ret != OS_OK) return ret;
227
228  if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
229    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
230  } else {
231    // niceness values are in reverse order
232    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
233  }
234  priority = (ThreadPriority)p;
235  return OS_OK;
236}
237
238
239// --------------------- sun.misc.Signal (optional) ---------------------
240
241
242// SIGBREAK is sent by the keyboard to query the VM state
243#ifndef SIGBREAK
244#define SIGBREAK SIGQUIT
245#endif
246
247// sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
248
249
250static void signal_thread_entry(JavaThread* thread, TRAPS) {
251  os::set_priority(thread, NearMaxPriority);
252  while (true) {
253    int sig;
254    {
255      // FIXME : Currently we have not decided what should be the status
256      //         for this java thread blocked here. Once we decide about
257      //         that we should fix this.
258      sig = os::signal_wait();
259    }
260    if (sig == os::sigexitnum_pd()) {
261       // Terminate the signal thread
262       return;
263    }
264
265    switch (sig) {
266      case SIGBREAK: {
267        // Check if the signal is a trigger to start the Attach Listener - in that
268        // case don't print stack traces.
269        if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
270          continue;
271        }
272        // Print stack traces
273        // Any SIGBREAK operations added here should make sure to flush
274        // the output stream (e.g. tty->flush()) after output.  See 4803766.
275        // Each module also prints an extra carriage return after its output.
276        VM_PrintThreads op;
277        VMThread::execute(&op);
278        VM_PrintJNI jni_op;
279        VMThread::execute(&jni_op);
280        VM_FindDeadlocks op1(tty);
281        VMThread::execute(&op1);
282        Universe::print_heap_at_SIGBREAK();
283        if (PrintClassHistogram) {
284          VM_GC_HeapInspection op1(tty, true /* force full GC before heap inspection */);
285          VMThread::execute(&op1);
286        }
287        if (JvmtiExport::should_post_data_dump()) {
288          JvmtiExport::post_data_dump();
289        }
290        break;
291      }
292      default: {
293        // Dispatch the signal to java
294        HandleMark hm(THREAD);
295        Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_misc_Signal(), THREAD);
296        if (klass != NULL) {
297          JavaValue result(T_VOID);
298          JavaCallArguments args;
299          args.push_int(sig);
300          JavaCalls::call_static(
301            &result,
302            klass,
303            vmSymbols::dispatch_name(),
304            vmSymbols::int_void_signature(),
305            &args,
306            THREAD
307          );
308        }
309        if (HAS_PENDING_EXCEPTION) {
310          // tty is initialized early so we don't expect it to be null, but
311          // if it is we can't risk doing an initialization that might
312          // trigger additional out-of-memory conditions
313          if (tty != NULL) {
314            char klass_name[256];
315            char tmp_sig_name[16];
316            const char* sig_name = "UNKNOWN";
317            InstanceKlass::cast(PENDING_EXCEPTION->klass())->
318              name()->as_klass_external_name(klass_name, 256);
319            if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
320              sig_name = tmp_sig_name;
321            warning("Exception %s occurred dispatching signal %s to handler"
322                    "- the VM may need to be forcibly terminated",
323                    klass_name, sig_name );
324          }
325          CLEAR_PENDING_EXCEPTION;
326        }
327      }
328    }
329  }
330}
331
332void os::init_before_ergo() {
333  initialize_initial_active_processor_count();
334  // We need to initialize large page support here because ergonomics takes some
335  // decisions depending on large page support and the calculated large page size.
336  large_page_init();
337
338  // We need to adapt the configured number of stack protection pages given
339  // in 4K pages to the actual os page size. We must do this before setting
340  // up minimal stack sizes etc. in os::init_2().
341  JavaThread::set_stack_red_zone_size     (align_up(StackRedPages      * 4 * K, vm_page_size()));
342  JavaThread::set_stack_yellow_zone_size  (align_up(StackYellowPages   * 4 * K, vm_page_size()));
343  JavaThread::set_stack_reserved_zone_size(align_up(StackReservedPages * 4 * K, vm_page_size()));
344  JavaThread::set_stack_shadow_zone_size  (align_up(StackShadowPages   * 4 * K, vm_page_size()));
345
346  // VM version initialization identifies some characteristics of the
347  // platform that are used during ergonomic decisions.
348  VM_Version::init_before_ergo();
349}
350
351void os::signal_init(TRAPS) {
352  if (!ReduceSignalUsage) {
353    // Setup JavaThread for processing signals
354    Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
355    InstanceKlass* ik = InstanceKlass::cast(k);
356    instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
357
358    const char thread_name[] = "Signal Dispatcher";
359    Handle string = java_lang_String::create_from_str(thread_name, CHECK);
360
361    // Initialize thread_oop to put it into the system threadGroup
362    Handle thread_group (THREAD, Universe::system_thread_group());
363    JavaValue result(T_VOID);
364    JavaCalls::call_special(&result, thread_oop,
365                           ik,
366                           vmSymbols::object_initializer_name(),
367                           vmSymbols::threadgroup_string_void_signature(),
368                           thread_group,
369                           string,
370                           CHECK);
371
372    Klass* group = SystemDictionary::ThreadGroup_klass();
373    JavaCalls::call_special(&result,
374                            thread_group,
375                            group,
376                            vmSymbols::add_method_name(),
377                            vmSymbols::thread_void_signature(),
378                            thread_oop,         // ARG 1
379                            CHECK);
380
381    os::signal_init_pd();
382
383    { MutexLocker mu(Threads_lock);
384      JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
385
386      // At this point it may be possible that no osthread was created for the
387      // JavaThread due to lack of memory. We would have to throw an exception
388      // in that case. However, since this must work and we do not allow
389      // exceptions anyway, check and abort if this fails.
390      if (signal_thread == NULL || signal_thread->osthread() == NULL) {
391        vm_exit_during_initialization("java.lang.OutOfMemoryError",
392                                      os::native_thread_creation_failed_msg());
393      }
394
395      java_lang_Thread::set_thread(thread_oop(), signal_thread);
396      java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
397      java_lang_Thread::set_daemon(thread_oop());
398
399      signal_thread->set_threadObj(thread_oop());
400      Threads::add(signal_thread);
401      Thread::start(signal_thread);
402    }
403    // Handle ^BREAK
404    os::signal(SIGBREAK, os::user_handler());
405  }
406}
407
408
409void os::terminate_signal_thread() {
410  if (!ReduceSignalUsage)
411    signal_notify(sigexitnum_pd());
412}
413
414
415// --------------------- loading libraries ---------------------
416
417typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
418extern struct JavaVM_ main_vm;
419
420static void* _native_java_library = NULL;
421
422void* os::native_java_library() {
423  if (_native_java_library == NULL) {
424    char buffer[JVM_MAXPATHLEN];
425    char ebuf[1024];
426
427    // Try to load verify dll first. In 1.3 java dll depends on it and is not
428    // always able to find it when the loading executable is outside the JDK.
429    // In order to keep working with 1.2 we ignore any loading errors.
430    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
431                       "verify")) {
432      dll_load(buffer, ebuf, sizeof(ebuf));
433    }
434
435    // Load java dll
436    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
437                       "java")) {
438      _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
439    }
440    if (_native_java_library == NULL) {
441      vm_exit_during_initialization("Unable to load native library", ebuf);
442    }
443
444#if defined(__OpenBSD__)
445    // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
446    // ignore errors
447    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
448                       "net")) {
449      dll_load(buffer, ebuf, sizeof(ebuf));
450    }
451#endif
452  }
453  return _native_java_library;
454}
455
456/*
457 * Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists.
458 * If check_lib == true then we are looking for an
459 * Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if
460 * this library is statically linked into the image.
461 * If check_lib == false then we will look for the appropriate symbol in the
462 * executable if agent_lib->is_static_lib() == true or in the shared library
463 * referenced by 'handle'.
464 */
465void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib,
466                              const char *syms[], size_t syms_len) {
467  assert(agent_lib != NULL, "sanity check");
468  const char *lib_name;
469  void *handle = agent_lib->os_lib();
470  void *entryName = NULL;
471  char *agent_function_name;
472  size_t i;
473
474  // If checking then use the agent name otherwise test is_static_lib() to
475  // see how to process this lookup
476  lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL);
477  for (i = 0; i < syms_len; i++) {
478    agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path());
479    if (agent_function_name == NULL) {
480      break;
481    }
482    entryName = dll_lookup(handle, agent_function_name);
483    FREE_C_HEAP_ARRAY(char, agent_function_name);
484    if (entryName != NULL) {
485      break;
486    }
487  }
488  return entryName;
489}
490
491// See if the passed in agent is statically linked into the VM image.
492bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[],
493                            size_t syms_len) {
494  void *ret;
495  void *proc_handle;
496  void *save_handle;
497
498  assert(agent_lib != NULL, "sanity check");
499  if (agent_lib->name() == NULL) {
500    return false;
501  }
502  proc_handle = get_default_process_handle();
503  // Check for Agent_OnLoad/Attach_lib_name function
504  save_handle = agent_lib->os_lib();
505  // We want to look in this process' symbol table.
506  agent_lib->set_os_lib(proc_handle);
507  ret = find_agent_function(agent_lib, true, syms, syms_len);
508  if (ret != NULL) {
509    // Found an entry point like Agent_OnLoad_lib_name so we have a static agent
510    agent_lib->set_valid();
511    agent_lib->set_static_lib(true);
512    return true;
513  }
514  agent_lib->set_os_lib(save_handle);
515  return false;
516}
517
518// --------------------- heap allocation utilities ---------------------
519
520char *os::strdup(const char *str, MEMFLAGS flags) {
521  size_t size = strlen(str);
522  char *dup_str = (char *)malloc(size + 1, flags);
523  if (dup_str == NULL) return NULL;
524  strcpy(dup_str, str);
525  return dup_str;
526}
527
528char* os::strdup_check_oom(const char* str, MEMFLAGS flags) {
529  char* p = os::strdup(str, flags);
530  if (p == NULL) {
531    vm_exit_out_of_memory(strlen(str) + 1, OOM_MALLOC_ERROR, "os::strdup_check_oom");
532  }
533  return p;
534}
535
536
537#define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
538
539#ifdef ASSERT
540
541static void verify_memory(void* ptr) {
542  GuardedMemory guarded(ptr);
543  if (!guarded.verify_guards()) {
544    tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
545    tty->print_cr("## memory stomp:");
546    guarded.print_on(tty);
547    fatal("memory stomping error");
548  }
549}
550
551#endif
552
553//
554// This function supports testing of the malloc out of memory
555// condition without really running the system out of memory.
556//
557static bool has_reached_max_malloc_test_peak(size_t alloc_size) {
558  if (MallocMaxTestWords > 0) {
559    jint words = (jint)(alloc_size / BytesPerWord);
560
561    if ((cur_malloc_words + words) > MallocMaxTestWords) {
562      return true;
563    }
564    Atomic::add(words, (volatile jint *)&cur_malloc_words);
565  }
566  return false;
567}
568
569void* os::malloc(size_t size, MEMFLAGS flags) {
570  return os::malloc(size, flags, CALLER_PC);
571}
572
573void* os::malloc(size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
574  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
575  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
576
577  // Since os::malloc can be called when the libjvm.{dll,so} is
578  // first loaded and we don't have a thread yet we must accept NULL also here.
579  assert(!os::ThreadCrashProtection::is_crash_protected(Thread::current_or_null()),
580         "malloc() not allowed when crash protection is set");
581
582  if (size == 0) {
583    // return a valid pointer if size is zero
584    // if NULL is returned the calling functions assume out of memory.
585    size = 1;
586  }
587
588  // NMT support
589  NMT_TrackingLevel level = MemTracker::tracking_level();
590  size_t            nmt_header_size = MemTracker::malloc_header_size(level);
591
592#ifndef ASSERT
593  const size_t alloc_size = size + nmt_header_size;
594#else
595  const size_t alloc_size = GuardedMemory::get_total_size(size + nmt_header_size);
596  if (size + nmt_header_size > alloc_size) { // Check for rollover.
597    return NULL;
598  }
599#endif
600
601  // For the test flag -XX:MallocMaxTestWords
602  if (has_reached_max_malloc_test_peak(size)) {
603    return NULL;
604  }
605
606  u_char* ptr;
607  ptr = (u_char*)::malloc(alloc_size);
608
609#ifdef ASSERT
610  if (ptr == NULL) {
611    return NULL;
612  }
613  // Wrap memory with guard
614  GuardedMemory guarded(ptr, size + nmt_header_size);
615  ptr = guarded.get_user_ptr();
616#endif
617  if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
618    tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
619    breakpoint();
620  }
621  debug_only(if (paranoid) verify_memory(ptr));
622  if (PrintMalloc && tty != NULL) {
623    tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
624  }
625
626  // we do not track guard memory
627  return MemTracker::record_malloc((address)ptr, size, memflags, stack, level);
628}
629
630void* os::realloc(void *memblock, size_t size, MEMFLAGS flags) {
631  return os::realloc(memblock, size, flags, CALLER_PC);
632}
633
634void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
635
636  // For the test flag -XX:MallocMaxTestWords
637  if (has_reached_max_malloc_test_peak(size)) {
638    return NULL;
639  }
640
641  if (size == 0) {
642    // return a valid pointer if size is zero
643    // if NULL is returned the calling functions assume out of memory.
644    size = 1;
645  }
646
647#ifndef ASSERT
648  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
649  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
650   // NMT support
651  void* membase = MemTracker::record_free(memblock);
652  NMT_TrackingLevel level = MemTracker::tracking_level();
653  size_t  nmt_header_size = MemTracker::malloc_header_size(level);
654  void* ptr = ::realloc(membase, size + nmt_header_size);
655  return MemTracker::record_malloc(ptr, size, memflags, stack, level);
656#else
657  if (memblock == NULL) {
658    return os::malloc(size, memflags, stack);
659  }
660  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
661    tty->print_cr("os::realloc caught " PTR_FORMAT, p2i(memblock));
662    breakpoint();
663  }
664  // NMT support
665  void* membase = MemTracker::malloc_base(memblock);
666  verify_memory(membase);
667  // always move the block
668  void* ptr = os::malloc(size, memflags, stack);
669  if (PrintMalloc && tty != NULL) {
670    tty->print_cr("os::realloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, p2i(memblock), p2i(ptr));
671  }
672  // Copy to new memory if malloc didn't fail
673  if ( ptr != NULL ) {
674    GuardedMemory guarded(MemTracker::malloc_base(memblock));
675    // Guard's user data contains NMT header
676    size_t memblock_size = guarded.get_user_size() - MemTracker::malloc_header_size(memblock);
677    memcpy(ptr, memblock, MIN2(size, memblock_size));
678    if (paranoid) verify_memory(MemTracker::malloc_base(ptr));
679    if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
680      tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
681      breakpoint();
682    }
683    os::free(memblock);
684  }
685  return ptr;
686#endif
687}
688
689
690void  os::free(void *memblock) {
691  NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
692#ifdef ASSERT
693  if (memblock == NULL) return;
694  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
695    if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, p2i(memblock));
696    breakpoint();
697  }
698  void* membase = MemTracker::record_free(memblock);
699  verify_memory(membase);
700
701  GuardedMemory guarded(membase);
702  size_t size = guarded.get_user_size();
703  inc_stat_counter(&free_bytes, size);
704  membase = guarded.release_for_freeing();
705  if (PrintMalloc && tty != NULL) {
706      fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)membase);
707  }
708  ::free(membase);
709#else
710  void* membase = MemTracker::record_free(memblock);
711  ::free(membase);
712#endif
713}
714
715void os::init_random(unsigned int initval) {
716  _rand_seed = initval;
717}
718
719
720static int random_helper(unsigned int rand_seed) {
721  /* standard, well-known linear congruential random generator with
722   * next_rand = (16807*seed) mod (2**31-1)
723   * see
724   * (1) "Random Number Generators: Good Ones Are Hard to Find",
725   *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
726   * (2) "Two Fast Implementations of the 'Minimal Standard' Random
727   *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
728  */
729  const unsigned int a = 16807;
730  const unsigned int m = 2147483647;
731  const int q = m / a;        assert(q == 127773, "weird math");
732  const int r = m % a;        assert(r == 2836, "weird math");
733
734  // compute az=2^31p+q
735  unsigned int lo = a * (rand_seed & 0xFFFF);
736  unsigned int hi = a * (rand_seed >> 16);
737  lo += (hi & 0x7FFF) << 16;
738
739  // if q overflowed, ignore the overflow and increment q
740  if (lo > m) {
741    lo &= m;
742    ++lo;
743  }
744  lo += hi >> 15;
745
746  // if (p+q) overflowed, ignore the overflow and increment (p+q)
747  if (lo > m) {
748    lo &= m;
749    ++lo;
750  }
751  return lo;
752}
753
754int os::random() {
755  // Make updating the random seed thread safe.
756  while (true) {
757    unsigned int seed = _rand_seed;
758    unsigned int rand = random_helper(seed);
759    if (Atomic::cmpxchg(rand, &_rand_seed, seed) == seed) {
760      return static_cast<int>(rand);
761    }
762  }
763}
764
765// The INITIALIZED state is distinguished from the SUSPENDED state because the
766// conditions in which a thread is first started are different from those in which
767// a suspension is resumed.  These differences make it hard for us to apply the
768// tougher checks when starting threads that we want to do when resuming them.
769// However, when start_thread is called as a result of Thread.start, on a Java
770// thread, the operation is synchronized on the Java Thread object.  So there
771// cannot be a race to start the thread and hence for the thread to exit while
772// we are working on it.  Non-Java threads that start Java threads either have
773// to do so in a context in which races are impossible, or should do appropriate
774// locking.
775
776void os::start_thread(Thread* thread) {
777  // guard suspend/resume
778  MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
779  OSThread* osthread = thread->osthread();
780  osthread->set_state(RUNNABLE);
781  pd_start_thread(thread);
782}
783
784void os::abort(bool dump_core) {
785  abort(dump_core && CreateCoredumpOnCrash, NULL, NULL);
786}
787
788//---------------------------------------------------------------------------
789// Helper functions for fatal error handler
790
791void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
792  assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
793
794  int cols = 0;
795  int cols_per_line = 0;
796  switch (unitsize) {
797    case 1: cols_per_line = 16; break;
798    case 2: cols_per_line = 8;  break;
799    case 4: cols_per_line = 4;  break;
800    case 8: cols_per_line = 2;  break;
801    default: return;
802  }
803
804  address p = start;
805  st->print(PTR_FORMAT ":   ", p2i(start));
806  while (p < end) {
807    switch (unitsize) {
808      case 1: st->print("%02x", *(u1*)p); break;
809      case 2: st->print("%04x", *(u2*)p); break;
810      case 4: st->print("%08x", *(u4*)p); break;
811      case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
812    }
813    p += unitsize;
814    cols++;
815    if (cols >= cols_per_line && p < end) {
816       cols = 0;
817       st->cr();
818       st->print(PTR_FORMAT ":   ", p2i(p));
819    } else {
820       st->print(" ");
821    }
822  }
823  st->cr();
824}
825
826void os::print_environment_variables(outputStream* st, const char** env_list) {
827  if (env_list) {
828    st->print_cr("Environment Variables:");
829
830    for (int i = 0; env_list[i] != NULL; i++) {
831      char *envvar = ::getenv(env_list[i]);
832      if (envvar != NULL) {
833        st->print("%s", env_list[i]);
834        st->print("=");
835        st->print_cr("%s", envvar);
836      }
837    }
838  }
839}
840
841void os::print_cpu_info(outputStream* st, char* buf, size_t buflen) {
842  // cpu
843  st->print("CPU:");
844  st->print("total %d", os::processor_count());
845  // It's not safe to query number of active processors after crash
846  // st->print("(active %d)", os::active_processor_count()); but we can
847  // print the initial number of active processors.
848  // We access the raw value here because the assert in the accessor will
849  // fail if the crash occurs before initialization of this value.
850  st->print(" (initial active %d)", _initial_active_processor_count);
851  st->print(" %s", VM_Version::features_string());
852  st->cr();
853  pd_print_cpu_info(st, buf, buflen);
854}
855
856// Print a one line string summarizing the cpu, number of cores, memory, and operating system version
857void os::print_summary_info(outputStream* st, char* buf, size_t buflen) {
858  st->print("Host: ");
859#ifndef PRODUCT
860  if (get_host_name(buf, buflen)) {
861    st->print("%s, ", buf);
862  }
863#endif // PRODUCT
864  get_summary_cpu_info(buf, buflen);
865  st->print("%s, ", buf);
866  size_t mem = physical_memory()/G;
867  if (mem == 0) {  // for low memory systems
868    mem = physical_memory()/M;
869    st->print("%d cores, " SIZE_FORMAT "M, ", processor_count(), mem);
870  } else {
871    st->print("%d cores, " SIZE_FORMAT "G, ", processor_count(), mem);
872  }
873  get_summary_os_info(buf, buflen);
874  st->print_raw(buf);
875  st->cr();
876}
877
878void os::print_date_and_time(outputStream *st, char* buf, size_t buflen) {
879  const int secs_per_day  = 86400;
880  const int secs_per_hour = 3600;
881  const int secs_per_min  = 60;
882
883  time_t tloc;
884  (void)time(&tloc);
885  char* timestring = ctime(&tloc);  // ctime adds newline.
886  // edit out the newline
887  char* nl = strchr(timestring, '\n');
888  if (nl != NULL) {
889    *nl = '\0';
890  }
891
892  struct tm tz;
893  if (localtime_pd(&tloc, &tz) != NULL) {
894    ::strftime(buf, buflen, "%Z", &tz);
895    st->print("Time: %s %s", timestring, buf);
896  } else {
897    st->print("Time: %s", timestring);
898  }
899
900  double t = os::elapsedTime();
901  // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
902  //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
903  //       before printf. We lost some precision, but who cares?
904  int eltime = (int)t;  // elapsed time in seconds
905
906  // print elapsed time in a human-readable format:
907  int eldays = eltime / secs_per_day;
908  int day_secs = eldays * secs_per_day;
909  int elhours = (eltime - day_secs) / secs_per_hour;
910  int hour_secs = elhours * secs_per_hour;
911  int elmins = (eltime - day_secs - hour_secs) / secs_per_min;
912  int minute_secs = elmins * secs_per_min;
913  int elsecs = (eltime - day_secs - hour_secs - minute_secs);
914  st->print_cr(" elapsed time: %d seconds (%dd %dh %dm %ds)", eltime, eldays, elhours, elmins, elsecs);
915}
916
917// moved from debug.cpp (used to be find()) but still called from there
918// The verbose parameter is only set by the debug code in one case
919void os::print_location(outputStream* st, intptr_t x, bool verbose) {
920  address addr = (address)x;
921  CodeBlob* b = CodeCache::find_blob_unsafe(addr);
922  if (b != NULL) {
923    if (b->is_buffer_blob()) {
924      // the interpreter is generated into a buffer blob
925      InterpreterCodelet* i = Interpreter::codelet_containing(addr);
926      if (i != NULL) {
927        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", p2i(addr), (int)(addr - i->code_begin()));
928        i->print_on(st);
929        return;
930      }
931      if (Interpreter::contains(addr)) {
932        st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
933                     " (not bytecode specific)", p2i(addr));
934        return;
935      }
936      //
937      if (AdapterHandlerLibrary::contains(b)) {
938        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", p2i(addr), (int)(addr - b->code_begin()));
939        AdapterHandlerLibrary::print_handler_on(st, b);
940      }
941      // the stubroutines are generated into a buffer blob
942      StubCodeDesc* d = StubCodeDesc::desc_for(addr);
943      if (d != NULL) {
944        st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", p2i(addr), (int)(addr - d->begin()));
945        d->print_on(st);
946        st->cr();
947        return;
948      }
949      if (StubRoutines::contains(addr)) {
950        st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) stub routine", p2i(addr));
951        return;
952      }
953      // the InlineCacheBuffer is using stubs generated into a buffer blob
954      if (InlineCacheBuffer::contains(addr)) {
955        st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", p2i(addr));
956        return;
957      }
958      VtableStub* v = VtableStubs::stub_containing(addr);
959      if (v != NULL) {
960        st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", p2i(addr), (int)(addr - v->entry_point()));
961        v->print_on(st);
962        st->cr();
963        return;
964      }
965    }
966    nmethod* nm = b->as_nmethod_or_null();
967    if (nm != NULL) {
968      ResourceMark rm;
969      st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
970                p2i(addr), (int)(addr - nm->entry_point()), p2i(nm));
971      if (verbose) {
972        st->print(" for ");
973        nm->method()->print_value_on(st);
974      }
975      st->cr();
976      nm->print_nmethod(verbose);
977      return;
978    }
979    st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", p2i(addr), (int)(addr - b->code_begin()));
980    b->print_on(st);
981    return;
982  }
983
984  if (Universe::heap()->is_in(addr)) {
985    HeapWord* p = Universe::heap()->block_start(addr);
986    bool print = false;
987    // If we couldn't find it it just may mean that heap wasn't parsable
988    // See if we were just given an oop directly
989    if (p != NULL && Universe::heap()->block_is_obj(p)) {
990      print = true;
991    } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
992      p = (HeapWord*) addr;
993      print = true;
994    }
995    if (print) {
996      if (p == (HeapWord*) addr) {
997        st->print_cr(INTPTR_FORMAT " is an oop", p2i(addr));
998      } else {
999        st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, p2i(addr), p2i(p));
1000      }
1001      oop(p)->print_on(st);
1002      return;
1003    }
1004  } else {
1005    if (Universe::heap()->is_in_reserved(addr)) {
1006      st->print_cr(INTPTR_FORMAT " is an unallocated location "
1007                   "in the heap", p2i(addr));
1008      return;
1009    }
1010  }
1011  if (JNIHandles::is_global_handle((jobject) addr)) {
1012    st->print_cr(INTPTR_FORMAT " is a global jni handle", p2i(addr));
1013    return;
1014  }
1015  if (JNIHandles::is_weak_global_handle((jobject) addr)) {
1016    st->print_cr(INTPTR_FORMAT " is a weak global jni handle", p2i(addr));
1017    return;
1018  }
1019#ifndef PRODUCT
1020  // we don't keep the block list in product mode
1021  if (JNIHandleBlock::any_contains((jobject) addr)) {
1022    st->print_cr(INTPTR_FORMAT " is a local jni handle", p2i(addr));
1023    return;
1024  }
1025#endif
1026
1027  for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
1028    // Check for privilege stack
1029    if (thread->privileged_stack_top() != NULL &&
1030        thread->privileged_stack_top()->contains(addr)) {
1031      st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
1032                   "for thread: " INTPTR_FORMAT, p2i(addr), p2i(thread));
1033      if (verbose) thread->print_on(st);
1034      return;
1035    }
1036    // If the addr is a java thread print information about that.
1037    if (addr == (address)thread) {
1038      if (verbose) {
1039        thread->print_on(st);
1040      } else {
1041        st->print_cr(INTPTR_FORMAT " is a thread", p2i(addr));
1042      }
1043      return;
1044    }
1045    // If the addr is in the stack region for this thread then report that
1046    // and print thread info
1047    if (thread->on_local_stack(addr)) {
1048      st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
1049                   INTPTR_FORMAT, p2i(addr), p2i(thread));
1050      if (verbose) thread->print_on(st);
1051      return;
1052    }
1053
1054  }
1055
1056  // Check if in metaspace and print types that have vptrs (only method now)
1057  if (Metaspace::contains(addr)) {
1058    if (Method::has_method_vptr((const void*)addr)) {
1059      ((Method*)addr)->print_value_on(st);
1060      st->cr();
1061    } else {
1062      // Use addr->print() from the debugger instead (not here)
1063      st->print_cr(INTPTR_FORMAT " is pointing into metadata", p2i(addr));
1064    }
1065    return;
1066  }
1067
1068  // Try an OS specific find
1069  if (os::find(addr, st)) {
1070    return;
1071  }
1072
1073  st->print_cr(INTPTR_FORMAT " is an unknown value", p2i(addr));
1074}
1075
1076// Looks like all platforms except IA64 can use the same function to check
1077// if C stack is walkable beyond current frame. The check for fp() is not
1078// necessary on Sparc, but it's harmless.
1079bool os::is_first_C_frame(frame* fr) {
1080#if (defined(IA64) && !defined(AIX)) && !defined(_WIN32)
1081  // On IA64 we have to check if the callers bsp is still valid
1082  // (i.e. within the register stack bounds).
1083  // Notice: this only works for threads created by the VM and only if
1084  // we walk the current stack!!! If we want to be able to walk
1085  // arbitrary other threads, we'll have to somehow store the thread
1086  // object in the frame.
1087  Thread *thread = Thread::current();
1088  if ((address)fr->fp() <=
1089      thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
1090    // This check is a little hacky, because on Linux the first C
1091    // frame's ('start_thread') register stack frame starts at
1092    // "register_stack_base + 0x48" while on HPUX, the first C frame's
1093    // ('__pthread_bound_body') register stack frame seems to really
1094    // start at "register_stack_base".
1095    return true;
1096  } else {
1097    return false;
1098  }
1099#elif defined(IA64) && defined(_WIN32)
1100  return true;
1101#else
1102  // Load up sp, fp, sender sp and sender fp, check for reasonable values.
1103  // Check usp first, because if that's bad the other accessors may fault
1104  // on some architectures.  Ditto ufp second, etc.
1105  uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
1106  // sp on amd can be 32 bit aligned.
1107  uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
1108
1109  uintptr_t usp    = (uintptr_t)fr->sp();
1110  if ((usp & sp_align_mask) != 0) return true;
1111
1112  uintptr_t ufp    = (uintptr_t)fr->fp();
1113  if ((ufp & fp_align_mask) != 0) return true;
1114
1115  uintptr_t old_sp = (uintptr_t)fr->sender_sp();
1116  if ((old_sp & sp_align_mask) != 0) return true;
1117  if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
1118
1119  uintptr_t old_fp = (uintptr_t)fr->link();
1120  if ((old_fp & fp_align_mask) != 0) return true;
1121  if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
1122
1123  // stack grows downwards; if old_fp is below current fp or if the stack
1124  // frame is too large, either the stack is corrupted or fp is not saved
1125  // on stack (i.e. on x86, ebp may be used as general register). The stack
1126  // is not walkable beyond current frame.
1127  if (old_fp < ufp) return true;
1128  if (old_fp - ufp > 64 * K) return true;
1129
1130  return false;
1131#endif
1132}
1133
1134
1135// Set up the boot classpath.
1136
1137char* os::format_boot_path(const char* format_string,
1138                           const char* home,
1139                           int home_len,
1140                           char fileSep,
1141                           char pathSep) {
1142    assert((fileSep == '/' && pathSep == ':') ||
1143           (fileSep == '\\' && pathSep == ';'), "unexpected separator chars");
1144
1145    // Scan the format string to determine the length of the actual
1146    // boot classpath, and handle platform dependencies as well.
1147    int formatted_path_len = 0;
1148    const char* p;
1149    for (p = format_string; *p != 0; ++p) {
1150        if (*p == '%') formatted_path_len += home_len - 1;
1151        ++formatted_path_len;
1152    }
1153
1154    char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
1155    if (formatted_path == NULL) {
1156        return NULL;
1157    }
1158
1159    // Create boot classpath from format, substituting separator chars and
1160    // java home directory.
1161    char* q = formatted_path;
1162    for (p = format_string; *p != 0; ++p) {
1163        switch (*p) {
1164        case '%':
1165            strcpy(q, home);
1166            q += home_len;
1167            break;
1168        case '/':
1169            *q++ = fileSep;
1170            break;
1171        case ':':
1172            *q++ = pathSep;
1173            break;
1174        default:
1175            *q++ = *p;
1176        }
1177    }
1178    *q = '\0';
1179
1180    assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1181    return formatted_path;
1182}
1183
1184bool os::set_boot_path(char fileSep, char pathSep) {
1185  const char* home = Arguments::get_java_home();
1186  int home_len = (int)strlen(home);
1187
1188  struct stat st;
1189
1190  // modular image if "modules" jimage exists
1191  char* jimage = format_boot_path("%/lib/" MODULES_IMAGE_NAME, home, home_len, fileSep, pathSep);
1192  if (jimage == NULL) return false;
1193  bool has_jimage = (os::stat(jimage, &st) == 0);
1194  if (has_jimage) {
1195    Arguments::set_sysclasspath(jimage, true);
1196    FREE_C_HEAP_ARRAY(char, jimage);
1197    return true;
1198  }
1199  FREE_C_HEAP_ARRAY(char, jimage);
1200
1201  // check if developer build with exploded modules
1202  char* base_classes = format_boot_path("%/modules/" JAVA_BASE_NAME, home, home_len, fileSep, pathSep);
1203  if (base_classes == NULL) return false;
1204  if (os::stat(base_classes, &st) == 0) {
1205    Arguments::set_sysclasspath(base_classes, false);
1206    FREE_C_HEAP_ARRAY(char, base_classes);
1207    return true;
1208  }
1209  FREE_C_HEAP_ARRAY(char, base_classes);
1210
1211  return false;
1212}
1213
1214/*
1215 * Splits a path, based on its separator, the number of
1216 * elements is returned back in n.
1217 * It is the callers responsibility to:
1218 *   a> check the value of n, and n may be 0.
1219 *   b> ignore any empty path elements
1220 *   c> free up the data.
1221 */
1222char** os::split_path(const char* path, int* n) {
1223  *n = 0;
1224  if (path == NULL || strlen(path) == 0) {
1225    return NULL;
1226  }
1227  const char psepchar = *os::path_separator();
1228  char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
1229  if (inpath == NULL) {
1230    return NULL;
1231  }
1232  strcpy(inpath, path);
1233  int count = 1;
1234  char* p = strchr(inpath, psepchar);
1235  // Get a count of elements to allocate memory
1236  while (p != NULL) {
1237    count++;
1238    p++;
1239    p = strchr(p, psepchar);
1240  }
1241  char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
1242  if (opath == NULL) {
1243    return NULL;
1244  }
1245
1246  // do the actual splitting
1247  p = inpath;
1248  for (int i = 0 ; i < count ; i++) {
1249    size_t len = strcspn(p, os::path_separator());
1250    if (len > JVM_MAXPATHLEN) {
1251      return NULL;
1252    }
1253    // allocate the string and add terminator storage
1254    char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
1255    if (s == NULL) {
1256      return NULL;
1257    }
1258    strncpy(s, p, len);
1259    s[len] = '\0';
1260    opath[i] = s;
1261    p += len + 1;
1262  }
1263  FREE_C_HEAP_ARRAY(char, inpath);
1264  *n = count;
1265  return opath;
1266}
1267
1268void os::set_memory_serialize_page(address page) {
1269  int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
1270  _mem_serialize_page = (volatile int32_t *)page;
1271  // We initialize the serialization page shift count here
1272  // We assume a cache line size of 64 bytes
1273  assert(SerializePageShiftCount == count, "JavaThread size changed; "
1274         "SerializePageShiftCount constant should be %d", count);
1275  set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
1276}
1277
1278static volatile intptr_t SerializePageLock = 0;
1279
1280// This method is called from signal handler when SIGSEGV occurs while the current
1281// thread tries to store to the "read-only" memory serialize page during state
1282// transition.
1283void os::block_on_serialize_page_trap() {
1284  log_debug(safepoint)("Block until the serialize page permission restored");
1285
1286  // When VMThread is holding the SerializePageLock during modifying the
1287  // access permission of the memory serialize page, the following call
1288  // will block until the permission of that page is restored to rw.
1289  // Generally, it is unsafe to manipulate locks in signal handlers, but in
1290  // this case, it's OK as the signal is synchronous and we know precisely when
1291  // it can occur.
1292  Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
1293  Thread::muxRelease(&SerializePageLock);
1294}
1295
1296// Serialize all thread state variables
1297void os::serialize_thread_states() {
1298  // On some platforms such as Solaris & Linux, the time duration of the page
1299  // permission restoration is observed to be much longer than expected  due to
1300  // scheduler starvation problem etc. To avoid the long synchronization
1301  // time and expensive page trap spinning, 'SerializePageLock' is used to block
1302  // the mutator thread if such case is encountered. See bug 6546278 for details.
1303  Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
1304  os::protect_memory((char *)os::get_memory_serialize_page(),
1305                     os::vm_page_size(), MEM_PROT_READ);
1306  os::protect_memory((char *)os::get_memory_serialize_page(),
1307                     os::vm_page_size(), MEM_PROT_RW);
1308  Thread::muxRelease(&SerializePageLock);
1309}
1310
1311// Returns true if the current stack pointer is above the stack shadow
1312// pages, false otherwise.
1313bool os::stack_shadow_pages_available(Thread *thread, const methodHandle& method, address sp) {
1314  if (!thread->is_Java_thread()) return false;
1315  // Check if we have StackShadowPages above the yellow zone.  This parameter
1316  // is dependent on the depth of the maximum VM call stack possible from
1317  // the handler for stack overflow.  'instanceof' in the stack overflow
1318  // handler or a println uses at least 8k stack of VM and native code
1319  // respectively.
1320  const int framesize_in_bytes =
1321    Interpreter::size_top_interpreter_activation(method()) * wordSize;
1322
1323  address limit = ((JavaThread*)thread)->stack_end() +
1324                  (JavaThread::stack_guard_zone_size() + JavaThread::stack_shadow_zone_size());
1325
1326  return sp > (limit + framesize_in_bytes);
1327}
1328
1329size_t os::page_size_for_region(size_t region_size, size_t min_pages, bool must_be_aligned) {
1330  assert(min_pages > 0, "sanity");
1331  if (UseLargePages) {
1332    const size_t max_page_size = region_size / min_pages;
1333
1334    for (size_t i = 0; _page_sizes[i] != 0; ++i) {
1335      const size_t page_size = _page_sizes[i];
1336      if (page_size <= max_page_size) {
1337        if (!must_be_aligned || is_aligned(region_size, page_size)) {
1338          return page_size;
1339        }
1340      }
1341    }
1342  }
1343
1344  return vm_page_size();
1345}
1346
1347size_t os::page_size_for_region_aligned(size_t region_size, size_t min_pages) {
1348  return page_size_for_region(region_size, min_pages, true);
1349}
1350
1351size_t os::page_size_for_region_unaligned(size_t region_size, size_t min_pages) {
1352  return page_size_for_region(region_size, min_pages, false);
1353}
1354
1355static const char* errno_to_string (int e, bool short_text) {
1356  #define ALL_SHARED_ENUMS(X) \
1357    X(E2BIG, "Argument list too long") \
1358    X(EACCES, "Permission denied") \
1359    X(EADDRINUSE, "Address in use") \
1360    X(EADDRNOTAVAIL, "Address not available") \
1361    X(EAFNOSUPPORT, "Address family not supported") \
1362    X(EAGAIN, "Resource unavailable, try again") \
1363    X(EALREADY, "Connection already in progress") \
1364    X(EBADF, "Bad file descriptor") \
1365    X(EBADMSG, "Bad message") \
1366    X(EBUSY, "Device or resource busy") \
1367    X(ECANCELED, "Operation canceled") \
1368    X(ECHILD, "No child processes") \
1369    X(ECONNABORTED, "Connection aborted") \
1370    X(ECONNREFUSED, "Connection refused") \
1371    X(ECONNRESET, "Connection reset") \
1372    X(EDEADLK, "Resource deadlock would occur") \
1373    X(EDESTADDRREQ, "Destination address required") \
1374    X(EDOM, "Mathematics argument out of domain of function") \
1375    X(EEXIST, "File exists") \
1376    X(EFAULT, "Bad address") \
1377    X(EFBIG, "File too large") \
1378    X(EHOSTUNREACH, "Host is unreachable") \
1379    X(EIDRM, "Identifier removed") \
1380    X(EILSEQ, "Illegal byte sequence") \
1381    X(EINPROGRESS, "Operation in progress") \
1382    X(EINTR, "Interrupted function") \
1383    X(EINVAL, "Invalid argument") \
1384    X(EIO, "I/O error") \
1385    X(EISCONN, "Socket is connected") \
1386    X(EISDIR, "Is a directory") \
1387    X(ELOOP, "Too many levels of symbolic links") \
1388    X(EMFILE, "Too many open files") \
1389    X(EMLINK, "Too many links") \
1390    X(EMSGSIZE, "Message too large") \
1391    X(ENAMETOOLONG, "Filename too long") \
1392    X(ENETDOWN, "Network is down") \
1393    X(ENETRESET, "Connection aborted by network") \
1394    X(ENETUNREACH, "Network unreachable") \
1395    X(ENFILE, "Too many files open in system") \
1396    X(ENOBUFS, "No buffer space available") \
1397    X(ENODATA, "No message is available on the STREAM head read queue") \
1398    X(ENODEV, "No such device") \
1399    X(ENOENT, "No such file or directory") \
1400    X(ENOEXEC, "Executable file format error") \
1401    X(ENOLCK, "No locks available") \
1402    X(ENOLINK, "Reserved") \
1403    X(ENOMEM, "Not enough space") \
1404    X(ENOMSG, "No message of the desired type") \
1405    X(ENOPROTOOPT, "Protocol not available") \
1406    X(ENOSPC, "No space left on device") \
1407    X(ENOSR, "No STREAM resources") \
1408    X(ENOSTR, "Not a STREAM") \
1409    X(ENOSYS, "Function not supported") \
1410    X(ENOTCONN, "The socket is not connected") \
1411    X(ENOTDIR, "Not a directory") \
1412    X(ENOTEMPTY, "Directory not empty") \
1413    X(ENOTSOCK, "Not a socket") \
1414    X(ENOTSUP, "Not supported") \
1415    X(ENOTTY, "Inappropriate I/O control operation") \
1416    X(ENXIO, "No such device or address") \
1417    X(EOPNOTSUPP, "Operation not supported on socket") \
1418    X(EOVERFLOW, "Value too large to be stored in data type") \
1419    X(EPERM, "Operation not permitted") \
1420    X(EPIPE, "Broken pipe") \
1421    X(EPROTO, "Protocol error") \
1422    X(EPROTONOSUPPORT, "Protocol not supported") \
1423    X(EPROTOTYPE, "Protocol wrong type for socket") \
1424    X(ERANGE, "Result too large") \
1425    X(EROFS, "Read-only file system") \
1426    X(ESPIPE, "Invalid seek") \
1427    X(ESRCH, "No such process") \
1428    X(ETIME, "Stream ioctl() timeout") \
1429    X(ETIMEDOUT, "Connection timed out") \
1430    X(ETXTBSY, "Text file busy") \
1431    X(EWOULDBLOCK, "Operation would block") \
1432    X(EXDEV, "Cross-device link")
1433
1434  #define DEFINE_ENTRY(e, text) { e, #e, text },
1435
1436  static const struct {
1437    int v;
1438    const char* short_text;
1439    const char* long_text;
1440  } table [] = {
1441
1442    ALL_SHARED_ENUMS(DEFINE_ENTRY)
1443
1444    // The following enums are not defined on all platforms.
1445    #ifdef ESTALE
1446    DEFINE_ENTRY(ESTALE, "Reserved")
1447    #endif
1448    #ifdef EDQUOT
1449    DEFINE_ENTRY(EDQUOT, "Reserved")
1450    #endif
1451    #ifdef EMULTIHOP
1452    DEFINE_ENTRY(EMULTIHOP, "Reserved")
1453    #endif
1454
1455    // End marker.
1456    { -1, "Unknown errno", "Unknown error" }
1457
1458  };
1459
1460  #undef DEFINE_ENTRY
1461  #undef ALL_FLAGS
1462
1463  int i = 0;
1464  while (table[i].v != -1 && table[i].v != e) {
1465    i ++;
1466  }
1467
1468  return short_text ? table[i].short_text : table[i].long_text;
1469
1470}
1471
1472const char* os::strerror(int e) {
1473  return errno_to_string(e, false);
1474}
1475
1476const char* os::errno_name(int e) {
1477  return errno_to_string(e, true);
1478}
1479
1480void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count) {
1481  LogTarget(Info, pagesize) log;
1482  if (log.is_enabled()) {
1483    LogStream out(log);
1484
1485    out.print("%s: ", str);
1486    for (int i = 0; i < count; ++i) {
1487      out.print(" " SIZE_FORMAT, page_sizes[i]);
1488    }
1489    out.cr();
1490  }
1491}
1492
1493#define trace_page_size_params(size) byte_size_in_exact_unit(size), exact_unit_for_byte_size(size)
1494
1495void os::trace_page_sizes(const char* str,
1496                          const size_t region_min_size,
1497                          const size_t region_max_size,
1498                          const size_t page_size,
1499                          const char* base,
1500                          const size_t size) {
1501
1502  log_info(pagesize)("%s: "
1503                     " min=" SIZE_FORMAT "%s"
1504                     " max=" SIZE_FORMAT "%s"
1505                     " base=" PTR_FORMAT
1506                     " page_size=" SIZE_FORMAT "%s"
1507                     " size=" SIZE_FORMAT "%s",
1508                     str,
1509                     trace_page_size_params(region_min_size),
1510                     trace_page_size_params(region_max_size),
1511                     p2i(base),
1512                     trace_page_size_params(page_size),
1513                     trace_page_size_params(size));
1514}
1515
1516void os::trace_page_sizes_for_requested_size(const char* str,
1517                                             const size_t requested_size,
1518                                             const size_t page_size,
1519                                             const size_t alignment,
1520                                             const char* base,
1521                                             const size_t size) {
1522
1523  log_info(pagesize)("%s:"
1524                     " req_size=" SIZE_FORMAT "%s"
1525                     " base=" PTR_FORMAT
1526                     " page_size=" SIZE_FORMAT "%s"
1527                     " alignment=" SIZE_FORMAT "%s"
1528                     " size=" SIZE_FORMAT "%s",
1529                     str,
1530                     trace_page_size_params(requested_size),
1531                     p2i(base),
1532                     trace_page_size_params(page_size),
1533                     trace_page_size_params(alignment),
1534                     trace_page_size_params(size));
1535}
1536
1537
1538// This is the working definition of a server class machine:
1539// >= 2 physical CPU's and >=2GB of memory, with some fuzz
1540// because the graphics memory (?) sometimes masks physical memory.
1541// If you want to change the definition of a server class machine
1542// on some OS or platform, e.g., >=4GB on Windows platforms,
1543// then you'll have to parameterize this method based on that state,
1544// as was done for logical processors here, or replicate and
1545// specialize this method for each platform.  (Or fix os to have
1546// some inheritance structure and use subclassing.  Sigh.)
1547// If you want some platform to always or never behave as a server
1548// class machine, change the setting of AlwaysActAsServerClassMachine
1549// and NeverActAsServerClassMachine in globals*.hpp.
1550bool os::is_server_class_machine() {
1551  // First check for the early returns
1552  if (NeverActAsServerClassMachine) {
1553    return false;
1554  }
1555  if (AlwaysActAsServerClassMachine) {
1556    return true;
1557  }
1558  // Then actually look at the machine
1559  bool         result            = false;
1560  const unsigned int    server_processors = 2;
1561  const julong server_memory     = 2UL * G;
1562  // We seem not to get our full complement of memory.
1563  //     We allow some part (1/8?) of the memory to be "missing",
1564  //     based on the sizes of DIMMs, and maybe graphics cards.
1565  const julong missing_memory   = 256UL * M;
1566
1567  /* Is this a server class machine? */
1568  if ((os::active_processor_count() >= (int)server_processors) &&
1569      (os::physical_memory() >= (server_memory - missing_memory))) {
1570    const unsigned int logical_processors =
1571      VM_Version::logical_processors_per_package();
1572    if (logical_processors > 1) {
1573      const unsigned int physical_packages =
1574        os::active_processor_count() / logical_processors;
1575      if (physical_packages >= server_processors) {
1576        result = true;
1577      }
1578    } else {
1579      result = true;
1580    }
1581  }
1582  return result;
1583}
1584
1585void os::initialize_initial_active_processor_count() {
1586  assert(_initial_active_processor_count == 0, "Initial active processor count already set.");
1587  _initial_active_processor_count = active_processor_count();
1588  log_debug(os)("Initial active processor count set to %d" , _initial_active_processor_count);
1589}
1590
1591void os::SuspendedThreadTask::run() {
1592  assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
1593  internal_do_task();
1594  _done = true;
1595}
1596
1597bool os::create_stack_guard_pages(char* addr, size_t bytes) {
1598  return os::pd_create_stack_guard_pages(addr, bytes);
1599}
1600
1601char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
1602  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1603  if (result != NULL) {
1604    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1605  }
1606
1607  return result;
1608}
1609
1610char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
1611   MEMFLAGS flags) {
1612  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1613  if (result != NULL) {
1614    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1615    MemTracker::record_virtual_memory_type((address)result, flags);
1616  }
1617
1618  return result;
1619}
1620
1621char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
1622  char* result = pd_attempt_reserve_memory_at(bytes, addr);
1623  if (result != NULL) {
1624    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1625  }
1626  return result;
1627}
1628
1629void os::split_reserved_memory(char *base, size_t size,
1630                                 size_t split, bool realloc) {
1631  pd_split_reserved_memory(base, size, split, realloc);
1632}
1633
1634bool os::commit_memory(char* addr, size_t bytes, bool executable) {
1635  bool res = pd_commit_memory(addr, bytes, executable);
1636  if (res) {
1637    MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1638  }
1639  return res;
1640}
1641
1642bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1643                              bool executable) {
1644  bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
1645  if (res) {
1646    MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1647  }
1648  return res;
1649}
1650
1651void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
1652                               const char* mesg) {
1653  pd_commit_memory_or_exit(addr, bytes, executable, mesg);
1654  MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1655}
1656
1657void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
1658                               bool executable, const char* mesg) {
1659  os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
1660  MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1661}
1662
1663bool os::uncommit_memory(char* addr, size_t bytes) {
1664  bool res;
1665  if (MemTracker::tracking_level() > NMT_minimal) {
1666    Tracker tkr = MemTracker::get_virtual_memory_uncommit_tracker();
1667    res = pd_uncommit_memory(addr, bytes);
1668    if (res) {
1669      tkr.record((address)addr, bytes);
1670    }
1671  } else {
1672    res = pd_uncommit_memory(addr, bytes);
1673  }
1674  return res;
1675}
1676
1677bool os::release_memory(char* addr, size_t bytes) {
1678  bool res;
1679  if (MemTracker::tracking_level() > NMT_minimal) {
1680    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1681    res = pd_release_memory(addr, bytes);
1682    if (res) {
1683      tkr.record((address)addr, bytes);
1684    }
1685  } else {
1686    res = pd_release_memory(addr, bytes);
1687  }
1688  return res;
1689}
1690
1691void os::pretouch_memory(void* start, void* end, size_t page_size) {
1692  for (volatile char *p = (char*)start; p < (char*)end; p += page_size) {
1693    *p = 0;
1694  }
1695}
1696
1697char* os::map_memory(int fd, const char* file_name, size_t file_offset,
1698                           char *addr, size_t bytes, bool read_only,
1699                           bool allow_exec) {
1700  char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
1701  if (result != NULL) {
1702    MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, CALLER_PC);
1703  }
1704  return result;
1705}
1706
1707char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
1708                             char *addr, size_t bytes, bool read_only,
1709                             bool allow_exec) {
1710  return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
1711                    read_only, allow_exec);
1712}
1713
1714bool os::unmap_memory(char *addr, size_t bytes) {
1715  bool result;
1716  if (MemTracker::tracking_level() > NMT_minimal) {
1717    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1718    result = pd_unmap_memory(addr, bytes);
1719    if (result) {
1720      tkr.record((address)addr, bytes);
1721    }
1722  } else {
1723    result = pd_unmap_memory(addr, bytes);
1724  }
1725  return result;
1726}
1727
1728void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
1729  pd_free_memory(addr, bytes, alignment_hint);
1730}
1731
1732void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1733  pd_realign_memory(addr, bytes, alignment_hint);
1734}
1735
1736#ifndef _WINDOWS
1737/* try to switch state from state "from" to state "to"
1738 * returns the state set after the method is complete
1739 */
1740os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
1741                                                         os::SuspendResume::State to)
1742{
1743  os::SuspendResume::State result =
1744    (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
1745  if (result == from) {
1746    // success
1747    return to;
1748  }
1749  return result;
1750}
1751#endif
1752